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1 Introduction

”Quien olvida su historia está
condenado a repetirla”.

Jorge Agust́ın Nicolás Ruiz de
Santayana y Borrás

The aim of this thesis is to understand the sample path structure of processes with
independent increments. The study of such a process goes back to [14, ChapitreVII, p-
158]:

”Ce problème constitue une extension naturelle de celui des sommes ou sŕies à
termes aléatoires indépendants”

A process with independent increments is the continuous time extension of the random
walk Sn =

∑n
i=1Xi of independent random variables.

The French mathematician Paul Lévy studied processes with independent increments.
Nowadays Lévy processes are defined to be processes with stationary, independent and
some additional assumptions, see [20, Definition 1.6]. However Lévy determined and gave
the ideas for investigating the path-wise behavior of processes with independent increments
without assuming stationarity and the additional assumptions. We will consider processes
with independent increments under minimal conditions.

The theory of processes with independent increments is connected with a limit theorem,
see Theorem 2.1, for sums of independent random variables. This result is obtained from
[6]. This limit theorem deserves in our opinion most of the attention for understanding the
sample path structure of processes with independent increments. In Section 2.2 we will
prove this theorem for sums of real-valued independent random variables. Furthermore
with [12] we will extend the result for sums of independent, Banach space valued random
variables, see Theorem 2.4. In Section 2.3, 2.4 we will use Theorem 2.4 to find the first
regularity properties of sample paths. Also with Theorem 2.4 we are able to subtract
jumps at fixed times. Then we are left with a process with independent increments that
is continuous in probability, which we will call additive processes. In Section 2.5 we will
show that for such a process there exists a càdlàg modification.

In 1942 Kiyosi Ito, in his first paper [10], succeeded in realizing an idea of Paul Lévy
to describe the structure of additive processes. The fundamental theorem describing the
path-wise structure of real-valued additive processes is the so called Lévy-Ito decomposition.
For a complete proof and analysis we refer to [11]. For additive processes with stationary
increments, nowadays martingale arguments are added to the analysis. We refer to [1],[4].
We will follow the path-wise approach to understand the Lévy-Ito decomposition for
additive processes with values in separable Banach spaces. We will follow closely the
analysis as in [10],[9] for the one dimensional case. In section 3.2,3.3 we analyze the jumps
of additive processes. Using Theorem 2.4 and Theorem 3.9 we are able to prove Theorem
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3.10. With the aid of Theorem 3.10 we are able decompose a general additive process
with values in a separable Banach space E in a continuous part and a jump part.

Theorem 3.10 is a similar result as Theorem 2.1. Theorem 2.1 is used to subtract.
jumps at fixed times. Theorem 3.10 is used to subtract jumps at random times. The
use of Theorem 3.10 makes our approach different from the literature. At the same time
Theorem 3.10 is inspired by Theorem 2.1, due to Paul Lévy, and proven with the aid of a
recent (2013) result from [3].
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2 Processes with independent increments

2.1 Introduction

We will consider processes with independent increments. We always let E be a separable
Banach space unless otherwise stated. An E-valued stochastic process {Xt}t∈R+

on a
probability space (Ω,F ,P) is called a process with independent increments if for all
t1 < t2 < . . . < tn in R+ the random variables Xt1 , Xt2 − Xt1 , . . . , Xtn − Xtn−1 are
independent. Let Ft := σ {Xu : u ≤ t} be the σ-algebra generated by all random variables
Xu with u ∈ [0, t]. A Stochastic process has independent increments if for all s, t ∈ R+

with s < t, the random variable Xt −Xs is independent of Fs. In most general form we
define processes with independent increments as follows.

Definition 2.1. Let (Ω,F , {Ft}t∈R+
,P) be a filtered probability space and X be an

adapted stochastic process with state space E. We call X a process with independent
increments if the following conditions hold:

1. for every ω ∈ Ω, X0(ω) = 0;

2. for every s < t, Xt −Xs is independent of Fs.
Example 2.1. Let {τn}n∈N be a strictly increasing sequence in R+ with limn τn = ∞.
Let {Zn}n∈N be a sequence of independent random variables. Let S−t :=

∑
τn≤t Zn and

S+
t :=

∑
τn<t

Zn, then
{
S±t
}
t∈R+

are processes with independent increments. We call them
pure jump processes.

A sample path of a process with independent increments has no reason for being
regular. The first natural question then immediatly arises: do paths have regularity
properties? If in addition it is assumed that {Xt}t∈R+

has the continuity in probability
property, then there exists a modification with all paths càdlàg. This will be the content of
Section 2.5. If stochastic continuity is not assumed, then there is a night and day difference.

A primary tool for analyzing processes with independent increments are characteristic
functions. For the moment we take E = Rd. For 0 = t1 < t2 < . . . < tn in R+ let
µt1,t2,...,tn denote the distribution of (Xt1 , Xt2 , . . . , Xtn). For s < t let ϕ(s, t)(u) denote the
characteristic function of Xt −Xs, i.e. for every u ∈ Rd

ϕ(s, t)(u) := E
[
ei〈u,Xt−Xs〉

]
. (1)

For a definition and general properties of characteristic functions, see section 4.4. By
independence of increments we find by Theorem 4.6 for s < h < t,

ϕ(s, h)(u) = ϕ(s, t)(u)ϕ(t, h)(u). (2)

The distribution of (Xt1 , Xt2 , . . . , Xtn) is uniquely determined by the characteristic function
Φ(Xt1 ,Xt2 ,...,Xtn )(u), u ∈ Rnd and is fully determined by the increments of {Xt}t∈R+

Φ(Xt1 ,...,Xtn )(u) =
n−1∏
i=1

Φ(Xti+1−Xti )

(
n∑
l=i

ul

)
, ∀u ∈ Rnd, (3)

and ΦXt1
(u) = 1.
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2.2 Sums of independent random variables

We note that the theory of processes with independent increments is connected with limits
of sums of independent random variables. Indeed for every choice t1 < t2 < . . . < tn < t
of time points we can represent Xt by

Xt = Xt1 +
n−1∑
i=1

(
Xti+1

−Xti

)
+ (Xt −Xtn) , (4)

which is a sum of independent random variables. If we approximate t b {tn}n∈N, then
limnXtn is a limit of sums of independent random variables. We state an important result
for sums of independent random variables with values in a Banach space (E, ‖ · ‖), see
[11, chapter 1.3, Lemma 2.].

Remark 2.1. The sum of two random variables X, Y with values in a general Banach
space (E, ‖ · ‖) is not trivially a random variable. If we however assume E to be separable,
then the collection of random variables is closed under summation. The following lemma
holds for Banach spaces (E, ‖ · ‖) where the collection of random variables is closed under
summation.

Lemma 2.1. Let X1, X2 . . . , XN be independent random variables and Sn =
∑n

i=1Xi, for
n = 1, . . . , N . Suppose that for some a > 0, P(||Sn|| > a) ≤ δ < 1

2
for all n = 1, . . . , N .

Then it holds that

P( max
0≤p,q≤N

||Sp − Sq|| > 4a) ≤ 4P(||SN || > a).

Proof. By the triangle inequality ||Sk − Sl|| ≤ ||SN − Sk||+ ||SN − Sl|| it holds that

P( max
1≤k,l≤N

||Sk − Sl|| > 4a) ≤ 2P
{

max
0≤k≤N

||SN − Sk|| > 2a

}
.

Consider the events Ak = {||Sk|| ≤ a}, Bk =

{
max
k<i≤N

||SN − Si|| ≤ 2a, ||SN − Sk|| > 2a

}
.

The events Bk are disjoint and Ak, Bk are independent. Since ||SN − Sk|| > 2a and
||Sk|| ≤ a imply ||SN || > a it holds that {||SN || > a} ⊃

⋃
k Ak ∩Bk. Then it holds that

P (||SN || > a) ≥
∑
k

P(Ak ∩Bk) =
∑
k

P(Ak)P(Bk)

≥ (1− δ)
∑
k

P(Bk) = (1− δ)P

(⋃
k

Bk

)
≥ 1

2
P
(

sup
0≤k≤N

||SN − Sk|| > 2a

)
which completes the proof.

We will often use a symmetrisation method in order to gain insights in sample path
properties of processes with independent increments.
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Definition 2.2. Let
(
Ω,F , {Fs}s∈T ,P

)
be a probability space and {Xt}t∈T be an adapted

stochastic process. Let
(

Ω̄, F̄ ,
{
F̄s
}
s∈T , P̄

)
and

{
X̄t

}
t∈T be independent copies. We define

the product space

(Ω∗,F∗, {F∗s }s∈T ,P
∗) =

(
Ω× Ω̄,F ⊗ F̄ ,

{
Fs ⊗ F̄s

}
s∈T ,P⊗ P̄

)
,

and the symmetrization of Xt as Xs
t (ω

∗) = Xt(ω)− X̄t(ω̄), ∀ω∗ = (ω, ω̄) ∈ Ω∗.

Remark 2.2. One important property of the symmetrization is ΦXs(u) = |ΦX |2(u), ∀u ∈
R.

The importance of the following Theorem is clear from Eg. (4). The result is from [6].
The proof is partly taken from Doob.

Theorem 2.1. Let X1, . . . , Xn, . . . be a sequence of independent random variables in
(R,B(R)). Suppose there is a random variables X so that for every k = 1, 2, . . . the
random variable ∆k given by

∆k = X −
k∑
i=1

Xi a.s,

and δk independent of X1, . . . , Xk. Then there are constants mk for k = 1, 2, . . . such that

lim
N→∞

N∑
k=1

(Xi −mi) ,

exists with probability 1.

Proof. Let X̄n be an exact copy of Xn (as in Definition 2.2) and let Xs
n = Xn − X̄n be

the symmetrisation of Xn. Define the sum SsN =
∑N

n=1X
s
n. For every n ∈ N,

ΦSsn =
n∏
i=1

|ΦXi |2 ≥
n∏
i=1

|ΦXi |2|Φ∆n|2 = |ΦX |2.

By properties of characteristic functions, see Theorem 4.5, it holds that ΦX(0) = 1 and
that ΦX is continuous on R. For every 0 < ε < 1 there exists δ(ε) > 0 such that that
|ΦX(t)|2 ≥ 1− ε, for all t ∈ (−δ(ε), δ(ε)). From this, for t ∈ (−δ(ε), δ(ε)),

ΦSsn(t) ≥ |ΦX(t)|2 ≥ 1− ε.

For every u ∈ R, |ΦSsn(u)| =
∏n

i=1 |ΦXi(u)|2 is non-decreasing in u ∈ R as |ΦXi | ≤ 1. A
non-decreasing, bounded sequence in R+ converges, hence |ΦSsn(u)| convergence pointwise
to a limit, which we denote by ϕ(u). We claim that the function ϕ is continuous. Let
ε > 0 be given, then for u, v ∈ R,

|ϕ(u)− ϕ(v)| = |ϕ(u)− ΦSsN
(u) + ΦSsN

(u)− ΦSsN
(v) + ΦSsN

(v)− ϕ(s)|
≤ |ϕ(u)− ΦSsN

(v)|+ |ΦSsN
(u)− ΦSsN

(v)|+ |ΦSsN
(v)− ϕ(v)|

(5)
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Take u, v ∈ R such that u− v ∈ (−δ(ε2/18), δ(ε2/18)). By Lemma 4.7 it follows,

|ΦSsn(u)− ΦSsn(v)| ≤
√

2|1− ΦSsn(u− v)| ≤
√

2
ε2

18
≤ ε

3
.

By taking N sufficiently large we can make sure that

|ϕ(u)− ΦSsN
(u)| < ε

3
, |ϕ(v)− ΦSsN

(v)| < ε

3
.

From this it follows |ϕ(u)−ϕ(v)| ≤ ε for u, v ∈ R such that u− v ∈ (−δ(ε2/18), δ(ε2/18)).
By Dini’s theorem, ΦSsn converges uniformly on compact intervals. Note that by indepen-
dence

ΦSsn = ΦSsn−SsmΦSsm .

It holds that ϕ(u) > 0 for some interval u ∈ (−δ, δ) around 0. From this and Lemma 4.7,
for every compact interval [−K,K] with K > 0,

lim
N→∞

inf
n,m≥N

ΦSsn−Ssm(u) = 1

uniformly on [−K,K]. By Lemma 4.6 it follows for n,m

P(|Ssn − Ssm| ≥ ε) ≤ 7ε

∫ 1/ε

0

[
1−<

{
ΦSsn−Ssm(v)

}]
dv.

= 7ε

∫ 1/ε

0

[
1− |ΦSn−Sm(v)|2

]
dv.

(6)

From this and uniform convergence of ΦSsn−Ssm for every ε > 0,

lim
N→∞

sup
n,m≥N

P {|Ssn − Ssm| > ε} = 0.

From Lemma 2.1 it follows limN→∞ P
{

supn,m≥N |Ssn − Ssm| > 4ε
}

= 0, from which we
conclude a.s. convergence of Ssn. Thus there exists a probability one set Ω∗ ∈ F ⊗ F̄ such
that

Ssn(ω, ω̄)→ S(ω, ω̄), ∀(ω, ω̄) ∈ Ω∗.

Let Ω∗1 =
{
ω̄ ∈ Ω̄ : ∃ω ∈ Ω, (ω, ω̄) ∈ Ω∗

}
and define for every ω̄ ∈ Ω∗1, the set Ω∗ω̄ =

{ω ∈ Ω : (ω, ω̄) ∈ Ω∗}. Now it holds that

P⊗ P̄(Ω∗) =

∫
ω̄∈Ω∗1

∫
ω∈Ω∗ω̄

IΩ∗ω̄(ω, ω̄) dP(ω)dP̄(ω̄) = 1

From this we find that there exists at least ω̄ ∈ Ω∗1 such that P(Ω∗ω̄) = 1. From this we
find now that Sn(ω) − S̄n(ω̄) converges ∀ω ∈ Ω∗ω̄ . This means that we can choose the
centering constants cn = S̄n(ω̄).

We will prove Theorem 2.1 for Banach space valued random variables. We take (E, ‖ · ‖)
a real separable Banach space and let E∗ be its dual space, the set of all continuos linear
functions, x∗ : E → R.

8



Lemma 2.2. There exists a sequence {x∗n}
∞
n=1 ⊂ E∗ such that

||x|| = sup
n
| 〈x∗n, x〉 |, ∀x ∈ E. (7)

Proof. The existence follows from separability of E, see [16, Lemma 1.1].

We denote by B(E) the Borel σ-algebra, the σ-algebra generated by the open sets of E.
It holds that B(E) is the σ−algebra generated by the Cylinder sets, C,

{x ∈ E : 〈x, x∗1〉 ∈ B1, . . . , 〈x, x∗n〉 ∈ Bn} ,

where B1, . . . , Bn ∈ B(R) and x∗1, . . . , x
∗
n ∈ E∗.

Lemma 2.3. For a separable Banach space E, σ {C} = B(E).

Proof. Follows from the proof of [17, Theorem 2.8].

This means that for a function X : Ω→ E measurability is equivalent to measurability of
〈x∗, X〉, for every x∗ ∈ E∗. From (7) we find that ||X − Y || = supn | 〈x∗n, X − Y 〉 |, which
is measurable, hence we can define convergence in probability in the natural way.

Definition 2.3. Let (Ω,F ,P) be a probability space. For a random variable X : Ω→ E
we define the characteristic function ΦX : E∗ → C by,

ΦX(x∗) = Eei〈x∗,X〉.

We denote µX(B) = P {X ∈ B} ,∀B ∈ B(E).

With Lemma 2.3 a similar result as to Theorem 4.4 holds for E-valued random variables.

Theorem 2.2. Let X, Y : Ω → E be two random variables with ΦX(x∗) = ΦY (x∗),
∀x∗ ∈ E∗. Then we have µX = µY .

Proof. See [17, Theorem 2.8].

For real random variables X1, . . . , Xn it holds that X1, . . . , Xn are independent if and only
if Φ(X1,...,Xn)(u) =

∏
ΦXi(ui)), u ∈ Rn. The same result holds for random variables with

values in a separable Banach space E. We recall that Φ(X1,...,Xn)(x
∗
1, . . . , x

∗
n) = Eei

∑
j〈x∗j ,Xj〉

for x∗1, . . . , x
∗
n ∈ E∗. The random variables X1, . . . , Xn are independent if and only if

Φ(X1,...,Xn)(x
∗
1, . . . , x

∗
n) =

n∏
i=1

ΦXi(x
∗
i ). (8)

An important property of random variables with values in a separable Banach space E is
that they are tight.

Lemma 2.4. Let X be a random variable with values in a separable Banach space E,
then X is tight, i.e. for every ε there is a compact set Kε ⊂ E such that

P(Kε) ≥ 1− ε.
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Proof. See [17, Proposition 2.3].

Theorem 2.3 (Ito-Nisio). Let E be a separable Banach space. Suppose that Xi, i = 1, 2 . . .
are independent, symmetric1 and E-valued random variables. For the sum SN =

∑N
i=1Xi

the following are equivalent,

1. SN converges in distribution to a random variable S.

2. SN converges in probability to a random variable S.

3. SN converges a.s. to a random variable S.

4. The probability laws µN of SN are uniformly tight.

5. There exists a random variable S such that 〈x∗, SN〉
P→ 〈x∗, S〉, for every x∗ ∈ E∗.

6. E
(
ei〈x

∗,Sn〉
)
→ E

(
ei〈x

∗,S〉), for every x∗ ∈ E∗, for some random variable S.

Proof. See [12].

Next we will use Theorem 2.3 to prove an extension of Theorem 2.1 for random variables
with values in a separable Banach space.

Theorem 2.4. Let X1, . . . , Xn, . . . be a sequence of symmetric, independent random
variables in (E,B(E)). Suppose there is a random variable X so that for every k = 1, 2, . . .
there is a random variable ∆k such that

∆k = X −
k∑
i=1

Xi a.s,

and ∆k is independent of X1, . . . , Xk. Then SN :=
∑N

k=1Xk converges with probability 1.

Proof. First we note that SN and X − SN are independent random variables with values
in E. We will show that this implies that SN is uniformly tight. Let K ⊂ E be a compact
set. Now by the use of Fubini we find

P(X ∈ K) =

∫
E

P(SN + x ∈ K)µX−SN (dx).

With this we can find an x′ ∈ E such that P(SN + x′ ∈ K) ≥ P(X ∈ K). Now
set K ′ =

{
x−y

2
: x, y ∈ K

}
. From the fact that K × K is also compact, the function

E×E → E, (x, y) 7→ x−y
2

is continuous and the image of a compact set under a continuous
function is also compact, we conclude that K ′ is compact. Note that

{SN + x′ ∈ K,−SN + x′ ∈ K} ⊂ {SN ∈ K ′}
1A random variable X is called symmetric when P(X ∈ B) = P(−X ∈ B), for every B ∈ B(E).
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and by symmetry of SN that

P {SN ∈ K ′} ≥ P {SN + x′ ∈ K,−SN + x′ ∈ K}
≥ 1− P {SN + x′ /∈ K} − P {−SN + x′ /∈ K}
= 1− 2P {SN + x′ /∈ K}
≥ 1− 2P {X /∈ K} .

(9)

Next we will use Lemma 2.4 that every random variable with values in a separable Banach
space is tight, i.e. for every ε > 0 there is a compact set Kε such that P(X /∈ Kε) < ε.
From this we find then that we can always find K ′ε/2 such that

P
{
SN ∈ K ′ε/2

}
≥ ε.

Hence the collection of measures µSN are uniformly tight. The statement now follows
from Theorem 2.3.

2.3 Symmetric processes with independent increments

We first consider symmetric processes with independent increments with values in a
separable Banach space (E,B(E)). We will show that for such processes we are led to
study processes that are continuous in probability. We will show that every symmetric
process with independent increments can be decomposed into independent parts: a part
that is continuous in probability and a part that by approximation is a pure jump process,
recall Example 2.1. The precise formulation is given in Theorem 2.5.

Definition 2.4. Let {X}t∈R+
be a process with independent increments. We call X an

Additive process if the following conditions hold,

1. For every ω ∈ Ω, X0(ω) = 0.

2. For every s < t, Xt −Xs is independent of Fs.

3. For every t > 0 and ε > 0, lims→t P {‖Xt −Xs‖ > ε} = 0, i.e. the process X is
continuous in probability.

From Lemma 4.4 we know there is a metric dP on L0
P(Ω;E) defined by

dP(X, Y ) = inf {ε ≥ 0 : P (||X − Y || > ε) ≤ ε} , X, Y ∈ L0
P(Ω;E),

that metrizes convergence in probability. We will consider processes as maps from R+ to
the metric space (L0

P(Ω;E), dP), see section 4.1. We can define regularity of this map in
the sense of Definition 4.7.

Lemma 2.5. Let {X}t∈R+
be a symmetric stochastic process with independent increments

and with values in (E,B(E)), then {X}t∈R+
is regular in probability, i.e. the function

X : R+ → (L0
P(Ω,F ;E, E), dP), t 7→ Xt, is regular.
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Proof. Let t > 0 and tn ↑ t. We consider the sequence (Xtn)n∈N. It is possible to write Xt

as a sum of independent variables, Xt = Xt1 +
∑n−1

i=1

(
Xti+1

−Xti

)
+ (Xt −Xtn) . Note

that the random variables Xt1 , Xt2−Xt1 , . . . , Xtn−Xtn−1 are symmetric random variables.
By Theorem 2.4 the sequence Xtn converges a.s. to a random variable Xt−, hence it
converges in probability to Xt−. Let sn ↑ t be another sequence. By the same arguments
Xsn converges in probability to a random variable X ′t−. We show that the limits are the
same. First merge the two sequences together in one sequence t′n ↑ t. The sequence (Xt′n)
converges by the same arguments in probability to a random variable. This forces the
limits X ′t− and Xt− to be the same. We can do the same for tn ↓ t. We conclude that for
every t > 0 the limits limh↑tXh, limh↓tXh exist in probability.

Now we want to describe a procedure to define jumps of X. We recall once more that we
have made no assumption yet about regularity of sample paths. We will use Lemma 2.5
to define jumps in probability.

Definition 2.5. Let X be a process with independent increments. Then for s < t we
define

FXs,t = σ {Xu −Xv : s ≤ u < v ≤ t} , (10)

to be the σ-algebra generated by all increments of X on [s, t].

Lemma 2.6. Let X be a process with independent increments. Then Fs and FXs,t are
independent σ-algebra’s.

Let Yn, n = 1, 2, . . . be a sequence of random variables, then the event that limn Yn
converges satisfies {limn Yn exists} ⊂

⋃
k

⋂
m≥k {||Ym+1 − Ym|| ≤ εm} , for every sequence

εn > 0 with
∑∞

n=1 εn <∞.

Lemma 2.7. Let Yn, n = 1, 2, . . . be a sequence of random variables. If there exists
a sequence εn > 0 such that

∑∞
n=1 P {||Yn+1 − Yn|| > εn} < ∞ and

∑∞
n=1 εn < ∞, then

P {limn Yn exists} = 1.

Proof. First we note that {limnXn exists}c ⊂
⋂
k

⋃
m≥k {||Ym+1 − Ym|| > εm} . Also

P

{⋃
m≥k

{||Ym+1 − Ym|| > εm}

}
≤

∞∑
n=k

P {||Yn+1 − Yn|| > εn} .

From this it is clear that

P
({

lim
n
Yn exists

}c)
≤ lim

k→∞

∞∑
n=k

P {||Yn+1 − Yn|| > εn} = 0.

Consequence of Lemma 2.7 is that we can define

Y (ω) :=

{
Y1(ω) +

∑∞
n=1 (Yn+1(ω)Yn(ω)) if ω ∈ {limn Yn exists}

0 if ω /∈ {limn Yn exists} . (11)
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By Lemma 2.5, the a symmetric process with independent increments X : R+ 7→ L0
P(Ω;E)

is regular and thus has at most a countable number of jumps. We enumerate and denote
the setof jumps with J = {tn : n ∈ N}. Let t ∈ J and take some increasing sequence
sn ↑ t. The sequence Yn := Xt −Xsn is a Cauchy sequence in probability. We can take a
subsequence snk such that P

{
||Ynk+1

− Ynk || > 1
2k

}
≤ 1

2k
. By Lemma 2.7 we can define a

random variable with (11),

∆Xt−(ω) :=

{
Yn1(ω) +

∑∞
k=1

(
Ynk+1

(ω)− Ynk(ω)
)

if ω ∈ {limk Ynk exists}
0 if ω /∈ {limk Ynk exists} .

It follows that ∆Xt− is
⋂
k=1 σ

{
Ynk , Ynk+1

, . . .
}

-measurable and lims↑tXt −Xs = ∆Xt−
in (L0

P(Ω;E), dP). From this we find that for every s < t it holds that ∆Xt− is FXs,t-
measurable. In the same way we define ∆Xt+ for a sequence sn ↓ t such that for every
s > t it holds that ∆Xt+ is FXt,s-measurable. Now we define the following processes.

Definition 2.6. Let X be a symmetric process with independent increments. We define
the processes

S−N(t) =
∑

n≤N,tn≤t

∆Xtn−, S+
N(t) =

∑
n≤N,tn<t

∆Xtn+, (12)

where {tn : n ∈ N} the set of jump points of X viewed as map from R+ to L0
P(Ω;E).

Remark 2.3. The increments S±N(t)− S±N(s) are FXs,t-measurable.

Definition 2.7. Let E be a separable Banach space and T > 0. We define DE(T ) to
be the space of all càdlàg functions f : [0, T ]→ E. We equip the space DE(T ) with the
σ-algebra DE(T ) generated by the sets of the form,

{f ∈ DE(T )|f(t1) ∈ B1, . . . , f(tn) ∈ Bn, 0 ≤ t1 < . . . < tn ≤ T,Bi ∈ B(E)} .

On DE(T ) we define the supremum norm, ‖f‖T := supt∈[0,T ] ‖f(t)‖.

Remark 2.4. For a stochastic process X the map X : (Ω,F) → (DE(T ),DE(T )) is
measurable. For separable Banach spaces there exists a norming sequence x∗n ∈ E∗ such
that for x ∈ E, ‖x‖ = supn |〈x∗n, x〉|, see Lemma 2.2. From the càdlàg property it follows
that

‖f‖T = sup
q∈[0,T ]∩(Q∪{T})

‖f(q)‖ = sup
q∈[0,T ]∩(Q∪{T})

sup
n
|〈x∗n, f(q)〉| .

This implies that for the process X, the map ω 7→ ‖X(ω)‖T is measurable. The space
DE(T ) equipped with the supremum norm || · ||T is a Banach space. The same we can say
for the space LE(T ) of all càglàd functions f : [0, T ]→ E.

The space (DE(T ), || · ||T ) is Banach space, but not a separable Banach space.

Remark 2.5. For a fixed time horizon T > 0 it holds that
{
S−N(t)(ω)

}
t∈[0,T ]

∈ DE(T )

and
{
S+
N(t)(ω)

}
t∈[0,T ]

∈ LE(T ), with S−N and S+
N as in Definition 2.6.
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If X is a symmetric process with independent increments, we can subtract jumps at
fixed time points, Xt − S−N(t) − S+

N(t). If we take N → ∞, then intuitively we expect
X − S−N − S+

N to converge to a process that is continuous in probability. The main
difficulty is that a priori it is not clear how S−N(t), S+

N(t) converges as N →∞. In order
to understand the convergence of these processes we need the following lemmas.

Definition 2.8. Let X, Y ∈ (DE(T ),DE(T )) be processes. We define

ducp(X, Y ) := inf

{
ε > 0 : P

{
sup

0≤s≤T
||Xs − Ys|| > ε

}
≤ ε

}
. (13)

Definition 2.9. Let X,X1, X2, . . . , Xn, . . . be random variables in DE(T ) or (LE(T )),
then Xn converge uniform in probability to X if for every ε > 0,

lim
n→∞

P {||Xn −X||T > ε} = 0.

We denote this convergence by Xn
ucp→ X, n→∞

Lemma 2.8. On (DE(T ),DE(T )) ducp is a metric and ducp(Xn, X) → 0 if and only if

Xn
ucp→ X.

Proof. The function ducp is non-negative, symmetric and ducp(X, Y ) = 0 if and only if
‖X − Y ‖T = 0 a.s. Next we will show the triangle inequality. Let X, Y, Z ∈ DE(T ), then
by the triangle inequality ||X − Z||T ≤ ||X − Y ||T + ||Y − Z||T it yields

P {‖X − Z‖T > ducp(X, Y ) + ducp(Y, Z)}
≤ P {‖X − Y ‖T + ‖Y − Z‖T > ducp(X, Y ) + ducp(Y, Z)}
≤ P {‖X − Y ‖T > ducp(X, Y )}+ P {‖Y − Z‖ > ducp(Y, Z)}
≤ ducp(X, Y ) + ducp(Y, Z).

(14)

By Definition 2.8 it follows that ducp(X,Z) ≤ ducp(X, Y ) + ducp(Y, Z).

Next, suppose that Xn
ucp→ X. Then for every ε there is Kε such that

sup
N≥Kε

P {‖X −XN‖T > ε} ≤ ε.

From this it holds supN≥Kε ducp(X,XN) ≤ ε. we conclude that ducp(X,Xn) → 0. Con-
versely suppose limn→∞ ducp(X,Xn) = 0. Then for every ε, there is a constant Kε such
that

P {‖X −XN‖T > ε} ≤ ε,

for all N ≥ Kε. From this it follows that Xn
ucp→ X, n→∞.

Lemma 2.9. Let Xn, n = 1, 2 . . . be independent stochastic processes in DE(T ) (or
LE(T )) such that for every ε > 0,

lim
N→∞

P
{

sup
n,m≥N

||Xn −Xm||T > ε

}
= 0,

Then there exist X ∈ DE(T ) (or LE(T )), sych that Xn
ucp→ X, n→∞.

14



Proof. The event of convergence is given by,{
lim
n

Xn exists
}

=
⋂
m

⋃
n

⋂
k,l≥n

{
‖Xk −Xl‖T <

1

m

}
.

By hypothesis, it follows that P {limn Xn exists} = 1. Now define the random variable

X(ω) :=

{
limn→∞Xn(ω) if ω ∈ {limnXn exists}
0 if ω /∈ {limnXn exists} . (15)

It holds that Xn
ucp→ X. From the fact that the space (DE(T ), ‖ · ‖) is a Banach space it

follows that X has values in DE(T ).

Lemma 2.10. Let Xn, n = 1, 2 . . . be independent stochastic processes in DE(T ) (or
LE(T )). Let Sn =

∑n
i=1 Xi and suppose that

lim
N→∞

sup
n,m≥N

P {||Sn − Sm||T > ε} = 0, (16)

then there is a stochastic process S with values in DE(T ) (or LE(T )) such that

lim
n→∞

||S − Sn||T = 0 a.s.

Proof. By hypothesis and Lemma 2.1 it holds for every ε > 0 that

lim
N→∞

P
{

sup
n,m≥N

||Sn − Sm||T > ε

}
= 0.

By Lemma 2.9 the statement follows.

Lemma 2.11. For j = 1, 2, . . . ,m let X(j) and X
(j)
n , n ∈ N, be random variables in a

separable Banach space E such that

1. X
(1)
n , X

(2)
n , . . . , X

(m)
n are independent random variables.

2. X
(j)
n

P→ X(j), as n→∞, for j = 1, . . . ,m.

Then X(1), . . . , X(m) are independent.

Proof. The random variables X(1), . . . , X(m) are independent if and only if

Φ(X(1),...,X(m))(x
∗
1, . . . , x

∗
m) =

m∏
i=1

ΦX(i)(x∗i ), ∀x∗1, . . . , x∗m ∈ E∗.

Let x∗1, . . . , x
∗
m ∈ E∗. Now we consider

〈
x∗j , X

(j)
n

〉
and

〈
x∗j , X

(j)
〉
, then it is clear that〈

x∗j , X
(j)
n

〉
are independent and

〈
x∗j , X

(j)
n

〉
P→
〈
x∗j , X

(j)
〉
. Convergence in probability

implies convergence in distribution. From this it follows e
∑m
j=1

〈
x∗j ,X

(j)
n

〉
→ e

∑m
j=1〈x∗j ,X(j)〉 for
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every x∗1, . . . , x
∗
m ∈ E∗. It also follows by independence and convergence in distribution

that,

Φ
(X

(1)
n ,...,X

(m)
n )

(x∗1, . . . , x
∗
m) =

m∏
j=1

Φ〈
x∗j ,X

(j)
n

〉(1)→
m∏
j=1

Φ〈x∗j ,X(j)〉(1) =
m∏
j=1

ΦX(j)(x∗j).

We conclude that

Φ(X(1),...,X(m))(x
∗
1, . . . , x

∗
m) =

m∏
i=1

ΦX(i)(x∗i ), x∗1, . . . , x
∗
m ∈ E∗.

Lemma 2.12 (Lèvy’s inequality). Let X1, . . . , Xn be independent, symmetric and E-
valued random variables. Let Sk =

∑k
i=1Xi be the sum for k = 1, . . . , n. For every r > 0

we have

P
{

max
1≤k≤n

||Sk|| > r

}
≤ 2P {||Sn|| > r} . (17)

Proof. See [17, Lemma 2.18].

The formulation and prove of the following theorem is inspired by [6], [11] and [21]. In
the proof we use Theorem 2.4. Furthermore we use In. 17 for uniform convergence.

Theorem 2.5. Let {Xt}t∈R+
be a symmetric stochastic process with independent incre-

ments. Then the process can be written as

Xt = Xc
t + S−t + S+

t , (18)

such that Xc
t = Xt−S−t −S+

t is an Additive process, S−, S+ are processes with independent
increments and with values in DE resp. LE such for every T > 0

lim
N→∞

||S− − S−N ||T = 0, lim
N→∞

||S+ − S+
N ||T = 0, ∀ω ∈ Ω′,

where P {Ω′} = 1. Furthermore Xc, S− and S+ are independent processes.

Proof. Fix a time horizon T > 0. Order the jump points tn ∈ J with n up to N smaller
than T ,

{σ1 < σ2 < . . . < σk} = {tn ≤ T : n ≤ N} .

Consider the partitions,

Pm =
{

0 = σ0 < s1,m < σ1 < s1,m < s2,m < σ2 . . . < sk,m < σk < sk,m
}
,

such that si,m ↑ σi and si,m ↓ σi. We write XT as a random walk of increments,

XT =
k∑
i=1

(
(Xσi −Xsi,m

) + (Xsi,m −Xσi)
)

+ ∆N,m.
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where ∆N,m = Xs1,m
+
∑k−1

i=1

(
−Xsi,m +Xsi+1,m

)
+XT−Xsk,m . This is a sum of independent

increments. Let m→∞ and find

XT =
k∑
i=1

(∆Xσi−)︸ ︷︷ ︸
S−N (T )

+
k∑
i=1

(∆Xσi+)︸ ︷︷ ︸
S+
N (T )

+ ∆N︸︷︷︸
limk ∆N,k

a.s..

Note that S−N(T ), S+
N(T ) and limk ∆N,k are independent by Lemma 2.11. We can do this

for every N ∈ N. By Theorem 2.4 it follows that S−N(T ) converges to a random variable
S a.s. By (17) it holds for every r > 0,

P

{
sup
t∈[0,T ]

||S−N(t)− S−M(t)|| > r

}
≤ 2P

{
||S−N(T )− S−M(T )|| > r

}
.

By a.s. convergence of S−N(T ), for every ε > 0,

lim
N,M→∞

P

{
sup
t∈[0,T ]

||S−N(t)− S−M(t)|| > ε

}
= 0.

By Lemma 2.10 S−N(t) converges uniformly to a càdlàg stochastic process {S−(t)}t∈[0,T ].

Note that S−N(t) has independent increments. By uniform convergence it follows that
S− has independent increments. We can apply the same arguments to S+

N(t). There
exists càglàd stochastic process {S+(t)}t∈[0,T ] such that S+

N converges uniformly to S+.

on [0, T ]. Because S−N (T ), S+
N (T ) and ∆N are independent, by Lemma 2.11 S−(T ), S+(T )

and XT − S−(T )− S+(T ) are independent for every T > 0.
Thus for every T there exists a probability one set ΩT such that S−N , S

+
N converge a.s.

uniformly on [0, T ] to stochastic processes S−T (t), S+
T (t) in DE(T ) resp. LE(T ). Now by

taking Ω∗ =
⋂
n Ωn, we can find processes

S−(t) =
∞∑
n=1

S−n (t)I[n−1,n)(t), S+(t) =
∞∑
n=1

S+
n (t)I(n−1,n](t),

in DE resp. LE such that for every T > 0 it follows that

lim
N→∞

||S−(ω)− S−N(ω)||T = 0, lim
N→∞

||S+(ω)− S+
N(ω)||T , ∀ω ∈ Ω∗.

It follows by uniform convergence that S− and S+ are processes with independent in-
crements. We want to show that Xc = X − S− − S+ is continuous in probability. Let
0 < s < t and ω ∈ Ω. Then it holds that

||∆Xt− −
(
S−(t)− S−(s)

)
||

= ||S−N(t)− S−(t) +
(
∆Xt− − (S−N(t)− S−N(s))

)
+ S−(s)− S−N(s)||

≤ ||S−N(t)− S−(t)||+ ||
(
∆Xt− − (S−N(t)− S−N(s))

)
||+ ||S−(s)− S−N(s)||.

(19)
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First we can take N such that ||S− − S−N ||t < ε. Choose s so close to t such that

s > max
n≤N,tn<t

tn.

In that case
(
∆Xt− − (S−N(t)− S−N(s))

)
= 0, a.s.. Because ε was arbitrary we find that

lim
s↑t
||∆Xt− −

(
S−(t)− S−(s)

)
|| = 0 a.s.

From right continuity of S− it follows that lims↓t S
−(s)− S−(t) = 0 a.s. In the same way

we can prove that
lim
s↓t
||∆Xt+ −

(
S+(s)− S+(t)

)
|| = 0 a.s.

By left continuity lims↑t (S+(t)− S+(s)) = 0 a.s. We conclude that

lim
s↑t

(Xc
t −Xc

s) = lim
s↑t

(Xt −Xs)− lim
s↑t

(
S−(t)− S−(s)

)
= 0 a.s.

and
lim
s↓t

(Xc
s −Xc

t ) = lim
s↓t

(Xt −Xs)− lim
s↓t

(
S+(s)− S+(t)

)
= 0 a.s.

Hence Xc is continuous in probability. For every t > 0 it holds that Xc
t , S

−
t and S+

t are
independent for every t ∈ R+. From Lemma 3.10 and Remark 3.2 it follows that the
processes Xc, S− and S+ are independent.

2.4 Decomposition of processes with independent increments with
values in R

Now we will consider general processes X with independent increments and with state
space E = R. As in Section 2.3 we will consider processes as maps from R+ to the metric
space (L0

P(Ω;E), dP). We will show that a process with independent increments can be
decomposed into independent parts: as a non-random function, a process continuous in
probability and a process that by approximation is a pure jump process.

Paul Lèvy showed that a center c[X] of random variables X can be defined such that
Xt − c[Xt] is regular in probability. The following center c[·] value defined by J.L.Doob,
will do the job. See [6, Eq. (3.8)].

Definition 2.10. Let X be a random variable. The center c[X] of X is defined by

E arctan [X − c[X]] = 0. (20)

Existence and uniqueness of c[X] follows from the proof of the next Lemma.

Lemma 2.13 (Lévy). Let (Xn)n∈N be a sequence of random variables for which there
exist a sequence of constants (cn)n∈N and a random variable X such that Xn−cn converges
a.s. to X. Then cn − c[Xn] converges to a finite number c and Xn − c[Xn] converges a.s.
to X − c.
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Proof. It holds that f(x) = arctan(x) is bounded and measurable with limx→±∞ arctan(x) =
±π

2
. By the dominated convergence theorem it holds that Ef(Xn− x)→ ±π

2
as x→ ±∞.

From this and the intermediate value theorem the constant c[Xn] exists and are unique for
all n. Then there are two posibilities for cn − c[Xn], namely the constants cn − c[Xn] are
bounded or there exist an unbounded subsequence cn(k) − c[Xn(k)]. In case the constants
are bounded there exist a convergent subsequence cn(k) − c[Xn(k)] and by

0 = Ef(Xn(k) − c[Xn(k))]) = Ef(Xn(k) − cn(k) + cn(k) − c[Xn(k)])

there is only one posibility for this sequence to converge to. This subsequence converges
to c[X], hence cn − c[Xn] converge to −c. We conclude that Xn − dn converges to X − c.
We conclude the proof by showing that sequence cn − c[Xn] cannot be unbounded. If it is
unbounded we can take a subsequence ch(n) − c[Xh(n)] ↑ ∞ or ch(n) − c[Xh(n)] ↓ −∞. In
that case it holds that

Xh(n) − c[Xh(n)] = Xh(n) − ch(n) + ch(n) − c[Xh(n)]→∞ a.s.,

and by the dominated convergence theorem we find 0 = limn E arctan(Xh(n)−c[Xh(n)]) = π
2
,

which is a contradiction.

Theorem 2.6. Let X be a stochastic process with independent increments, then Xt−c[Xt]
is regular in probability.

Proof. Let t > 0 and tn ↑ t. We consider the sequence (Xtn)n∈N. By Theorem 2.1 there
are constants cn such that Xtn − cn converges in probability. By Lévy’s lemma 2.13,
Xtn − c[Xtn ] also converges in probability, the limit we denote by Xt− ∈ L0

P(Ω;R). Let
sn ↑ t be another sequence. By the same arguments Xsn − c[Xsn ] converges in probability
to a limit X ′t− ∈ L0

P(Ω;R). Now merge (sn), (tn) into one sequence (t′n), which by the
same arguments converges in L0

P(Ω;R). From this Xt− = X ′t− in L0
P(Ω;R), hence lims↑tXs

exists. The same can be concluded for lims↓tXs.

As we did for symmetric processes we can define the following jump processes. Let X be
a process with independent increments. We denote the regularization by Z = X − c[X].
Let J = {tn : n ∈ N} be the fixed jump points. We denote for every N ∈ N,

S−N(t) =
∑

n≤N,tn≤t

∆Ztn−, S+
N(t) =

∑
n≤N,tn<t

∆Ztn+. (21)

Now we consider the symmetrization Zs = (X − c[X]) −
(
X̄ − c[X̄]

)
defined on the

probability space (Ω∗,F∗, {F∗s }s∈T ,P∗). Now we define the symmetric jump processes,

Ss,−N (t) =
∑

n≤N,tn≤t

(
∆Ztn− −∆Z̄tn−

)
, Ss,+N (t) =

∑
n≤N,tn<t

(
∆Ztn+ −∆Z̄tn+

)
. (22)

By Theorem 2.5 there is a probability one set Ω′ and processes S−, S+ in DR resp. LR
such that for every T > 0 it holds that

lim
N→∞

||S−(ω.ω̄)− Ss,−N (ω.ω̄)||T = 0, lim
N→∞

||S+(ω.ω̄)− Ss,+N (ω.ω̄)||T = 0, ∀(ω, ω̄) ∈ Ω′.
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By Fubini’s Theorem there is ω̄ and Ωω̄ = {ω ∈ Ω : (ω, ω̄) ∈ Ω′} such that P {Ωω̄} = 1
and such that for every T > 0,

lim
N→∞

||S−(ω, ω̄)− Ss,−N (ω, ω̄)||T = 0, lim
N→∞

||S+(ω, ω̄)− Ss,+N (ω, ω̄)||T ,∀ω ∈ Ωω̄.

We define Σt(ω) := S−t (ω, ω̄) and Πt := S+
t (ω, ω̄).

Theorem 2.7. Let X be a stochastic process with independent increments, then there is
a deterministic function f : R+ → R such that

Xt = ft +Xc
t + Σt + Πt, (23)

where Xc = Xt−Σt−Πt is an Additive process. Furthermore Xc,Σ and Π are independent
processes.

Proof. We first define Y = Z − S−(·, ω̄) − S+(·, ω̄). Now for every t > 0 we have by
uniform convergence of Ss,−N , Ss,+N that

lim
s↑t

(Yt − Ys) = ∆Zt− − (∆Zt− −∆Zt−(ω̄)) = ∆Zt−(ω̄) a.s.

and
lim
s↓t

(Ys − Yt) = ∆Zt+ − (∆Zt+ −∆Zt+(ω̄)) = ∆Zt+(ω̄) a.s.

Define Xc = Y − c[Y ] where c[Y ]t = c[Yt], t ≥ 0. We will prove that Xc is continuous in
probability. First note that Y is regular in probability and thus c[Y ] is regular by lemma
2.13 . For s > 0 it holds

0 = E arctan(Ys − c[Ys]) = E arctan(Ys − Yt + Yt + c[Yt]− c[Yt]− c[Ys]).

We take s ↑ t and by the dominated convergence theorem (and considering arbitrary
sequences sn ↑ t) it follows

0 = lim
s↑t

E arctan(Ys − Yt + Yt + c[Yt]− c[Yt]− c[Ys])

= E arctan(−∆Yt− + lim
s↑t

(c[Yt]− c[Ys]) + Yt − c[Yt])

From this we find that lims↑t(c[Yt]− c[Ys]) = −∆Yt− a.s. The same argument can be used
for s ↓ t. Hence Xc is continuous in probability. We can write

Xt = Xc
t + S−(·, ω̄) + S+(·, ω̄) + c[Xt] + c[Yt].

We define ft = c[Xt] + c[Yt] and find the stated representation.

Remark 2.6. This decomposition can be extended to a process with independent incre-
ments and values in (Rn,B(Rn). Indeed, that

X =


X(1)

X(2)

...
X(n)


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is a process with independent increments. For i = 1, . . . , n, X(i) has independent incre-
ments. From the previous result we can write,

X =


f (1)

f (2)

...
f (n)

+


Xc,(1)

Xc,(2)

...
Xc,(n)

+


Σ(1)

Σ(2)

...
Σ(n)

+


Π(1)

Π(2)

...
Π(n)

 .

What remains to show is that Xc is continuous in probability. We already know that
Xc,(i) are continuous in probability for each i. For ε > 0 and s, t ∈ R+ it holds

P(||Xc
t −Xc

s || > ε) = P(||Xc
t −Xc

s ||2 > ε2)

≤
n∑
i=1

P(|Xc,(i)
t −Xc,(i)

s |2 > ε2

n
).

(24)

From the continuity of Xc,(i) we find that Xc is continuous in probability.

2.5 Càdlàg modification

We now consider Additive processes X with values in a separable Banach space E. For
such a process we can construct a càdlàg modification. For processes with values in R
this fact is proven by J.L. Doob [6]. For a martingale argument, see [1]. For a proof with
Dynkin-Kinney Theorem, see [20, Chapter 2, Theorem 11.5].

We use Lemma 2.1 and [21] to construct the modification for Additive processes with
values in separable Banach spaces.

Definition 2.11. Let X, Y be two stochastic processes defined on the same underlying
probability space. We call Y a modification of X if for every t > 0

P {Xt = Yt} = 1.

Definition 2.12. Let (Ω,F ,P) be a probability space and {Ft}t∈R+
be a filtration, then

we define

Fs+ :=
⋂
u>s

Fu,

to be the right-continuous extension of Ft.

The following lemma states that it costs nothing to replace the filtration Fs by its
right-continuous version Fs+.

Lemma 2.14. Let X be an Additive process w.r.t. the filtration Ft, i.e. Xt − Xs is
independent of Fs for every ≥ t ≥ s ≥ 0. Then X is also an Additve process w.r.t. Fs+.
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Proof. First suppose that Z is a random variable independent of Fs+. If Y is another
random variable such that P {Y = Z} = 1, then for every F ∈ Fs+ and B ∈ B(E) it holds

P {{Y ∈ B} ∩ F} = P {{Y = Z} ∩ {Y ∈ B} ∩ F}
= P {{Z ∈ B} ∩ F}
= P {Z ∈ B}P {F}
= P {Y ∈ B}P {F} .

(25)

Notice that that Xt−Xsn
P→ Xt−Xs for some sequence sn ↑ t. Then there is a subsequence

such that Xt −Xsnk

a.s.→ Xt −Xs. Now we can define a random variable

Z(ω) =

{
lim
k→∞

Xt(ω)−Xsnk
(ω) if ω ∈

{
limk→∞

(
Xt −Xsnk

)
exists

}
0 if ω /∈

{
limk→∞

(
Xt −Xsnk

)
exists

}
It holds that Z is

⋂
s<u≤tFXu,t-measurable. From this it holds that Z is independent of

Fs+. It holds that Z = Xt −Xs a.s. We conclude that Xt −Xs independent of Fs+.

We will now consider oscillations of our sample paths of X. For this we need the following
definitions.

Definition 2.13. Let X be a stochastic process. Let T = {t1, . . . , tn} ⊂ R+ be a finite
set of time points. We define the number of oscillations of length δ > 0 on T by

UX(T, δ) := sup
{
k : ∃ τ1 < τ2 < . . . < τk+1 in T, ||Xτi+1

−Xτi || > δ, i = 1, . . . , k
}
.
(26)

Definition 2.14. Let X be a stochastic process. Let T ⊂ R+ be a countable subset. The
number of oscillations of length δ > 0 on T is defined by

UX(T, δ) := sup {UX(T, δ) : T ⊂ T, T finite} . (27)

We will need an estimation for the number of oscillation of length δ > 0. This will be the
content of the following lemmas. Lemmas 2.15, 2.16 are proved in [21] for the real case.
We easily can extend these for processes with values in separable Banach spaces.

Lemma 2.15. Let {X} be an Additive process. Let T = {t1 < t2 < . . . < tn} be time
points such that P {||Xtk −Xt1|| > δ} ≤ ε < 1

4
, for k = 1, . . . , n. Then we have the

following estimate,

EUX(T, 4δ) ≤ 4ε

1− 4ε
.

Proof. Let m ∈ {1, . . . , n− 1} and define the sets Tk = {tk, tk+1, . . . , tn} and

Ak =
{
||Xt2 −Xt1|| ≤ 4δ, . . . , ||Xtk−1

−Xtk−2
|| ≤ 4δ, ||Xtk −Xtk−1

|| > 4δ
}

Bk = Ak ∩ {UX(Tk, 4δ) ≥ m− 1} .
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Now it holds that Ak for k = 2, . . . n− 1 are disjoints sets and it holds that

P {UX(T, 4δ) ≥ m} =
n−1∑
k=2

P {Bk}

=
n−1∑
k=2

P {UX(Tk, 4δ) ≥ m− 1}P {Ak}

≤
n−1∑
k=2

P {UX(T, 4δ) ≥ m− 1}P {Ak}

≤ P {UX(T, 4δ) ≥ m− 1}P
{

max
1≤k,l≤n

||Xtk −Xtl || > 4δ

}
≤ 4P {UX(T, 4δ) ≥ m− 1}P {||Xtn −Xt1|| > δ}
≤ P {UX(T, 4δ) ≥ m− 1} 4ε

(28)

By iteration, P {UX(T, 4δ) ≥ m} = (4ε)m. This yields

EUX(T, 4δ) =
∑
m≥1

P {UX(T, 4δ) ≥ m} ≤ 4ε

1− 4ε
.

Lemma 2.16. Let X be an Additive process. Let T ⊂ [s1, s2] be a countably dense set of
time points, s1, s2 ∈ T. Suppose that P {||Xt −Xs1|| > δ} ≤ ε < 1

4
, for all t ∈ T. Then

we have the following estimate,

EUX(T, 4δ) ≤ 4ε

1− 4ε
.

Proof. For every finite set T ⊂ T with s1 ∈ T , we find by Lemma 2.16 it holds

EUX(T, 4δ) ≤ 4ε

1− 4ε
.

Now by the monotone convergence theorem the statement follows.

Lemma 2.17. Let X be an Additive process and D ⊂ R+ be countable dense subset. Then
for every T > 0,

P

{
sup

t∈D∩[0,T ]

||Xt|| <∞

}
= 1. (29)

Proof. Fix T > 0 and let 0 = d1 < d2 < . . . < dn = T , with d2, . . . , dn−1 ∈ D. By
continuity of the map

X : [0, T ]→ L0
P(Ω;E), t 7→ Xt,

it follows that the collection of random variables (Xt)t∈[0,T ] is a compact subset of L0
P(Ω;E).

We can take by Prohkorov’s theorem 4.3 a real value c > 0 sufficiently large so that
max1≤i≤n P({||Xdi || > c}) ≤ δ < 1

2
. Then from{

max
1≤i≤n

||Xdi|| > 4c

}
⊂
{

max
1≤i,j≤n

||Xdi −Xdj || > 4c

}
,
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and Lemma 2.1 we find

P
{

max
1≤i≤n

||Xdi|| > 4c

}
≤ P

{
max

1≤i,j≤n
||Xdi −Xdj || > 4c

}
≤ 4P {||XT || > c} .

(30)

From this we conclude that P
({

supd∈D∩[0,T ] ||Xd|| > 4c
})
≤ 4P (({||XT || > c}). By taking

c→∞ we find from tightness of XT that supd∈D∩[0,T ] ||Xd|| <∞ a.s.

Theorem 2.8. Let X be an Additive Process. Let D ⊂ R+ be a countable, dense subset.
Then for every T > 0 there exists a set ΩT of probability 1, such that

lim
d↑s
d∈D

Xd and lim
d↓s,
d∈D

Xd,

exist and are finite for s ∈ (0, T ] and s ∈ [0, T ), respectively.

Proof. Let t ∈ [0, T ], δ > 0 and 0 < ε < 1
4
. By Lemma 4.5 there exists a θ > 0 such that

for all u, v ∈ [0, T ] with |u− v| < θ, it holds that

P {||Xu −Xv|| > δ} < ε.

Take s1, s2 ∈ [0, T ] ∩ D such that s1 < t < s2 and |s1 − s2| < θ. Then by Lemma 2.15 it
follows that

EUX(D ∩ [s1, s2], 4δ) ≤ 4ε

1− 4ε
.

We can cover [0, T ] with a finite number of compact intervals [s1, s2] and from this

EUX(D ∩ [0, T ], 4δ) ≤ 4ε

1− 4ε
.

We define now for T > 0 the following set,

ΩT :=

{
ω ∈ Ω : UX(D ∩ [0, T ],

1

n
) <∞,∀n and sup

d∈D∩[0,T ]

||Xd|| <∞

}
∈ FT . (31)

Note that by Lemma 2.17 and UX(D ∩ [0, T ], 4δ) < ∞ a.s., for every choice δ > 0,
P {ΩT} = 1. Let s ∈ (0, T ] and suppose that for ω ∈ Ω, limd↓sXd does not exists. There
are two possibilities:

1. There is a sequence dn ↓ s, dn ∈ D, such that limn ||Xdn|| =∞.

2. There is a sequence dn ↓ s, dn ∈ D, and δ > 0 such that UX({dn}∞n=1, δ) =∞.

In both cases ω /∈ ΩT . For s ∈ [0, T ) and limd↑sXd we can apply the same arguments. We
conclude that on ΩT , the limits

lim
d↑s
d∈D

Xd and lim
d↓s,
d∈D

Xd

exist and are finite for s ∈ (0, T ] and s ∈ [0, T ), respectively.
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Theorem 2.9. Let {X}t∈R+
be an Additive process and D a countably dense in R+. Then

there exists a modifiction X̄ with independent increments adapted to {Ft+}t∈R+
, with

càdlàg paths for all ω ∈ Ω.

Proof. Let ΩT be defined as (31). It holds that ΩT ⊂ ΩS for T ≥ S. Define ΩT+ =⋃
S>T ΩS. Put

X̄T (ω) =

{
lim

d∈D,d↓T
Xd(ω) if ω ∈ ΩT+

0 if ω /∈ ΩT+

Let T ∈ R+, and suppose that ω /∈ ΩT+. Then for every S > T it holds that ω /∈ ΩS+,
Hence X̄T = X̄S = 0 and thus limS↓T X̄S = X̄T . Suppose ω ∈ ΩT+, then right-continuity
at T follows from existence of limits limd↓T,

d∈D
Xd. Furthermore the existence of left-limits

follows from right-continuity. We conclude that every path of X̄ is càdlàg. For every
t > 0, P

{
Xt = X̄t

}
= 1 because X is continuous in probability. Let S < T , then

X̄T − X̄S = lim
n→∞

Xtn −Xsn a.s.

for sequences tn ↓ T and sn ↓ S. From this it holds that X̄T − X̄S is independent of
FS+.
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3 Lévy-Ito decomposition

3.1 Introduction

In this chapter we consider the structure of Additive processes, i.e. stochastic processes
with independent increments that are continuous in probability. By Theorem 2.9 there
exists a càdlàg modification. In this chapter an Additive process {Xt}t∈R+

will therefore
always be assumed to be càdlàg.

By the càdlàg property it is possible to define left-jumps, ∆Xt− := lims↑tXt −Xs. If
now the condition of continuity in probability is dropped we can have fixed jumps at
time t > 0. Suppose at t > 0 the process has a jump ∆Xt−(ω) 6= 0, we say that X has
a fixed jump at time t > 0, if P {ω : ∆Xt−(ω) 6= 0} 6= 0. If {Xt}t∈R+

is a process with
independent increments and the càdlàg property, then continuity in probability has a
natural interpretation. The condition of continuity in probability excludes fixed jumps.
This makes Additive processes a suitable model for phenomena with jumps at unexpected
times.

Suppose X has a jump at t > 0, i.e. ∆Xt− = Xt −Xt− = x 6= 0. We represent such
a jump at t with amplitude x as a point (t, x) in the (t, E)-plane R+ × (E \ 0). Note
in t = 0 there is no jump. Let us fix some notation. We denote S = R+ × (E \ 0) and
S = B(R+)×B(E \0). We will count for every A ∈ S the number of points (t,∆Xt−) ∈ A.
For A ∈ S define A(t) = {(s, x) ∈ A : 0 ≤ s ≤ t} and An =

{
(s, x) ∈ A : ||x|| > 1

n

}
. We

say A ∈ S(u) for u > 0 if

A ⊂ R+ × {x ∈ E : ||x|| > u} .

Let S0 :=
⋃
u>0 S(u) be the collection of all Borel sets with positive distance from the

origin. Note that S0 is a ring of subsets of S.

Definition 3.1. Let X be an Additive process.

1. For A ∈ S, denote the number of jumps in A by JX(ω,A) := # {(t,∆Xt) ∈ A}.

2. For all t > 0 and A ∈ S0 the number of jumps that are in the Borel set A in the
interval [0, t] is denoted as Nt(A) := JX(·, A(t)).

3. Let Λ ∈ B(E) with 0 /∈ Λ, then the sum of all jumps that took place on [0, t] and
are in Λ is denoted as

∆XΛ
t :=

∑
h≤t,

∆Xh−∈Λ

∆Xh−.

In section 3.2.1 we show that {JX(·, A)}A∈S is a random measure. In section 3.2.2
we consider {Nt(A}t∈R+

for every A ∈ S0. We will show {Nt(A}t∈R+
is Additive and

Poisson. In section 3.2.3 it is shown that for Λ ∈ B(E) with 0 /∈ Λ the process ∆XΛ
t is
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Additive. This process can naturally be represented as an integral with respect to the
random measure JX counting the jumps of X. Next we define the sets

Λ1 = {x ∈ E : ||x|| > 1} , Λn =

{
x ∈ E :

1

n
≤ ||x|| < 1

n− 1

}
. (32)

In section 3.3 we will show that ∆XΛ1 , . . . ,∆XΛk , X−∆X
⋃
i Λi are independent processes

that never jump together. The process {Xt}t∈R+
can be represented as

Xt =
N∑
i=1

∆XΛi
t︸ ︷︷ ︸

′Jump part′

+Xt −∆X
⋃N
i Λi

t︸ ︷︷ ︸
′Continuous part′

.

By taking N →∞, we are exhausting the jumps of {Xt}t∈R+
in the continuous part. We

expect that {Xt}t∈R+
consists of a continuous part and a jump part. This representation

is the so called Lévy-Ito decomposition. The main difficulty is to show in what sense∑N
i=1 ∆XΛi converges.

”Mathematics consists of proving the most obvious thing in the least obvious
way”

In section 3.5 we define the map

µX : S → [0,∞], A 7→ E[JX(·, A)],

and show that {JX(·, A)}A∈S is a random Poisson measure with Poisson intensity µX .
We collect all observations and state the structure of Additive process in its most ab-
stract form. We represent a general Additive process as an Additive process with a.s.
continuous paths and an integral w.r.t. the random Poisson measure with Poisson intensity.

There are two ways of approaching the structure of Additive processes. One approach is
using the correspondence of infinitely divisible distributions and the collection of Additive
processes. A random variable X is infinitely divisible if for every n ∈ N it can be written
as

X
d
= Xn,1 + · · ·Xn,n, (33)

where Xn,1, . . . , Xn,n are i.i.d.

Theorem 3.1. If {X}t∈R+
is Additive, then for every t ∈ R+, Xt is infinitely divisible.

Proof. See [20, Theorem 9.1].

Then with the aid of the Lévy-Khintchine representation of characteristic functions of
infinitely divisible distributions, see [20, Theorem 8.1], the Levy-Ito decomposition can be
proved. For this approach we refer to [20].

Another approach is a direct analysis of jumps of sample paths. This approach goes
back to Ito [10]. The ideas describing the structure of Additive processes comes from
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Lévy and were realized by Ito. With every infinitely divisible distribution µ it is possible
to construct a Lévy process {Xt}t∈R+

such that X1 has distribution µ, see [20, Theorem
7.10]. This direct analysis gives as by product the Lévy-Khintchine representation, [10].
We will follow this approach. In section 3.5 we give some concluding remarks.
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3.2 Analysis of jumps

We consider the objects defined in Definition 3.1. It will be shown that for Λ ∈ B(E)
with 0 /∈ Λ the process ∆

{
XΛ
t

}
t∈R+

is additive. Let Λ1 = {x ∈ E : ||x|| > 1}, then

X1
t := Xt −∆XΛ1

t , t ≥ 0 is additive with bounded jumps. If an Additive processes has
bounded jumps, then the k-th moments are all finite, k = 1, 2, . . .

Definition 3.2. Let {X}t∈R+
be an Additive process, then we say that X has bounded

jumps if for some K > 0,

P
{

sup
t∈R+

‖∆Xt−‖ ≤ K

}
= 1.

Theorem 3.2. Let X be an Additive process with values in a separable Banach space with
bounded jumps. Then for every s, t ∈ R+, s < t,

E
[

sup
s≤u≤t

‖Xu −Xs‖k
]
<∞, for all k ∈ N.

Proof. See [9, Chapter IV, §1, Lemma 2 (13), p.267].

Lemma 3.1. For every Λ ∈ B(E) with ||x|| ≤ K for all x ∈ Λ and some K > 0 it holds

E[supt∈[0,T ]

∥∥∆XΛ
t

∥∥2
] <∞ and t 7→ E[∆XΛ

t ] is continuous.

Proof. It holds
{

∆XΛ
t

}
t∈R+

has bounded jumps. The first statement follows from Theorem

3.2. The second statement follows from continuity in probability and the dominated
convergence Theorem [16, Proposition 1.8].

With Additive process with bounded jumps we enter in the realm of martingales.
Let {Xt}t∈R+

be a real-valued Additive process. The process Xt − EXt is a martingale.
Now the whole martingale machinery can be used to investigate the structure of these
real-valued processes, see [4].

3.2.1 Random jump measure

The goal is to prove that {JX(·, A)}A∈S is a random measure. We use [11].

Definition 3.3. Let (Ω,F ,P) be a probability space and (X,Σ) be a measure spaces. A
random measure is a map M : Ω× Σ→ R+ ∪ {∞} such that

1. For every A ∈ Σ, ω 7→ M(ω,A) is F -measurable.

2. For every ω ∈ Ω, A 7→ M(ω,A) is a measure for (X,Σ).

If M takes values in N ∪ {∞} , then we call M a random counting measure.

Let Λ ∈ B(E) with 0 /∈ Λ̄, then by Lemma 4.2 the number of jumps with amplitude in
Λ is finite for every ω ∈ Ω. It is clear that JX(·, (s, t]×Λ) is determined by the increments
on [s, t], hence it is measurable w.r.t.

σ {Xu −Xv : s ≤ u < v ≤ t} .

This is the content of the following lemma.
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Lemma 3.2. Let Λ ∈ B(E) with 0 /∈ Λ̄, then for s < t, JX(·, (s, t]×Λ) is FXs,t-measurable.

Proof. First we define Λn =
{
x ∈ E : d(x,Λ) < 1

m

}
. Suppose that JX ≥ n, then there

exist t1, . . . , tn ∈ (s, t] so that ∆Xti ∈ Λ. For every m, k ∈ N we can find pi, qi ∈
(s, t] ∩Q ∪ {t} and qn = t possibly, i = 1, . . . , n such that

s < p1 < t1 < q1 < p2 < t2 < . . . pn < tn < qn ≤ t

with |pi − qi| < 1
k

and Xqi −Xpi ∈ Λm. From this we find

{JX ≥ n} ⊂
⋂
m∈N

⋂
k∈N

⋃
p1<q1<...<pn<qn

pi,qi∈(s,t]∩Q, or qn=t

|pi−qi|< 1
k

⋂
i

{Xqi −Xpi ∈ Λm} = (∗).

Suppose now the converse, ω ∈ (∗). For every m, k ∈ N we can find p
(m,k)
i , q

(m,k)
i with

|q(m,k)
i − p(m,k)

i | < 1
k

and X
q
(m,k)
i
−X

p
(m,k)
i
∈ Λm for i = 1, 2, . . . , n. We take now l = k = m

and consider for every l ∈ N,

s < p
(l,l)
1 < q

(l,l)
1 < p

(l,l)
2 < . . . p(l,l)

n < q(l,l)
n ≤ t.

We can take a subsequence (l(r))r∈N such that the sequences p
(l(r),l(r))
i , q

(l(r),l(r))
i converge for

every i = 1, . . . , n. We have that |q(l(r),l(r))
i − p(l(r),l(r))

i | < 1
l(r)

and X
q
(l(r),l(r))
i

−X
p

(l(r),l(r))
i

∈
Λl(r), we conclude that we can find t1, . . . , tn ∈ (s, t] such that ∆Xti ∈ Λ, hence JX ≥ n.
It follows that

{JX ≥ n} =
⋂
m∈N

⋂
k∈N

⋃
p1<q1<...<pn<qn

pi,qi∈(s,t]∩Q, or qn=t

|pi−qi|< 1
k

⋂
i

{Xqi −Xpi ∈ Λm} ∈ FXs,t.

The next lemma shows that for every A ∈ S with A ⊂ (s, t] × Λ, JX(·, A) is FXs,t-
measurable.

Lemma 3.3. Let Λ ∈ B(E) with 0 /∈ Λ̄ and define for s < t,

DΛ
s,t =

{
A ∈ S : JX(·, ((s, t]× Λ) ∩ A) is FXs,t−measurable

}
.

Then it holds that DΛ
s,t = S.

Proof. First we show that DΛ
s,t is a D-system. By lemma 3.2 it holds that S ∈ DΛ

s,t. Let
A,B ∈ DΛ

s,t with A ⊂ B, then for ω ∈ Ω,

JX(ω, ((s, t]× Λ) ∩B \ A) = JX(ω, ((s, t]× Λ) ∩B)− JX(ω, ((s, t]× Λ) ∩ A).

From this it follows B \ A ∈ DΛ
s,t. Let An ∈ DΛ

s,t such that An ⊂ An+1 and A =
⋃
nAn,

then
JX(ω, ((s, t]× Λ) ∩ A) = sup

n
JX(ω, ((s, t]× Λ) ∩ An).
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From this we conclude A ∈ DΛ
s,t. The class of subsets DΛ

s,t is a D-system. Now define the
following class of subsets

C =
{

(s, t]× Λ : s < t,Λ ∈ B(E \ 0), with 0 /∈ Λ̄
}
.

Note C is a π-system. Furthermore the σ-algebra generated by C is S. It follows that
C ⊂ DΛ

s,t and thus by Theorem 4.1, σ {C} ⊂ DΛ
s,t. From this we conclude that DΛ

s,t = S.

Lemma 3.4. Let X be an Additive process. Then {JX(·, A)}A∈S is a random measure,
i.e. the map JX : Ω× S → N ∪ {∞} is a random counting measure.

Proof. Let A ∈ S and consider Cn =
{

(h, x) ∈ S : h ∈ ( 1
n
, n], 1

n
< ‖x‖ ≤ n

}
. It holds that

JX(·, A) = supn JX(·, A∩Cn). For all ω ∈ Ω by Lemma 3.3 JX(ω,A∩Cn) is measurable
for each n and thus by the monotone convergence theorem it follows that JX(ω,A) is
measurable. The map A 7→ JX(ω,A) takes values in N, possibly ∞. It is clear by
definition that for every ω ∈ Ω, A 7→ JX(ω,A) is a counting measure.

3.2.2 Poisson processes

In this section we consider for every A ∈ S0 the process Nt(A) defined as the number of
jumps of {Xt}t∈R+

with amplitudes in the Borel set A during the interval [0, t]. Note that
A is a Borel set with positive distance from the origin. By Lemma 4.2, Xt(ω) has a finite
number of jumps with amplitude bigger than u > 0. From this, Nt(A) is finite for every
realization. The first result we will obtain is that {Nt(A)}t∈R+

is a Poisson process.

Definition 3.4. A stochastic process Nt is called a Poisson process with intensity Λ :
R+ → R+ if,

1. For all ω ∈ Ω, N0(ω) = 0.

2. The intensity Λ : R+ → R+ is a non-decreasing function and Λ(0) = 0.

3. For every set t1 < . . . < tn of timepoints, Ntn − Ntn−1 , Ntn−1 − Ntn−2 , . . . , Nt1 are
independent random variables.

4. For every s < t, s, t ∈ R+

Nt −Ns ∼ Poiss(Λ(t)− Λ(s)).

The characteristic function of a Poisson process Nt with intensity Λ(t) is

ΦNt(u) = eΛ(t)(ei·u−1).

Lemma 3.5. For every A ∈ S0, the process {Nt(A)}t∈R+
is Additive and Poisson.

Proof. The process Nt(A) is an increasing process with independent increments by lemma
3.2. The process grows with jumps of amplitude 1. This process has a finite number
of jumps on [0, t] and is càdlàg. That Nt(A) is continuous in probability follows from
continuity in probability of X. To see this let t > 0 and suppose that ∆Nt−(A) 6= 0. By
definition of Nt(A) , P(∆Nt−(An) 6= 0) ≤ P(∆Xt− 6= 0) = 0. This shows left-continuity in
probability. Right-continuity follows by definition. By lemma 4.9 it holds that Nt(A

n) is
a Poisson process.
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Lemma 3.6. For every A ∈ S0, the random variable JX(ω,A) is Poisson distributed with

lim
t→∞

E[JX(ω,A(t))] = E[JX(ω,A)] <∞.

Proof. Let A ∈ S0, then Nt(A) is Additive and Poisson. Let Λ be the intensity of Nt(A).
By Monotone convergence Theorem it holds that

E[JX(ω,A)] = lim
t→∞

E[JX(ω,A(t))].

From {Nt(A) > N} ⊂ {JX(A) > N} it follows

P {JX(A) > N} ≥ P {Nt(A) > N} = 1−
N∑
i=0

(Λn(t))i

i!
e−Λn(t). (34)

Suppose that limt→∞ E[JX(ω,A(t))] = limt→∞ Λ(t) = ∞, then with (34) we find that
P {JX(A) > N} = 1 for every N ∈ N. Hence P {JX(A) =∞} = 1, but JX(A) is finite
for A ∈ A0. This is a contradiction. We conclude limt→∞ E[JX(ω,A(t))] <∞.

Lemma 3.7. Let X be an Additive process. The map defined by,

µX : S0 → [0,∞], A 7→ E [JX(·, A)] , (35)

is a σ-finite premeasure on (S,S0).

Proof. By definition of JX , JX(ω, ∅) = 0 and thus µX(∅) = 0. Let A,An ∈ S0 with
An ∩ Am = ∅ and A =

⋃
nAN , then JX(ω,A) =

∑
n JX(ω,An). By the Monotone

convergence Theorem E [JX(ω,A)] = limn→∞
∑

k≤n E [JX(ω,Ak)] . We conclude that the
map A 7→ E [JX(ω,A)] is a measure on (S,S0). From Lemma 3.7 it holds that µX(A) <∞
for every A ∈ S0. From this it is clear that µX is σ-finite.

3.2.3 The Jump processes

Let Λ ∈ B(E) with 0 /∈ Λ , the goal is to show that ∆XΛ
t is an Additive process. We will

obtain the representation

∆XΛ
t (ω) =

∫ t

0

∫
Λ

xJX(ω, dsdx),

i.e. for every ω ∈ Ω , the process ∆XΛ
t (ω) is represented as a Bochner-Integral with

respect to the random counting measure JX that counts the jumps of the process. We
will first introduce this E-valued integral. We follow [18, Chp. 1.1].

First suppose that X is simple,

X =
∑
i

xiIAi , Ai ∈ F , xi ∈ E.
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We set
∫
B
X(ω)P(dω) :=

∑
i xiP(Ai∩B). The value does not depend on the representation

of X as simple function. By the triangle inequality it holds that∥∥∥∥∫
B

X(ω)P(dω)

∥∥∥∥ ≤ ∫
B

||X(ω)||P(dω).

For a general random variable X there is a sequence of simple random variables Xm such
that ||X(ω)−Xm(ω)|| decreases pointwise for every ω ∈ Ω, monotonically to 0. To see
this, let {e1, . . . , en, . . .} be a dense subset of E. Define pm = min {||X − ek|| : k ≤ m} ,
km = min {k ≤ m : pm = ||X − ek||} and Xm = ekm . It is clear that Xm ∈ {e1, . . . , em}.
It holds that ||X −Xm|| monotonically decreases to 0, for every ω ∈ Ω.

Next we suppose that
∫

Ω
||X(ω)||P(dω) < ∞. We can show that

∫
Ω
XmP(dω) is a

Cauchy sequence, ∥∥∥∥∫
Ω

Xn(ω)P(dω)−
∫

Ω

Xm(ω)P(dω)

∥∥∥∥
≤
∫

Ω

‖X(ω)−Xn(ω)||P(dω) +

∫
Ω

‖X(ω)−Xm(ω)||P(dω).

The right term will go to 0 as n,m→∞. We define the integral of X now as∫
Ω

X(ω)P(dω) := lim
m→∞

∫
Ω

Xm(ω)P(dω).

We will also use the notation EX for
∫

Ω
XP(dω). If we take another sequence of simple func-

tions X ′m such that
∫

Ω
||X−X ′m||P(dω)→ 0 as m→∞, then we will get the same integral.

We also need a Bochner-integral on a σ-finite measure space (Ω,A, µ). First note that
for such a measure space there exist (An)n∈N ⊂ A such that µ(An) <∞, An∩Am = ∅, for
n 6= m and

⋃
nAn = Ω. Let X : Ω→ E be a measurable map and define Xn = X ·IAn . As

above we can find a sequence of simple random variables Xn
m such that ||Xn −Xn

m|| → 0
as m→∞. Define Xm =

∑m
n=1X

m
n , then ||X(ω)−Xm(ω)|| → 0 for every ω ∈ Ω. Define

X ′m = I{||Xm||≤2||X||}Xm, (36)

then it holds that

||X ′m(ω)−X(ω)|| → 0, as m→∞ and ||X ′m(ω)−X(ω)|| ≤ 3||X(ω)||.

If
∫

Ω
||X||µ(dω) <∞, then by the Lebesque’s dominated convergence theorem it holds

that ∫
Ω

||X(ω)−X ′m(ω)||µ(dω)→ 0, as m→∞.

We can define for a measurable function X : Ω → E with
∫

Ω
||X(ω)||µ(dω) < ∞ the

E-valued integral by ∫
Ω

X(ω)µ(dω) := lim
m→∞

∫
Ω

X ′m(ω)µ(dω).
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Definition 3.5. Let (Ω,A, µ) a measure space and E a separable Banach space with
Borel-σ-algebra B(E). A measurable function f : Ω → E is Bochner-integrable if∫
||f(ω)||µ(dω) <∞.

Remark 3.1. For a Bochner -integrable map f : Ω→ E it holds∥∥∥∥∫
Ω

Xµ(dω)

∥∥∥∥ ≤ ∫
Ω

||X||µ(dω). (37)

We would like to point out that we can define the conditional expectation in a general
setting.

Theorem 3.3. Let X : Ω → E be a random variable in a separable Banach space E
with E||X|| <∞ and G a sub-σ-algebra of (Ω,F ,P). Then there exist a unique random
E-valued, G-measurable random variable Z , up to a probability 1 set, such that∫

A

X(ω)P(dω) =

∫
A

Z(ω)P(dω), ∀A ∈ G. (38)

The random variable Z will be denoted by E[X|G].

Proof. See [18, Proposition 1.10]

It also follows from the proof of this theorem that

‖E[X|G]‖ ≤ E[||X|||G]. (39)

Definition 3.6. Let (Ω,F ,P) be a probability space with filtration (Ft)t∈R+ . Let X be
an adapted E-valued stochastic process with E a separable Banach space. The process X
is called a martingale if

E[Xt|Fs] = Xs, a.s. (40)

Lemma 3.8. Let X be a process with independent increments with E||Xt|| <∞. Then
the process Xt − EXt is a martingale with independent increments.

Proof. Let s < t , then by the independent increment property it holds

E[Xt−EXt|Fs] = −EXt +E[Xt−Xs +Xs|Fs] = −EXt +E[Xt−Xs] +Xs = Xs−EXs.

Theorem 3.4. Let M be an E-valued martingale with càdlàg paths. Then for all p ≥ 1
and λ > 0 we have

P

{
sup
t∈[0,T ]

||Mt|| ≥ λ

}
≤ 1

λp
E [||MT ||p] (41)

Proof. Let s < t , then it holds by (39)

||Ms|| = ||E[Mt|Fs]|| ≤ E[||Mt|||Fs].

From this we find that ||Mt|| is a real-valued sub-martingale. For real-valued sub-
martingales the equation (41) holds.
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Definition 3.7. Let Λ ∈ B(E) with 0 /∈ Λ and F a separable Banach space. Let
f : (S,S)→ (F,B(F )) a measurable function. Then, we define

f(∆XΛ)t :=
∑
s≤t

f(s,∆Xs−)IΛ(∆Xs−). (42)

Lemma 3.9. Let Λ ∈ B(E) with 0 /∈ Λ and F a separable Banach space. Sup-
pose f : (S,S) → (F,B(F )) a measurable function, then for every ω ∈ Ω it holds∫ T

0

∫
Λ
||f(s, x)||JX(ω, dsdx) <∞ and

f(∆XΛ)T =

∫ T

0

∫
Λ

f(s, x)JX(ω, ds dx). (43)

Furthermore
{
f(∆XΛ)t

}
t∈R+

is an Additive process and for every 0 ≤ u < v, u, v ∈ R+,

f(∆XΛ)v − f(∆XΛ)u,

is FXu,v-measurable.

Proof. Let fn =
∑m(n)

j=1 α
(n)
j I

A
(n)
j

with A
(n)
i ∩A

(n)
j = ∅ defined as in (36) such that fn(s, x)→

f(s, x) for every (s, x) ∈ R+ × (E \ {0}). Let 0 ≤ u < v, u, v ∈ R+. For every ω there are
only a finite number of jumppoints (sn,∆Xsn−) ∈ [u, v]×Λ, n = 1, . . . ,JX(ω, [u, v]×Λ), see
Lemma 4.2. For ω ∈ Ω let M(ω) = maxs≤T ||f(s,∆Xs−)||.By the monotone convergence
theorem it follows that ∫ v

u

∫
Λ

||f(s, x)||JX(ω, dsdx)

= lim
N→∞

N2N−1∑
k=0

k

2N
JX
(
ω,

{
k

2N
≤ ||f || < k + 1

2N

}
∩ ([u, v]× Λ)

)
≤ M(ω) · JX(ω, [u, v]× Λ) <∞.

Hence
∫ v
u

∫
Λ
||f(s, x)||JX(ω, dsdx) <∞. Now it holds that f(s, x) is Bochner integrable

and ∫ v

u

∫
Λ

fn(s, x)JX(ω, ds dx)→
∫ v

u

∫
Λ

f(s, x)JX(ω, ds dx).

From this it follows∫ v

u

∫
Λ

f(s, x)JX(ω, ds dx) = lim
N→∞

m(n)∑
j=1

α
(n)
j JX

(
ω, ([u, v]× Λ) ∩ A(n)

j

)
. (44)

Note that JX
(
ω, ([u, v]× Λ) ∩ A(n)

j

)
is FXu,v-measurable and thus

∫ v
u

∫
Λ
f(s, x)JX(ω, ds dx)

is FXu,v-measurable. There are only a finite number of jump points on compact intervals
and thus for every T > 0 it holds

max
m=1,...,JX(ω,[0,T ]×Λ)

||fn(sm,∆Xsm−)− f(sm,∆Xsm−)|| → 0, n→∞.
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Note that
∫ T

0

∫
Λ
fn(s, x)JX(ω, ds dx) =

∑
s≤t fn(s,∆Xs−)IΛ(∆Xs−). From this it follows

that ∫ T

0

∫
Λ

f(s, x)JX(ω, ds dx) =
∑
s≤t

f(s,∆Xs−)IΛ(∆Xs−).

Next we note that f(∆XΛ)v − f(∆XΛ)u =
∫ v
u

∫
Λ
f(s, x)JX(ω, ds dx) is FXu,v-measurable,

hence
{
f(∆XΛ)t

}
t∈R+

is an Additive process.

3.3 Independence of processes with independent increments

Two processes defined on the same underlying probability space are called independent if
the σ-algebra’s FX and FY are independent, see Definition 4.6. The main goal of this
section is to prove the following theorem.

Theorem 3.5. Let Λ1,Λ2, . . . ,Λk ∈ B(E) with 0 /∈ Λ1,Λ2, . . . ,Λk and Λj ∩ Λj = ∅, for
i 6= j. Then the processes ∆XΛ1 , . . . ,∆XΛk , X −∆X

⋃
i Λi are independent.

All the lemmas and theorems are inspired and based on results from [1],[9].

Note that the processes ∆XΛ1 , . . . ,∆XΛk , X −∆X
⋃
i Λi never jump together. This fact

will be used to show independence. Two stochastic processes on the same underlying prob-
ability space are independent if for every t1, . . . , tn ∈ R+, (Xt1 , . . . , Xtn) and (Yt1 , . . . , Ytn)
are independent by Lemma 4.1. For the proof of Theorem 3.5 we need the following
lemmas.

Lemma 3.10. Let {Xt}t∈R+
, {Yt}t∈R+

be two real-valued stochastic processes on the same
underlying filtered probability space such that (Xt, Yt)t∈R+ is a process with independent
increments. Suppose

1. for all t, t ≥ 0, Xt and Yt are independent;

2. for all s < t, s, t ∈ R+, Xt −Xs and Yt − Ys are independent.

Then {Xt}t∈R+
, {Yt}t∈R+

are independent processes.

Proof. Let t1, . . . , tn ∈ R+, 0 = t1 < t2 < . . . < tn. Recall that two random vectors
X = (X1, . . . , Xd) and Y = (Y1, . . . , Yd) are independent if and only if Φ(X,Y )(u, v) =
ΦX(u)ΦY (v) for u, v ∈ Rd. Let u, v ∈ Rn,

Φ(Xt1 ,...,Xtn ,Yt1 ,...,Ytn )(u, v) =
n∏
i=1

Φ(Xti−Xti−1 ,Yti−Yti−1 )

(
n∑
l=i

ul,
n∑
l=i

vl

)

=
n∏
i=1

ΦXti−Xti−1

(
n∑
l=i

ul

)
ΦYti−Yti−1

(
n∑
l=i

vl

)
= Φ(Xt1 ,...,Xtn )(u)Φ(Yt1 ,...,Ytn )(v)

(45)

Hence (Xt1 , . . . , Xtn) and (Yt1 , . . . , Ytn) are independent for all n = 1, 2, . . . , 0 ≤ t1 <
t2 . . . < tn and thus {Xt}t∈R+

, {Yt}t∈R+
are independent processes.
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Remark 3.2. Let X, Y be E-valued stochastic processes with independent increments
and with E a separable Banach space. Suppose the same conditions as in lemma 3.10.
We can prove the same statement.

Φ(Xt1 ,...,Xtn ,Yt1 ,...,Ytn )(x
∗
1, . . . , x

∗
n,y
∗
1, . . . , y

∗
n)

=
n∏
i=1

Φ(Xti−Xti−1 ,Yti−Yti−1 )

(
n∑
l=i

x∗l ,
n∑
l=i

y∗l

)

=
n∏
i=1

ΦXti−Xti−1

(
n∑
l=i

x∗l

)
ΦYti−Yti−1

(
n∑
l=i

y∗l

)
= Φ(Xt1 ,...,Xtn )(x

∗
1, . . . , x

∗
n)Φ(Yt1 ,...,Ytn )(y

∗
1, . . . , y

∗
n),

(46)

from which we conclude that (Xt1 , . . . , Xtn) and (Yt1 , . . . , Ytn) are independent for all
n = 1, 2, . . . , 0 ≤ t1 < t2 . . . < tn and thus {Xt}t∈R+

, {Yt}t∈R+
are independent processes.

Let X be a real-valued process with independent increments. For u ∈ Rn, recall
(1) ϕ(s, t)(u) = ΦXt−Xs(u). By continuity in probability it follows from Theorem 4.7
that t 7→ ϕ(s, t)(u) is continuous, t ≥ s. It holds that ϕ(s, s)(u) = 1. Define T =
inf {t ≥ s : ϕ(s, t)(u) = 0}. Suppose that T <∞ and let s < h < T , then

ϕ(s, T )(u) = ϕ(s, h)(u)ϕ(h, T )(u).

By definition ϕ(s, T )(u) = 0 and thus it holds ϕ(h, T )(u) = 0. Take h ↑ T and by
continuity we it holds Φ(u, T, T ) = 0. Hence we found a contradiction and thus we
conclude that T = ∞. For every u ∈ Rn t 7→ ϕ(0, t)(u) is continuous and for t > 0 it
holds

ϕ(0, t)(u) 6= 0. (47)

Lemma 3.11. Let X be a stochastic process with independent increments, then by (47)
for every u ∈ Rn we can define

Mu
t :=

ei〈u,Xt〉

E[ei〈u,Xt〉]
, (48)

and Mu is a complex martingale w.r.t. {Ft}t∈R≥0
.

Proof. By independent increments we find that

E[Mu
t |Fs] =

E
[
ei〈u,Xt−Xs+Xs〉|Fs

]
E[ei〈u,Xt−Xs+Xs〉]

=
ei〈u,Xs〉E

[
ei〈u,Xt−Xs〉|Fs

]
Eei〈u,Xt−Xs〉E[ei〈u,Xs〉]

= 2 e
i〈u,Xs〉Eei〈u,Xt−Xs〉

Eei〈u,Xt−Xs〉Eei〈u,Xs〉
=

ei〈u,Xs〉

Eei〈u,Xs〉
= Mu

s .

and thus we have completed the proof.
2Let C a sub-σ-algebra of F . Suppose that X,Y are random variables in Rd such that X is C-measurable

and Y is independent of C, then for every B(R2d)-measurable function f,

E[f(X,Y )|C] = g(X),

where g(x) = E(f(x, Y ))
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Lemma 3.12. Let N be a Poisson process with Poisson intensity λ : R+ → R+ and
Mu

t = eiuNt

E[eiuNt ]
− 1, then for s < t,

|Mu
t −Mu

s | ≤ 2 (λ(t)− λ(s)) e4λ(t) + e2λ(t)|u||Nt −Ns|.

From this it follows that the variation of Mu is integrable.

Proof. The characteristic function of N is given by E[eiuNt ] = eλ(t)(eiu−1). Let α = E[eiuNt ]
and β = E[eiuNs ]. From |eix − eiy| ≤ |x− y|, x, y ∈ R it holds∣∣∣∣eiuNtα

− eiuNs

β

∣∣∣∣ =
1

|α|

∣∣∣∣eiuNt − α

β
eiuNs

∣∣∣∣
=

1

|α|

∣∣∣∣eiuNt − eiuNtαβ + eiuNt
α

β
− α

β
eiuNs

∣∣∣∣
≤ 1

|α|

∣∣∣∣1− α

β

∣∣∣∣+
1

|α|

∣∣∣∣αβ
∣∣∣∣ |u||Nt −Ns|.

(49)

From |ez − 1| ≤ |z|e|z| it follows that
∣∣∣1− α

β

∣∣∣ ≤ 2(λ(t) − λ(s))e2(λ(t)−λ(s)). It also holds,

that
∣∣∣αβ ∣∣∣ = e(λ(t)−λ(s))(cosu−1) and 1

|α| = 1
eλ(t)t(cosu−1) . Collecting all expressions in (49),∣∣∣∣eiuNtα

− eiuNs

β

∣∣∣∣ ≤ 2(λ(t)− λ(s))e2(λ(t)−λ(s))

eλ(t)t(cosu−1)
+
e(λ(t)−λ(s))(cosu−1)

eλ(t)(cosu−1)
|u||Nt −Ns|

≤ 2 (λ(t)− λ(s)) e4λ(t) + e2λ(t)|u||Nt −Ns|.
(50)

Let T > 0 then the variation VT of Mu
t on [0,T] is bounded by VT ≤ 2λ(T )e4λ(T ) +

e2λ(T )|u|NT and thus the expectation E[VT ] ≤ 2λ(T )e4λ(T ) + |u|e2λ(T )λ(T ).

The following theorem is similar to [1, Proposition 2.4.1].

Theorem 3.6. Let M,N be two square integrable martingales with all paths càdlàg.
Suppose that sups∈[0,t] |Ms| < Bt <∞ for all paths, M0 = N0 = 0, N of bounded variation,

E
[
VN
t

]
<∞ and M,N do never jump together. Then

E [Mt ·Nt] = 0.

Proof. First take the partitions Pn =
{

0 = t0 < t1 < . . . < tp(n) = t
}

such that the maxi-

mal width of the interval goes to zero, i.e. δn = max
p(n)−1
i=0 |ti+1 − ti| → 0 as n→∞. We

want to stress that for every n we take a partition of [0, t]. By lemma 4.3, for ε > 0 we
can construct a partition 0 = τ0 < τ1 < . . . < τk(ε) = t such that

sup {|Mu −Mv| : u, v ∈ [τi, τi+1), i = 0, . . . , k(ε)− 1} ≤ ε,

sup {|Nu −Nv| : u, v ∈ [τi, τi+1), i = 0, . . . , k(ε)− 1} ≤ ε.

Let δ > ε and by taking n large enough we can bound,

p(n)−1∑
i=0

|Mti+1
−Mti ||Nti+1

−Nti | ≤
k(ε)−1∑
i=1

(|∆Mτi−|+ δ) (|∆Nτi−|+ δ) + εVN
t .
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Let U = maxi=1,...,k(ε)−1 |∆Mτi−|, note that for every ω ∈ Ω it holds that U(ω) < ∞.
Under the assumption that M,N have for all paths no common jumptime it follows

p(n)−1∑
i=0

|Mti+1
−Mti ||Nti+1

−Nti | ≤
k(ε)−1∑
i=1

(U + δ) δ + 2εVN
t .

Because δ was arbitrary, it holds
∑p(n)−1

i=0 |Mti+1
−Mti ||Nti+1

− Nti | ≤ 2εVN
t . For every

ε > 0 by taking n large enough we find
∑p(n)−1

i=0 |Mti+1
−Mti||Nti+1

− Nti | ≤ 2εVN
t , we

conclude that

lim
n→∞

p(n)−1∑
i=0

|Mti+1
−Mti ||Nti+1

−Nti | = 0 a.s.

We know that
∑p(n)−1

i=0 |Mti+1
−Mti||Nti+1

−Nti | ≤ 2Bt · VN
t and E

[
VN
t

]
<∞. Now we

use the increments of the partitions to calculate the expectation. For square integrable
martingales we have orthogonality of increments.

E [Mt ·Nt] = E

p(n)−1∑
i=0

(
Mti+1

−Mti

)p(n)−1∑
i=0

(
Nti+1

−Nti

)
= E

p(n)−1∑
i=0

(Mti+1
−Mti)(Nti+1

−Nti).

By using the lebesque dominated convergence theorem,

|E [Mt ·Nt] | ≤ E
p(n)−1∑
i=0

|Mti+1
−Mti ||Nti+1

−Nti | → 0, n→∞

(51)

We conclude that E [Mt ·Nt] = 0.

Theorem 3.7. Let {X}t∈R+
, {Y }t∈R+

be two real-valued processes on the same underlying
probability space such that (Xt, Yt)t∈R+ is a process with independent increments. Suppose
that X is a Poisson process and that X, Y have no common jump point for every ω ∈ Ω,
then X, Y are independent processes.

Proof. Define for every u, v ∈ Rn the processes

Nu =
ei〈u,X〉

E[ei〈u,X〉]
− 1, M v =

ei〈v,Y 〉

E[ei〈v,Y 〉]
− 1.

Both processes are square integrable martingales and both processes start at zero, M v
0 =

Nu
0 = 0. The variation VN

T of Nu has finite expectation E[VN
t ] < ∞ by Lemma 3.12.

Note that s 7→ E[ei〈u,Ys〉] is a continuous function. Also for every s ≥ 0 it holds that
|E[ei〈v,Ys〉]| 6= 0 by Eq. (47). Every continuous function has a maximum and it holds

|M v
t | ≤

∣∣∣∣ ei〈v,Yt〉

E[ei〈v,Yt〉]

∣∣∣∣+ 1.
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Furthermore by assumption they have no common jump points for every ω ∈ Ω. By
Theorem 3.6 it holds for every t > 0,

E [Nu
t M

v
t ] = 0.

From this it follows that E
[
ei〈u,Xt〉ei〈v,Yt〉

]
= E

[
ei〈u,Xt〉

]
E
[
ei〈v,Yt〉

]
. The elements u, v ∈ Rn

are arbitrary and thus for every t > 0, Xt and Yt are independent. We can do exactly the
same for Xt −Xs and Yt − Ys, s < t, s, t ∈ R+. We conclude by Lemma 3.10 that X and
Y are independent processes.

Remark 3.3. Let X, Y be two E-valued processes with independent increments on the
same underlying probability space. Let N be a Poisson Process such that Y = x · N ,
x ∈ E. Furthermore suppose that X, Y never jump together, then for every x∗, y∗ ∈ E∗ it
follows by 3.7 that 〈x∗, X〉 and 〈y∗, Y 〉 are independent processes. This implies that X, Y
are independent processes.

Theorem 3.8. Let X be process with independent increments. Let Λ ∈ B(E) with 0 /∈ Λ,
then X −∆XΛ and ∆XΛ are independent processes.

Proof. Denote f(s, x) = x. Let fn =
∑m(n)

j=1 α
(n)
j I

A
(n)
j

with A
(n)
i ∩ A

(n)
j = ∅ defined as

in (36) such that fn(s, x) → f(s, x) for every (s, x) ∈ R+ × (E \ {0}). It holds that
Nt := JX (ω, ([0, t]× Λ)) is a Poisson process. Now note that

JN(ω,A
(n)
j (t)) = JX

(
ω, ([0, t]× Λ) ∩ A(n)

j

)
.

Now with Lemma 3.2 it follows that JX
(
ω, ([0, t]× Λ) ∩ A(n)

j

)
is σ {Ns : s ≤ t}-measurable.

Now note N and X −∆XΛ never jump together, hence are independent processes. Recall

Eq. (44). It follows that Xt −∆XΛ
t and

∑m(n)
j=1 α

(n)
j JX

(
ω, ([0, t]× Λ) ∩ A(n)

j

)
are inde-

pendent. By using Lemma 2.11 it follows that Xt − ∆XΛ
t and ∆XΛ

t are independent.
Property 2 of Lemma 3.10 is shown in the same way. Conclude by Lemma 3.10 that
X −∆XΛ and ∆XΛ are independent processes.

Remark 3.4. Let Λ1,Λ2 ∈ B(E) with 0 /∈ Λ1,Λ2 and Λ1∩Λ2 = ∅, then ∆XΛ1 and ∆XΛ2

are independent processes. The proof goes in the same way as in the previous theorem.

Finally we will prove Theorem 3.5.

Proof. Let Ai ∈ σ
{

∆XΛi
}

for i = 1, . . . , k and Ak+1 ∈ σ
{
X −∆X

⋃
i Λi
}

. By Theorem

3.8 X − ∆X
⋃
i Λi and ∆X

⋃
i Λi are independent processes. Then note that for every

i = 1, . . . , k,

∆XΛi
t = ∆(∆X

⋃
j Λj

t )Λi .

From Lemma 3.9 it follows that ∆XΛi is σ
{

∆X
⋃
j Λj
}

-measurable. From this we find
that

P

{
k+1⋂
i=1

Ai

}
= P

{
k⋂
i=1

Ai

}
P {Ak+1} .
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By Remark3.4 it holds that ∆XΛk is independent of ∆X
⋃k−1
j=1 Λj . Also for very i = 1, . . . , k,

∆XΛi is determined by ∆X
⋃i
j=1 Λj . Now it holds

P

{
k⋂
i=1

Ai

}
= P

{
k−1⋂
i=1

Ai

}
P {Ak} .

By using repeatedly the same arguments we find,

P

{
k+1⋂
i=1

Ai

}
=

k+1∏
i=1

P {Ai} .

With this we conclude the Theorem.

3.4 The structure of processes with independent increments

In this section we will prove the Levy-Ito decomposition for Additive processes with values
in a separable Banach space. Define the sets

Λ1 = {x ∈ E : ||x|| > 1} , Λn =

{
x ∈ E :

1

n
≤ ||x|| < 1

n− 1

}
. (52)

The Levy-Ito decomposition expresses that sample paths of Additive processes can be
decomposed as a sum of independent parts: a continuous part and a jump part. Recall
the decomposition of the process {X}t∈R+

Xt =
N∑
i=1

∆XΛi

︸ ︷︷ ︸
”Jump part”

+Xt −∆X
⋃N
i Λi︸ ︷︷ ︸

”Continuous part”

.

As we take N larger, all the jumps of the process are getting subtracted. A process without
jumps has continuous paths. The structure of a real-valued process with independent
increments and a.s. continuous paths is known. The increments of such a process are
Gaussian, see Theorem 4.9. It seems to be that the structure of Additive processes is
a trivial matter. The opposite is true. In general we cannot express the jumps of the
process as

∑∞
i=1 ∆XΛi . This sum may be divergent. The convergence of this sum is a

very delicate point. The content of this section is devoted to this matter.

If means are subtracted from the jump processes, then the sum in the jump part will
converge. Note that we try to be as general as possible. We consider the structure
of Additive process with values in a seperable Banach space. In that case means are
Bochner-integrals. We will show X can be represented as

Xt = Wt + lim
n→∞

n∑
i=2

(
∆XΛi

t − E[∆XΛi
t ]
)

+ ∆XΛ1
t , (53)
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where Wt has independent increments and is a.s. continuous, the convergence of the cen-
tered sum limn→∞

∑n
i=2

(
∆XΛi

t − E[∆XΛi
t ]
)

is uniformly a.s. on every bounded interval
[0, t].

We will use a symmetrisation argument, see Definition 2.2. We denote the independent
copy of X by X̄. Let us fix some notation. For every t > 0 and N ∈ N we define

X0
t := Xt −∆XΛ1

JNt :=
N∑
n=2

∆XΛn

JN,ct :=
N∑
n=2

∆XΛn − E[∆XΛn ]

J∗Nt (ω, ω̄) := JNt (ω)− J̄Nt (ω̄).

By Theorem 3.5 JN is a sum of independent processes ∆XΛk , k = 2, . . . , n. The process
X can be represented as a sum of independent processes

Xt =
N∑
n=1

∆XΛn
t +X0

t − JNt . (54)

The first step is to show that J∗Nt converges a.s. uniformly. Using Fubini’s Theorem we
can conclude, that there exists a centering sequence of functions cn ∈ DE(T ) such that∑N

n=2

(
∆XΛn − cn

)
converges uniformly a.s., similarly to the proof of Theorem 2.1. The

next step is to show that as a centering function we can take cn(t) = E[∆XΛn ].

The space DE(T ) equipped with the supremum norm || · ||T is a Banach space. Unfor-
tunately it is not a separable Banach space, otherwise we could use Theorem 2.4 to show
convergence of J∗N in || · ||T . We will use instead the following Theorem.

Theorem 3.9 (Rosinsky-Basse-O’Conner). Let Xj, j ∈ N, be a sequence of inde-
pendent random variables with values in (DE(T ),DE(T )) and Sn =

∑n
j=1 Xj be the sum.

Suppose there exists a random variable Y ∈ (DE(T ),DE(T )) and a dense subset D ⊂ [0, T ]
such that T ∈ D and for any t1, . . . , tk ∈ D

(Sn(t1), . . . , Sn(tk))
d→ (Y (t1), . . . , Y (tk)) . (55)

Then there exists a random variable S with values in (DE(T ),DE(T )) with the same
distribution as Y such that

1. If Xj are symmetric , then sup
t∈[0,T ]

||S(t)− Sn(t)|| a.s.→ 0.

2. If Xj are not symmetric , then there exists yn ∈ DE(T ) with limn→∞ yn(t) = 0 for

every t ∈ D such that sup
t∈[0,T ]

||S(t) − Sn(t) − yn(t)|| a.s.→ 0. Moreover if the family
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{||S(t)|| : t ∈ D} is uniformly integrable and the function t 7→ E(Xn(t)) belong to
DE(T ) , then

sup
t∈[0,T ]

|| (S(t)− E(S(t))− (Sn(t)− E(Sn)(t)) || a.s.→ 0.

Proof. See [3, Theorem 2.1].

Note that the following theorem is a similar statement to Theorem 2.4, but for random
variables, with some additional conditions, with values in a general Banach space. We
will prove this theorem with the aid of Theorem 3.9.

Theorem 3.10. Let Xj, j ∈ N, be independent Additive processes. Suppose there is a
random variable X in DE(T ) such that for every N ∈ N

∆n = X −
N∑
i=1

Xi.

independent of X1, . . . , Xn. Then the following statements hold:

1. Let Xs
j = Xj − X̄j be the symmetrization of Xj, and Ssn =

∑n
i=1X

s
n, then there

exists a random variable S such that ‖S − Ssn‖T
a.s.→ 0.

2. There exists cn ∈ DE(T ) such that
∑N

n=1 (Xn − cn) converges uniformly on [0, T ]
a.s. where cn = X̄n(ω̄) for some ω̄ ∈ Ω̄.

Proof. Let t ∈ [0, T ], by Theorem 2.4 there exists a random variable S ′(t) such that
Ssn(t)

a.s.→ S ′(t). This implies existence of a sequence cn ∈ E such that Sn(t) − cn
a.s.→ S1.

From this it follows

Ssn(t) = Sn(t)− S̄n(t) = Sn(t)− cn + cn − S̄n(t)
a.s.→ S1 − S̄1,

recall the definition 2.2. It follows S ′(t) is symmetric. We will show that S ′(t) is continuous
in probability.

Suppose for the moment that this is the case, then it is possible by Theorem 2.9 to
construct a càdlàg modification. By the use Theorem 3.9 it is possible to find a process S
with values in DE(T ) such that ||S − Ssn||T → 0 as n→∞.

We will use Ito-Nisio’s theorem 2.3 to prove that S ′ is continuous in probability. Let
x∗ ∈ E∗ and define the function

Φn,t = E
(
ei〈x

∗,Ssn(t)〉) =
∣∣Φ〈x∗,Sn(t)〉(1)

∣∣2 .
By the independent increment property it holds∣∣Φ〈x∗,Sn(t)〉(1)

∣∣2 =
∣∣Φ〈x∗,Sn(t)−Sn(s)〉(1)

∣∣2 ∣∣Φ〈x∗,Sn(t)〉(1)
∣∣2 .
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By independence of Xj, j = 1, 2, . . . it follows∣∣Φ〈x∗,Sn(t)〉(1)
∣∣2 =

∣∣Φ〈x∗,Sn−1(t)〉(1)
∣∣2 ∣∣Φ〈x∗,Xn(t)〉(1)

∣∣2 .
From this it follows Φn,t is non-increasing in both n, t. By Ito-Nisio’s Theorem 2.3 it holds
for every t > 0,

Φn,t → E
(
ei〈x

∗,S′(t)〉
)
, n→∞.

We denote Φt = E
(
ei〈x

∗,S′(t)〉) and note that Φt is also non-increasing because S ′ is
symmetric and has independent increments. Suppose that sn ↑ s , then by Theorem 2.4
S ′(sn) converges a.s. to a random variable S ′′ and by the Ito-Nisio’s Theorem 2.3 it holds
Φsn → E

(
ei〈x

∗,S′′〉).We denote Φ′s = E
(
ei〈x

∗,S′′〉). Let ε > 0 be given. Now choose N such
that

|Φ′s − Φsn| < ε, ∀n ≥ N.

Now for the moment take n ≥ N . Choose M such that

|Φsn − Φm,sn| < ε and |Φs − Φm,s| < ε, ∀m ≥M.

Note that for l ≥ n it holds |Φ′s − Φm,sl | < 2ε. Take m ≥M and n ≥ N large enough so
that Φm,s − Φm,sn < ε. Then it holds

|Φ′s − Φs| ≤ |Φ′s − Φm,sn|+ |Φm,sn − Φm,s|+ |Φm,s − Φs| < 4ε.

Because ε was arbitrary we find that Φ′s = Φs. Because x∗ ∈ E∗ was arbitrary, it holds
by the Ito-Nisio Theorem 2.3 that S ′(sn),

a.s.→ S ′(s). We can do the same for sn ↓ s. We
conclude that S ′ is process with independent increments and continuous in probability.

It is possible to construct a càdlàg modification S of S ′. Conclude that there exists
a random variable S with values in (DE(T ),DE(T )), such that Ssn(t)

a.s.→ S(t), for every
t ∈ [0, T ]. Condition (55) in theorem 3.9 holds. We conclude by Theorem 3.9 that,
sup
t∈[0,T ]

||S(t)− Ssn(t)|| a.s.→ 0. The second statement follows from Fubini’s Theorem.

Note that the previous Theorem is designed for J∗N . It was our first goal to show a.s.
uniform convergence of J∗N .

Lemma 3.13. For a fixed a time horizon T > 0, J∗N converge uniformly on [0, T ] a.s.

Proof. Using Theorem 3.10 to 54 the statement follows.

For every n ∈ N, there is a probability one set Ω∗n ⊂ Ω × Ω̄ such that J∗N converge
uniformly on [0, n], ∀(ω, ω̄) ∈ Ω∗n. We take Ω′ =

⋂
n Ω∗n and note that by Fubini’s Theorem

there is a ω̄ such that
Ωω̄ = {ω ∈ Ω : (ω, ω̄) ∈ Ω′} ,

has probability 1. We define the following process {St}t∈R+
by

St(ω) :=

{
lim
N→∞

JNt (ω)− J̄Nt (ω̄) if ω ∈ Ωω̄

0 if ω /∈ Ωω̄

,
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We have found centering function cn(t) such that the sum
∑N

n=2 ∆
(
XΛn − cn

)
converges

uniformly a.s. on every bounded interval, where cn = ∆X̄Λn(ω̄). If we can show that
{‖St‖ : t ∈ [0, T ]} is uniformly integrable and E[∆XΛn − cn] is càdlàg, then by Theorem
3.9,2 we can show that

JN,c =
N∑
n=2

∆XΛn − E[∆XΛn ],

converges uniformly a.s. to S − E[S].

Define the non-random function Ft := X̄t(ω̄)−∆X̄Λ1
t (ω̄), then St + Ft is an Additive

process. Furthermore St + Ft has bounded jumps.

Lemma 3.14. The collection of random variables {‖St‖ : t ∈ [0, T ]} is uniformly inte-
grable.

Proof. First note that St can be written as St + Ft − Ft with Ft a càdlàg function and
St + Ft an Additive process with bounded jumps. By Theorem 3.2 for some M1 >
0, supt∈[0,T ] E[‖St + Ft‖2] ≤ M1 < ∞. The non-random function Ft is càdlàg , hence
supt∈[0,T ] ||Ft|| ≤M2. From this it holds

sup
t∈[0,T ]

E[‖St‖2] ≤ sup
t∈[0,T ]

E[‖St + Ft‖2] + sup
t∈[0,T ]

||Ft|| ≤M1 +M2.

From this it holds that the family of real-valued random variables {‖St‖ : t ∈ [0, T ]} are
uniformly integrable.

Define for every t > 0 and n ∈ N, Sct := S − E[St].

Theorem 3.11. For every fixed time horizon T > 0, limN→∞
∥∥Sc − JN,c∥∥

T
= 0, a.s.

Proof. By Lemma 3.13 JN − J̄N(ω̄) converge a.s. uniformly on [0, T ] to S. It fol-
lows E[∆XΛi ] − ∆X̄Λi is a càdlàg function by Lemma 3.1. Furthermore the family
{‖St‖ : t ∈ [0, T ]} is uniformly integrable. By Theorem 3.9,2 the statement follows.

Theorem 3.12 (Levy-Ito). Let X be an Additive process with values in a separable
Banach space. Then X can be represented as

Xt = Wt + lim
n→∞

n∑
i=2

(
∆XΛi

t − E[∆XΛi
t ]
)

+ ∆XΛ1
t , (56)

where {Wt}t∈R+
has independent increments and is a.s.continuous, the convergence of

the centered sum limn→∞
∑n

i=2

(
∆XΛi − E[∆XΛi ]

)
is uniformly on every bounded interval

[0, T ]. Furthermore the three terms are independent processes.

Proof. By Theorem 3.11 for every T > 0 there is a set ΩT , P {ΩT} = 1,∥∥Sc(ω)− JN,c(ω)
∥∥
T
→ 0, ∀ω ∈ ΩT .
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Now write Wt = Xt − Sct −∆XΛ1
t . We will show, that W has a.s. continuous paths.

Let s, t ∈ [0, T ] and define WN
t := X − JN,c −∆XΛ1 . Then by taking N large enough

we find on ΩT , ||W −WN ||T ≤ ε. Now we find on ΩT ,

‖Wt −Ws‖ ≤
∥∥Wt −WN

t

∥∥+
∥∥WN

t −WN
s

∥∥+
∥∥WN

s −Ws

∥∥
≤ 2ε+

∥∥WN
t −WN

s

∥∥
≤ 2ε+

∥∥∥∥∥
(
Xt −

N∑
i=1

∆XΛi
t

)
−

(
Xs −

N∑
i=1

∆XΛi
s

)∥∥∥∥∥
+

∥∥∥∥∥
(

N∑
i=2

E[∆XΛi
t ]

)
−

(
N∑
i=2

E[∆XΛi
s ]

)∥∥∥∥∥ .
From the continuity of the map t 7→ E[∆XΛi

t ], see Lemma 3.13, it follows that

lim
s→t
‖Wt −Ws‖ ≤ 2ε+

1

N + 1
.

We conclude that on W is a.s. continuous. Note that WN , JN,c and ∆XΛ1 are independent
process. By uniform convergence we find that W,Sc and ∆XΛ1 are independent.

3.5 Lévy measure and the Lévy-Ito representation

In this section we will collect all observations made and represent the structure of an
Additive process in its most abstract form. For every Additive process {Xt}t∈R+

there is
a corresponding random counting measure JX . In Lemma 3.7 we proved

µX : S0 → [0,∞], A 7→ E [JX(·, A)] , (57)

is a σ-finite measure on the space (S,S0). In Lemma 3.6 we showed that for every A ∈ S0,
JX(·, A) has a Poisson distribution with E[JX(·, A)] <∞. Note furthermore that every
σ-finite µ measure on a ring R, can be extended uniquely to a measure µ on σ {R}. See
[2, Theorem 5.1]

Definition 3.8. Let (Ω,F ,P) be a probability space and (S,S, µ) be a σ-finite measure
space. A random measure M : Ω× S → R+ with values in N is called a random Poisson
measure with Poisson intensity µ, if

1. For every A ∈ S, the random variable M(·, A) has a Poisson distribution with
parameter µ(A):

a) P {M(A) = k} = µ(A)ke−µ(A)

k!
, if µ(A) <∞.

b) P {M(A) =∞} = 1, if µ(A) =∞.

2. If A1, . . . , An ∈ S and disjunct, then M(·, A1), . . . ,M(·, An) are independent.

Theorem 3.13. Let X be an Additive process with corresponding random counting measure
JX , then JX is a random Poisson measure with Poisson intensity µX .
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Proof. For every A ∈ S0, Lemma 3.6 JX(·, A) has Poisson distributed with parameter
µX(A) = E[JX(·, A)] < ∞. Take A ∈ S, then An ∈ S0. Now JX(·, An) has a Poisson
distribution with parameter Λn. Now there are two possibilities:

1. Λ := limn→∞ Λn <∞

2. Λ := limn→∞ Λn =∞.

Let ΦA(u) be the characteristic function of JX(ω,A) and ΦAn(u) of JX(ω,An). Note that

ΦAn(t)(u) = eΛn(t)(eiu−1).

In case (1) by Lebesque’s dominated convergence theorem it follows that ΦA(t)(u) =

eΛ(t)(eiu−1). This implies that JX(ω,A(t)) has Poisson distribution with parameter Λ. For
case (2) we can use (34) to conclude that P {JX(ω,A(t)) ≤ N} = 0, for every N , hence

P {Nt(A) =∞} = 1.

Let B1, . . . , Bn ∈ S and disjunct, and define

Bm
j (t) =

{
(s, x) ∈ Bj : s ≤ t, ||x|| > 1

m

}
.

Now it holds for every t > 0 and m ∈ N,

JX(ω,Bm
1 (t)), . . . ,JX(ω,Bm

n (t)).

are independent by Theorem 3.7. Let t = m and take m→∞, then by Lemma 2.11 we
find that the random variables JX(ω,B1), . . . ,JX(ω,Bn) are independent.

Lemma 3.15. Let (Ω,F ,P) be a probability space and (E, E , µ) be a σ-finite measure
space. Suppose f : S → F is a measurable map with F a separable Banach space and M
a random Poisson measure with Poisson intensity µ. If (1)

∫
||f(s)||M(ω, ds) <∞ for

every ω ∈ Ω and (2)
∫
||f(s)||µ(ds) <∞ holds, then

E
∫
f(s)M(ω, ds) =

∫
f(s)µ(ds). (58)

Proof. Let fn a sequence of simple functions fn =
∑

i x
n
i IAni as in (36). Then it holds that

E
∫
fn(s)M(ds) = E

∑
i

xiM(Ai) =
∑
i

xiµ(Ai) =

∫
f(s)µ(ds).

By (1),
∫
fn(s)M(ω, ds) converges to the Bochner integral

∫
f(s)M(ω, ds). From the

monotone convergence theorem it holds,∫
‖f(s)‖M(ds) = lim

N→∞

∞∑
k=0

k

2N
M
({

s ∈ S :
k

2N
≤ ||f(s)|| < k + 1

2N

})
.
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By using the monotone convergence theorem we get

E
∫
‖f(s)‖M(ds) = lim

N→∞

∞∑
k=0

k

2N
µ

({
s ∈ S :

k

2N
≤ ||f(s)|| < k + 1

2N

})
=

∫
‖f(s)‖µ(ds).

It holds that
∫
||f(s)− fn(s)||M(ds) ≤ 3

∫
||f(s)||M(ds) <∞. From (2) we find that

E
∫
||f(s)−fn(s)||M(ds) ≤ 3

∫
||f ||µ(ds) <∞, hence we have now the following estimate,

∥∥∥∥E [∫ fn(s)− f(s)M(ds)

]∥∥∥∥ ≤ E
[∥∥∥∥∫ fn(s)− f(s)M(ds)

∥∥∥∥]
≤

[∫
||fn(s)− f(s)||M(ds)

]
=

∫
||f(s)− fn(s)||µ(ds)

By Lebesque’s dominated convergence theorem we find that
∫
||f(s)− fn(s)||µ(ds)→ 0,

hence E
∫
fnM(ds) → E

∫
f(s)M(ds). Above we showed that for simple functions it

holds that E
∫
fnM(ds) =

∫
fnµ(ds) and from (2) we conclude that∫

fnµ(ds)→
∫
fµ(ds).

We conclude that E
∫
fM(ω, ds) =

∫
fµ(ds).

Remark 3.5. Let X be an Additive process. For Λ ∈ B(E) with 0 /∈ Λ it holds by
Lemma 3.9 that ∆XΛ

t =
∫ t

0

∫
Λ
xJx(ds dx). If

∫
[0,t]×Λ

||x||µX(ds dx) <∞ then by lemma
3.15

E
[
∆XΛ

t

]
=

∫ t

0

∫
Λ

xµX(ds dx). (59)

Definition 3.9. Let X be an Additive process and for every 0 < δ < 1, we define the

process with finite jumps Sδt := ∆X
Λδ,1
t where Λδ,1 = {x ∈ E : δ ≤ ||x|| ≤ 1}. We define

the centered process S̃δt = Sδt − ESδt .

For E = Rn, the following theorem can be found in [20]. For E a separable Banach
space, the representation can be found in [5, Theorem 2.1].

Theorem 3.14. Let X be an Additive process. Then X can be represented as

Xt = Wt + lim
δ↓0

∫ t

0

∫
δ≤‖x‖≤1

x [JX(ω, dsdx)− µX(dsdx)]︸ ︷︷ ︸
J1
t

+

∫ t

0

∫
‖x‖>1

xJX(ω, dsdx)︸ ︷︷ ︸
J2
t

, (60)

where W,J1 and J2 are independent processes, Wt is a.s. continuous, J1 describes all the
jumps with amplitude δ ≤ 1 and J2 are the jumps with amplitude strictly larger than 1.
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Proof. First we note that Sδ has bounded jumps. For every realization ω it follows that
Sδ(ω) has only a finite number of jumps on [0, T ]. For 0 < δ < δ′, it holds that

sup
t∈[0,T ]

∥∥∥E[Sδt (ω)− Sδ′t (ω)]
∥∥∥ ≤ ∫ T

0

∫
{δ≤||x||<δ′}

||x||µ(dsdx).

From this it follows that

S̃ : (0, 1]→ DE(T ), δ 7→
{
S̃δt

}
t∈[0,T ]

,

is continuous. Furthermore by Theorem 3.12 it follows that S̃
1
n converges. From this it

follows that limδ↓0 S̃
δ exists. By the use of Theorem 3.12 we find the representation of the

process {Xt}t∈R+

Xt = Wt + lim
δ↓0

∫ t

0

∫
δ≤‖x‖≤1

x [JX(ω, dsdx)− µX(dsdx)] +

∫ t

0

∫
‖x‖>1

xJX(ω, dsdx).

Now we want to give some results on integrability properties of the Poisson intensity
measure µX . For the case E = Rn, it holds for every T > 0 ,∫ T

0

∫
E\0

min(1, ||x||2)µX(dsdx) <∞. (61)

We will show this result in case the state spaces is a Hilbert space E = H. In the general
case when E is a separable Banach space this is not necessarily the case, see [5].

Lemma 3.16. Let X, Y be independent random variables, with values in a separable
Banach space, with E[Y ] = 0 and c : R+ → R+ a convex function, then

E[c (||X + Y ||)] ≥ E[c (||X||)].

Proof. Let µX and µY be the distributions of X and Y . By Fubini’s Theorem and Jensen
inequality we find

E[c (||X + Y ||)] =

∫ ∫
c (||x+ y||)µX(dy)µY (dx)

≥
∫
c

(∥∥∥∥∫ (x+ y) µY (dy)

∥∥∥∥)µX(dx)

=

∫
c (‖x‖)µX(dx)

= E[c (||X||)].
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Definition 3.10. Let (Ω,F ,P) be a probability space and (E, E , µ) be a finite measure
space. Let M : Ω × E → N be a random Poisson measure with intensity µ. The
compensated random Poisson measure Mc : Ω× S → R+ is defined as

Mc(ω,A) :=M(ω,A)− µ(A). (62)

Remark 3.6. If (E, E , µ) is σ-finite measure space, then we note that Mc is well defined
for A ∈ E with µ(A) <∞.

Definition 3.11. Let (Ω,F ,P) be a probability space and (E, E , µ) be a finite measure
space. LetM : Ω×E → N be a random Poisson measure with intensity µ. Let f : E → F
be a measurable map with F and suppose that (1)

∫
||f(s)||M(ω, ds) < ∞ for every

ω ∈ Ω and (2)
∫
||f(s)||µ(ds) <∞ holds. Then we define∫

f(s)Mc(ds) :=

∫
f(s)M(ds)−

∫
f(s)µ(ds) (63)

Lemma 3.17. Let (Ω,F ,P) be a probability space and (E, E , µ) be a σ-finite measure
space. Let M : Ω × E → N+ be a random Poisson measure with Poisson intensity µ.
Let H be a Hilbert space and B(H) be its Borel-σ-algebra and f : (E, E) → (H,B(H))
be a measurable map such that (1)

∫
||f(s)||M(ds) < ∞ (2)

∫
||f(s)||µ(ds) and (3)∫

||f(s)||2µ(ds) <∞, then

E
∥∥∥∥∫ f(s)Mc(ω, ds)

∥∥∥∥2

=

∫
||f(s)||2µ(ds). (64)

Proof. Let f =
∑n

i=1 xiIAi be a simple function with An ∩ Am = ∅, n 6= m. It holds 3

E
∥∥∥∥∫ f(s)Mc(ω, ds)

∥∥∥∥2

= E
n∑
i=1

n∑
j=1

〈xi|xj〉 (M(Ai)− µ(Ai)) (M(Aj)− µ(Aj))

=
n∑
i=1

〈xi|xi〉E (M(Ai)− µ(Ai))
2

=
n∑
i=1

||xi||2µ(Ai) =

∫
||f(s)||2µ(ds).

(65)

Let f : S → H be a general measurable map with
∫
||f(s)||2µ(ds) < ∞. Let fn be a

sequence of simple functions as in (36) fn =
∑

i x
n
i IAni with Ai ∩ Aj = ∅ for i 6= j, such

that fn → f for all s ∈ E. Properties (1) and (2) imply that
∫
fnM(ds) →

∫
fM(ds)

and
∫
fnµ(ds) →

∫
fµ(ds). From this we conclude that

∫
fnMc →

∫
fMc. It follows

that

3 The variance of a Poisson random variable Xλ with parameter λ is given by

E
[
(Xλ − E[Xλ])

2
]

= λ.
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lim
n→∞

∥∥∥∥∫ fnMc

∥∥∥∥ =

∥∥∥∥∫ fMc

∥∥∥∥ .
It holds that E

∥∥∫ fnMc

∥∥2
=
∫
||fn||2µ(ds) ≤ 2

∫
||f ||2µ(ds) <∞. This means that the

random variables
∥∥∫ fnMc

∥∥ is bounded in L2. Thus, this class of random variables is
uniformly integrable. Hence,

lim
n→∞

E
∥∥∥∥∫ fnMc

∥∥∥∥2

= E
∥∥∥∥∫ fMc

∥∥∥∥2

.

By using once more the Lebesgue’s dominated convergence theorem it follows

E
∥∥∥∥∫ f(s)Mc

∥∥∥∥2

= lim
n→∞

E
∥∥∥∥∫ fn(s)Mc

∥∥∥∥2

= lim
n→∞

∫
||fn(s)||2µ(ds)

=

∫
||f(s)||2µ(ds).

It holds that

S̃δt =

∫ t

0

∫
δ≤‖x‖≤1

x [JX(ω, ds dx)− µX(ds dx)] .

Let Yt := Xt −∆XΛ1 − E[Xt −∆XΛ1 ], Now we can write

Yt = Yt − S̃δt + S̃δt .

Now it holds by Lemma 3.16 that

E||Yt||2 ≥ E||S̃δt ||2. (66)

Note Yt has bounded jumps and is an Additive process. By Theorem 3.2 it follows that
for every T > 0

E||YT ||2 <∞.
If we assume E = H to be a Hilbert space, then we find with Lemma 3.17 and (66)∫ T

0

∫
δ≤||x||≤1

||x||2µ(dsdx) ≤ E||YT ||2 <∞,

for every 0 < δ ≤ 1. From this we conclude that for every T > 0 ,∫ T

0

∫
E\0

min(1, ||x||2)µX(dsdx) <∞, (67)

in case the state space E = H is a Hilbert space.

We would like to end with some observations without proofs:
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1. For every Λ ∈ B(E) with 0 /∈ Λ̄ and every x ∈ E∗ it holds

E
[
ei〈x∗,∆XΛ

t 〉
]

= exp

{∫ t

0

∫
Λ

(
ei〈x

∗,x〉 − 1
)
µX(dsdx)

}
.

In case E = Rn it holds for every u ∈ Rn

E
[
ei〈u,∆XΛ

t 〉
]

= exp

{∫ t

0

∫
Λ

(
ei〈u,x〉 − 1

)
µX(dsdx)

}
.

2. Let Tδ be the first time that the process Xt jumps with amplitude bigger than δ > 0,
then

P {Tδ ≤ t} = 1− exp {−µX ([0, t]× {||x|| > δ}}) .

3. If we take as state space E = R, then Wt is a Gaussian process with independent
increments, see Theorem 4.9. If we take as state space E = Rn and denote
Wt = (W

(1)
t , . . . ,W

(n)
t ) ,then for every vector (u1, . . . , un) ∈ Rn

Gt =
n∑
i=1

uiW
(1)
t ,

is a real-valued Additive process with a.s. continuous paths. It holds for every
vector (u1, . . . , un) ∈ Rn that

∑n
i=1 uiW

(i)
t is a Gaussian random variable. From

this, Wt = (W
(1)
t , . . . ,W

(n)
t ) is a multivariate normal distribution. A vector X =

(X(1), . . . , X(n)) is a multivariate normal distribution if and only if for every vector
(u1, . . . , un) ∈ Rn it holds that

∑n
i=1 uiX

(i) is normally distributed if and only if
there is a vector µ ∈ Rn, and a nonnegative-definite n× n-matrix Σ such that the
characteristic function of X is given by

ΦX(u) = exp
{
i · uTµ− uTΣu

}
.

From this the characteristic functions of Wt and Wt −Ws are given by

ΦWt(u) = exp
{
i · uTµt − uTΣtu

}
, ΦWt−Ws(u) = exp

{
i · uTµs,t − uTΣs,tu

}
Because it is necessary for ΦWt(u) to be continuous as function of t ∈ R+ it must
hold that µt and uTΣtu are continuous.

4. For E = Rn, the characteristic function of {Xt}t∈R+
is

φXt(u) = E
[
ei〈u,Wt〉

]
E
[
ei〈u,J1

t 〉
]
E
[
ei〈u,J2

t 〉
]
.

E
[
ei〈u,Wt〉

]
= exp

{
i · uTµt − uTΣtu

}
E
[
ei〈u,J1

t 〉
]

= exp

{∫ t

0

∫
{||x||≤1}

(
ei〈u,x〉 − 1− 〈u, x〉

)
µX(dsdx)

}
.

E
[
ei〈u,J2

t 〉
]

= exp

{∫ t

0

∫
{||x||>1}

(
ei〈u,x〉 − 1

)
µX(dsdx)

}
.
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Note that the distribution is determined by µt ∈ R+, a non-negative n× n-matrix
Σt and a measure µX satisfying for every T > 0 ,∫ T

0

∫
E\0

min(1, ||x||2)µX(dsdx) <∞. (68)
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4 Appendix

4.1 Stochastic processes

Definition 4.1. Let (E, E) be a measurable space, T a set and (Ω,F ,P) a probability
space. A stochastic process with time parameter set T , state-space (E, E) and underlying
probability space (Ω,F ,P) is a collection (Xt : t ∈ T ) of (E, E)- valued random variables
defined on the probability space (Ω,F ,P).Generally we take T = N,R+

We will regard stochastic processes in different ways:

1. For any measurable space (Ω,F) and (E, E), let L0(Ω,F ;E, E) be the set of all
measurable function from Ω to E. We regard a stochastic process as

X : T → L0, t 7→ Xt.

i.e. a function from the time index T to the set of all measurable functions from Ω
to E.

2. Let PE be the collection of all probability measures µ on (E, E). Define for every
t ∈ T , the probability measure

µXt = P ◦X−1
t .

With this we can regard our stochastic process as

X : T → PE, t 7→ µXt ∈ PE.

i.e. a function from the time index T to thecollection of all probability measures on
(E, E).

3. One can also view a stochastic process as a sample path realization. For every
ω ∈ Ω, the map

X(ω) : T → E, t 7→ Xt(ω),

is called a sample path realization. This leads to an alternative view as a map

X : Ω→ ET , ω 7→ (t 7→ Xt(ω)),

i.e. the stochastic process is viewed as an (ET , ET )-valued map.

Definition 4.2. A finite-dimensional rectangle in ET is a set of the form{
x ∈ ET |xt1 ∈ B1, . . . xtn ∈ Bn

}
,

for {t1, . . . , tn} ⊂ T and Ei ∈ E . The set of all finite-dimensional rectangles is denoted
by CT .
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It is clear that CT is π − system, i.e. for all A,B ∈ CT i holds that A ∩ B ∈ CT . The
σ-algebra ET is the σ-algebra generated by this π-system,

ET = σ
{
CT
}
.

It is the smallest σ-algebra such that the map X : Ω→ ET is measurable.

Definition 4.3. Let (Xt)t∈T be a stochastic process with state space (E, E). We denote
FX as the smallest σ-algebra on Ω such that for every t ∈ T , the map X : Ω → E is
measurable.

It is clear that FX = σ
{
X−1(CT )

}
, i.e. FX is generated by sets of the form,

{Xt1 ∈ B1, Xt2 ∈ B2 . . . , Xtn ∈ Bn} ,

where t1 < t2 < . . . < tn and Bi ∈ E , i = 1, . . . , n.

Definition 4.4. A collection Σ of subset in Ω is called a π-system if it is closed under
finite intersections. A collection D is called a D-set if it contains Ω , for every A,B ∈ D
with A ⊂ B implies B \A ∈ D and for every Dn ∈ D with Dn ⊂ Dn+1 it holds

⋃
nDn ∈ D.

Theorem 4.1 (Dynkin). If a π-system Σ is contained in a D-set D , then σ {Σ} ⊂ D.

Proof. See [13, Theorem 1.1]

Definition 4.5. Let (Ω,F ,P) be a probability space and Ci ⊂ F , i ∈ I, be classes events
such that for every i1, . . . , in ∈ I and Aik ∈ Cik ,

P

{
n⋂
k=1

Aik

}
=

n∏
k=1

P {Aik} .

Then the classes of events Ci, i ∈ I, are called independent.

Definition 4.6. Let
{
X

(n)
t

}
t∈T

, n = 1, 2, . . . be stochastic processes on the same underly-

ing probability space. We call them independent if FX(n)
= σ

{
X

(n)
t : t ∈ T

}
,n = 1, 2, . . . ,

are independent.

Lemma 4.1. Let (Ω,F ,P) be a probability space and Ci ⊂ F , i ∈ I be independent
classes of events such that Ci is a π-system for every i ∈ I, then σ {Ci}, i ∈ I, are also
independent.

Proof. See [13, Lemma 2.6]
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4.2 Stochastic processes viewed as random path realization

A stochastic process X can be viewed as a path realization t 7→ Xt for every ω ∈ Ω, i.e.
as a map from (Ω,F) to (ET , ET ). We will assume conditions on the path-realizations of
the stochastic processes.

Definition 4.7. Let (E, || · · · ||) be a normed space. A function f : R+ → E is called
regular if for every t ∈ R+

1. the left limit f(t-) = lims↑t f(s) exists;

2. the right limit f(t+) = lims↓t f(q) exits.

If in addition for every t ∈ R+, f(t+) = f(t), then f is called càdlàg.

Definition 4.8. Let X be stochastic process, then we call the process Càdlàg when for
all ω ∈ Ω, the paths t 7→ Xt are càdlàg.

Definition 4.9. Let (E, || · ||) be a normed space. For a regular function f : R+ → E,
the left- and right-jump are defined as

∆f(t+) = f(t+)− f(t), ∆f(t−) = f(t)− f(t−).

Definition 4.10. Let (E, || · ||) be a normed space. For a regular function f : R+ → E
define the following sets

J±(f) := {t ∈ R : ∆f(t±) 6= 0} .

and for k > 0

J±k (f) := {t ∈ R : ||∆f(t±)|| > k} .

Finally define J(f) := J+(f) ∪ J−(f) and Jk := J+
k (f) ∪ J−k (f).

Lemma 4.2. Let (E, || · ||) be a normed space and f : R→ M a regular function, then
for k > 0, Jk is finite and the set J(f) is at most countable.

Proof. Fix an interval [a, b]. Suppose that t ∈ J(f) , then there is n ∈ N such that for
every δ > 0 there is s ∈ Bδ(t) = {s ∈ [a, b] : |t− s| ≤ δ} such that

||f(t)− f(s)|| > 1

n
.

Let t∗ ∈ [a, b]. Then there exists εt∗ > 0, such that (Bεt∗ \ t∗) ∩ J 1
n

= ∅. Otherwise

there exists a sequence tm ↑ t∗ with tm ∈ J 1
n
( or tm ↓ t∗). In that case, a sequence τm,

tm < τm < tm+1, can be chosen such that ||f(tm), f(τm)|| > 1
n
, hence

lim
m
f(τm) 6= lim

m
f(tm).
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This contradicts regularity of f . Now
⋃
t∗∈[a,b] Bεt∗ is a open subcovering of [a, b] and by

compactness there are s1, s2, . . . , sN ∈ [a, b] with

[a, b] ⊂
N⋃
i

Bεsi
(si).

Hence it holds that J 1
n
⊂ {s1, . . . , sN} and thus Jn is finite. Conclude that J ∩ [a, b] is

countable and thus J is countable.

Lemma 4.3. Let f be a càdlàg function. For every ε > 0, there exists a partition
s = t0 < t1 < . . . < tp(n) = t such that

sup {|f(v)− f(w)| : v, w ∈ [ti, ti+1)} ≤ ε, i = 0, . . . , p(n)− 1

Proof. Let ε be given. For every s ∈ [0, t] there exists a δ(s) > 0 such that for k, h ∈
(s− δ(s), s+ δ(s)) with h, k 6= 0 or h, k ≥ 0, it holds that |f(h)− f(k)| ≤ ε. Now it holds
that {(s− δ(s), s+ δ(s)) : s ∈ [0, t]} is an open subcover of [0, t]. By compactness there
exist s1, s2, . . . , sN such that [0, t] ⊂

⋃
i(si − δ(si), s + δ(si)). Now with these si we can

construct our partition.

Definition 4.11. Let f be càdlàg function. Let Π = {0 = t0 < t1 < . . . < tn = t} be a
partition and Vf

t (Π) =
∑n−1

i=0 |f(ti+1)− f(ti)|. Then f is of finite variation if for all t ≥ 0,

Vf
t = sup

Π
Vf
t (Π) <∞,

where the supremum is taken over all partitions of [0,t].

Remark 4.1. Let f be càdlàg function and Π = {0 = t0 < t1 < . . . < tn = t} be a parti-
tion. Then define for every ti a decreasing seguence (tki )k such that ti < tki < ti+1, tki ∈ Q
and tki ↓ ti. Let Πk =

{
0 = tk0 < tk1 < . . . < tkn = t

}
, then it holds that

|Vf
t (Π)− Vf

t (Πk)| ≤
n−1∑
i=0

∣∣|f(ti+1)− f(ti)| − |f(tki+1)− f(tki )|
∣∣

≤
n−1∑
i=0

|f(ti+1)− f(tki+1)|+ |f(ti)− f(tki )|.

By taking k large enough, we see by right-continuity that Vf
t (Πk)→ Vf

t (Π). We see thus
that the supremum can be taken over all partitions in Q, which are countable. If we
consider a càdlàg stochastic process {X}t∈T , then it holds that VX

t is the supremum of a
countable set of random variables and thus measurable.
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4.3 Convergence in probability and distribution.

Most of the results in this section can be found in [7]. Let (Ω,F),(E, E) be measurable
spaces and L0(Ω,F ;E, E) be the set of all measurable maps from Ω to E. If E is a metric
space then we take E always to be B(E), the Borel σ-algebra. For a probability measure P
on (Ω,F) we let L0

P(Ω,F ;E, E) be the set of all equivalence classes of L0(Ω,F ;E, E) with
equivalence relation P-a.s. equality. For X ∈ L0(Ω,F ;E, E) we denote the equivalence
class of X in L0

P(Ω,F ;E, E) by [X]P.

Definition 4.12. Let (Ω,F ,P) be a probability space and (E, d) a separable metric
space. For Xn, X ∈ L0(Ω,F ;E, E) convergence in probability of Xn to X denoted by

Xn
P→ X holds if for every ε > 0

P(d(Xn, X) > ε)→ 0, as n→∞.

Remark 4.2. For separable metric spaces S1, S2, . . . , Sn it holds

B(S1 × S2 × . . .× Sn) = B(S1)× B(S2)× . . .× B(Sn),

see [13, Lemma1.2]. For a metric space (S, d) it holds that d : S×S → R+ is a continuous
map. Now it follows that d(X, Y ) is measurable because B(S × S) = B(S)× B(S).

Definition 4.13. Let (Xt)t∈Y be a stochastic process, then (Xt) is called continuous in
probability if for every t ∈ R+ and ε > 0, lims→t P(d(Xs, Xt) > ε) = 0.

Remark 4.3. Xn tends to X in probability if and only if there exist a subsequence k(n)
such that Xk(n) converges to X a.s.

For X, Y ∈ L0(Ω,F ;E, E) with metric space (E, d) we define

dP := inf {ε ≥ 0 |P(d(X, Y ) > ε) ≤ ε} . (69)

Let X ′ ∈ [X]P and Y ′ ∈ [Y ]P, then P(d(X, Y ) > ε) = P(d(X ′, Y ′) > ε) and thus

dP(X, Y ) = dP(X ′, Y ′).

We can define dP([X]P, [Y ]P) = dP(X, Y ).

Lemma 4.4 (Ky Fan Metric). Let (Ω,F,P) be a probability space and (E, d) be a sepa-
rable metric space, then on L0

P(Ω,F ;E, E) , dP is metric, which metrizes convergence in

probability so that dP([Xn]P, [X]P)→ 0 if and only if Xn
P→ X.

Proof. See[7, Theorem 9.2.2.].

Lemma 4.5. Let X be a stochastic process. Suppose that X is continuous in probability.
Fix T > 0. Then for every ε > 0 and γ > 0 there exists a θ > 0 such that, for s, t ∈ [0, T ]
with |t− s| < θ, it holds that

P(d(Xt, Xs) > ε) < γ.
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Proof. Let t ∈ ∩[0, T ], then for every c > 0 , there exists a δt > 0 such that dP(Xt, Xs) < c
for all s ∈ Bδt(t). By compactness of [0, T ] we can find t1, . . . tn ∈ ∩[0, T ] such that [0, T ] ⊂⋃n
i=1B δti

2

(ti). Let ε and γ be given. Take c = 1
2

min {ε, γ} and δ = min
{
δt1
2
, . . . , δtn

2

}
.

Now it holds for s, t ∈ ∩[0, T ] with |t− s| < δ that s, t ∈ Bδti
(ti) for some i. From this we

find that
dP(Xt, Xs) ≤ dP(Xti , Xt) + dP(Xti , Xs) < 2c.

Now it holds that P(d(Xt, Xs) > 2c) < 2c, from which we find that P(d(Xt, Xs) > ε) <
γ.

Let (E, d) a metric space and denote

Cb(E) = {f : E → R : f is continuous and bounded} .

Definition 4.14. Let µ, µ1, µ2, . . . be finite Borel measures on E. We say that (µn)n∈N
converges in distribution to µ if for every f ∈ Cb(E)∫

fdµn →
∫
fdµ.

Notation : µn  µ

Remark 4.4. Xn
P→ X ⇒ µXn  µX .

Remark 4.5. We recal that the bounded Lipschitz Metric dBL is defined as, for µ1, µ2

dBL(µ1, µ2) := sup

{∣∣∣∣∫
E

fd(µ1 − µ2)

∣∣∣∣ : ||f ||BL ≤ 1

}
,

where ||f ||BL := sup
x∈E
|f(x)| + sup

x 6=y

|f(x)− f(y)|
d(x, y)

. This metric metrizes convergence in

distribution on PE under the condition that (E, d) is a separable metric space.

Theorem 4.2. If (E, d) is a separable metric space , then for any µ, µ1, . . . ∈ PE one has

µn  µ if and only if dBL(µn, µ)→ 0.

Definition 4.15. A set Γ of Borel probability measures on E are uniformly tight if for
every ε > 0 there exists a compact subset K of E such that

µ(K) ≥ 1− ε, for all µ ∈ Γ.

Theorem 4.3 (Prokhorov Criterion). Let (E, d) be a complete separable metric space and
let Γ be a subset of PE. Then the following statements are equivalent

1. Γ is compact in PE.

2. Γ is uniformly tight.
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4.4 Characteristics

We list some basic properties of characteristic functions. We refer to [19] for a complete
treatment of characteristic functions.

Definition 4.16. Let X be a random vector in Rd with distribution µX . The characteristic
function ΦX is defined as

ΦX(u) = E[ei(u,X)], u ∈ Rd. (70)

Theorem 4.4. Let X, Y be two random vectors, then X, Y are identically distributed if
and only if ΦX(u) = ΦY (u) for all u ∈ Rd.

Theorem 4.5. Every characteristic function ΦX has the following properties:

1. ΦX(0) = 1

2. |ΦX(u)| ≤ 1, ∀u ∈ Rd.

3. ΦX(−u) = Φ̄X(u), , ∀u ∈ Rd.

4. ΦX is uniformly continuous on Rd.

Theorem 4.6. Random variables X1, . . . , Xd with characteristic functions ΦXi(ui) are
independent if and only if

ΦX(u) =
d∏
i=1

ΦXi(ui), (71)

where X = (X1, . . . , Xd) and u = (u1, . . . , un).

Theorem 4.7. Let X,X1, X2, . . . , Xn, . . . be random vectors with distributions µX , µXi.
µXn  µX if and only if ΦXn converges uniformly on every compact set to ΦX .

Lemma 4.6. Let X be a random variable in (R,B(R) and ΦX the corresponding charac-
teristic function , then for u > 0

EX2I|X|< 1
u
≤ 3

u2
(1−<{ΦX(u)}) (72)

and

P(|X| ≥ 1

u
) ≤ 7

u

∫ u

0

1−<{ΦX(v)}dv. (73)

Proof. See [15, p-209, B’ Inequality].

Lemma 4.7. Let X be a random variable in (R,B(R) and ΦX the corresponding charac-
teristic function, then

|ΦX(t)− ΦX(s)| ≤
√

2|1− ΦX(t− s)|. (74)

Proof. See [15, P-208,B. Inequality].
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4.5 Buildings blocks of Additive processes

In this section we consider the building blocks of Additive processes:

(1) Additive processes with values in Z+ and jumps of amplitude 1.

(2) Additive processes with a.s. continuous paths

Processes with property (1) have Poisson distributed increments. Processes with property
(2) have Gaussian distributed increments. A random variable X is Poisson distributed
with intensity λ > 0 if

P {X = k} =
λke−λ

k!
, k ∈ N.

The characteristic function is ΦX(u) = eλ(eiu−1), ∀u ∈ R. A random variable Y is
Gaussian distributed with mean m and variance σ2 if

P {Y ∈ A} =
1

σ
√

2π

∫
A

e
−(x−m)2

2σ2 dx, A ∈ B(R).

The characteristic function is given by ΦX(u) = eimu−
σ2u2

2 , ∀u ∈ R.

The content of this section is to show that Additive processes with property (1) have
Poisson distributed increments and Additive processes with property (2) have Gaussian
increments. These results and proofs are taken from [11] and [9]. In order to prove the
statements we need an elementary relation

− log(1− x) = x+ o(x), as x→ 0. (75)

Suppose that for every n ∈ N there are positive values xn1 , . . . , x
n
rn such that the maximum

limn→∞max1≤i≤rn x
n
i = 0, then from (75),

lim
n→∞

rn∑
i=1

xni → c ⇐⇒ lim
n→∞

rn∏
i=1

(1− xni )→ e−c. (76)

Suppose that we are given N independent Bernoulli random variables X1, . . . , XN . If
X1, . . . , XN are identically distributed, with N very large and λ = pN , where P {Xi = 1} =
p, then the Poisson distribution with intensity λ appears to be a good approximation
of
∑N

i=1Xi. The following theorem gives a bound. The importance of the Poisson
Approximation becomes clear in Theorem 4.9.

Theorem 4.8 (Poisson Approximation). Let X1, . . . , Xn be Bernoulli distributed with
P(Xi = 1) = pi. Let λ =

∑
i pi, M = maxi pi and P1,P2 be two probability measures on N,

such that P1 is the probability distribution of
∑

iXi and P2 a Poisson distribution with
parameter λ. Then it holds that

sup
A⊂N
|P1(A)− P2(A)| ≤Mλ. (77)

Proof. See [22, page 12-14].
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Theorem 4.9. Let {X}t∈R+
be an Additive process with property (1). Then there exists

a non-decreasing continuous function Λ : R+ → R+ such that

P {Xt −Xs = k} =
(Λ(t)− Λ(s))k

k!
e−(Λ(t)−Λ(s)),

i.e. the increment Xt −Xs has a Poisson distribution with parameter Λ(t)− Λ(s).

Proof. For s < t and every n ∈ N let tnk = (t−s)k
n

with k = 0, 1, . . . , n − 1. Define
Znk = Xtn(k+1)

−Xtnk . By continuity in probability by Lemma 4.5, for every ε > 0,

lim
n→∞

max
1≤k≤n−1

P {Znk ≥ ε} = 0.

Now we use the properties that the process has independent increments, takes values in
Z+, all paths are increasing and jumps of amplitude 1. Because for every realization, the
path is non-decreasing, {Xt −Xs < ε} ⊂ ∩n−1

k=0 {Znk < ε} and thus,

P {Xt −Xs < ε} ≤
n−1∏
k=0

P {Znk < ε} .

The process takes values in Z+ from which it follows that

P {Xt −Xs = 0} ≤
n−1∏
k=0

P {Znk = 0} .

For the moment, assume |t− s| sufficiently small, such that P(Xt −Xs = 0) > 0. Then
we find from (76) that

∑n−1
i=0 P(Zni ≥ 1) converges to a finite value. Now we define the

following process,

Z ′nk =

{
0 if Znk = 0
1 if Znk ≥ 1.

Let Z ′n =
∑n−1

i=0 Z
′
ni, then it holds that Z ′n

a.s.→ Xt −Xs and by Theorem 4.8 we find the
bound

sup
A⊂N
|P(Z ′n ∈ A)− Pλn(A)| ≤Mnλn.

where Mn = maxi P(Zni ≥ 1) , λn =
∑

i P(Zni ≥ 1) and Pλn is a Poisson measure with
parameter λn. Now we find with Lemma 4.5

sup
A⊂N
|P(Z ′n ∈ A)− Pλn(A)| → 0, as n→∞.

From this it follows that Xt −Xs is Poisson distributed with parameter

λ = lim
n→∞

n−1∑
i=0

P(Zni ≥ 1).

We know that for independent random variables Yi, with a Poisson distribution and
with parameter λi, the sum

∑
i Yi is again Poisson distributed with parameter λ =

∑
i λi.
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From this it follows that for every s < t , Xt −Xs is Poisson distributed. Now denote
the parameter of Xt by Λt. Because the paths of Xt are always non-decreasing, it is
clear that t 7→ Λt is non-decreasing. Now the characteristic function of Xt is given by
ΦXt(u) = e(eiu−1)λt . By continuity in probability we must have for every u ∈ R, t 7→ ΦXt(u)
is continuous. We conclude that t 7→ Λt is continuous.

Let {Xt}t∈R≥0
be an Additive process in R with property 2. We will consider the process

on [t0, t1]. We follow [11, Section 1.4] For given δ, ε define the set

Dε,δ :=

 sup
|t−s|<δ
t,s∈[t0,t1]

|Xt −Xs| < ε

 . (78)

Lemma 4.8. Let (Xt)t∈R≥0
be a stochastic process with continuous paths. Fix an interval

[t0, t1] , then Dε,δ is measurable and for every ε > 0 there exist δ(ε) such that P{Dε,δ(ε)} >
1− ε

Proof. Because of continuity of the paths it holds that

Dε,δ =
⋃
m∈N

⋂
q1,q2∈Q∩[t0,t1]
|q1−q2|<δ

{
|Xq1 −Xq2| < ε− 1

m

}
.

The case ”⊂” is clear. However the case ”⊃” need some extra argument. Suppose that ω
is in the right part. Then there is a m such that for all q1, q2 ∈ Q∩ [t0, t1] with |q1−q2| < δ
it holds

|Xq1(ω)−Xq2(ω)| < ε− 1

m
.

Let s, t ∈ [t0, t1] with |t− s| < δ. Without loss of generality assume s < t and take hn ↓ s
and kn ↑ t with hn, kn ∈ [s, t] ∩Q. Now it holds

|Xt(ω)−Xs(ω)| ≤ |Xt(ω)−Xkn(ω) +Xkn(ω)−Xhn(ω) +Xhn(ω)−Xs(ω)|

≤ |Xt(ω)−Xkn(ω)|+ |Xkn(ω)−Xhn(ω)|+ |Xhn(ω)−Xs(ω)|
Now by letting n→∞

|Xt(ω)−Xs(ω)| ≤ ε− 1

m
and thus

sup
|t−s|<δ
t,s∈[t0,t1]

|Xt −Xs| ≤ ε− 1

m
< ε.

Now, Dε,δ is a countable union of measurable sets, hence it is measurable. Consider

(Dε,δ)
c = {ω ∈ Ω : ∃s, t ∈ [t0, t1], |t− s| < δ, |Xt −Xs| ≥ ε} ,

and define δn = 1
2n

, then (Dε,δn+1)
c ⊂ (Dε,δn)c and by uniform continuity of continuous

functions on compact sets it holds that
⋂

(Dε,δn)c is the set of all ω for which t→ Xt(ω)
is not continuous. From this it is clear that limn→∞ P{(Dε,δn)c} = 0, hence for ε > 0 there
exist δ(ε) > 0 such that P{Dε,δ(ε)} > 1− ε.
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Before we prove the next lemma a little remark for symmetric random variables is
needed. If a random variable is symmetric, i.e. P(X ∈ A) = P(X ∈ −A) for all A ∈ B(Rd).
Then the characteristic function is given by

ΦX(u) = E(cos(uX)).

Lemma 4.9. Let {Xt}t∈R≥0
be an Additive process with property (2). Fix an interval

[t0, t1], then Xt1 −Xt0 is Gaussian distributed.

Proof. Let Xs
t = Xt − X̄t be the symmetrization, recall (cf. 2.2). For ε, δ > 0 define

Ds
ε,δ :=

 sup
|t−h|<δ
t,h∈[t0,t1]

|Xs
t −Xs

h| < ε

 .

For every ε > 0 by Lemma 4.8 there is an δ(ε) > 0 such that P{Ds
ε,δ(ε)} > 1− ε. Take a

sequence εn ↓ 0 and a sequence of partitions

t0 = tn,0 < tn,1 < . . . < tn,kn = t1, tn,i+1 − tn,i < δ(εn)

Define the truncations Yn,k := (Xs
tn,k
− Xs

tn,k−1
)I{|Xs

tn,k
−Xs

tn,k−1
|≤εn} and Sn :=

∑kn
i=1 Yn,i .

From

Ds
ε,δ(ε) ⊂

kn⋂
k=1

{|Xs
tn,k
−Xs

tn,k−1
| ≤ εn} ⊂ {Sn = Xs

t1
−Xs

t0
},

it follows that Sn converges in probability to Xs
t1
−Xs

t0
. Convergence in probability implies

convergence in distribution. This implies that the characteristic functions ΦSn converge
uniformly on compact intervals to the characteristic function of Xs

t1
−Xs

t0
,

|ΦXt1−Xt0 (u)|2 = ΦXs
t1
−Xs

t0
(u)

= lim
n→∞

ΦSn(u)

= lim
n→∞

kn∏
i=j

E cos(uYn,j).

(79)

The last equality holds because the random variables Yn,i are symmetric. We use the
series representation of cos(x)

= lim
n→∞

kn∏
i=1

E
(

1−
Y 2
n,iu

2

2!
+
Y 4
n,iu

4

4!
− . . .

)

= lim
n→∞

kn∏
i=1

E
(

1−
Y 2
n,iu

2

2!
+
Y 2
n,iu

2

2!
O(εn)

)

= lim
n→∞

kn∏
i=1

(
1−

E(Y 2
n,i)u

2

2!
(1 +O(εn))

)
.

(80)
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Note that as n→∞, limn→∞maxi≤kn
E(Y 2

n,i)u
2

2!
(1 +O(εn)) = 0. For u sufficiently close to

zero, |ΦXt1−Xt0 (u)|2 > 0. We conclude by (76) that

c = lim
n→∞

kn∑
i=1

E(Y 2
n,i)

2
<∞.

Furthermore by (76) we find for every u,

lim
n→∞

kn∏
i=1

(
1−

E(Y 2
n,i)u

2

2!
(1 +O(εn))

)
= e−cu

2

.

The characteristic function of Xt1 −Xt0 is of the form

ΦXt1−Xt0 (u) = eiξ(u)−cu2 1
2 .

For ε, δ > 0 define

Dε,δ :=

 sup
|t−h|<δ
t,h∈[t0,t1]

|Xt −Xh| < ε

 .

For every ε > 0 by Lemma 4.8 there is an δ(ε) > 0 such that P{Dε,δ(ε)} > 1− ε. Take a
sequence εn ↓ 0 and a sequence of partitions

t0 = tn,0 < tn,1 < . . . < tn,kn = t1, tn,i+1 − tn,i < δ(εn).

Define the truncations Zn,k := (Xtn,k −Xtn,k−1
)I{|Xtn,k−Xtn,k−1

|≤εn} and Zn :=
∑kn

i=1 Zn,i .
From

Dε,δ(ε) ⊂
n⋂
k=1

{|Xtn,k −Xtn,k−1
| ≤ εn} ⊂ {Zn = Xt1 −Xt0},

it follows that Zn converges in probability toXt1−Xt0 . Now write ΦZn(u) = eimnu<(ΦZn(u)).
Now for every u ∈ R

eimnu → ΦXt1−Xt0 (u)ecu
2

, as n→∞.
The mn are bounded. Otherwise, there is a unbounded subsequence {mnk}k from which∣∣∣∣∫ ε

0

ΦXt1−Xt0 (u)ecu
2

du

∣∣∣∣ = lim
k

∣∣∣∣∫ ε

0

eimnkudu

∣∣∣∣
= lim

k

∣∣∣∣eimnk ε − 1

imnk

∣∣∣∣ = 0.

This is a contradiction, for ε sufficiently close to 0,
∣∣∣∫ ε0 ΦXt1−Xt0 (u)ecu

2
du
∣∣∣ > 0. We

conclude that {mn} are bounded. We can take a converging subsequence with limit m.
We conclude that ξ(u) = mu and thus the characteristic function is given by

ΦXt1−Xt0 (u) = eimu−cu
2 1

2 .

Hence Xt1 −Xt0 is Gaussian distributed.
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