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1 Introduction

”Quien olvida su historia esta
condenado a repetirla”.

Jorge Agustin Nicolds Ruiz de
Santayana y Borrds

The aim of this thesis is to understand the sample path structure of processes with
independent increments. The study of such a process goes back to [14, ChapitreVII, p-
158]:

”Ce probleme constitue une extension naturelle de celui des sommes ou sfies a
termes aléatoires indépendants”

A process with independent increments is the continuous time extension of the random
walk S, = > | X; of independent random variables.

The French mathematician Paul Lévy studied processes with independent increments.
Nowadays Lévy processes are defined to be processes with stationary, independent and
some additional assumptions, see [20, Definition 1.6]. However Lévy determined and gave
the ideas for investigating the path-wise behavior of processes with independent increments
without assuming stationarity and the additional assumptions. We will consider processes
with independent increments under minimal conditions.

The theory of processes with independent increments is connected with a limit theorem,
see Theorem for sums of independent random variables. This result is obtained from
[6]. This limit theorem deserves in our opinion most of the attention for understanding the
sample path structure of processes with independent increments. In Section we will
prove this theorem for sums of real-valued independent random variables. Furthermore
with [12] we will extend the result for sums of independent, Banach space valued random
variables, see Theorem [2.4] In Section [2.3] [2.4] we will use Theorem [2.4] to find the first
regularity properties of sample paths. Also with Theorem we are able to subtract
jumps at fixed times. Then we are left with a process with independent increments that
is continuous in probability, which we will call additive processes. In Section we will
show that for such a process there exists a cadlag modification.

In 1942 Kiyosi Ito, in his first paper [10], succeeded in realizing an idea of Paul Lévy
to describe the structure of additive processes. The fundamental theorem describing the
path-wise structure of real-valued additive processes is the so called Lévy-Ito decomposition.
For a complete proof and analysis we refer to [I1]. For additive processes with stationary
increments, nowadays martingale arguments are added to the analysis. We refer to [1],[4].
We will follow the path-wise approach to understand the Lévy-Ito decomposition for
additive processes with values in separable Banach spaces. We will follow closely the
analysis as in [10],[9] for the one dimensional case. In section we analyze the jumps
of additive processes. Using Theorem and Theorem we are able to prove Theorem



3.10, With the aid of Theorem [3.10] we are able decompose a general additive process
with values in a separable Banach space F in a continuous part and a jump part.

Theorem [3.10] is a similar result as Theorem 2.1l Theorem 2.1l is used to subtract.
jumps at fixed times. Theorem [3.10] is used to subtract jumps at random times. The
use of Theorem [3.10] makes our approach different from the literature. At the same time

Theorem |3.10] is inspired by Theorem due to Paul Lévy, and proven with the aid of a
recent (2013) result from [3].



2 Processes with independent increments

2.1 Introduction

We will consider processes with independent increments. We always let £ be a separable
Banach space unless otherwise stated. An E-valued stochastic process {X:},cp, on a
probability space (2, F,P) is called a process with independent increments if for all
t1 <ty < ... <t,in Ry the random variables X, ,X;, — X;,,..., X, — X;, , are
independent. Let F; := 0 {X, : u < t} be the o-algebra generated by all random variables
X, with u € [0,%]. A Stochastic process has independent increments if for all s,¢ € R,
with s < ¢, the random variable X; — X is independent of F,. In most general form we
define processes with independent increments as follows.

Definition 2.1. Let (2, F, {.7-}}t€]R+ ,IP) be a filtered probability space and X be an
adapted stochastic process with state space E. We call X a process with independent
increments if the following conditions hold:

1. for every w € Q, Xo(w) = 0;

2. for every s < t, X; — X, is independent of F.
Example 2.1. Let {7,}, .y be a strictly increasing sequence in R,y with lim, 7, = oo.
Let {Z},en be a sequence of independent random variables. Let Sy =% _, Z, and

S, = anq Zy, then {Sti}tem are processes with independent increments. We call them
pure jump processes.

A sample path of a process with independent increments has no reason for being
regular. The first natural question then immediatly arises: do paths have regularity
properties? If in addition it is assumed that {X;} teRy has the continuity in probability
property, then there exists a modification with all paths cadlag. This will be the content of
Section[2.5 If stochastic continuity is not assumed, then there is a night and day difference.

A primary tool for analyzing processes with independent increments are characteristic
functions. For the moment we take E = R%. For 0 = ¢, < ty < ... < t, in Ry let
Uty o1, denote the distribution of (Xy,, X4, ..., Xy, ). For s <t let ¢(s,t)(u) denote the
characteristic function of X; — X, i.e. for every v € R?

o(s,t)(u) =E [ei<“’Xf’X5>] ) (1)

For a definition and general properties of characteristic functions, see section 4.4} By
independence of increments we find by Theorem for s < h <t,

(s, h)(u) = @(s,)(u)e(t, h)(u). (2)
The distribution of (X,,, X4,, ..., X}, ) is uniquely determined by the characteristic function
Dx,, Xy, x,)(u), ue R and is fully determined by the increments of {Xt}te]R+

n—1 n
CI)(Xtv“"th)(u) - H (I)(Xti+1_Xti) <Z UZ) e Rnd’ (3)
i=1 =1

and ®x, (u) =



2.2 Sums of independent random variables

We note that the theory of processes with independent increments is connected with limits
of sums of independent random variables. Indeed for every choice t; <ty < ... <t, <t
of time points we can represent X; by

n—1

Xt = Xt1 + Z (Xti+1 - Xti) + (Xt - th) ) (4)

i=1

which is a sum of independent random variables. If we approximate ¢ b {t,}, .y, then
lim,, X;, is a limit of sums of independent random variables. We state an important result
for sums of independent random variables with values in a Banach space (E, || - ||), see
[11, chapter 1.3, Lemma 2.].

Remark 2.1. The sum of two random variables X, Y with values in a general Banach
space (E, || -||) is not trivially a random variable. If we however assume E to be separable,
then the collection of random variables is closed under summation. The following lemma
holds for Banach spaces (£, || - ||) where the collection of random variables is closed under
summation.

Lemma 2.1. Let X1, X5 ..., Xy be independent random variables and S,, = Z?:l X, for
n=1,...,N. Suppose that for some a > 0, P(||S,|| > a) < < % foralln=1,...,N.
Then it holds that

P( max ||S, — S,|| > 4a) < 4P(||Sy|| > a).

0<p,g<N

Proof. By the triangle inequality ||Sk — Si|| < [|Sv — Sk|| + ||Sy — Si|| it holds that

P( max_||Sy — Si|| > 4a) < 2P max ||Sy — Sk|| > 2a ¢ .
1<kJ<N 0<k<N

Consider the events Ay = {||Sk|| < a}, Bx = max, 1Sy — Sil| < 2a,]||Sy — Sk|| > 2a
<1<

The events By are disjoint and Ay, By, are independent. Since ||Sy — Sk|| > 2a and
||Sk|| < a imply ||Sy|| > @ it holds that {||Sx|| > a} D U, Ak N Bk. Then it holds that

P(|[Sx]| > a) > Y P(AxN By) = > P(A)P(By)

0<k<N

> (1—5)%1@(3@ =(1—0P (LkJBk) > %IP’( sup ||Sy — Sil| > Qa)

which completes the proof.
O

We will often use a symmetrisation method in order to gain insights in sample path
properties of processes with independent increments.



Definition 2.2. Let (Q,}", {Fslser>

stochastic process. Let (Q, F, {.?’:'s}S or ,I?’) and {Xt} T be independent copies. We define
the product space

PP) be a probability space and {X,},. be an adapted

(@ F {F}ier B) = (O QF @ F {F. 0 £} op POP),

seT”’
and the symmetrization of X; as X (w*) = X;(w) — Xy (©), Yw* = (w,@) € Q.

Remark 2.2. One important property of the symmetrization is ®xs(u) = |®x|*(u), Yu €
R.

The importance of the following Theorem is clear from Eg. . The result is from [6].
The proof is partly taken from Doob.

Theorem 2.1. Let Xq,...,X,,... be a sequence of independent random variables in
(R, B(R)). Suppose there is a random variables X so that for every k = 1,2,... the
random variable A, given by

k
AL, =X — ZXi a.s,
i=1

and O independent of X1, ..., Xg. Then there are constants my, for k =1,2,... such that
N

N—o0
k=1

exists with probability 1.

Proof. Let X,, be an exact copy of X,, (as in Definition and let X$ = X,, — X,, be
the symmetrisation of X,,. Define the sum S}, = Zivzl X,. For every n € N,

n n
by = [[10x? > [[19x,
=1 =1

By properties of characteristic functions, see Theorem {.5| it holds that ®x(0) = 1 and
that ®x is continuous on R. For every 0 < ¢ < 1 there exists d(¢) > 0 such that that
|Px(t)]> > 1—¢, for all t € (—d(¢),d(¢)). From this, for t € (—d(€),d(¢)),

|0a, 7 =[x

D5 (£) > [Ox (D) > 1 -

For every u € R, |®g: (u)| = [[i_, [Px,(u)|? is non-decreasing in u € R as |Py,| < 1. A
non-decreasing, bounded sequence in R converges, hence |®g.(u)| convergence pointwise
to a limit, which we denote by ¢(u). We claim that the function ¢ is continuous. Let
€ > 0 be given, then for u,v € R,

|o(u) = (V)] = lp(u) = Py (u) + Py, (u) = oy, (v) + Py, (v) — (s)]

< |o(u) — D (v)] + D5y () — Dy ()] + B () — ()] )



Take u,v € R such that u — v € (—§(€2/18), 5(¢?/18)). By Lemma [1.7] it follows,

62
D53 (1) — Bs; (0)] < (/21 — Dy (w—v) <42 < 5

By taking N sufficiently large we can make sure that

o(u) = @5 (w)] < 3, [(v) — Py ()] < 3.

From this it follows |¢(u) — ¢ (v)| < € for u,v € R such that u —v € (—d§(e?/18),5(e?/18)).
By Dini’s theorem, ®g. converges uniformly on compact intervals. Note that by indepen-
dence

Py = Psy 53, P, -
It holds that ¢(u) > 0 for some interval u € (—4,6) around 0. From this and Lemma [4.7]
for every compact interval [— K, K| with K > 0,

lim inf Pgs_gs (u) =1

N—oonm>N

uniformly on [— K, K]. By Lemma it follows for n, m
1/e
(IS5 — 85 > ¢) < 76/ 1R {®s: s (0)}] do.
0

1/e
= 76/ [1 — |¢)Sn_5m(?})|2] dv.
0
From this and uniform convergence of ®gs_g. for every € > 0,

lim sup P{|S; — S’ |>¢€}=0.

N—o00 nm>N
From Lemma it follows limy_e P {sUp,, oy [S5 — S5, > 4e} = 0, from which we
conclude a.s. convergence of S;. Thus there exists a probability one set 2* € F @ F such
that

So(w,w) = S(w,w), Y(w,w) € Q"

Let Qf = {0 €Q:TweQ, (w,w) € Q*} and define for every @ € €, the set Q =
{weQ: (w, ) € Q*}. Now it holds that

/wem /wem (w,@) dP(w)dP(@) =1

From this we find that there exists at least & € Qf such that P(Q2;) = 1. From this we
find now that S, (w) — S,(@) converges Vw € € . This means that we can choose the
centering constants ¢, = S, (@).

[l

We will prove Theorem [2.1] for Banach space valued random variables. We take (E, || - ||)
a real separable Banach space and let E* be its dual space, the set of all continuos linear
functions, x* : F — R.



Lemma 2.2. There exists a sequence {x},} >, C E* such that

||zl = sup [ (27, 2} [, V& € E. (7)

Proof. The existence follows from separability of F, see [16, Lemma 1.1]. O

We denote by B(F) the Borel g-algebra, the o-algebra generated by the open sets of E.
It holds that B(E) is the o—algebra generated by the Cylinder sets, C,

{r € E:(z,2]) € By,...,(v,2}) € B,},
where By, ..., B, € B(R) and z7,...,z} € E*.
Lemma 2.3. For a separable Banach space E, 0 {C} = B(E).

Proof. Follows from the proof of [I7, Theorem 2.8]. O

This means that for a function X : Q — E measurability is equivalent to measurability of
(x*, X), for every z* € E*. From (7)) we find that ||X — Y|| =sup,, | (z}, X —Y) |, which
is measurable, hence we can define convergence in probability in the natural way.

Definition 2.3. Let (2, F,P) be a probability space. For a random variable X : Q — F
we define the characteristic function ®x : E* — C by,

Dy (2*) = B! %),
We denote ux(B) =P{X € B},VB € B(E).
With Lemma [2.3] a similar result as to Theorem (4.4l holds for E-valued random variables.

Theorem 2.2. Let X,Y : Q — FE be two random variables with ®x(z*) = Py (z*),
Vz* € E*. Then we have ux = py.

Proof. See [17, Theorem 2.8]. O

For real random variables X7, ..., X, it holds that X, ..., X, are independent if and only

if ®x,,. x.)(w) =1]Px,(u;)), u € R". The same result holds for random variables with

values in a separable Banach space E. We recall that ®(x, . x,)(27,...,2%) = Ee’ AR

for x7,...,z; € E*. The random variables X,...,X,, are independent if and only if
Pixi... Xn)(f{? e Ty) = H Dy, (7). (8)

An important property of random variables with values in a separable Banach space E is
that they are tight.

Lemma 2.4. Let X be a random vartable with values in a separable Banach space E,
then X is tight, i.e. for every e there is a compact set K. C E such that

P(K.)>1—e.



Proof. See [17, Proposition 2.3]. O

Theorem 2.3 (Ito-Nisio). Let E be a separable Banach space. Suppose that X;, i =1,2...
are independent, symmetri and E-valued random variables. For the sum Sy = Zf\il X;
the following are equivalent,

1. Sy converges in distribution to a random variable S.
2. Sy converges in probability to a random variable S.
3. Sy converges a.s. to a random variable S.
4. The probability laws puy of Sy are uniformly tight.
5. There exists a random variable S such that (z*, Sy) 5 (x*,S), for every z* € E*.
6. E (ei<‘”*’5">) —E (ei<‘”*’5>), for every x* € E*, for some random variable S.
Proof. See [12]. O

Next we will use Theorem [2.3] to prove an extension of Theorem [2.1] for random variables
with values in a separable Banach space.

Theorem 2.4. Let Xi,...,X,,... be a sequence of symmetric, independent random
variables in (E,B(FE)). Suppose there is a random variable X so that for every k = 1,2, ...
there is a random variable Ay such that

k
Ap=X— ZXZ- a.s,
i=1

and Ay, is independent of X4,...,X,. Then Sy = Zszl X} converges with probability 1.

Proof. First we note that Sy and X — Sy are independent random variables with values
in /. We will show that this implies that Sy is uniformly tight. Let K C F be a compact
set. Now by the use of Fubini we find

P(X e K)= / P(Sy +x € K)ux_s,(dz).
E

With this we can find an 2/ € F such that P(Sy + 2/ € K) > P(X € K). Now
set K = {:E_;y ST,y € K}. From the fact that K x K is also compact, the function
ExE — E,(r,y) — %5¥ is continuous and the image of a compact set under a continuous
function is also compact, we conclude that K’ is compact. Note that

{Sy+2' € K,—Sy+12' € K} C{Sy € K'}

' A random variable X is called symmetric when P(X € B) = P(—X € B), for every B € B(E).

10



and by symmetry of Sy that

P{Sy € K'} >P{Sy +2' € K,-Sy+2' € K}
>1-P{Sy+2' ¢ K} —P{-Sy+2' ¢ K}
=1-2P{Sy+2 ¢ K}
>1-2P{X ¢ K}.

(9)

Next we will use Lemma [2.4] that every random variable with values in a separable Banach
space is tight, i.e. for every € > 0 there is a compact set K, such that P(X ¢ K,) < e.
From this we find then that we can always find K /9 such that

Hence the collection of measures pug, are uniformly tight. The statement now follows
from Theorem 2.3 O

2.3 Symmetric processes with independent increments

We first consider symmetric processes with independent increments with values in a
separable Banach space (E,B(FE)). We will show that for such processes we are led to
study processes that are continuous in probability. We will show that every symmetric
process with independent increments can be decomposed into independent parts: a part
that is continuous in probability and a part that by approximation is a pure jump process,
recall Example 2.1} The precise formulation is given in Theorem

Definition 2.4. Let {X }te]R+ be a process with independent increments. We call X an
Additive process if the following conditions hold,

1. For every w € Q, Xo(w) = 0.
2. For every s < t, X; — X is independent of F.

3. For every t > 0 and € > 0, lim, ,, P{||X; — X,|| > ¢} = 0, i.e. the process X is
continuous in probability.

From Lemma we know there is a metric dp on L3(; E) defined by
dp(X,Y)=inf{e>0:P(||X - Y| >¢) <e}, X,Y € Lp( E),

that metrizes convergence in probability. We will consider processes as maps from R, to
the metric space (LY($; E), dp), see section [4.1] We can define regularity of this map in
the sense of Definition L7

Lemma 2.5. Let {X}te]R+ be a symmetric stochastic process with independent increments

and with values in (E,B(E)), then {X}t€R+ is reqular in probability, i.e. the function
X Ry — (LY(Q, F; E,E),dp), t— Xy, is regular.

11



Proof. Let t > 0 and t,, 1 t. We consider the sequence (X, )nen. It is possible to write X;
as a sum of independent variables, X; = X;, + Z;:ll (XM.Jr1 — Xti) + (X; — X;,). Note
that the random variables X;,, X;, — Xy ,..., X}, — X, , are symmetric random variables.
By Theorem the sequence X; converges a.s. to a random variable X;_, hence it
converges in probability to X;_. Let s, T ¢ be another sequence. By the same arguments
X, converges in probability to a random variable X;_. We show that the limits are the
same. First merge the two sequences together in one sequence ¢;, 1 ¢. The sequence (X )
converges by the same arguments in probability to a random variable. This forces the
limits X;_ and X;_ to be the same. We can do the same for ¢,, | t. We conclude that for
every t > 0 the limits limps; Xp,, limy, ), Xj, exist in probability. O

Now we want to describe a procedure to define jumps of X. We recall once more that we
have made no assumption yet about regularity of sample paths. We will use Lemma
to define jumps in probability.

Definition 2.5. Let X be a process with independent increments. Then for s < t we
define
Fr=0{X.—X,:s<u<wv<t}, (10)

to be the o-algebra generated by all increments of X on [s, t].

Lemma 2.6. Let X be a process with independent increments. Then Fy and .7-"5); are
independent o-algebra’s.

Let Y,, n = 1,2,... be a sequence of random variables, then the event that lim, Y,
converges satisfies {lim,, Y, exists} C U, N,,or {/|Ymt+1 — Yil| < €n}, for every sequence
€, > 0 with > €, < c0.

Lemma 2.7. Let Y,, n = 1,2,... be a sequence of random wvariables. If there exists
a sequence €, > 0 such that Y >~ P{||Yoi1 — Yol > €.} < 00 and Y7 €, < 00, then
P {lim, Y, exists} = 1.

Proof. First we note that {lim, X, exists}* C [, Upusp 11[Ymt1 — Yol > €} . Also

P{ U {Ys1 — Yool | > Em}} < ZP{HYM-I — Yol > ent.
n=~k

m>k

From this it is clear that

P ({li}lnYn exists} ) < l}i_{goz_:kIP’{HYnH —Y,|| > e} =0.

0
Consequence of Lemma [2.7] is that we can define
W)+ (Yan(w)Y,(w)) if w e {lim, Y, exists}
Y{w):= { 0 if w ¢ {lim, Y, exists} (11)

12



By Lemma the a symmetric process with independent increments X : Ry +— L3(Q; E)
is regular and thus has at most a countable number of jumps. We enumerate and denote
the setof jumps with J = {t, : n € N}. Let t € J and take some increasing sequence
sp T t. The sequence Y,, := X; — X, is a Cauchy sequence in probability. We can take a
subsequence s, such that P {|[Y,,,, — Yo, || > 5r} < 5¢. By Lemma [2.7| we can define a
random variable with ,

k+1

AX, () = Vo (W) + Y00y (Yo, (W) = Yo, () if w € {lim, Y,,, exists}
S0 if w¢ {lim, Y, exists} °

It follows that AX;_ is (,_, 0 {Ynk, Yoeits-- .}—measurable and limgy Xy — Xy = AX;
in (Lp(2; E),dp). From this we find that for every s < ¢ it holds that AX,_ is F,Y-
measurable. In the same way we define AX;, for a sequence s, | t such that for every
s > t it holds that AX,, is .Efg—measurable. Now we define the following processes.

Definition 2.6. Let X be a symmetric process with independent increments. We define
the processes

Syt = > AX,_, Stt)= Y AX,., (12)

n<Nt, <t n<N,t,<t

where {t, : n € N} the set of jump points of X viewed as map from R, to LY(Q; E).
Remark 2.3. The increments Sy (t) — Sy(s) are F%-measurable.

Definition 2.7. Let E be a separable Banach space and 7' > 0. We define Dg(7') to
be the space of all cadlag functions f : [0,7] — E. We equip the space Dg(T") with the
o-algebra Dg(T) generated by the sets of the form,

{f € DE(T)’f(tl) € Bl, ce ,f(tn) S Bn,O <t <...<t, < T, B; € B(E)} .
On Dg(T) we define the supremum norm, || f||; = sup,ecio 7 [1f(2)]-

Remark 2.4. For a stochastic process X the map X : (Q,F) — (Dg(T),Dg(T)) is
measurable. For separable Banach spaces there exists a norming sequence z; € E* such
that for x € E, ||z|| = sup,, |(x}, )|, see Lemma[2.2] From the cadlag property it follows
that

1flly = sup 1f(@)]| = sup  sup [{z}, f(q))].
qE[O,T]ﬂ(QU{T}) qE[O,T}ﬁ(@U{T}) n

This implies that for the process X, the map w +— || X (w)||; is measurable. The space
Dg(T) equipped with the supremum norm || - ||7 is a Banach space. The same we can say
for the space Lg(T) of all caglad functions f : [0,7] — E.

The space (Dg(T),|| - ||7) is Banach space, but not a separable Banach space.

Remark 2.5. For a fixed time horizon 7' > 0 it holds that {Sy(¢)(w)}
and {S}(t) (ou)}te[O 7 € Le(T), with Sy and S as in Definition .

te[0,T] € Dg(T)

13



If X is a symmetric process with independent increments, we can subtract jumps at
fixed time points, X; — Sy (t) — S¥(¢). If we take N — oo, then intuitively we expect
X — Sy — Sy to converge to a process that is continuous in probability. The main
difficulty is that a priori it is not clear how Sy (t), S¥ () converges as N — oco. In order
to understand the convergence of these processes we need the following lemmas.

Definition 2.8. Let X,Y € (Dg(7T),Dg(T)) be processes. We define
dyep(X,Y) :=inf {e >0: IP’{ sup || Xs — Y| > e} < e} . (13)
0<s<T
Definition 2.9. Let X, X3, X,...,X,,... be random variables in Dg(T") or (Lg(T)),

then X,, converge uniform in probability to X if for every € > 0,

lim P{||X, — X||r > ¢} =0.
n—oo

We denote this convergence by X,, — X, n — 00
Lemma 2.8. On (Dg(T),De(T)) ducp is a metric and dye,(X,, X) — 0 if and only if
X, 4 X.
Proof. The function d,, is non-negative, symmetric and d,.,(X,Y) = 0 if and only if
| X —Y||r =0 as. Next we will show the triangle inequality. Let X,Y,Z € Dg(T), then
by the triangle inequality || X — Z||z < || X = Y|z + ||Y — Z||r it yields
PLIX = Zlir > duep(X,Y) + dup (Y, Z) }
SPHX =Yir + IV = Zllr > duep(X,Y) + duep (Y, Z) }
SPLIX =Yz > dup(X,Y)} + P{[IY = Z|| > duep (Y, 2)}
< dyep(X,Y) 4+ duep (Y, Z).

By Definition [2.8|it follows that dye,(X, Z) < duep(X,Y) + duep (Y, Z).

(14)

Next, suppose that X,, — X. Then for every ¢ there is K, such that

sup P{||X — Xn|lr > €} <e.
N>K.

From this it holds supys g, due(X, Xn) < €. we conclude that dyq, (X, X,) — 0. Con-
versely suppose lim,, .. c_lucp(X , X)) = 0. Then for every e, there is a constant K. such
that

]P){HX — XN”T > 6} S €,

for all N > K.. From this it follows that X,, - X, n— . ]
Lemma 2.9. Let X,, n = 1,2... be independent stochastic processes in Dg(T) (or
Lg(T)) such that for every e > 0,

lim IP{ sup || X, — Xz > 6} =0,
N—o0

n,m>N

Then there exist X € Dp(T) (or Lg(T)), sych that X, “% X, n — oo.
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Proof. The event of convergence is given by,
1
li i = — — 7.
{17511 X, ex1sts} ﬂU ﬂ {HXk Xi|r < m}
m n kl>n
By hypothesis, it follows that P {lim,, X, exists} = 1. Now define the random variable

X(w) = { lim,, 00 Xp(w) if w € {lim, X, exists} (15)

0 if w ¢ {lim, X,, exists}

It holds that X,, “¥ X. From the fact that the space (Dg(T), || - ||) is a Banach space it
follows that X has values in Dg(T). O

Lemma 2.10. Let X,,, n = 1,2... be independent stochastic processes in Dg(T) (or
Lg(T)). Let S, =Y, X; and suppose that

im  sup IED{||S’n_sm||T>€}:O7 (16)

1
N—oo nm>N
then there is a stochastic process S with values in Dg(T) (or Lg(T)) such that
lim [|S — Sullr =0 a.s.
n—oo

Proof. By hypothesis and Lemma [2.1] it holds for every e > 0 that

lim ]P’{ sup HSn—SmHT>e} = 0.

N—o0 n,m>N
By Lemma [2.9] the statement follows. O

Lemma 2.11. For j =1,2,...,m let XU) and Xﬁbj), n € N, be random variables in a
separable Banach space E such that

1. Xfll), X,(f), e ,Xﬁbm) are independent random variables.
2. X9 5 XD, asn— oo, forj=1,...,m.

Then XU, ..., X gre independent.

Proof. The random variables X, ... X are independent if and only if

77777

m
* * * * * *
xem)(T], o Ty,) = H(I)X(i)(xi)7 Vay, ...z, € BT
i=1

Let z7,...,2;, € E*. Now we consider <x3‘f,X,§j)> and <x;,X(j)>, then it is clear that
<x;‘-,X7(lj)> are independent and <x},XT(Lj)> L <m;‘f,X (j)>. Convergence in probability

m « 3 (J) i
. . . . . . .. ! < X m * x(d)
implies convergence in distribution. From this it follows =175 > N

15



every =i, ...,z € E*. It also follows by independence and convergence in distribution
that,

TN N C PR H‘I’< X(a)> 1_[1@ (2,X @) H‘I)Xm
s

We conclude that

m
* * * * * *
CI)(X@)’M’X(m))(l’l, e ,:L‘m) = H@X(i)(l’i), xy{,...,x,, € E”.
,];7

m

Lemma 2.12 (Levy’s inequality). Let Xi,..., X, be independent, symmetric and E-

valued random variables. Let Sy = Zle X; be the sum for k=1,... ,n. For everyr >0
we have

]P’{lrgax ||:Sk|| >7"} < 2P {||S,|| > r}. (17)

Proof. See [1T, Lemma 2.18]. O

The formulation and prove of the following theorem is inspired by [6], [I1] and [21]. In
the proof we use Theorem [2.4] Furthermore we use In. [17] for uniform convergence.

Theorem 2.5. Let {Xt}te]R+ be a symmetric stochastic process with independent incre-
ments. Then the process can be written as

X=X+ S, +57, (18)

such that X¢ = X;—S; — S, is an Additive process, S, ST are processes with independent
increments and with values in Dg resp. Lg such for every T > 0

A [[S7 = Syllr =0, lim [|ST=Sy|lr =0, Vw e,

where P{Q'} = 1. Furthermore X¢, S~ and St are independent processes.

Proof. Fix a time horizon T' > 0. Order the jump points ¢, € J with n up to N smaller
than T,
{or<oe<...<o}={t, <T:n<N}.

Consider the partitions,
P ={0=100 <81, <01 <F1m < Sy <02... < S <0k <Stm}
such that Sim 1 o0; and S, | 0;. We write Xp as a random walk of increments,
k

Xp =30 (Ko = X, ) + (X = X0)) + A

i=1

16



where Ay = X, +300 (=X, + X

Si,m Sit1,m

) +X7— Xy, ,,- This is a sum of independent
increments. Let m — oo and find

k

k
Xr=> (AX, )+> (AX, )+ Ay as.
=1

_ limp An g

Sn(T) S¥(T)

Note that Sy(T), S (T) and limy Ay are independent by Lemma [2.11} We can do this
for every N € N. By Theorem it follows that Sy (7") converges to a random variable
S a.s. By it holds for every r > 0,

IP’{ sup [[Sy(t) = Sy (8] > 7"} < 2P {[[Sx(T) = Sy (D)l > 7}

t€[0,T]

By a.s. convergence of Sy (T), for every € > 0,

lim IP’{ sup ||Sx5(8) — S5, ()| > e} —0.

N,M—)OO tE[O,T]

By Lemma [2.10) Sy (¢) converges uniformly to a cadlag stochastic process {S7(¢) }epo 1y-
Note that Sy (t) has independent increments. By uniform convergence it follows that
S~ has independent increments. We can apply the same arguments to S} (¢). There
exists caglad stochastic process {S7(f)},c( 7 such that S% converges uniformly to ST.
on [0, T]. Because Sy(T), S3(T) and Ay are independent, by Lemma [2.11 “ 11S=(T),S™(T)
and Xp — S~(T) — ST(T) are independent for every T' > 0.

Thus for every T there exists a probability one set 2 such that Sy, S}, converge a.s.
uniformly on [0, 7] to stochastic processes Sy (t), S} (t) in Dg(T) resp. Lg(T). Now by
taking Q* = (), €2,, we can find processes

ST = Sy (Dp1m(t), ST =Y ST n1n(1),

in Dg resp. Lg such that for every T' > 0 it follows that
lim [|S™(w) — Sy(W)|l7 =0, lim [|ST(w)— SH(w)||r, Vw e Q"
N—o00 N—oo

It follows by uniform convergence that S~ and S* are processes with independent in-
crements. We want to show that X¢ = X — S~ — S* is continuous in probability. Let
0 <s<tand w € . Then it holds that

1AX = (S7(t) = S7(s)) |
= ISy () = S7() + (AXi- = (Sy () = Sx(s)) + 57 (s) = Sy(s)ll (19)
< I1Sy(®) = STOI + ] (AXe— = (Sy(t) = Sy(s) 1+ 1157 (s) = S (s)ll-
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First we can take N such that ||[S™ — Sy||+ < €. Choose s so close to ¢ such that

s> max t,.
n<Nt,<t

In that case (AX;— — (Sy(t) — Sy(s))) =0, a.s.. Because € was arbitrary we find that

EngAXt_ —(S7() =5 () || =0 a.s.

From right continuity of S~ it follows that lim,; S~ (s) — S7(t) =0 a.s. In the same way
we can prove that
ligl [AX — (SH(s) = S*(#)) || =0 a.s.

By left continuity limgy (ST () — ST(s)) =0 a.s. We conclude that

lim (X} — X)) = 11%1 (X — Xs) — 1;%1 (S7(t) =S5 (s)) =0 a.s.

st s

and
lim (X¢ — X7) = lim (X; — X,) — ligl (St(s) = S*() =0 a.s.

st st

Hence X¢ is continuous in probability. For every ¢ > 0 it holds that X¢, S, and S, are
independent for every t € R,. From Lemma and Remark it follows that the
processes X¢ S~ and ST are independent. O

2.4 Decomposition of processes with independent increments with
values in R

Now we will consider general processes X with independent increments and with state
space ¥ = R. As in Section we will consider processes as maps from R, to the metric
space (LY(€; E), dp). We will show that a process with independent increments can be
decomposed into independent parts: as a non-random function, a process continuous in
probability and a process that by approximation is a pure jump process.

Paul Levy showed that a center ¢[X] of random variables X can be defined such that
X; — ¢[Xy] is regular in probability. The following center ¢[-] value defined by J.L.Doob,
will do the job. See [6, Eq. (3.8)].

Definition 2.10. Let X be a random variable. The center ¢[X] of X is defined by
E arctan [X — ¢[X]] = 0. (20)
Existence and uniqueness of ¢[X] follows from the proof of the next Lemma.

Lemma 2.13 (Lévy). Let (X,)nen be a sequence of random variables for which there
exist a sequence of constants (¢,)nen and a random variable X such that X,, — ¢, converges
a.s. to X. Then ¢, — c[X,| converges to a finite number ¢ and X,, — c[X,] converges a.s.
to X —c.

18



Proof. It holds that f(z) = arctan(z) is bounded and measurable with lim, 4, arctan(x) =
+7. By the dominated convergence theorem it holds that Ef(X,, —z) — £7 as x — Fo0.

From this and the intermediate value theorem the constant ¢[X,,] exists and are unique for

all n. Then there are two posibilities for ¢, — ¢[X,,], namely the constants ¢, — ¢[X,,]| are

bounded or there exist an unbounded subsequence ¢, ;) — C[Xn(k)]. In case the constants

are bounded there exist a convergent subsequence c,x) — C[Xn(k)] and by

0 =Ef(Xnw — c[Xaw)]) = Ef(Xnw) — cn) + ) — [Xnw)))

there is only one posibility for this sequence to converge to. This subsequence converges
to ¢[X], hence ¢, — ¢[X,,| converge to —c. We conclude that X,, — d,, converges to X — c.
We conclude the proof by showing that sequence ¢, — ¢[X,,] cannot be unbounded. If it is
unbounded we can take a subsequence ¢y — ¢[Xppm] T 00 or chn) — ¢[Xpm)] & —00. In
that case it holds that

Xnny — [ Xnm)] = Xn(n) = Cnn) + chin) — ¢[Xnm)] = 00 a.s.,

and by the dominated convergence theorem we find 0 = lim,, E arctan(Xpn) —c[Xnm)]) = 5,
which is a contradiction. O]

Theorem 2.6. Let X be a stochastic process with independent increments, then X; — c|Xy]
18 reqular in probability.

Proof. Let t > 0 and t,, 1 t. We consider the sequence (X, )nen. By Theorem there
are constants c, such that X; — ¢, converges in probability. By Lévy’s lemma [2.13]
X;, — c[X3,] also converges in probability, the limit we denote by X;_ € L3(Q;R). Let
sp Tt be another sequence. By the same arguments X, — c[X, ] converges in probability
to a limit X € LY(Q;R). Now merge (s,), (t,) into one sequence (t/,), which by the
same arguments converges in L3(Q; R). From this X, = X/ in LY(Q; R), hence limgy X
exists. The same can be concluded for limg}; X;. O

As we did for symmetric processes we can define the following jump processes. Let X be
a process with independent increments. We denote the regularization by Z = X — ¢[X].
Let J = {t, : n € N} be the fixed jump points. We denote for every N € N,

Syt)= Y Az, Sit)= ) AZ,. (21)

n<N,t,<t n<Nt,<t

Now we consider the symmetrization Z* = (X — ¢[X]) — (X — ¢[X]) defined on the
probability space (2%, F*, {F:},cp,P*). Now we define the symmetric jump processes,

Sv)= Y (AzZ,_-AZ,), ST t)= > (AZ,—AZ,.).  (22)

n<N,t, <t n<N,t,<t

By Theorem there is a probability one set ' and processes S, ST in Dy resp. Lg
such that for every T' > 0 it holds that

Tim |57 (w.0) = Sy (@@)|lr =0, lim [|ST(we) - SYT (@)l =0, ¥(w,e) €.
—00 —00
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By Fubini’s Theorem there is @ and ; = {w € Q: (w,w) € '} such that P{Q;} =1
and such that for every T' > 0,

lim |[S™(w,@) — Sy (w,@)||r =0, lim [|ST(w,®) — SyF(w,@)||r, Vw € Qp.
N—oo N—oo

We define ¥(w) := S; (w,®) and II; := S} (w, ©).

Theorem 2.7. Let X be a stochastic process with independent increments, then there is
a deterministic function f: R, — R such that

Xi = fi + X+ 35 + 11, (23)

where X¢ = X, — 3, —1I1; is an Additive process. Furthermore X, % and I1 are independent
processes.

Proof. We first define Y = Z — S (-,w) — ST(-,w). Now for every t > 0 we have by
uniform convergence of S5, Sy that

11%;1 (Yt — YS) = AZt_ — (AZt_ — AZt_((D)) = AZt_((D) a.s.

and

hgl (}/:9 — Yt) = AZ,H_ — (AZt+ — AZt+((D)) = AZH_((D) a.s.

Define X¢ =Y — ¢[Y] where c[Y]; = c[Y}],t > 0. We will prove that X¢ is continuous in

probability. First note that Y is regular in probability and thus ¢[Y] is regular by lemma
2.13]. For s > 0 it holds

0 = Earctan(Y; — ¢[Y;]) = Earctan(Y; — Y; + Y; + c[Yi] — c[Yy] — ¢[Y5)).

We take s T t and by the dominated convergence theorem (and considering arbitrary
sequences s, T t) it follows

0 = liglEarctan(Ys =Y+ Y, + Y] — cYi] — c[Y3])
= Earctan(—AY;_ + ligl(c[Y}/] —c[Yy]) + Y — cYi])

From this we find that lim(c[Y:] — ¢[Ys]) = —AY;_ a.s. The same argument can be used
for s | t. Hence X¢ is continuous in probability. We can write

Xi=X{+57(,0)+ 57(@) + c[Xy] + c[V3].
We define f; = ¢[X;] + c[Y;] and find the stated representation. O

Remark 2.6. This decomposition can be extended to a process with independent incre-
ments and values in (R”, B(R"). Indeed, that
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is a process with independent increments. For i = 1,...,n, X® has independent incre-
ments. From the previous result we can write,

fo X » (1) T

@ X2 n(2) @
X = + + ) +

f(.n) Xc.y(n) Ein) H&”)

What remains to show is that X¢ is continuous in probability. We already know that
X0 are continuous in probability for each i. For € > 0 and s,¢ € R, it holds

P(||1X7 — X{I| > ) = P(|| X7 — X{[]” > ¢
€2 (24)

< D OP(XFY - XoOP > 5,
=1

From the continuity of X“ we find that X°¢ is continuous in probability.

2.5 Cadlag modification

We now consider Additive processes X with values in a separable Banach space E. For
such a process we can construct a cadlag modification. For processes with values in R
this fact is proven by J.L. Doob [6]. For a martingale argument, see [I]. For a proof with
Dynkin-Kinney Theorem, see [20, Chapter 2, Theorem 11.5].

We use Lemma and [21] to construct the modification for Additive processes with
values in separable Banach spaces.

Definition 2.11. Let X,Y be two stochastic processes defined on the same underlying
probability space. We call Y a modification of X if for every ¢ > 0

P{X,=Y,}=1

Definition 2.12. Let (2, 7, P) be a probability space and {Fi},. be a filtration, then
we define

For = ﬂ Fu,

u>s

to be the right-continuous extension of F;.

The following lemma states that it costs nothing to replace the filtration F, by its
right-continuous version Fj. .

Lemma 2.14. Let X be an Additive process w.r.t. the filtration F;, i.e. X; — X, is
independent of Fy for every >t > s> 0. Then X is also an Additve process w.r.t. Fs. .
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Proof. First suppose that Z is a random variable independent of F,.. If Y is another
random variable such that P{Y = Z} = 1, then for every F' € F,, and B € B(E) it holds

P{H{Y e BInF}=P{{Y =Z}n{Y € B}nF}
=P{{ZeB}nF}
=P{Z € B}P{F}
=P{Y € B}P{F}.

(25)

Notice that that X; — X, R X;— X, for some sequence s,, T t. Then there is a subsequence
such that X; — Xsnk 2% X, — X,. Now we can define a random variable

Z(w) = kh_)rrolo Xi(w) — Xon, (w) fwe {hmk_>C><J (Xt — Xsnk) exists}
0 if wé {limg_oo (X; — X, ) exists}

It holds that Z is (., fft—measurable. From this it holds that Z is independent of
Fsr. It holds that Z = X; — X a.s. We conclude that X; — X, independent of Fi, .
n

We will now consider oscillations of our sample paths of X. For this we need the following
definitions.

Definition 2.13. Let X be a stochastic process. Let T = {t,...,t,} C Ry be a finite
set of time points. We define the number of oscillations of length 6 > 0 on 7" by

Ux(T,0) :=sup{k:Im <m<...<7p inT,||X

Ti4+1

— X, >0,i=1,...,k}.
(26)

Definition 2.14. Let X be a stochastic process. Let T C R, be a countable subset. The
number of oscillations of length 6 > 0 on T is defined by

Ux(T,0) :=sup{Ux(T,0) : T C T, T finite}. (27)

We will need an estimation for the number of oscillation of length 6 > 0. This will be the
content of the following lemmas. Lemmas [2.15] are proved in [2I] for the real case.
We easily can extend these for processes with values in separable Banach spaces.

Lemma 2.15. Let {X} be an Additive process. Let T = {t; <ty < ...<t,} be time
points such that P{||X;, — X, || >0} < e < 1, fork = 1,...,n. Then we have the

47
following estimate,
de

1 —4e

EUy (T, 48) <
Proof. Let m € {1,...,n — 1} and define the sets Ty, = {tx, tr11,...,tn} and

Ak = {||Xt2_Xt1||§467"‘7|‘th71_th72||§457||th_thf1H>46}
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Now it holds that A, for £ = 2,...n — 1 are disjoints sets and it holds that

n—1
P{Ux(T,46) > m} =y P{B;}
k=2
n—1
= P{Ux(Ti,46) > m — 1} P{A}
k=2
= 28
< S P{UK(T,46) > m — 1} P{A} (28)
k=2
< P{Ux(T,48) > m — 1}1@{ max || X, — X, || > 45}
1<k,l<n
< AP {Ux(T,48) > m — 1} P{||X,, — X,,|| > 6}
<P{Ux(T,46) > m — 1} 4e
By iteration, P{Ux (T, 4d) > m} = (4¢)™. This yields
EUX(T,45) = 3 P{Ux(T,45) > m} < =
— 4€
m>1
0

Lemma 2.16. Let X be an Additive process. Let T C [sq, s3] be a countably dense set of
time points, s1,s2 € T. Suppose that P{||X; — X,,|| > 6} < e < %, for allt € T. Then
we have the following estimate,
4e
1—4e
Proof. For every finite set T' C T with s; € T', we find by Lemma [2.16] it holds
4e

— 4e’

EUx (T, 48) <

Now by the monotone convergence theorem the statement follows. O]

Lemma 2.17. Let X be an Additive process and D C R, be countable dense subset. Then
for every T > 0,

IP’{ sup ||Xt||<oo}:1. (29)

teDN[0,T]

Proof. Fix T'> 0 and let 0 = dy < dy < ... < d, =T, with ds,...,d,_1 € D. By
continuity of the map

X :[0,T] = LY E), t— Xy,
it follows that the collection of random variables (X;)e[o7) is a compact subset of LY(€2; E).
We can take by Prohkorov’s theorem a real value ¢ > 0 sufficiently large so that
max;<;<, P({||X4,|| > ¢}) <6 < 3. Then from

{max [ Xa;|| > 40} C { max || Xg4, — Xg,|| > 40},
1<i,5<n

1<i<n
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and Lemma 2.1l we find

P{max || Xa,|| > 40} < IP’{ max || Xg4, — Xg,|| > 40}
1<i<n 1<i,j<n

(30)
< AP {[| X7]| > ¢}

From this we conclude that P ({supsepnp 7 [1Xall > 4¢}) < 4P (({||X7|| > ¢}). By taking
¢ — oo we find from tightness of Xt that supepn 7 [|Xal| < o0 a.s. O

Theorem 2.8. Let X be an Additive Process. Let D C R, be a countable, dense subset.
Then for every T > 0 there exists a set Qp of probability 1, such that

lim X; and lim X,
drs dls,
deD deD
exist and are finite for s € (0,T] and s € [0,T'), respectively.

Proof. Let t € [0,T],6 > 0and 0 < e < ;. By Lemma there exists a # > 0 such that
for all u,v € [0,T] with |u — v| < 6, it holds that

P{||X., — X,|| >0} <e.
Take s1, 82 € [0,7] N'D such that s; <t < sy and |s; — s9| < 6. Then by Lemma it

follows that

4
EU (D N [s1, 50],40) < —— .
1 —4e

We can cover [0,7] with a finite number of compact intervals [sy, so] and from this

4e
1 —4e

EUx(D N [0,T],46) <

We define now for T > 0 the following set,
1
Qp = {wEQ:UX(Dﬂ[O,T]7—)<oo,Vn and  sup || X4 <oo} € Fr. (31)
n deDN[0,T]

Note that by Lemma and Ux(D N[0,7],46) < oo a.s., for every choice § > 0,
P{Qr} =1. Let s € (0,7T] and suppose that for w € €, limy ; X4 does not exists. There
are two possibilities:

1. There is a sequence d,, | s, d, € D, such that lim, || Xg,|| = co.
2. There is a sequence d,, | s, d,, € D, and § > 0 such that Ux({d,}>°,d) = oo.

In both cases w ¢ Qp. For s € [0,7) and limgys X4 we can apply the same arguments. We
conclude that on Q7, the limits

lim X; and lim Xj
dts dls,
deD deD

exist and are finite for s € (0,7] and s € [0,T"), respectively. ]
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Theorem 2.9. Let {X}te]R+ be an Additive process and D a countably dense in R. Then

there exists a modifiction X with independent increments adapted to {E+}t€R+, with
cadlag paths for all w € Q).

Proof. Let Qp be defined as . It holds that Qr C Qg for T' > S. Define Qp, =
US>T Qs. Put

Xon(w) = { deD,dlT
r@=10 it wé Qp
Let T € Ry, and suppose that w ¢ Qr,. Then for every S > T' it holds that w ¢ Qgy,
Hence X7 = Xg = 0 and thus limg;r Xg = Xp. Suppose w € €., then right-continuity

at T follows from existence of limits limg 7, X4. Furthermore the existence of left-limits
deD

follows from right-continuity. We conclude that every path of X is cadlag. For every
t>0,P {Xt = Xt} = 1 because X is continuous in probability. Let S < T, then

_ { lim Xd(w) if we QT+

Xr— Xg = lim Xy, — X, a.s.

n—oo

for sequences t, | T and s, | S. From this it holds that X; — Xg is independent of
Fsy- ]
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3 Lévy-lto decomposition

3.1 Introduction

In this chapter we consider the structure of Additive processes, i.e. stochastic processes
with independent increments that are continuous in probability. By Theorem there
exists a cadlag modification. In this chapter an Additive process {Xt}teR+ will therefore
always be assumed to be cadlag.

By the cadlag property it is possible to define left-jumps, AX;_ := limg, X; — X, If
now the condition of continuity in probability is dropped we can have fixed jumps at
time ¢ > 0. Suppose at ¢ > 0 the process has a jump AX, (w) # 0, we say that X has
a fixed jump at time ¢ > 0, if P{w: AX; (w) # 0} # 0. If {X;},p is a process with
independent increments and the cadlag property, then continuity in probability has a
natural interpretation. The condition of continuity in probability excludes fixed jumps.
This makes Additive processes a suitable model for phenomena with jumps at unexpected
times.

Suppose X has a jump at t > 0, i.e. AX,_. = X; — X;_ = x # 0. We represent such
a jump at ¢ with amplitude = as a point (¢, x) in the (¢, E)-plane R, x (E \ 0). Note
in ¢ = 0 there is no jump. Let us fix some notation. We denote S =R, x (E \ 0) and
S = B(Ry) x B(E'\0). We will count for every A € S the number of points (¢, AX;_) € A.
For A € S define A(t) = {(s,2) € A: 0< s <t} and A" = {(s,2) € A: [|z]| > 2}. We
say A € S(u) for u > 0 if

ACRy x{z e E:|lz|]l >u}.

Let 8% := [J,-0S(u) be the collection of all Borel sets with positive distance from the
origin. Note that S is a ring of subsets of S.

Definition 3.1. Let X be an Additive process.
1. For A € S, denote the number of jumps in A by Jx(w, A) := # {(t,AX;) € A}.

2. For all t > 0 and A € S8Y the number of jumps that are in the Borel set A in the
interval [0, ¢] is denoted as Ny(A) := Tx(-, A(t)).

3. Let A € B(E) with 0 ¢ A, then the sum of all jumps that took place on [0,¢] and
are in A is denoted as

In section we show that {Jx (-, A)} 4cs is a random measure. In section
we consider {Ny(A},p, for every A € S8 We will show {Ni(A}, e, is Additive and

Poisson. In section it is shown that for A € B(E) with 0 ¢ A the process AX} is
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Additive. This process can naturally be represented as an integral with respect to the
random measure Jx counting the jumps of X. Next we define the sets

1 1
AN ={xe€E:|z|]| > 1}, A”:{xEE:ES||x”<nT}' (32)

In section we will show that AX™ .. AX™ X — AXUid are independent processes
that never jump together. The process {Xt}tem can be represented as

N
N
, N A,
Xo =Y AXM+ X, - AXPM
. ~—_———
\’Lzl , 'Continuous part’
' Jump part’

By taking N — oo, we are exhausting the jumps of {Xt}teR+ in the continuous part. We
expect that {Xt}teR+ consists of a continuous part and a jump part. This representation
is the so called Lévy-Ito decomposition. The main difficulty is to show in what sense
SOV AXN converges.

”Mathematics consists of proving the most obvious thing in the least obvious

”

way

In section [3.5| we define the map
px =S = [0,00], A= E[Tx(-,A)],

and show that {Jx (-, 4)} s is a random Poisson measure with Poisson intensity fix.
We collect all observations and state the structure of Additive process in its most ab-
stract form. We represent a general Additive process as an Additive process with a.s.
continuous paths and an integral w.r.t. the random Poisson measure with Poisson intensity.

There are two ways of approaching the structure of Additive processes. One approach is
using the correspondence of infinitely divisible distributions and the collection of Additive
processes. A random variable X is infinitely divisible if for every n € N it can be written
as

X E X1+ KXo, (33)

where X, 1,..., X, are i.i.d.
Theorem 3.1. If {X}, . is Additive, then for every t € Ry, X; is infinitely divisible.
Proof. See [20), Theorem 9.1]. O

Then with the aid of the Lévy-Khintchine representation of characteristic functions of
infinitely divisible distributions, see |20, Theorem 8.1], the Levy-Ito decomposition can be
proved. For this approach we refer to [20].

Another approach is a direct analysis of jumps of sample paths. This approach goes
back to Ito [I0]. The ideas describing the structure of Additive processes comes from
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Lévy and were realized by Ito. With every infinitely divisible distribution p it is possible
to construct a Lévy process {Xt}te]R+ such that X; has distribution p, see [20, Theorem
7.10]. This direct analysis gives as by product the Lévy-Khintchine representation, [10].
We will follow this approach. In section [3.5| we give some concluding remarks.
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3.2 Analysis of jumps

We consider the objects defined in Definition [3.1 It will be shown that for A € B(FE)
with 0 ¢ A the process A {XtA}teRJr is additive. Let Ay = {z € E : ||z]| > 1}, then

X=X, - AXM t >0 is additive with bounded jumps. If an Additive processes has
bounded jumps, then the k-th moments are all finite, £ = 1,2, ...

Definition 3.2. Let {X}tGR+ be an Additive process, then we say that X has bounded
jgumps if for some K > 0,

P{Sup |IAX, || < K} =1

teRy

Theorem 3.2. Let X be an Additive process with values in a separable Banach space with
bounded jumps. Then for every s,t € R, s < t,

E [sup | Xy — XSHk} < oo, forall keN.

s<u<t
Proof. See [9, Chapter IV, §1, Lemma 2 (13), p.267]. ]

Lemma 3.1. For every A € B(E) with ||z|| < K for all x € A and some K > 0 it holds
E[sup;epo. HAXtAHQ] < 00 and t — E[AXA] is continuous.

Proof. It holds {AXtA} _— has bounded jumps. The first statement follows from Theorem

3.2l The second statement follows from continuity in probability and the dominated
convergence Theorem [16, Proposition 1.8]. [

With Additive process with bounded jumps we enter in the realm of martingales.
Let {X;} ter, e a real-valued Additive process. The process X; —EX; is a martingale.
Now the whole martingale machinery can be used to investigate the structure of these
real-valued processes, see [4].

3.2.1 Random jump measure

The goal is to prove that {Jx(-, A)} 45 is a random measure. We use [11].

Definition 3.3. Let (2, F,P) be a probability space and (X, Y) be a measure spaces. A
random measure is a map M : 2 x ¥ — R, U {oo} such that

1. For every A € ¥, w — M(w, A) is F-measurable.
2. For every w € Q, A +— M(w, A) is a measure for (X, X).
If M takes values in NU {oco} , then we call M a random counting measure.

Let A € B(E) with 0 ¢ A, then by Lemma [4.2] the number of jumps with amplitude in
A is finite for every w € Q. It is clear that Jx (-, (s,t] x A) is determined by the increments
n [s, t], hence it is measurable w.r.t.

o{X,— X, :s<u<wv<t}.

This is the content of the following lemma.
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Lemma 3.2. Let A € B(E) with 0 & A, then for s <t, Jx(-, (s,t] x A) is F.\-measurable.

Proof. First we define A,, = {x €k :dx A<t } Suppose that Jx > n, then there
exist t1,...,t, € (s,t] so that AX;, € A. For every m,k € N we can find p;,q; €
(s,t] NQU {t} and ¢, =t possibly, i = 1,...,n such that

S<P1 <t <@ <pa<to<...pp<t,<gqg,<t

with [p; — ¢;| < + and X, — X),, € A,,,. From this we find

{JX > n} - m m U ﬂ{qu _Xpi S AM} = (*)

meNkeN p1<q1<...<pn<gn i
pinie(Svt}mQa or gn=t
lpi—ail<%

Suppose now the converse, w € (x). For every m,k € N we can find pgm’k), q(m’k)

i with
|qlmk) mk)|< andX(mk)_X(mk)EA fori=1,2,...,n. Wetakenow =k =m
and consider for every [ € N

(D)

s <py’ (L)

Il
<" <pdV <D < g <.

L(r),l(r L(r),l(r
(Ur),L(r)) q(()())

) 1y

We can take a subsequence (I(7)),en such that the sequences D; converge for
every 1= 1, , 1. We have that |q (Hr)Ur)) - p(l ‘ < and X (l(r) ir)) — X (Z(T) 1r)) €

7

Ay, we conclude that we can find ty,...,t, € (s, Such that AXt €A, hence Jx > n.
It follows that

{Ix>=n}=) U M {Xy, — X, € A} € FX

meNkeN  p1<q1<...<pn<gn 7
Pi,3: €(5,t]NQ, or gn=t
lpi—ail <%

]

The next lemma shows that for every A € S with A C (s,t] x A, Jx (-, A) is F,Y-
measurable.

Lemma 3.3. Let A € B(E) with 0 ¢ A and define for s < t,
Dﬁt ={A€8:Tx(,((s,t] x A\)N A) is F.,—measurable} .
Then 1t holds that Dﬁt =S.

Proof. First we show that DA 5t 18 a D-system. By lemma it holds that S € Dé\t Let
A B € Dﬁt with A C B, then for w € Q,

Tx(w, ((5,8] x A)N B\ A) = Tx(w, ((s,1] x A) N B) — Tx(w, ((5,1] x A) N A).

From this it follows B\ A € Dé‘,t Let A, € DAt such that A, C A,+; and A=, 4,,
then
TIx(w, ((s,t] x A)NA) =sup Tx(w, ((s,t] x A) N A,).
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From this we conclude A € Dﬁt. The class of subsets Dﬁt is a D-system. Now define the
following class of subsets

C={(s,f] x A:s<t,AeB(E\O0), with0¢ A}.

Note C is a m-system. Furthermore the o-algebra generated by C is §. It follows that
C C D2, and thus by Theorem o {C} C D2,. From this we conclude that D}, =S. O

Lemma 3.4. Let X be an Additive process. Then {Jx (-, A)} 4es 5 a random measure,
i.e. the map Jx : Q2 xS — NU{oo} is a random counting measure.

Proof. Let A € S and consider C,, = {(h,z) € S: h € (£,n], - < |lz[| < n}. It holds that
Jx (-, A) = sup, Ix(-,ANC,). For all w € Q by Lemma 3.3 Jx (w, AN C,) is measurable
for each n and thus by the monotone convergence theorem it follows that Jx(w, A) is
measurable. The map A — Jx(w,A) takes values in N, possibly co. It is clear by
definition that for every w € Q, A — Jx(w, A) is a counting measure. O

3.2.2 Poisson processes

In this section we consider for every A € S° the process N;(A) defined as the number of
jumps of {Xt}teR+ with amplitudes in the Borel set A during the interval [0, ¢]. Note that
A is a Borel set with positive distance from the origin. By Lemma [4.2] X;(w) has a finite
number of jumps with amplitude bigger than u > 0. From this, N;(A) is finite for every
realization. The first result we will obtain is that {]\Q(A)}telR+ is a Poisson process.

Definition 3.4. A stochastic process NV; is called a Poisson process with intensity A :
R, — R, if,

1. For all w € Q, Ny(w) = 0.
2. The intensity A : Ry — R, is a non-decreasing function and A(0) = 0.

3. For every set t; < ... < t, of timepoints, N;, — Ny, ,, N, , — Ny, o, ..., N, are
independent random variables.

4. For every s < t,s,t € Ry
N; — N ~ Poiss(A(t) — A(s)).
The characteristic function of a Poisson process IV; with intensity A(t) is
Oy, (u) = eAD(e 1)

Lemma 3.5. For every A € 8%, the process {Ni(A)}cg, s Additive and Poisson.

Proof. The process Ny(A) is an increasing process with independent increments by lemma
3.2 The process grows with jumps of amplitude 1. This process has a finite number
of jumps on [0,¢] and is cadlag. That N;(A) is continuous in probability follows from
continuity in probability of X. To see this let ¢ > 0 and suppose that AN;_(A) # 0. By
definition of Ny(A) , P(AN;_(A") # 0) < P(AX;- # 0) = 0. This shows left-continuity in
probability. Right-continuity follows by definition. By lemma it holds that N;(A") is
a Poisson process. m
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Lemma 3.6. For every A € 8%, the random variable Jx (w, A) is Poisson distributed with
lim E[Jx (w, A(1))] = ElJx (w, A)] < oc.

Proof. Let A € 8%, then N,(A) is Additive and Poisson. Let A be the intensity of N;(A).
By Monotone convergence Theorem it holds that

E[Jx (w, 4)] = lim E[Tx (w, A(1))].

From {N;(A) > N} C {Jx(A) > N} it follows

N

P{Jx(A) > N} > P{Ny(A) > N} =1-)

=0

(An(t))ie—/\n(t)'

2!

(34)

Suppose that lim;_,o E[Tx(w, A(t))] = limy_o, A(t) = oo, then with we find that
P{Jx(A) > N} =1 for every N € N. Hence P{Jx(A) = oo} = 1, but Jx(A) is finite
for A € A% This is a contradiction. We conclude lim;_,, E[Jx (w, A(t))] < oo. O

Lemma 3.7. Let X be an Additive process. The map defined by,
px : 8= [0,00], A= E[Tx(- A, (35)
is a o-finite premeasure on (S,S°).

Proof. By definition of Jx, Jx(w,0) = 0 and thus px(0) = 0. Let A, A, € 8° with
A, NA, =0and A =, An, then Jx(w,A) = > JIx(w,A,). By the Monotone
convergence Theorem E [Jx(w, A)] = limy, 00 D, E [Tx (w, Ag)] . We conclude that the
map A — E [Jx(w, A)] is a measure on (5, S). From Lemmal3.7]it holds that px(A4) < oo
for every A € §°. From this it is clear that py is o-finite. m

3.2.3 The Jump processes

Let A € B(E) with 0 ¢ A , the goal is to show that AX/ is an Additive process. We will
obtain the representation

¢
AXtA(w):/O /A:pjx(w,dsdx),

i.e. for every w € Q , the process AXA(w) is represented as a Bochner-Integral with
respect to the random counting measure Jx that counts the jumps of the process. We
will first introduce this E-valued integral. We follow [I8, Chp. 1.1].

First suppose that X is simple,

X=> wly, AEF, z€E.
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We set [, X (w)P(dw) := Y, 2;P(A;NB). The value does not depend on the representation
of X as s1mp1e function. By the triangle inequality it holds that

< /B 1 () [P(dw).

For a general random variable X there is a sequence of simple random variables X,, such
that || X (w) — X,,(w)|| decreases pointwise for every w € €2, monotonically to 0. To see
this, let {e1,...,ey,...} be a dense subset of E. Define p,, = min {||X — ex|| : k <m} ,
kpm = min{k <m:p, =||X —el|} and X,,, = e,,. It is clear that X, € {e1,...,en}.
It holds that ||X — X,,|| monotonically decreases to 0, for every w € €.

Next we suppose that [, [|X (w)||P(dw) < co. We can show that [, X,,P(dw) is a
Cauchy sequence,
’ Pdw) — / X, (o) P(dow

- / 1X (@) — Xo(@)|[P(d) + / 1X (@) — Xon(w)|[P(do).

The right term will go to 0 as n,m — oco. We define the integral of X now as

/X = lim | X (w)P(dw).

m—ro0 Q

We will also use the notation EX for [, XP(dw). If we take another sequence of simple func-
tions X, such that [, || X —X/ [[P(dw) — 0 as m — oo, then we will get the same integral.

We also need a Bochner-integral on a o-finite measure space (€2,.4, p). First note that
for such a measure space there exist (A4, )neny C A such that u(A,) < oo, A, N A, =0, for
n#mandJ, A, = Q. Let X : Q@ — E be a measurable map and define X" = X -1,. As
above we can find a sequence of simple random variables X such that || X™ — X]'|| = 0
as m — oo. Define X,,, = > " X", then [|X(w) — X,,(w)|| — 0 for every w € €. Define

Xy = T ixl<2lx]} Xoms (36)
then it holds that
1 X, (w) — X(w)|| =0, as m — oo and || X, (w) — X(w)]| < 3[| X (w)]].

If [, || X||p(dw) < oo, then by the Lebesque’s dominated convergence theorem it holds
that

/||X (W)]|p(dw) — 0, as m — oo.

We can define for a measurable function X : @ — E with [, ||X(w)||u(dw) < oo the
FE-valued integral by

/ X ()pldw) = Tim [ X (w)p(de).

m—r0o0 0
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Definition 3.5. Let (2,4, 1) a measure space and E a separable Banach space with
Borel-o-algebra B(FE). A measurable function f :  — E is Bochner-integrable if

JIf (@) u(dw) < oo.
Remark 3.1. For a Bochner -integrable map f : {2 — E it holds

| Xn(a)

We would like to point out that we can define the conditional expectation in a general
setting.

< / 1] (). (37)

Theorem 3.3. Let X : Q — E be a random variable in a separable Banach space E
with E|| X|| < oo and G a sub-o-algebra of (U, F,P). Then there ezist a unique random
E-valued, G-measurable random variable Z |, up to a probability 1 set, such that

/ X (w)P(dws) = / Z(w)P(dw), VA€ G. (38)
A A

The random variable Z will be denoted by E[X|G].

Proof. See [18, Proposition 1.10] O

It also follows from the proof of this theorem that
IEX|G]]| < E[||X|]|G]. (39)

Definition 3.6. Let (2, F,IP) be a probability space with filtration (F;)cr,. Let X be
an adapted E-valued stochastic process with E a separable Banach space. The process X
is called a martingale if

E[X:|Fs] = X, a.s. (40)

Lemma 3.8. Let X be a process with independent increments with E||X;|| < co. Then
the process Xy — EX; is a martingale with independent increments.

Proof. Let s <t , then by the independent increment property it holds
E[X; — EX,|Fs] = —EX, + E[X; — X, + X{|Fs] = “EX; + E[X; — X(]+ X, = X, — EX..
m

Theorem 3.4. Let M be an E-valued martingale with cadlag paths. Then for all p > 1
and A > 0 we have

1
IP’{ sup || My > /\} < B Mz]]] (41)

te[0,T]
Proof. Let s <t , then it holds by
||M[| = [[E[M| Fo]|| < E[|| Mel[|F].

From this we find that ||M;|| is a real-valued sub-martingale. For real-valued sub-
martingales the equation holds. O
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Definition 3.7. Let A € B(E) with 0 ¢ A and F a separable Banach space. Let
f:(S,8) — (F,B(F)) a measurable function. Then, we define

f(AXA)t = Z f(S, AXS—)]IA(AXS—)‘ (42)

s<t

Lemma 3.9. Let A € B(E) with 0 ¢ A and F a separable Banach space. Sup-
pose [ : (S,S) — (F,B(F)) a measurable function, then for every w € § it holds

ST L1 s 2| T (w, dsda) < oo and

f(AXA)T:/O /Af(s,x)jx(w,dsdx). (43)

Furthermore {f(AXA)t} s an Additive process and for every 0 < u < v,u,v € Ry,

teR4
f(AXA)U - f(AXA)uy
18 ijv-measumble.

Proof. Let f, = Z;n(?) a( )]IA<_n) with AE")ﬂAgﬂ) = () defined as in such that f,(s,z) —

f(s,z) for every (s,z) € Ry x (E'\ {0}). Let 0 < u < v,u,v € R;. For every w there are
only a finite number of jumppoints (s,, AX;, _) € [u,v]xA,n=1,..., Ix(w, [u,v]xA), see
Lemma [1.2] For w € Q let M (w) = max,<r || f(s, AX,_)||.By the monotone convergence

theorem it follows that .
/ / | f (s, 2)||Tx (w, dsdz)
u A
N2N 1

= g >0 o (w g < 1< S5l <)

N—oo

< M(w) - Ix(w, [u,v] x A) < o0.

Hence [ [\ ||f(s,2)||Tx (w, dsdx) < co. Now it holds that f(s,z) is Bochner integrable

. /uvAfn(s,x)jx(w,dsdx) %/uv//\f(s,x)jx(w,dsdx)-

From this it follows

m(n)

//fsxjxwdsd:c h_rgozoz Jx( uv]xA)ﬂA”) (44)

J=1

Note that Jy (w, ([u,v] x A) N Agn)) is F,,-measurable and thus [ [\ f(s, 2)Jx(w, ds dz)

is ]:fv—measurable. There are only a finite number of jump points on compact intervals
and thus for every T' > 0 it holds

n m7AX m7AXS — O7 .
e Dax oy (8 -)— (s =0, n— oo
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Note that fOT Sy fa(s,2)TIx (w,dsdx) =3, fa(s, AX, )IA(AX,_). From this it follows
that B

//fsxjx(w dsdz) = f(s, AX, )T\ (AX,_).

s<t

Next we note that f(AX"), — fF(AXY), = [ [, f(s,2)Tx(w,dsdz) is F\,-measurable,
hence { fAX A)t} — is an Addltlve process. [

3.3 Independence of processes with independent increments

Two processes defined on the same underlying probability space are called independent if
the o-algebra’s FX and FY are independent, see Definition . The main goal of this
section is to prove the following theorem.

Theorem 3.5. Let Ay, Ao, ..., Ay € B(E) with 0 ¢ Ay, Ag,..., Ay and A;NA; =0, for
i # j. Then the processes AX™M ... AXM X — AXUihi gre independent.

All the lemmas and theorems are inspired and based on results from [I],[9].

Note that the processes AX? ... AX™ X — AXUi A never jump together. This fact
will be used to show independence. Two stochastic processes on the same underlying prob-
ability space are independent if for every t,...,t, € Ry, (X, ..., Xy,) and (Y, ..., Y:,)
are independent by Lemma [.I] For the proof of Theorem we need the following
lemmas.

Lemma 3.10. Let {X;}, ., {Yi}ier, be two real-valued stochastic processes on the same
underlying filtered probability space such that (X, Y;)wer, is a process with independent
increments. Suppose

1. forallt, t >0, X; and Y, are independent;
2. foralls<t, s,teRy, Xy — X, and Y, — Y, are independent.
Then {X:}tier, - {Yi}icr, are independent processes.

Proof. Let t1,...,t, € Ry, 0 =1, <ty < ... < t,. Recall that two random vectors
X = (Xy,...,Xq) and Y = (Y3,...,Y;) are independent if and only if ®xy)(u,v) =
O x (u)Py (v) for u,v € RY. Let u,v € R,

(I)(th ,,,,, Kin Yeq s Ytn) u, U H(I)(Xt =X, 15 (Z ul’zvl>
i 45
- H(I)sz‘_xti—1 (Z ul) Q}/"'i_mi—l <Z Ul) ( )
=1 I=t

=1

Hence (Xy,,...,X:,) and (Yy,,...,Y;,) are independent for all n = 1,2,...,0 < t; <
ty... <t, and thus {Xt}teR+ , {K}t€R+ are independent processes. n
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Remark 3.2. Let X,Y be E-valued stochastic processes with independent increments
and with E a separable Banach space. Suppose the same conditions as in lemma |3.10
We can prove the same statement.

* * * *
(I)(th,.‘.,th,Ytl,...,Y}n)(551, ey TnsYrs - 7yn>

n n n
* *
H ®(Xti_Xti—17Yti_Yti—1) z :xl ) z :yl
=1 =i

l=i

Py -xi, (Z 937) Py, v, , (Z yf)
% =i =i

= Ox, . x) (@5 T) Py v (YT )

(46)

I
L=

from which we conclude that (Xi,,...,X;,) and (Yy,,...,Y;, ) are independent for all
n=12,...,0<t <ty...<t, and thus {Xt}te]R+ , {Yt}teﬂzq are independent processes.

Let X be a real-valued process with independent increments. For u € R", recall
o(s,t)(u) = ®x,_x.(u). By continuity in probability it follows from Theorem
that t — o(s,t)(u) is continuous, ¢ > s. It holds that (s, s)(u) = 1. Define T =
inf {t > s : ¢(s,t)(u) = 0}. Suppose that T' < oo and let s < h < T, then

(s, T)(u) = ¢(s, h)(u)e(h, T)(u).

By definition ¢(s,T)(u) = 0 and thus it holds ¢(h,T)(u) = 0. Take h 1 T and by
continuity we it holds ®(u,T,T) = 0. Hence we found a contradiction and thus we

conclude that 7' = co. For every u € R" t — ¢(0,t)(u) is continuous and for ¢t > 0 it
holds

(0,1)(u) # 0. (47)

Lemma 3.11. Let X be a stochastic process with independent increments, then by
for every u € R™ we can define

. 6i<u,Xt)
Mt = W, (48)
and M" is a complex martingale w.r.t. {Fi},cp_ -
Proof. By independent increments we find that
E [€i<u,Xt—X5+X5> fs] €i<U,Xs>E [ei(th—XS) fs]
E[M|FS] = E[ei(wXe=Xo+X:)] - Eei(w X=X E[ei(wXo)]
) ei(u,Xs>Eei<u,Xt—Xs) B €i<u,X5) o
Fei(wXe—Xs)Rei(u,Xs) — [Fei(u,Xs) 5"
and thus we have completed the proof. O

2Let C a sub-o-algebra of F. Suppose that X,Y are random variables in R? such that X is C-measurable
and Y is independent of C, then for every B(R2?)-measurable function f,

E[f(X,Y)[C] = g(X),
where g(x) = E(f(z,Y))
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Lemma 3.12. Let N be a Poisson process with Poisson intensity A : Ry — Ry and
My = %—1, then for s < t,

My = M| < 2(A(1) = A(s)) e + e Ol [N, — Nl.

From this it follows that the variation of M™ is integrable.
Proof. The characteristic function of N is given by E[e?N] = 201 Lot o = E[e?N]
and 8 = E[e®Y+]. From |e®® — e¥| < |z — y|, 7,y € R it holds

eiuNt eiuNS

1 TuNg « iuN,
— =—€ — —=e
o B || B

1 W N, O N, O a N

= |Vt _ ptulNe +ew t— . _pluls (49)
| B BB
1 o 1 |«

< | = S+ ) el Ve = N
o [ Bl el |5 t

From ]e — 1] < |z]e! it follows that ‘1 -
e(AB)—

(A(t) — A(s5))e2PA®O=AE) Tt also holds,

1

A(s))(cosu—1) I
a‘nd |a| T eA®)t(cosu—1)

Collecting all expressions in (49)),

eiuVt eiuNs ( ( ) )\( )) (A(t)=A(s)) e(A(t)f)\(s))(cosufl)
N < A(t)t(cosu—1) + A(t) (cosu—1) |u||Nt - Ns|
a b ¢ e (50)
< 2(A(t) = A(s)) eV 4 22Oy ||N, — N

Let T > 0 then the variation V¢ of M on [0,T] is bounded by Vi < 2X(T)e*MT) +
D)u|Nz and thus the expectation E[Vy] < 2\(T)e*™) 4 |ule2ATIN(T). O

The following theorem is similar to [I, Proposition 2.4.1].

Theorem 3.6. Let M, N be two square integrable martingales with all paths cadlag.
Suppose that supejy 4 | M| < By < oo for all paths, My = Ny =0, N of bounded variation,
E [Viv] < oo and M, N do never jump together. Then

]E[Mt Nt] — O

Proof. First take the partitions P,, = {O =ty <t <. < tp(n) = t} such that the maxi-

mal width of the interval goes to zero, i.e. 9, = maxfzo |t2+1 —t;] = 0asn — oo. We
want to stress that for every n we take a partition of [0,¢]. By lemma , for e > 0 we
can construct a partition 0 = 79 < 7 < ... < T =t such that

k() =1} <,
k() — 1} <e

sup {|M, — M| : u,v € [13,Tiy1), 1 =0,...

sup {|Ny — Ny| : w,v € [13,7341), i =0, ...
Let 0 > € and by taking n large enough we can bound,

p(n)—1 k(e)—1
Z |Mt¢+1 - i1l Ntz| S Z (|AM7—1,| + 5) (|AN7'2*‘ + 5) + EV?]
=0 =1
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Let U = max;—1, ke)-1 |AM;,_|, note that for every w € € it holds that U(w) < oo.
Under the assumption that M, N have for all paths no common jumptime it follows

k(e)—1

p(n)—1

Z |Mti+1 _M ti+1 _Nti S Z (U+6)6+26V1{/V

i=0 i=1
Because § was arbitrary, it holds !Mt, o 1 . For every
e > 0 by taking n large enough we ﬁnd Zp(” | My, — My|| Ny, Nt | < 2¢VN | we
conclude that

p(n)—1
nlggo Z |Mti+1 - Mti||Nti+l - Nt1| =0 as.
i=0

We know that SP 1M, — M ||N,,,, — VY and E [V}'] < oo. Now we
use the increments of the partitions to calculate the expectation. For square integrable
martingales we have orthogonality of increments.

p(n)—1 p(n)-1
E[M,-NJ]=E (My,,, — M) (Neyoy — Ny,)
=0 =0
p(n)—1
=K Z (My,,, — My)(Ny,,, — N.,).

By using the lebesque dominated convergence theorem,

p(n)—1
‘E[MtNtHSE Z ’Mtiﬂ_ i+1_Nti‘—>07 n— oo
=0
(51)
We conclude that E [M; - N;| = 0. O

Theorem 3.7. Let {X}te]R+ , {Y}teR+ be two real-valued processes on the same underlying
probability space such that (X, Y;)ier, is a process with independent increments. Suppose
that X is a Poisson process and that X,Y have no common jump point for every w € €1,
then X,Y are independent processes.

Proof. Define for every u,v € R™ the processes

ei(u,X) €i<v,Y>

N'=———0r—-1 M'=—7"F- —1.
E[€z<u,X)] ) ]E[ez(v,Y)]
Both processes are square integrable martingales and both processes start at zero, Mg =
N@ = 0. The variation V¥ of N* has finite expectation E[VY] < co by Lemma [3.12]
Note that s — E[e!wYs) ] is a continuous function. Also for every s > 0 it holds that

[E[e*¥s)]| # 0 by Eq. (7). Every continuous function has a maximum and it holds
. i(v,Yz)
|My| < ‘—E[ei@m] +1.
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Furthermore by assumption they have no common jump points for every w € 2. By

Theorem it holds for every t > 0,
E[N*M?] = 0.

From this it follows that E [¢/(“Xt)e!Y)] = E [¢/X0] E [¢"*¥9]. The elements u,v € R"
are arbitrary and thus for every t > 0, X; and Y; are independent. We can do exactly the
same for X; — Xy and Y; —Y;, s < t,s,t € Ri. We conclude by Lemma [3.10] that X and
Y are independent processes.

[]

Remark 3.3. Let X,Y be two E-valued processes with independent increments on the
same underlying probability space. Let N be a Poisson Process such that Y = x - NV,
x € E. Furthermore suppose that X, Y never jump together, then for every z*, y* € E* it
follows by that (x*, X) and (y*,Y) are independent processes. This implies that X, Y
are independent processes.

Theorem 3.8. Let X be process with independent increments. Let A € B(E) with 0 ¢ A,
then X — AX? and AX? are independent processes.

Proof. Denote f(s,z) = z. Let f, = 3.7 agn)ﬂA@ with A" N Ag.") = () defined as

j
in (36) such that f,(s,z) — f(s,z) for every (s,z) € Ry x (E \ {0}). It holds that
N; == Jx (w, ([0,¢] x A)) is a Poisson process. Now note that

T (w, A1) = T (w, ([0,4] x A) N Ag."’) .

Now with Lemmait follows that Jx (w, ([0,t] x A)N AS@) is o {N; : s < t}-measurable.

Now note N and X — AX? never jump together, hence are independent processes. Recall
Eq. ({#4). It follows that X; — AX} and Z;n:(?) a§n)jX (w, ([0,¢] x A)N A§n)> are inde-
pendent. By using Lemma it follows that X; — AXA and AX? are independent.
Property 2 of Lemma [3.10] is shown in the same way. Conclude by Lemma that

X — AX? and AX? are independent processes. n

Remark 3.4. Let A, Ay € B(E) with 0 ¢ Aj, Ay and AyN Ay = 0, then AX?t and AXA2
are independent processes. The proof goes in the same way as in the previous theorem.

Finally we will prove Theorem |3.5]

Proof. Let A; € cr{AXAi} fori=1,...,kand Ay, €0 {X — AXUiAi}. By Theorem
@ X — AXUir and AXUidi are independent processes. Then note that for every
i=1,... .k

AXN = A(AXYN

From Lemma it follows that AX%i is o {AX Uj A }—measurable. From this we find

that k+1 k
P{ﬂA,} = P{ﬂAi}P{AkH}.
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By Remar it holds that AX Ak is independent of AX U= 45 Also for very1=1,...,k,
AXN s determined by AXUi=1%4 . Now it holds

i) - {Fadeinn

By using repeatedly the same arguments we find,

oFad-Tiron

With this we conclude the Theorem.

3.4 The structure of processes with independent increments

In this section we will prove the Levy-Ito decomposition for Additive processes with values
in a separable Banach space. Define the sets

1 1
AN ={zeE:|z|]| > 1}, An:{mGE:—§||x||<—}. (52)
n n—1
The Levy-Ito decomposition expresses that sample paths of Additive processes can be
decomposed as a sum of independent parts: a continuous part and a jump part. Recall
the decomposition of the process {X},cp.

N
. N .
Xp =Y AXM 4 X, — AXUTA
- ——
i=1 ? Continuous part”

? Jump part”

As we take N larger, all the jumps of the process are getting subtracted. A process without
jumps has continuous paths. The structure of a real-valued process with independent
increments and a.s. continuous paths is known. The increments of such a process are
Gaussian, see Theorem [£.9. It seems to be that the structure of Additive processes is
a trivial matter. The opposite is true. In general we cannot express the jumps of the
process as y .~ AX Ai This sum may be divergent. The convergence of this sum is a
very delicate point. The content of this section is devoted to this matter.

If means are subtracted from the jump processes, then the sum in the jump part will
converge. Note that we try to be as general as possible. We consider the structure

of Additive process with values in a seperable Banach space. In that case means are
Bochner-integrals. We will show X can be represented as

Xy =W, + lim > (AX)M —EAXM]) + AXM, (53)
=2
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where W}, has independent increments and is a.s. continuous, the convergence of the cen-
tered sum lim,, oo > ; (AXtA i —E[AX} /1) is uniformly a.s. on every bounded interval
[0, ¢].

We will use a symmetrisation argument, see Definition 2.2 We denote the independent
copy of X by X. Let us fix some notation. For every ¢t > 0 and N € N we define

X = X, —AXxM

N
TN = ) AXM
n=2

N
T = Y T AXM —E[AX M
n=2
T (w,@) = S (w) = I (@).

By Theorem Jy is a sum of independent processes AX™ k=2, ... n. The process
X can be represented as a sum of independent processes

N
X =Y AXP 4+ X) - I (54)

n=1

The first step is to show that J*V converges a.s. uniformly. Using Fubini’s Theorem we
can conclude, that there exists a centering sequence of functions ¢, € Dg(T") such that
2522 (AX An cn) converges uniformly a.s., similarly to the proof of Theorem . The
next step is to show that as a centering function we can take c,(t) = E[AX"].

The space Dg(T') equipped with the supremum norm || - || is a Banach space. Unfor-
tunately it is not a separable Banach space, otherwise we could use Theorem to show
convergence of J* in || - ||7. We will use instead the following Theorem.

Theorem 3.9 (Rosinsky-Basse-O’Conner). Let X;, j € N, be a sequence of inde-
pendent random variables with values in (Dp(T'), Dp(T)) and S, = >_7_, X; be the sum.
Suppose there exists a random variable Y € (Dg(T'), Dg(T)) and a dense subset D C [0, T]
such that T' € D and for any ty,...,tx € D

(Su(t1), -, Sul(ti)) B (Y1), ..., Y (t)) . (55)

Then there ezists a random variable S with values in (Dg(T), Dg(T)) with the same
distribution as Y such that

1. If X; are symmetric , then sup ||S(t) — S, (t)|] g0
te[0,7

2. If X; are not symmetric , then there exists y,, € Dg(T") with lim,, . y,(t) = 0 for

a.s.

every t € D such that sup ||S(t) — Sn(t) — yn(t)|| = 0. Moreover if the family
te(0,7
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{|IS(t)|| : t € D} is uniformly integrable and the function t — E(X,(t)) belong to

Dg(T) , then
S [1(S(t) = E(S(t)) — (Sa(t) — E(Sa) (1)) | = 0.
Proof. See [3, Theorem 2.1]. O

Note that the following theorem is a similar statement to Theorem but for random
variables, with some additional conditions, with values in a general Banach space. We
will prove this theorem with the aid of Theorem [3.9

Theorem 3.10. Let X;, j € N, be independent Additive processes. Suppose there is a
random variable X in Dg(T) such that for every N € N

independent of X1,...,X,. Then the following statements hold:
1. Let X7 = X; — X; be the symmetrization of X;, and S5 = >_7" | X3, then there
exists a random variable S such that ||S — S&|; <3 0.

2. There exists ¢, € Dg(T) such that ZnN=1 (X, — ¢n) converges uniformly on [0, T
a.s. where ¢, = X, (@) for some @ € (.

Proof. Let t € [0,7], by Theorem there exists a random variable S’(¢) such that
S2(t) “¥ S’(t). This implies existence of a sequence ¢, € E such that S,(t) — ¢, % 5.
From this it follows

SZ(t) = Sn(t) - Sn(t) = Sn(t) — Cp +Cp — gn(t) = S — Sla

recall the definition [2.2] It follows S'(¢) is symmetric. We will show that S’(¢) is continuous
in probability.

Suppose for the moment that this is the case, then it is possible by Theorem to
construct a cadlag modification. By the use Theorem it is possible to find a process S
with values in Dg(T") such that ||S — SZ||r — 0 as n — 0.

We will use Ito-Nisio’s theorem to prove that S’ is continuous in probability. Let
x* € F* and define the function

2

(I)n,t - ]E (ei<x*’5%(t)>) - |(I)($*:Sn(t)>(1)| :

By the independent increment property it holds

(o 5,0 (D] = | @l 505,09 (D] | a5, 09 (D]
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By independence of X;,j =1,2,... it follows

® 5,0y (D] = P10y (D] [P e (D]

From this it follows ®,,; is non-increasing in both n,t. By Ito-Nisio’s Theorem it holds
for every t > 0,

o, - E <ei<x*’sl(t)>> , N — 00.

We denote &, = E (ei@*’Sl(t») and note that &, is also non-increasing because S’ is
symmetric and has independent increments. Suppose that s, T s, then by Theorem
S'(sp) converges a.s. to a random variable S” and by the Ito-Nisio’s Theorem [2.3| it holds
o, —E (ei<x*’sl/>).We denote @, = E (ei<z*’s//>). Let € > 0 be given. Now choose N such
that

P — D, | <€, Vn>N.

Now for the moment take n > N. Choose M such that
D5, — Pps, | <€ and [P — D,y | <€, Vm > M.

Note that for [ > n it holds |®), — @, ,| < 2e. Take m > M and n > N large enough so
that ®,, s — ®,, 5, < €. Then it holds

|D) — Dy <[P — Do | + [Pins, — Prns| + [P — | < de.

Because € was arbitrary we find that ®, = ®,. Because z* € E* was arbitrary, it holds
by the Ito-Nisio Theorem [2.3[ that S’(s,), %3 S’(s). We can do the same for s, | 5. We
conclude that S’ is process with independent increments and continuous in probability.

It is possible to construct a cadlag modification S of S’. Conclude that there exists
a random variable S with values in (Dg(T), Dg(T)), such that S (t) “3 S(t), for every
t € [0,7]. Condition in theorem holds. We conclude by Theorem that,
sup [|S(t) — S:(1)|| 3 0. The second statement follows from Fubini’s Theorem. O
te[0,7]

Note that the previous Theorem is designed for J*V. It was our first goal to show a.s.
uniform convergence of J*V.

Lemma 3.13. For a fized a time horizon T > 0, J*N converge uniformly on [0,T] a.s.
Proof. Using Theorem to [54] the statement follows. O

For every n € N, there is a probability one set Q* C Q x Q such that J*V converge
uniformly on [0, n], V(w,w) € Q. We take ' =), Q2 and note that by Fubini’s Theorem
there is a w such that

Q={we: (w,w) e},

has probability 1. We define the following process {Si}, ., by

5w = | AW INW) = TN@) e
0 if wé Qg
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We have found centering function ¢, (¢) such that the sum 25:2 A (X An cn) converges
uniformly a.s. on every bounded interval, where ¢, = AX*(@). If we can show that
{I1S:]| : t € [0, T]} is uniformly integrable and E[AX*" — ¢,] is cadlag, then by Theorem
[3.912 we can show that

N
TN =3 T AXM — E[AXM],
n=2
converges uniformly a.s. to S — E[S].

Define the non-random function F, := X;(@) — AX (@), then S; + F, is an Additive
process. Furthermore S; + F; has bounded jumps.

Lemma 3.14. The collection of random variables {||St|| : t € [0,T]} is uniformly inte-
grable.

Proof. First note that S; can be written as S; + F; — F; with F} a cadlag function and
Sy + F, an Additive process with bounded jumps. By Theorem for some M; >
0, supyeor E[llS: + FJ||’] < M; < oo. The non-random function F, is cadlag , hence
suPyejo7) || Fl| < My. From this it holds

sup E[[|S[*] < sup E[|[S, + B[] + sup ||| < My + M.
te[0,7) te[0,7) te[0,7

From this it holds that the family of real-valued random variables {||.S;|| : ¢ € [0, T]} are
uniformly integrable.
O

Define for every ¢ > 0 and n € N, Sf := 5 — E[S}].

Theorem 3.11. For every fixed time horizon T > 0, limy_, ||SC —JNell =0, a.s.

I

Proof. By Lemma JN — JN(@) converge a.s. uniformly on [0,T] to S. It fol-
lows E[AX"] — AX™ is a cadlag function by Lemma [3.1 Furthermore the family
{I|S¢]| : t € [0,7]} is uniformly integrable. By Theorem [3.9}2 the statement follows. [

Theorem 3.12 (Levy-Ito). Let X be an Additive process with values in a separable
Banach space. Then X can be represented as

Xy =W, + lim > (AXNM - EAXM]) + AXM, (56)
=2

where {W,} has independent increments and is a.s.continuous, the convergence of
teR 4 )

the centered sum lim, oo > iy (AX™ — E[AXA]) is uniformly on every bounded interval
[0,T]. Furthermore the three terms are independent processes.

Proof. By Theorem for every T' > 0 there is a set Qr, P{Qr} =1,

|5¢(w) — JN’C(w)HT — 0, Yw € Qp.
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Now write Wy = X; — Sf — AXé\l. We will show, that W has a.s. continuous paths.
Let s,t € [0,T] and define W} := X — J¥¢ — AX™. Then by taking N large enough
we find on Qp, ||W — W¥]||; <e. Now we find on Qrp,

We =Wl < [[We = W[+ |WT = wY[| + |wY — W]
< 24 WY —wN|
N N
< 2+ (Xt—ZAXtAi>—<XS—ZAX;‘i>‘
=1

+ H (ZE[AX{”]) — (ZE[A)M) H

From the continuity of the map ¢ — E[AX}], see Lemma m, it follows that
1
lim ||W; — W] <264+ ——.
sli}I% || t || S cet N+1

We conclude that on W is a.s. continuous. Note that W%, J¥¢ and AX*! are independent
process. By uniform convergence we find that W, S¢ and AX*! are independent. O

3.5 Lévy measure and the Lévy-Ito representation

In this section we will collect all observations made and represent the structure of an
Additive process in its most abstract form. For every Additive process {Xt}te]R+ there is
a corresponding random counting measure Jx. In Lemma we proved

fix 1 SO = [0,00], A E[Tx (-, A)], (57)

is a o-finite measure on the space (S, S°). In Lemma 3.6/ we showed that for every A € S°,
Jx (-, A) has a Poisson distribution with E[Jx (-, A)] < co. Note furthermore that every
o-finite © measure on a ring R, can be extended uniquely to a measure p on o {R}. See
[2, Theorem 5.1]

Definition 3.8. Let (€2, F,P) be a probability space and (S, S, u) be a o-finite measure
space. A random measure M : 2 x § — R with values in N is called a random Poisson
measure with Poisson intensity pu, if

1. For every A € S, the random variable M(-, A) has a Poisson distribution with
parameter p(A):

ke—n(A)

a) P{M(A) =k} = 247 Hif u(A) < oo.
b) P{M(A) = oo} =1, if pu(A) = oc.

2. If Ay,..., A, € S and disjunct, then M(-, 4;),..., M(+, A,) are independent.

Theorem 3.13. Let X be an Additive process with corresponding random counting measure
Jx, then Jx s a random Poisson measure with Poisson intensity pix .
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Proof. For every A € 8°, Lemma Jx (-, A) has Poisson distributed with parameter
px(A) = E[Jx (-, A)] < co. Take A € S, then A" € §°. Now Jx(-, A") has a Poisson
distribution with parameter A”. Now there are two possibilities:

1. A:=1lim, oo A" < 00
2. A :=1lim,, oo A" = 0.
Let ®4(u) be the characteristic function of Jx(w, A) and ® 4n(u) of Jx(w, A™). Note that

(I)An(t)(u) — eAn(t)(eiufl)'

In case (1) by Lebesque’s dominated convergence theorem it follows that ® 4 (u) =

A0 1) This implies that Jx(w, A(t)) has Poisson distribution with parameter A. For
case (2) we can use to conclude that P{Jx(w, A(t)) < N} =0, for every N, hence

P{N,(A) =0} =1.

Let By, ..., B, € S and disjunct, and define
m 1
Bi'(t) = (s,7) € Bj : s < t,||z]| > o
Now it holds for every ¢ > 0 and m € N,

JIx (w, BY*(t)), ..., Ix(w, B (t)).

are independent by Theorem [3.7] Let ¢t = m and take m — oo, then by Lemma [2.11] we
find that the random variables Jx(w, By), ..., Jx(w, B,) are independent. ]

Lemma 3.15. Let (Q, F,P) be a probability space and (E,E, 1) be a o-finite measure
space. Suppose f S — F is a measurable map with F a separable Banach space and M
a random Poisson measure with Poisson intensity . If (1) [1|f(s)||M(w,ds) < oo for
every w € Q and (2) []1f(s)||n(ds) < oo holds, then

E / £(5)M (w, ds) = / F(s)u(ds). (58)

Proof. Let f, a sequence of simple functions f, = >, #714» as in . Then it holds that
E / Fuls)M(ds) = E S wiM(A) = 3 mipu(Ay) = / F(3)u(ds).

By (1), [ fa(s)M(w,ds) converges to the Bochner integral [ f(s)M(w,ds). From the
monotone convergence theorem it holds,

[ 1561 m0as) = ;gnmgz%M ({ses:g lron<55}).
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By using the monotone convergence theorem we get

o0

e [ = g 3 (fre s << )

- / 1£ ()] u(ds).

(8)|IM(ds) <3 [||f(s)||[M(ds) < oo. From (2) we find that
3L w( ds ) < 00, hence we have now the following estimate,

E [H [ 5.9~ ftomatas)|

[/an - |\M<ds>]

= [ 156 = £ llntas)

It holds that JNf(s) = fa
E [][f(s) = fals)[IM( dS ) <

H [/ 0= st

IN

IA

By Lebesque’s dominated convergence theorem we find that [ ||f(s) — fu(s)||u(ds) — 0,
hence E [ f,M(ds) — E J f(s)M(ds). Above we showed that for simple functions it
holds that E [ f,M(ds) = [ fnu (ds) and from (2) we conclude that

We conclude that E [ fM(w,ds) = [ fu(ds).
[

Remark 3.5. Let X be an Additive process. For A € B(E) with 0 ¢ A it holds by
Lemmathat AX} =[] [ 2T (dsdz). If Jopa |17l |1x (ds dz) < oo then by lemma

5. 15 .
E [AX}] :/0 /Axux(dsdx). (59)

Definition 3.9. Let X be an Additive process and for every 0 < § < 1, we define the
process with finite jumps S? := AXtA‘s’1 where A5y = {z € F: 6 <||z|| < 1}. We define
the centered process S¢ = 5S¢ — ES?.

For E = R™, the following theorem can be found in [20]. For E a separable Banach
space, the representation can be found in [5, Theorem 2.1].

Theorem 3.14. Let X be an Additive process. Then X can be represented as

510

t t
X, = Wi + lim / [ olxlodsdn) — px(dsdn)+ [ [ s dsda), (60)
5<||=||<1 |z][>1

J

~

Ji I

where W, J and J? are independent processes, Wy is a.s. continuous, J' describes all the
gumps with amplitude 6 < 1 and J* are the jumps with amplitude strictly larger than 1.
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Proof. First we note that S° has bounded jumps. For every realization w it follows that
S%(w) has only a finite number of jumps on [0,7]. For 0 < § < &, it holds that

T
sup [BI53w) - sP@| < [ [ lellutdsdo)
te0,T] 0 J{s<||z||<d'}

From this it follows that

S (0,1] = Dg(T), 0+~ {Sf}te[OT}7

is continuous. Furthermore by Theorem |3.12]it follows that Sn converges. From this it
follows that lims;o S exists. By the use of Theorem [3.12| we find the representation of the

process {X¢}cp,

=W, —|—hm/ / x| JIx(w,dsdz) — px(dsdx)] / / rJx (w,dsdx).
840 5<||z|<1 [lz]|>1

]

Now we want to give some results on integrability properties of the Poisson intensity
measure jx. For the case = R", it holds for every T > 0 ,

T
/ min(1, ||z][2)px (dsdz) < oo. (61)
0o JE\0

We will show this result in case the state spaces is a Hilbert space £ = H. In the general
case when F is a separable Banach space this is not necessarily the case, see [5].

Lemma 3.16. Let X,Y be independent random variables, with values in a separable
Banach space, with E[Y] =0 and ¢ : Ry — Ry a convex function, then

Ele(JIX + Y] = Ele ([[X]])]-

Proof. Let px and py be the distributions of X and Y. By Fubini’s Theorem and Jensen
inequality we find

Elc(|X + Y|l)] = / / (Il + yl1) px (dy)ay (de)

> [ <H/<x+y> uy(dy)H) i (de)

= [ el nxtn)
— Ble(IX)
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Definition 3.10. Let (Q, F,P) be a probability space and (£, &, 1) be a finite measure
space. Let M : Q2 x & — N be a random Poisson measure with intensity p. The
compensated random Poisson measure M, : {2 x § — R, is defined as

M (w, A) == M(w, A) — u(A). (62)

Remark 3.6. If (F, &, ) is o-finite measure space, then we note that M. is well defined
for A € € with u(A) < co.

Definition 3.11. Let (€2, F,[P) be a probability space and (E, &, 1) be a finite measure
space. Let M : Q x & — N be a random Poisson measure with intensity pu. Let f: E — F

be a measurable map with F and suppose that (1) [||f(s)||M(w,ds) < oo for every
w e Qand (2) [||f(s)]|u(ds) < oo holds. Then we deﬁne

[ romuias) = [ remas) - [ ss)utas) (63)

Lemma 3.17. Let (Q, F,IP) be a probability space and (E,E, 1) be a o-finite measure
space. Let M : Q x & — N, be a random Poisson measure with Poisson intensity fu.
Let H be a Hilbert space and B(H) be its Borel-o-algebra and f : (E,€) — (H,B(H))
be a measurable map such that (1) [||f(s)|IM(ds) < oo (2) [||f(s)||n(ds) and (3)
[ 1(5)P(ds) < oo, then

s

Proof. Let f =737, x4, be a simple function with A, N A,, =0, n # m. It holdsE]

2| frostuin

- / 1£() P pu(ds). (64)

=EY ) (wilay) (M(A) = p(A;) (M(A;) = p(Ay))

i=1 j=1

= Z (@ilas) B (M(4) — u(A:))° (65)

=Sl = [P

Let f : S — H be a general measurable map with [ [|f(s)[|?u(ds) < oo. Let f, be a
sequence of simple functions as in fu =222 Tan with A; N Ay = 0 for i # j, such
that f, — f for all s € E. Properties (1) and (2) imply that [ f,M(ds) — [ fM(ds)
and [ fuu(ds) = [ fu(ds). From this we conclude that [ f,M. — [ fM.. It follows
that

3 The variance of a Poisson random variable X with parameter \ is given by

E [(XA _ E[XA])ﬂ —
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ti | [t = | [

It holds that E|| [ fn/\/lC”2 = [IfulPr(ds) <2 [||f]]Pu(ds) < oo. This means that the
random variables H f anc” is bounded in L?. Thus, this class of random variables is

uniformly integrable. Hence,
2
_E H [,

lim E H/fn/\/lc

By using once more the Lebesgue’s dominated convergence theorem it follows

2

2 2
:1@E”/n@wu

=t [ ()] Pulds
— [ Futas).

D H [ rom.

]
It holds that .
Sf:/ / x [ JIx(w,dsdx) — px(dsdz)].
0 Je<|lz|<1

Let V; == X; — AXM — E[X, — AX™], Now we can write

V=Y, - S+ 5.
Now it holds by Lemma that

E||Y:|* > E[|57]%. (66)

Note Y; has bounded jumps and is an Additive process. By Theorem it follows that
for every T > 0
E[|Yz|]* < oo.

If we assume F = H to be a Hilbert space, then we find with Lemma and

T
L[ lelPutdsdr) < Elpya < .
0 Jo<|lz|I<1

for every 0 < 6 < 1. From this we conclude that for every 7" > 0 |

T
/ min(1, [|z]|2)ux (dsdz) < oo, (67)
0 JE\O
in case the state space £ = H is a Hilbert space.

We would like to end with some observations without proofs:
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1. For every A € B(E) with 0 ¢ A and every x € E* it holds

E [l axt)] = exp{ /0 t /A () — 1) MX(dsdx)}.

In case F = R" it holds for every u € R"

E [ei<u7MtA>] = exp { /0 t /A (e'm) — 1) uX(dsdx)}.

2. Let Ty be the first time that the process X; jumps with amplitude bigger than § > 0,
then

P{T; <t} =1 —exp{—px ([0, 2] x {[|z[| > 6}}).

3. If we take as state space F = R, then W, is a Gaussian process with independent
increments, see Theorem If we take as state space F = R™ and denote
W, = (Wt(l), . ,Wt(")) ,sthen for every vector (uq,...,u,) € R"

Gt = Zuth(1)7
i=1

is a real-valued Additive process with a.s. continuous paths. It holds for every

vector (uq,...,u,) € R™ that >, uth(i) is a Gaussian random variable. From
this, W, = (Wt(l), cee Wt(") ) is a multivariate normal distribution. A vector X =
(XM .., X™) is a multivariate normal distribution if and only if for every vector

(ug,...,u,) € R™ it holds that 1" 4;X® is normally distributed if and only if
there is a vector p € R", and a nonnegative-definite n x n-matrix > such that the
characteristic function of X is given by

Dy (u) =exp{i-u"p—u"Su}.
From this the characteristic functions of W; and W, — W, are given by
Oy, (u) = exp {2 cul g — uTEtu} , Pw,—w.(u) =exp {2 . uTus,t — uTEs,tu}

Because it is necessary for @y, (u) to be continuous as function of ¢ € Ry it must
hold that p; and u?¥u are continuous.

4. For £ = R", the characteristic function of {X;}, p is

ox,(u) =E [e““’wﬂ E [ei<“"]t1>] E [ei<“’Jt2>} .

E [e“”’wﬂ = exp {z sty — uTEtu}

E [ei<“"]tl>} — exp { /O t /{ . (04 — 1 — (u, z)) MX(dsdx)}.

E [ei<”"]’g>} = exp{ /0 t /{ o (eite) — 1) MX(dsdx)}.



Note that the distribution is determined by u; € R, a non-negative n X n-matrix
Y and a measure px satisfying for every 7> 0 ,

T
/ min(1, [|z]|2)ux (dsda) < oo, (68)
0o JE\0
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4 Appendix

4.1 Stochastic processes

Definition 4.1. Let (E, &) be a measurable space, T' a set and (2, F,P) a probability
space. A stochastic process with time parameter set T', state-space (F, &) and underlying
probability space (2, F,P) is a collection (X; : t € T') of (E, £)- valued random variables
defined on the probability space (€2, F,P).Generally we take T'= N, R

We will regard stochastic processes in different ways:

1. For any measurable space (Q,F) and (E, ), let L°(Q, F; E,€) be the set of all

measurable function from €2 to E. We regard a stochastic process as
X:T—=L% t— X,

i.e. a function from the time index T to the set of all measurable functions from 2
to E.

2. Let Pg be the collection of all probability measures p on (£, ). Define for every
t € T, the probability measure

Hx, = Po Xt_l'
With this we can regard our stochastic process as
X:T —Pg, t—px, €Pg.

i.e. a function from the time index 7" to thecollection of all probability measures on

(E,&).

3. One can also view a stochastic process as a sample path realization. For every
w € €2, the map
Xw): T—E, t— X(w),

is called a sample path realization. This leads to an alternative view as a map
X: Q= ET we (t— X (w)),
i.e. the stochastic process is viewed as an (ET, ET)-valued map.
Definition 4.2. A finite-dimensional rectangle in E7 is a set of the form
{x € ET]xtl € By,...1y, € Bn},

for {t1,...,t,} C T and E; € £. The set of all finite-dimensional rectangles is denoted
by CT.
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It is clear that CT is m — system, i.e. for all A, B € C* i holds that AN B € CT . The
o-algebra £7 is the o-algebra generated by this m-system,

ET=0¢ {CT} .
It is the smallest o-algebra such that the map X : Q — E7 is measurable.
Definition 4.3. Let (X;)er be a stochastic process with state space (£, ). We denote
FX as the smallest o-algebra on € such that for every t € T, the map X : Q — E is
measurable.
It is clear that F¥X = o {X~1(CT)}, i.e. F¥ is generated by sets of the form,
{Xy, € By, Xy, € By..., X;, € B,},

where t; <ty <...<tp,and B;€&,i=1,...,n.

Definition 4.4. A collection X of subset in 2 is called a w-system if it is closed under
finite intersections. A collection D is called a D-set if it contains €) | for every A, B € D
with A C B implies B\ A € D and for every D,, € D with D,, C D,,44 it holds | J,, D,, € D.

Theorem 4.1 (Dynkin). If a w-system X is contained in a D-set D, then o {3} C D.
Proof. See [13, Theorem 1.1] O

Definition 4.5. Let (2, F,P) be a probability space and C; C F, i € Z, be classes events
such that for every iy,...,4, € Z and A;, € C;

k?

P{ﬂ Aik} =[P {4.}.
k=1 k=1
Then the classes of events C;, i € Z, are called independent.

Definition 4.6. Let {Xt(n)} ,n=1,2,... be stochastic processes on the same underly-
teT

ing probability space. We call them independent if FXW =g {Xt(n) 't e T},n =1,2,...,
are independent.

Lemma 4.1. Let (2, F,P) be a probability space and C; C F, i € T be independent
classes of events such that C; is a w-system for every i € I, then o {C;}, i € I, are also

independent.

Proof. See [13, Lemma 2.6] O

25



4.2 Stochastic processes viewed as random path realization

A stochastic process X can be viewed as a path realization ¢t — X, for every w € , i.e.
as a map from (2, F) to (ET,ET). We will assume conditions on the path-realizations of
the stochastic processes.

Definition 4.7. Let (E,||---||) be a normed space. A function f : Ry — FE is called
regular if for every t € R,

1. the left limit f(t-) = limgy f(s) exists;

2. the right limit f(t+) = lim,, f(q) exits.

If in addition for every t € Ry, f(t+) = f(t), then f is called cadlag.

Definition 4.8. Let X be stochastic process, then we call the process Cadlag when for
all w € 2, the paths t — X, are cadlag.

Definition 4.9. Let (E,|| - ||) be a normed space. For a regular function f: R, — E,
the left- and right-jump are defined as

Af(t+) = flt+) = f@t), Af(t=) = f(t) = f{t-).

Definition 4.10. Let (E, || - ||) be a normed space. For a regular function f: R, — F
define the following sets

JE(f) = {t € R: Af(t£) # 0}.

and for kK >0
Jp(f) ={t eR:JJAf(tH)]| > k} .

Finally define J(f) := JT(f) U J(f) and Jy := JF(f) U J; (f).

Lemma 4.2. Let (E,||-||) be a normed space and f : R — M a regular function, then
for k>0, Jy is finite and the set J(f) is at most countable.

Proof. Fix an interval [a,b]. Suppose that ¢ € J(f) , then there is n € N such that for
every 0 > 0 there is s € Bs(t) = {s € [a,b] : |t — s| < ¢} such that

1)~ FI >

Let t* € [a,b]. Then there exists e+ > 0, such that (B,,. \ t*) N J1 = 0. Otherwise
there exists a sequence t,, 1 t* with t,, € J1( or t,, | t*). In that case, a sequence 7,
tm < Tm < tms1, can be chosen such that ||f(t), f(7m)|] > L, hence

hnrln f(Tm) # hgln f(tm).
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This contradicts regularity of f. Now (J,. elab
compactness there are sy, S, ..., sy € [a,b] with

| Be,. is a open subcovering of [a, b] and by

a,b] C U B., ().

Hence it holds that J1 C {sy,...,sy} and thus J, is finite. Conclude that J N [a,b] is
countable and thus J is countable.

]

Lemma 4.3. Let f be a cadlag function. For every e > 0, there exists a partition
s =1y <ty <...<tpmn =1t such that

sup{|f(v) - f(w)l CU,wE [ti7ti+1)} <e€ 1=0,... ap(n) -1
Proof. Let € be given. For every s € [0,t] there exists a §(s) > 0 such that for k,h €
(s —0(s),s+d(s)) with h,k # 0 or h,k > 0, it holds that | f(h) — f(k)| < e. Now it holds
that {(s — d(s),s+ d(s)) : s € [0,t]} is an open subcover of [0,t]. By compactness there

exist s1, S2,..., sy such that [0,¢] C |J,;(s; — d(si), s+ d(s;)). Now with these s; we can
construct our partition. ]

Definition 4.11. Let f be cadlag function. Let [ = {0 =ty <t; <...<t, =t} bea
partition and V{(IT) = S0 [ f(tiy1) — f(t;)|- Then f is of finite variation if for all ¢ > 0,

V! = sup V/(IT) < o0,
I

where the supremum is taken over all partitions of [0,t].

Remark 4.1. Let f be cadlag function and Il = {0 =, < t; < ... <t, =t} be a parti-
tion. Then define for every ¢; a decreasing seguence (t¥);, such that t; < tF < t; 1, tF € Q
and t¥ | ;. Let I, = {0 =t§ <t} <... <tk = ¢}, then it holds that

VD)~ V)] < 3 [170) = 7))~ 1) — £

< Z F(ti) — P+ 1£(0) — £,

By taking k large enough, we see by right-continuity that V7 (IT,) — V/ (IT). We see thus
that the supremum can be taken over all partitions in Q, which are countable. If we
consider a cadlag stochastic process {X}, .y, then it holds that V;* is the supremum of a
countable set of random variables and thus measurable.
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4.3 Convergence in probability and distribution.

Most of the results in this section can be found in [7]. Let (Q2, F),(E, ) be measurable
spaces and L°(Q, F; E, E) be the set of all measurable maps from €2 to E. If F is a metric
space then we take £ always to be B(FE), the Borel o-algebra. For a probability measure P
on (Q, F) we let LY(Q, F; E, E) be the set of all equivalence classes of L%(Q, F; E, £) with
equivalence relation P-a.s. equality. For X € £L%(Q, F; E,£) we denote the equivalence
class of X in LY(Q, F; E,E) by [X]p.

Definition 4.12. Let (2, F,P) be a probability space and (FE,d) a separable metric
space. For X,,, X € L%(Q,F; E, &) convergence in probability of X,, to X denoted by

Xn % X holds if for every € > 0

P(d(X,,X)>¢€) — 0, asn — oc.

Remark 4.2. For separable metric spaces 51,5, ..., S, it holds
B(S1 x Sy x...xS,) =B(S1) x B(S2) x ... x B(Sy),

see [13, Lemmal.2]. For a metric space (5, d) it holds that d : S x .S — R, is a continuous
map. Now it follows that d(X,Y’) is measurable because B(S x S) = B(S) x B(S).

Definition 4.13. Let (X;);cy be a stochastic process, then (X;) is called continuous in
probability if for every ¢t € R, and € > 0, lim,_,, P(d(X, X;) > €) =0,

Remark 4.3. X, tends to X in probability if and only if there exist a subsequence k(n)
such that Xj,) converges to X a.s.

For X,Y € L%, F; E, £) with metric space (E,d) we define
dp:=1inf{e > 0|P(d(X,Y) > ¢€) < ¢€}. (69)
Let X’ € [X]p and Y € [Y]p, then P(d(X,Y) > ¢€) = P(d(X’,Y’) > €) and thus
dp(X,Y) = dp(X", Y.
We can define dp([X]p, [Y]p) = dp(X,Y).

Lemma 4.4 (Ky Fan Metric). Let (Q2,F,P) be a probability space and (E,d) be a sepa-
rable metric space, then on LY(Q, F; E,E) , dp is metric, which metrizes convergence in

probability so that dp([X,]p, [X]e) — 0 if and only if X, X
Proof. See[7, Theorem 9.2.2.]. O

Lemma 4.5. Let X be a stochastic process. Suppose that X is continuous in probability.
Fix T > 0. Then for every e > 0 and v > 0 there exists a § > 0 such that, for s,;t € [0,T]
with |t — s| < @, it holds that

P(d(X;, Xs) > €) < 7.
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Proof. Let t € N[0, T, then for every ¢ > 0, there exists a §; > 0 such that dp(X;, X;) < ¢
for all s € By, (t). By compactness of [0, 7] we can find 1, ...t, € N[0, 7] such that [0,7] C

5751 5tn
SRR

Now it holds for s,t € N[0, T] with [t — s| < § that s,t € Bj, (t;) for some i. From this we
find that

U, Bs, (ti). Let € and « be given. Take ¢ = %min {e,7} and § = min{

dp( Xy, X,) < dp(Xy,, X,) + dp( Xy, X,) < 2c.

Now it holds that P(d(X:, Xs) > 2¢) < 2¢, from which we find that P(d(X;, Xs) > €) <
Y. -

Let (E,d) a metric space and denote

Cy(E) ={f: E — R:fis continuous and bounded} .

Definition 4.14. Let p, i1, pia, . . . be finite Borel measures on E. We say that (i, )nen
converges in distribution to u if for every f € Cy(E)

/ Fdyy — / fdu.

Remark 4.4. X, LHX = X, ~ X

Notation : i, ~»

Remark 4.5. We recal that the bounded Lipschitz Metric dpg, is defined as, for py, po

dpr (s pa) = Sup{ / fd(pr = p2)| = [ fllL < 1},
E
where ||f||pr := sup|f(x)| + sup M This metric metrizes convergence in
el TH#Y d(x,y)

distribution on Pg under the condition that (F,d) is a separable metric space.
Theorem 4.2. If (E,d) is a separable metric space , then for any u, p1, ... € Pg one has
fn, ~ o if and only if dpr(pin, ) — 0.

Definition 4.15. A set I' of Borel probability measures on E are uniformly tight if for
every € > 0 there exists a compact subset K of E such that

u(K)>1—e¢, forall pel.

Theorem 4.3 (Prokhorov Criterion). Let (E,d) be a complete separable metric space and
let T be a subset of Pg. Then the following statements are equivalent

1. T is compact in Pg.

2. T' is uniformly tight.
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4.4 Characteristics

We list some basic properties of characteristic functions. We refer to [19] for a complete
treatment of characteristic functions.

Definition 4.16. Let X be a random vector in R? with distribution jtx. The characteristic
function @y is defined as '
Oy (u) = E[e!™Y)], ueR? (70)

Theorem 4.4. Let XY be two random vectors, then X,Y are identically distributed if
and only if ®x(u) = ®y(u) for all u € RL.

Theorem 4.5. FEvery characteristic function ®x has the following properties:
1. &x(0) =1
2. |Px(u)] <1, VueR%
3. Dx(—u) =®x(u),, YucRL

4. ®x is uniformly continuous on RY.

Theorem 4.6. Random variables X1, ..., Xy with characteristic functions ®x,(u;) are
independent if and only if
d
Ox(u) =[] Px,(ua), (71)
i=1

where X = (X1,...,Xq) and u = (uy, ..., uy,).

Theorem 4.7. Let X, X, Xs,..., X, ... be random vectors with distributions px, i,
Wx, ~ px if and only if ®x,, converges uniformly on every compact set to ®x.

Lemma 4.6. Let X be a random variable in (R, B(R) and ®x the corresponding charac-
teristic function , then for u >0

3

EXQHlXK% < @(1 — R{Px(u)}) (72)
and ) _—
P(X| > 1) < —/ 1 — R{Px (0)}dv. (73)
u u Jo
Proof. See [15, p-209, B’ Inequality]. ]

Lemma 4.7. Let X be a random variable in (R, B(R) and ®x the corresponding charac-
teristic function, then

[P (t) — Px(s)] < /2|1 — Dx(t — )] (74)

Proof. See [15, P-208,B. Inequality]. ]
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4.5 Buildings blocks of Additive processes

In this section we consider the building blocks of Additive processes:
(1) Additive processes with values in Z, and jumps of amplitude 1.
(2) Additive processes with a.s. continuous paths

Processes with property (1) have Poisson distributed increments. Processes with property
(2) have Gaussian distributed increments. A random variable X is Poisson distributed
with intensity A > 0 if
Nee=A

k!
The characteristic function is ®x(u) = X~V Vu € R. A random variable Y is
Gaussian distributed with mean m and variance o2 if

1 —(z=m)?
/e 22 dr, A€ B(R).
A

o\ 2w

P{X =k} = ke N.

P{Y € A} =

. 2 2
imau— Cou

The characteristic function is given by ®x(u) = e >, YueR

The content of this section is to show that Additive processes with property (1) have
Poisson distributed increments and Additive processes with property (2) have Gaussian
increments. These results and proofs are taken from [I1] and [9]. In order to prove the
statements we need an elementary relation

—log(l —z) =z + o(x),as x — 0. (75)

Suppose that for every n € N there are positive values 27, ...,
lim,, 0o Max; <<, ' = 0, then from (75,

-, such that the maximum

Jgrgoz;xzﬁc@gggol_[l(l—xl)—)e . (76)
Suppose that we are given N independent Bernoulli random variables Xy,..., Xy. If

Xi, ..., Xy are identically distributed, with N very large and A = pN, where P{X; =1} =
p, then the Poisson distribution with intensity A appears to be a good approximation
of ZZN:1 X,;. The following theorem gives a bound. The importance of the Poisson
Approximation becomes clear in Theorem [4.9]

Theorem 4.8 (Poisson Approximation). Let Xi,..., X, be Bernoulli distributed with
P(X;=1)=p;. Let \=).p;, M = max;p;, and P1,Py be two probability measures on N,
such that Py is the probability distribution of Y. X; and Py a Poisson distribution with
parameter \. Then it holds that

sup [P1(A4) — P2(A)] < MA. (77)
ACN

Proof. See [22, page 12-14]. O
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Theorem 4.9. Let {X}teR+ be an Additive process with property (1). Then there exists
a non-decreasing continuous function A : Ry — R, such that

P{X;,— X, =k} = (ALt) - A(S))ke—mu)—f\(s))

k! ’
i.e. the increment Xy — X has a Poisson distribution with parameter A(t) — A(s).
Proof. For s < t and every n € N let t,;, = (t—s with £ = 0,1,...,n — 1. Define
Znk = Xt 4,11y — Xt By continuity in probablhty by Lemma (4.9 . for every € > 0,

lim max P{Z, >¢€} =0.
n—oo 1<k<n-—1

Now we use the properties that the process has independent increments, takes values in
Z, all paths are increasing and jumps of amplitude 1. Because for every realization, the
path is non-decreasing, {X; — X, < €} C M{Zy {Zu < €} and thus,

n—1

P{X,— X, <e} < [[P{Zu <}
k=0

The process takes values in Z, from which it follows that
n—1
P{X,— X, =0} < [[P{Zu =0}

For the moment, assume |t — s| sufficiently small, such that P(X; — X; = 0) > 0. Then
we find from that 327" P(Z,; > 1) converges to a finite value. Now we define the

following process,
7 0 it Z,,=0
nk 1 if Z > 1.

Let Z!, = Y7 Z!., then it holds that Z! 3 X; — X, and by Theorem {.8 we find the
bound

sup [P(Z, € A) = Py, (A)] < Mo\,
ACN

where M,, = max; P(Z,; > 1) , A\, = > ,P(Z,; > 1) and P, is a Poisson measure with
parameter \,. Now we find with Lemma

sup |P(Z), € A) — Py, (A)] =0, as n— .
ACN

From this it follows that X; — X is Poisson distributed with parameter

n—1

A= lim ZIP’ Zpi > 1).

n—oo

We know that for independent random variables Y;, with a Poisson distribution and
with parameter );, the sum ) .Y is again Poisson distributed with parameter A =>_. \;.
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From this it follows that for every s <t , X; — X is Poisson distributed. Now denote
the parameter of X; by A;. Because the paths of X; are always non-decreasing, it is
clear that ¢ — A; is non-decreasing. Now the characteristic function of X, is given by
dx, (u) = e~V By continuity in probability we must have for every u € R, t s ®x, (u)
is continuous. We conclude that ¢ — A; is continuous. O

Let {Xt}teR>0 be an Additive process in R with property 2. We will consider the process
on [tg,t1]. We follow 11, Section 1.4] For given 4, e define the set

D.s:= sup | Xy — X <e€p. (78)
[t—s|<d
t,se[to,tﬂ
Lemma 4.8. Let (Xt>t€1R20 be a stochastic process with continuous paths. Fix an interval
to, t1] , then D5 is measurable and for every e > 0 there exist §(€) such that P{D. 5.} >
1—e€

Proof. Because of continuity of the paths it holds that

Des = U m {|Xq1_Xq2|<€_%}-

meN g1,q2€QN[to,t1]
lg1—g2]<é

The case ”C” is clear. However the case "D” need some extra argument. Suppose that w
is in the right part. Then there is a m such that for all ¢1, g2 € QN [to, 1] with |¢1 —ga| < 0
it holds 1

[ Xgy (W) — X ()] <€ m’
Let s,t € [to, t1] with |t — s| < 6. Without loss of generality assume s < t and take h,, | s
and k, Tt with h,, k, € [s,t] N Q. Now it holds

[ Xi(w) = Xs(w)] < [Xe(w) = X, (w) + X, (@) = X, (@) + X, (w) — X (w)]

< [Xi(w) = X, (@) + [ X, (@) = X, ()] + [ X, (@) = Xo(w)]

Now by letting n — oo
1

X — X <e——

() = )| S e
and thus )
sup | X;— X <e——<e.
[t—s|<d m
t,s€[to,t1]

Now, D, s is a countable union of measurable sets, hence it is measurable. Consider
(Des)t ={w e Q:3s,t € [to, t1], |t —s] <6, | Xt — Xs| > €},

and define 8, = 55, then (Des,,,)° C (Degs,)¢ and by uniform continuity of continuous
functions on compact sets it holds that ((Des, )¢ is the set of all w for which t — X;(w)
is not continuous. From this it is clear that lim,,_,. P{(D.s,)} = 0, hence for € > 0 there

exist §(€) > 0 such that P{D. 5} > 1 —e. O
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Before we prove the next lemma a little remark for symmetric random variables is
needed. If a random variable is symmetric, i.e. P(X € A) = P(X € —A) for all A € B(RY).
Then the characteristic function is given by

O x(u) = E(cos(uX)).

Lemma 4.9. Let {X;},p_ be an Additive process with property (2). Fiz an interval
[to, t1], then X, — Xy, is Gaussian distributed.

Proof. Let X7 = X; — X, be the symmetrization, recall (cf. . For €,0 > 0 define

L S S

i5 = sup |X; —Xj| <e
[t—h|<é
t,hE[to,tﬂ

For every € > 0 by Lemma [4.8| there is an (¢) > 0 such that P{D;;} > 1 —e. Take a

sequence €, | 0 and a sequence of partitions
to = tn,O < tn,l < ... < tn,kn =1, tn,i—i—l — tn,i < 5(6n)

3 R S s X X P kn .
Define the truncations Y, ; := (th’k — Xtmk*—l)Hﬂan,k’an,kq|§E"} and S, == > " Yo, .

From

kn
o0 C[WIXE, = X0 I <ed C{Su =X} - Xi ),
k=1

it follows that S,, converges in probability to X — X3 . Convergence in probability implies
convergence in distribution. This implies that the characteristic functions &g converge
uniformly on compact intervals to the characteristic function of X — X¢ |

‘CI)th — Xt <U) ’2 = (I)thl —Xi ('LL)
= lim &g, (u)

n—o0
. (79)

= nh_)rxolo H E cos(uY, ;).

=7

The last equality holds because the random variables Y, ; are symmetric. We use the
series representation of cos(z)

kn 2,2 4,4
ZJ:H;I_IIE@— )
kn 2 .2 2 .2
=i [[E (175 4 ot )

— ,}E&ﬁ (1 - IE(Y;—?)uQ (1+ O(en))> .
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Note that as n — oo, lim,,_,o max;<g, M (1+ O(€,)) = 0. For u sufficiently close to

zero, |Px, —x, (u)|* > 0. We conclude by (76 . that

o EY2

¢ = lim g
n—o0

Furthermore by we find for every wu,

,}E&H <1 - ) : (1+ O(Gn))) =,

The characteristic function of X;, — X3, is of the form

i&(u)—cu2l
(I)th_XtO(U):eg( ) 2,
For €,0 > 0 define
D.s:= sup | Xy — Xp| <€
[t—h|<é
t,he[to,tl}

For every € > 0 by Lemma [£.§] there is an d(e) > 0 such that P{D, s} > 1 — €. Take a
sequence €, | 0 and a sequence of partitions

tg = tmg < tn,l < ... < tn,kn =1y, tn,i—i—l — tn,i < (S(Gn)

Define the truncations Z, = (Xy,, — th,k—l)]Iﬂthk*th o |<eny and Zy, = Zfﬁl i -
From . ’ ’
De,&(e) C ﬂ{|th,k - th,k—1| S ETL} C {Zn = th - Xt()}7
k=1
it follows that Z,, converges in probability to Xy, —Xy,. Now write @, (u) = ™ “R(D (u)).
Now for every u € R
C'LL2

iMpU
et — Oy, _x, (u)e™, asn — oo,

The m,, are bounded. Otherwise, there is a unbounded subsequence {m,, }, from which

€ €
2 X .
Oy, x, (w)e™ du| = lim et duy
0 1 0 k 0
] eimnke _ 1
= lim|—| =0.
k iMy,

This is a contradiction, for e sufficiently close to 0,

6(IDth_XtO(u)e“‘zdu) > 0. We

conclude that {m,} are bounded. We can take a converging subsequence with limit m.
We conclude that £(u) = mu and thus the characteristic function is given by

imu— cu2%

Q)th — X1 (u) =e¢

Hence X;, — X, is Gaussian distributed. ]
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