
A Formalization of the Paradigm Coordination Language, applied to
the n-Arm Robot Problem
Szatmari, S.G.

Citation
Szatmari, S. G. (2016). A Formalization of the Paradigm Coordination Language, applied to
the n-Arm Robot Problem.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in
the Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3597101

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3597101

Simon György Szatmari

A Formalization of the Paradigm Coordination

Language,

applied to the n-Arm Robot Problem

Master’s thesis

September 29th, 2016

Thesis supervisors: Dr. F.M. Spieksma, Dr. L. Groenewegen

Mathematisch Instituut, Universiteit Leiden

Abstract

A formalization for the Paradigm coordination language is introduced, in terms of

graph products and Markov processes. The n-arm robot problem is presented, where

a robot composed of several jointed arms tries to plan and to move. We find that the

n-arm robot problem reduces to a concurrent competition for the space in which the

arms evolve. This competition for space reduces to the classical reader/writers problem.

Moving in space is equivalent to writing and sensing in space is equivalent to reading.

Several coordination schemes for the arms are developed in Paradigm. Multiple arms

can plan paths concurrently, but reserving space to move has to be done sequentially,

and moving can be done concurrently. The solutions are simulated in Matlab, and the

code is provided. Thereupon, the solutions are compared, and it is shown that not all

coordination schemes are equivalent. Finally an outline of future work is provided.

Acknowledgements

I want to thank Dr. L. Groenewegen for introducing me to the exciting realm of

concurrency and coordination, and Dr. F.M. Spieksma for introducing me to rigorous

mathematical modeling. Thanks to the endless discussions we had, I have started to un-

derstand some fundamental aspects of coordination and of modeling. I want to thank

Groenewegen for sharing with me, without holding any ideas back, the Paradigm coor-

dination language of his own invention. Needless to say that none of this project would

have been possible without Dr. Spieksma tireless suggestions and to-the-point correc-

tions, which I believe have made me into a better modeler, and have greatly improved

the quality of this work. I especially want to thank both of them for putting up with my

wild ideas and weird approaches, patiently guiding me towards a rigorous exposition of

what I had in mind.

Moreover, I need to thank the Mathematical institute, Leiden university, and its won-

derful teachers, for their exciting courses, engaging discussions, and amazing cordiality.

Needless to say that I thank my loving mother, who has supported me every step of this

long journey. Finally, I need to give special thanks to all my friends who have given me

moral stamina and emotional support, and a place to sleep when needed.

Contents

1 Introduction 1

2 Setup: World, Arm, Path-Planning, Moves 2

2.1 The n-Arms Robot Problem . 5

2.2 One Active Arm . 6

2.3 All Arms Active . 8

2.3.1 The Super-Robot Strategy . 9

2.3.2 The Round-Robin Strategy . 9

2.3.3 The Partial Reservation Strategy . 10

2.4 Detailed Behavior Explanation . 11

3 A Visualization of Path-Planning Coordination 14

3.1 PRM-Type Planners . 16

3.1.1 Pseudo-Code . 16

3.1.2 Visualization . 20

3.1.3 Variants . 20

3.2 A*-Type Planners . 21

3.2.1 Pseudo-Code . 22

3.2.2 Visualization . 22

3.2.3 Variants . 23

3.3 Combination of Path-Planners . 23

4 Paradigm Coordination Language 25

4.1 Definitions and Concepts . 25

4.2 Explanation . 32

4.2.1 Need for Strong Product . 32

4.2.2 Need for Refined Consistency Rules . 33

4.2.3 Generalization To Multiple Roles . 35

4.2.4 Generalization to Multigraphs . 37

4.3 Paradigm Applied to the n-Arms Robot Problem 38

5 Paradigm Coordination Models 39

5.1 The Super-Robot Model . 39

5.2 Critical-Section, Round-Robin Solution . 40

5.2.1 Participant Arm Detailed STD . 40

5.2.2 Phases and Traps . 41

5.2.3 Role CS . 42

5.2.4 RoRo Protocol . 43

5.3 Critical-Section, Split and Non-Deterministic Solution 43

5.3.1 Participant Arm Detailed STD . 44

5.3.2 Phases and Traps . 44

5.3.3 Role Split-CS . 48

5.3.4 Split-CS Protocol . 48

6 Probabilistic Take on Paradigm 51

6.1 Probabilistic Take at the Global Level . 51

6.1.1 Continuous-Time Markov Process . 51

6.1.2 Phase-Type Distributions . 53

6.1.3 Communication Between Agents . 54

6.2 Probabilistic Take at the Detailed Level . 55

7 Simulation of Simple Paradigm Models 56

7.0.1 Setup . 56

7.0.2 Assumptions . 56

7.0.3 Constant Variables . 57

7.0.4 Simulation Data-Structures . 57

7.1 Strategy . 58

7.1.1 Using the Memoryless Property . 59

7.2 Method Work-Time . 59

7.2.1 Aim . 59

7.2.2 Pseudo-Code . 60

7.3 Method Completion-Time . 60

7.3.1 Aim . 60

7.3.2 Pseudo-Code . 61

7.4 Method Trap-Commit . 61

7.4.1 Aim . 61

7.4.2 Input/Output . 62

7.5 Method Try-Rule . 62

7.5.1 Aim . 62

7.5.2 Pseudo-Code . 63

7.6 Method Weave . 64

7.6.1 Aim . 64

7.6.2 Pseudo-Code . 65

7.7 Method Simulation . 66

7.7.1 Aim . 66

7.7.2 Pseudo-Code . 67

8 Numerical Exploration 70

8.1 Exploration of the Super-Robot Model . 71

8.2 Exploration of the Round-Robin Solution . 71

8.3 Exploration of the Split and Non-Deterministic Solution 72

8.4 Comparison of the Models . 73

9 Conclusion 75

9.1 Analysis of Results . 75

9.2 Future Work . 75

10 Appendix 77

10.1 Code for Simulation . 77

10.2 Code for Work-Time . 82

10.3 Code for Completion-Time . 83

10.4 Code for Trap-Commit . 84

10.5 Code for Try-Rule . 85

10.6 Code for Weave . 88

10.7 Code for Helper Functions . 89

10.7.1 Method next . 89

10.7.2 Method islast . 89

1 Introduction

The initial aim of this thesis was to develop an algorithm, method, or framework to solve

the n-arm coordination problem, without using the PRM (probabilistic road-map method)

method 3.1 (16), and using the Paradigm concurrent coordination language. The n-arm co-

ordination problem is the problem of planning paths for n jointed arms sharing a common a

space. In particular, the usual solution for this is to deploy a PRM-type method, considering

all the arms as one super-robot, and to solve path-plannings at once for all the arms, as on

one thread of execution. PRM-type path-planners and A*-type path-planners (local greedy

search) are introduced in section 3 (p. 3), they are the most used algorithms in path-planning

robotics.

If one is to consider the separate arms as separate entities, or agents, then a concurrent

or multithreaded setting is entered. The separate arms, sharing a common space, can be

thought as competing agents for the shared resource that is space. This organization neces-

sitates a concurrent coordination scheme. Three coordination schemes are developed, the

Super-Robot Model, the Round-Robin Solution and the Split and Non-Deterministic Solu-

tion, presented in section 5 (p. 39).

These schemes solve, at the multithreaded level, the organization of information flow for

the different agents in the path-planning. These solutions are developed in the concurrent

design language Paradigm, which is presented in section 4 (p. 39), developed by Dr. L. Groe-

newegen and Dr. E. de Vink.

An initial investigation into the probabilistic properties of these models is conducted in

section 6 (p. 51). We use the standard assumption that each state of each agent takes a

holding time characterized by an exponential distribution.

The probabilistic analysis given is limited, hence we resort to numerical simulations. In

section 7 (p. 56), we present how we simulated all the concurrent coordination models. The

simulation is presented in pseudo-code and the actual code is given in MATLAB code, in

section 10 (p. 77).

The results of the simulations are presented in section 8 (p. 70). The results are finally

compared in section 9 (p. 75). Moreover, in this last section the prospective next steps in this

research are given.

1

2 Setup: World, Arm, Path-Planning, Moves

A common strategy to model space is to discretize it: sections of space are collapsed into

vertices and edges are established between the vertices if the corresponding sections of space

are connected [24, 30, 23]. If an object is in a certain section of space, then the object occupies

the corresponding vertex. If there is an edge from that vertex to another vertex, then the

object can, other constrains notwithstanding, move from the former section of space to the

section of space represented by the latter vertex. We use the following grid discretization of

space:

Definition 2.1 (World W , n-dim). An n-dimensional world W = (V (W),E(W)) is an undi-

rected graph, with V (W) being the set of vertices and E(W) being the set of edges, such that

V (W) ⊆Zn (2.1)

E(W) = {(v1, v2) |0 ≤ ‖v1 − v2‖∞ ≤ 1, v1, v2 ∈V (W)}. (2.2)

Figure 1: Each square becomes a vertex in the graph. Note the edge from each vertex to itself,

representing null motion.

Robotic arms are usually made up of several limbs, connected together by joints. At the

joints there are usually actuators [24, 30, 23]. There are several types of robotics arms, but

in this work the focus is on the modeling of the most basic type: the limbs of the arm are

rigid bodies and the arm is actuated at the joints, moreover the robot has a base fixed to a

certain area in the world. In this modeling, a robotic arm is a simple graph where the vertices

represent the solid rigid bodies that are the limbs and the edges represent the joints and

actuators between them. Moreover, the structure of an arm does not change in time, for

instance the arm cannot be cut, a limb cannot be detached and then reattached, etc.

2

Definition 2.2 (Arm). An arm A is an undirected graph in which any two vertices are con-

nected by exactly one path; such an undirected graph is also called a tree.

Definition 2.3 (Limb). A limb L of an arm A is a vertex of A: L ∈V (A).

Figure 2: One limb L per rigid body in the arm A.

It is reasonable to think of a limb L of an arm A as occupying a certain section of space in

a world W , in other terms the vertex L ∈V (A) is on a certain vertex of W . Similarly, we have to

place the arm A into the world W . In robotics, this is usually referred to as the pose of a robot.

We have to be careful however, the structure of A has to be preserved when it is placed in W

and two vertices of A cannot occupy the same vertex in W : the vertices of A represent limbs

which are rigid bodies and thus they are not allowed to overlap. This placement is precisely

what a graph homomorphism is:

Definition 2.4 (Graph Homomorphism). A graph homomorphism h from a graph A to a

graph W is a mapping h : V (A) →V (W) such that (u, v) ∈ E(A) implies (h(u),h(v)) ∈ E(W).

Homomorphisms are injective, so that two limbs cannot be mapped to the same vertex

in the world, and graph homomorphisms are structure preserving, so that the integrity of an

arm is preserved in the world.

3

Figure 3: Arm A in world W via homomorphism h. The third picture is for visualization.

Definition 2.5 (Hom). The space of graph homomorphisms from A to W is denoted

Hom(A,W).

Definition 2.6 (Pose). A pose of an arm A in a world W via a graph homomorphism

h : V (A) →V (W) is h(A) ⊂W .

A common task in robotics is to plan a trajectory from an initial robot pose to a desired

goal pose [24, 30, 23]. The aim of path-planning can be to find a trajectory from the initial

pose to any pose where limb L touches a certain specific vertex in W , or to find a trajectory

from the initial pose to a specific pose. We will cover this in section 3 (p. 14). We are interested

in collision-free trajectories only.

Figure 4: Initial configuration on the left, in the middle and on the right two acceptable goal

configurations.

The path-planning algorithm has to specify how to move from the initial arm configu-

ration h0(A) (initial pose) to the desired goal configuration hT (A) (goal pose), or to an in-

termediate configuration ht (A) (intermediate pose). As an analogy, think of a movie of the

robot arm moving from h0(A) to hT (A), where h0(A) would be the beginning of the movie

and hT (A) the end, then each movie frame would correspond to a certain ht (A). Given

h0(A), the path-planning algorithm will have to output a sequence of graph homomorphisms

(h1, . . . ,hT),T <∞.The exact value of T is not crucial. However, it is imperative for homomor-

4

phism ht to be compatible with homomorphism ht−1: at each time step, any limb L ∈ V (A)

can only move using only one edge of W . This warrants the following.

Definition 2.7 (Move). A move M is a function M : Hom(A,W) → Hom(A,W), such that

for homomorphism h ∈ Hom(A,W) and for any vertex v ∈ V (A), we have that the edge

((M(h))(v),h(v)) is in E(W).

Figure 5: The edges in dashed black are (M(h)(v),h(v)) ∈ E(W). Note that it would be possi-

ble to go from pose ht (A) to pose ht+2(A) in one move.

Definition 2.8 (Path-Planning). A sequence of homomorphisms (h1, . . . ,hT),T <∞ is a path-

planning of an arm A in a world W if there exists a sequence of moves (M1, . . . , MT−1) such

that ht+1 = Mt (ht) for any t = 1, . . . ,T −1.

Figure 6: The first transition is allowed, the second it not: each limb can only move to a

neighboring vertex! Note that one move allows the displacement of several vertices.

2.1 The n-Arms Robot Problem

The n-arm coordination problem addresses the asynchronous parallelism as arising in the

collaboration of n robotic arms A1, . . . , An sharing a common, but otherwise empty, world W .

We first present the n-arm coordination problem, when only one arm is moving. We follow

5

up by presenting the n-arm coordination problem, when all the arms are moving simultane-

ously and asynchronously. Note that the goals of each arm may or may not be independent

of each other, however the solutions to achieve these goals are dependent.

2.2 One Active Arm

The arms A1, . . . , An are initially placed into W via homomorphisms h0
i (Ai), h0

i ∈ Hom(Ai ,W).

Say that only arm Ai is active and that the others are resting. Clearly arm Ai cannot occupy

the space occupied by any of the other arms, so that no trajectory of Ai can intersect with any

of the other arms. The organization of the different arms in this case is trivial: the information⋃
j 6=i h0

j (A j) has to be provided to Ai , one way or another. In implementation, this message

passing figures as the reading of a shared matrix representing the world W . Because only arm

Ai is active, there are no concurrency problems arising from the sharing of this matrix. The

planning of a collision-free trajectory can subsequently take place, given that an objective

has been specified, using any collision-avoiding path-planning algorithm.

The set of obstacles arm Ai has to avoid when doing the path-planning and then moving

has to be defined both on the vertex set V (W) of and on the edge set E(W) of W . On the

vertex set, the set of obstacles the arm has to avoid is
⋃

j 6=i h0
j (V (A j)) ⊂V (W). On the level of

the edge set, the arm has to avoid more than just
⋃

j 6=i h0
j (E(A j)) ⊂ E(W).

Figure 7: On the left, an arm h0(A), in red, is in the space W . On the right is the result of

W \h0(A), with the classical graph subtraction. The blue edges should should not be allowed,

since an arm should not be allowed to move diagonally across another arm.

In particular, if an arm A j has two adjacent vertices on a diagonal edge in W , then the

cross-diagonal has to be disallowed as well. This leads to the following definition.

Definition 2.9 (Difference operation \ on world W). For a world W of dimension n and a

6

subgraph G = {V (G),E(G)}, the graph W \G is defined by

V (W \G) = {v ∈V (W)|v ∉V (G)}, (2.3)

and

E(W \G) = {(v, v ′) ∈ E(W)|v, v ′ ∈V (W \G) and if ‖v − v ′‖1 = i , i = 2, . . . ,n (2.4)

then Ø(w, w ′) ∈ E(G) s.t.

w, w ′ ∈ B1,i−1(v)∩B1,i−1(v ′) and ‖w −w ′‖1 = i .}

where B1,i (v) is the ball of vertices around v of radius i using ‖.‖1.

Figure 8: Note that ‖v − v ′‖1 = 3. The neighborhood B1,2(v) is shown by the dashed red

ellipses, whereas the neighborhood B1,2(v ′) is denoted by the dashed blue boxes. Edge

(v, v ′) ∈ E(W \G) is not allowed if there is an edge w, w ′ in E(G) such that w, w ′ is in the inter-

section of the two neighborhoods and ‖w −w ′‖1 = 3.

Definition 2.10 (Path-planning with obstacle). A sequence of homomorphisms (h1, . . . ,hT),

T <∞ is a path-planning of an arm A in a world W with obstacle set O ⊂ W if there exists

a sequence of moves (M1, . . . , MT−1), Mt : Hom(A,W \O) → Hom(A,W \O), using the graph

subtraction of the definition above, such that ht+1 = Mt (ht) for any t = 1, . . . ,T −1.

7

Figure 9: The case on the right cannot happen, because edge ((5,3), (6,4)) is disallowed, since

it is crossing edge ((6,3), (5,4)).

Once the path-planning step is complete, the arm Ai moves from the initial configuration

h0
i (Ai) to the goal configuration hT

i (Ai), by moving from pose to pose using the homomor-

phisms of the path-planning. In implementation, this moving figures as the writing into the

shared matrix representing the world W .

Once the moving is complete, the arm Ai can restart the above procedure: once an ob-

jective has been specified, get the set of obstacles by reading the world matrix, then do a

path-planning and finally take the sequence of moves specified by the path-planning.

Procedure.

1: Get objective.

2: Get obstacle set.

3: Do path-planning.

4: Do moving.

2.3 All Arms Active

The n-arm coordination problem addresses the asynchronous parallelism as arising in the

collaboration of n robotic arms A1, . . . , An sharing a common, but otherwise empty, world W .

As we just saw, if only arm Ai is moving, then we might consider the other arms as static ob-

stacles. If all the arms need to move, then the situation is more difficult, but not intractable.

The heart of the matter is that the space W is a finite resource for which the arms compete

[8, 1, 16]. This competition forces a collaboration of agents, where the agents are the arms.

Two arms cannot be in the same area at the same time. As each arm strives to achieve its ob-

jective through path-planning and motion, two arms will not be able to be in the same area

in the future. Therefore, there needs to be an organization to the path-planning processes

8

of the different arms. For any arm Ai and path-planning (h1
i , . . . ,hTi

i), its current and future

position corresponds to ⋃
t=0,...,Ti

ht
i (Ai) ⊂W. (2.5)

Therefore, the obstacle set for arm A j is⋃
i 6= j

⋃
t=0,...,Ti

ht
i (Ai) ⊂W. (2.6)

On one hand, there needs to be a path-planning algorithm that solves path-planning prob-

lems for the arms. On the other hand, an additional construct (procedure) is needed to man-

age the arms and to manage their path-planning algorithms. This procedure organizes the

separate dynamics of the arms, by defining transitions on the product (space) of the separate

dynamics. The procedure is constructed in Paradigm, a concurrent coordination language

[15, 16, 17, 3]. The Super-Robot Strategy, the Round-Robin Strategy and the Partial Reser-

vation Strategy, solve this problem and are presented below. The Paradigm versions of the

Super-Robot procedure, of the Round-Robin procedure and of the Critical Section proce-

dure, are given in subsections 5.1 (p. 39), 5.2 (p. 40), and 5.3 (p. 43).

2.3.1 The Super-Robot Strategy

The first go-to procedure consists of thinking of the arms A1, . . . , An as of one super-robot,

and to do the path-planning for that one super-robot, such as on one thread of execution.

After a more costly path-planning stage, all the arms will be able to move at the same time.

Procedure. 1: Get objectives for all A1, . . . , An .

2: Do path-planning for the robot "A1 + . . .+ An".

3: Do moving for all of the arms A1, . . . , An .

2.3.2 The Round-Robin Strategy

The second go-to procedure is to let only one arm move at a time, implementing the strategy

mentioned in subsection 2.2 (p. 6) for each arm, in a round-robin fashion. One arm gets

one batch. The easiest way to path-plan in this strategy is to let the path-planning of arm Ai

take place when it is its turn. Depending on the path-planning algorithms used, the path-

planning of arm Ai , if done during the motion of another arm, would have to be partially or

entirely recomputed, see section 3 (p. 14). This is a consequence of the obstacle set changing

for an arm, as another arm moves.

9

Procedure. 1: Initialize index i = 0.

2: while TRUE do

3: Get objectives for A1, . . . , Ai .

4: if Ai has an objective then

5: Get obstacle set for Ai .

6: Do path-planning for Ai .

7: Do moving for Ai .

8: Remove objective for Ai .

9: end if

10: i = (i +1) mod n.

11: end while

2.3.3 The Partial Reservation Strategy

The procedure that we propose lies between these two extremes. The approach taken is to

let each arm plan and move simultaneously as much as possible, but as separate entities.

In particular, all arms are allowed to do path-planning simultaneously, but only one arm

is allowed to reserve space in W at a time. Say arm Ai is the first one to finish the path-

planning process, giving a path-planning (h1
i , . . . ,hT

i), it then has to tell the other arms it

needs
⋃

t=0,...,T ht
i (Ai) ⊂ W , while beforehand the other arms only know that arm Ai is in

h0
i (Ai) ⊂ W . In implementation, this passing of information figures as the writing into a

shared matrix representing the world W , which by abuse of notation we also call W . As soon

as this reservation is completed, arm Ai is allowed to start moving in it. Meanwhile, as soon

as this reservation is completed, the other arms have to be interrupted and forced to update

their knowledge of W and then to correct their path-planning solutions. Chunks of space

they were using in their path-planning might, now or in the future, be occupied by Ai . In

implementation, this updating translates as a rereading of W . Finally, as the arm Ai finishes

to move, by taking the final pose hT
i (Ai), it frees up

⋃
t=0,...,T−1 ht

i (Ai) in W , since it does not

need that space anymore. Each arm completes the moves along a path-planning, and the

size of the path-planning can be controlled by the designer.

10

Figure 10: On the left initial path-planning only, in the middle space reservation and then

motion, on the right clean-up.

This passing of information gives rise to the classical reader/writer problem: to avoid race

conditions and uncertainty, the shared memory resource W needs protection [36, 10, 36].

Indeed, if two arms are allowed to write into W simultaneously, then they might both think

that they have reserved the same area of space and both might start moving in the same area,

resulting in a collision. If an arm is reading while another is writing, then the one reading

might get an outdated set of obstacles, which might cause a path-planning on a collision

course with another arm. The usual response to this problem is to deploy a critical section

solution [40], [35, 22, 37, 16], where only one agent is allowed to write at a time, and some

mechanism that ensures the correct updating for the other agents.

The detailed presentation of the extra procedure used in this work, solving the path-

planning problem and the critical section problem, is delayed to section 5 (p. 39). Note that

the critical section problem is also solved by procedures 2.3.1 (p. 9) and 2.3.2 (p. 10). How-

ever, these two procedures are in some circumstances worse than the approach preconized

in this work. In section 7 (p. 56), a simulation on one thread is developed. In section 8 (p. 70),

numerical simulations compare the performances of these procedures. Finally, in the next

section, we give a description of the detailed possible behaviors, encapsulated into states, of

each arm Ai when considered individually, as if unconstrained by the existence of the other

arms.

2.4 Detailed Behavior Explanation

We give a detailed description of the possible behaviors, encapsulated into states, of each

arm Ai when considered individually, as if unconstrained by the existence of the other arms.

From now on we refer to arm Ai as Armi when considered in the view of the collaboration

solution between arms, in view of section 4 (p. 25). We will write Ai when considered as a

11

simple graph, in view of definition 2.2 (p. 3).

Figure 11: Each state encapsulates blocks of code, whereas the arrows illustrate the flow be-

tween the blocks.

Let Arm1, . . . ,Armn evolve in an world W . Any component Armi first starts by getting

an objective, otherwise it has no reason to path-plan or to move. The behavior of getting

an objective is encapsulated as state WaitGoal, to signify that the arm will wait until an

objective is received from an exterior source. Thus WaitGoal is the initial state. As an ob-

jective is obtained, Armi proceeds to the state WaitRead, a bookkeeping state before state

Reading, mainly important for the Split and Non-Deterministic Solution of subsection 5.3

(p. 43). Subsequently, Armi proceeds to read W , this is encapsulated in state Reading,

loading W into local memory. As it gains the knowledge of W and of the constraints im-

posed by the other arms, Armi proceeds to path-planning, this is encapsulated in the se-

quence of states Plan 1,Check 1, . . . ,Plan M,Check M, where the path-planning algorithm

is sliced up into M jobs, and M is specified by the designer. Most path-planning algorithms

solve the path-planning problem in cycles (for-loop or while-loop), so that this is doable

in practice. The states Plan 1, . . . ,Plan M are actually responsible for the path-planning,

and the states Check 1, . . . ,Check M are effectively breaking conditions, responsible for po-

tentially suspending the computation. Whenever convenient, we will denote the sequence

(Plan 1,Check 1, . . . ,Plan M,Check M) as state Planning. As a path-planning is obtained

from the path-planning algorithm, Armi proceeds to state WaitWrite, in which it will wait

for the critical section permission to write into W .

12

Since it might be that during states Reading, Planning or WaitWrite another arm got

the critical section permission to write into W , Armi might transition back to WaitRead to

get an update. This is illustrated by arrows update1!, update2!, update3!. The update sends

the arms into state WaitRead, which can only proceed to state Reading, thus ensuring that

the knowledge of W will be updated.

As Armi obtains the critical section, it proceeds to write into W : this is encapsulated

by state Writing and state Deleting, as deleting is also a form of writing. As soon as the

space reservation is completed, Armi is free to safely start its motion, this is encapsulated

in state Moving. As the moving draws to an end and the arm becomes still, Armi does not

need all the space reserved in the previous state, and thus it cleans up after itself by freeing

space, but not before asking for the critical section again in state WaitDelete. If the arm is

already in possession of the critical section, then the permission to delete is automatically

granted, otherwise the arm has to wait to get the critical section anew. Therefore, an arm

will need the critical section at most twice per planning: once to reserve the space to move

and once to free the space previously reserved. This freeing of space is encapsulated in state

Deleting. As the space is freed, Armi will have attained its objective (that it initially got from

WaitGoal), removes that objective via action removeGoal. Subsequently, the arm waits in

state WaitGoal for the arrival of a new objective.

13

3 A Visualization of Path-Planning Coordination

A plethora of different methods have been developed over the years, trying different combi-

nations of theories, approaches, heuristics, and sub-methods. The fields of influence range

from animal socio-biology to mathematical group-theoretic topology [24, 27, 9, 34, 14, 23].

This menagerie of algorithms makes it is necessary to have a structured way of thinking about

the similarities and differences in these methods.

A robot has a certain set of actuators. An actuator is a component responsible for moving

parts of a system. In section 2 (p. 2), a robot A moves from pose hi (A) to pose hi+1(A) in a

world W . In reality, such a move would be the result of actuators being actuated. We con-

found actuators and edges of a robot as one concept, even though in hardware they might

differ.

Moreover, many path-planning algorithms consider a robot as one unit, as a robot with

no joints, for instance such as a car occupying one square at a time on a map. In such a

definition a robot is then just one node A = {a} injected into W .

Definition 3.1 (Robot). A robot A is a disjoint union of arms, such a graph is also called a

forest.

Figure 12: Different coordination setups corresponding to different path-planning organiza-

tions.

In a robot A, the number of joints is |E(A)| and the number of limbs is |V (A)|. Most

path-planning algorithms plan on E(A), if |E(A)| ≥ 1 and on V (A), if |V (A)| = 1. However

on one hand, it is possible to consider many unitary robots as a graph with no edges, where

|V (A)| > 1, and it is possible to consider one complex arm as made up of many robot units,

where the units have to respect some juxtaposition constraints.

We visualize path-planning algorithms by looking at how different threads are respon-

sible for different sub-robots. The literature often refers to coupled planning for the case

14

where the path-planning sits on one thread of execution, and to decoupled planning where

the path-planning uses several threads of execution [14, 33]. First, put all the vertices of a

robot into a vector, on a level corresponding for time t0. Put one such vector per time slice

ti , at most a countable number of them. On each level, the elements of the vector are first

colored with a tag associated to at least one thread of execution. Subsequently, each element

of the vector is associated a color P (for planning) or M (for moving) per thread tag.

Figure 13: Different threads manage different vertices. In theory, more than one thread could

manage one vertex, and the vertices that are managed by one thread could change over time.

Moreover, almost all path-planning strategies come in two flavors: dynamic and non-

dynamic. By a dynamic path-planning algorithm, we mean an algorithm that does not have

to recompute the complete path-planning for a local change in W . By non-dynamic algo-

rithm, we mean an algorithm that has to recompute the complete path-planning solution

for a local change in W . This dynamicity can be happen both for vertices of color P or of

color M . For instance, see subsection 3.1 (p. 16).

As shown in the previous section 2 (p. 2), communication between different threads gives

rise to coordination problems, because the matrix representing space has to be shared. In the

literature, the coordination structure of path-planning algorithms is not usually declared,

since it is assumed that the robot is totally coupled or totally decoupled. However, many

more combinations are possible, but there needs to be a coordination scheme coordinating

the different threads, which is usually not easy to do. For this reason, the coordination lan-

guage Paradigm is presented in section 4 (p. 25), and some solutions are developed in section

5 (p. 39).

In the remainder of this section, a short literature review of state-of-the-art path-planning

15

algorithms is presented, classifying them with our strategy.

3.1 PRM-Type Planners

Let A be an arm, evolving in a world W . The original Probabilistic Road-map Method or PRM

[21], uses the a two stage strategy for finding a path-planning (sequence of poses) between

two robot poses.

• A preprocessing or sampling stage of the configuration spaceC(A,W), in which a road-

map is constructed.

• A query phase or path computation phase, for given start and end poses.

This type of methods best represents the Super-Robot Strategy of subsection 2.3 (p. 8).

First, the algorithm samples the configuration space C(A,W) of a robot for feasible poses.

The set C(A,W) is the space created by the set of actuators of a robot [30, 14, 24, 21]. For an

arm, in the context of section 2 (p. 2), each joint gets at least one dimension (the same num-

ber of dimensions as the dimension of the Lie group associated with the joint [30]), and the

configuration space would be the space created by the juxtaposition of these different joints

(for instance a product of intervals (0,2π)). A feasible pose is a pose that does not violate the

structure of the arm: for instance, the arm does not intersect itself and does not collide with

any obstacle present in W . AfterC(A,W) is sampled, a road-map is constructed. A road-map

is a graph (V (C(A,W)),E(C(A,W))) such that v ∈ V (C(A,W)) corresponds to a feasible pose

in the configuration space. There is an edge e = (v, v ′) ∈ E(C(A,W)) iff a local, deterministic

and fast path-planner is able to find a path-planning between the poses represented by v and

v ′.

3.1.1 Pseudo-Code

Here is the algorithm of the original PRM for the construction of the road-map [21, 14].

16

Procedure. Stage 1: Construct Road-Map

Input: W , A, V ←;, E ←;.

Output: V ,E .

1: while (V ,E) is not satisfactory do

2: c ← A feasible sample from C(A,W). ♦ Determine whether feasible with W .

3: V ←V ∪ {c}.

4: N (c) ← a set of neighbors of c from V . ♦ Neighbor can be defined in any way.

5: for c ′ ∈ N (c) do

6: if (c ′,c) ∉ E then

7: if the local deterministic planner finds a path between c ′ and c then

8: E = E ∪ {(c,c ′)}.

9: end if

10: end if

11: end for

12: end while

The road-map is a graph that compresses a continuous set of path-plannings into a dis-

crete number of path-planning sections. It is like a random partitioning of the configuration

space. Each node represents all the poses that are "close" to it, given a certain distance func-

tion. Each edge represents how to go from one representative to the other.

17

Figure 14: Construction of road-map on a two dimensional configuration space. There is no

bound on the dimension of the configuration space, even if the robot lives in a 3 dimensional

world.

18

The second phase is the query phase, where it is possible to use any graph path-planning

method, such as Dijkstra, to find a path of between a start pose and an end pose. Once the

road-map is constructed, and a graph path-planning method has given a sequence of pose

representatives (vertices), then via the same (local, deterministic, and fast) path-planner, as

used in the construction of the road-map, it is possible to recompute the precise sequence of

poses and actuator actions.

Figure 15: A possible query, with some smoothing.

19

3.1.2 Visualization

Probabilistic road-map methods are global methods by construction: they act on all of the

joints of an arm, or on all of the degrees of freedom of a robot, at once. As such, the proba-

bilistic road-map methods sit on one thread of execution.

Figure 16: In the PRM method, usually everything is handled by one thread.

In particular, the PRM plans for all of the joints, hence for all of the limbs, at the same

time. Thereupon, the limbs are all moved at the same time as well.

3.1.3 Variants

Several variants of the probabilistic road-maps have been developed. On one hand, one can

use the same technique on W instead of C(A,W), i.e. directly on the world, using unitary

robots, instead of the configuration space of a robot. It is also possible to use PRM on only a

subset of the configuration space, and to use another method on another subset.

Moreover, the configuration space can become very high dimensional very fast. This

causes the curse of dimensionality. As the number of dimensions go up, it becomes more

and more difficult to sample the space. Therefore, several techniques have been developed

about the sampling of C(A,W) [6, 44, 20].

Furthermore, a possible area of research is to work on the collision checking mecha-

nism. As the points of the road-map are sampled from C(A,W), it is necessary to determine

whether the point is feasible [38, 19]. This step is also an active area of research.

As per usual, it is interesting to create dynamic versions of existing algorithms. In a PRM-

type method, the dynamicity occurs at the level of the road-map (and not at the level of the

query). It is an interesting problem to understand how to update the road-map when a new

obstacle appears or disappears, without recomputing the whole graph [4, 28, 25].

20

For a more thorough comparison of PRM-type methods, see [14, 24].

3.2 A*-Type Planners

Let A = {a} be a unitary robot evolving in a world W . The A* method is a local planner. It

evaluates successively each neighboring vertices in the world, and gives the most reward-

ing vertex as next position for the robot. Recall that the world W = (V (W),E(W)) is a graph,

where V (W) represent locations and E(W) represent possible transitions between the loca-

tions. Planning a path for navigation can then be cast as a search problem on this graph [13].

Therefore, A* is in essence a local greedy search on W , toward a certain goal. However, this

greedy search is guided by a heuristic function h, which greatly diminishes the amount of

necessary computations, and helps to return in some situations optimal paths.

The following is from [12, 13]. A* plans a path from an initial state sstart ∈ V (W) to a goal

state sgoal ∈V (W). It stores an estimate g (s) of the path cost from the initial state to each state

s. Initially, g (s) = 1 for all states s ∈ V (W). The algorithm begins by updating the path cost

of the start state to be 0, then places this state onto a priority queue known as the OPEN list.

Each element s in this queue is ordered according to the sum of its current path cost from

the start, g (s), and a heuristic estimate of its path cost to the goal, h(s, sgoal). The state with

the minimum such sum is at the front of the priority queue. The heuristic h(s, sgoal) typically

underestimates the cost of the optimal path from s to sgoal and is used to focus the search.

The algorithm then pops the state s at the front of the queue and updates the cost of all states

reachable from this state through a direct edge: if the cost of state s, g (s), plus the cost of the

edge between s and a neighboring state s′, c(s, s′), is less than the current cost of state s′, then

the cost of s′ is set to this new, lower value. If the cost of a neighboring state s′ changes, it is

placed on the OPEN list. The algorithm continues popping states off the queue until it pops

off the goal state.

21

3.2.1 Pseudo-Code

Procedure. Sub-Algorithm: Compute Shortest Path

Input: OPEN, h, g

Output: OPEN

1: while argmins∈OPEN(g (s)+h(s, sgoal)) 6= sgoal) do

2: remove state s from the front of OPEN.

3: for s′ ∈ Succ(s) do

4: if g (s′) > g (s)+ c(s, s′) then

5: g (s′) = g (s)+ c(s, s′).

6: insert s′ into OPEN with value (g (s′)+h(s′, sgoal)).

7: end if

8: end for

9: end while

Procedure. A*

Input: OPEN, h, g , sstart, sgoal.

Output: V ,E .

1: for s ∈V (W) do

2: g (s) ←∞.

3: end for

4: g (sstart) ← 0.

5: OPEN ←;.

6: insert sstart into OPEN with value g (sstart +h(sstart, sgoal)).

7: Compute Shortest Path.

3.2.2 Visualization

A* is a method that works on one unitary robot at a time, on one thread. It can be easily

adapted to multiple unitary robots, but then one needs multiple threads. A whole arm can

follow a unitary leader robot, as if a chain would be dragged by one of its ends. However, only

one unitary robot can start moving at a point in time. This is close to the Critical-Section

Strategy of section 2 (p. 2) , and already motivates the Split and Non-Deterministic Solution

22

of section 5 (p. 39). In other words, not more than one unitary leader robot may transition

from a planning stage (color P) to a moving stage (color M).

Figure 17: In A*, only one unitary robot is handled. Here vertices v5 and v6 represent uni-

tary robots. Vertex v4 is the leader of an arm (v1, v2, v3, v4). If v4 is managed by an A*-type

algorithm, then vertices v1, v2, v3.

3.2.3 Variants

There are many algorithms that have almost the same characteristics as A*. Note that Greedy

Search and Dijkstra Search are in this category: they both can plan for only a unitary robot

on a space W represented by a graph, in a greedy fashion.

Different heuristics give rise to different versions of A*, each being better adapted to the

problems they solve. The heuristic corresponds to the problem at hand [13].

Moreover, A* methods often have a forward and a backward version. The one presented

above is a forward method, because it looks at the different vertices of W from sstart to sgoal.

The backward version looks at the different vertices of W from sgoal to sstart [13].

As per usual, it is interesting to create dynamic versions of existing algorithms. In a A*-

type method, the dynamicity occurs at the level of the computed path. As the world W

changes, it is important to be able to recompute part of the path-planning that came close

to the changes in W . However, the path-planning situated far enough from the change in

W should not be affected, otherwise one would have to recompute the path-planning at any

change of W [42, 12, 39, 11].

3.3 Combination of Path-Planners

Different path-planning methods, such as A* or PRM, but also others, can be combined to-

gether as long as there is a coordination model between them [26, 43]. Visualizing the coordi-

23

nations, each path-planning method has a certain type of activity transfer constraint on each

vertex, from color P to color M . As long as all the methods and sub-methods used respect

the transition constraints, it is possible to combine them using Paradigm, at the level of the

threads of the different agents, i.e. different threads.

24

4 Paradigm Coordination Language

In the subsection 2.3 (p. 8), the need for a collaboration between different agents was moti-

vated. For the description of such a collaboration, we may use the language Paradigm. The

name Paradigm is an abbreviation for PARallelism, its Analysis, Design and Implementation

by a General Method [15, 16, 17, 3]. Paradigm’s subject of interest is parallelism as arising

in collaborations, where agents have to collaborate in order to achieve their respective and

possibly interleaved goals. The fundamental unit is the agent, whose possible behaviors can

be precisely described by an STD or state transition diagram.

4.1 Definitions and Concepts

Definition 4.1 (STD). An state-transition diagram (STD) of an agent is a directed graph1 Z =
(V (Z),E(Z)),

V (Z) = { set of states of the agent }, (4.1)

E(Z) = { set of allowed transitions between states }. (4.2)

The agent is always in exactly one state at time, and the transitions occur instantaneously.

We think of an agent as spending some time in a state, and then transitioning to a next state

if possible.

For two agents A1 and A2, with associated STD Z1 and STD Z2, it might be that some of

the states are interdependent. For instance, if z1 ∈ Z1 and z2 ∈ Z2, it might be that A1 cannot

be in z1 while A2 is in z2, etc. Out of this arises the need of a coordination language, such

as Paradigm, ACP, CSP or CCS, responsible of establishing a collaborative discipline between

different agents.

In Paradigm, the interdependence relations between agents are declared on an aggre-

gated level of the phases and traps, not at the detailed level. Subgraphs of STDs are formed

into phases, and the agents interact at the level of the phases. If z1, z ′
1 ∈ Z1 establish the same

constraints on z2 ∈ Z2, then z1 and z ′
1 can be put into a same phase of Z1.

Definition 4.2 (Phase). A phase S of an STD Z is a subgraph S ⊆ Z , i.e. V (S) ⊆ V (Z) and

E(S) ⊆ E(Z).

1Paradigm can be readily generalized to multigraphs, i.e. directed graphs where there can be multiple edges

between two vertices, see [bib].

25

Figure 18: An arbitrary detailed STD on the left, with the initial state being indicated by the

dotted arrow. On the left is an arbitrary phase restriction. Note that not all arrows between

two vertices need to be included into phase, even if both vertices are in the phase, e.g. for

vertices a and b.

As an example, depending on the construction of the phases, if agent A1 has current

phase S1 ⊆ Z1 and agent A2 has current phase S2 ⊆ Z2, and s1 ∈ S1 and s2 ∈ S2 are mutually

exclusive (A1 cannot be in s1 when A2 is in s2 and vice-versa), then S1 and S2 have to be

mutually exclusive as well (so that the above situation is impossible).

Write C for the whole undisciplined collaboration of agents A1, . . . , An , with associated

STDs Z1, . . . , Zn . The collaboration C corresponds to a product space of Z1, . . . , Zn , in the

sense of graph products [18].

Figure 19: Simple examples of graph products.

Definition 4.3 (Graph Cartesian Product). The Cartesian product of graphs G and H is a

graph, denoted GäH , whose vertex set is the Cartesian product V (G)×V (H) of sets. Two

vertices (g ,h) and (g ′,h′) are adjacent precisely if g = g ′ and (h,h′) ∈ E(H) or (g , g ′) ∈ E(G)

26

and h = h′. Thus

V (GäH) = {(g ,h)|g ∈V (G) and h ∈V (H)}, (4.3)

E(GäH) = {((g ,h), (g ′,h′))|g = g ′, (h,h′) ∈ E(H), or (g , g ′) ∈ E(G),h = h′}. (4.4)

Definition 4.4 (Graph Direct Product). The direct product of G and H is the graph, denoted

as G×H , whose vertex set is V (G)×V (H), and for which vertices (g ,h) and (g ′,h′) are adjacent

precisely if (g , g ′) ∈ E(G) and (h,h′) ∈ E(H). Thus

V (G ×H) = {(g ,h)|g ∈V (G) and h ∈V (H)}, (4.5)

E(G ×H) = {((g ,h), (g ′,h′))|(g , g ′) ∈ E(G) and (h,h′) ∈ E(H)}. (4.6)

Definition 4.5 (Graph Strong Product). The strong product of G and H is the graph denoted

as G �H , and defined by

V (G �H) = {(g ,h)|g ∈V (G) and h ∈V (H)}, (4.7)

E(G �H) = E(GäH)∪E(G ×H). (4.8)

Figure 20: Other examples of graph products. Note that the definitions work with directed

graphs as well.

Note that if agents A1 and An have detailed STDs Z1 and Z2, then they are always in a

certain state z1 ∈ Z1 and z2 ∈ Z2. Now in order to view these two agents as one system, the

first reflex is to put them in a vector~z = (z1, z2). The graph that describes~z is given by Z1�Z2.

With these definitions in mind, the graph that represents the complete unconstrained

collaboration C of agents A1, . . . , An is

C = Z1 � · · ·�Zn . (4.9)

However, not all of C is feasible. For instance, if z1 ∈ Z1 and z2 ∈ Z2 are mutually exclusive,

then the point (z1, z2, . . .) ∈ V (C) is not feasible, since by definition A1 cannot be in z1 while

27

A2 is in z2 and vice-versa. As this interdependence of agents is defined at the aggregated

level, it useful to see what is a phase Si of Zi on C , denoted Si .

Si = Z1 � · · ·�Zi−1 �Si �Zi+1 � · · ·�Zn ., (4.10)

Si = proji (Si). (4.11)

Within a collaboration, agents behave simultaneously but asynchronously, for instance

in a partially random fashion. It is sufficient to declare some coordination rules at the level of

the phases, guiding the agents in a beneficial cooperation. Phases are a useful generalization:

to make coordination rules more detailed, one can simply declare smaller phases. These

coordination rules allow for phase changes based on sufficient progress made within the

current phases of different agents. Progress within a phase is recorded whenever an agent

enters a specific absorbing subset of states of a phase, i.e. a trap. Traps represent irreversible

progress within a phase. However, an agent can (potentially) leave a trap of a previous phase

once a new phase is imposed.

Definition 4.6 (Trap). A trap T of a phase S is an absorbing subset of V (S), i.e. T ⊆ V (S)

and for any z ∈ T there is no (z, z ′) ∈ E(S) such that z ′ ∉ T . If T = V (S), the trap is called triv

(for trivial). Finally, we add a trap unknown, which corresponds to no knowledge of any trap

entered.

Trap unknown acts as a trivial trap. Since trap messages will be sent from agent to proto-

col, see definition 4.12 (p. 32), trap unknown corresponds to no confirmation, being received

by the protocol, about a phase change. Thus trap unknown corresponds to the protocol’s lack

of knowledge. Trap triv corresponds to a confirmation, being received by the protocol, about

a phase change.

28

Figure 21: Two phases, on the left an aribitrary trap is specified in dashed blue, connecting

the phase on the left with the phase on the right. Note that a trap is a subset of the set of states

(vertices) and not of the set of actions (arrows), thus it is not a typo to not include action a

(in red) into phase S′.

On C , a trap T of a phase Si of an STD Zi of an agent Ai , denoted T , is

T =V (Z1)×·· ·×V (Zi−1)×Ti ×V (Zi+1)×·· ·×V (Zn), (4.12)

Ti = proji (T). (4.13)

A trap T of phase S of STD Z connects phase S to a phase S′ of Z if T ⊆ V (S′). Such

trap-based connectivity between two phases of Z is called a phase transfer S
T−→ S′. For an

agent with a given STD, the set of phases and traps, called a partition2, determines the set

of possible global behaviors, which are summarized in a directed graph called the role STD.

Note that it is possible to have different roles on the same agent, describing different global

behaviors corresponding to different point of views.

Definition 4.7 (Partition). A partition π= {(Sk ,T jk)|k ∈ K , jk ∈ Jk } of an STD Z , where K and

Jk are non-empty index sets, is a set of pairs (Sk ,T jk) consisting of a phase Sk of Z and of a

trap T jk of Sk . Define T(Sk) = {T jk |k ∈ K , jk ∈ Jk } to be the set of traps of Sk .

Note that a trap is an absorbing subset of a phase. T(S) does not represent all possible

absorbing subsets of a phase, but only the ones chosen by the modeler. In particular, we set

the trap triv and the trap unknown to be always in T(S).

2This definition of partition has nothing to do with a partition induced by an equivalence relation.

29

Definition 4.8 (Role). A role π(Z) of a corresponding partition π = {(Si ,T ji)|i ∈ I , ji ∈ Ji } is

the directed graph π(Z) = (V (π(Z)),E(π(Z))), with

V (π(Z)) = {Si |i ∈ I }, (4.14)

E(π(Z)) = {(Si ,T ji ,S′)|Si ,S′ ∈V (π(Z)),T ji ∈T(Si), s.t. ∃Si
T ji−−→ S′, i ∈ I , ji ∈ Ji }. (4.15)

Figure 22: The three phases S, S′ and S′′ are collapsed into vertices. The arrows between

them are induced by the traps. In green is the role STD of the partition consisting of phases

{S,S′,S′′} and traps {T,T ′,T ′′}. We have T ∈T(S),T ′ ∈T(S′),T ′′ ∈T(S′′).

Note that for any phase S, it is always the case that S
triv−−−→ S. We chose to omit this tran-

sition from the drawings. Moreover, if a phase transition is not used at all in a collaboration,

then we choose to omit it as well from the drawings.

Definition 4.9 (Refined Role). Let Z be the detailed STD of some agent A in a collaboration,

with role π(Z). Moreover, for a phase S ∈V (π(Z)), define T̂(S) to be the set of all possible trap

intersections of the phase S, with the rule that T ∩unknown= T , for any T . The refined role

30

is the directed graph π̂(Z) = (V (π̂(Z)),E(π̂(Z))), with

V (π̂(Z)) = {
(S,T) |S ∈V (π(Z)) ,T ∈ T̂ (S)

}
, (4.16)

E(π̂(Z)) = {((S,T), (S′,T ′))|(S,T), (S′,T ′) ∈V (π̂(Z)),T ∈ T̂(S), (4.17)

T ′ =
(⋂

x∈T̂(S′),T⊂x

x

)
∈ T̂(S′)}.

The vertices of this directed graph are pairs, where the first element is a phase S of the

role π(Z) and the second element is a refined trap T of the phase S, with possibly the trap

unknown. All the traps of S are in T̂(S), as well as the trap unknown, and then all possible trap

intersections. The edges of this directed graph are between two vertices (S,T) and (S′,T ′)

such that T ′ is the smallest trap in T̂(S′) containing T (smallest in the sense of intersections).

Say that an agent is, at the refined level, in trap T ′ = T1∩T2, then being in trap T ′ implies that

the agent is both in T1 and in T2. Thus there is no loss of information.

We are finally ready to define a coordination rule and then a protocol. In Paradigm, the

coordination rules, called consistency rules, are defined with the help phases and traps, on

the aggregated level. A consistency rule weaves together, in a well-designed fashion, the dif-

ferent roles of the different agents. Therefore, it is natural to provide a definition that uses

the product space viewpoint of the different roles.

Definition 4.10 (Consistency Rule). Let {A j | j = 1, . . . ,n} be the agents of the collaboration

C = Z1 � · · ·� Zn , where Z j is the detailed STD of agent A j . Let π(Z j) denote the directed

graph representing the role for the corresponding agent, moreover suppose that each agent

has only one role. Then a consistency rule is an edge (Ψ,Ψ′) in the graph π(C) =π(Z1)� · · ·�
π(Zn).

Definition 4.11 (Refined Consistency Rule). Let {A j | j = 1, . . . ,n} be the agents of the collab-

oration C = Z1 � · · ·� Zn , where Z j is the detailed STD of agent A j . Let π̂(Z j) denote the

directed graph representing the refined role for the corresponding agent, moreover suppose

that each agent has only one refined role. Then a refined consistency rule is an edge (Ψ̂,Ψ̂′) in

the graph π̂(C) = π̂(Z1)� · · ·� π̂(Zn).

Since a consistency rule is an edge linking two vertices, which correspond to two different

aggregated states of all the agents present in the collaboration, one can concatenate these

edges in order to obtain a path. Such a path characterizes one realization of the collaboration

at the aggregated level, whereas the set of all possible paths characterizes the dynamics of the

collaboration. This leads to the following definition.

31

Definition 4.12 (Protocol). Let A1, . . . , An be the agents of a collaboration C . The protocol

P is the set of all possible paths on the directed graph π(C) = π(Z1)� · · ·�π(Zn), where the

protocol steps are the refined consistency rules, in view of definition 4.10.

In practice, for a collaboration C , with agents A1, . . . , An , corresponding detailed STDs

Z1, . . . , Zn , roles π(Z1), . . . ,π(Zn), a consistency rule (Ψ,Ψ′) ∈ E(π(C)) corresponds to phase

transitions (S1
T1−→ S′

1, . . . ,S1
T1−→ S′

1), with Si ∈V (π(Zi)),Ti ∈ E(π(Zi)), which we write as

∗A1(π(Z1)) : S1
T1−→ S′

1, . . . , An(π(Zn)) : Sn
Tn−→ S′

n ,

Definition 4.13 (Refined Protocol). Let A1, . . . , An be the agents of a collaboration C . The

refined protocol P̂ is the set of all possible paths on the directed graph π̂(C) = π̂(Z1)� · · ·�
π̂(Zn), where the refined protocol steps are the consistency rules, in view of definition 4.11.

4.2 Explanation

4.2.1 Need for Strong Product

Let’s justify the need of taking strong product of graphs, see definition 4.5 (p. 27). Two arbi-

trary agents A1 and A2, with STDs Z1 and Z2, can each only be in one state z1 ∈ Z1 and z2 ∈ Z2

at once. Now suppose that A1 goes to a next state z ′
1 ∈ Z1 and A2 goes to a next state z ′

2 ∈ Z2:

either A1 makes the transition first and then A2 makes the transition, or vice-versa, or both

agents make the transition simultaneously.

Suppose that A1 makes the transition first, then putting the states of the agents in a vec-

tor, we have the transition (z1, z2) → (z ′
1, z2) and then we have the transition (z ′

1, z2) → (z ′
1, z ′

2).

This corresponds precisely to the graph box product. Therefore, for agents A1, . . . , An with de-

tailed STDs Z1, . . . , Zn , the graph box product Z1ä·· ·äZn corresponds to the situation where

no two agents transition simultaneously. Following the same reasoning on the aggregated

level, π(Z1)ä·· ·äπ(Zn) corresponds to the situation where no two consistency rules are ap-

plied simultaneously.

Suppose now that A1 makes the transition exactly at the same time as A2, then we have

the transition (z1, z2) → (z ′
1, z ′

2). This corresponds precisely to the graph direct product. There-

fore, for agents A1, . . . , An , the graph direct product Z1 ×·· ·×Zn corresponds to the situation

where all the agents transition simultaneously. Following the same reasoning on the aggre-

gated level, π(Z1)×·· ·×π(Zn) corresponds to the situation where each agent has been pre-

scribed a phase transition.

32

Finally, Z1�· · ·�Zn corresponds to the situation the agents may transition in a sequence

or simultaneously. Similarly, on the aggregated level, π(Z1)� · · ·�π(Zn) corresponds to the

situation where consistency rules may be applied in a sequence or simultaneously. Note that

the exactly the same train of thought applies to refined consistency rules, with the descrip-

tion π̂(C) = π̂(Z1)� · · ·� π̂(Zn).

Note that if for any state z ∈ V (Zi) there would exist a self-arrow (z, z) ∈ E(Zi), then

it would be the case that Z1 × ·· · × Zn = Z1 � · · ·� Zn , but it would still be the case that

Z1ä·· ·äZn 6= Z1 � · · ·�Zn .

4.2.2 Need for Refined Consistency Rules

Let’s justify the need of having roles and refined roles, and consistency rules and refined

consistency rules. In any Paradigm model, the agents {Ai }n
1 have STDs {Zi }n

1 and have current

phases {Si }n
1 . The agent Ai is allowed to progress within the current phase Si . After a certain

amount of time spent in a current state zi ∈ Si , the agent will transition to a next state z ′
i ∈ Si ,

only if (zi , z ′
i) ∈ E(Si). The current phase Si has a set of associated traps T(Si). When Ai

enters a trap Ti ∈ T(Si), a corresponding trap commit is fired. The information is relayed to

the protocol P , and this takes some time.

Ai
send trap commitTi−−−−−−−−−−−−−→P , arrives at time tTi .

The protocol has a set of consistency rules, for instance say it has the following consistency

rule.

∗A1(π(Z1)) : S1
T1−→ S′

1, . . . , An(π(Zn)) : Sn
Tn−→ S′

n ,

which means that once the protocol will have received all the traps commits T1, . . . ,Tn from

the agents A1, . . . , An , it will impose the new constraints S′
1, . . . ,S′

n . This information is relayed

back to the agents.

P
sends phase constraints S′

1−−−−−−−−−−−−−−−−−−→ A1, arrives at time tS1 ,

...

P
sends phase constraints S′

n−−−−−−−−−−−−−−−−−−→ An , arrives at time tSn .

Once an agent Ai receives the new phase constraint, it is allowed to make a phase tran-

sition Si
Ti−→ S′

i , by simply continuing its progress at the detailed level, but now subject to the

33

constraint S′
i . This procedure can be seen as

A1
send trap commit T1−−−−−−−−−−−−−−→P , at P at time tT1 , (I)

...

An
send trap commit Tn−−−−−−−−−−−−−−→P , at P at time tTn ,

∗A1(π(Z1)) : S1
T1−→ S′

1, . . . , An(π(Zn)) : Sn
Tn−→ S′

n , enabled at time max(tT1 , . . . , tTn), (II)

P
sends phase constraint S′

1−−−−−−−−−−−−−−−−−→ A1, at A1 at time tS′
1
, (III)

...

P
sends phase constraint S′

n−−−−−−−−−−−−−−−−−→ An , at An at time tS′
n

.

The consistency rule (II) accurately describes an action (arrow) that P can take. How-

ever, the decision of which consistency rule to pick might hinge on the order of arrival of the

trap commits T1, . . . ,Tn , and maybe of some other trap commits T ′
1, . . . ,T ′

n , since another rule

could have been applied instead of rule (II). In other words, the decision of which consis-

tency rule to choose depends, for instance, on tT1 , . . . , tTn , tT ′
1
, . . . , tT ′

n
, and more generally on

all possible trap commit arrivals.

The situation becomes more apparent when an agent Ai is in a phase Si with overlapping

traps. For instance, triv, Ti ∈T(Si), and triv ∩Ti = Ti . The implication is that Ai can be both

in triv and in Ti simultaneously. This information is relayed to the protocol P .

Ai
send trap commit tr i v−−−−−−−−−−−−−−−→P , arrives at time ttriv

Ai
send trap commit Ti−−−−−−−−−−−−−−→P , arrives at time tTi .

The protocol P may receive in any order the trap commits triv and Ti , i.e. ttriv < tTi or

ttriv > tTi or ttriv = tTi . Therefore, the states that can influence the decision making of

P can be either unknown, for no information received yet, triv, Ti , or triv ∩Ti . Moreover

this applies to each agent Ai of the collaboration. In our terminology, the states that can

influence the decision making of P , before (II) is applied, are T̂(S1) × ·· · × T̂(Sn), for in-

stance (triv,triv, . . . ,triv,Tn). Moreover, since it is ambiguous which triv belongs to which

phase, the phases of the agents are also included, so that we write ((S1,triv), (S2,triv), . . . ,

(Sn−1,triv), (Sn ,Tn)) instead.

A protocol P represents the rules (phase transitions) that apply to the agents, but the

decision making process itself, based on the state of the collaboration at the global level, is

34

represented by the refined protocol P̂ . The protocol P represents how the phase imposi-

tions trickle down from a coordinator to the agents, and the refined protocol P̂ represent

how the trap commits bubble up from the agents to the coordinator.

In practice, we will only define consistency rules for a protocol P , and assume the exis-

tence of a refined protocol P̂ , corresponding to P .

4.2.3 Generalization To Multiple Roles

In the preceding subsections, Paradigm definitions were developed for the situation where

each agent Ai , with detailed STD Zi , has only one role π(Zi). For now, say that in a col-

laboration the agents are A1, . . . , An , with detailed STDs Z1, . . . , Zn , and roles π(Z1), . . . ,π(Zn).

Each agent is at all times in some state zi ∈ Zi and in some current phase Si , so that zi ∈ Si .

Putting all the states of all the agents into a vector ~z = (z1, . . . , zn), the behavior of all the

agents together lives on the collaboration C = Z1 � · · ·�Zn . This collaboration is structured

or disciplined with the help of a refined protocol, and the set of associated consistency rules.

For instance, suppose that a new consistency rule has been applied and that now the agents

A1, . . . , An are in phases S1, . . . ,Sn . The current phases establish temporary constraints on the

agents, which means that now~z ∈S = S1�· · ·�Sn . This constraint will remain in place until

a next consistency rule is applied, and the phase impositions arrive to the agents. Moreover,

a consistency rule

∗A1(π(Z1)) : S1
T1−→ S′

1, . . . , An(π(Zn)) : Sn
Tn−→ S′

n ,

becomes applicable only when each agent has entered its respective trap, i.e. when~z ∈T =
T1 � · · ·�Tn . Thus we have a transition S1 � · · ·� Sn

T1�···�Tn−−−−−−−→ S′
1 � · · ·� S′

n . Writing S ′ =
S′

1 � · · ·�S′
n , this reads as the transition S

T−→S ′.

In Paradigm, a natural generalization of this chapter is to consider agents that have mul-

tiple roles. Without loss of generality, say that each agent Ai has two rolesπX (Zi) andπY (Zi).

That means that each Ai has two distinct dynamics in view of the collaboration. Since agents

have phases imposed, where an phase is a vertex of a role, to have two roles concurrently af-

fecting the same agent means that there are two phases currently imposed, constraining the

agent in the collaboration. Say that Ai , in the view of role πX (Zi), is constrained to the phase

Xi , and in the view of role πY (Zi), constrained to Yi . At the detailed level, if Ai is in state zi ,

then zi ∈ Xi ∩Yi . Note that necessarily Xi ∩Yi 6= ;.

For instance, a person might be both a student and a friend, two point of views that both

35

impose some restrictions on the possible behaviors of a person, given a certain phase. For

instance, a person might be, as a student, in a phase InClass, and as a friend, in a phase

InRoom. In that case, the person’s behavior will be restricted by both phases at the same time.

This illustrates the fact that in a collaboration, a role is really like a point of view, usually with

respect to some other agents.

In Paradigm, for one agent, only one role step per role is allowed in one consistency rule.

One consistency rule can hold two role steps for the same agent, but on two different roles.

For instance, if there are two agents A1 and A2, with detailed STDs Z1 and Z2, and corre-

sponding two roles πX (Zi) and πY (Zi), then the following is not allowed,

∗A1(πX (Z1)) : X1
T1−→ X ′

1, A1(πX (Z1)) : X ′′
1

T ′
1−→ X ′′′

1 , (even if X1 ≡ X ′′
1).

However, the following is allowed.

∗A1(πX (Z1)) : X1
T1−→ X ′

1, A1(πY (Z1)) : Y1
T ′

1−→ Y ′
1, A2(πX (Z2)) : X2

T2−→ X ′
2, A2(πY (Z1)) : Y2

T ′
2−→ Y ′

2.

The definition 4.8 (p. 29) of roles, the definition 4.9 (p. 30) of refined roles, the definition

4.10 (p. 31) of consistency rules and the definition 4.11 (p. 31) of refined consistency rules,

do not need to change. However, the definition 4.12 (p. 32) of protocols and the definition

4.13 (p. 32) of refined protocols can be extended to multiple roles.

Definition 4.14 (General Protocol). Let A1, . . . , An be the agents of a collaboration C , with

associated detailed STDs Z1, . . . , Zn and associated m roles {π j (Zi)}m
j=1, where i is the index of

the agent and j is the index of the role. To each role π j there is a corresponding protocol P j ,

and the general protocol P is the set of all possible paths on the directed graph P1�· · ·�Pm ,

where a step is a vector (ρ1, . . . ,ρm) of consistency rules, in view of definition 4.10 (31), with

ρi being a protocol step in P i , with some protocol steps being possibly trivial.

Note that it is the responsibility of the modeler to ensure that the different protocols are

compatible. Badly designed protocols can easily lead to deadlocks or starvation in the col-

laboration.

Let’s inspect a general protocol P = P1 � · · ·�Pm . For a role j , remember that a way

of writing a consistency rule is as the transition (S1, . . . ,Sn)
(T1,...,Tn)−−−−−−→ (S′

1, . . . ,S′
n), with Si ,S′

i ∈
π j (Zi), where i is the index of an agent. Let S j

i ,S j ′
i ∈π j (Zi), then an edge Ξ in P =P1 � · · ·�

36

Pm acts as a stack of consistency rules:

Ξ=



(S1
1, . . . ,S1

n)
(T 1

1 ,...,T 1
n)−−−−−−→ (S1′

1 , . . . ,S1′
n)

(S2
1, . . . ,S2

n)
(T 2

1 ,...,T 2
n)−−−−−−→ (S2′

1 , . . . ,S2′
n)

· · ·
(Sm

1 , . . . ,Sm
n)

(T m
1 ,...,T m

n)−−−−−−−→ (Sm′
1 , . . . ,Sm′

1)


Above, row j corresponds to a consistency rule belonging to protocol P j , and a "column"

(S1
i ,S2

i , . . . ,Sm
i) corresponds to all the phases being currently imposed on agent Ai . At the

detailed level, this means that the state zi of an agent Ai is constrained concurrently to all

of the phases, i.e. zi ∈ ⋂m
j=1 S j

i . As we argued a few paragraphs above, if~z = (z1, . . . , zm) rep-

resents the detailed state of all the agents at once, before the application of the rule Ξ, ~z is

constrained to (
⋂m

j=1 S j
1)� · · ·� (

⋂m
j=1 S j

n). As soon as each zi belongs to the traps {T j
i }m

j=1,

where j is the index of the role and i is the index of the agent, the consistency rule Ξ is ready

to be applied. The new set of phase impositions, one per role, will constrain the agents to

(
⋂m

j=1 S j ′
1)� · · ·� (

⋂m
j=1 S j ′

n).

The problem as to how to design general protocol is an area of active research. We do not

expand on refined general protocols, but the treatment is essentially the same.

Definition 4.15 (Refined General Protocol). Let A1, . . . , An be the agents of a collaboration

C , with associated detailed STDs Z1, . . . , Zn and associated m roles {π j (Zi)}m
j=1, where i is the

index of the agent and j is the index of the role. To each role π j there is a corresponding

refined protocol P̂ j , and the refined general protocol P is the set of all possible paths on the

directed graph P̂1�· · ·�P̂m , where a step is a vector (ρ1, . . . ,ρm) of refined consistency rules,

with ρi being a protocol step in P i , with some protocol steps being possibly trivial,in view of

the definition 4.11 (p. 31).

4.2.4 Generalization to Multigraphs

Another generalization can be done at the detailed level. Until now, the definition of a state

transition diagram Z (STD) is that of a directed graph. Everything in this chapter naturally

expands to multigraphs, where the edges have an identity, i.e. directed graphs where there

can be more than one arrow between two vertices, and the arrows are named. We give the

definition of a multigraph here, but do not go further. Note that the definitions of graph

products do not need to change.

Definition 4.16 (Multigraph). A multigraph Z is a 4-tuple Z = (V (Z),E(Z), sZ , tZ) with

37

• V (Z) being a set of vertices,

• E(Z) being a set of arrows,

• sZ : E(Z) →V (Z), a function assigning to each arrow its source vertex,

• tZ : E(Z) →V (Z), a function assigning to each edge its target vertex.

The reason why we avoid to talk of multigraphs is simply that in this work only directed

graphs are needed, and that multigraphs would just add confusion to an already rather cum-

bersome notation. Finally, note that role graphs are actually multigraphs.

4.3 Paradigm Applied to the n-Arms Robot Problem

In the end of the first section, the need for a concurrent coordination mechanism was shown.

In the following sections, different coordination mechanisms that solve the n-Arms Robot

Problem are given in Paradigm. In the first section, three strategies to solve the n-Arms Robot

Problem were presented: the Super-Robot Strategy, the Round-Robin Strategy and the Partial

Reservation Strategy. Correspondingly, three Paradigm models are given: the Super-Robot

Model, the Round-Robin Solution, and the Split and Non-Deterministic Solution. In partic-

ular, the agents are Arm1, . . . ,Armn and they all have the same detailed STD, corresponding

to the given models. For the Super-Robot model and for the Round-Robin solution the de-

tailed STD is given in Figure 23 (p. 39), and for the Split and Non-Deterministic solution the

detailed STD is given in Figure 11 (p. 12).

38

5 Paradigm Coordination Models

5.1 The Super-Robot Model

In the Super-Robot Strategy from subsection 2.3 (p. 8), all the arms are considered as one

super-robot or as one bigger and more complex arm. In the case of a super-robot there is no

real need for coordination, since there is only one agent, i.e. the super-robot itself. This gives

rise to the rather trivial Super-Robot Model, where there is only one detailed STD (with one

phase, being the same as the detailed STD, the agent never leaving that phase).

Here is the detailed STD of the robot, see also Figure 11 (p. 12).

Figure 23: Note that the arrows update1!,update2! and update3! are not present.

The update arrows update1!, update2! and update3! have been disallowed. This signi-

fies that the super-robot does not need to update its path-planning solution. From the first

chapter, the modeling is focused on the robot itself, so that there are no dynamic obstacles

in the world, outside of the robot. As soon as the robot is considered as made up of separate

entities, there is a need for actual coordination, such as in the Round-Robin Model.

39

5.2 Critical-Section, Round-Robin Solution

The following Paradigm solution formalizes the Round-Robin Strategy of subsection 2.3 (p.

8). This is a collaboration that is an choreography, with participants Arm1, . . ., Armn and no

conductor. The arms share a common, but otherwise empty world W . Since W is a finite

resource, the arms cannot all move and plan at the same time: they compete for it. Reading

simultaneously can also be risky, since reading exactly while another agent is writing can

result in a data-race. The Round-Robin Strategy effectively lets only one arm to be alive:

at any point in time, at most one arm can read, plan, reserve space, move or free space.

However, different arms can request simultaneously to read, to plan, to reserve, to move and

to free space. The arms Armi compete for a service turn, to be allowed by the other arms.

On arm Armi exclusively has the service turn at a time. If an arm gets the service turn, then

it is allowed to read, to plan, to reserve, to move and then to free space. Once that is done,

another arm gets to read, to plan, to reserve, to move and then to free space.

5.2.1 Participant Arm Detailed STD

The detailed STD for the Round-Robin model is the same as for the Super-Robot model, see

Figure 23 (p. 39).

The detailed STD of any Armi starts in state WaitGoal, in which state the arm is not

competing for W . As soon as it reaches state WaitRead, by taking action gotGoal, the arm

starts to wait for a service turn. By taking action allowRead, it reaches in order the states

Reading, Planning, WaitWrite, Writing, Moving, WaitDelete, and then Deleting spending

its service turn, until it takes action removeGoal. Using action removeGoal, it transitions

into state WaitGoal, deleting the current objective and letting another arm take the service

turn. After some progress, it reaches again state WaitRead.

40

5.2.2 Phases and Traps

Figure 24: Partition for the role CS.

Phase Without specifies the behavioral freedom any Armi has when not having the service

turn. Phase With specifies the behavioral freedom any Armi has when having the service

turn. Phase Interrupt specifies the behavioral dynamic of Armi when it is being interrupted,

being checked for a potential service turn. Note that in all phases, the arm is prevented up-

dating, as actions update1!, update2! and update3! are not present.

Without Phase Without prohibits Armi to be in states Reading, Planning, WaitWrite, Writing,

Moving, WaitDelete, and Deleting keeping Armi out of the critical behaviors. It also

prevents the arm from updating, as actions update1!, update2! and update3! are not

present in the detailed STD for this model. These actions are not needed since arms

do not need to update in this model, which is a natural consequence of Reading,

Planning, Writing, Moving, Deleting all being part of phase With.

Phase Without has trap triv, the trivial trap of it. It expresses trivial progress within

the phase towards a next phase to be imposed. In other words, while being within

phase Without and hence not having the service turn, every progress is good enough

for Armi , even no progress, as the progress is no so much towards being fit for the

service turn, but only towards being checked for being fit.

With Contrarily, phase With allows going to states Reading, Planning, WaitWrite, Writing,

Moving, WaitDelete and Deleting.

41

Phase With has trap done: as Armi gets the service turn, it progresses towards finishing

up the motion, which definitively happens in state WaitGoal. Trap done indicates that

the arm no longer needs the service turn, and that the next arm is free to get the service

turn.

Interrupt The phase Interrupt, intermediate between Without and With, is an interrupted form

of Without, as action gotGoal cannot be taken (however being in state

WaitRead is allowed).

Phase Interrupt has two traps notYet and request, indicating different kinds of progress

towards being fit for the service turn: trap notYet for not enough progress yet and trap

request for being fit indeed.

5.2.3 Role CS

Figure 25: Partition for the role CS of the Round-Robin solution. Arm1 starts in phase

Interrupt, all the other arms starts in phase Without.

Note that the following is similar to the Split and Non-Deterministic solution, since parts

of the mechanics are the same. To enable a smooth consecutive imposition of phases on a

Armi , the following connectivity of traps is needed. Trap triv is connecting from Without to

Interrupt, so phase transfer Without triv−−−→ Interrupt is well-defined. It actually means that

once Without is constraining Armi , the phase transfer from Without to Interrupt can occur

unconditionally, at any moment, as trap triv means that every progress within Without can

be interrupted. The phase transfers Interrupt notYet−−−−−−→Without and Interrupt
request−−−−−−−→With

are well-defined, and correspond to the two different connecting traps of Interrupt. Simi-

larly, phase transfer With done−−−−→ Without is well-defined and it only occurs after necessary

progress has been made.

42

5.2.4 RoRo Protocol

∗Armi (CS) : Interrupt notYet−−−−−−→Without,Arm(i+1 mod n)+1(CS) : Without triv−−−→ Interrupt

(5.1)

∗Armi (CS) : Interrupt
request−−−−−−−→With (5.2)

∗Armi (CS) : With done−−−−→Without,Arm(i+1 mod n)+1(CS) : Without triv−−−→ Interrupt (5.3)

The above three rules define the Round-Robin collaboration. Agent Arm1 starts in phase

Interrupt and all the other agents start in phase Without. The First rule to be applied is rule

5.1, as at the very beginning the agent in Interrupt will have made no progress yet. The agent

Arm1 starts in phase Without and transitions right away to phase Interrupt, using the trivial

trap triv.

In rules 5.1 and 5.2, the rules consider whether the arm is ready to get the service turn.

The choice is being determined by the two disjoint connecting traps notYet and request of

phase Interrupt of Armi . Depending on which trap has been entered, either rule 5.1 or 5.2 is

applied. Rule 5.2 grants the service turn to Armi , transitioning the arm from phase Interrupt

to phase With, whereas rule 5.1 denies the service turn, transitioning the arm from phase

Interrupt to phase Without and transitioning the next arm from phase Without to phase

Interrupt. Henceforth, rule 5.3 is eventually applied after rule 5.2, and rule 5.1 or rule 5.2 is

eventually applied after rule 5.3.

After Armi has done enough progress in phase With to enter trap done, rule 5.3 is ready

to be applied. Since trap done starts right after state Deleting, in state WaitGoal, the con-

sistency rule will come into effect right after Armi has finished deleting. Actually, Reading,

Planning, Writing, Moving, Deleting are what Armi needs the service turn for. As the con-

sistency rule is being applied, it imposes the phase Without on arm Armi and the phase

Interrupt on arm Arm(i+1 mod n)+1. The consistency rule does not need to wait long for com-

mits from these agents, since phase Without injects trivially into phase Interrupt using trap

triv. Henceforth, rule 5.1 or rule 5.2 is eventually applied.

5.3 Critical-Section, Split and Non-Deterministic Solution

The following Paradigm solution formalizes the Partial Reservation Strategy of subsection

2.3 (p. 8). This is a collaboration that is a choreography, with participants Arm1, . . ., Armn

and no conductor. The arms share a common, but otherwise empty world W presented by

43

a matrix. Since W is a finite resource, the arms have to compete for it, especially they need

to reserve some sections of space. This reservation translates as a writing operation in W .

Access to W is a critical section. Arms get to write into W on a turn by turn basis. The arms

simultaneously want to reserve space in W , which can be thought of as a service turn, to

be given to exclusively one agent at a time, and agreed by the other agents, implementing

a mutual exclusion for the critical section. Once an arm has reserved some space in W , the

other arms need to update their set of obstacles and possibly recompute their path-planning.

5.3.1 Participant Arm Detailed STD

The detailed STD is the same in as the section Detailed Behavior Explanation, see Figure 11

(p. 12).

The following explanation is similar to the one for the Round-Robin Model, subsection

5.2 (p. 40), but it is not exactly the same. The detailed STD of any Armi starts in state

WaitGoal, in which state the arm is not competing for W . It is still not competing for the

critical section in states WaitRead, Reading and Planning. After some progress, by taking

action spaceRequested, it reaches state WaitWrite: the arm now starts to compete for W

by waiting for the critical section (service turn). By taking action allowWrite, it reaches the

state Writing, where it spends its critical section, until it takes action spaceReserved. Using

action spaceReserved, it transitions into state Moving, letting another arm take the critical

section. The arm will need the critical section once more for state Deleting, to free the space

it has reserved in Writing. Thus the arm requests the service turn again in state WaitDelete.

By taking action allowDelete, it reaches the state Deleting, where it spends its critical sec-

tion, until it takes action removeGoal. Then it lets another arm take the critical section.

After some progress, it reaches again state WaitWrite. If while being in states Reading,

Planning or WaitWrite, another arm gets the critical section, then by taking action update1!,

update2! or update3! Armi is forced to go back to WaitRead. Since WaitRead only leads to

Reading, this forces an update for Armi .

5.3.2 Phases and Traps

Phase Without specifies the behavioral freedom any Armi has when not having the permis-

sion to enter the critical section. Phase With specifies the behavioral freedom any Armi has

when having the permission to be in the critical section. Phase Interrupt and phase Update

44

specify the behavioral dynamic of Armi when it is being interrupted or when it is preemp-

tively updating.

Without Phase Without prohibits Armi to be in state Writing or in state Deleting (both are a

forms of writing), as well as to take the action allowWrite and the action allowDelete,

thus keeping Armi out of the critical section. It also prevents the arm from updating,

as actions update1!, update2! and update3! are prohibited as well.

Figure 26: Phase Without with trap triv connecting to phase Interrupt.

Phase Without has trap triv, the trivial trap of it. It expresses trivial progress within the

phase towards a next phase to be imposed. In other words, while being within phase

Without, every progress is good enough for Armi , even no progress, as the progress is

no so much towards being fit for the critical section, but only towards being checked

for being fit.

Interrupt The phase Interrupt, intermediate between Without and With, is an interrupted form

of Without, as action spaceRequested cannot be taken (however being in state

WaitWrite is allowed).

45

Figure 27: Phase Interrupt with trap notYet connecting to phase Without and the trap

request connecting to phase With.

Phase Interrupt has two traps: notYet and the trap request, indicating different kinds

of progress towards being fit for the critical section: trap notYet for not enough progress

yet and trap request for being fit indeed.

With Contrarily, phase With allows going to state Writing and to state Deleting, staying

there and leaving, all this only once.

Figure 28: Phase With with the trap done connecting to phase Without.

Phase With has the trap done; as Armi is permitted to enter the critical section, it pro-

gresses towards giving up the privileged access to W as fast as possible. Trap done in-

46

dicates being fit for granting the permission to another Arm j , j 6= i , thus withdrawing

the permission from Armi .

Update Finally, phase Update is a preempted form of Without, where the arm is forced to

make an update before continuing progress. In Update, actions spaceRequested,

constraintsReceived, allowRead and allowWrite, spaceReserved are not allowed to

be taken, but actions update1!, update2! and update3! are allowed, thus forcing an

update of the arm. Indeed, these last three actions only lead to state WaitRead. The

update then occurs later when the phase constraint Update is lifted and replaced by

the less constraining phase Without.

Figure 29: Phase Update with trap warned connecting to phase Without.

Phase Update has trap warned, expressing the guarantee that either Armi has not read

W yet, if trap warned is entered through states Moving, WaitDelete, WaitGoal or

WaitRead; or that it will read it again, if trap warned is entered coming from states

Reading, Check i (part of Planning) or WaitWrite. The arm thus updates its knowl-

edge of W .

47

5.3.3 Role Split-CS

Figure 30: Role STD Armi (CS) of Armi .

To enable a smooth consecutive imposition of phases on a Armi , the following connectiv-

ity of traps is needed. Trap triv is connecting from Without to Interrupt, so phase trans-

fer Without triv−−−→ Interrupt is well-defined. It actually means that once Without is con-

straining Armi , the phase transfer from Without to Interrupt can occur unconditionally,

at any moment, as trap triv means that every progress within Without can be interrupted.

In exactly the same way, trap triv is connecting from Without to Update, so phase trans-

fer Without triv−−−→ Interrupt is well-defined. Similarly, two phase transfers, Interrupt notY et−−−−−→
Without and Interrupt r equest−−−−−→ With, are well-defined and correspond to the two differ-

ent connecting traps of Interrupt. Phase transfer With done−−−→ Without is well-defined and it

only occurs after necessary progress has been made. Finally, phase transfer Update w ar ned−−−−−−→
Without is well-defined and it only occurs once the corresponding arm is guaranteed to

recheck the world W .

5.3.4 Split-CS Protocol

∗Armi (CS) : Interrupt notYet−−−−−−→Without (5.4)

∗Armi (CS) : Interrupt
request−−−−−−−→With (5.5)

∗Armi (CS) : Without triv−−−→ Interrupt,Arm∀ j 6=i (CS) : Without triv−−−→Without (5.6)

∗Armi (CS) : With done−−−−→Without,Arm∀ j 6=i (CS) : Without triv−−−→Update (5.7)

∗Arm j (CS) : Update warned−−−−−−−→Without (5.8)

The above five rules define the Critical Section collaboration. The collaboration begins

in rule 5.6, where all arms start in phase Without. Since the collaboration has just begun, the

protocol will transition a certain Armi into phase Interrupt, to check whether the arm needs

48

the critical section. Most likely Armi will be in trap notYet, rather than in trap request, so

that rule 5.4 is likely to be applied next. In phase Without, the arm can still get its objectives,

then read W and finally plan a path; however, it wont be able to reserve the space for that

path-planning.

Figure 31: The two lanes, one for Armi and the other for Arm j are executed in parallel.

In rules 5.4 and 5.5, the agent Armi has already been interrupted. If the agent is in trap

notYet, that means the agent did not make enough progress yet to ask for the critical section,

and then rule 5.4 is applied. If the agent is in trap request, that means the agent did make

enough progress, and that the critical section is necessary for further progress, and then rule

5.5 is applied.

In rule 5.7, once the agent has used its critical section, it enters trap done of phase With,

signifying that it is ready to relinquish the critical section. Since trap done starts right after

state Writing or after state Deleting (which is a form of writing), the system will preempt the

other agents right after Armi has finished writing into W (or deleting something from W).

Actually that is all Armi needs the critical section for. As the system transitions Armi into

state Without, it imposes the phase Update on all the arms Arm j , for j 6= i . The system does

not need to wait for commits from these agents, since phase Without injects trivially into

phase Update using trap triv.

Subsequently, each arm in phase Update will be able to transition to phase Without using

rule 5.8. As long as any agent is still in Update, rule 5.6 cannot be applied anew. Therefore,

the system will wait for all the arms Arm j , j 6= i to be updated, before interrupting another

49

agent Armi ′ for the critical section, using rule 5.6.

50

6 Probabilistic Take on Paradigm

This section justifies the section Simulation 7 (p. 56). A Paradigm model can be analyzed

either at the global level or at the detailed level. Subsection 6.1 (p. 51) shows why a Paradigm

model is hard to analyze at the global level. Subsection 6.2 (p. 55) shows how a Paradigm

model would be analyzed at the detailed level and points to relevant literature.

6.1 Probabilistic Take at the Global Level

Any state of an STD might take different amounts of time to complete the task(s) assigned to

it. For instance, this might be caused by hardware fluctuations or because the scheduler pri-

oritizes another process. For this reason, most algorithms are given in big-O and a small-o

running times, indicating the worst case scenario and the best case scenario. Another ap-

proach consist in viewing the running time of each state as a random variable.

In Paradigm, an agent A is always in a current state z ∈ Z , where Z is an associated de-

tailed STD, and in a current phase S ∈π(Z), whereπ(Z) is an associated role. If for any state in

S, the running time is exponentially distributed, then the agent behaves as a continuous-time

Markov process, or CTMP. A CTMP is a stochastic process with a discrete state space in which

the time between transitions follows exponential distributions. Moreover, the lifetime before

entering a trap t of a phase S follows a phase-type distribution, or PHD. In what follows, we

first introduce CTMPs as much as it is necessary to talk about PHDs, from [31, 32, 5, 7], which

we introduce subsequently.

6.1.1 Continuous-Time Markov Process

Let V (S) denote a countable set of states (states of STD S), and let {A(t)}∞t≥0 (A for agent) be

a stochastic process with state space V (S), with |V (S)| ∈ N∪ {∞} being the size of the state

space. Denote the states by an indexing k = 1, . . . , |V (S)|, for states s1, . . . , s|V (S)|. Moreover,

assume bounded rates for the sojourn times associated to the states.

{A(t)}∞t≥0 is a continuous-time Markov process, if it is characterized by the Markov prop-

erty

P (A(tk+1) = k +1|A(tk) = k, . . . , A(t0) = 0) = P (A(tk+1) = k +1|A(tk) = k), (6.1)

for any 0 ≤ t0 ≤ t1 ≤ . . . ≤ tk ≤ tk+1 and s1, . . . , sk ∈V (S).

The process is time homogeneous if for all w ≥ 0, and there is a matrix pt (i , j), 1 ≤ i , j ≤ n

51

such that

P (A(t +w) = s j |A(w) = si) = P (A(t) = s j |A(0) = si) = pt (i , j). (6.2)

The probability that an agent is in state si at time t is denoted by pt (i) = P (A(t) = si).

Maybe it is not exactly known in which state the agent starts: denote by p(0) = (p0(1), p0(2), . . .)

the initial probability vector of the CTMP. The agent stays in state si for an exponentially dis-

tributed amount of time, before transitioning to another state. To represent these holding

times, associate to state si the exponential random variable Ti with parameter λi ∈ [0,∞),

with λi = 0 if i is an absorbing state.

P (Ti ≤ t) = 1−e−λi t , (6.3)

(6.4)

The agent jumps into state s j from state si with probability p(i , j), which gives the transi-

tion rateλi , j = p(i , j)λi . Thereforeλi gives the total rate for leaving the state si . This behavior

can be summarized in the n×n infinitesimal generator matrix3 Q [7], capturing the structure

of the STD

Q(i , j) =


−λi , if i = j ,

λi , j , if i 6= j .
(6.5)

Note that the diagonal elements of Q are non-positive. If it is possible to transition from

state si to state s j , then Q(i , j) =λi , j > 0, otherwise it is Q(i , j) =λi , j = 0.

This treatment of Markov processes is sufficient to tackle Markov processes with absorb-

ing states. A absorbing state is a state that once entered, cannot be left. Therefore, such a

state is also a trap. For convenience, suppose that a trap T of an STD S consists of a single

state sT , and let V (S)\sT = {s1, . . . , sn} (so for now n is not the number of agents in the system).

Order the state of the CTCM with the n non-absorbing states first, and the absorbing state sT

at the n +1-th position. Then the infinitesimal generator matrix Q can be written as

Q =

 D0 d1

0 0

 (6.6)

All the non-absorbing state transitions are in the n ×n submatrix D0, describing transitions

only between non-absorbing states. The n ×1 matrix d1 describes the transitions from non-

absorbing states to the absorbing state. The 1×n matrix 0 consists only of 0’s, since there can

3This matrix is usually called infinitesimal generator matrix, generator matrix or transition rate matrix.

52

be no transition from the absorbing state to the non-absorbing state. The last 1×1 zero gives

the transition rate out of the absorbing state, i.e. 0. See [31, 32, 5, 7] for more detail.

6.1.2 Phase-Type Distributions

Definition 6.1 (Phase-Type Distribution). A phase-type distribution (PHD) is defined as the

distribution of the hitting time X , i.e. to enter an absorbing state from the set of non-absorbing

states of an absorbing continuous time Markov process {A(t)}∞t≥0.

A PHD with n non-absorbing states is said to have order n. The background CTMP

{A(t)}∞t≥0 has an initial probability vector (p , pT) where p is a 1×n vector and pT is the initial

probability of the absorbing state (trap) T . Since Q is the infinitesimal generator, and by the

definition of the rates
∑

j Q(i , j) = 0, it holds that

D01+d1 = 0, (6.7)

where 1 is a n ×1 vector of 1’s, and 0 is a n ×1 vector of 0’s.

The agent starts in an arbitrary state in V (S), with the probabilities being given by (p , pT),

therefore p1+ pT = 1. In particular, we do not assume that pT = 0. That means we do not

assume that A(t) is strictly positive: if the agent begins already in a trap, then A(t) = 0.

Since {A(t)}∞t≥0 is a CTMP, the holding time of each state si is exponentially distributed

with parameter −D0(i , i), as

D0(i , i) =−
(∑

i 6= j
D0(i , j)+d1(i)

)
, (6.8)

since the rate to leave si is the rate of transfer into the trap, i.e. d1(i), plus the sum of the rates

of transfers into any other state, i.e.
∑

j 6=i D0(i , j).

The hitting time X describing the time until absorption is said to be of phase-type with

representation (p ,D0). The vector d1 and the probability pT are implicitly determined by D0

and p .

The distribution function of the hitting time of X is given by

FX (t) = 1−peD0t 1, for t ≥ 0. (6.9)

Finally, as the state s1, . . . , sn are non-absorbing, the matrix D0 is invertible [7], and the

value (−D0)−1(i , j) gives the expected total time spent in state s j before absorption, given

53

that the initial state is si . The i th moment µi of a PHD is derived from the moment matrix

M = (−D0)−1 as

µi = E [X i] = i !pM i 1. (6.10)

In practice, given a matrix D0, it is surprisingly easy to find the exact form of the asso-

ciated distributions and densities. Simply use a symbolic algebra software package, such as

MATLAB, which are powerful enough to give the analytic form of matrix exponentials [29].

6.1.3 Communication Between Agents

Recall from section 4 (p. 25), that agents enter traps as they progress in their respective cur-

rent phases. As they arrive into the traps, which serve as commits, this information is relayed

to the protocol. A consistency rule is ready to be applied only when the corresponding traps

have been entered, and the information has been relayed. For simplicity, suppose that we

have two agents A1 and A2 in a collaboration. They have initial detailed STD Z and phases

{S1,S2,S3} and traps {T ′
1,T1,T2} such that S1

T ′
1−→ S1, S1

T1−→ S2 and S2
T2−→ S3, therefore they have

the role π(Z) = {{S1,S2,S3}, {T ′
1,T1,T2}}. Moreover, say the collaboration has two consistency

rules

∗A1(π(Z)) : S1
T1−→ S2, A2(π(Z)) : S1

T ′
1−→ S1, (I)

and

∗A1(π(Z)) : S2
T2−→ S3, A2(π(Z)) : S1

T ′
1−→ S1. (II)

and suppose that rule (I) is applied first, and rule (II) is applied second.

Say the rule (I) is applied first, agent A1 has to reach trap T1 and agent A2 has to reach trap

T2. This information has to be relayed to the protocol, and this trap passing takes a certain

amount of time. Thereupon, the rule can be processed, which takes a certain amount of time,

and then phase S2 will be sent to agent A1 and phase S1 will be sent to agent A2. This phase

passing again takes a certain amount of time.

More precisely, to each state in Z , associate an independent exponentially distributed

holding time. These distributions do not have to be identical from state to state. With this

assumption, the agents behave as CTMPs, with state space Z . As a consequence, as we men-

tioned in subsection 6.1.2 (p. 53), the time taken by Ai to arrive into a certain trap T follows

a PHD, call this H T
i . This random variable has representation p and D0, where p is the initial

probability vector and D0 is the infinitesimal generator.

54

FH T
i

(t) = 1−peD0t 1, for t ≥ 0.

When can rule 1 be applied? Only when the trap commit T1 from agent A1 and the trap

commit T ′
1 from agent A2 have both reached the protocol. If δi is the traveling time from

agent Ai to the protocol, this happens exactly at

max(H T1
1 +δ1, H

T ′
1

2 +δ2),

moreover, say the processing of a rule takes δP , so that gives

max(H T1
1 +δ1, H

T ′
1

2 +δ2)+δP

and finally, to send a phase imposition from the protocol to agent Ai takes δ′i , which gives

the phase arrival-time

∆(I)
i = max(H T1

1 +δ1, H
T ′

1
2 +δ2)+δ3 +δ′i (6.11)

for agent Ai and rule (I). The reasoning is similar for rule (II).

Even with simple phases, for instance with Coxian or an Erlang structures, it is becomes

very rapidly a hard task to compute anything out at the global level. The situation is exacer-

bated for general Paradigm models where an agent might have multiple roles and the phases

can have arbitrary structures.

6.2 Probabilistic Take at the Detailed Level

An alternate way of analyzing concurrency models is to concatenate the different detailed

STDs of the agents involved. For agents A1, . . . , An , with detailed STDs Z1, . . . , Zn and with

detailed protocol P̂ , consider the whole system on C = Z1 � · · ·� Zn � P̂ . The evolution of

the concurrent model is described by the evolution of the vector (z1, . . . , zn ,ρ) ∈C .

With probability one, only one agent transitions at a time:

(z1, . . . , zi , . . . , zn ,ρ)
λzi →z′

i−−−−→ (z1, . . . , z ′
i , . . . , zn ,ρ)

where λzi→z ′
i

is the rate associated with the arrow from state zi ∈ Zi to state z ′
i ∈ Zi . This

includes the transitions for the protocol, for instance

(z1, . . . , zi , . . . , zn ,ρ)
λρ→ρ′−−−−→ (z1, . . . , z ′

i , . . . , zn ,ρ′),

where ρ,ρ′ ∈ P̂ .

55

7 Simulation of Simple Paradigm Models

Instead of doing a probabilistic analysis on either the global level or the detailed level, we

construct simulations of the Paradigm models, and proceed to analyze them statistically.

7.0.1 Setup

In this section, we show how to simulate a Paradigm model with one role: the steps are

given in pseudo-code and the Round-Robin Solution is used to exemplify how the simulation

works. MATLAB code is given in the appendix for the Split and Non-Deterministic Solution.

We shy away from most optimization tricks on purpose: our concern is a low-level and

transparent implementation, from which statistics can be extracted with ease. As such, the

simulation is script-like, on one thread and without protection. We show how to simulate

the collaboration, but not how to implement the states of the detailed STDs themselves. For

instance, state Planning in Figure 11 (p. 12) is not implemented, but rather it is left as a

dummy state. These dummy states take random amounts of time to execute, characterized

by exponential distributions, as in section 6 (p. 51). When a word is written in this font, it

means that it is a data-structure in the implementation.

Let A1, . . . , An be the agents in a collaboration, with detailed STDs Z1, . . . , Zn , and roles

π(Z1), . . . ,π(Zn). Let the agents have current phases S1, . . . ,Sn ,Si ∈V (π(Zi)) and initial states

z1, . . . , zn , zi ∈ Si (initial state in phase Si). We concentrate on how to make one consistency

rule transition

∗A1(π(Z1)) : S1
T1−→ S′

1, . . . , A J (π(ZJ)) : S J
TJ−→ S′

J ,

for a subset {1, . . . , J } of the agents, and for some traps T1, . . . ,TJ .

7.0.2 Assumptions

In the following treatment, we make the following simplifying assumptions.

• All the agents are always active, no agent is at rest.

• All the agents have the same detailed STD structure.

• Every agent has only one role.

• Every phase has at most three traps, trap unknown, trap triv and maybe another non-trivial

trap.

• In every phase, an agent can visit a state only once, unless that state is a leaf state in the

phase.

56

• In every phase, an agent can transition from a state to only one other state.

• For a given set of current phases, only one consistency rule can be applied.

7.0.3 Constant Variables

For the whole simulation, we have the following global constants.

• A vector order that indexes all the possible states of a detailed STD.

• A vector mu that indexes the parameters of the exponential distributions, corresponding to

the states in order.

• A vector agent2protocol that indexes the parameters of the exponential distributions rep-

resenting the traveling times, for the trap commits from an agent to the protocol.

• A parameter protocol for the exponential distribution representing the processing time of

consistency rules, assuming that each processing is described by the same parameter.

• A vector protocol2agent that indexes the parameters of the exponential distributions rep-

resenting the traveling times, for the phase impositions from the protocol to the agents.

7.0.4 Simulation Data-Structures

The time span between the application of two consecutive consistency rules is referred to as

a cycle. Within each cycle, we keep a bookkeeping on the following for each agent.

• A vector times, where timesc is the starting time for cycle c.

• A table states, where statesc
i is the initial state for agent Ai in cycle c.

• A table phases, where phasesc
i is the phase name for agent Ai in cycle c.

• A table changes, where changesc
i is 1 if agent Ai receives phase in cycle c and 0 otherwise.

• A vector rules, where rulesc represents the rule that was applied in cycle c (this data-

structure is for debugging purposes).

• A vector focus, where focusc represents the value of i (present in the consistency rules) in

cycle c.

• A table tableAdjW, where tableAdjWc
i is Adjc

W
(Si). Adjacency matrices Adjc

W
(Si), where

Adjc
W

(Si) j , j is the execution time of state j for agent Ai , in cycle c and in phase Si .

• A table tableAdjΣ, where tableAjdΣc
i is Adjc

Σ(Si). Adjacency matrices Adjc
Σ(Si), where

Adjc
Σ(Si) j , j is the completion time of state j for agent Ai , in cycle c and in phase Si .

• A table tableTrap, where tableTrapc
k = ph&tr p Ak is a matrix, for agent Ak and cycle c,

with ph&tr Ak ,i , j being the time at which trap j of phase i was entered, based on Adjc
Σ(Si)

57

and Adjc
W

(Si).

A phase S is an STD, thus a directed graph (V (S),E(S)). One usual representation of di-

rected graphs is in terms of an adjacency matrix Ad j (S). The set of traps of a phase will make

it’s appearance later. For states x, y ∈V (S), provides the respective positions of x and y in the

adjacency matrix, say i and j . Then

A j d(S)i , j =−2, if (x, y) ∈ E(S)

A j d(S)i ,i =−1, if x ∈V (S)

A j d(S)i ,i = 0, otherwise.

There is a "-2" in Ad j (S)i , j if there is an arrow from the state at position i to the state at

position j , a "-1" to mark whether a state is present or not, and "0" otherwise. The sign of the

digits in the adjacency matrix can be used for some logical checks.

7.1 Strategy

Simulating a Paradigm model amounts to some intricate bookkeeping. Looking at the out-

puts of each method and starting in cycle c, method Time-Work computes the processing

times tableAdjWc
i , for each Ai in phase Si . Thereupon, the method Completion-Time com-

putes the finishing times of the states into tableAjdΣc
i , for each Ai in phase Si cycle c.

The methods Time-Work, Completion-Time, Trap-Commit, Try-Rule, and Weave are sub-

methods of the method Simulation.

In method Simulation, time adjustments are computed into tableAjdΣc
i for each Ai .

Then method Trap-Commit computes the trap commit arrivals into tableTrapc
i for each Ai .

Back in method Simulation, times adjustments are computed into tableTrapc
i for each Ai ,

to take into account the trap traveling times, based on the parameters agent2protocol.

Subsequently, method Try-Rule computes the following:

• which next rule will be applied, stored into rulesc ;

• which is the next agent focus (if any), stored into focusc+1;

• which are the phase impositions, stored into phasesc+1;

• which agents have new phase impositions (boolean), stored into changesc+1;

• what is the time at which the new rule is enabled, i.e. when all the necessary trap commits

reach the protocol; stored into timesc+1.

Again, method Simulation adds a processing time into timesc+1, based on the parameter

protocol. Subsequently, method Simulation adds the travel times of the new phase imposi-

58

tions into timesc+1, based on the parameters protocol2agent. Method Weave determines

the initial states in which each agent will begin in the next turn, and stores this information

into statesc+1.

7.1.1 Using the Memoryless Property

The memoryless property is used between the methods Weave and Work-Time. The method

Weave outputs for an agent the initial state of the next phase. The method Work-Time com-

putes the holding times for each states. If the agent reaches a leaf state zi in the previous

phase Si , then the agent restarts the execution of that leaf state until a new phase S′
i arrives

at time tS′
i
. In particular, with probability 1, this means that tS′

i
< tzi , where tzi is the com-

pletion time of state zi . Instead of setting the holding time of zi in the new phase S′
i to be

tzi − tS′
i
, we simply recompute it in method Work-Time. This is acceptable because of the

memoryless property.

7.2 Method Work-Time

7.2.1 Aim

The behavior of each agent Ai is recorded as it progresses within one phase Si and one cycle

c, so within one adjacency matrix Adjc
W

(Si), being initially a copy of Ad j (Si), as if the agent

would be allowed to progress to the end of its phase. A consistency rule might be applied

before the agent reaches the end of its current phase. Given an initial state zi ∈ Si , the sim-

ulation produces exponential holding times wi for each state, where the parameter is given

by muzi .

59

7.2.2 Pseudo-Code

Procedure. Work-Time for Ai in cycle c.

Input: mu, statesc
i , Adjc

W
(Si).

Output: Adjc
W

(Si).

1: zi ← statesc
i .

2: if Adjc
W

(Si)zi ,zi =−1 then

3: Adjc
W

(Si)zi ,zi ← X ∼ Exp(muzi). ♦ X is a sample from Exp(muzi).

4: end if

5: zi ← next state in Si . ♦ deduced from Adjc
W

6: while zi is a non-empty state in Si do

7: if Adjc
W

(Si)zi ,zi =−1 then

8: Adjc
W

(Si)zi ,zi ← X ∼ Exp(muzi). ♦ X is a sample from Exp(muzi).

9: end if

10: zi ← next state in Si . ♦ deduced from Adjc
W

11: end while

The above procedure populates the diagonal of the adjacency matrix with the respective

holding times of the associated states, on lines 3 and 8. The agent starts in state statesc
i ,

on line 1, and then iterates through the phase on lines 5 and 10. The while-loop stops when

there is no possible next state, i.e. when the next state is empty. Note that Adjc
W

(Si)zi ,zi =−1 if

the state zi has not been reached by the agent, and Adjc
W

(Si)zi ,zi ≥ 0 otherwise, as each wi ≥ 0.

7.3 Method Completion-Time

7.3.1 Aim

Now for agent Ai and current phase Si , we have the holding times of each state that can be

visited. However, this does not directly give the time at which the agent finishes the execution

of a certain state (the time at which a certain state is entered), information that is necessary

for the simulation. Let Adjc
Σ(Si), be a copy of Ad j (Si). Given an initial state statesc

i ∈ Si and

initial time t = 0, Adjc
Σ(Si)zi ,zi will represent the cumulative time taken by agent Ai to finish

a certain state zi , in cycle c. Method Simulation will adjust for the initial times.

60

7.3.2 Pseudo-Code

Procedure. Completion Times for Ai in cycle c.

Input: statesc
i , Adjc

W
(Si).

Output: Adjc
Σ(Si).

1: zi ← statesc
i .

2: t ← timesc .

3: Σ← Adjc
W

(Si)zi ,zi .

4: Adjc
Σ(Si)zi ,zi ← (Σ+ t).

5: zi ← next state in Si . ♦ deduced from Adjc
Σ(Si)

6: while zi is a non-empty state in Si do

7: Σ2 ← Adjc
W

(Si)zi ,zi .

8: Σ← (Σ+Σ2).

9: Adjc
Σ(Si)zi ,zi ← (Σ+ t).

10: zi ← next state in Si . ♦ deduced from Adjc
Σ(Si)

11: end while

The above procedure populates the diagonal of the adjacency matrix with the respective

cumulative times of the associated states, on lines 4 and 9. The agent starts in state zi , on line

1, and then iterates through the phase on lines 5 and 10. The while-loop stops when there

is no possible next state, i.e. when the next state is empty. Note that Adjc
Σ(Si)zi ,zi =−1 if the

state zi has not been reached by the agent, and Adjc
Σ(Si)zi ,zi ≥ 0 otherwise: the value on that

diagonal is the total time taken by the agent to finish state zi , given that it started in state

statesc
i at time t .

Note that for any agent Ai , with an initial state statesc
i and phase Si , one can use Adjc

W
(Si)

and Adjc
Σ(Si) to find time at which the agent has reached a certain state zi . Namely,

Adjc
Σ(Si)zi ,zi − Adjc

W
(Si)zi ,zi gives the time at which a state zi has been reached (after time

adjustment).

7.4 Method Trap-Commit

7.4.1 Aim

A simulation of a Paradigm model records the evolution of the different agents as time pro-

gresses. In each cycle, progress is marked by the application of a consistency rule. This

61

progress is being stored in the data-structures introduced earlier.

Consistency rules feed on trap commits, which depend on arrival times, so that for any

agent Ak , it is sufficient to know Adjc
Σ(Sk) (after time adjustment). We implement a proce-

dure that uses a bookkeeping based on decision-tables. Since there is nothing really inter-

esting about this method, only the code is given in the appendix. The procedure takes as

inputs phasec
k , statec

k , Adjc
W

(Sk), and Adjc
Σ(Sk), and that outputs a matrix ph&trk of size

|V (π(Zk))|× |E(π(Zk))|, with

ph&trk (i , j) = time at which trap j , in phase i , was entered by agent Ak ,

and ph&trk (i , j) =−1 otherwise. For instance, ph&trk (Interrupt,triv) =−1 means that phase

Interrupt has not been entered by agent Ak this cycle, whereas ph&trk (Interrupt,notYet) =
5,14 would mean that agent Ak has entered trap notYet in phase Interrupt at time 5,14.

ph&trk (Without,triv) = 0 would mean that agent Ak has entered trap triv in phase Without

at time 0.

7.4.2 Input/Output

For an agent Ak , the inputs are some encoding of the trap/phase structure ofπ(Zk), phasesc
k ,

statesc
k , Adjc

W
(Sk), and Adjc

Σ(Sk). The output is ph&trk .

7.5 Method Try-Rule

7.5.1 Aim

First compute ph&tr A1 , . . . , ph&tr An : from this information, it is possible to decide which

consistency rule will be applied next, and when it will be possible to apply the consistency

rule. From the setup, remember that we assume that only one consistency rule is applicable

at a time. Therefore, it is sufficient to try each consistency rule, using tableTrap on each

ph&tr A1 , . . . , ph&tr An , and catch the one that works.

62

7.5.2 Pseudo-Code

Procedure. Try Rule ∗A1(π(Z1)) : S1
T1−→ S′

1, . . . , A J (π(ZJ)) : S J
TJ−→ S′

J .

Input: statesc , phasesc , tableTrapc , focusc .

Output: phasesc+1, timesc+1, changesc+1, focusc+1, rulec .

1: timesc+1 ←−1. ♦ Value −1 is useful for debugging.

2: phasesc+1 ← phasesc .

3: changesc+1 ← 0. ♦ No change by default, for any agent.

4: focusc+1 ← focusc .

5: rulec+1 ←−1.

6: if (ph&tr1(S1,T1) ≥ 0)∧·· ·∧ (ph&tr J (S J ,TJ) ≥ 0) then

7: timesc+1 ← max(ph&tr1(S1,T1), . . . , ph&tr J (S J ,TJ)).

8: phasesc+1
1 ← S′

1, . . . ,phasesc+1
J ← S′

J .

9: changesc+1
1 ← 1, . . . ,changesc+1

J ← 1. ♦ Boolean 1 signifies a phase change.

10: focusc+1 ← Update(focusc). ♦ Update is an small helper method given by the

designer.

11: rulec+1 ← RU LE I D .

12: end if

For instance, the second rule of the Round-Robin collaboration takes the following form.

63

Procedure. Try∗Armi (RoRo) : Interrupt notY et−−−−−→Without,Arm(i+1 mod n)+1(RoRo) : Without triv−−−→
Interrupt.

Input: statesc , phasesc , tableTrapc , focusc .

Output: phasesc+1, timesc+1, changesc+1, focusc , rulec .

1: timesc+1 ←−1.

2: phasesc+1 ← phasesc .

3: changesc+1 ← 0.

4: rulec+1 ←−1.

5: focusc+1 ← focusc .

6: if (ph&tri (Interrupt,notYet) ≥ 0)∧ (ph&tr(i+1 mod n)+1(Without,triv) ≥ 0) then

7: timesc+1 ← max(ph&tri (Interrupt,notYet), ph&tr(i+1 mod n)+1(Without,triv)).

8: phasesc+1
i ←Without,phasesc+1

(i+1 mod n)+1 ← Interrupt.

9: changesc+1
i ← 1,changesc+1

(i+1 mod n)+1 ← 1.

10: focusc+1 ← (i +1 mod n).

11: rulec+1 ← 2.

12: end if

The variable timesc+1 stores the time at which the new phase impositions arrive to the

agents in the collaboration. The vector phasesc+1 stores the set of phases in the new cycle.

The final stage in the simulation of a Paradigm model consists in weaving together the old

phases and the new phases of the agents. The vector changesc+1 stores which agents get a

new phase in the next cycle c +1. Into rulec is stored the tag of the rule that has just been

applied (so still in cycle c).

7.6 Method Weave

7.6.1 Aim

The arrival into a trap does not prevent an agent to continue its progress within its current

phase. This is one of the advantages of a Paradigm model, the phase/trap construction al-

lows for a certain level of progress smoothness. There are several cases.

• An agent has not yet reached a leaf state in its current phase when a new phase imposition

arrives.

• An agent has reached a leaf state in its current phase when a new phase imposition arrives,

64

but it has not yet finished the execution of the leaf state.

• An agent has reached a leaf state in its current phase when a new phase imposition arrives,

but it has already finished the execution of the leaf state.

In Paradigm modeling, an agent is never let to rest. If an agent has reached a leaf state

in its phase, then it will simply restart the execution of that state. Specifically, suppose that

agent Ai arrives into state zi ∈ Si , which is a leaf state, and finished the execution at time

tzi . Suppose that there is a phase transition Si
Ti−→ S′

i , and that the new phase imposition

arrives at time tS′
i
. If tzi < tS′

i
then the agent restarts zi until tzi ≥ tS′

i
. See subsection [using

memoryless property]

For an agent Ai , let the time at which the execution of zi is completed be tzi , and the

time at which the phase S′
i is imposed be tS′

i
. Because the holding times in each state are

memoryless, there is no need to store the value tzi − tSi . The memoryless property means

that probabilistically, the value tzi −tSi , given tSi , is the same as the distribution of the holding

time of zi . As such, if tzi ≥ tS′
i
, then in the next cycle, it is acceptable to recompute tzi .

7.6.2 Pseudo-Code

Procedure. Weave for agent Ai in cycle c.

Input: statesc
i ,timesc

i , and tableAdjΣc
i .

Output: statesc+1
i .

1: tS′
i
← timesc

i .

2: zi ← statesc
i .

3: tzi ← Adjc
Σ(Si)zi ,zi .

4: if zi is a leaf in Si then

5: statesc+1
i ← zi .

6: end if

7: while zi is not a leaf in Si do

8: if tzi ≥ tS′
i

then

9: statesc+1
i ← zi .

10: return

11: else

12: zi ← next state in Si .

13: tzi ← Adjc
Σ(Si)zi ,zi .

14: if zi is a leaf in Si then

15: statesc+1
i ← zi .

16: end if

17: end if

18: end while

From lines 1 to 3, the weaving procedure is initialized. On line 1, tSi represents the time

65

at which the new phase imposition Si has arrived. On line 2, zi represents the initial state zi

of agent Ai in cycle c, thus the initial state in phase Si . On line 3, tzi presents the time stamp

at which agent Ai completes the execution of state zi .

From lines 4 to 18, the weaving is done. The aim of the procedure is to find next initial

state of agent Ai , in the next phase S′
i , in the next cycle c +1.

First, from line 4 to 6, the algorithm asks whether the current state zi is a leaf in the phase:

if it is, then necessarily zi will be the initial state of the next phase.

Note that the code from lines 12 to 16 is identical with the code from line 2 to 6. As

the algorithm iterates over the phase, searching for the initial state of the next phase, if the

finishing time tzi of the state zi is less than tSi , then the algorithm steps one state forward

and asks whether the new state zi is a leaf in the phase, just as on lines 2 to 6. Otherwise,

from lines 8 to 10, if the finishing time tzi of the state zi is greater than tSi , then it must be the

first one to be so, and thus it will be the initial state of the next phase.

7.7 Method Simulation

7.7.1 Aim

Using the assumption that no agent is at rest, the agent will keep restarting leaf states in a

phase, until a new phase is imposed. The distribution of the time taken to finish the work-

load associated to a state given the arrival-time of a phase is the same as the distribution of

the time taken to finish the work-load, because of the memoryless property.

1. To emulate a Paradigm model, remains to put the different procedures together. In

each cycle, method Work-Time and method Completion-Time is applied first to all of

the agents with new phases, thus computing tableAdjWc and tableAdjΣc , using the

parameters in mu.

2. The times in tableAdjΣc are updated by method Simulation, using the initial times in

timesc .

3. Henceforth, the trap arrivals are computed with the help of method Trap-Commit,

again for the agents with new phases, and stored into tableTrapsc .

4. The times in tableTrapsc are updated by method Simulation, using the parameters in

agent2protocol.

66

5. Subsequently, each consistency rule is tried and the one that works is caught, updating

the next set of phases phasesc+1, the next initial time timesc+1, the next set of agents

with new phases changesc+1, the current rule applied rulec , and finally the next agent

on which the simulation is focused focusc+1 if any.

6. The times in timesc+1 are updated by method Simulation, using the parameters in

simulation and in protocol2agent.

7. Using this information, procedure Weave is applied on each agent, computing

statesc+1. and initializing tableAdjWc+1, and then the process restarts at the next

cycle.

7.7.2 Pseudo-Code

67

Procedure. Simulation

Input: parameters, states1, phases1, changes1, rules1, focus1, times1, and M .

Output: states, phases, changes, rules, focus, times, tableAdjW, tableAdjΣ, and

tableTrap.

1: Create empty tableAdjW, and tableAdjΣ and initialize parameters.

2: for each agent Ai from A1 to An do

3: tableAdjW1
i ← phases1

i .

4: end for

5: for each cycle c from 1 to M do

6: for each agent Ai from A1 to An do

7: if changesc
i = 1 then

8: tableAdjWc
i ← Work-Time(mu, statesc

i , tableAdjWc
i).

9: tableAdjΣc
i ← Completion-Time(statesc

i , timesc , tableAdjWc
i , tableAdjΣc

i).

10: tableAdjΣc
i ← adjust with initial times.

11: tableTrapc
i ← Trap-Commit(phasesc

i , statesc
i , tableAdjΣc

i)

12: tableTrapc
i ← adjust with traveling times.

13: else

14: tableAdjWc
i ← tableAdjWc−1

i .

15: tableAdjΣc
i ← tableAdjΣc−1

i .

16: tableTrapc
i ← tableTrapc−1

i .

17: end if

18: end for

19: for each rule R do

20: phasesc+1, timesc+1, changesc+1, focusc+1, rulec ← Try-Rule(Rul e, phasesc ,

tableTrapc , changesc , focusc).

21: end for

22: timesc+1 ← adjust with protocol processing time. ♦ using protocol.

23: timesc+1 ← adjust with traveling times. ♦ using protocol2agent.

24: for each agent Ai from A1 to An do

25: statesc+1
i ← Weave(statesc

i ,timesc
i ,tableAdjΣc

i).

26: end for

27: end for

68

From lines 1 to 4, the simulation starts by initializing the table of holding time adja-

cency matrices tableAdjW1, where each agent has to have the right phase structure, given

by phases1. From line 5 to 27, the simulation executes a complete cycle, where one cy-

cle corresponds to the application of only one consistency rule. From lines 19 to 21, every

consistency rule is tried, but by design only one is applicable at a time. Consistency rules

feed on trap commits, and so from lines 6 to 18, the holding times tableAdjWc , arrival times

tableAdjΣc and corresponding trap commits tableTrapc are computed for each agent. Fi-

nally, once a consistency rule is chosen, the phase arrival time is set, and the cycle initial

states of the new cycle are computed. This happens from lines 22 to 26. The traveling times

for the traps commits and for the phase impositions, plus the processing times for the proto-

col, are incorporated on lines 12, 22, and 23 respectively.

69

8 Numerical Exploration

In section 7 (p. 56), was shown one way of simulating the Paradigm models of section 5 (p.

39). In this section, one important statistic of concurrency models is investigated, namely

the feed of an agent with respect to a state z.

For a system with agents A1, . . . , An , feed can be defined for a subset of the agents, for

instance it can be defined for either only one agent Ai or for all the agents at once.

Definition 8.1 (Feed). For an agent A with detailed STD Z , the long run expected feed F̄(A, z)

with respect to one state z ∈ Z is

F̄(A, z) = E
(

lim
T→∞

∫ T
0 1A(t)=z d t

T

)
. (8.1)

Given that the aim of an agent is to be in a certain state, the long run expected feed of an

agent is useful to determine how well the concurrency model lets the agent achieve that aim.

In particular, in The Super-Robot Model 5.1 (p. 39), in the Round-Robin Solution 5.2 (p. 40)

and in the Split and Non-Deterministic Solution 5.3 (p. 43), the aim of all the agents is to be

in state Moving.

Therefore, for a system with n arms Arm1, . . . ,Armn , the long run expected feed for the

whole system is

F̄(Arm1, . . . ,Armn ,Moving) =
n∑

i=1
E

(
lim

T→∞

∫ T
0 1Ai (t)=z d t

T

)
. (8.2)

The feed is a relevant statistic for the performance of a coordination scheme. In our

robotic context, it is better to have the highest possible feed for state Moving. A high feed

corresponds to simultaneous motion for the different arms of the robot. A high feed corre-

sponds to a fluid coordination scheme. A low feed would mean that some agents are denied

access of a certain state, meaning that those agents have more difficulty in making progress.

Therefore, a high feed is preferable.

As discussed in the section 3 about path-planning (p 14), there are many different path-

planning methods, with many different running times, and many different implementations.

Moreover, some of the path-planning methods are trivially parallelizable [2, 41]. Therefore it

is difficult to say how to cut up, or what execution time to expect from the state Planning in

Figure 11 (p. 12) and in Figure 23 (p. 39).

We attempt a small initial exploration of state space to compare different models, check-

ing whether they behave differently to solve the task at hand. The state space is the set of

70

parameters of the exponential holding times of the planning state(s) and of the moving state.

For each point, in the state space, the simulation of section 7 (p. 56) is run 10 times, with

1000 cycles.

8.1 Exploration of the Super-Robot Model

For the Super-Robot model, the holding times of every state, except for states Planning and

Moving, is kept at µ = 1. This includes the traveling times from the protocol to the agents,

from the agents to the protocol, and the working time of the protocol itself, as discussed in

section 6.1.3 (p. 54).

For states Moving and Planning, the holding times range take the value µMoving ∈
{1,2, . . . ,20} and µPlanning ∈ {1,2, . . . ,20}∗ 3, to account for an increase in planning time.

Therefore, 400 points are explored. Finally, the feed value is multiplied by 3, since there are 3

agents, to account for each arm moving simultaneously.

Recall that in this model there is only one robot, the super-model. The coordination is the

trivial no coordination. In the subsequent models, the coordination is explored for 3 agents,

and there the state Planning will take holding times in {1,2, . . . ,20}.

Figure 32: Super-Robot Model

8.2 Exploration of the Round-Robin Solution

For the Round-Robin solution, the holding times of every state, except for states Planning

and Moving, is kept atµ= 1. This includes the traveling times from the protocol to the agents,

71

from the agents to the protocol, and the working time of the protocol itself.

For states Moving and Planning, the holding times range take the value µMoving ∈
{1,2, . . . ,20} and µPlanning ∈ {1,2, . . . ,20}. Therefore, 400 points are explored.

The coordination is explored for 3 agents.

Figure 33: Round-Robin

8.3 Exploration of the Split and Non-Deterministic Solution

For the Split and Non-Deterministic solution, the holding times of every state, except for

states Plan1, Plan2, Plan3, and Moving, is kept at µ= 1. The path-planning is also split into

3. This is arbitrary. This includes the traveling times from the protocol to the agents, from

the agents to the protocol, and the working time of the protocol itself.

For state Moving the holding times take the values µMoving ∈ {1,2, . . . ,20} and for states

Plan1, Plan2, and Plan3, the holding times take the value µPlan ∈ {1,2, . . . ,20}/3 (so that the

first parameter is 1/3 instead of 1), such that Plan1, Plan2, and Plan3 always take the same

parameters. Therefore, 400 points are explored.

Thus coordination is explored for 3 agents and 3 splits for the planning state.

72

Figure 34: Split Model

8.4 Comparison of the Models

In order to draw some qualitative conclusions about the different coordination models, the

different models are compared.

First, here is the difference between F̄(Moving)Spl i t and F̄(Moving)Robi n .

Figure 35: Graph of F̄(Moving)Spl i t − F̄(Moving)Robi n .

Note that in F̄(Moving)Spl i t the agents can move concurrently, but that in F̄(Moving)Robi n

the agents do not move concurrently, but rather sequentially.

Second, here is the difference between F̄(Moving)Spl i t and F̄(Moving)Super .

73

Figure 36: Graph of F̄(Moving)Spl i t − F̄(Moving)Super .

Note that in F̄(Moving)Spl i t as well as in F̄(Moving)Super the agents can move concur-

rently.

74

9 Conclusion

9.1 Analysis of Results

The results of the simulation seem counter-intuitive. In Figure 32 (p. 71), representing the

Super-Robot model, it seems that the more the super-robot spends time in state Planning,

the more the super-robot is fed with state Moving, which seems incorrect. However, after

careful examination of the code, we could not find a mistake.

The simulations for the Round-Robin solution, in Figure 33 (p. 33), and for the Split and

Non-Deterministic solution, in Figure 34 (p. 73), seem coherent since they have roughly the

same behavior. For the Round-Robin solution, the feed seems to go up the less the robot

spends time in state Moving. For the Split and Non-Deterministic solution, the feed seems to

go up the more the robot spends time in state Moving, as long as the time spent for planning

is big enough.

When comparing the Round-Robin solution and the Split and Non-Deterministic solu-

tion, in Figure 35 (p. 73), the Split and Non-Deterministic solution outperforms the Round-

Robin solution as expected.

Moreover, comparing the Super-Robot solution and the Split and Non-Deterministic so-

lution, in Figure 36 (p. 74), the Split and Non-Deterministic soltion also outperforms the

Super-Robot solution.

These results indicate that the different models indeed behave very differently, however

we must acknowledge the fact that some of these results seem odd. Moreover, note that only

the case for 3 agents was tested.

9.2 Future Work

Each simulation takes under this implementation too long to execute. It is necessary to rem-

edy this situation by finding a way to parallelize Paradigm simulations, in a safe and scallable

way, both in the number of agents and in the size of the detailed STDs.

The models developed in this work should be rechecked using another programming

approach, to see whether a mistake was made using this approach. Also it is necessary to

see how the models respond to the number of arms, i.e. agents, present in the coordination

solutions.

Moreover, it is necessary to find a canonical way of converting Paradigm models into

75

actual concurrent code, such as in Python, Java or C++.

On another hand, this research starts what we believe is a new kind of research in path-

planning, where coordination models and path-planning methods are united in one path-

planning coordination scheme. An interesting avenue of research is to see how different

threads, responsible for arm path-planning and motion, can be coordinated with the help

of Paradigm concurrency models for the best possible outcome.

76

10 Appendix

10.1 Code for Simulation

1 %Paradigm simulation for the Critical -Section Split Critical

Section Solution , with 3 splits in state Planning

2

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 %%%%% THE INITIALIZATION %%%%%

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

6

7 clear all

8

9 %Paradigm simulation for the Critical -Section Round -Robin

Solution

10 %Simulation Parameters

11 nbCycles = 100; nbAgents = 3; nbStates = 14; nbPhases = 4;

12

13 %Indexing of the states

14 WaitGoal =1; WaitRead =2; Reading =3; Plan1 =4;

15 Check1 =5; Plan2 =6; Check2 =7; Plan3 =8;

16 Check3 =9; WaitWrite =10; Writing =11; Moving =12;

17 WaitDelete =13; Deleting =14;

18

19 %Associated exponential distribution parameters

20 mu = [1 1 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.001 0.001 0.001 0.001];

21 agent2protocol = [0.001 0.001 0.001];

22 protocol2agent = [0.001 0.001 0.001];

23 protocol = 0.001;

24

25 %Indexing of the phases

26 Without = 1; Interrupt = 2; With = 3; Update = 4;

27

28 %Indexing of the traps

29 triv = 1; nY = 2; req = 3; dn = 4; wrn = 5;

30

31 %Phase / Trap dependenciesc

32 phase_state_to_trap = [

33 0,0,0,0,0,0,0,0,0,0,0,0,0,0;

34 nY,nY,nY,nY,nY,nY,nY,nY,nY,req ,0,nY,req ,0;

35 dn,dn,dn,dn,dn,dn,dn,dn,dn ,0,0,dn ,0,0;

36 wrn ,wrn ,0,0,0,0,0,0,0,0,0,wrn ,wrn ,0;

37];

77

38

39 %phases

40 adj_With = [-1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

41 0, -1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

42 0, 0, -1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

43 0, 0, 0, -1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0;

44 0, 0, 0, 0, -1, -2, 0, 0, 0, 0, 0, 0, 0, 0;

45 0, 0, 0, 0, 0, -1, -2, 0, 0, 0, 0, 0, 0, 0;

46 0, 0, 0, 0, 0, 0, -1, -2, 0, 0, 0, 0, 0, 0;

47 0, 0, 0, 0, 0, 0, 0, -1, -2, 0, 0, 0, 0, 0;

48 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0;

49 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -2, 0, 0, 0;

50 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -2, 0, 0;

51 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0;

52 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -2;

53 -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1];

54

55 adj_Without = [-1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

56 0, -1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

57 0, 0, -1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

58 0, 0, 0, -1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0;

59 0, 0, 0, 0, -1, -2, 0, 0, 0, 0, 0, 0, 0, 0;

60 0, 0, 0, 0, 0, -1, -2, 0, 0, 0, 0, 0, 0, 0;

61 0, 0, 0, 0, 0, 0, -1, -2, 0, 0, 0, 0, 0, 0;

62 0, 0, 0, 0, 0, 0, 0, -1, -2, 0, 0, 0, 0, 0;

63 0, 0, 0, 0, 0, 0, 0, 0, -1, -2, 0, 0, 0, 0;

64 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0;

65 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

66 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -2, 0;

67 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0;

68 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

69

70 adj_Interrupt = [-1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

71 0, -1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

72 0, 0, -1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

73 0, 0, 0, -1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0;

74 0, 0, 0, 0, -1, -2, 0, 0, 0, 0, 0, 0, 0, 0;

75 0, 0, 0, 0, 0, -1, -2, 0, 0, 0, 0, 0, 0, 0;

76 0, 0, 0, 0, 0, 0, -1, -2, 0, 0, 0, 0, 0, 0;

77 0, 0, 0, 0, 0, 0, 0, -1, -2, 0, 0, 0, 0, 0;

78 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0;

79 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0;

80 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

81 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0;

78

82 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0;

83 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

84

85 adj_Update = [-1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

86 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

87 0, -2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

88 0, 0, 0, -1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0;

89 0, -2, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0;

90 0, 0, 0, 0, 0, -1, -2, 0, 0, 0, 0, 0, 0, 0;

91 0, -2, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0;

92 0, 0, 0, 0, 0, 0, 0, -1, -2, 0, 0, 0, 0, 0;

93 0, -2, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0;

94 0, -2, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0;

95 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

96 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -2, 0;

97 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0;

98 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

99

100 %Creating the data -structures

101 %Tables

102 table_AdjW = cell(nbAgents , nbCycles);

103 table_AdjS = cell(nbAgents , nbCycles);

104 table_Traps = cell(nbAgents , nbCycles);

105 %Matrices

106 states = zeros(nbAgents , nbCycles);

107 phases = zeros(nbAgents , nbCycles);

108 times = zeros(nbAgents , nbCycles);

109 %encoding what has changed , and not what is going to change

110 changes = ones(nbAgents , nbCycles);

111 focus = zeros(1, nbCycles);

112 focus (1) = 1;

113 rules = zeros(1, nbCycles);

114

115 %Initialization of data -structures

116 %The initial state labels in the first cycle

117 states (1,1) = WaitRead; states (2,1) = WaitGoal; states (3,1) =

WaitGoal;

118 %The initial phase labels in the first cycle

119 phases (1,1) = With; phases (2,1) = Without; phases (3,1) =

Without;

120 %The initial phase adjacency matrices for holding times

121 table_AdjW {1,1} = adj_With; table_AdjW {2,1} = adj_Without;

table_AdjW {3,1} = adj_Without;

122 table_AdjS {1,1} = adj_With; table_AdjS {2,1} = adj_Without;

79

table_AdjS {3,1} = adj_Without;

123

124 %Start at agent 1

125 current_agent = 1;

1 %%%%%%%%%%%%%%%%%%%%%%%%%

2 %%%%% THE SIMULATION %%%%%%

3 %%%%%%%%%%%%%%%%%%%%%%%%%

4 for c =1:(nbCycles -1)

5 for Ai = 1: nbAgents;

6 %we do not want to recompute everything

7 if changes(Ai,c) == 1

8 table_AdjW{Ai,c} = WorkTime(mu, states(Ai, c),

table_AdjW{Ai, c});

9 table_AdjS{Ai,c} = CompletionTime(states(Ai,c),

table_AdjW{Ai, c}, table_AdjS{Ai, c});

10 ind1 = (table_AdjS{Ai, c} > 0);

11 table_AdjS{Ai,c} = table_AdjS{Ai, c} + times(Ai,c

)*ind1;

12 %Compute the arrivals into the traps

13 table_Traps{Ai,c} = TrapCommitSplit(phases(Ai, c)

, states(Ai, c), table_AdjS{Ai, c}, table_AdjW

{Ai,c});

14 %Add the sending times for the trap commits

15 ind2 = (table_Traps{Ai,c} >= 0); %indices of

positive elements

16 travel = exprnd(agent2protocol(Ai), size(ind2));

%different sending time for different traps

17 table_Traps{Ai, c} = table_Traps{Ai, c} + travel

.*ind2; %only the positive elements are

affected

18 else

19 table_AdjW{Ai,c} = table_AdjW{Ai,c-1};

20 table_AdjS{Ai,c} = table_AdjS{Ai,c-1};

21 table_Traps{Ai,c} = table_Traps{Ai, c-1};

22 end

23 end

24

25 %METHOD TRY -RULE

26 trap_Slice = cell(nbAgents ,1);

27 for Ai=1: nbAgents

28 trap_Slice{Ai}= table_Traps{Ai,c};

29 end

30 [phases(:,c+1), times(:,c+1), changes(:,c+1), focus(c+1),

rules(c)] = TryRule(phases(:,c), trap_Slice ,

80

changes(:,c), focus(c));

31

32 %times(:,c+1), the whole column set to one value

33 %adjust the processing time

34 times(:,c+1) = times(:,c+1) + exprnd(protocol);

35

36 %adjust the sending times of each phase imposition

37 for Ai = 1: nbAgents

38 times(Ai,c+1)= times(Ai,c+1) + exprnd(protocol2agent(

Ai));

39 end

40

41 %Fill table_AdjW and table_AdjS with the newly obtained

phases.

42 for Ai=1: nbAgents

43 if phases(Ai,c+1) == Without

44 table_AdjW{Ai,c+1} = adj_Without;

45 table_AdjS{Ai,c+1} = adj_Without;

46 end

47 if phases(Ai,c+1) == Interrupt

48 table_AdjW{Ai,c+1} = adj_Interrupt;

49 table_AdjS{Ai,c+1} = adj_Interrupt;

50 end

51 if phases(Ai,c+1) == With

52 table_AdjW{Ai,c+1} = adj_With;

53 table_AdjS{Ai,c+1} = adj_With;

54 end

55 if phases(Ai,c+1) == Update

56 table_AdjW{Ai,c+1} = adj_Update;

57 table_AdjS{Ai,c+1} = adj_Update;

58 end

59 end

60

61 %METHOD WEAVE

62 for Ai = 1: nbAgents

63 this_adjW = table_AdjW{Ai, c};

64 next_adjW = table_AdjW{Ai, c+1};

65 this_adjS = table_AdjS{Ai, c};

66 states(Ai, c+1) = Weave3(states(Ai,c),times(Ai, c+1),

this_adjS);

67 end

68 end

81

10.2 Code for Work-Time

1 function [adjW] = WorkTime(mu, state , adjW)

2 next_state = state;

3 if(adjW(next_state ,next_state) < 0)

4 %add mu(next_state)/1000000000 to avoid zeros

5 adjW(next_state ,next_state) = exprnd(mu(next_state))

+ mu(next_state)/1000000000;

6 end

7 next_state = next(adjW , next_state);

8 while (isempty(next_state) == false)

9 if(adjW(next_state ,next_state) < 0)

10 %add mu(next_state)/1000000000 to avoid zeros

11 adjW(next_state ,next_state) = exprnd(mu(

next_state)) + mu(next_state)/1000000000;

12 end

13 next_state = next(adjW , next_state);

14 end

15 end

82

10.3 Code for Completion-Time

1 function [adjS] = CompletionTime(state ,adjW ,adjS)

2 %Function definition is different from the pseudo -code ,

it is easier to pass adjS for modification , than to

declare it inside this function.

3 next_state = state;

4 sum = adjW(next_state , next_state);

5 adjS(next_state , next_state) = sum;

6 next_state = next(adjW , next_state);

7 while (isempty(next_state)==false)

8 sum2 = adjW(next_state , next_state);

9 sum = sum + sum2;

10 adjS(next_state , next_state) = sum;

11 next_state = next(adjW , next_state);

12 end

13 end

83

10.4 Code for Trap-Commit

1 function [phaseNtrap] = TrapCommit(phase , state , adjS)

2 %Indexing the traps.

3 triv = 1; notYet = 2; request = 3; done = 4;

4 nbStates = 9;

5

6 phaseNstate = [

7 0,0,0,0,0,0,0,0,0,0; %phase without has trap triv

8 notYet ,request ,0,0,0,0,0,0,0,0; %phase interrupt has

traps notYet and request

9 done ,0,0,0,0,0,0,0,0,0; %phase done has trap done

10];

11

12 %col1: triv , col2: notYet , col3: request , col4: done

13 phaseNtrap = [

14 -1,-1,-1,-1; %phase 1

15 -1,-1,-1,-1; %phase 2

16 -1,-1,-1,-1; %phase 3

17];

18

19 phaseNtrap(phase , triv) = adjS(state , state);

20

21 for(node = 1: nbStates)

22 trap = phaseNstate(phase , node);

23 if(trap > 0)

24 phaseNtrap(phase , trap) = adjS(node , node);

25 end

26 end

27 end

84

10.5 Code for Try-Rule

1 function [next_phases , next_time , next_change , focus , rule]

= TryRule(sim_phase , trap_slice , next_change , focus)

2 nbAgents = 3;

3

4 next_phases = sim_phase;

5 next_time = -1;

6 next_change = zeros(size(next_change)); %put a one if

there has been a change

7 rule= -1;

8

9 Without = 1;

10 Interrupt = 2;

11 With = 3;

12 Update = 4;

13

14 triv = 1;

15 notYet = 2;

16 request = 3;

17 done = 4;

18 warned = 5;

19

20 %Rule 1

21 if sim_phase(focus) == Interrupt && trap_slice{focus}(

Interrupt , notYet) >= 0

22 next_time = trap_slice{focus}(Interrupt , notYet);

23

24 next_phases(focus) = Without;

25 next_change(focus) = 1;

26 if focus == 3

27 focus =1;

28 else

29 focus = focus +1;

30 end

31 rule = 1;

32 return

33 end

34

35 %Rule 2

36 if sim_phase(focus) == Interrupt && trap_slice{focus}(

Interrupt , request) >= 0

37 next_time = trap_slice{focus}(Interrupt , request);

38

85

39 next_phases(focus) = With;

40 next_change(focus) = 1;

41 rule = 2;

42 return

43 end

44

45 %Rule 3

46 cond3 = sim_phase(focus) == Without;

47 time3 = trap_slice{focus}(Without ,triv);

48 for Ai = 1: nbAgents

49 cond3 = cond3 && (sim_phase(Ai) == Without);

50 time3 = max(time3 , trap_slice{Ai}(Without , triv));

51 end

52

53 if cond3 == true

54 next_time = time3;

55

56 next_phases(focus) = Interrupt;

57 next_change(focus) = 1;

58 rule = 3;

59 return

60 end

61

62 cond4 = sim_phase(focus) == With;

63 time4 = trap_slice{focus}(With ,done);

64 for Ai = 1: nbAgents

65 if(Ai ~= focus)

66 cond4 = cond4 && (sim_phase(Ai) == Without);

67 time4 = max(time4 , trap_slice{Ai}(Without , triv));

68 end

69 end

70

71 if cond4 == true

72 next_time = time4;

73

74 next_phases(focus) = Without;

75 next_change(focus) = 1;

76 for Ai = 1: nbAgents

77 if(Ai ~= focus)

78 next_phases(Ai) = Update;

79 next_change(Ai) = 1;

80 end

81 end

82 rule = 4;

86

83 return

84 end

85

86

87 cond5 = true;

88 time5 = -1;

89 for Ai = 1: nbAgents

90 if(Ai ~= focus)

91 cond5 = cond5 && (sim_phase(Ai) == Update);

92 time5 = max(time5 , trap_slice{Ai}(Update , warned));

93 end

94 end

95

96 if cond5 == true

97 next_time = time5;

98

99 for Ai = 1: nbAgents

100 if(Ai ~= focus)

101 next_phases(Ai) = Without;

102 next_change(Ai) = 1;

103 end

104 end

105 if focus == 3

106 focus = 1;

107 else

108 focus = focus +1;

109 end

110 rule = 5;

111 return

112 end

113 end

87

10.6 Code for Weave

1 function [next_state] = Weave(state , time , this_adjS)

2 this_state = state;

3 finish = this_adjS(this_state , this_state);

4

5 if islast(this_adjS , this_state) == true

6 next_state = this_state;

7 end

8

9 while islast(this_adjS , this_state) == false

10 if finish >= time

11 next_state = this_state;

12 break; %to the next agent

13 else

14 this_state = next(this_adjS , this_state);

15 finish = this_adjS(this_state , this_state);

16 if islast(this_adjS , this_state) == true

17 next_state = this_state;

18 end

19 end

20 end

21 end

88

10.7 Code for Helper Functions

10.7.1 Method next

1 function [next_state] = next(phase , state)

2 next_state = find(phase(state , :) == -2);

3 end

10.7.2 Method islast

1 function [bool] = islast(phase , state)

2 % given a phase matrix , this function returns whether

the state is the

3 % a leaf or not , returns yes for leaf , no for not a

leaf

4 next_state = next(phase ,state);

5 if isempty(next_state)==false

6 bool = false;

7 else

8 bool = true;

9 end

10 end

89

References

[1] G. A. Agha. Actors: A model of concurrent computation in distributed systems. Techni-

cal report, DTIC Document, 1985.

[2] N. M. Amato and L. K. Dale. Probabilistic roadmap methods are embarrassingly parallel.

In Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on,

volume 1, pages 688–694. IEEE, 1999.

[3] S. Andova, L. Groenewegen, and E. P. de Vink. Dynamic consistency in process algebra:

From paradigm to acp. Science of Computer Programming, 76(8):711–735, 2011.

[4] O. B. Bayazit, J.-M. Lien, and N. M. Amato. Probabilistic roadmap motion planning

for deformable objects. In Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE

International Conference on, volume 2, pages 2126–2133. IEEE, 2002.

[5] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing networks and Markov

chains: modeling and performance evaluation with computer science applications. John

Wiley & Sons, 2006.

[6] V. Boor, M. H. Overmars, and A. F. van der Stappen. The gaussian sampling strategy for

probabilistic roadmap planners. In Robotics and automation, 1999. proceedings. 1999

ieee international conference on, volume 2, pages 1018–1023. IEEE, 1999.

[7] P. Buchholz, J. Kriege, and I. Felko. Input Modeling with Phase-Type Distributions and

Markov Models: Theory and Applications. Springer, 2014.

[8] K. M. Chandy and J. Misra. The drinking philosophers problem. ACM Transactions on

Programming Languages and Systems (TOPLAS), 6(4):632–646, 1984.

[9] H. Choset. Coverage for robotics–a survey of recent results. Annals of mathematics and

artificial intelligence, 31(1-4):113–126, 2001.

[10] P.-J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with “readers” and

“writers”. Communications of the ACM, 14(10):667–668, 1971.

[11] A. Elfes. Using occupancy grids for mobile robot perception and navigation. Computer,

22(6):46–57, 1989.

90

[12] D. Ferguson and A. Stentz. Using interpolation to improve path planning: The field d*

algorithm. Journal of Field Robotics, 23(2):79–101, 2006.

[13] D. Ferguson, M. Likhachev, and A. Stentz. A guide to heuristic-based path planning.

In Proceedings of the international workshop on planning under uncertainty for au-

tonomous systems, international conference on automated planning and scheduling

(ICAPS), pages 9–18, 2005.

[14] R. Geraerts and M. H. Overmars. A comparative study of probabilistic roadmap plan-

ners. In Algorithmic Foundations of Robotics V, pages 43–57. Springer, 2004.

[15] L. Groenewegen and E. De Vink. Operational semantics for coordination in paradigm.

In International Conference on Coordination Languages and Models, pages 191–206.

Springer, 2002.

[16] L. Groenewegen and E. De Vink. Evolution on-the-fly with paradigm. In International

Conference on Coordination Languages and Models, pages 97–112. Springer, 2006.

[17] L. Groenewegen, N. van Kampenhout, and E. de Vink. Delegation modeling with

paradigm. In International Conference on Coordination Languages and Models, pages

94–108. Springer, 2005.

[18] R. Hammack, W. Imrich, and S. Klavžar. Handbook of product graphs. CRC press, 2011.

[19] D. Hsu, L. E. Kavraki, J.-C. Latombe, R. Motwani, S. Sorkin, et al. On finding narrow

passages with probabilistic roadmap planners. In Robotics: The Algorithmic Perspective:

1998 Workshop on the Algorithmic Foundations of Robotics, pages 141–154, 1998.

[20] D. Hsu, T. Jiang, J. Reif, and Z. Sun. The bridge test for sampling narrow passages

with probabilistic roadmap planners. In Robotics and Automation, 2003. Proceedings.

ICRA’03. IEEE International Conference on, volume 3, pages 4420–4426. IEEE, 2003.

[21] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps for

path planning in high-dimensional configuration spaces. IEEE transactions on Robotics

and Automation, 12(4):566–580, 1996.

[22] L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer Systems

(TOCS), 5(1):1–11, 1987.

91

[23] J.-C. Latombe. Robot motion planning, volume 124. Springer Science & Business Media,

2012.

[24] S. M. LaValle. Planning algorithms. Cambridge university press, 2006.

[25] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. The International

Journal of Robotics Research, 20(5):378–400, 2001.

[26] M. S. S. B. Luan, Silveira; Renan Q. and associates. Space d*, a path-planning algorithm

for multiple robots in unknown environments. Brazilian Computer Society, 2012.

[27] J.-A. Meyer and D. Filliat. Map-based navigation in mobile robots:: Ii. a review of map-

learning and path-planning strategies. Cognitive Systems Research, 4(4):283–317, 2003.

[28] P. E. Missiuro and N. Roy. Adapting probabilistic roadmaps to handle uncertain maps.

In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006.

ICRA 2006., pages 1261–1267. IEEE, 2006.

[29] C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a

matrix. SIAM review, 20(4):801–836, 1978.

[30] R. M. Murray, Z. Li, S. S. Sastry, and S. S. Sastry. A mathematical introduction to robotic

manipulation. CRC press, 1994.

[31] M. F. Neuts. Probability distributions of phase type. Purdue University. Department of

Statistics, 1974.

[32] M. F. Neuts. Models based on the markovian arrival process. IEICE Transactions on

Communications, 75(12):1255–1265, 1992.

[33] P. A. O’Donnell and T. Lozano-Pérez. Deadlock-free and collision-free coordination of

two robot manipulators. In Proc. of the IEEE International Conference on Robotics &

Automation (ICRA), 1989.

[34] L. E. Parker. Current state of the art in distributed autonomous mobile robotics. In

Distributed Autonomous Robotic Systems 4, pages 3–12. Springer, 2000.

[35] G. L. Peterson. Myths about the mutual exclusion problem. Information Processing

Letters, 12(3):115–116, 1981.

92

[36] J. Protic, M. Tomasevic, and V. Milutinović. Distributed shared memory: Concepts and

systems, volume 21. John Wiley & Sons, 1998.

[37] M. Raynal. Algorithms for mutual exclusion. 1986.

[38] G. Sánchez and J.-C. Latombe. A single-query bi-directional probabilistic roadmap

planner with lazy collision checking. In Robotics Research, pages 403–417. Springer,

2003.

[39] A. Stentz. Optimal and efficient path planning for partially-known environments. In

Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on,

pages 3310–3317. IEEE, 1994.

[40] G. Taubenfeld. Synchronization algorithms and concurrent programming. Pearson Ed-

ucation, 2006.

[41] C.-C. Tsai, H.-C. Huang, and C.-K. Chan. Parallel elite genetic algorithm and its appli-

cation to global path planning for autonomous robot navigation. IEEE Transactions on

Industrial Electronics, 58(10):4813–4821, 2011.

[42] J. Van Den Berg, D. Ferguson, and J. Kuffner. Anytime path planning and replanning in

dynamic environments. In Proceedings 2006 IEEE International Conference on Robotics

and Automation, 2006. ICRA 2006., pages 2366–2371. IEEE, 2006.

[43] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha. Reciprocal n-body collision avoid-

ance. In Robotics research, pages 3–19. Springer, 2011.

[44] S. A. Wilmarth, N. M. Amato, and P. F. Stiller. Maprm: A probabilistic roadmap planner

with sampling on the medial axis of the free space. In Robotics and Automation, 1999.

Proceedings. 1999 IEEE International Conference on, volume 2, pages 1024–1031. IEEE,

1999.

93

