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A B S T R A C T

The supply chain network of companies that produce goods and deliver them to cus-
tomers, can be captured in a mathematical model. ORTEC Supply Chain Design
(OSCD) uses a mixed integer mathematical program to design a supply chain net-
work while optimizing a certain output (e.g. minimize cost). The input parameters
of such a program, like transport cost and customer demand, not only have to be
estimated, but they also have ranges of uncertainty. Consequently, the output (the
network design) is uncertain as well. In this work the impact of that uncertainty on
the output, in the mathematical model of OSCD, is investigated. Generic effects that
hold for several case studies of OSCD are presented. In addition a tool for precise
estimation in unique cases is proposed. This work could be used to further extend the
relationship between input and output of more complex case studies of OSCD.
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Part I

I N T R O D U C T I O N & L I T E R AT U R E



1
I N T R O D U C T I O N

ORTEC Supply Chain Design (OSCD) is ORTEC’s own supply chain optimization soft-
ware. In OSCD, a supply chain can be modeled completely. A set of characteristics
or requirements is defined by input parameters. These include typical features such
as capacities, cost and market demand. The values of these parameters are used by
OSCD to optimize the supply chain network, through a set of deterministic linear
functions. The software optimizes the solution by minimizing cost that consist of sev-
eral parameters (e.g. transport, supply, handling, fixed, inventory, import or storage
cost). OSCD is able to offer insight in the optimal performance of all processes in a
supply chain. Results of the solution can give answers into questions such as:

– What is the optimal number and size of distribution centers in the network?

– What is the best location for a production facility?

– How large should the truck fleet size be?

Answers to these questions can be used to make strategic decisions about the
design of the supply chain network.

In OSCD, and in any general supply chain optimization, input parameters have a
degree of uncertainty. Consequently, the output is uncertain as well. Users of OSCD
wish to understand the relationship between the uncertainty of the input and the
level of uncertainty in the output. The optimization algorithm solves a model that
represents a complicated set of interacting relations. The goal of this project is to
find a method to estimate the effect of uncertainty in input parameters on the optimal
solution and to identify any generic effects that occur in several case studies of OSCD.

ORTECs customers make decisions based on these optimized networks. This
makes it important to understand the uncertainty relationship. For example, they
might decide to open another distribution center, a decision that could cost e120.000,
such as in case study 1 of this report. Kim et al. (2011) present an optimization
model that enables the selection of biomass conversion technologies in a biofuel sup-
ply chain. The case is known for extreme demand and supply fluctuations that can
affect the profitability of the network. In that example, wrong assignment can be costly
by not meeting demand or not optimally assigning all supply to different conversion
technologies.

Currently, ORTEC consultants run lots of scenarios and observe the changes in
order to gain insight in the effect of input uncertainty. This is done in an unstruc-
tured way and based on trial and error. This process needs to be repeated every time
something changes.
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introduction 8

In the literature, experiments are setup to obtain sensitivity measures. They use
design of experiments or have some probabilistic aspect (i.e. Monte Carlo simulation).
The latter is used since it is capable of capturing non-linear relationships (Wang et
al.). These methods are effective but case specific, since the probabilistic nature of
sampling is done based on historic data of that case. In addition, it is computationally
expensive and they must be repeated every time something changes.

This work is aimed at designing a method that efficiently estimates the uncertainty
in the output of any case in OSCD. The efficiency of a method refers to the fact that it
should obtain results with a limited computational budget. Based on previous expe-
rience from ORTEC consultants with uncertainty in OSCD, it is known that customer
demand and cost parameters (e.g. transport or location cost) are most sensitive to
fluctuations of the value. For this project, these parameters will be of interest. In
addition, this work is aimed at getting insight in generic effects that are present in the
mathematical model of OSCD. The optimized output is studied in terms of optimal
cost and change in the network of allocated distribution centers (DC’s). The latter is
chosen since it represents important information for strategic decisions. Summarizing,
the objectives of this project are:

1. Design and implementation of a method that quantifies the importance and ef-
fect of uncertain parameters. ”Importance” refers to the impact on the optimal
solution.

2. Investigate to what extent the effects in the OSCD mathematical model are gen-
eralizable to other instances of the model. In other words, how are the input
parameters generally related to the output parameters?

These two objectives should be pursued in a way that they can be applied to any
generic supply chain within the OSCD software. Objective 1 will be tested on two
recent case studies where OSCD was used to design a supply chain network. With
the results of objective 1, expectations about a third case will formulated. This will be
the basis for objective 2. An additional analysis on the third case will confirm if these
expectations are correct.

Within the OSCD context, procedures for running these experiments will be built,
as well as the means to analyze it (e.g. a linear regression procedure). The procedures
will be built in such a way that can be used by future customers.

This report is organized as follows: chapter 2 (Literature Overview) gives an
overview of the relevant literature and it will elaborate on the functionality of OSCD.
Based on this, chapter 3 (Solution Approach) describes the methods used in the ex-
periments. In chapter 4 (Case Study 1), 5 (Case Study 2) and 6 (Generic effects in
OSCD) this solution will be applied and analyzed in three case studies. Chapter 7

(Conclusion), the last chapter, contains the conclusions of this work.



2
L I T E R AT U R E O V E RV I E W

2.1 ortec supply chain design

OSCD is used for sypply chain optimization studies and offers decision support at a
strategic and tactical level. The program is capable of handling a generic supply chain.
All details about the network have to be specified by the user. A simplified network
is shown in Figure 2. This network has one supply facility that transports products
by boat to a Distribution Center (DC). This DC transports the products by truck to
customers.

Figure 2: Simplified example of a Supply Chain Network

In reality, the software is capable of handling a diverse set of structures. OSCD
optimizes a flow of products through a supply chain network. All transport, stor-
age, production and supply variables are allowed to change in the model, as long as
they meet the specified constraints (e.g. storage capacity of a truck). There can be
numerous supply locations with different products. The software can handle differ-
ent transport modalities for every route or even multiple possibilities for one route.
The mathematical solver seeks to minimize or maximize an objective taking all cost
parameters into account. That objective is usually to minimize cost, but can also be
to maximize revenue, minimize CO2 emission or something else specified by the user.
The result is a set of decision variables that chooses which route the flow of products
will follow to reach a customer. A visualization of such network is shown in Figure 3.
The model has two supply locations (on the right sight of the figure) and several DC’s
and customers in France, Belgium and the Netherlands.
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2.2 mixed integer programming 10

Figure 3: Example of visualized output of supply chain network

OSCD is a Mixed Integer Linear Program (see 2.2 for theory). The mathematical
model that is used by the program is specified in appendix A.

Uncertainty in a mathematical program can be assessed through various methods.
A simple scenario run can test different values for an input parameter. Robust opti-
mization methods find a solution that is best amongst worst-case realizations of the
data. Stochastic programming methods determine a solution that is best on average
over the range of uncertainty (Busschers, 2012). An obvious disadvantage of the last
two methods is computation time. As the number of uncertain parameters increases,
the complexity of the problem increases exponentially (Zhang et al., 2015). In this
work the interest lies in finding a quick method that can identify the ranges of sensi-
tivity with respect to a specific outcome. This chapter will first present the specifics of
a Mixed Integer Linear Program. Secondly, various sensitivity analysis methods are
discussed. Thirdly, some relevant experimental designs will be mentioned. Finally,
several application of these methods will be discussed.

2.2 mixed integer programming

Any mathematical program consists of the following elements:



2.2 mixed integer programming 11

• Parameters: these contain all input data of the model, for example all DC’s and
their fixed and variable cost;

• Decision variables: these contain all decisions potentially made by the program.
For example, the allocation of customers to DC’s;

• Constraints: these are at the heart of the mathematical program and describe
the restrictions on the model. For example: all customers should at least be
provided with their minimum demand every period;

• Objective function: this is the function describing the objective of OSCD. For
minimizing the total cost, this function gives the total cost of a solution.

In this project the uncertainty of the input parameters and the constraints are of in-
terest. A linear programming (LP) problem is an optimization problem that optimizes
a linear function that is subject to certain linear constraints. The general formulation
is as follows:

max
n

∑
j=1

cjxj

Subject to:

n

∑
j=1

aijxj ≤ bi (i = 1, ..., m)

xj ≥ 0 (j = 1, ..., n).

In this work, the interest is in estimating the effect of uncertainty in the right-
hand side of the constraint (demand, denoted by bi) and in the coefficients of the
objective function (cost, denoted by cj). OSCD makes use of mixed integer linear
programming (MIP). A MIP has the additional constraint that some coefficients in the
objective function must be of integer value. This adds the further restriction on the set
of feasible solutions:

xj ∈ Z (j = 1, ..., n).

In the specific context of OSCD this last constraint is not only integer, but also
binary which replaces the latter restriction with:

xj ∈ {0, 1} (j = 1, ..., n).

Integer and binary constraints make it more difficult to optimize the linear pro-
gram. The simplex method, an optimization algorithm, finds an optimum by itera-
tively computing a solution better than the current one. This is not possible for a
MIP. An alternative would be to solve the problem by trying all binary values for
the constraints. This is not feasible as it will lead to 2p possible assignments (with
p constraints). The Branch and Bound algorithm is able to solve a MIP by lowering
the complexity of the problem by relaxing all constraints, while identifying which
ones are already at integer (or binary) values. The branching algorithm, for a binary
constraint, is as follows (Hendriks, 1991):
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1. Solve the relaxed approach (with the Simplex algorithm);

2. If there are variables zi with non-binary values, pick one of them and recursively
solve each relaxation with z = 0 and z = 1;

3. Stop when the solution only contains binary values.

The mathematical model of OSCD is formulated in appendix A.

2.3 sensitivity based on mathematical model

The sensitivity of decision variables and constraints can be derived from the mathe-
matical model. Sensitivity in the constraints is defined by the dual prices. A dual
price is the amount of benefit in the objective function, if a constraint is weakened by
one unit (Taha, 2007). For example, the transport capacity of a truck can increase mak-
ing the transport cost per product relatively cheaper. Sensitivity in a decision variable
is defined by the reduced cost. In this example the objective improves by relaxing
one of the constraints in the model. The reduced cost is the reduction in revenue if a
zero-coefficient is forced to be non-zero. This cost arises, because the resource that is
used, could have been spent in a better way. In addition, one can look at the ranges
at which a variable can be changed, without its affecting the optimal solution (Taha,
2007).

These measures can be informative but for this project the main interest is not in
decision variables but in cost parameters. The mathematical model does not reveal
sensitivity information about these parameters (or their interactions). With the help of
sensitivity analysis methods (i.e. designed experiments) sensitivity estimates of those
parameters can be found.

2.4 sensitivity analysis

This project aims to quantify the direct relationship between a set of input parameters
and an optimized outcome. To really understand cause-and-effect relationships, delib-
erate changes to the input parameters should be made, while observing the effect on
the output. For a model with n parameters, the difference (δ) in output parameter y
can be explained by differences in input parameters. An important distinction is the
effect of individual parameters (main effect) and the effect of input parameters when
they are changing simultaneously (interaction effect). A main effect is the change
in output if one input parameter is changed by one unit. Interaction occurs when
the level of change of one input parameter is affected by the level of another input
parameter (Fox, 2008). To illustrate this consider the following example:

A supply chain optimizer finds the optimal number of DC’s for a soft-drink com-
pany, based on numerous input parameters such as location cost, transport cost and
demand forecasts. The effect of location cost is illustrated in the plot below. When
the location cost is higher, the optimal number of DC’s decreases (for this example,
the amount of DC’s is assumed to be continuous). This effect is different for different
levels of transport cost, as is illustrated in Figure 4.
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Figure 4: Example of interaction effect in supply chain optimization

In this case, the input parameters location cost and transport cost are interacting.
If no interaction were present, the two lines in Figure 4 would be parallel.

Sensitivity Analysis (SA) is a method that enables insight into complex mathemat-
ical models such as an optimization problem. SA reveals to what extent the outcome
changes as a result of a change in the input parameters (Bogenovo, Plischke 2015).
In a standard setting, SA studies the model response to a selected range of input pa-
rameters. Local SA methods (such as nominal range SA, automated differentiation)
test individual parameter effects while, global SA methods test parameter effects with
respect to the entire set of parameter distributions (Sobol’s method, regression and
ANOVA) (Cadini et al., 2012). In other words, local SA methods only test for main
effects while global methods also take interaction effects into account. Clearly, global
SA methods are the ones that are of interest for this project.

The difference (δ) in output parameter y (e.g. number of DC’s) can be explained
by the following equation:

δy =
n

∑
i=1

φi + ∑
i<j

φi,j + ∑
i<j<k

φi,j,k + ... + φ1,2,...,n (1)

The φi represents all n main effects associated with the n input parameters. φi,j
are the two-way interaction terms, φi,j,k are the three-way interaction terms, etc. (all
the way up to the n-way interaction term). Estimates of three-way interaction terms
(and higher) are generally not of interest as they have a small impact on the response
and are hard to interpret (Montogomery, Runger, 2011). In the results of this project,
it will be shown that these high-way interactions have indeed little to no effect on the
output.

The extent to which higher way interactions are identifiable, is dependent on the
design of the executed computer experiments (see next section).
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2.5 design of experiments

Experimental design can allow for finding the structure of main and interaction effects.
Some different approaches of designed experiments:

• One-at-a-Time design: Change one parameter at a time and observe the output.
This will enable one to estimate the main effects, but they might be confounded
with interaction effects.

• Factorial design: Varies over all combinations of uncertain parameters. The
ranges over which the parameters are varied, have to be specified in advance.
This enables one to estimate both main and interaction effects. The downside is
the computational price. Varying every parameter at 2 different levels leads to
2n combinations, where n is the number of parameters. This can quickly become
infeasible.

• Fractional factorial design: This design does not cover all possible combinations
but a part of it (fraction). As a result the researcher has to choose which inter-
action effects have to be covered. This can be done based on expert knowledge
and previous tests. This design will identify all main effects but only part of the
interactions. It can still uncover important relations and is less computationally
expensive (Montogomery, 2011).

Fractional design will allow for efficient estimation of most important effects with-
out having to deal with too much computation time. The smaller the experimental
design (i.e. the smaller the fraction) the less effects can be estimated. With less effects
to be estimated, there will be less insight in the relation between input parameters and
changes in output (i.e. less explained variance).

Experimenting with a mathematical model results in model responses correspond-
ing to changes in the input parameters. Analysis of Variance (ANOVA) is a statistical
technique that is capable of quantifying the importance of parameters by computing
the induced variance in the model. In the context of computer experiments, a sim-
ilar method, called Sobol’s method (Sobol, 2001) is known. There is an important
difference between ANOVA and Sobol’s method. ANOVA tests the importance of
parameters by comparing the parameter explained variance to the residuals (the unex-
plained part in the model).Sobol’s method, in contrast, compares parameter variance
with the explained part of the model. Sobol’s method does not test for significance
but rather quantifies each parameter’s importance relative to the whole model. In
computer experiments the unexplained part is usually known as the part that is delib-
erately left out of the model (e.g. to reduce computation effort). Another important
difference is that Sobol’s method uses a quasi-random simulation approach for testing
different values of input parameters. In case of ANOVA, it is more common to use
designed experiments (with fixed levels of parameters). As mentioned, the simula-
tion approach has the advantage of the possibility to identify non-linear relationship
(while being more computationally expensive, Zhang et al. (2015)).
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2.6 applications of global sensitivity analysis methods

Kim et al. (2011) used SA to find the dominant input parameters in a biomass sup-
ply chain network. From 14 parameters, 5 were selected to be dominant, using the
global SA technique Sobol’s method. These 5 parameters were used to create different
scenarios based on different values over the range of uncertainty of the dominant pa-
rameters. As a comparison, they conducted a Monte Carlo simulation including all 14

parameters. This simulation showed that the 5 dominant parameters explained 96%
of the variance in the output. This result indicates that a global SA method success-
fully narrows down the complexity of the problem (in this case from 14 parameters to
5). The full simulation approach (which tests all main parameters at a lot of different
values) is extremely computationally expensive compared to a sensitivity experiment
(which only tests the variables at a few values).

Another work of Kim et al (2011) uses a simulation with various demand levels.
Afterwards, SA was used to test robustness of the output in terms of net profit. They
showed that, for supply chain network design, a simulation based approach can pro-
vide insight in alternative outcomes as a result of uncertainty in demand.

Wang et al. (2009) compared two types of global SA, one which used experiments
and another which used simulation. They created various input scenario’s for a supply
chain network optimization, according to either a factorial design (experiment) or
Importance Measure sampling (simulation). A factorial design with two levels tests
the input levels at the two extreme values of the predefined uncertain ranges. This can
be extended by taking more levels within these ranges. Importance Measure sampling
is similar, but instead of testing at several levels within the range, it takes a random
sample of values within the range. This random sample is executed according to
a suitable probability distribution. The authors applied regression analysis on the
results of the simulation. Wang et al. showed that importance measure sampling
is capable of capturing non-linear effects, but is computationally more expensive to
perform (i.e. the probabilistic nature requires more runs). In their example, both
methods effectively captured the relevant effects. In OSCD, it is expected that the
relationship between the input parameters and the optimal value is linear (to a certain
extent), based on experience by consultants who use and implement the software. This
will be confirmed in the result section of this report.

Deleris et al. (2005) used simulation to cover the probabilistic nature of certain
scenarios in a supply chain optimization. Using SA, they selected four hazardous
scenarios (employee strike, shortage of supply, political instability, hurricane) that
influence the performance of the supply chain. The performance output that was
selected, is loss of transported volume of the product. The authors ran a simulation
creating scenarios by including the hazardous events with a certain probability. This
simulation enabled them to analyze the expected loss of volume.
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3

S O L U T I O N A P P R O A C H

The goal of this project is to develop an efficient method that correctly estimates the
effect of uncertainty of the main parameters in a MIP that optimizes a supply chain
network. Previous research uses several SA techniques to achieve similar results. In
this project the focus is on achievable computation time. To obtain this goal the so-
lution is split into two parts. The first part is an experimental method that estimates
the uncertainty of all main parameters and their interactions completely. The second
part uses the findings of the first part to construct a generic model to explain the
relationship between input parameters and the output.

3.1 solution part 1

The experiment is set up such that it yields insights in the following issues:

1. Identify important main effects;

2. Identify important interactions;

3. Test to what extent higher order interactions are important;

4. Test whether the relationship between input and output is linear;

5. Test whether the method produces stable results over different instances of the
same model.

To achieve this, all main parameters are tested at 4 different levels (−75%,−50%,+50%
and +100%). A full factorial design is used such that all combinations of all levels for
each parameter is tested once. With a regression analysis all main and interaction
effects can be quantified and tested. For every run, the optimal cost and the DC
allocation are stored. The first one is used directly as outcome variable, the latter
is used to compute ’DC change’. This outcome variable represents the difference in
DC allocation with respect to a base case run. The base case run has all levels at
their original value. For an experiment with 4 main parameters (e.g. transport cost,
location cost, supply cost and demand) this leads to an experiment of 257 runs (4
parameters(4 levels) + 1 base case= 257 runs). This experiment enables to get insight in
issues 1 to 4.

To test the stability of the method (insight 5), the experiment needs to be replicated.
This solution approach will be tested on two case studies, based on data of recent
clients of ORTEC. Every case in OSCD has a unique structure. Although the overall

17



3.2 solution part 2 18

mathematical model is the same, applications can differ a lot. E.g. certain cost that
are known in one case may not be present in another or proportionally much higher.
In order to gain insight in the stability of the method the experiments are repeated
with different instances of the case studies. New instances are created by changing the
demand. This is a realistic way to generate new instances since changes in demand is
a likely thing to happen (e.g. next year has different demand than this year). Demand
is specified for each customer in a supply chain. By adding (or subtracting) a specific
amount on each customer demand, a new instance is created. The random changes
are made according to three different probability distributions:

• Uniform distribution with min = −30% and max = +30%. With this distribu-
tion the total demand change has an expected value of 0%.

• Skewed uniform distribution with min = −30% and max = +100%. With this
distribution the total expected demand change is +35%.

• Truncated Normal distribution with µ = 65, σ = 30, min = 30 and max = ∞.
The expected change of the total demand is −35% in this case. Figure 5 shows
the three probability distributions.

Figure 5: Density of distributions used for generating new instances.

All three instance types are generated 4 times. Including the base case run (with
original demand) this gives 13 experiments per case study. Sampling from the uniform
distributions is done trough standard sampling functions in R. Sampling from the
truncated normal distribution is done using an R package called TruncNorm. This
random sampler uses a mixed accept-rejection algorithm to mimic the behavior of a
truncated normal distribution (according to the work of J. Geweke, 1991).

3.2 solution part 2

The results of part 1 will be used to investigate the possibility of finding any generic
effects that occur in the mathematical model of OSCD. Generic effects can not be
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estimated directly as the models can differ a lot. For example, the second case study
has twice to cost of the first. In order to investigate any generic effect the outcome
will be transformed such that different case studies are approximately on the same
scale. This will be done by transforming optimal cost to a percentage difference with
the base-case value. The results of the two case-studies will be used to formulate
expectations on the third case. Figure 6 shows the overall structure of this work.

Figure 6: Structure of experiments and case studies.

3.2.1 Analysis Methods

The experiments are setup and executed in AIMMS within the OSCD software pack-
age. The end product of this project will be a library in OSCD. Analysis in that
library is done by creating the necessary functionalities (such as the generation of an
experimental design or the execution of a linear regression capable of computing the
explained variance per parameter).

The analysis of all results in this project is done using the statistical software pack-
age R. The experiments are analyzed using regression analysis. For optimal cost a
multiple linear regression is used. In linear regression, optimal estimates are found
by minimizing the sum of squares (Fox, 2008), i.e. the squared distance between ob-
served and estimated outcome. The DC allocation is quantified by the number of DC’s
that are different from the base case solution. DC allocation has a categorical nature,
which is a result of the fact that values are always integers (you can’t have half a DC
more). The categorical nature of DC allocation makes an ordinary regression analysis
not suitable. Instead, an ordinal logistic regression is used. Ordinal logistic regres-
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sion can capture the categorical nature of the outcome variable while also accounting
for the inherent ordering of the levels (in contrast to multinomial logistic regression)
(Kleinbaum & Klein, 2010).

In this work the cumulative link model is used. Christensen (2015) formulates this
model as follows:

The model takes a response variable Yi, that can have ordered j = 1, ..., J categories.
In DC Change the categories are the amount of DC’s different from the basecase
solution. These categories are naturally ordered, for example ranging from 4 DC’s less
than the basecase solution to 10 DC’s more than the basecase solution. The cumulative
distribution of an observation being in category j is:

γij = P(Yi ≤ j) = πi1 + ... + πij , (2)

Where πij is the probability that the ith observation falls in category j. The logit
link function is defined by logit(π) = log[π/(1−π)]. Using this link function changes
to formulation to:

logit(γij) = logit(P(Yi ≤ j)) = log
P(Yi ≤ j)

1− P(Yi ≤ j)
. (3)

The cumulative logit model can be written as a regression equation:

logit(γij) = αj − xT
i β . (4)

where xi is a vector of explanatory variables of the ith observation and β is a
vector with regression estimates. The intercept of each class j is denoted by αj. With
this model, for every observation a most likely class can be computed (Christensen,
2015).

The importance of parameters in a linear regression is quantified by computing the
explained variance. The explained variance per parameter gives an interpretable value
(a percentage). For ordinal logistic regression such a quantification is harder to make.
Instead, the parameter estimate values can be compared, since all input parameters are
on the same scale (going from −75% to +100%). In addition, the prediction accuracy
of the model when used for new data can be used to test the model performance.
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C A S E S T U D Y 1 : L A C TA L I S

4.1 description

Lactalis produces and supplies diary products world wide. They make products such
as cheese, milk, yoghurt, butter and cream. ORTEC has helped them with optimizing
the supply chain of the Canadian subsidiary, called Parmalat. In this case, the client
requested insight in the impact of different future scenario’s on DC allocation and cost.
Different scenario’s had a different demand of specific products or different possible
DC locations. For the experiment, this case was used at base case level with all DC’s
available. The network consist of 14 DC’s and 870 customers. In the original case,
production was divided over several locations. For the purpose of this study, it was
decided to combine all production in one location so that the network would be able
to close a DC (which is not possible if it is also a production plant). The locations are
shown in Figure 7.

Figure 7: Map with locations of DC’s and customers of Lactalis in Canada.

This case has values for the main parameters transport cost, location cost, handling
cost and demand. These values will be configured in the experiment. This resulted in
a 4 level factorial design with 4 parameters, leading to 256 configurations, excluding
the run with base values. As described in chapter 3, the experiment is repeated in
different instances, where the customer demand is changed. The aggregated results
of all instances are presented in the next section.
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4.2 results

Figures 8 and 9 show the results of the exploratory experiment where the input pa-
rameters are changed one at the time. Optimal cost is relatively most impacted by
changes in transport cost or demand. DC allocation is only affected by demand in
this experiment. In later experiments, it is shown that other parameters have an effect
when changed simultaneously.

Figure 8: Change in the optimal cost as a result of one at the time changes in input
parameters.

Figure 9: Change in DC allocation as a result of one at the time changes in input
parameters.
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4.2.1 Optimal Cost

Table 1 shows the outcome of a regression analysis with the optimal cost as a depen-
dent variable. It shows that the main effects transport cost, location cost and demand
are significant (p < 0.05), as well as the interaction effect between transport cost and
demand. In addition, the 3 and 4-way interaction estimates are either very small, or
non-existent. The parameter estimates represent the amount of change in optimal cost
as a result of a one-unit change in the input parameters. This model explains the
variance almost perfectly (99.995% of variance explained).

Table 1: Regression table optimal cost

Parameter Estimate Std. Error t value p value % of variance
(Intercept) 1.29e+07 6.36e+03 2,023.93 0.00

Transport 1.14e+05 8.87e+01 1,285.84 0.00 38.23

Location 1.85e+03 8.87e+01 20.80 0.00 0.01

Handling 4.45e-01 8.87e+01 0.01 1.00 0.00

Demand 1.25e+05 8.87e+01 1,403.30 0.00 45.09

Transport:Location 2.06e+00 1.24e+00 1.67 0.10 0.00

Transport:Handling -5.40e-04 1.24e+00 -0.00 1.00 0.00

Transport:Demand 1.12e+03 1.24e+00 904.90 0.00 16.67

Location:Handling -5.40e-04 1.24e+00 -0.00 1.00 0.00

Location:Demand 2.06e+00 1.24e+00 1.67 0.10 0.00

Handling:Demand -5.40e-04 1.24e+00 -0.00 1.00 0.00

Transport:Location:Handling 6.55e-07 1.72e-02 0.00 1.00 0.00

Transport:Location:Demand -2.73e-02 1.72e-02 -1.59 0.11 0.00

Transport:Handling:Demand 6.55e-07 1.72e-02 0.00 1.00 0.00

Location:Handling:Demand 6.55e-07 1.72e-02 0.00 1.00 0.00

Transport:Location:-
Handling:Demand -7.93e-10 2.40e-04 -0.00 1.00 0.00

The same analysis was done on the output of other instances. Figures 10 and 11

show how the regression coefficients and explained variance per parameter differ over
the instances. For the regression coefficients, only the significant effects are shown. For
the explained variance, only the parameters with more than 1% are shown. The fig-
ures show that the coefficient estimates vary over different instances but are relatively
stable within the same type of instance. The skewed distributions (truncated normal
and skewed uniform) show more change. This is to be expected, as the total demand
at base level is different for these instances. The explained variance per parameter
shows to be quite stable over different instances.
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Figure 10: Regression estimates per instance for the optimal cost.
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Figure 11: Explained variance per significant parameter per instance, for the optimal
cost.

4.2.2 DC Allocation

The same type of analysis has been applied to the allocation of DC’s. Lactalis showed
to have a stable set of DC’s. Figure 9 with the changes of the OAT analysis revealed
that even with a lot of change (+100%) in the input parameters, the amount of DC’s
only changes by 1 center. In other words, in most of the experiments the amount
of DC’s is equal. This makes is hard to fit an ordinal logistic regression model and
the analysis turned out to be problematic. Ordinal Logistic Regression is fitted using
maximum likelihood. During the analysis it occurred that the optimization algorithm
for fitting an ordinal logistic regression did not converge. This is caused by the fact
that the model can’t distinguish the outcome variable by it’s input parameters because
there is to little variation in the outcome. The result is that the model can’t find
the standard errors of the parameters estimates and consequently no corresponding
p value. The main objective of this work is to identify and quantify sensitivity of
the input parameters. Although a linear regression does not capture the non-linear
behavior of DC allocation, it can identify parameters that influence it and quantify
them by their impact. For simplicity and interpretation purposes a linear regression
is applied. Although this is not the proper analysis for such an outcome, it does give
insight in which input parameters influence the amount of DC’s.
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Table 2 shows the results of a regression analysis with change in DC allocation
as output. The same main effects are significant but now all their interaction effects
as well, including the three-way interaction. The dependent variable in this analysis,
DC allocation change, has a different scale than optimal costs. In all configurations
of an experiment, DC change varies from −1 to 1, while the optimal cost changes
from approximately 120 thousand to 5 million. This leads to the fact that the es-
timates seem small. The estimates of the interaction coefficients are even smaller.
Transport:Location for example is equal to 0.00002. Both values taken at their largest
value, means that the value of the input parameter should be multiplied by 10.000
(100 ∗ 100). This means that the interaction in this model causes a maximum change
of 10.000 ∗ 0.00002 = 0.2 DC’s. This model explaines 72.80% of the variance.

Table 2: Regression table DC allocation.

Parameter Estimate Std. Error t value p value % of variance
(Intercept) -1.01e-01 1.01e-02 -10.04 0.00

Transport 1.33e-03 1.41e-04 9.44 0.00 10.74

Location -1.49e-03 1.41e-04 -10.60 0.00 9.56

Handling -4.95e-07 1.41e-04 -0.00 1.00 0.00

Demand 1.33e-03 1.41e-04 9.44 0.00 10.74

Transport:Location 1.95e-05 1.96e-06 9.94 0.00 9.92

Transport:Handling 6.00e-10 1.96e-06 0.00 1.00 0.00

Transport:Demand -1.72e-05 1.96e-06 -8.76 0.00 10.87

Location:Handling 6.00e-10 1.96e-06 0.00 1.00 0.00

Location:Demand 1.95e-05 1.96e-06 9.94 0.00 9.92

Handling:Demand 6.00e-10 1.96e-06 0.00 1.00 0.00

Transport:Location:Handling -7.27e-13 2.73e-08 -0.00 1.00 0.00

Transport:Location:Demand -2.52e-07 2.73e-08 -9.23 0.00 10.04

Transport:Handling:Demand -7.27e-13 2.73e-08 -0.00 1.00 0.00

Location:Handling:Demand -7.27e-13 2.73e-08 -0.00 1.00 0.00

Transport:Location:-
Handling:Demand 8.82e-16 3.81e-10 0.00 1.00 0.00

Figures 12 and 13 show the difference of estimates and explained variance over all
instances. Again, the results within a type of instance is quite stable. There are some
large differences in the estimates of demand.
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Figure 12: Significant regression coefficients per instance for DC allocation.
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Figure 13: Expained variance per significant parameter per instance for DC allocation.



5

C A S E S T U D Y 2 : M E D U X

5.1 description

Medux is an organization active in the Dutch health-care industry. They mainly fo-
cus on offering health and wellness products and delivering them to peoples homes.
Recently, ORTEC helped Medux with a strategic decision about their supply chain net-
work, using OSCD. Medux has several DC’s in the Netherlands and wanted to know
how they could spend their resources optimally. Most importantly, they wanted to
know whether some of the DC’s could be closed, while still being able to deliver ef-
ficiently throughout the Netherlands. This strategic decision makes this case suitable
for a sensitivity experiment. E.g. Medux would be interested in knowing to what ex-
tent optimal allocation of DC’s is stable over different ranges of the input parameters.
Since Medux uses one of ORTEC’s products (ORTEC Service Planning) a lot of data
are available on their demand and transport over the last few years.

The network consists of 17 DC’s and 797 customers. A map with the locations
is shown in Figure 14. The DC’s consist of current centers that are used by Medux
and possible new locations for a DC. The network, optimized by OSCD, is allowed to
use any center in the set, the only restriction being the fixed cost required for using a
center.

30
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Figure 14: Map with locations of DC’s and customers of Medux

This case has values for the main parameters transport cost, supply cost, location
cost and demand. Again, this results in a factorial design with 256 configurations, not
counting the run with base values. The results for all instances are shown in the next
section.

5.2 results

Figures 15 and 16 shows the results of an exploratory experiment where the input pa-
rameters are changed one at the time. The optimal cost is relatively most impacted by
changes in transport cost or demand. DC allocation is affected by demand, transport
cost and location cost.
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Figure 15: Change in optimal cost as result of one at the time changes in input param-
eters.

Figure 16: Change in DC allocation as result of one at the time changes in input
parameters.

5.2.1 Optimal Cost

The regression table with the optimal cost as a dependent variable is shown in table
3. All main effects except for the supply cost are significant, although the explained
variance of the location cost is relatively small. The same applies to the significant
interaction terms that include location cost. This regression model explains 99.97%,
an almost perfect fit.
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Table 3: Regression table optimal cost.

Parameter Estimate Std. Error t value p value % of variance
(Intercept) 5.87e+06 7.33e+03 800.44 0.00

Transport 5.48e+04 1.02e+02 535.49 0.00 41.33

Supply 2.05e+01 1.02e+02 0.20 0.84 0.00

Location 5.02e+03 1.02e+02 49.14 0.00 0.36

Demand 5.47e+04 1.02e+02 534.95 0.00 41.25

Transport:Supply -1.26e-01 1.42e+00 -0.09 0.93 0.00

Transport:Location 3.32e+01 1.42e+00 23.34 0.00 0.07

Transport:Demand 5.19e+02 1.42e+00 364.46 0.00 16.87

Supply:Location -3.81e-01 1.42e+00 -0.27 0.79 0.00

Supply:Demand -3.61e-01 1.42e+00 -0.25 0.80 0.00

Location:Demand 3.40e+01 1.42e+00 23.87 0.00 0.08

Transport:Supply:Location 1.64e-03 1.98e-02 0.08 0.93 0.00

Transport:Supply:Demand 1.90e-03 1.98e-02 0.10 0.92 0.00

Transport:Location:Demand 1.52e-01 1.98e-02 7.64 0.00 0.01

Supply:Location:Demand 5.59e-03 1.98e-02 0.28 0.78 0.00

Transport:Supply:-
Location:Demand -2.38e-05 2.76e-04 -0.09 0.93 0.00

Figures 17 and 18 show the stability of those estimates over all instances. Again,
the regression coefficients change between different types of instances, while they
remain stable within one type instance. The explained variance estimates show to be
stable over all instances.
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Figure 17: Significant regression estimates per instance for optimal cost.
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Figure 18: Expained variance per significant parameter per instance for optimal cost.

5.2.2 DC Allocation

The ordinal logistic regression table with DC change as output, can be found in table
4 and 5. The change in DC allocation for this case ranges from −5 to 11. The logodds
between two classes is calculated by taking the corresponding intercept estimate and
add that to the product of the input parameter values and their estimates (from table
5). The exponent of this value leads to the odds between the categories. By doing this,
the most likely class for every observation can be found.

Transport cost, location cost and demand all have significant main and interaction
effects. In addition, transport cost and demand have positive estimates (with equal
magnitude), indicating that the higher the value, the more likely it is to end up in a
higher category (i.e. have more DC’s). For supply cost, this value is negative leading
to an opposite effect. An estimate of a parameter represents the increase in logodds
(or decrease for negative values) if a parameter is increased by 1%.
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Table 4: Intercepts of ordinal logistic regression model on DC Change

Parameter Estimate Std. Error z value p value
-5|-4 -8.23 0.62 -13.37 0.00

-4|-3 -5.59 0.50 -11.25 0.00

-3|-2 -5.08 0.48 -10.47 0.00

-2|-1 -2.10 0.46 -4.58 0.00

-1|0 0.05 0.42 0.12 0.90

0|1 1.33 0.43 3.07 0.00

1|2 1.70 0.43 3.92 0.00

2|3 4.60 0.52 8.76 0.00

3|4 7.60 0.61 12.45 0.00

4|5 7.97 0.63 12.72 0.00

5|6 8.91 0.67 13.23 0.00

6|7 11.49 1.01 11.41 0.00

7|8 14.53 1.41 10.28 0.00

8|10 17.58 1.48 11.85 0.00

10|11 24.51 2.23 10.99 0.00

Table 5: Ordinal logistic regression model on DC change

Parameter Estimate exp(Estimate) Std. Error z value p value
Transport 7.64e-02 1.08e+00 0.01 13.91 5.27e-44

Location -7.47e-02 9.28e-01 0.01 -13.78 3.30e-43

Supply -1.36e-05 1.00e+00 0.00 -0.01 9.96e-01

Demand 7.64e-02 1.08e+00 0.01 13.91 5.27e-44

Transport:Location -1.48e-04 1.00e+00 0.00 -3.03 2.45e-03

Transport:Supply 9.22e-08 1.00e+00 0.00 0.00 9.98e-01

Transport:Demand 2.01e-04 1.00e+00 0.00 3.83 1.27e-04

Location:Supply -1.15e-07 1.00e+00 0.00 -0.00 9.98e-01

Location:Demand -1.48e-04 1.00e+00 0.00 -3.03 2.45e-03

Supply:Demand 9.22e-08 1.00e+00 0.00 0.00 9.98e-01

Transport:Location:Supply 1.52e-09 1.00e+00 0.00 0.00 9.98e-01

Transport:Location:Demand -9.79e-07 1.00e+00 0.00 -1.46 1.45e-01

Transport:Supply:Demand -1.18e-09 1.00e+00 0.00 -0.00 9.98e-01

Location:Supply:Demand 1.52e-09 1.00e+00 0.00 0.00 9.98e-01

Transport:Location:-
Supply:Demand -1.66e-11 1.00e+00 0.00 -0.00 9.98e-01

For Lactalis a linear regression was applied to DC change. As a comparison, the
same type of regression is applied to this case as well (see table 6). The same param-
eters are significant and the direction of the estimates is the same (i.e. Location has
a negative effect). The magnitude of the impact is different. This is caused by the
fact that the range of DC change for Medux is much wider. This model captures the
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variance of the outcome relatively better than the Lactalis case, as the total explained
variance is 94.6%.

In Figure 12 the stability of those estimates is plotted for all instances. The points
are all relatively close to each other, indicating that the experiments reveal similar
results both within and between different types of instances.

Table 6: Linear regression model on DC Change

Parameter Estimate Std. Error z value p value
Transport 7.64e-02 5.49e-03 13.91 0.00

Supply -1.36e-05 2.67e-03 -0.01 1.00

Location -7.47e-02 5.42e-03 -13.78 0.00

Demand 7.64e-02 5.49e-03 13.91 0.00

Transport:Supply 9.22e-08 3.46e-05 0.00 1.00

Transport:Location -1.48e-04 4.90e-05 -3.03 0.00

Transport:Demand 2.01e-04 5.25e-05 3.83 0.00

Supply:Location -1.15e-07 4.19e-05 -0.00 1.00

Supply:Demand 9.22e-08 3.46e-05 0.00 1.00

Location:Demand -1.48e-04 4.90e-05 -3.03 0.00

Transport:Supply:Location 1.52e-09 5.17e-07 0.00 1.00

Transport:Supply:Demand -1.18e-09 4.65e-07 -0.00 1.00

Transport:Location:Demand -9.79e-07 6.72e-07 -1.46 0.15

Supply:Location:Demand 1.52e-09 5.17e-07 0.00 1.00

Transport:Supply:Location:Demand -1.66e-11 6.61e-09 -0.00 1.00
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Figure 19: Significant regression coefficients per instance for DC allocation.



6
S O L U T I O N PA RT 2 : G E N E R I C E F F E C T S I N O S C D

In this chapter, generic models for the input-output relationship in OSCD will be
investigated. These models will be built, based on the results in the two case studies
(Lactalis and Medux). The models will be compared to the results of a third case
study. This third case study contains data from Isreal Chemicals Ltd (ICL). ICL is
an international company that develops, produces and markets chemical products
used for agriculture, food and engineering. ORTEC helped them with their supply
chain network in the United Kingdom and Ireland. The ICL network consists of 2177

customers and 7 DC’s. The locations in the ICL network are shown in Figure 20.

Figure 20: Map with locations of DC’s and customers of ICL

6.1 generic regression model on optimal cost

It is expected that the parameters in the mathematical model of OSCD have an impact
on the optimal cost that is relatively similar in different cases. To confirm this, a regres-
sion model is created that includes both Lactalis and Medux data. For this analysis a
new outcome variable is created. The optimal cost is not suitable for analysis as they

39
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differ in size between Lactalis en Medux (i.e. the Lactalis network has approximately
twice the cost of the Medux network). Instead, a new variable is created that repre-
sents the proportional change of the optimal cost (in percentages), as compared to its
base case value. Table 7 show the regression table on the relative change in optimal
cost in both Medux and Lactalis. The adjusted R2 of this model is 0.99. The handling
and supply cost are left out of the model as they only explained a small part of the
variance in the regression models and they are not present in both cases. The estimates
represent the percentage change as a result of a 1% change in the input parameter. For
example, with an increase of 1% change in transport cost, the optimal cost increases
by 0.85%.

Table 7: Regression Model on relative change in optimal cost for Lactalis and Medux
combined

Parameter Estimate Std. Error t value Pr(>|t|) % of variance
(Intercept) 3.42e-01 4.88e-01 0.70 0.48

Transport 8.46e-01 6.80e-03 124.40 0.00 36.33

Location 6.09e-02 6.80e-03 8.95 0.00 0.20

Demand 9.68e-01 6.80e-03 142.33 0.00 46.99

Transport:Location 2.87e-04 9.47e-05 3.03 0.00 0.02

Transport:Demand 8.17e-03 9.47e-05 86.19 0.00 15.36

Location:Demand 5.11e-04 9.47e-05 5.39 0.00 0.06

Transport:Location:Demand 1.31e-06 1.32e-06 0.99 0.32 0.00

The regression model based on the two case studies is used to predict values in
the ICL case. For the ICL case a similar experiment (including main cost parameters
with 4 different values) is conducted. Figure 21 shows a plot of the predicted values
versus the observed values. This plot suggests that the prediction is quite accurate.
The correlation between the observed an predicted values is 0.999. The blue line
represents perfect predictions. As the observed cost get higher, the prediction model
overestimates the actual value (suggested by the fact that the black dots are above the
blue line).
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Figure 21: Observed and predicted values for optimal cost versus for the ICL case.

6.2 generic regression model on dc allocation

A similar analysis has been done for DC change. An ordinal regression is applied to
the collaborate results of DC allocation (DC Change) of both cases. The regression
model is shown in table 8 and 9. The logodds between two classes is calculated
by taking the corresponding intercept estimate and add that to the product of the
input parameter values and their estimates (from table 8). The odds are computed
by taking to exponent of the logodds. By doing this, the most likely class for every
observation can be found. This is done in order to formulate predictions in the ICL
case. Transport cost and demand have positive estimates, indicating that the higher
the value, the more likely it is to end up in a higher category (i.e. have more DC’s).
For supply cost, this value is negative leading to an opposite effect.

Table 8: Ordinal logistic regression model on DC change cost for Lactalis and Medux
combined

Parameter Estimate exp(Estimate) Std. Error z value p value
Transport 1.56e-02 1.02e+00 0.00 11.77 5.90e-32

Location -1.50e-02 9.85e-01 0.00 -11.45 2.46e-30

Demand 2.29e-02 1.02e+00 0.00 14.77 2.27e-49

Transport:Location 1.18e-06 1.00e+00 0.00 0.07 9.44e-01

Transport:Demand 2.83e-05 1.00e+00 0.00 1.63 1.02e-01

Location:Demand -1.89e-05 1.00e+00 0.00 -1.11 2.65e-01

Transport:Location:Demand 8.89e-07 1.00e+00 0.00 3.63 2.83e-04
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Table 9: Intercepts of ordinal logistic regression model on DC Change

Class Estimate Std. Error z value p value
-5|-4 -3.64 0.20 -18.52 0.00

-4|-3 -2.90 0.17 -17.48 0.00

-3|-2 -2.74 0.16 -17.02 0.00

-2|-1 -2.15 0.15 -14.58 0.00

-1|0 -1.56 0.14 -11.26 0.00

0|1 0.42 0.13 3.20 0.00

1|2 2.59 0.17 15.18 0.00

2|3 3.08 0.18 16.90 0.00

3|4 3.75 0.21 18.22 0.00

4|5 3.86 0.21 18.35 0.00

5|6 4.12 0.22 18.54 0.00

6|7 4.43 0.24 18.51 0.00

7|8 4.63 0.25 18.37 0.00

8|10 5.09 0.29 17.74 0.00

10|11 6.98 0.55 12.77 0.00

Figure 22 shows a plot of the observed values versus the predicted ones of DC
allocation. The observed values are spread (jittered) around their value to prevent the
dots from overlapping. For this plot, DC change has be transformed to represent the
amount of DC’s in the solution. There is clearly more variation between observed and
predicted than with optimal cost. The percentage of correctly predicted observations
is 63%. The correlation between the observed and predicted values is 0.58. Table 10

shows a cross-table of the observed and predicted values. The plot (and the table)
suggests that in some extreme cases the model both over- and underestimates the
actual amount of DC’s.
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Figure 22: Observed and predicted values for DC allocation versus for the ICL case.

Table 10: Observed amount of DC’s (rows) versus predicted amount of DC’s (columns)

-3 2 3 11

2 8 26 4 0

3 0 1 15 0

4 0 0 8 3

In the analysis of the case studies (solution 1) it can be seen that there is some
difference between the estimates of Lacalis and Medux for DC change. The direction
of the main effects is the same but the size of the effects is different. DC allocation
seems harder to generalize, which can be explained by the case specific influences
on this outcome. Medux, for example, has cases with up to 11 DC’s more than it’s
base case. For Lactalis the maximum increase in DC’s is 1. ICL, again different, has a
maximum increase of 2 DC’s. This explains why there is some variation in prediction
and why the predictions consistently overestimates the increase and decrease in DC’s
in the DC allocation. For the optimal cost, this was solved by scaling the outcome
such that different cases are on the same scale. For DC allocation this is not feasible
as the range over which it will change, is not known beforehand.

As a comparison, table 11 shows the results of a linear regression applied to the
combined DC change of Lactalis and Medux. Figure 23 shows the results of prediction
with this model on the third case. When the linear output of the model is rounded to
integers and compared to the observed value, this model classifies 22% of the obser-
vations correct (much lower than the 63% accuracy of the ordinal regression model).
This model performs better in terms of correlation, since the correlation between the
observed and predicted values is 0.88 (compared to 0.58 in the ordinal regression
model). These differences are to be expected since the two regression models mini-
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mize a different loss function. The difference in performance on observed-predicted
correlation and classification accuracy is related to the differences in these loss func-
tions.

Table 11: Regression Model on DC change in optimal cost for Lactalis and Medux
combined

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.53e-01 9.86e-02 2.57 0.01

Transport 1.84e-02 1.38e-03 13.34 0.00

Location -1.78e-02 1.38e-03 -12.91 0.00

Demand 2.15e-02 1.38e-03 15.65 0.00

Transport:Location -4.79e-05 1.92e-05 -2.50 0.01

Transport:Demand 5.06e-05 1.92e-05 2.64 0.01

Location:Demand -5.14e-05 1.92e-05 -2.68 0.01

Transport:Location:Demand 2.68e-07 2.67e-07 1.01 0.32

Figure 23: Boxplot of predicted values per observed amount of DC’s, based on linear
regression model.
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C O N C L U S I O N

Users of OSCD wish to design a supply chain network that is optimal for a given set
of parameter values. However, those input parameters have uncertainty and, conse-
quently, the output is uncertain as well. In this work the relationship between the
uncertainty of the input and the level of uncertainty in the output, is investigated.

This work came up with a thorough analysis of two case studies. With the re-
sults of these case studies some conclusions can be made about generic effects in the
mathematical model of OSCD. In addition, this project provided a tool that can be
used by consultants and clients who work with OSCD. This tool can run sensitivity
experiments, analyze the results, visualize the effects and communicate the detailed
results.

In case studies, it was shown that different configurations of a case study could
lead to different network designs (e.g. for Medux the number of DC’s could increase
by 10 locations). Such differences in optimal designs have a large impact on the actual
cost.

In the literature various methods to compute the impact of uncertainty, i.e. sensi-
tivity methods, are used. In this work a factorial experimental design with a matching
regression analysis has been used. This was chosen, since it can capture the complex-
ity of the relationship (i.e. main effects and high-way interactions) without putting
too much pressure on the computational budget. This method has been applied to
two case studies and is tested on a third. The means for applying these methods au-
tomatically are built in the optimization software AIMMS and can be used in future
projects on new OSCD cases. The tool is capable of performing and analyzing the ex-
periments on the main cost parameters or on parameters manually chosen by the user.
In addition to the tool, this work aimed at finding any generic effects that are present
in OSCD. This can help consultants and users better understand the mathematical
model, without having to perform experiments.

7.1 conclusions solution part 1

Part 1 of the solution consisted of two case studies. In these two case studies all main
cost parameters and the demand parameter were tested for their sensitivity on the
output. This was done with a factorial experiment with 4 different levels. The results
showed that the high-way interaction (3-way and up) were mostly insignificant and
had always little explained variance.

The results also showed that all effects of input parameters on optimal costs behave
linearly. A 2-level experiment would therefore be sufficient. This does not apply to the
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change in DC’s as the number of DC’s is bounded below and above (e.g. a minimum
number of DC’s is required for any network). In order to get a sufficient idea of the
effects, a 2-level experiment with wide ranges (e.g. -75% and + 100%) can obtain
interpretable results. A small range might change too little in the design to capture
any differences in DC allocation. This design will not capture the correct estimates of
input parameter on DC change (since it behaves non-linearly) but it will give insight in
which parameters influence DC change most and by what amount, at the used levels.

Finally, part 1 revealed estimates are relatively stable over different instances. Esti-
mates of coefficients on optimal cost/ DC allocation show some variation but that can
be explained by the different amount of flow (of products) in the network.

7.2 conclusions solution part 2

In part 2 of the solution the same case studies were analyzed. The goal of this analysis
was to find generic effects that occurred over both cases. To achieve this, regression
models were built on data where both cases were combined. For the optimal cost,
the outcome variable is transformed to represent the relative change to the base case
solution. This is done, since models in OSCD can have a different size (and therefore
varying magnitudes of cost). The generic models are tested by using them to predict
values in a third case. An experiment with this third case is executed to verify the
predictions.

The generic effects on the optimal cost seem relatively constant over different
OSCD cases. Prediction in the third case is shown to be accurate, since the predicted
values are close to the observed values. For DC allocation the results are less con-
stant. The signs of the effects are similar, but the magnitude is different. This can
be explained by the fact that the possible changes in DC allocation in both models
are varying. A supply chain network design in OSCD will find the optimal selection
of DC’s, but the amount of DC’s is influenced by several characteristics of the case
study (e.g. DC size constraints, amount of DC’s available, transport constraints, etc.).
Using the model in the third case shows some predictive power but it overestimates
the amount of DC’s that the model will change.

7.3 future work

For feasibility purposes, the case studies that are used, are relatively small (a single
run in an experiment solves within one minute). In addition, the main cost param-
eters were aggregated per topic. For example, transport cost has several underlying
parameters. In the exploratory phase of this work, it was found that those underlying
parameters have varying magnitudes of impact on the optimal solution. For future
work, it will be interesting to further develop insight in the impact of individual in-
put parameters. In addition, larger models (with more input parameters and a larger
network) are worth investigating. For larger models it can be beneficial to experiment
according to a iterative procedure that tests all parameters at one level before running
the full experiment.

OSCD has more parameters that can have uncertainty. However, they are not
investigated in this study. The model assumes that products in the supply network are
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delivered using a ’milk run’. This means that every customer is visited and delivered
a specific dropsize (amount of product delivered at one visit) while also delivering to
other customers which have a distance (inter customer distance). The inter customer
distance and the dropsize are examples of input parameters that have to be estimated.
In future work these parameters could be included in the study.

To increase the predictive ability of the generic models, more case studies can be
used to train the model. This is especially relevant for DC allocation and possibly as
well for new output variables that have not been investigated in this work (e.g. net
profit or CO2 emission). It can also be relevant to add additional cases to investigate
the behavior of optimal cost, when changes in input parameters are outside of the
range that is used in this work (−75% to +100%).
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A
M AT H E M AT I C A L M O D E L

A description of the generic supply chain that can be handled by OSCD is presented
below. This representation does not cover the full functionality of OSCD. This version
is a simplified version to enable the reader to understand the structure of the model.

a.1 sets

The model is capable of handling different products, that are produced in facilities.
Warehouses, distribution centers and customers are specified by locations. Transporta-
tion modes (e.g. Truck or Boat) can have different capacities and costs.

l ∈ L Locations
f ∈ F Facilities
p ∈ P Products
tm ∈ TM Transportation Mode
pm ∈ PM Production Modes
t ∈ T Time Period
g ∈ G = P ∪ C Ingredients
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a.2 parameters

a.2.1 Capacity Parameters

Demandmax
p,l,t Maximum Demand for product p at location l

in time period t
Demandmin

p,l,t Minimum Demand for product p at location l
in time period t

Supplymax
p,l,t Maximum Supply for product p at location l

in time period t
Supplymin

p,l,t Minimum Supply for product p at location l
in time period t

Stockmax
p,l,t Maximum inventory level of product p at location

l at the end of time period t
Stockmin

p,l,t Minimum inventory level of product p at location
l at the end of time period t

Flowmax
p,tm,l1,l2,t Maximum flow of product p with transport mode

tm from l1 to l2 during time period t
Flowmin

p,tm,l1,l2,t Minimum flow of product p with transport mode
tm from l1 to l2 during time period t

Prodmax
pm, f ,l,t Maximum production in virtual mode pm on facility

f at location l during time period t
Prodmin

pm, f ,l,t Minimum production in virtual mode pm on facility
f at location l during time period t

a.2.2 Revenue and Cost Parameters

RDemandp,l,t Sales price of product p at location l during time period t
CSupp,l,t Cost of supply for product p at location l at time t
CStockp,l,t Variable stock cost of product p at location l at time t
CTransvar

p,tm,l1,l2,t Variable transport cost to move product p with transport
mode tm from l1 to l2 at time t

CTrans f ix
tm,l,t Fixed transport cost for using transport mode tm at location

from l during time period t
CLocHandin

p,tm,l,t Handling cost for product p arriving with transport mode
tm at location l at time t

CLocHandout
p,tm,l,t Handling cost for product p leaving with transport mode

tm at location l at time t
CFac f ix

f ,l,t Fixed cost for operating facility f at location l during time
period t

CLoc f ix
l,t Fixed cost for using location l during time period t
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a.2.3 Other Parameters

Lossp,tm,l1,l2,t Loss factor occurring when transporting p with tm from l1 to l2
in time period t

BOMg,pm, f ,l,t Bill of materials parameter indicating for each in-going and out-going
ingredient g how much is needed to create a virtual unit of pm on facility f
on location l in time period t

Stockstart
p,l Initial stock of product p at location l at the beginning of the first time

period (t=0).

a.3 variables

a.3.1 Decision Variables

Flowp,tm,l,l1,t ∈ R+ Flow of product p going out of location l headed to
l1 with transport mode tm during time period t

Prodpm, f ,l,t ∈ R+ Production in production mode pm in facility f
on location l in time period t

Supplyp,l,t ∈ R+ Total supply of product p at location l during time period t
Demandt,p,l ∈ R+ Total demand of product p at location l during time period t
InUseLoc

l,t ∈ {0, 1} Variable that indicates whether a location l is active (1) in time
period t or not (0). Activity refers to the location being open or closed.

InUseFac
f ,l,t ∈ {0, 1} Variable that indicates whether a facility f at location l

is active (1) in time period t or not (0)

a.3.2 Derived Variables

Flowin
p,tm,l1,l,t ∈ R+ Flow of product p coming into location l from l1 with transport

mode tm during time period t
Stockin

p,l,t ∈ R+ Stock build up of product p on location l during time period t
Stockout

p,l,t ∈ R+ Stock build down of product p on location l during time period t
ProdOutp, f ,l,t ∈ R+ Amount of product p that is produced on facility f in location l

during time period t

a.4 constraints

a.4.1 General constraints

Variables ≥ 0
Binary variables ∈ {0, 1}
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a.4.2 Demand constraints

The demand has to fulfill the demand limitations.

Demandmin
p,l,t ≤ DemAllp,l,t ≤ Demandmax

p,l,t ∀ p, l, t

a.4.3 Supply constraints

The supply has to fulfill the demand limitations.

Supplymin
p,l,t + ∑

i
SupplyDeltamin

p,l,t,i ≤ Supplyp,l,t ∀ p, l, t

Supplyp,l,t ≤ Supplymax
p,l,t + ∑

i
SupplyDeltamax

p,l,t,i ∀ p, l, t

a.4.4 Flow constraints

Flow into a location is related to the Flow out of the originating location, taken into
account the (optional) loss during the transport.

Flowin
p,tm,l1,l,t = Flowp,tm,l1,l2,t ∗ Lossp,tm,l1,l2,t ∀ p, tm, l1, l2, t

a.4.5 Production constraints

ProdOutp, f ,l,t = ∑
pm
(Prodpm, f ,l,t ∗ BOMp,pm, f ,l,t) ∀p, pm, f , l, t|BOMp,pm, f ,l,t > 0

ProdUseg, f ,l,t = ∑
pm
(Prodpm, f ,l,t ∗ BOMg,pm, f ,l,t) ∀g, pm, f , l, t|BOMg,pm, f ,l,t < 0

a.4.6 Location constraints

Locations with flow are active by definition. The flow of products in a location has to
be equal to the flow out:

∑
tm,l1

Flowin
p,l1,l,tm + ∑

f
ProdOutt,l,p, f + Supplyt,l,p + SurpusBalance(t, l, p) =

∑
tm,l2,

Flowo
t,l,l2,p,tmut + ∑

f
ProdInt,l,p, f + Salest,l,p + ShortageBalance(t, l, p)

a.4.7 Stock constraints

Inventory allows enterprises to maintain supply with fluctuations in demand. By
adding and taking stock, the stock level per period changes.

Stockin
p,l,t − Stockout

p,l,t = Stocklevel
p,l,t − Stocklevel

p,l,t−1 ∀p, l, t

The stock has to be within the accepted limits.

Stockmin
p,l,t + ∑

i
Stockp,l,t, ≤ Stocklevel

p,l,t ∀p, l, t
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a.4.8 Cost Equations

All costs associated with moving flow trough the supply chain:

• Total Variable Transportation costs:

TTCvar
t = ∑

p,tm,l1,l2

(Flowp,tm,l1,l2,t ∗ CTransvar
p,tm,l1,l2,t) ∀ t

• Total Fixed Transportation costs:

TTC f ix
t = ∑

p,tm,l1,l2

(InUseFlow
p,tm,l1,l2,t ∗ CTrans f ix

p,tm,l1,l2,t) ∀ t

• Total Production costs:

TPCt = ∑
pm, f ,l

(Prodpm, f ,l,t ∗∑
g

BOMg,pm, f ,l,t) ∀ t

• Total Supply costs:

TSCt = ∑
p,l
(Supplyp,l,t ∗ CSupp,l,t) ∀ t

• Total Inventory costs:

TICt = ∑
p,l
(

Stockp,l,t + Stockp,l,t−1

2
∗ CStockp,l,t) ∀ t

• Total Location Variable costs:

TLCvar
t = ∑

tm,p,l1,l2

(Flowp,tm,l1,l2,t,i ∗ CLocHandout
p,tm,l1,t + Flowin

p,tm,l1,l2,t,i ∗ CLocHandin
p,tm,l2,t) ∀ t

• Total Location Fixed costs:

TLC f ix
t = ∑

l
(InUseLoc

l,t ∗ CLoc f ix
l,t ) + ∑

f ,l
(InUse f ac

f ,l,t ∗ CFac f ix
f ,l,t) ∀ t

• Total Revenue:

TRt = ∑
p,l
(DemAllp,l,t ∗ RDemandp,l,t) ∀ t

a.5 objective

The main objective function minimizes costs:

MIN ∑
t
(TLC f ix

t + TLCvar
t + TSCt + TPCt + TTC f ix

t + TTCvar
t ).



A.5 objective 57

Alternatively, the following objective function maximizes profit:

MAX ∑
t
(TRt − TLC f ix

t − TLCvar
t − TSCt − TPCt − TTC f ix

t − TTCvar
t ).
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