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Abstract

We consider linear secret sharing schemes (LSSS) over a finite field K with the
shares in K. An LSSS with t-adversary and n players is strongly multiplicative if it
has (n− t)-product reconstruction. It is well-known that for strongly multiplicative
LSSS with the secret in K it holds that t ≤ n−1

3 . This bound is sharp, as equality
can be attained using Shamir’s scheme. We show that in fact Shamir’s scheme is
the only strongly multiplicative LSSS with maximal adversary t.

We generalize this result to strongly multiplicative LSSS with the secret in an
extension field L over K of finite degree k. We show that it holds that t ≤ n−2k+1

3 ,
and that equality can be attained using an extension of Shamir’s scheme, where we
take the evaluation point of the secret in L. We also show that this scheme is the
only one that attains maximal t.

We build on earlier work by Mirandola and Zémor from 2015, who showed a
coding-theoretic version of Vosper’s theorem, a classical result from additive com-
binatorics. This theorem states in particular that a linear MDS code C of length n
is Reed-Solomon if the dimension of its Schur square C∗2 satisfies 2 < dimC∗2 =
2 dimC − 1 < n − 1. We discuss whether this theorem also applies to non-MDS
linear codes, and in doing so we provide a slight generalization of the theorem. We
also prove that non-MDS codes C exist with dimC∗2 = 2 dimC − 1 and with C of
arbitrary codimension, using the amalgamated direct sum of codes.

As a second coding-theoretic application of the analogue of Vosper’s theorem, we
show an implication for error-correcting pairs. It was shown by Márquez-Corbella
and Pellikaan in 2016 that existence of a t-error correcting pair for an MDS code
C implies that C is Reed-Solomon. They gave two separate proofs. Besides their
original proof, they gave a second proof that indirectly uses the analogue of Vosper’s
theorem. We show an alternative proof directly from this theorem.

1 Introduction

Secret sharing is the dispersal of secret information over n players, such that each player
gets a share of the information, and together they can use their shares to reconstruct
the secret. The canonical example is Shamir’s secret sharing scheme [Sha79], which
works as follows.

Let K be a publicly-known finite field, and suppose a dealer holds a secret element
s ∈ K. To share the secret among n ≤ |K| players numbered by 1, . . . , n, the dealer
selects a uniformly random polynomial f ∈ K[X] of degree ≤ t such that f(0) = s,
and gives each player i a share xi = f(i). The scheme offers (t + 1)-reconstruction,
which means that a coalition of ≥ t+ 1 players can reconstruct s with their shares. To
accomplish this, they use Lagrange interpolation to find f , and thus the secret s = f(0).
It also offers t-privacy: given at most t shares they jointly do not give information about
s. To see this, fix shares xp1 , . . . , xpt for players p1, . . . , pt, respectively. For every s′ ∈ K
there exists a polynomial f ′ of degree at most t that runs through the points (pj , xpj )
for j = 1, . . . , t and (0, s′), and in fact the number of such polynomials f ′ is the same
for every s′ ∈ K.

We can describe this secret sharing scheme with the following set.

C :=
{

(s, x1, . . . , xn) ∈ Kn+1
∣∣ (x1, . . . , xn) is a vector of shares for the secret s

}
(1)

We have that C ⊆ Kn+1 is a subset, and in fact for Shamir’s scheme it is closed under
K-linear combinations. This makes it a linear code of length n + 1, i.e a K-vector
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subspace of the (n + 1)-dimensional vector space Kn+1. Secret sharing schemes for
which C is linear are called linear secret sharing schemes (LSSS).

For Shamir’s scheme, the code C is called a Reed-Solomon code. Let K[X]≤t denote
the set of all polynomials in K[X] of degree at most t, and for a polynomial f ∈ K[X]≤t
define f(∞) to be the coefficient of Xt. Reed-Solomon codes are those of the following
form {

(y0f(α0), . . . , ynf(αn)) ∈ Kn+1
∣∣ f ∈ K[X]≤t

}
for non-zero y0, . . . , yn ∈ K and distinct α0, . . . , αn ∈ K ∪ {∞}.

Shamir’s scheme is an example of a linear secret sharing scheme (LSSS), where the
elements of C in Equation (1) form a K-vector space. Since the players can reconstruct
the secret, we may also view such a scheme as a K-linear map ψ : C ′ → K, where C ′

is the projection of C onto its last n coordinates. The secret sharing scheme having
r-reconstruction if equivalent to ψ being r-wise determined. The latter means that for
every set of coordinates {b1, . . . , br} ⊆ {1, . . . , n} of size |B| = r we have that ψ(x) = 0
for every x = (x1, . . . , xn) ∈ C ′ with (xb1 , . . . , xbr) = (0, . . . , 0).

Arithmetic secret sharing schemes are LSSS with multiplicative properties. These
properties enable the construction of secure multi-party computation (MPC) protocols.
In MPC, n players each hold pieces of input data for a function, and they wish to
compute the output of this function while keeping the inputs private.

For x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Kn denote the coordinate-wise product by
x∗y = (x1y1, . . . , xnyn). For a K-vector subspace C ⊆ Kn let C∗2 := K〈x∗y

∣∣ x,y ∈ C〉
be the K-linear span of the coordinate-wise products of all pairs of vectors in C. For
B ⊆ {1, . . . , n} a set of coordinates, write πB : Kn → K |B| for the projection map, and
for a vector x ∈ Kn denote its image under πB by xB := πB(x).

Definition 1.1. Let n, t, r be integers with 1 ≤ t < r ≤ n, K be a finite field, and A
be a finite-dimensional non-trivial K-algebra. An (n, t, 2, r)-arithmetic secret sharing
scheme (C,ψ) of A over K is a K-vector subspace C ⊆ Kn and a surjective K-linear
map ψ : C → A, such that we have:

• (t-privacy) For each set of coordinates B ⊆ {1, . . . , n} of size |B| = t, and for each
s ∈ A and y ∈ πB(C), there is some x ∈ C with ψ(x) = s and xB = y.

• ((2, r)-multiplicativity) There is a unique K-linear map ψ : C∗2 → A such that:

1. For each x,y ∈ C we have ψ(x ∗ y) = ψ(x) · ψ(y).

2. ψ is r-wise determined

Given an (n, t, 2, r)-arithmetic secret sharing scheme for K over K, one can con-
struct an MPC protocol secure against a passive adversary, where the players follow
the protocol correctly and the adversary can only observe, and not change, the data
accessible by up to t players. Let f : Kn → Kn be any function, and suppose each
player pi holds input xi to the function, and wishes to learn the output yi, where
(y1, . . . , yn) = f(x1, . . . , xn). Assume each pair of players have a private communication
channel. It is now possible to construct a protocol that allows each player to learn their
desired output, and such that any adversary that can see the inputs and outputs xi, yi
of up to t players, learns nothing other than what can be computed from just these
values [CDN15].

Secret sharing with an arithmetic secret sharing works as follows. When a dealer
wants to share a secret s ∈ A in this arithmetic secret sharing scheme, he or she selects a

3



uniformly random preimage x from ψ−1(s), and distribute each coordinate xi to player
i. We see that this scheme offers t-privacy as follows. Fix t shares (ypi)

t
i=1 for players

p1, . . . , pt. Then for every secret s ∈ A there is at least one matching codeword x ∈ C
with xB = (yb)b∈B and ψ(x) = s. In particular by linearity of ψ the number of such
matching codewords is the same for each s ∈ A. ψ being r-wise determined ensures
that given r coordinates of a vector x ∈ C∗d its image under ψ is uniquely determined.
If y ∈ C∗d is any vector with xB = yB, then ψ(y − x) = 0 so ψ(x) = ψ(y).

Shamir’s scheme as defined above gives an (n, t, 2, n)-arithmetic secret sharing scheme
if t < n

2 . Let s, s′ ∈ K be secrets with associated polynomials f, g ∈ K[X]≤t, f(0) =
s, g(0) = s′, and xi = f(i), yi = g(i) be the corresponding shares. We have (2t + 1)-
reconstruction for the product ss′, since fg is a polynomial of degree at most 2t. By
linearity this guarantees (2, 2t+ 1)-multiplicativity.

As in Equation (1), for an arithmetic secret sharing scheme (C,ψ) we have a K-
vector subspace

C̃ :=
{

(ψ(x),x)
∣∣ x ∈ C

}
⊆ A×Kn

Recall that for A = K we had that Shamir’s scheme was given by a Reed-Solomon code.
We will phrase this more precisely in the context of arithmetic secret sharing schemes.

Definition 1.2. Let K be a finite field. We say an arithmetic secret sharing scheme
(C,ψ) for K over K is given by Shamir’s scheme if C̃ is a Reed-Solomon code.

The older notion of a strongly multiplicative LSSS (see e.g. [CDM00]) is equivalent
to an (n, t, 2, r)-arithmetic secret sharing scheme with r ≤ n− t. This condition enables
the construction of an MPC protocol robust against active adversaries, i.e. adversaries
that can fully control the behaviour of up to t players, including changing the data sent
by these players. In this protocol, an adversary is detected with probability 1 if they
try to cheat.

It is easy to see that if r ≤ n− t, we have

t ≤ n− 1

3
.

If there is (2, n− t)-multiplicativity and t-privacy, we can show there is also (1, n− 2t)-
multiplicativity, as follows. Let B ⊆ {1, . . . , n} be a set of coordinates of size |B| =
n− 2t. If x ∈ C with xB = 0, by t-privacy there is some y ∈ C with ψ(y) = 1 and such
that y has t zeroes in coordinates in the complement of B. Then x ∗y has n− t zeroes,
so 0 = ψ(x ∗ y) = ψ(x)ψ(y) = ψ(x). This shows B is a reconstructing set for (C,ψ),
and thus we have shown (1, n − 2t)-multiplicativity. It then follows that t < n − 2t,
hence t ≤ n−1

3 .
It is well-known that we can get equality in this bound using Shamir’s scheme. Our

main result is that the converse holds has well, specifically that (n, t, 2, n− t)-arithmetic
secret sharing schemes of K over K that have a maximal adversary parameter t must
be given by Shamir’s scheme.

Theorem 1.3. Let t ≥ 1 be an integer. Then any (3t+ 1, t, 2, 2t+ 1)-arithmetic secret
sharing scheme of K over K is given by Shamir’s scheme.

Let K ⊆ L be an extension of finite fields of degree k. If we now regard an arithmetic
secret sharing scheme of L over K, a similar claim holds. In Shamir’s scheme we can
also take the evaluation point of the secret in L [Che+08]. This scheme has t-privacy
and (t + k)-reconstruction, so it is no longer threshold if k > 1. The associated vector
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space C̃ ⊆ L × Kn is not a linear code in the proper sense. We can still realize it as
what we call an extension field Reed-Solomon code, that is C̃ is of the form{

(y0f(α0), y1f(α1), . . . , ynf(αn))
∣∣ f ∈ K[X]<k+t

}
where we allow y0, α0 to lie in the extension field L, and the other yi, αi ∈ K as before.

Definition 1.4. Let K ⊆ L be an extension of finite fields. We say an arithmetic secret
sharing scheme (C,ψ) for L over K is given by Shamir’s scheme if C̃ is extension field
Reed-Solomon.

For (n, t, 2, n− t)-arithmetic secret sharing schemes of L over K, we will show that

t ≤ n− 2k + 1

3
(2)

Shamir’s scheme is the only arithmetic secret sharing scheme that attains equality
in this bound.

Theorem 1.5. Let t ≥ 1 be an integer, and let K ⊆ L be an extension of finite fields
of degree k. Then any (3t + 2k − 1, t, 2, 2t + 2k − 1)-arithmetic secret sharing scheme
for L over K is given by Shamir’s scheme.

To prove these results, we use a theorem inspired by the field of additive combina-
torics. Additive combinatorics is a relatively modern field that takes ideas from number
theory, harmonic analysis, ergodic theory and combinatorics. Recently various appli-
cations of additive combinatorics to cryptography have surfaced, which is interesting
given that they come from a different background than the fields with more established
applications to cryptography like for instance elliptic curves, coding theory and lattices.

A concise definition of the field of additive combinatorics can be hard to capture
[Gre09]. Generally, additive combinatorics studies the additive structure of sets. The
central objects of interest are additive sets (A,Z), where A ⊆ Z is a finite non-empty
subset of an abelian group Z. Additive sets are in general not additively closed – in
fact, it is this lack of algebraic structure that is central in the study of these objects.
Often, this additive set is referred to as simply A; Z is known as the ambient group.

Additive sets in the same ambient group can be added together and subtracted
from each other. If A,B ⊆ Z are additive sets (i.e. finite non-empty subsets), then their
sumset and difference set are, respectively,

A+B := {a+ b
∣∣ a ∈ A, b ∈ B} and A−B := {a− b

∣∣ a ∈ A, b ∈ B}
One can study the cardinalities of these constructions. For example, trivial estimates

include max{|A|, |B|} ≤ |A + B| ≤ |A||B|. Sets with a small doubling constant |A+A||A|
have different structural properties from those with large doubling constants. Note that
1 ≤ |A+A||A| , with equality if and only if A is a subgroup.

Generally, one does not assume special structural properties about the additive
sets other than their additive structure (for example, when regarding subsets A of the
integers Z, one would not generally make statements about the number of odd or prime
integers contained in A), but specific ambient groups may be considered. For example,
the following theorem known as the Cauchy-Davenport inequality is one of the classical
cornerstones of additive combinatorics, and concerns the cyclic group Zp (= Z/pZ) as
ambient group:
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Theorem 1.6 (Cauchy-Davenport inequality). Let p be a prime, and let A,B ⊆ Zp be
two additive sets. Then

|A+B| ≥ min{p, |A|+ |B| − 1}

The name stems from the original discovery by Cauchy in 1813 [Cau13], and the
later rediscovery by Davenport in 1935 [Dav35]. A partial converse of this theorem
is Vosper’s theorem [Vos56b], which examines the subsets that satisfy equality in the
theorem. In this thesis, we will examine a linear version of Vosper’s theorem and its
applications to cryptography.

Applications of additive combinatorics to cryptography come from various directions.
Often a construction is proven secure for certain asymptotic bounds on the parameters.
For instance, Aggarwal, Dodis and Lovett published an efficient construction for non-
malleable codes in the split-state model, where the size of the encoded message is Õ((k+
log 1/ε)7) for a message of k bits and ε-non malleability [ADL14]. They prove correctness
using a result by Sanders [San10], that proves a weakened version of the Polynomial
Freiman-Ruzsa conjecture [TV09, Conjecture 5.34]. Should the Polynomial Freiman-
Ruzsa conjecture hold, then their construction is secure for an encoding of size Õ((k +
log 1/ε)2). Lipmaa used a result by Elkin [Elk11] on progression-free sets to prove secure
parameters for their novel construction of a non-interactive zero knowledge scheme
[Lip12]. See [Bib13] for an overview on the use of additive combinatorics in cryptography
and theoretical computer science.

One can also use additive combinatorics to prove structural results. One approach
is to apply the proof techniques used in additive combinatorics to derive claims for
structures other than additive sets. This thesis will examine a result by Mirandola and
Zémor, who obtained an analogue of Vosper’s theorem for linear codes [MZ15]. We will
apply this result to cryptography, in particular to arithmetic secret sharing schemes as
we have seen, and also to error correcting pairs.

Let x ∈ Kn+1 be a vector. We define its weight w(x) as the number of non-zero
coordinates, thus we have 0 ≤ w(x) ≤ n + 1. The minimum distance for a linear code
C is the minimum weight of its non-zero vectors dmin(C) = minx∈C\{0}w(x). We recall
the Singleton bound [Sin64], which states that for a linear code C of length ` we have

dimC + dmin(C) ≤ `+ 1

Linear codes that satisfy equality in this bound are called maximum distance separable,
or MDS for short. Examples of MDS codes are Reed-Solomon codes, the [n, 1]-repeated
code C = {(x, . . . , x) ⊆ Kn

∣∣ x ∈ K} and the trivial code Kn. In general, linear MDS
codes of length n and dimension k correspond to n-arcs in the projective space Pk−1(K)
[BTB88].

Error-correcting pairs were introduced independently by Pellikaan [Pel92] and Kötter
[Köt92], and provide a condition for the existence of an efficient decoding algorithm. In
[MP16], Márquez-Corbella and Pellikaan gave two separate proofs, an independent one
and one based on [MZ15], that the existence of a t-error correcting pair for an MDS code
C implies that C is a Reed-Solomon code. We present a more straightforward version
of their second proof, which exposes the underlying theorem of [MZ15] more clearly.

This thesis is organized as follows. Section 2 introduces the concepts and notation
we will use in the thesis, most notably general coding theory, the product of codes,
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and Reed-Solomon codes. In Section 3 we give a general definition of arithmetic se-
cret sharing schemes using a codex, and we shall derive some of its coding-theoretic
properties.

Section 4 introduces the linear version of Vosper’s theorem, that pertains to linear
MDS codes. We reflect on the necessity of the MDS condition, and prove that there
exist non-MDS codes which satisfy the dimension constraint in the theorem using the
amalgamated direct sum construction. In Section 5 we give an implication for error-
correcting pairs.

In Section 6 we will prove our main results Theorems 1.3 and 1.5. Section 7 discusses
a further generalization to generalized codes, in which every coordinate (not just the
secret) is in some extension field of the base field over which the code is defined. We
conclude with a discussion of the achieved results and possible further work in Section 8.

2 Notation and preliminaries

Let Fq denote the finite field with q elements. For a positive integer n, we write the
direct sum of n copies of Fq as Fnq . It is a vector space over Fq of dimension n. We write
F∗q := Fq \ {0}.

For a positive integer n we will write [n] := {1, 2, . . . , n}. Vectors, and hence code-
words, are denoted in boldface, e.g. x. Unless otherwise specified, we will index co-
ordinates by elements from [n], and we use the convention of referring to a vector’s
coordinates by subscript indices, so x = (x1, . . . , xn).

The support of a vector x is the set of coordinates on which it has a non-zero entry,
i.e. supp(x) := {i

∣∣ xi 6= 0} ⊆ [n]. The weight w(x) of a vector is the cardinality of its
support, i.e. the number of non-zero coordinates. The support of a set of vectors S is
the union of the support of its codewords; S is said to have full support if supp(S) =⋃

x∈S supp(x) = [n].
A linear code C of length n is a finite-dimensional Fq-vector subspace of Fnq . We

will call its elements codewords. The dimension of C as an Fq-vector space is denoted
dimFq(C). We will omit the field Fq in this expression when it is obvious. The minimum
distance dmin(C) is the minimum weight of all non-zero codewords in C, or n + 1 if
C = {0}. Since C is a linear space, the zero vector 0 = (0, . . . , 0) is always in C.

Since linear codes are just finite-dimensional vector spaces, they also have bases. It
is customary to write codewords as 1 × n row vectors. Then, if {g1, . . . ,gk} are row
vectors that form a basis for the linear code C ⊆ Fnq , then the k × n matrixg1

...
gk


is called a generator matrix for C. We have C = {xC

∣∣ x ∈ Fkq}.
Every code C ⊆ Fnq also has a dual code C⊥ ⊆ Fnq with respect to the standard inner

product 〈x,y〉 =
∑n

i=1 xiyi. That is,

C⊥ :=
{
y ∈ Fnq

∣∣ 〈x,y〉 = 0 for each x ∈ C
}
.

A code C is self-dual if C = C⊥. The dual distance of C is defined as d⊥(C) :=
dmin(C⊥).

We recall the definition of MDS codes from the introduction. In particular a linear
MDS code has full support. We have the following equivalences for MDS codes.
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Proposition 2.1. Let C ⊆ Fnq be a linear code. Then the following are equivalent:

1. C is MDS

2. If G is a generator matrix for C, then every set of dimC columns of G are linearly
independent

3. Every systematic generator matrix for C has all rows of weight n+ 1− dimC

Proof. For the equivalence of 1 and 2, see [LX04, Theorem 5.4.5]. For the equivalence
of 1 and 3, see [MZ15, Lemma 4].

Sometimes we wish to lower the length of the code by excluding some of its coordi-
nates. The following notation can be convenient:

Notation. Suppose C ⊆ Fnq is a code, and I ⊆ [n] is a set of coordinates. Then we write
CI := πI(C) for the image of C under the projection map

πI : Fnq → F|I|q
(xi)

n
i=1 7→ (xi)i∈I

This process is known as puncturing and we will call CI a punctured code. If x ∈ C
we will write xI := πI(x) for its image in CI .

Note that the notation for the coordinate sets of punctured codes varies throughout
the literature, where sometimes the coordinates specified are those that are omitted.
We see the punctured code as a projection, and find the chosen notation more suitable
for this purpose.

2.1 Reed-Solomon codes

A special subclass of MDS codes are the Reed-Solomon codes.

Definition 2.2. Let α1, . . . , αn be distinct elements of Fq ∪ {∞}, and write α :=
(α1, . . . , αn). Let y = (y1, . . . , yn) ∈

(
F∗q
)n

. We denote by Fq[X]<k the set of all
polynomials in X with coefficients in Fq and degree strictly less than k. For f ∈ Fq[X]<k
define f(∞) as the coefficient of Xk−1. We write

Ck(α,y) :=
{

(y1f(α1), . . . , ynf(αn))
∣∣ f ∈ Fq[X]<k

}
A (generalized) Reed-Solomon code is a linear code C of the form C = Ck(α,y). We

call α an evaluation point sequence of C and y a scaling vector.

The nomenclature of Reed-Solomon codes varies throughout the literature. The
“generalized” part of the term usually signifies the inclusion of a scaling vector, but
it may also refer to allowing an evaluation point at infinity. We will not make these
distinctions in this thesis, and will just refer to them as Reed-Solomon codes. Note that
we require n ≤ q + 1, since the αi are all distinct.

If we let evα,y denote the evaluation map sending a polynomial f to the vector
(yif(αi))i, Reed-Solomon codes can be seen as the image of evα,y on the set of polyno-
mials Fq[X]<k. This set is an Fq-vector space of dimension k. Since a non-zero polyno-
mial of degree < k has at most k− 1 roots, we have that w(evα,y(f)) ≥ n− (k− 1) for
non-zero f , so dmin(C) = n+ 1− k. This shows all Reed-Solomon codes are MDS.
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Reed-Solomon codes have a generator matrix which is a Vandermonde matrix, except
for the column associated to the evaluation point ∞, and except for scaling of the
columns. We will abuse notation, and still refer to matrices of this form as Vandermonde
matrices. If we suppose α1 =∞ and y1 = · · · = yn = 1, then the following is a generator
matrix for C: 

0 1 1 . . . 1
0 α2 α3 . . . αn
...

...
...

. . .
...

0 αk−22 αk−23 . . . αk−2n

1 αk−12 αk−13 . . . αk−1n


For a given Reed-Solomon code C, its evaluation point sequence is not unique. In

1987, Arne Dür showed in [Dür87] that for a given Reed-Solomon code C, we have that
its set of evaluation point sequences is an orbit of the action of the general linear group

GL(2,Fq) =

{(
a b
c d

) ∣∣ a, b, c, d,∈ Fq; ad− bc 6= 0

}
on (Fq ∪ {∞})n. Here, the evaluation points are interpreted as elements of the projective
line Fq ∪ {∞} = (Fq ∪ {∞}). An element f ∈ GL(2,Fq) acts on an evaluation point
z ∈ Fq ∪ {∞} as

f =

(
a b
c d

)
: z 7→ az + b

cz + d

and its acts coordinate-wise on evaluation point sequences α. Since the action of f ∈
GL(2,Fq) is invariant under multiplication by a scalar λ ∈ F∗q , we can also identify
such a transformation by an element f̄ of the projective linear group PGL(2,Fq), i.e.
GL(2,Fq) modulo equivalence under scalar multiplication. We note that this group is
triply transitive (see e.g. [Dür87]).

Theorem 2.3. Let 2 ≤ k ≤ n − 2 and K be a finite field. Then Ck(α,y) = Ck(β,v)

for α,β ∈ (K ∪ {∞})n and y,v ∈ (K∗)n if and only if there are some f =

(
a b
c d

)
∈

GL(2,K) and λ ∈ K∗ such that for each i we have

βi = f(αi)

vi = λθ(f, αi)
k−1yi

where θ is given by

θ(f, z) =


cz + d if z ∈ K and cz + d 6= 0
ad−bc
−c if z ∈ K and cz + d = 0

c if z =∞ and c 6= 0

a if z =∞ and c = 0

.

Proof. See [Dür87].
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If C ⊆ Kn is a linear code, and K ⊆ L is an extension of finite fields, we may take
the L-linear span L〈C〉 := L〈x

∣∣ x ∈ C〉. The result is a linear code of length n over
L. This construction is also known as an extension of scalars, and it is equivalent to
taking the tensor product C⊗K L. The following two lemmas give results on taking the
extension of scalars of Reed-Solomon codes.

Lemma 2.4. Let K ⊆ L be an extension of finite fields. Let C ⊆ Kn be a linear code,
and L〈C〉 its L-linear span. If L〈C〉 is Reed-Solomon, and if it has a generator matrix
with entries in the base field K, then C is also Reed-Solomon, and it has an evaluation
point sequence α ∈ (K ∪ {∞})n. Furthermore, if D ⊆ Ln is any code which shares
some evaluation point sequence with L〈C〉, then α is also an evaluation point sequence
for D.

Proof. The proof of the first claim can be found in [MP16, Proposition C.3]. Suppose
D ⊆ Ln is any linear code which shares an evaluation point sequence with L〈C〉, i.e. we
have for some β ∈ (L ∪ {∞})n ,x,x′ ∈ (L∗)n that

L〈C〉 = Ck(β,x) = Ck(α,x
′), D = Ck′(β,y)

then there exists some φ ∈ GL(2, L) such that φ(αi) = βi for all i. It follows that
D = Ck′(α,y

′).

Lemma 2.5. Let C ⊆ Kn be a Reed-Solomon code, and suppose α ∈ Kn is an evalu-
ation point sequence for C. Then C⊥ is also a Reed-Solomon code which has α as an
evaluation point sequence.

Proof. See e.g. [JX16, Lemma 2.2].

2.2 The product of codes

Let C,D ⊆ Fnq be codes. Suppose x = (x1, . . . , xn) ∈ C,y = (y1, . . . , yn) ∈ D. Then we
may form a coordinate-wise product

x ∗ y = (x1y1, . . . , xnyn)

Taking the span of all such products, we obtain a new linear code C ∗ D ⊆ Fnq . This
construction is sometimes also known as the Schur product of codes.

If {g1, . . . ,gk} is a basis for C and {h1, . . . ,hl} is a basis for D, then

C ∗D = span〈gi ∗ hj〉

It follows that dimC ∗D ≤ dimC dimD. Note that the set {gi ∗hj}i,j is not a basis in
general as it may be linearly dependent.

The following is an analogue of Theorem 1.6 for linear codes:

Lemma 2.6. Let C,D ⊆ Fnq be linear codes of full support, and suppose at least one of
them is MDS. Then

dimC ∗D ≥ min{n, dimC + dimD − 1}

Proof. See [Ran15].
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For an MDS code C ⊆ Fnq of dimension ≤ n
2 , the lemma implies that

dimC∗2 ≥ 2 dimC − 1.

The codes that provide equality in this bound, i.e. that have dimC∗2 = 2 dimC − 1
are of particular interest to us. We shall introduce terminology and shall refer to these
codes as having a small square. In particular, if C is a self-dual MDS code then it
satisfies this condition. Also, all Reed-Solomon codes have a small square. In fact, they
are the only MDS codes that have a small square, which as we will see later is precisely
the statement of Corollary 4.7.

3 Secret sharing

As we have seen in the introduction, secret sharing is the dispersal of secret information
into multiple shares, such that the original secret can be reconstructed from these shares.
There are various ways to formally define secret sharing. We will now give a general
definition of arithmetic secret sharing schemes using a codex [Cra11; CCX12]. The
notion of a codex is somewhat technical, but it applies well to arithmetic secret sharing.
Recently, other applications of codices have surfaced, e.g. to local decoding of Reed-
Muller codes [CXY16]. The definitions of secret sharing schemes in this section are
taken from [CDN15, Chapters 11–12], and they can be found in more detail there. In
this section K, is a (not necessarily finite) field.

Definition 3.1. Let A be a K-algebra of finite dimension, and let C ⊆ Kn be a linear
code with ψ : C → A a K-linear map. Let B ⊆ [n] be a set of coordinates.

We say B is a privacy set for (C,ψ) if the map

πψ,B : C → A× CB
x 7→ (ψ(x), πB(x))

is surjective.
We say B is a reconstructing set for (C,ψ) if for each z ∈ C with zB = 0 we have

that ψ(z) = 0.

Remark 3.2. By linearity, B being a privacy set is equivalent to the condition that for
any s ∈ A there is some x ∈ C with xB = 0 and ψ(x) = s. B being a privacy set
guarantees that for x ∈ C the image ψ(x) is independent from the B-coordinates xB.

B being a reconstructing set means that for a codeword x ∈ C, the B-coordinates
fully determine ψ(x): if z, z′ ∈ C with zB = z′B then πB(z−z′) = 0, hence ψ(z−z′) = 0
and therefore ψ(z) = ψ(z′).

Write C0↓B := C ∩ kerπB. Then B is a reconstructing set for (C,ψ) if and only if
C0↓B ⊆ kerψ, and B is a privacy set for (C,ψ) if and only if ψ(C0↓B) = L.

Definition 3.3. Let A be a K-algebra, and let d ≥ 1 and 1 ≤ r ≤ n be integers.
Suppose C ⊆ Kn is a linear code, and let ψ : C → A be a K-linear map. Then (C,ψ) is
said to have (d, r)-multiplicativity if there is a unique K-linear map ψ : C∗d → A such
that:

1. for all x1, . . . ,xd ∈ C we have ψ(x1 ∗ . . . ∗ xd) = ψ(x1) · · ·ψ(xd).

2. ψ is r-wise determined, all sets B ⊆ [n] of size |B| = r are reconstructing sets for
(C∗d, ψ).

11



Note that (d, r)-multiplicativity implies (≤ d,≥ r)-multiplicativity under the condi-
tion that A is a unital algebra and that ψ is surjective.

Proposition 3.4. Let A be a unital K-algebra, C ⊆ Kn a linear code, and ψ : C → A
a surjective K-linear map. Suppose we have integers 1 ≤ d′ ≤ d and 1 ≤ r ≤ r′ ≤ n. If
(C,ψ) has (d, r)-multiplicativity then it also has (d′, r′)-multiplicativity.

Proof. Suppose d = d′. Directly from the definition it follows that a map ψ : C → A
that is r-wise determined is also r′-wise determined, hence (d, r′)-multiplicativity is
evident.

We now prove the statement for (d′, r′) = (d − 1, r); the full claim then follows by
induction. Let ψ as in Definition 3.3. ψ is surjective, hence pick xd ∈ C with ψ(xd) = 1.
Define a K-linear map ϑ : C∗d−1 → A as

ϑ(x1 ∗ . . . ∗ xd−1) := ψ(x1 ∗ . . . ∗ xd−1 ∗ xd) = ψ(x1) · · ·ψ(xd−1) · 1.

If B ⊆ [n] is of size |B| = r and x ∈ C∗d−1 is such that xB = 0, then ϑ(x) = ψ(x∗xd) =
0, since (x ∗ xd)B = 0. Uniqueness of ϑ follows from condition 1.

Definition 3.5. Let A be a K-algebra, and let 0 ≤ t < n be integers. Suppose C ⊆ Kn

is a linear code, and let ψ : C → A be a K-linear map. If t = 0, then (C,ψ) is 0-
disconnected by default. If t > 0, (C,ψ) is t-disconnected if for each B ⊆ [n] of size
|B| = t we have that B is a privacy set. If additionally CB = Kt, we say there is
t-disconnection with uniformity.

We can now define a codex.

Definition 3.6. Let A be a finite-dimensional non-trivial K-algebra. Let n, t, d, r be
integers with d ≥ 1 and 0 ≤ t < r ≤ n. An (n, t, d, r)-codex for A over K is a pair (C,ψ)
where C ⊆ Kn is a K-linear subspace and ψ : C → A is a K-linear map such that

1. ψ is surjective

2. (C,ψ) has (d, r)-multiplicativity

3. (C,ψ) has t-disconnection

An arithmetic secret sharing scheme is defined as a codex with some restrictions.

Definition 3.7. Let d ≥ 2, t ≥ 1 be integers and let A be a finite-dimensional non-
trivial Fq-algebra. An arithmetic secret sharing scheme is an (n, t, d, r)-codex for A over
Fq.

A is called the secret space and Fq the share space of the scheme. When a dealer
wants to share a secret s ∈ A in this arithmetic secret sharing scheme, he or she selects a
uniformly random preimage x from ψ−1(s), and distributes each coordinate xi to player
i. A coalition B ⊆ [n] of size |B| ≥ r can reconstruct the secret: since we have (1, r)-
multiplicativity by Proposition 3.4 there is a uniqueK-linear map ψ : C → A compatible
with ψ that is r-wise determined. Therefore, given any r coordinates y ∈ Kr, such that
are there is at least one codeword x ∈ C with xB = y, the secret ψ(x) is well-defined.

Privacy is guaranteed by t-disconnection property, since given a coalition B ⊆ [n] of
size |B| = t and coordinates (yb)b∈B there is for every secret s ∈ A at least one matching
codeword x ∈ C with xB = (yb)b∈B and ψ(x) = s. In particular by linearity of ψ the
number of such matching codewords is the same for each s ∈ A.
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Since a codex is defined in terms of (d, r)-multiplicativity, the reconstruction param-
eter r is linked to the power of the code d. Taking Proposition 3.4 into account, if d > 1
it sometimes makes sense to see C as having different reconstruction parameters rd′ for
every power 1 ≤ d′ ≤ d such that C also has (d′, rd′)-multiplicativity. We shall later see
an example of this, when determining whether C is an MDS code or not. We have the
following lemma for these parameters.

Lemma 3.8. Suppose we are given an (n, t, d, r)-codex for A over K with d ≥ 2. Then
it is also an (n, t, d− 1, r − t)-codex.

Proof. Let (C,ψ) be the (n, t, d, r)-codex. We want to show (d−1, r−t)-multiplicativity.
From Proposition 3.4 we know (C,ψ) has (d − 1, r)-multiplicativity, so we may write
ϑ : C∗d−1 → A for the unique r-wise determined K-linear map from Definition 3.3. We
will show ϑ is (r − t)-wise determined.

Suppose B ⊆ [n] is any coordinate set of size |B| = r − t, and take an arbitrary
x ∈ C∗d−1 with xB = 0. Write ψ : C∗d → A for the unique K-linear map from the
definition of (d, r)-multiplicativity. Let B′ ⊆ [n] \B be any subset of coordinates of size
|B′| = t. By t-disconnection there is some y ∈ C with yB′ = 0 and ψ(y) = 1. Taking
the product x ∗ y we see (x ∗ y)B∪B′ = 0, so

0 = ψ(x ∗ y) = ϑ(x)ψ(y) = ϑ(x)

In fact, if A is a K-algebra of dimension k > 1 which does not have zero-divisors,
we can do even better. We use the following lemma, which gives information on sets
which are neither privacy nor reconstructing.

Lemma 3.9. Let A be a K-algebra of finite K-dimension k, and suppose C ⊆ Kn is a
linear code, and ψ : C → A is a K-linear map such that (C,ψ) has t-disconnection. Let
r be an integer with t ≤ r < t + k. Then any coordinate set B ⊆ [n] of size |B| = r is
not a reconstructing set for (C,ψ).

Proof. Recall the notation C0↓B = C ∩ kerπB from Remark 3.2. Pick a subset B′ ⊆ B
of size |B′| = t. Since there is t-privacy, B′ is a privacy set, so ψ(C0↓B′) = A.

We have that the projection of C0↓B′ onto the coordinate set B \B′ is the K-linear
map

πB\B′
∣∣
C0↓B′

: C0↓B′ → πB\B′(C0↓B′)

which is a surjective map with kernel C0↓B. The dimension of its image at most |B| −
|B′| = r − t < k. Write V := C0↓B,W := C0↓B′ , so dimW − dimV < k.

We have V ⊂ W , and ψ : W → L is a surjective K-linear map. Recall B is a
reconstructing set iff ψ(V ) = 0. Since V,W are finite-dimensional K-vector spaces, we
may take the orthogonal complement V ⊥ in W . We have ψ(W ) = ψ(V ) + ψ(V ⊥) = L,
and dimV ⊥ = dimW−dimV < k hence dimψ(V ⊥) < k and since we have dimψ(W ) =
k we must have ψ(V ) 6= 0, which shows B is not a reconstructing set.

Lemma 3.10. Let A be a non-trivial K-algebra with k := dimK < ∞ which does not
have zero-divisors. Suppose we are given an (n, t, d, r)-codex for A over K with d ≥ 2.
Then it is also an (n, t, d− 1, r − t− k + 1)-codex.
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Proof. Let (C,ψ) be the (n, t, d, r)-codex. We want to show (d − 1, r − t − k + 1)-
multiplicativity. From Proposition 3.4 we know (C,ψ) has (d − 1, r)-multiplicativity,
so we may write ϑ : C∗d−1 → A for the unique r-wise determined K-linear map from
Definition 3.3. We will show ϑ is (r − t− k + 1)-wise determined.

Suppose B ⊆ [n] is any coordinate set of size |B| = r−t−k+1, and take an arbitrary
x ∈ C∗d−1 with xB = 0. Write ψ : C∗d → A for the unique K-linear map from the
definition of (d, r)-multiplicativity. Let B′ ⊆ [n] \ B be any subset of coordinates of
size |B′| = t+ k − 1. By Lemma 3.9 we have that ψ(C0↓B′) 6= 0, hence pick y ∈ C0↓B′

with ψ(y) = s 6= 0. Then πB∪B′(x ∗ y) = 0, hence 0 = ψ(x ∗ y) = ϑ(x)ψ(y), and since
ψ(y) 6= 0 and A does not have zero-divisors, we have ψ(x) = 0.

We can also define a codex in terms of a “generalized code”. The following propo-
sition gives the equivalence.

Proposition 3.11. Let A be a non-trivial K-algebra of finite dimension. Let n, t, d, r
be integers with d ≥ 1 and 0 ≤ t < r ≤ n.

Suppose (C,ψ) is an (n, t, d, r)-codex for A over K. Then there is a K-vector sub-
space C̃ ⊆ A×Kn with coordinates indexed by {0, 1, . . . , n}, given by

C̃ :=
{

(ψ(x),x)
∣∣ x ∈ C

}
such that:

1. π0(C̃) = A

2. If t > 0, then for each subset of coordinates B ⊆ [n] of size |B| = t and for each
a ∈ A there is some x̃ ∈ C̃ with x̃B = 0 and x̃0 = a.

3. For each subset of coordinates B ⊆ [n] of size |B| = r and for each z ∈ C̃∗d with
zB = 0, it holds that z̃0 = 0.

Conversely, given such a K-vector subspace C̃ ⊆ A×Kn of the form C̃ = {(ψ(x),x)
∣∣ x ∈

C} for a K-linear map ψ : C → A and a code C ⊆ Kn that satisfies the three conditions,
we have that (C,ψ) is an (n, t, d, r)-codex.

Proof. The forward direction follows directly from the definitions of a codex. For the
converse, see [CDN15].

The object C̃ ⊆ A × Kn is generally not a code, since the first coordinate does
not reside in the field K. However, some terminology from coding theory still applies,
and we will refer to C̃ as a generalized code, i.e. a K-linear subspace of a product of
K-algebras indexed by 0, 1, . . . , n, so that we still have some sense of coordinates. Since
it is a vector space, the K-dimension dimK C̃ is well-defined. Because of property 3, ψ
is surjective, hence we have

dimK C̃ = dimK C (3)

Since Proposition 3.11 gives an equivalent definition of a codex in terms of a gen-
eralized code, we will abuse notation slightly and we will also refer to C̃ ⊆ A ×Kn as
a codex. Of particular interest will be codices where A is a finite extension field of the
finite base field K.

One other case of a generalized code that will be relevant later, is what we will call
an extension field code.
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Definition 3.12. Let K be a finite field, and let n be an integer. For each i = 1, . . . , n,
let K(ηi) be a finite field extension of K. An extension field code is a K-linear subspace
C ⊆

⊕n
i=1K(ηi).

An example of an extension field code, we define an extension field Reed-Solomon
code.

Definition 3.13. Let K be a finite field and let C ⊆
⊕n

i=1K(ηi) be an extension field
code. We say C is extension field Reed-Solomon if it is of the form

C = Ck(α,y) = {(y1f(α1), . . . , ynf(αn))
∣∣ f ∈ K[X]<k}

for a positive integer k < n, and for each i we have αi ∈ K(ηi) ∪ {∞}, yi ∈ K(ηi)
∗ such

that the αi are all distinct in compositum K(η1, . . . , ηn) ∪ {∞}.

The parameters r and t of an (n, t, d, r)-arithmetic secret sharing scheme (C,ψ) over
Fq are closely related to the dimensions dimC∗k, k ≥ 1 of C and its powers as an Fq-
vector space. This allows us to use theory for the dimensions of these (product) spaces
as a way to deduce claims on the parameters.

Lemma 3.14. Let (C,ψ) be an (n, t, d, r)-arithmetic secret sharing scheme for A over
Fq. Then

dimC ≥ t+ dimA (4)

dimC∗d ≤ r (5)

Proof. Suppose l := dimC. Let G be a generator matrix for C. After possibly renum-
bering coordinates, we may suppose G is in systematic form G = (I X). We project C
down onto the first t coordinates, which is generated by either a part of I if t ≤ l, or by
I and a part of X if t ≥ l. By t-disconnection we have that

πψ,[l] : C → A× π[t](C)

is a surjective K-linear map, hence

l = dimC ≥ dimA+ dimπ[t](C) = dimA+ min{t, l} > min{t, l}

which leads to a contradiction if min{t, l} = l. Therefore t < l and l ≥ dimA+ t.
For Equation (5), suppose that dimC∗d > r. In a similar manner as before, we look

at the generator matrix G of C∗d in systematic form (I X), possibly after renumbering
coordinates. Since A is non-trivial and ψ is surjective, we have that the unique linear
map ψ : C∗d → A satisfying Definition 3.5 is non-zero, hence there is at least one basis
vector, say gr+1, whose image satisfies ψ(gr+1) 6= 0. Now, projecting gr+1 onto the first
[r] coordinates we get π[r](gr+1) = 0 yet ψ(gr+1) 6= 0, contradicting that ψ is r-wise
determined.

The condition of a codex C̃ ⊆ K ×Kn being MDS can be phrased in terms of its
parameters.

Proposition 3.15. Let (C,ψ) be an (n, t, 1, t+ 1)-codex for K over K. Then C̃ is an
MDS code. In particular, so is C. Conversely, given an MDS code C̃ of dimension t+1,
C̃ is a codex in the sense of Proposition 3.11.
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Proof. dimC = t+ 1 by Lemma 3.14.
Let G = (I A) be a systematic generator matrix of C̃, where a1, . . . ,at+1 ∈ Kn−t

are the rows of A. We want to show that A does not contain any zero entries; then G
satisfies condition 3 of Proposition 2.1 and it follows that it is MDS. The first row of G
is of the form

g1 = (1, 0, 0, . . . , 0,a1)

Since ψ is (t + 1)-wise determined, if any entry in a1 would be 0, then g11 = 0, which
is not the case. Hence w(g1) = 1 + n− t.

For i > 1 we have the i-th row of G of the form

gi = (0, . . . , 1, . . . , 0,ai)

Suppose one entry of ai is zero, say at C-coordinate j ∈ [n]. Let B := {1, 2, . . . , i −
1, i+ 1, . . . , t− 1, t, j}. Since we have t-disconnection, we know that there is an x ∈ C
with ψ(x) = 1 and xB = 0.

We may write x = c1(g1)[n] + · · · + ct+1(gt+1)[n]. Since ψ(x) = 1 we have c1 = 1.
We know g1j 6= 0 and gij = 0, so we need cm 6= 0 for some index m ∈ [t] \ {j}. But
since xm = 0, we also need cm = 0, leading to a contradiction. Hence each entry of ai
non-zero, hence C is MDS by Proposition 2.1. Since dimC = dim C̃, the projection C
is also MDS.

Conversely, suppose we are given an MDS code C̃ ⊆ Kn+1 indexed by 0, 1, . . . , n
of dimension t + 1 ≤ n, then it satisfies the conditions of Proposition 3.11. Condition
1 follows since an MDS code has full support. Conditions 2 and 3 follow from the
minimum distance of C being dmin(C) = n + 2 − (t + 1) = n + 1 − t – so a codeword
x ∈ C that has ≥ t+ 1 zeroes must be the zero vector 0.

Theorem 3.16. Let K ⊆ L be an extension of finite fields of degree k. Suppose we
have an (n, t, 2, n− t)-arithmetic secret sharing scheme for L over K. Then we have

t ≤ n− 2k + 1

3

Proof. Let (C,ψ) denote the secret sharing scheme with ψ : C∗2 → L the K-linear map
for (2, n− t)-multiplicativity. Let B ⊆ [n] be a set of size n− 2t− k + 1. We will show
B is a reconstructing set.

Let x ∈ C with xB = 0. Pick B′ ⊆ [n] \B of size t+ k − 1. By Lemma 3.9 we have
that ψ(C0↓B′) 6= 0, hence pick y ∈ C0↓B′ with ψ(y) = s 6= 0. Then πB∪B′(x ∗ y) = 0,
hence 0 = ψ(x ∗ y) = ψ(x)ψ(y), and since ψ(y) 6= 0 we have ψ(x) = 0.

So ψ is (n−2t−k+1)-wise determined, and since t+k ≤ n−2t−k+1 by Lemma 3.14
we have

3t ≤ n− 2k + 1

4 Vosper’s theorem for codes

Vosper’s theorem gives a partial converse of Theorem 1.6, saying the subsets that satisfy
equality in the theorem are what are called arithmetic progressions:
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Definition 4.1. Let a, d be elements of an abelian group Z, and let k be a positive
integer. An arithmetic progression in Z of length k is a set

{a, a+ d, a+ 2d, . . . , a+ (k − 1)d}

Here d is called the step of the progression.

Theorem 4.2 (Vosper’s theorem). Let p be a prime, and let A,B be subsets of the
abelian group Zp, with |A|, |B| ≥ 2 and |A+B| ≤ p− 2. Then |A+B| = |A|+ |B| − 1
if and only if A and B are arithmetic progressions with the same step.

There are several known ways to prove the theorem. Vosper originally proved the
theorem [Vos56b] using another transform called the Davenport transform. Later he
published an addendum giving a simpler proof based on the e-transform [Vos56a]. In
2006, Rødseth gave an even shorter proof of the theorem [Rød06] using the Davenport
transform.

In 2015, Bachoc, Serra and Zémor proved a linear version of Vosper’s theorem in
the setting of field extensions [BSZ15]. Also in 2015, Mirandola and Zémor published a
linear version of Vosper’s theorem applied to linear codes [MZ15]. We will focus on the
latter result. Here, the role of arithmetic progressions in the classical setting is taken
on by Reed-Solomon codes.

Theorem 4.3. Let C,D ⊆ Fnq be MDS codes, with dimC,dimD ≥ 2 and dimC ∗D ≤
n− 2. If

dimC ∗D = dimC + dimD − 1

then C and D are Reed-Solomon codes with a common evaluation point sequence.

Proof. See [MZ15].

Remark 4.4. The common evaluation point sequence in the theorem refers to that there
is some α ∈ (Fq ∪ {∞})n that is an evaluation point sequence for both C and D. By
Theorem 2.3 this means that also for every β ∈ (Fq ∪{∞})n that is an evaluation point
sequence for C, we have that β is an evaluation point sequence for D, and vice versa.

Note that while Theorem 4.2 concerns arbitrary subsets of Zp, Theorem 4.3 is re-
stricted to the subclass of MDS codes, but it does not put restrictions on the ambient
space.

Using the proofs in [MZ15], the restriction of the codes being MDS is hard to remove.
We can slightly generalize Theorem 4.3 by relaxing the Reed-Solomon condition to
include codes with non-distinct evaluation point sequences. The proof of Theorem 4.3
relies on [MZ15, Lemma 26], which also holds in the following form (with the MDS
condition removed):

Lemma 4.5. Let C,D ⊆ Fnq be full-support codes of dimension k and l, respectively,
with

dimC ∗D = k + l − 1

Let I ⊆ [n] be a coordinate set with |I| ≥ k + l − 1 such that projecting C,D on it does
not change the dimension, i.e.

dimCI = dimC = k

dimDI = dimD = l

If CI , DI are Reed-Solomon codes with a common evaluation point sequence then C,D
are Reed-Solomon codes with a common evaluation point sequence.
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Proof. The proof from [MZ15, Lemma 26] works – the MDS condition there is not needed
and is replaced by the condition that puncturing does not change the dimension.

The following theorem then gives a slight generalization of Theorem 4.3:

Theorem 4.6. Let C,D ⊆ Fnq be full-support codes of dimension k and `, respectively,
with k, ` ≥ 2. Let I ⊆ [n] be a coordinate set such that |I| ≥ k + `+ 1 and assume that
the punctured codes CI , DI ⊆ F |I| are MDS and of dimension k and l, respectively. If
furthermore

n− 2 ≥ dimC ∗D = k + `− 1

then C and D are Reed-Solomon codes (allowing repeated coordinates, though at least
|I| distinct coordinates) with a common evaluation point sequence.

Proof. We apply Theorem 4.3 to CI , DI . Then we use Lemma 4.5.

The case for C = D in Theorem 4.3 is interesting in its own right. In Section 6 we
will mostly use this restriction of the theorem:

Corollary 4.7. Let C ⊆ Fnq be a linear MDS code, with dimC ≤ n−1
2 . Then C is

Reed-Solomon if and only if C has a small square, i.e. dimC∗2 = 2 dimC − 1.

Remark 4.8. Note that if dimC ≥ n+1
2 , then by Lemma 2.6 we have that C∗2 is the

full space, hence dimC∗2 does not yield information about whether C is Reed-Solomon.
However, by Lemma 2.5 we can apply Corollary 4.7 to C⊥. In the remaining case, where
C is an MDS code of dimension dimC = n

2 and C has a small square, C is actually not
necessarily Reed-Solomon, see [MZ15, Remark 28].

A natural question would be to ask whether there can be non-MDS codes with a
small square. The answer is affirmative. We can prove the following result.

Theorem 4.9. For any finite field Fq and integer ` ≥ 1 there exists a code C ⊆ Fnq , for
some integer n (which in general depends on `), such that:

1. C has a small square

2. C is not MDS

3. C∗2 has codimension `, i.e. dimC∗2 = n− `

To prove this, we use the amalgamated direct sum (cf. [Coh+97, p. 89]) of two
linear codes.

Definition 4.10. Let C,D be linear codes over a finite field Fq whose support includes
the last, respectively first, coordinate. Then their amalgamated direct sum (ADS) is

C⊕̇D = {(x, a,y)
∣∣ a ∈ Fq, (x, a) ∈ C, (a,y) ∈ D}

Proposition 4.11. We have:

length(C⊕̇D) = length(C) + length(D)− 1

dim(C⊕̇D) = dim(C) + dim(D)− 1 (6)

min{dmin(C),dmin(D)} ≤ dmin(C⊕̇D) ≤ dmin(C) + dmin(D)− 1 (7)
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Proof. The first equation is trivial. Equation (6) follows by looking at the linear map
C ⊕D → Fq that sends (x,y) to xnC − y1, where nC = length(C) is the index of the
last coordinate in C. Its kernel is C⊕̇D, and if the last and first coordinates are in their
respective supports, then the image has dimension 1.

We see that Equation (7) holds by noting that if (x, a,y) ∈ C⊕̇D is a non-zero
codeword of minimum weight, then assuming without loss of generality that (x, a) 6= 0,
we have w(x, a,y) ≥ w(x, a) ≥ dmin(C). It is sharp in the general case: if (x, 0) ∈ C is
a non-zero codeword of minimal weight then (x, 0, 0) ∈ C⊕̇D is a codeword of the same
weight.

For the upper bound, take (x, a) ∈ C and (b,y) ∈ D of minimal weight. If a = 0
then (x, a, 0) ∈ C⊕̇D so the upper bound is satisfied, and similarly for b = 0. If
a 6= 0 6= b then ab−1(b,y) = (a, ab−1y) is a codeword of identical weight to (b,y), so
w(x, a, ab−1y) = w(x, a)+w(b,y)−1 = dmin(C)+dmin(D)−1. In particular, the bound
is sharp if a, b are never zero for non-zero codewords.

Remark 4.12. This also shows that if dmin(C) ≤ dmin(D) and (x, 0) ∈ C is a codeword of
minimal weight then dmin(C⊕̇D) = dmin(C). If C is MDS then we can always guarantee
such a codeword. In particular C⊕̇D is never MDS, except in the case where both C

and D are the trivial spaces Fdim(C)
q ,Fdim(D)

q , respectively.
Suppose C⊕̇D is MDS. Then each collection of dimC + dimD − 1 columns of its

generator matrix (see (8) below) must be linearly independent by Proposition 2.1. So
this must also hold for collections of columns of the generator matrices of C and D.
Hence C and D must also be MDS. Consider the Singleton bound for C⊕̇D, then

dim(C) + dim(D)− 1 + dmin(C) = length(C) + 1 + dim(D)− 1 = length(C) + dim(D)

which would be equal to length(C) + length(D) − 1 + 1 so dim(D) = length(D). This
implies 1 = dmin(D) ≥ dmin(C), hence dmin(C) = 1, so C and D are both trivial.

For codes that have a small square we can give precise expressions for the dimension
of the square of their amalgamated direct sums.

Proposition 4.13. Let C,D be two linear codes with a small square. Then C⊕̇D
(assuming it is defined) also has a small square.

Proof. Without loss of generality, assume C has generator matrix (A I) and D has
generator matrix (I B). Here I denotes an identity matrix of suitable size. Let kC , kD
denote the respective dimensions. Then C⊕̇D has generator matrix

A

1
. . .

1
0 . . . 0 1 0 0 0

B
1

. . .

1


(8)

where we note the kC-th row contains both the last row of A and the first row of B.
Taking the square we get a code that is generated by the coordinate-wise products

of pairs of rows and therefore has the following “generator matrix” – in the sense that
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the rows span the code but are not in general linearly independent: ∗ I ∗
A∗̇A O O
O O B∗̇B


Here O denotes a zero matrix of suitable size, and we take A∗̇A to mean the k(k − 1)
coordinate-wise products of distinct rows of A. Since C has a small square we know
that its square, which has unreduced generator matrix(

∗ I
A∗̇A O

)
must satisfy rankA∗̇A = kC − 1, and an analogous constraint holds for B. We conclude
that

dim
((
C⊕̇D

)∗2)
= (kC + kD − 1) + (kC − 1) + (kD − 1) = 2 (kC + kD)− 1.

Proof of Theorem 4.9. If C is a [2k, k] code with a small square, then its square has
codimension 1. Such is the case, for example, for a self-dual code that has a row of
weight k+ 1 in its systematic generator matrix, because then A has a row of non-zeroes
in the notation of the previous proposition, hence rankA∗̇A ≥ k − 1, but since C is
self-dual we have (1, . . . , 1) ∈ (C∗2)⊥, so dimC∗2 ≤ 2k − 1. We can also take C to be a
Reed-Solomon code, which is guaranteed to exist for any Fq, k.

Taking two such codes C,D of respective dimensions kC , kD we have that their
amalgamated direct sum C⊕̇D (if it is defined) has a small square, hence has a square
of dimension 2(kC + kD − 1)− 1 = n− 2 (where n = nC + nD − 1 = 2kC + 2kD − 1), so
its square has codimension 2. We can repeat this construction: if for each 1 ≤ i ≤ ` we
have Ci a linear [2ki, ki] code with a small square with both first and last coordinate in
its support (unless i = 1, ` then we only need the last, respectively first, coordinate in
its support), then

C1⊕̇C2⊕̇ . . . ⊕̇C` = (. . . ((C1⊕̇C2)⊕̇C3)⊕̇ . . . )⊕̇C`

is a non-MDS code with a small square with its square of codimension `.

5 Implications for error-correcting pairs

In this section, we give an application of Theorem 4.3 for error correcting pairs. This
notion was introduced independently by Pellikaan [Pel92] and Kötter [Köt92], and pro-
vides a condition for the existence of an efficient decoding algorithm. More precisely, if
a code has a t-error correcting pair then there is a decoding algorithm with complexity
O(n3) that corrects up to t errors for a code of length n.

Márquez-Corbella and Pellikaan showed in [MP16] that the existence of a t-error
correcting pair for an MDS code C implies that C is a Reed-Solomon code. They gave
two separate proofs. Besides their original proof, they gave a second proof that uses
critical pairs of the Product Singleton bound from [MZ15]. We will present a more
straightforward proof which uses Theorem 4.3 directly.

The definition of an error correcting pair is somewhat technical. We will not use
it directly, but instead refer to two results from [Pel96]. We present it for sake of
completeness.
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Definition 5.1. Let C ⊆ Fnq be a code, and let t be an integer. Suppose A,B ⊆ Fn
qk

are codes over a finite extension field of Fq. Then (A,B) is a t-error correcting pair for
C if the following four properties hold:

1. (A ∗B) ⊥ C

2. dimA > t

3. d⊥(B) > t

4. dmin(A) + dmin(C) > n

The result from [MP16] is the following:

Theorem 5.2. Let 2 ≤ t < n
2 be an integer. Let C ⊆ Fnq be an MDS code of dimension

n−2t that has a t-error correcting pair (A,B) over a finite extension Fqk . Then A,B,C
are Reed-Solomon codes with a common evaluation point sequence.

For the proof, we use two results from [Pel96]:

Proposition 5.3. If C ⊆ Fnq is an MDS code of dimension n − 2t, and (A,B) is a
t-error correcting pair for C, then A is an MDS code of dimension t+ 1.

Proof. [Pel96, Proposition 2.5]

Proposition 5.4. If C ⊆ Fnq has a t-error correcting pair (A,B) over Fqk and qk >
max1≤i≤t

(
n
i

)
, there exists a subcode Bt ⊆ B which is MDS and of dimension t, such

that (A,Bt) is a t-error correcting pair for C.

Proof. [Pel96, Corollary 5.4]

We can now prove the theorem.

Proof of Theorem 5.2. By Propositions 5.3 and 5.4, A is an MDS code of dimension
t+ 1 and there is an MDS subcode Bt ⊆ B of dimension t, passing to a larger extension
field if necessary. By Lemma 2.6 we get

2t ≤ dimA ∗Bt ≤ dimA ∗B ≤ dim(Fqk ⊗ C)⊥ = 2t

hence A∗Bt = A∗B = (Fqk⊗C)⊥. Applying Theorem 4.3 we get that A,B, and (Fqk⊗
C)⊥ are Reed-Solomon codes with a common evaluation point sequence, and we also
see B = Bt. The result now follows from Lemmas 2.4 and 2.5.

6 Implications for secret sharing

In this section, we will prove our main results Theorem 1.3 and Theorem 1.5, using
Theorem 4.3. In fact, we will be mostly using Corollary 4.7 which looks at the square
of codes (i.e. C = D in Theorem 4.3). We will now prove Theorem 1.3.

We recall Theorem 1.3:

Theorem 1.3. Let t ≥ 1 be an integer. Then any (3t+ 1, t, 2, 2t+ 1)-arithmetic secret
sharing scheme of K over K is given by Shamir’s scheme.
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Proof. Let (C,ψ) denote the arithmetic secret sharing scheme. By Lemma 3.8 it has
(1, t+ 1)-multiplicativity, so by Proposition 3.15 C̃ must be MDS of dimension t+ 1.

Using Lemma 3.14 and Lemma 2.6 we have

2t+ 1 = 2 dim C̃ − 1 ≤ dim C̃∗2 ≤ 2t+ 1

and thus we have equality everywhere. Since dim C̃ = t+1 ≤ 3t+1
2 we apply Corollary 4.7

and conclude that C̃ is Reed-Solomon.

We will now consider arithmetic secret sharing schemes where the secret lies in some
finite extension field L of the base field K. First we show that in this case we have the
bound of Equation (2).

Lemma 6.1. Let K ⊆ L be an extension of finite fields of degree k. Suppose we have
an (n, t, 2, n− t)-arithmetic secret sharing scheme for L over K. Then we have

t ≤ n− 2k + 1

3

Proof. We use Lemma 3.10 and observe the arithmetic secret sharing also has parame-
ters (n, t, 1, n− 2t− k + 1). By Lemma 3.14 we have

t+ k ≤ n− t− k + 1

and the bound follows.

The remainder of this section will be dedicated to proving Theorem 1.5. Recall that
this theorem states that (n, t, 2, n − t)-arithmetic secret sharing schemes for L over K
that have maximal adversary t must be given by Shamir’s scheme.

We will use the equivalence of codices from Proposition 3.11 and observe that for
C ⊆ L×Kn we can take the L-linear span of C. We have seen this construction before
in Section 2.1. The result is a linear code L〈C〉 over L of length n+ 1.

Lemma 6.2. Suppose

S = {(ψ(g1),g1) , . . . , (ψ(gl),gl)}

is a K-basis of a codex C ⊆ L ×Kn, where ψ : Kn → L is a K-linear map, gi ∈ Kn

for indices i. Then S is an L-basis of L〈C〉. In particular, dimK C = dimL L〈C〉.

Proof. By definition, the L-linear span of S is L〈C〉. Suppose

c1(ψ(g1),g1) + · · ·+ cl(ψ(gl),gl) = (0,0)

inside Ln+1 for c1, · · · cl ∈ L. Since

0 = c1ψ(g1) + · · ·+ clψ(gl) = ψ(c1g1 + · · ·+ clgl)

and ψ is a K-linear map, we observe that S is linearly independent over L if and only
if g1, . . . ,gl are; that is, it suffices to look at the last n coordinates.

We know L is a vector space over K, say with basis {αj}j∈J . Looking now at the
coefficients for the basis vector αj of c1g1 + · · ·+ clgl = 0 we get

c1jg1 + · · ·+ cljgl = 0

where
∑

j cijαj = ci for all i. This is a K-linear combination, hence by linear indepen-
dence over K we conclude that cij = 0 for all i, j and so S is linearly independent over
L.
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Corollary 6.3. Let C ⊆ L×Kn be a codex, and write D := L〈C〉. Then dimLD
∗2 =

dimK C
∗2.

Proof. Suppose
S = {(ψ(g1),g1) , . . . , (ψ(gl),gl)}

is a K-basis of C. Then we construct C∗2 as

C∗2 = K 〈(ψ(gi)ψ(gj),gi ∗ gj)〉 = K 〈(ψ(gi ∗ gj),gi ∗ gj)〉

and we apply the lemma.

Lemma 6.4. Let (C,ψ) be an (n, t, d, r)-codex for L over K, and let φ : L〈C〉 → L be
the L-linear extension of ψ. Then (L〈C〉, φ) is also an (n, t, d, r)-codex.

Proof. Clearly, φ is surjective. Write ψ : C∗d → L for the unique K-linear map for
(d, r)-multiplicativity. We linearly extend this map to φ : L〈C〉∗d → L, so that for
x1, . . . ,xd ∈ L〈C〉 it holds that φ(x1 ∗ . . .xd) = φ(x1) · · ·φ(xd). We show φ is r-wise
determined. Let B be a reconstructing set for (C∗d, ψ). Let x ∈ L〈C〉∗d with xB = 0,
and let g1, . . . ,g` be a K-basis for C∗d, and hence an L-basis for L〈C〉∗d. We may write
x = c1g1 + · · · + c`g`, for c1, . . . , c` ∈ L. If {α1, . . . , αk} is a basis of L as a K-vector
space, then we see there are cij ∈ L for i = 1, . . . , ` and j = 1, . . . , k such that

φ(x) = φ

∑̀
i=1

k∑
j=1

cijαjgi

 =
k∑
j=1

αjψ

(∑̀
i=1

cijgi

)

Since xB = 0 we have for all j that πB(
∑`

i=1 cijgi) = 0 hence φ(x) = 0. Hence B is a
reconstructing set of (L〈C〉∗d, φ).

That a privacy set for (C,ψ) is also a privacy set for (L〈C〉, φ) is immediate using
the condition in Remark 3.2. This shows that (L〈C〉, φ) has t-disconnection.

Lemma 6.5. Let C ⊆ Kn be a linear code, A be a finite-dimensional non-trivial K-
algebra, and ψ : C → A be a surjective K-linear map. Let B ⊆ [n] be a set which is not
reconstructing for (C,ψ). Then B is a privacy set for L〈C〉.

Proof. Since B is not reconstructing, we have that ψ(C0↓B) 6= 0. So let s ∈ L be non-
zero and in the image of ψ(C0↓B), say ψ(x) = s 6= 0 for some x ∈ C0↓B. Take λ ∈ L.
L〈C〉 is an L-vector space, hence λx ∈ L〈C〉, but also λx ∈ L〈C〉0↓B since (λx)B = 0.
So ψ (L〈C〉0↓B) ⊇ ψ (L〈x〉) = L〈s〉 = L, hence B is a privacy set for L〈C〉.

Lemma 6.6. Let G be a generator matrix for a Reed-Solomon code C ⊆ Kn. If I ⊆ [n]
is a subset of coordinates such that the projection CI is of full dimension, i.e. dimK CI =
dimK C, and the I-indexed columns of G form a Vandermonde matrix GI , then G is a
Vandermonde matrix.

Proof. Write k := dimC, and let g1, . . . ,gk denote the rows of G. If k ≤ 2 then C is
Reed-Solomon by default, so assume k > 2. Since C is Reed-Solomon, codewords x ∈ C
correspond uniquely to polynomials f ∈ K[X]<k. By Lagrange interpolation we can
uniquely determine the polynomial f given k = |I| points, and since GI is Vandermonde
we have that fi = Xi−1 corresponds to row gi. It follows that G is also Vandermonde.
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Lemma 6.7. Let K ⊆ L be an extension of fields. Let C ⊆ L×Kn be a codex over K.
Suppose L〈C〉 ⊆ Ln+1 is a Reed-Solomon code. Then C is extension field Reed-Solomon.

Proof. Write D := L〈C〉. Puncturing C,D by deleting the zeroth coordinate, we get
codes C ′, D′ with

dimK C
′ = dimK C = dimLD = dimLD

′.

Since D is MDS, so is D′ = L〈C ′〉, hence so is C ′ (as is easily seen from the definition
of minimum distance and the Singleton bound). Thus C ′ also has a small square, and
therefore must be Reed-Solomon.

Let G′ be a generator matrix for C ′ with entries in K. Since a generator matrix for
C ′ is also one for D′, we know that D′ is a Reed-Solomon code with some evaluation
point sequence (α1, . . . , αn) ∈ Kn. By Lemma 6.6 then D has a generator matrix of the
form

G =


g0 g1 · · · gn
g0α0 g1α1 · · · gnαn

...
...

. . .
...

g0α
d−1
0 g1α

d−1
1 · · · gnα

d−1
n


Now, since the last n columns all have entries in K, we know G must also be a (gener-
alized, the first column having entries in L) generator matrix of C, showing that C is
of the desired form.

We now use the above results to prove Theorem 1.5.

Theorem 1.5. Let t ≥ 1 be an integer, and let K ⊆ L be an extension of finite fields
of degree k. Then any (3t + 2k − 1, t, 2, 2t + 2k − 1)-arithmetic secret sharing scheme
for L over K is given by Shamir’s scheme.

Proof. Let (C,ψ) be the arithmetic secret sharing scheme, and consider the K-vector
space C̃ from Proposition 3.11. First we show L〈C̃〉 is MDS. By Lemma 3.9 all coordi-
nate sets of size ≤ t+ k− 1 are not reconstructing sets of C, hence by Lemma 6.5 they
are privacy sets of L〈C〉. Therefore L〈C〉 has (t+ k − 1)-privacy. Since by Lemma 6.4
we have (2, 2t + 2k − 1)-multiplicativity for L〈C〉, it follows from Lemma 3.8 that
L〈C〉 has (t + k)-reconstruction, which implies L〈C̃〉 is MDS by Proposition 3.15 and
dimL〈C̃〉 = t+ k.

Using Equation (3) and applying Lemma 6.2 and Corollary 6.3 we get

dimK(C) = dimK(C̃) = dimL(L〈C̃〉)

dimK(C∗2) = dimK(C̃∗2) = dimL(L〈C̃〉∗2)

This implies that L〈C̃〉 has a small square, so since it is MDS and dimL〈C̃〉 = t+k <
3t+2k−1

2 we have that L〈C̃〉 is Reed-Solomon. We apply Lemma 6.7 and conclude that

C̃ is extension field Reed-Solomon.

7 Generalizing to extension field codes

Rather than just regarding codices C ⊆ Fqk × Fnq , we can consider arbitrary extension
field codes where each coordinate is in some extension field of a finite base field K. We
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can ask the same question as in the previous section: if L〈C〉 is Reed-Solomon – or
equivalently, an MDS code with a small square – does it follow that C is extension field
Reed-Solomon?

To answer this question, we first note that we can have multiple linearly independent
basis vectors in one coordinate, so dimK C could be strictly larger than dimL L〈C〉. For
example, if the degree [K(η1) : K] is strictly larger than 1 we could have

C = K〈(1, 0, . . . , 0), (η1, 0, . . . , 0)〉

which has K-dimension 2, but dimL L〈C〉 = 1. To prevent this, we will assume that the
dimension does not decrease when passing from C to L〈C〉, i.e. dimK C = dimL L〈C〉.

We can apply the puncturing argument from Lemma 6.7 given a few more assump-
tions. First, we will establish some intermediate lemmas.

Notation. In the remainder of this section, we will sometimes abuse notation slightly
and whenever we write that an evaluation point αi is in some field F , we will also allow
it to be equal to ∞, and we assume that a scaling vector coordinate is never 0.

Lemma 7.1. Let C ⊆ Kn be a Reed-Solomon code of dimension 2 ≤ k ≤ n− 2. Given
three arbitrary coordinates J = {j1, j2, j3}, C has a unique evaluation point sequence
α = (α1, . . . , αn) ∈ (K ∪ {∞})n such that αJ = (0, 1,∞). Furthermore, the associated
scaling vector g = (g1, . . . , gn) ∈ (K∗)n is unique up to a scalar multiple (λg1, . . . , λgn)
for some λ ∈ K∗.

Proof. Let β = (β1, . . . , βn) be an evaluation point sequence for C. By Theorem 2.3
α ∈ (K ∪ {∞})n is also an evaluation point sequence for β if and only if there is some
f ∈ GL(2,K) such that f(βi) = αi for all i.

By invariance under scalar multiplication, such transformations f correspond bi-
jectively to the elements of PGL(2,K). Since this group is 3-transitive, there is f̄ ∈
PGL(2,K) mapping each βi 7→ αi, and in fact this f̄ is unique (see e.g. [Uen05, Lemma
2.2]). If (β1, β2, β3) = (0, 1,∞) then f̄ must be the identity, hence αi = βi for all i.
Since cz + d = 1, hence θ(f, z) = 1, uniqueness of the scaling vector up to a scalar
multiple also follows from Theorem 2.3.

Lemma 7.2. Let C be an extension field code of K on n coordinates, such that L〈C〉
is Reed-Solomon and dimK C = dimL L〈C〉. Let I ⊆ [n] be a subset of coordinates of
cardinality |I| ≥ 2 dimK C − 1, and define F := K(

⋃
i∈I ηi) to be the compositum of the

fields associated to the coordinates in I.
Then there is an evaluation point sequence α = (α1, . . . , αn) ∈ (L ∪ {∞})n and a

scaling vector g = (g1, . . . , gn) ∈ (L∗)n for L〈C〉 such that

αi, gi ∈

{
F for i ∈ I
F (ηi) for i /∈ I

Furthermore, given the constraint that αJ = (0, 1,∞) on three distinguished coordi-
nates J ⊆ I, α is unique and g is unique up to a scalar multiple.

Proof. First, we observe that F 〈CI〉 is an MDS code of dimension equal to dimL L〈C〉:
if {g1, . . . ,gk} is a K-basis for C, then it is also an L-basis for L〈C〉 by the assumption
that the dimension does not decrease when passing to L〈C〉. Then {(g1)I , . . . , (gk)I}
is an F -basis for F 〈CI〉. Since it is also an L-basis for the MDS code L〈CI〉, every k
columns of its associated matrix are linearly independent.
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From this we conclude that since

2 dimL L〈C〉 − 1 = dimL L〈C〉∗2 ≥ dimF F 〈CI〉∗2

≥ min{|I|, 2 dimF F 〈CI〉+ 1} = 2 dimL L〈C〉 − 1

that F 〈CI〉 is a Reed-Solomon code. Let β ∈ (F ∪ {∞})|I| ,y ∈ (F ∗)|I| be the unique
evaluation point sequence and scaling vector, respectively, for CI for which βJ = (0, 1∞)
for some distinguished coordinates J . Since L〈C〉 is Reed-Solomon, it also has a unique
evaluation point sequence α and scaling vector g for which αJ = (0, 1,∞). Because
L〈F 〈CI〉〉 = L〈CI〉 = (L〈C〉)I these vectors must be equal on the I-coordinates, we
have αi, gi ∈ F .

Picking any coordinate i /∈ I, we can now choose to project on I ∪ {i}, and get a
Reed-Solomon code F (ηi)〈CI∪{i}〉. In a similar fashion, we may conclude that αi, gi ∈
F (ηi).

If we take two partially overlapping coordinate sets I, I ′ in Lemma 7.2, we can “glue”
the corresponding evaluation point sequences and scaling vectors. Suppose I, I ′ ⊆ [n]
are subsets of coordinates as in Lemma 7.2, and let F, F ′ be their associated composita.
If |I ∩ I ′| ≥ 3 then we get an evaluation point sequence α ∈ (L ∪ {∞})n and scaling
vector g ∈ (L∗)n with:

αi, gi ∈

{
F ∩ F ′ for i ∈ I ∩ I ′

(F ∩ F ′)(ηi) for i /∈ I ∩ I ′

Using this method we get the following result.

Theorem 7.3. Let C be an extension field code of K on n coordinates, such that L〈C〉
is Reed-Solomon and dimK C = dimL L〈C〉. Suppose at least three coordinates are in
the base field K, and that we have t sets of coordinates I1, . . . , It, all of cardinality
|Is| ≥ 2 dimK C − 4 such that the intersection of the associated composita for these
coordinates is K. That is, let Fs := K(

⋃
j∈Is ηj) be the compositum of all K(ηj) with

j ∈ Is, and suppose that the intersection of fields F1 ∩ F2 ∩ · · · ∩ Ft = K.
Then C is extension field Reed-Solomon:

C =
{

(g1f(α1), . . . , gnf(αn))
∣∣ f ∈ K[X]<k

}
with for each i: gi, αi ∈ K(ηi).

Proof. Let J ⊆ [n] be 3 coordinates j which have ηj ∈ K. Then, we can apply
Lemma 7.2 to each of the sets J ∪ Is for s = 1, . . . , t to get a unique evaluation point
sequence α = (α1, . . . , αn) and scaling vector g = (g1, . . . , gn) for L〈C〉, which must
satisfy, for each s:

αi, gi ∈

{
Fs for i ∈ Is
Fs(ηi) for i /∈ Is

and thus each αi, gi ∈ (F1 ∩ · · · ∩ Ft)(ηi).

26



8 Discussion

We have proved that Shamir’s scheme is the only (n, t, 2, n−t)-arithmetic secret sharing
scheme for a finite field K over K with a maximal adversary t. For a finite extension
field L over K, we have shown that for an (n, t, 2, n−t)-arithmetic secret sharing scheme
of L over L, we have

t ≤ n− 2k + 1

3
(9)

and that such a scheme with t maximal must also be given by Shamir’s scheme. While
this bound holds for arithmetic secret sharing schemes for a field extension, the best
known bound for arithmetic secret sharing schemes for an arbitrary K-algebra A is

t ≤ n− k + 1

3

It is conjectured in [Cas16] that this bound is not sharp, and that Equation (9) should
hold. It would be interesting to investigate this further, and try to close the gap between
the bounds.

To show our results, we used a linear version of Vosper’s theorem, that transposes a
classical result from additive combinatorics to the setting of coding theory. A natural
avenue of further exploration would be to try to transpose other results from additive
combinatorics to coding theory or other settings. Various results have already been
achieved, for instance in [Lec14], [BL15], [MZ15].

Some results in this thesis might also be improved upon. The puncturing argument
of Lemma 6.7 works well for the case of a codex of Fqk/Fq, but has limitations in the
general extension field case of Section 7. Perhaps another approach could lead to a
stronger statement, e.g. one that is comparable to Theorem 1.5.
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