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1 Introduction

The great Gauss warned mathematicians to stay away from infinity. For years most
mathematicians heeded his warning until Georg Cantor, at the end of the 19th cen-
tury, invented set theory. Creating more than one kind of infinity with the cardinal
and ordinal numbers. This paved the way for more study of infinity. In the field
of analysis mathematicians were less interested in Cantors rather abstract cardinal
numbers. Their interest in infinity mainly was focused around infinitesimals, the
infinitely small numbers. The concept of infinitesimals had already been introduced
in mathematics and used by mathematicians like Newton and Leibniz, however they
never were able to develop a rigorous foundation, so they were discarded in favour
of the more well-founded limit approach. That was, until the late 1960s when Abra-
ham Robinson developed non-standard analysis.

Non-standard analysis is a powerful tool. Though it is not necessary to use it, it can
bring great elegance to a proof. In this thesis we will look at three non-standard
proofs of big theorems in Functional Analysis. The Theorem of Hahn-Banach, the
Theorem of Hille-Yosida and the Theorem of Bernstein-Robinson, a case of the in-
variant subspace problem, which was initially proved using non-standard methods.

We will start in Section 2 with a short introduction to logic. We will assume that
the reader has know knowledge of the subject so those who have followed a basic
course on the subject should be already familiar with the material. We will finish
by defining our non-standard model, using filters, and then expand our model so we
can ‘quantify sets’. In the remaining three sections we focus on our main results.
In Section 4 we will explore non-standard Functional analysis and end by proving
the Theorem of Bernstein-Robinson. In section 5 we look at a more abstract proof
technique which we will use to proof the Theorem of Hahn-Banach. We will end in
Section 6 by taking a look at semigroups and giving a non-standard proof for the
Theorem of Hille-Yosida.

2 Logic

2.1 An introduction to logic

Non-standard analysis is a product of logic, hence we will start giving a short intro-
duction to logic. We will start with some very basic definitions. One of the main
goals of logic is giving an unambiguous language in which we can talk about math-
ematics. This so-called logical language will always contain the following logical
symbols:
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¬ not
∧ and
∨ or
→ implies
↔ is equivalent to
∀ universal quantifier
∃ existential quantifier

x1, x2, ... variables
( left bracket
) right bracket
, comma

Besides the logical symbols there are constants, function symbols and predicates
which can be more freely interpreted to pose theorems. Here constants and functions
fulfill the role you would expect and predicates are statements.

Example 2.1. The statement ‘Every mathematician thinks logically’ can be for-
mulated logically by (∀x)(A(x)→ B(x)) where A(x) means ‘x is a mathematician.’
and B(x) means ‘x thinks logically.’. In this case A and B are both predicates.
The statement ‘Function f is continuous at c.’ can be expressed in the logical
language by:

(∀ε)(A(0, ε)→ (∃δ)(A(0, δ) ∧ (∀x)(A(f1(f2(c, x)), δ)→ A(f1(f2(f(c), f(x))), ε))))

where A(x1, x2) means ‘x1 < x2’, c is a constant and the function symbols are
interpreted as f1(x) = |x| and f2(x1, x2) = x1 − x2. As you might expect we
will usually denote functions in a more recognisable way to avoid horrible looking
formulas as above.

Definition 2.2. A language L is a set of symbols containing:

(i) The logical symbols.

(ii) A set of constants c1, c2, ... .

(iii) A set of functions fn1
1 , fn2

2 , ... where ni is a positive integer describing the
number of variables of the function.

(iv) A non-empty set of predicates P n1
1 , P n2

2 , ... where ni is a positive integer de-
scribing the number of variables of the predicate.

Since the logical symbols are always part of a language we will omit them when
describing a language. So a language containing just the logical symbols we will
denote as L = ∅.

With a language we can now write down formulas which are a combination of
symbols from the language in a correct order. We will not define what a correct
order of symbols is, but assume that the reader intuitively knows what this means.
You can find out more about this in [6].
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We now have a language to talk about mathematics. But as in a normal language
the words are useless without an interpretation, in a logical language the symbols
are senseless without an interpretation as well. An interpretation of the language is
given in so called structures.

Definition 2.3. Let L be a language. An L-structure M is a non-empty set M
called the domain and an interpretation of all symbols from L. That is:

(i) To every predicate P ni
i we associate a set Mi ⊂ Mni . (We will interpret

P ni
i (v1, ..., vni

) as ‘true’ if (v1, ..., vni
) ∈Mi.)

(ii) To every function symbol fni
i we associate a map from Mni to M .

(iii) To every constant ci we associate an element vi ∈M .

Example 2.4. Consider the language L = {c1, c2, f 2
1 , f

2
2 , P

2
1 }. Then M = N with

the interpretation c1 = 0, c2 = 1, f 2
1 (x1, x2) = x1 + x2,f

2
2 (x1, x2) = x1 · x2 and

predicate P 2
1 (x1, x2) means x1 < x2, i.e. M1 = {(x1, x2) ∈ N2 : x1 < x2} is an

L-structure

If we want to use a specific language we usually use the standard mathematical
symbols. In this case we would write: L = {0, 1,+, ·, <}.

If a formula B is true inM we say thatM satisfies B. For short we writeM |= B.

We can now talk about mathematical structures, but they can be quite wild. If you
want to, you can use ‘+’ as a function symbol and interpret it as multiplication. To
gain more control over our structures we want to make rules for how the function
symbols, constants and predicates should behave. These rules are the axioms and a
set of axioms will be called a theory.

Definition 2.5. Let L be a language. A non-empty set of formulas from L is called
a theory.

Definition 2.6. Let T be a theory. An L-structure M is a model of T if M |= B
holds for each formula B ∈ T . We write M |= T .

Example 2.7. We will now give a short example to get a better idea of theories,
models and L-structures and the differences between them.

Consider the language L = {0, 1,+, ·,=}. We will take as theory T the group
axioms:

(∀x)(0 + x = x ∧ x+ 0 = x)

(∀x)(∀y)(∀z)(x+ (y + z) = (x+ y) + z)

(∀x)(∃y)(x+ y = 0 ∧ y + x = 0).

An L-structure in this case is for example N with the usual interpretation. This
does not satisfy T due to the lack of inverses.
Z or Q with the usual interpretation however are models of T .
Of course we know that Q is a field as well, (hence the inclusion of ‘·’ and ‘1’
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in our language), so sometimes a model satisfies formulas, like the existence of
multiplicative inverses, which are not consequence of the theory. On the other hand
there are formulas, like the uniqueness of 0, which are logical consequences of a
theory, but which are not part of the theory. That is why it is important to make
a clear difference between what is part of the theory, what are consequences of the
theory and what is true in a specific model of the theory.

We have now covered the basic logic that we need. This allows us to focus on some
more specific concepts of logic which we will need for non-standard analysis. In
particular closed formulas which will become very important. Before we can define
them however, we will first take a look at free variables.

Definition 2.8. Let B be a formula. In (∀x)(B) and (∃x)(B), we call B the range
of the quantifier.

Definition 2.9. An occurrence of a variable x is called bound if it lies inside the
range of a universal or existential quantifier. If x is not bound it is called free.

To really understand this definition it is important to understand that, while it is
advisable to write down formulas unambiguously, it is not necessary. The formula
(∀x)(x = y) ∧ (∃y)((y + x < z) → (∃x)(z = y)) is legal since the range of the
universal quantifier is restricted to (x = y) and thus does not create a conflict with
the existential quantifier later. In this example x is bound in its first two occurrences
and its last occurrence, but free in its third and y is free the first time and bound
in the rest. Here z is free in all occurrences.

Definition 2.10. If in a formula all variables are bound we call it closed or we call
it a sentence.

Example 2.11. The following formulas are closed:

(∀x)(∀y)(x < y ∨ y < x ∨ x = y).

For c a constant:

(∀ε)(ε > 0→ (∃δ)(δ > 0 ∧ (|c− x| < δ → |f(c)− f(x)| < ε))).

For f a function:

(∃c)(∀ε)(ε > 0→ (∃R)(R > 0 ∧ (∀r)(R < r → |f(r)− f(c)| < ε))).

To really understand closed formulas it might be useful to look at some formulas
with free variables. A well known and relevant example is the theory

T = TR ∪ {v > n : n ∈ N}

where TR is the theory of the real numbers [6]. Since in every formula we used the
same free variable v, any modelM of T must contain an x ∈M such that m > n for
all n ∈ N. Hence a model of T would be suitable for non-standard analysis. That
such a model exists is a consequence of the Compactness Theorem [6], a well known
theorem in logics.
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2.2 Filters

Though we could use the Compactness Theorem to prove there exists models with
infinitely large numbers and we could just pick one and work with that, it is a rather
abstract approach. There is another more constructive way to construct infinitely
large numbers using filters which is the way we will explore.
For this section κ is a cardinal number and J is a set of cardinality κ.

Definition 2.12. We call F ⊂ P(J) = {X : X ⊂ J} a filter on J if the following
hold:

(i) If A ∈ F and A ⊂ B ⊂ J , then B ∈ F .

(ii) If A,B ∈ F , then A ∩B ∈ F .

(iii) ∅ 6∈ F and J ∈ F .

Furthermore we call F principal if there exists a setA ⊂ J such that F = {X ⊂ J : A ⊂ X},
an ultrafilter if for all A ⊂ J either A ∈ F or Ac ∈ F and maximal if there exists
no filter F0 ⊃ F .

We will first look at some examples of filters and equivalent definition.

Example 2.13. (i) F = {J} is called the trivial filter.

(ii) FA = {X ⊂ J : A ⊂ X}, A ⊂ J .

(iii) F = {X ⊂ N : Xc is finite } is called the Fréchet filter.

(iv) F = {X ⊂ J : |Xc| < κ} which we will call the generalised Fréchet filter.

Note that the generalised Fréchet filter, and in particular the Fréchet filter both are
non-principal.

Proposition 2.14. Let F be a filter of J . Equivalent are:

(i) F is an ultrafilter.

(ii) F is maximal.

Proposition 2.15. Every filter can be extended to an ultrafilter.

Proposition 2.16. Every principal ultrafilter is of the form F = {X ⊂ J : j ∈ X}
for some j ∈ J .

Corollary 2.17. An ultrafilter containing the generalised Fréchet filter is non-
principal.

We will leave these results as exercises for the reader where you can prove the second
proposition by using Zorn’s lemma.

Using filters we will now define a structure, which will be seen as non-standard.
This we can do by defining an equivalence relation on MJ .
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Definition 2.18. Let M be an L-structure with domain M and let F be a filter
on J . We define on MJ the relation:

a ∼ b⇔ {j ∈ J : a(j) = b(j)} ∈ F .

Lemma 2.19. ∼ is an equivalence relation.

Proof. Since J ∈ F we find that ∼ is reflexive. Since equality is symmetric ∼ clearly
is symmetric. To see that ∼ is transitive consider a, b, c ∈MJ and note that:

{j ∈ J : a(j) = b(j)} ∩ {j ∈ J : b(j) = c(j)} ⊂ {j ∈ J : a(j) = c(j)}.

Hence if a ∼ b and b ∼ c then by definition of filters

{j ∈ J : a(j) = b(j)} ∩ {j ∈ J : b(j) = c(j)} ∈ F

and then again by definition of filters {j ∈ J : a(j) = c(j)} ∈ F , thus a ∼ c.

We now have a new set namely MJ/ ∼ which we will denote by M∗. The equivalence
classes we will denote by [(aj)j∈J ]. Of course we want this to be the domain of some
L-structure M∗. For this we must give an interpretation to all symbols in our
language.

Definition 2.20. LetM an L-structure with domain M and let F a filter on some
set J . We callM∗ the ultrapower ofM if the domain ofM∗ is M∗ and we interpret
the symbols of L as follows:

(i) If c ∈ L is a constant, then
cM

∗
:= [(cM)j∈J ].

(ii) If f(v1, ..., vn) ∈ L is a function symbol, then for all [(x1,j)j∈J ], ..., [(xn,j)j∈J ] ∈M∗

we define

fM
∗
([(x1,j)j∈J ], ..., [(xn,j)j∈J ]) := [(fM(x1,j, ..., xn,j))j∈J ].

(iii) If P (v1, ..., vn) ∈ L is a predicate, then for all [(x1,j)j∈J ], ..., [(xn,j)j∈J ] ∈ M∗

we define

M∗ |= P ([(x1,j)j∈J ], ..., [(xn,j)j∈J ])⇔ {j ∈ J :M |= P (x1,j, ..., xn,j)} ∈ F .

Proposition 2.21. The interpretations in Definition 2.20 are well-defined.

Proof. Obviously the constants are well-defined, leaving us with the functions and
the predicates.

Let f(v1, ..., vm) ∈ L a function and let a1, ..., am, b1, ..., bm ∈MJ with ai ∼ bi for all
1 ≤ i ≤ m.
We want:

(f(a1,j, ..., am,j))
M)j∈J ∼ (f(b1,j, ..., bm,j))

M)j∈J .
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To see this, consider

{j ∈ J : (f(a1,j, ..., am,j))
M = (f(b1,j, ..., bm,j))

M} ⊃
m⋂
i=1

{j ∈ J : ai,j = bi,j}.

Since by assumption {j ∈ J : ai,j = bi,j} ∈ F , we have that the finite intersection⋂m
i=1{j ∈ J : ai,j = bi,j} ∈ F . Because filters are closed by taking supersets we have

(f(a1,j, ..., am,j))
M)j∈J ∼ (f(b1,j, ..., bm,j))

M)j∈J .

We can use similar arguments to prove the predicates are well-defined, so we leave
that part of the proof for the reader

We have now constructed an L-structure, though without some extra restrictions it
can be either a bit to wild or to boring. First observe that if F is principal that
M and M∗ are basically the same. So we want that F is non-principal, we gain a
‘new’ L-structure. Secondly, suppose our language contains ‘=’ and ‘6=’ as predicates
interpreted in the usual way in some L-structureM, then in the ultrapower it could
happen that for some x, y ∈ M∗ we have that M∗ 6|= x = y and M∗ 6|= x 6= y. To
avoid this we will require F to be an ultrafilter.

When we require F to be a non-principal ultrafilter, we come to the point where the
closed formulas become very important. Because then every closed formula true in
M is also true inM∗ as well and vice versa. This is expressed in the main theorem
of non-standard analysis, the Theorem of  Loś.

Theorem 2.22 ( Loś). Let B be a closed formula, let M be a L-structure, and let
M∗ be its ultrapower. Then

M |= B⇔M∗ |= B.

Officially this is not the theorem of  Lośbut a direct consequence of it. The proof is
more deeply rooted in logic, and hence will be omitted. More on this subject can
be found in [6].
Since closed formulas are so important we want as many of them as possible. This
can be done by expanding our language by adding every element of the original
model as a constant. Then the statement ”Function f is continuous at c” becomes
a closed formula which will prove to be very useful.

2.3 Ultrapowers

We will apply non-standard analysis on superstructures which we will define in the
next section. Before we do this we first will get familiar with ultrapowers by looking
at a relatively simple structure: C. Of course, before we can talk about C we need
a language. We will use a language L containing

1. A constant ac for every c ∈ C.
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2. A function fφ for every n-ary operation φ on C.

3. A predicate Aϕ for every n-ary relation on C.

One of the great advantages of non-standard analysis versus standard analysis are
the infinitesimals. Infinitely small numbers are wonderful for everyone who is not a
fan of epsilon/delta definitions. Using non-standard analysis we can give an equiva-
lent easy definition of continuity. Before this is possible we first will check whether
our ultrapower actually contains the promised infinitely large and small numbers.

Definition 2.23. LetM be an L-structure, let F be a filter on a set J and letM∗

be the ultrapower. We call

∗ : M →M∗, x 7→ x∗ := [(x)j∈J ]

a non-standard map. For every X ⊂ M , we define the copy of X in M∗ as
X# := {x∗ : x ∈ X}.

From now on, for convenience sake, we will assume that our filter F is an ultrafilter
on N containing the Frèchet filter. This means that any subset of N with a finite
complement is an element of F which makes it easier to understand the proofs. Note
that it does not really matter what filter we use since if a closed formula is true in
one ultrapower, by  Loś’ Theorem it is true in the original model and thus, again by
 Loś’ Theorem true in every ultrapower.

We call the elements of M# the standard elements of M∗. Please note that there
is no predicate in L describing M#, which means that the definition of standard
elements is not a definition in the logical language, but in a meta language. We
can now say an element ω of C∗ is infinitely large if |ω| > |c| for all c ∈ C#. An
example of an infinitely large number is ω = [(n)n∈N]. Evidently for all c ∈ C# the
complement of {n ∈ N : n > |c|} is finite, hence {n ∈ N : n > |c|} ∈ F , so ω is
larger than c. Since C∗ is also a field multiplicative inverses exists, which implies
that there exist infinitely small numbers.

Definition 2.24. Let x ∈ C∗, then we call x infinitesimal if for all r ∈ R#
>0 we have

|x| < r. We denote the set of infinitesimal complex numbers by C0 and the set of
infinitesimal real numbers by R0 .
We call x finite if there is a c ∈ C# and an infinitesimal y ∈ C0 such that x = c+ y.
We call x◦ := c the standard part of x.
Finally if x, y ∈ C∗ and there is an infinitesimal z ∈ C0 such that x = y+ z then we
write x ≈ y.

Proposition 2.25. Let y1 and y2 be infinitesimal and let c be finite. Then y1 + y2,
−y1, |y1| and y1c are infinitesimal.
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Proof. Let r ∈ R#
>0 and let z ∈ C0 be such that c = c◦ + z. Then

|y1 + y2| ≤ |y1|+ |y2| <
1

2
r +

1

2
r = r,

| − y1| = |y1| < r,

|y1c| ≤ |y1c◦|+ |y1||z| <
r

2|c◦|
|c◦|+

√
r

2
·
√
r

2
= r.

Proposition 2.26. The standard part is unique and every finite c ∈ C∗ has standard
part.

Proof. Let c be such that there exist c1, c2 ∈ C# and y1, y2 ∈ C0 such that c =
c1 + y1 = c2 + y2. Then

0 = |c1 − c2 − y2 + y1| ≥ |c1 − c2| − |y2 − y1| ≈ |c1 − c2| ≥ 0.

Hence c1 − c2 = 0 proving that the standard part is unique.
Now let x ∈ C∗ and r ∈ R# such that |x| < r. Consider Ar = {x ∈ R# : x > Re(c)},
Br = {x ∈ R# : x < Re(c)}, Ai = {x ∈ R# : x > Im(c)} and
Bi = {x ∈ R# : x < Im(c)}.
Since R is linearly ordered we find cr := inf Ar = supBr and ci := inf Ai = supBi.
Now suppose that there is a r1 ∈ R# |Re(c)− cr| > r1 > 0.
Then either Re(c) − cr > r1 > 0 ⇔ Re(c) > r1 + cr > cr, thus r1 + cr ∈ Br and
r1 + cr > supBr, which contradicts the definition of Br, or Re(c)− cr < −r1 < 0⇔
Re(c) > cr − r1 > cr, thus cr − r1 ∈ Ar and cr − r1 > inf Ar, which contradicts the
definition of Ar.
So |Re(c) − cr| is infinitesimal. In the same way we find that |iIm(c) − icr| is
infinitesimal. Thus |c− cr − ici| is infinitesimal and c has standard part.

The infinitesimal numbers are a very useful tool to simplify a lot of definitions.
There are a lot of interesting results for C∗ but since our goal is Functional analysis
we will just look at one example.

Proposition 2.27. Let f : C→ C be a function and let c ∈ C. Then f is continuous
at c if and only if for all x ∈ C∗ with x ≈ c we have f(x) ≈ f(c).

Proof. Suppose f is continuous at c, then for all ε ∈ R>0 there exists a δ ∈ R>0 such
that

C |= (∀x)(|c− x| < δ → |f(x)− f(c)| < ε).

Since ε, δ and c are constants, this formula is closed and so we may apply the theorem
of  Lośwhich gives us

C∗ |= (∀x)(|c− x| < δ → |f(x)− f(c)| < ε).

Since for all δ ∈ R#
>0 we have that |x − c| < δ for all x ∈ C∗ with x ≈ c, we have

that for all x ∈ C∗ with x ≈ c and all ε ∈ R#
>0 it holds that |f(x)− f(c)| < ε. Thus
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f(x) ≈ f(c).
Now suppose that for x ∈ C∗ with x ≈ c we have that f(x) ≈ f(c). Let ε ∈ R#

>0

and let δ ∈ R0 be positive. Then for all |x − c| < δ implies that x ≈ c and so
f(x) ≈ f(c). This gives |f(x)− f(c)| < ε, so

C∗ |= (∃δ)(∀x)(|x− c| < δ → |f(x)− f(c)| < ε).

Hence also
C |= (∃δ)(∀x)(|x− c| < δ → |f(x)− f(c)| < ε).

Since this holds for all ε ∈ R>0 we find that f is continuous at c.

Although looking at C∗ can be very useful it does not cover everything we want. If
we want to make a statement about sets such as ‘Every subset of N has a smallest
element.’ we run into trouble since subsets of C∗ are not elements of C∗, so we can’t
quantify over them. To solve this problem we will expand our original L-structure.

2.4 Quantifying sets

Consider a model M with domain M . If we want to quantify over sets of M , we
can simply add them to our domain, that is: P(M)∪M , this might however not be
enough. An ordered pair (x, y) ∈M2 is defined as (x, y) = {{x}, {x, y}} which is not
an element of P(M) ∪M , so if we want to talk about ordered pairs we need more.
Functions are sets of ordered pairs, and we might want to talk about functions of
functions. To accommodate such a big range of possibilities we take the following
construction.

Definition 2.28. Let M be a set. Let M0 := M . We define inductively Mn :=
P(Mn−1) ∪M0 for all n ∈ N>0. We call

M̂ :=
⋃
n∈N

Mn

the superstructure of M .

Having created such a big set, we now need a language to talk about it. This poses
certain problems since we can not include a function + on C like we did when we
only had to deal with C since the domain of an n-ary function in this case should
be Ĉn. To solve this problem we use the following language:

L = {=,∈} ∪ Ĉ.

You might wonder why we include so few predicates and functions. This is because
we can ‘construct’ predicates and functions by using the constants we added. If for
example we want to use the inequality in R we can use the set

X< := {(x, y) ∈ R2 : x < y} ∈ Ĉ.
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This set, which we described using metalanguage, is a constant in our language,
hence we can express ”0 < 1” by the formula

(0, 1) ∈ X<.

”0 < 1” is not a very hard statement. Now we will give a formula for the more
complicated statement ”for all x ∈ R there exists a y ∈ R such that x+ y = 0”. For
this we consider the set

X+ := {(x, y, z) ∈ R3 : x+ y = z} ∈ Ĉ

which again is a constant in our language. Now we can express the statement as
follows

(∀x)(x ∈ R→ (∃y)(y ∈ R→ (∃a ∈ X+)(∃b ∈ a)(0 ∈ b∧(∃c ∈ b)(∃d ∈ c)(x ∈ d∧y ∈ d))))

where we use that

(x, y, 0) := ((x, y), 0) := {{{{x}, {x, y}}}, {{{x}, {x, y}}, 0}}.

Obviously the more complicated theorems will be very hard to understand using
this kind of formulas. That is why we will be using abbreviations, to reduce the
formula above to just

(∀x ∈ R)(∃y ∈ R)(x+ y = 0).

With this language, alongside its natural interpretation, we now can talk about
an L-structure which we will denote by Ĉ. Using filters we can now look at the
non-standard superstructure Ĉ∗.

2.5 Ultrapowers of superstructures

Let F be a non-principal ultrafilter of N. Let Ĉ∗ be the ultrapower of Ĉ with respect
to F and let ∗ : Ĉ→ Ĉ∗, x 7→ [(x)n∈N] = x∗ be its non-standard map. When dealing
with elements of C this was an easy map, however with sets it requires a bit more
attention. As we already saw in Section 2.3, C∗ is not the set {x∗ : x ∈ C}. As a
result some of the operators we use on sets do not commute with the non-standard
map. In this section we will find out more about the non-standardization of sets
and what sets are part of our new structure.

Lemma 2.29. 1. ∅∗ = ∅.

2. If a, b ∈ Ĉ, then a ⊂ b if and only if a∗ ⊂ b∗.

3. If a, b ∈ Ĉ, then a ∈ b is and only if a∗ ∈ b∗.

4. For all a ∈ Ĉ we have {a}∗ = {a∗}.

5. If a1, ..., an ∈ Ĉ then (
⋃n
i=1 ai)

∗ = (
⋃n
i=1 a

∗
i ), (

⋂n
i=1 ai)

∗ = (
⋂n
i=1 a

∗
i ),

{a1, ..., an}∗ = {a∗1, ..., a∗n} and (a1, a2)
∗ = (a∗1, a

∗
2).
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6. For all a, b ∈ Ĉ we have (a \ b)∗ = (a∗ \ b∗).

7. If b is a binary relation, then (dom b)∗ = dom(b∗), (ran b)∗ = ran(b∗) and for
all a ∈ dom b we have (b(a))∗ = b∗(a∗).

8. If φ(v) is a formula with one free variable and a, b ∈ Ĉ then a := {x ∈ b : Ĉ |= φ(x)}
if and only if a∗ = {x ∈ b∗ : Ĉ∗ |= φ(x)}.

Proof. 1. Note that for all x = [(x(n))] ∈ Ĉ∗ it holds that x(n) 6∈ ∅ for all n ∈ N.
Since N ∈ F we have x 6∈ ∅∗ hence ∅∗ = ∅.

2. Let a, b ∈ Ĉ. Note that a ⊂ b if and only if

Ĉ |= (∀x)(x ∈ a→ x ∈ b)

which by  Lośis equivalent to

Ĉ∗ |= (∀x)(x ∈ a∗ → x ∈ b∗)

which is equivalent to a∗ ⊂ b∗.

3. Let a, b ∈ Ĉ. Then (a ∈ b) is a closed formula thus by  Lośa∗ ∈ b∗ if and only
if a ∈ b.

4. Let a ∈ Ĉ. We have {a}∗ = [({a})] hence x = [(x(n))] ∈ {a}∗ if and only if

{n : x(n) ∈ {a}} ∈ F ⇔ {n : x(n) = a} ∈ F ⇔ x = a∗.

5. Let a1, ..., an ∈ Ĉ. Observe that

Ĉ |= (∀x)(x ∈ (∪ni=1ai)↔ x ∈ a1 ∨ ... ∨ x ∈ an)

Ĉ |= (∀x)(x ∈ (∩ni=1ai)↔ x ∈ a1 ∧ ... ∧ x ∈ an)

Ĉ |= (∀x)(x ∈ {a1, ..., an} ↔ x = a1 ∨ ... ∨ x = an)

all are closed formulas, hence by  Loś’ Theorem we find that

Ĉ∗ |= (∀x)(x ∈ (∪ni=1ai)
∗ ↔ x ∈ a∗1 ∨ ... ∨ x ∈ a∗n)

Ĉ∗ |= (∀x)(x ∈ (∩ni=1ai)
∗ ↔ x ∈ a∗1 ∧ ... ∧ x ∈ a∗n)

Ĉ∗ |= (∀x)(x ∈ {a1, ..., an}∗ ↔ x = a∗1 ∨ ... ∨ x = a∗n).

This is what we wanted to prove. In particular we find

(a1, a2)
∗ = {{a1}, {a1, a2}}∗ = {{a1}∗, {a1, a2}∗} = {{a∗1}, {a∗1, a∗2}} = (a∗1, a

∗
2).

6. Let a, b ∈ Ĉ and note that

Ĉ |= (∀x)(x ∈ a \ b↔ x ∈ a ∧ x 6∈ b)

is a closed formula and thus by  Loś’ Theorem we find

Ĉ∗ |= (∀x)(x ∈ (a \ b)∗ ↔ x ∈ a∗ ∧ x 6∈ b∗)

and we already knew that

Ĉ∗ |= (∀x)(x ∈ a∗ \ b∗ ↔ x ∈ a∗ ∧ x 6∈ b∗).
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7. First note that if b is a binary relation with domain dom(b) and range ran(a)
then

Ĉ |= (∀x)(x ∈ b→ (∃y ∈ dom(b))(∃z ∈ ran(b))(x = (y, z))).

Since this is a closed formula, by  Loś’ Theorem this is equivalent to

Ĉ∗ |= (∀x)(x ∈ b∗ → (∃y ∈ dom(b)∗)(∃z ∈ ran(b)∗)(x = (y, z))).

Thus we find that b∗ is a binary relation with dom(b)∗ = dom(b∗), ran(b)∗ =
ran(b∗).

Now let a ∈ dom(b) and b(a) ∈ ran(b). Then

Ĉ |= ((a, b(a)) ∈ b).

is closed, hence by  Loś’ Theorem is equivalent to

Ĉ∗ |= ((a, b(a))∗ ∈ b∗).

By 2.29.5 we have that (a, b(a))∗ = (a∗, (b(a))∗) ∈ b∗. Hence b∗(a∗) = (b(a))∗.

8. Let φ(v) a formula with one free variable and let a, b ∈ Ĉ. Note that by  Loś’
Theorem

Ĉ |= (∀x ∈ b)(x ∈ a↔ φ(x))

if and only if
Ĉ∗ |= (∀x ∈ b∗)(x ∈ a∗ ↔ φ(x))

and by 2.29.2 a ⊂ b if and only if a∗ ⊂ b∗. Hence a := {x ∈ b : Ĉ |= φ(x)} if
and only if a∗ = {x ∈ b∗ : Ĉ∗ |= φ(x)}.

Although most operations on sets are the same for non-standard analysis, there are
a few that are different. This has important consequences. To see this we again
consider the statement that every set of N has a smallest element. However if we
consider N∗ \ N#, the set of infinite positive integers, we find that it does not have
a smallest element. But the Theorem of  Lośgives us that every set of (P(N))∗ has
a smallest element. From this we must conclude that N∗ \ N# 6∈ (P(N))∗. To
distinguish the different sets and elements we introduce the following definition.

Definition 2.30. Consider Ĉ∗, the superstructure of C∗. We call x ∈ Ĉ∗ internal
if x ∈ (Cn)∗ for some n ∈ N. If there is an a ∈ Ĉ such that x = a∗, then we call
x standard. All entities which are not internal, we call it external. Right now we
used brackets to differentiate (Cn)∗ and (C∗)n and make clear they are significantly
different sets. In the future we will just use C∗n to denote (Cn)∗.

In Definition 2.30 we defined external entities instead of external elements. We did
this since some of the entities we want to think about are not an element of (Ĉ)∗.
This leads us to two distinct classes of external entities, those that are an element
of Ĉ∗ like x = [({0}, {{0}}, {{{0}}}, ...)] which for every n is not in (Cn)∗, and those
that are not like N∗ \ N#.
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Proposition 2.31. N∗ \ N# 6∈ Ĉ∗.

Proof. Suppose N∗ \ N# = [(xn)n∈N] ∈ Ĉ∗. Note that N∗ \ N# ⊂ N∗. However we
know that

Ĉ |= (∀x)(x ⊂ N↔ x ∈ P(N)).

which is a closed formula, thus by the  Loś’ Theorem we have

Ĉ∗ |= (∀x)(x ⊂ N∗ ↔ x ∈ (P(N))∗).

With our earlier observation this means that N∗ \ N# ∈ (P(N))∗ which we already
found to be impossible.

Proposition 2.32. There are internal sets which are not standard.

Proof. Consider {[(n)n∈N]} = [({n})n∈N] ∈ C∗1. This set is not standard, but is is
internal.

Theorem 2.33. Elements of internal set are internal.

Proof. Let x = [(xn)n∈N] ∈ C∗n be an internal set, that means that
{n ∈ N : xn ∈ Cn} ∈ F . Now let y = [(yn)n∈N] ∈ x. Then {n ∈ N : yn ∈ xn} ∈ F .
Since Cn = P(Cn−1) ∪ C by the definitions of filters we find

{n ∈ N : xn ∈ Cn} ∩ {n ∈ N : yn ∈ xn} ⊂ {n ∈ N : yn ∈ Cn−1} ∈ F .

Hence y ∈ C∗n−1 and thus is internal.

So the statement in standard analysis that every subset of N has a smallest element,
in non-standard analysis is replaced by the statement that every internal subset of
N∗ has a smallest element.
This means that if we are studying specific sets in Ĉ∗ we want to know whether they
are internal or not. For this we look at the following technical but useful results.

Proposition 2.34. Let a1, ..., ak ∈ Ĉ∗ be internal, n1, ..., nk ∈ N such that aj ∈ C∗nj

for all j = 1, ..., k and let φ(v, w1, ..., wk) a formula with k + 1 free variables v and
w1, ..., wk. Let m ∈ N and b := {x ∈ C∗m : Ĉ∗ |= φ(x, a1, ..., ak)}, then b is internal.

Proof. Consider the formula

B : (∀a1 ∈ Cn1)...(∀ak ∈ Cnk
)(∃b ∈ Cm+1)(∀x)(x ∈ b↔ (x ∈ Cm ∧ φ(x, a1, ..., ak))).

Note that B is closed and Ĉ |= B by the axioms of set theory. Hence  Loś’ Theorem
gives

Ĉ∗ |= (∀a1 ∈ C∗n1
)...(∀ak ∈ C∗nk

)(∃b ∈ C∗m+1)(x ∈ b↔ (x ∈ C∗m ∧ φ(x, a1, ..., ak))).

Hence b is internal.

Corollary 2.35. Let b ∈ Ĉ∗ be an internal binary relation. Then dom(b) and ran(b)
are internal.
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Proof. Let n ∈ N be such that b ∈ C∗n. Consider

φ1(v, w) : (∃z)((v, z) ∈ w) and φ2(v, w) : (∃z)((z, v) ∈ w).

Note that dom(b) = {x ∈ C∗n : φ1(x, b)} and ran(b) = {x ∈ C∗n : Ĉ |= φ2(x, b)}.
Hence by Proposition 2.34 dom(b) and ran(b) are internal.

Corollary 2.36. Let b ∈ Ĉ∗ be an internal binary relation and let a ⊂ dom(b) be
an internal set. Then b|a, i.e. b restricted to a and b(a) = ran(b|a) are internal.

Proof. Consider the formula

φ(v, w1, w2) : (v ∈ w2 ∧ (∃y ∈ w1)(∃z)(y, z) = v)

and note that b|a = {x ∈ C∗n : Ĉ |= φ(x, a, b)}. Hence by Proposition 2.34 b|a is
internal and thus by Corollary 2.35 ran(ba) = b(a) is internal.

Of course the most important binary relations are maps for which we can prove a
few extra results.

Proposition 2.37. Let a, b be internal maps with ran(a) ⊂ dom(b). Then b ◦ a is
an internal map.

Proof. Let n ∈ N be such that a, b ∈ C∗n. Evidently b ◦ a is again a map. To see it
is internal consider:

φ(x,w1, w2) : (∃w)(∃y)(∃z)((y, w) ∈ w1 ∧ (w, z) ∈ w2 ∧ x = (y, z))

and note that b ◦ a = {x ∈ C∗2n : Ĉ∗ |= φ(x, a, b)}. By Proposition 2.34 we see that
b ◦ a is internal.

Again to make our formula less complicated, for a given internal function a and a
x ∈ dom(a), instead of

(∃y)((x, y) ∈ a)

and work with y we will just write a(x).

Finally we will prove that the composition and evaluation maps are internal.

Proposition 2.38. Let X, Y, U ∈ Ĉ internal, then:

(a) For all f ∈ XU and all g ∈ UY the function Mf : Y X → Y U , h 7→ h ◦ f and
Mg : Y X → UX , h 7→ g ◦ h are internal.

(b) For all a ∈ X the function Va : Y X → Y, h 7→ h(a) is internal.
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Proof. Let n ∈ N be such that Y ×X × U × Y, Y ×X × U ×X ∈ C∗n. Consider

φf (x,w1, w2, w3) : (∃y ∈ w1)(∃z ∈ w2)(x = (y, z) ∧ z = y ◦ w3),

φg(x,w1, w2, w3) : (∃y ∈ w1)(∃z ∈ w2)(x = (y, z) ∧ z = w3 ◦ y)

and
φa(x,w1, w2, w3) : (∃y ∈ w1)(∃z ∈ w2)(x = (y, z) ∧ z = y(w3)).

Note that Mf = {x ∈ C∗n : Ĉ∗ |= φf (x, Y
X , XU , f)},

Mg = {x ∈ C∗n : Ĉ∗ |= φg(x, Y
X , UY , g)} and Va = {x ∈ C∗n : Ĉ∗ |= φa(x, Y

X , Y, a)}.
By Proposition 2.34 we conclude that Mf ,Mg and Vx are internal.

3 The invariant subspace problem

3.1 Dimension of a vector space

Our goal is to use non-standard analysis on vector spaces, in particular on function
and sequence spaces. However some of the mathematical concepts, which are easily
defined in mathematical language, are quite hard to describe in logical formulas.
One of these concepts is the dimension of a vector space which is tied to a basis of
the vector space. We will only describe a basis for normed vector spaces and for that
we will have to define the span of a set of vectors, and the closure of a set in a vec-
tor space. Before we can define the span of a set, we first need the concept of finitude.

To define finitude we will use cardinality. The finite sets are luckily easily represented
by the sets Kn := {1, ..., n} with n ∈ N. Note that the set

K := {Kn : n ∈ N} ∈ Ĉ.

From there we can define the function: fK : N→ K, n 7→ Kn. We can now express
that a set A has finite cardinality by

fin(A) : (∃n ∈ N)(∃f ∈ KA
n )(ran(f) = fK(n) ∧ inj(f))

and we can express that A has cardinality n for some n ∈ N by:

|A| = n : (∃f ∈ KA
n )(ran(f) = fK(n) ∧ inj(f))

and that A has cardinality ℵ0 by

|A| = ℵ0 : (∃f ∈ NA)(ran(f) = N ∧ inj(f)).

Here inj expresses that f is an injection. We leave that formula as an exercise for
the reader. Note that we have the surjectivity by the fact that ran(f) = fK(n) or
ran(f) = N.
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With this knowledge we can now define finite and infinite sums in a normed vector
space. We will start with the finite sum which we can define by induction. For this
let X ∈ Ĉ be a vector space and we define for every n ∈ N the set Xn = {A ∈
P(X) : |A| ≤ n}. Consider the formula:

(∃Σ ∈ XXn)(Σ(∅) = 0 ∧ ((∀A ∈ Xn)(∀x ∈ A)(Σ(A) = Σ(A \ {x}) + x))).

Note that this evidently holds for n = 0 and that if it holds for an arbitrary N ∈ N
then it also holds for N + 1, hence we have finite sums.

For infinite sums consider that for every vector space X and every n ∈ N we can
logically define the function

sn : XN → X, (xn)n∈N 7→
n∑
i=1

xn.

Then we can define the infinite sum as the limit of sn((xn)). Of course to describe
that a sequence (vn) converges to some v we should use the formula

(∀ε)(∃N ∈ N)(∀n ∈ N>N)(‖vn − v‖ < ε).

To simplify our formulas we will write limn→∞ vn = v instead.
Note that we can find the setXl = {x = (xn)n∈N ∈ XN : (∃c ∈ X)(limn→∞ sn(x) = c}
by

(∃Xl)(x ∈ Xl ↔ (∃c ∈ X)( lim
n→∞

sn(x) = c)).

From this we can define the infinite sums by

(∃Σ ∈ XXl)((∀c ∈ X)(∀x ∈ Xl)Σ(x) = c↔ lim
n→∞

sn(x) = c)).

As a last step we will define the support of a function.

Definition 3.1. Let T : A→ X be a function where X is a vector space. Then the
support of T is the set supp(T ) := {x ∈ A : T (x) 6= 0}. Note that we can express
this in logic formulas.

Note that C is a vector space and therefore we can give the following definition.

Definition 3.2. Let X be a normed vector space and let A ⊂ X. Then the span of
A is defined as

span(A) = {
∑
x∈A

cxx|cx ∈ C, cx 6= 0 for finitely many x}.

Logically we can express this as

(∃B)(x ∈ B ↔ (∃g ∈ CA)(fin(supp(g)) ∧
∑

y∈supp(g)

g(y)y = x)).
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Also the notion of linear independence is now easily obtained for countable sets.

Definition 3.3. Let X be a vector space and let A ⊂ X. Then A is called linearly
independent if

(∀g ∈ CA)((fin(supp(g)) ∧
∑

x∈supp(g)

g(x)x = 0)→ (∀y ∈ A)(g(y) = 0)).

We now have enough to define a basis of finite dimensional vector spaces. For
countably infinite dimensional vector spaces it requires one more step.

Definition 3.4. Let X be a normed vector space and A ⊂ X. Then we call

A := {x ∈ X : (∃(xn)n∈N ∈ AN)( lim
n→∞

xn = x)}

the closure of A in X.

We now call A ⊂ X a basis of a normed vector space X if A is linearly independent
and span(A) = X. All the work we did in this section ensures that we can ex-
press this in our logical language. A consequence of this is that results about finite
dimensional vector spaces in the standard analysis can now be carried over to the
non-standard analysis.

3.2 Non-standard normed spaces

We now have enough knowledge to start working on the proof of our first major
result, solving a case of the invariant subspace problem. The proof however does
require some preliminary results. In particular results concerning l2(C)∗ since l2(C)
is up to isomorphism the only infinite dimensional separable Hilbert space. This will
play an important role in the proof. We can view a sequence as a binary relation
with domain N and co-domain C. In non-standard analysis this gives us domain N∗
and C∗. We will first take a closer look at non-standard infinite sequences.

Theorem 3.5. Let (an)n∈N be a sequence in C. Then (an) converges to a in C if
and only if |a− an| is infinitesimal for all n ∈ N \ N#.

Proof. Suppose limn→∞ an = a. We find for all ε ∈ R>0 an N ∈ N such that for all
n ∈ N>N we have |a− an| < ε. Thus

Ĉ |= (∀n ∈ N>N)(|a− an| < ε).

Taking ε and N constant, this is a closed formula. Hence  Loś’ Theorem gives

Ĉ∗ |= (∀n ∈ N∗>N)(|a− an| < ε).

Hence for all ε ∈ R>0 and n ∈ N∗ \ N# we have |a − an| < ε. Thus |a − an| is
infinitesimal.
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Suppose |a− an| is infinitesimal for all n ∈ N∗ \ N#. Then for all ε ∈ R#
>0 we find

Ĉ∗ |= (∃N ∈ N∗)(∀n ∈ N∗>N)(|a− an| < ε)

since we can take N ∈ N∗ \ N#. By  Loś’ Theorem we find

Ĉ |= (∃N ∈ N)(∀n ∈ N>N)(|a− an| < ε).

Since this holds for all ε ∈ R>0 we have that limn→∞ an = a.

Theorem 3.6. Let a be an internal sequence in C∗ such that a(n) is infinitesimal
for all finite positive integers n. Then there exists an infinite positive integer ω such
that a(n) is infinitesimal for all n < ω.

Proof. Let a ∈ (CN)∗ satisfy the conditions of the theorem. Consider the formula

φ(v, w1, w2) : (v ∈ w1 ∧ ((∃y)((v, y) ∈ w2 ∧ v|y| ≥ 1))).

Note that
{n ∈ N∗ : n|a(n)| ≥ 1} = {n ∈ C∗0 : Ĉ∗ |= φ(n,N∗, a)}.

By Proposition 2.34 {n ∈ N∗ : n|a(n)| ≥ 1} is internal.

If {n ∈ N∗ : n|a(n)| ≥ 1} = ∅ we are done, otherwise {n ∈ N∗ : n|a(n)| ≥ 1} has a
smallest element ω ∈ N∗. This cannot be finite since for all n ∈ N# we have that
a(n) infinitesimal, hence n|a(n)| is infinitesimal.
For all infinite n < ω we find that |a(n)| < 1

n
, since n is infinite, 1

n
is infinitesimal

and thus a(n) is infinitesimal.

Lemma 3.7.

l2(C)∗ = {s ∈ (CN)∗ : ‖s‖22 =
∞∑
n=1

|sn|2 exists }.

Proof. We know that by definition

l2(C) := {s ∈ CN : ‖s‖22 =
∞∑
n=1

|sn|2 exists}.

Now consider the formula

φ(v) : (∃y ∈ R)( lim
n→∞

n∑
i=1

|vi|2 = y)

and note that l2(C) := {s ∈ CN : Ĉ |= φ(s)} By Proposition 2.29.8 we now find that

l2(C)∗ = {s ∈ (CN)∗ : ‖s‖22 =
∞∑
n=1

|sn|2 exists}.
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Definition 3.8. Let X be a normed vector space. We call σ ∈ X∗ norm finite if
‖σ‖ is finite.
We call σ near-standard if there is a σ◦ ∈ X# such that ‖σ − σ◦‖ is infinitesimal;
we call σ◦ the standard part of σ. If σ, τ ∈ X∗ are infinitely close, i.e. ‖σ − τ‖ is
infinitesimal, then we write σ ≈ τ .

Proposition 3.9. Let X be a normed vector space. If σ ∈ X∗ is near-standard,
then its standard part σ◦ ∈ X# is unique.

Proof. Let σ1, σ2 ∈ X# be such that ‖σ− σ1‖ and ‖σ− σ2‖ are infinitesimal. Then

‖σ2 − σ1‖ = ‖σ2 − σ + σ − σ1‖ ≤ ‖σ − σ1‖+ ‖σ − σ2‖.

Hence ‖σ2 − σ1‖ ∈ R# is infinitesimal, thus 0. So σ1 = σ2.

Using Theorem 3.5 on the sequence of partial sums of a σ = (sn) ∈ l2(C) we find:

Corollary 3.10. For all σ = (sn) ∈ l2(C)# and all ω ∈ N∗ \ N# we have that∑∞
n=ω |sn|2 is infinitesimal.

From this we can derive the following.

Theorem 3.11. Let σ = (sn) ∈ l2(C)∗. Then σ is near-standard if and only if σ is
norm finite and

∑∞
n=ω |sn|2 is infinitesimal for all ω ∈ N∗ \ N#.

Proof. Suppose that σ is near-standard. Then

‖σ‖2 = ‖σ − σ◦ + σ◦‖2 ≤ ‖σ − σ◦‖2 + ‖σ◦‖2 < 1 + ‖σ◦‖2.

So σ is norm finite. The other property follows directly from Corollary 3.10.

Suppose that σ is norm finite and
∑∞

n=ω |sn|2 is infinitesimal for all ω ∈ N∗ \ N#.
Then for all n ∈ N∗ |sn| is finite since σ is norm finite. Hence we may consider
σ̂ = (s◦n)n∈N, the sequence of standard parts of sn in CN. Note that for all k ∈ N#

we have that ∣∣∣∣∣
k∑

n=1

|s◦n|2 −
k∑

n=1

|sn|2
∣∣∣∣∣ ≤

k∑
n=1

|(s◦n)2 − s2n|

is infinitesimal. Hence

k∑
i=1

|s◦n|2 ≤
1

2
+

k∑
i=1

|sn|2 ≤ 1 + ‖σ‖22.

Hence
∑k

n=1 |s◦n|2 is a monotonically increasing bounded sequence, thus converges.
So σ̂ ∈ l2(C).
Consider σ′ = σ̂∗ ∈ l2(C)#. Note that for all k ∈ N# we have

∑k
n=1 |sn − s′n|2 is

infinitesimal, hence from Theorem 3.6 we have that there is an ω ∈ N∗ \ N# such
that

∑ω−1
i=1 |sn − s′n|2 is infinitesimal.
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By assumption we know that
∑∞

n=ω |sn|2 is infinitesimal and by Theorem 3.10∑∞
n=ω |s′n|2 is infinitesimal. Hence we find that

‖σ − σ′‖22 =
ω−1∑
n=1

|sn − s′n|2 +
∞∑
n=ω

|sn − s′n|2 ≤
ω−1∑
n=1

|sn − s′n|2 + ((
∞∑
n=ω

|sn|2)
1
2 + (

∞∑
n=ω

|s′n|2)
1
2 )

which is infinitesimal. Hence σ is near-standard.

Theorem 3.12. Let A ⊂ l2(C) be a compact set. Then all σ ∈ A∗ are near-standard.

Proof. Suppose there is a σ = (sn) ∈ A∗ not near-standard.
Claim: There is an r > 0 such that ‖σ − τ‖2 > r for all τ ∈ l2(C).
If σ is not norm finite it is clear, so assume that σ is norm finite. Then by Theorem
3.11 there is an ω ∈ N∗ \ N# such that

∑∞
n=ω |sn|2 > 2r2 for some r ∈ R#

>0. For all
τ = (tn) ∈ l2(C)#,

∑∞
n=ω |tn|2 is infinitesimal. Hence

‖σ − τ‖2 ≥ (
∞∑
n=ω

|sn − tn|2)
1
2

≥ (
∞∑
n=ω

|sn|2)
1
2 − (

∞∑
n=ω

|tn|2)
1
2 > r

which proves our claim.

Since A is compact we however have τ1, ..., τn ∈ A such that

Ĉ |= (∀ξ ∈ A)(‖ξ − τ1‖2 < r ∨ ... ∨ ‖ξ − τn‖2 < r)

hence by  Loś’ Theorem we find

Ĉ |= (∀ξ ∈ A∗)(‖ξ − τ ∗1 ‖2 < r ∨ ... ∨ ‖ξ − τ ∗n‖2 < r).

So in particular we find that there is a j ∈ {1, ..., n} such that ‖σ − τj‖2 < r.
Contradiction.

3.3 Operators in non-standard separable Hilbert spaces

We will now look at linear operators in vector spaces. For now we will focus on
linear operators on l2(C), but we will start a bit more general. Let H,K ∈ Ĉ be
vector spaces over C and let T : H∗ → K∗ be an internal function. Note that

(∀x, y ∈ H)(∀r, s ∈ C)(T (rx+ sy) = rT (x) + sT (y))

is a closed formula for a given T ∈ KH . Let L(K,H) be the set of all linear
operators from H to K, then by  Loś’ Theorem we find that L(H,K)∗ is the set of
all internal non-standard linear operators from H∗ to K∗. We also have L(H,K),
the set of continuous linear operators from H to K. We can prove that continuity
and boundedness are properties that can be caught in a closed formula, and hence
are also equivalent properties in non-standard analysis.
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Proposition 3.13. Let T : K → H be an internal linear operator. T is bounded if
and only if T is continuous. Furthermore L(H,K)∗ is the set of all internal bounded
linear operators from H∗ to K∗.

Proof. Consider the formula

B(T ) : (∀(xn) ∈ HN)(∃x ∈ H)(( lim
n→∞

xn = x)→ ( lim
n→∞

T (xn) = T (x)))

i.e. T is continuous and

C(T ) : (∃C ∈ R>0)(∀x ∈ H)(‖x‖ ≤ C‖T (x)‖)

i.e. T is bounded.

We know that T is bounded if and only if T is continuous, hence

Ĉ |= (∀T ∈ L(H,K))(B(T )↔ C(T )).

Hence by  Loś’ Theorem we have

Ĉ |= (∀T ∈ L(H,K)∗)(B(T )↔ C(T )).

As one might expect, the sums and scalar products of internal linear operators are
again internal linear operators.

Proposition 3.14. Let H,K ∈ Ĉ∗ be internal vector spaces, let S, T ∈ L(H,K)∗

and let λ ∈ C∗. Then S + T and λT are internal.

Proof. Let n ∈ N be such that H,K ∈ C∗n. Consider:

φ+(x,w1, w2, w3, w4) : (∃y ∈ w3)(∃z ∈ w4)((y, z) = x ∧ z = w1(y) + w2(y))

and

φ·(x,w1, w2, w3, w4) : (∃y ∈ w3)(∃z ∈ w4)((y, z) = x ∧ z = w1 · w2(y))

and note that S + T = {x ∈ C∗n+2 : Ĉ |= φ+(x, S, T,H∗, K∗)} and

λT = {x ∈ C∗n+2 : Ĉ |= φ+(x, λ, T,H∗, K∗)}. Thus by Proposition 2.34 we are
done.

We will also consider some of the maps on the vector space of operators between
two vector spaces.

Proposition 3.15. Let V,W ∈ Ĉ be internal vector spaces and let R ∈ L(V,W )∗.
Then f : L(V,W )∗ → L(V,W )∗, S 7→ S +R is an internal function.
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Proof. Let n ∈ N be such that L(V,W )∗, L(V,W )∗ ∈ C∗n and consider

φ(x,w1, w2) : (∃y ∈ w1)(∃z ∈ w1)((y, z) = x ∧ z = y + w2).

Finally note that f = {x ∈ C∗n+2 : Ĉ |= φ(x, L(V,W )∗, R)}. Thus by Proposition
2.34 we are done.

We will now take a closer look at operators in l2(C)∗. For an operator on T on l2(C)
we have a matrix representation T = (ajk)j,k∈N which satisfies

∞∑
k=1

|ajk|2 <∞

and
∞∑
j=1

|ajk|2 <∞.

For T ∗ we can extend this matrix representation and from Theorem 3.10 it follows
that, for all finite j and ω ∈ N∗ \ N#,

∑∞
k=ω |ajk|2 is infinitesimal.

Theorem 3.16. Let T be a compact linear operator on l2(C). Then T ∗ maps norm
finite points to near-standard points.

Proof. Let σ a norm finite point and let r ∈ R>0 be such that ‖σ‖2 < r. Then
σ ∈ Br[0]∗, where Br[0]∗ is the closed ball of radius r in l2(C)∗. Since T is compact,

A := T (Br[0]) is compact. Hence T (σ) ∈ T (Br[0])∗ ⊂ T (Br[0])
∗
. By Theorem 3.12

we find that T (σ) is near-standard.

Theorem 3.17. Let T = (ajk) be a compact linear operator on l2(C), then for all
j ∈ N∗ we have that ajk is infinitesimal for all k ∈ N∗ \ N#.

Proof. For finite j it this follows directly from the fact that
∑∞

j=k |ajk|2 is infinites-
imal. For infinite j consider ek = (sn) defined by sn = 0 for all n 6= k and sk = 1,
i.e. the kth unit vector. Note that ‖σ‖2 = 1, hence Tσ = (tj) is near-standard by
Theorem 3.16. Theorem 3.11 gives us that for all j ∈ N∗ \ N#, tj is infinitesimal.
Since tj =

∑∞
n=1 ajnsn = ajk we find that ajk is infinitesimal.

Definition 3.18. We call T = (ajk) an operator on l2(C) almost superdiagonal if
ajk = 0 for all j > k + 1.

It is important to note that being almost superdiagonal depends on the basis.

Theorem 3.19. Let T be a bounded linear operator on l2(C) which is almost super-
diagonal. Let m ≥ 1 and let

p(z) = c0 + c1z + ...+ cmz
m

be a polynomial of degree m with c1, ..., cm ∈ C such that p(T ) is compact. Then
there is an ω ∈ N∗ \ N# such that aω+1,ω is infinitesimal.
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Proof. Let n ∈ N# and let T n = (djk).
Claim: For all h ∈ N∗ we find that dh+n,h = ah+1,hah+2,h+1...ah+n,h+n−1 and for all
l > n we have dh+l,h = 0.
We will prove this by induction. Note that since T is almost superdiagonal it holds
by definition for n = 1. Let N ∈ N#

≥2 and suppose the claim holds for all n < N . Let
TN−1 = (fjk) and TN = (gjk). Since TN = TN−1T for all h ∈ N∗, we can compute

gh+N,h =
∞∑
i=1

fh+N,iai,h = fh+N,h+1ah+1,h = ah+1,hah+2,h+1...ah+N,h+N−1

and

gh+l,h =
∞∑
i=1

fh+l,iai,h = 0 (∀l > N)

since ai,h = 0 for all i > h + 1, fh+N,i = 0 for all i < h + 1 and fh+l,i = 0 for all
i < h+ l −N + 1 by assumption. This proves our claim.

Now let p(T ) = (bjk). Then we find that bh+m,h = cmah+1,hah+2,h+1...ah+m,h+m−1 for
all h ∈ N∗. In particular this holds for h ∈ N∗ \N#. Since p(T ) is compact we then
find that bh+m,h is infinitesimal by Theorem 3.17. Since cm is standard and p is of
degree m we find that, for some j ∈ {1, ...,m}, ah+j+1,h+j is infinitesimal.

A well known class of operators is the class of projection operators. We will inves-
tigate projection operators in l2(C)∗ for which we recall the following definition.

Definition 3.20. Let E ⊂ l2(C)∗ be an internal closed linear subspace. Then
P : l2(C)∗ → l2(C)∗ is called an orthogonal projection on E if P |E = idE, P 2 = P
and ran(P )⊥ = ker(P ).

Note that every projection operator has norm 1 and thus is continuous.
Since l2(C) is a Hilbert space we know that we can write l2(C) as the direct sum of
a a linear closed subspace E and its orthogonal complement E⊥. The same holds
for l2(C)∗.

Proposition 3.21. Let E ⊂ l2(C)∗ be an internal closed linear subspace of l2(C)∗.
Then there exists a unique closed linear internal subspace E⊥ such that
l2(C)∗ = E ⊕ E⊥.

Proof. First we define the following formula:

closed(E) : (∀(xn) ∈ EN)(∃x ∈ l2(C))( lim
n→∞

xn = x→ x ∈ E)

i.e. E is closed and

linear(E) : (∀x, y ∈ E)(∀λ ∈ C)(x+ y ∈ E ∧ λx ∈ E)

i.e. E is closed under sums and scalar multiplication. Then from standard analysis
we know that:

Ĉ |=(∀E ⊂ l2(C))(linear(E) ∧ closed(E)→ (∃!F )((∀x ∈ E)(∀y ∈ F )

(〈x, y〉 = 0) ∧ linear(F ) ∧ closed(F ) ∧ (∀z ∈ l2(C))(∃!x ∈ E)(∃!y ∈ F )(x+ y = z))).

By  Loś’ Theorem we are done.
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Note that since E⊥ is unique we can define a function from the closed linear internal
subspaces of l2(C)∗ to their orthogonal complement, and thus we may use this in
formulas. This also gives, as in standard analysis, that the orthogonal projection on
a closed linear subspace is unique. Hence we find an internal function from closed
internal linear subspaces of l2(C)∗ to the orthogonal projections. From this we now
obtain the following result.

Proposition 3.22. Let E ⊂ l2(C)∗ be an internal closed linear subspace and let P
be the orthogonal projection on E.Then P is an internal function.

Proof. Let n ∈ N be such that (l2(C)× l2(C))∗ ∈ C∗n and consider

φ(x,w1, w2) : (∃y ∈ w1)(∃z ∈ w2)(∃w ∈ w⊥2 )(w + z = y).

Note that P = {x ∈ C∗n : Ĉ∗ |= φ(x, l2(C)∗, E)}. By Proposition 2.34 P is internal.

As we could look at the standard part of numbers and sequences, we can also define
a standard part of sets of normed vector spaces.

Definition 3.23. Let H ∈ Ĉ be a normed vector space and let E ⊂ H∗ be an
internal subset. We call E◦ := {σ ∈ H : ∃σ′ ∈ E such that ‖σ−σ′‖ is infinitesimal}
the standard part of E.

Clearly the standard part is unique. Now let E be an internal closed linear subspace
of H∗, where H is a normed space in Ĉ. Then for all τ ∈ E we have that ‖σ− τ‖ ≥
‖σ − PEσ‖ since PE is an orthogonal projection. From this it follows that σ ∈ E◦
if and only if ‖σ − PEσ‖ is infinitesimal. Clearly if σ ∈ E is near-standard, then
σ◦ ∈ E◦.

Theorem 3.24. If E is a closed linear internal subspace of l2(C)∗, then E◦ is a
closed linear subspace of l2(C).

Proof. Let σ1, σ2 ∈ E◦ and τ1, τ2 ∈ E be such that ‖σ1 − τ1‖ and ‖σ2 − τ2‖ are
infinitesimal. Then τ1 + τ2 and

‖(σ1 + σ2)− (τ1 + τ2)‖ ≤ ‖σ1 − τ1‖+ ‖σ2 − τ2‖

gives that ‖(σ1 +σ2)− (τ1 + τ2)‖ is infinitesimal. So σ1 +σ2 ∈ E◦. Also for standard
λ ∈ R# we have ‖λσ1 − λτ1‖ = λ‖σ1 − τ1‖. Hence ‖λσ1 − λτ1‖ is infinitesimal, and
since λτ1 ∈ E it follows that λσ1 ∈ E◦. Thus E◦ is a linear subspace.

To show that E◦is closed, let (σn)n∈N be a sequence in E◦ converging to some
σ ∈ l2(C). Consider (σn)∗ the non-standard extension in l2(C)∗ and note that
‖σn−PEσn‖ is infinitesimal for all finite n. Then Theorem 3.6 gives that there is an
ω ∈ N∗ \ N# such that ‖σn − PEσn‖ is infinitesimal for all n < ω. Moreover, since
limn→∞ σn = σ, Theorem 3.5 gives that ‖σn−σ‖ is infinitesimal for all n ∈ N∗ \N#.
Therefore, for all n ∈ N∗ \ N# with n < ω, we find

‖σ − Peσn‖ ≤ ‖σ − σn‖+ ‖σn − PEσn‖,
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which gives us that ‖σ − Peσn‖ is infinitesimal for such n. Since PEσn ∈ E we
conclude that σ ∈ E◦, thus E◦ is closed.

In l2(C)∗ we can find some natural subspaces for n ∈ N∗, namely:

Hn := {(sn) ∈ l2(C) : sn = 0 for all n > ω}.

We will denote its corresponding orthogonal projection by Pn, or, if there is no
confusion, simply by P .
Note that for ω ∈ N∗ \ N# we have that for all σ ∈ l2(C) we have

‖σ − Pωσ‖ = (
∑∞

n=ω+1 |sn|2)
1
2 , which is infinitesimal by Theorem 3.10.

For a bounded operator T on l2(C), we denote T ′ = PωTPω and Tω = T ′|Hω . Note
that ‖T ′‖ = ‖Pω‖2‖T‖ ≤ ‖T‖ and hence ‖Tω‖ ≤ ‖T‖.

Theorem 3.25. Let ω ∈ N∗ \N# and let E be an internal closed linear subspace of
Hω that is invariant for Tω. Then E◦ is invariant for T .

Proof. Let σ ∈ E◦ and let τ ∈ E be such that τ ◦ = σ. Then PTτ = Tωτ ∈ E, hence
Tσ ∈ E◦ if ‖Tσ − PTτ‖ is infinitesimal. Consider:

‖Tσ − PTτ‖ = ‖Tσ − PTσ + PT (σ − τ)‖
≤ ‖Tσ − PTσ‖+ ‖P‖‖T‖‖σ − τ‖

Since ‖T‖ and ‖P‖ are finite and ‖σ−τ‖ is infinitesimal we have that ‖P‖‖T‖‖σ−τ‖
is infinitesimal. Also since Tσ ∈ l2(C) we find that ‖Tσ − PTσ‖ is infinitesimal.
Hence ‖Tσ − PTτ‖ is infinitesimal.

We will now take a closer look at the dimension of subspaces of Hω, as described in
Section 3.1.

Theorem 3.26. Let ω ∈ N∗\N# and E1 and E2 be admissible closed linear subspaces
of Hω such that E1 ⊂ E2 and dim(E2) = dim(E1 + 1). Then E◦1 ⊂ E◦2 and any two
points of E◦2 are linearly dependent modulo E◦1 .

Note that in the non-standard case we can talk about sums of dimension since Hω

has finite dimension, and hence E1 and E2 have finite dimension. In the standard
case we have to be more careful since H◦ω = H, and thus E◦1 and E◦2 might have
infinite dimension.

Proof. Note that since E1 ⊂ E2 evidently E◦1 ⊂ E◦2 . For the other statement suppose
σ1, σ2 ∈ E◦2 are linearly independent modulo E◦1 . Let τ1, τ2 ∈ E2 points infinitely
close to σ1, σ2 respectively. Note that τ1, τ2 6∈ E1, since otherwise σ1 ≡ 0 mod E◦1 or
σ2 ≡ 0 mod E◦1 . Since dim(E2) = dim(E1) + 1 we now find λ ∈ C∗ and τ ∈ E∗1 such
that

τ2 = λτ1 + τ.

Note that λ is not infinitesimal, since then σ2 = τ ◦2 = τ ◦ ∈ E◦1 . Suppose λ were
infinitely large. Then 1

λ
would be infinitesimal, hence

σ1 = τ ◦1 = (
1

λ
τ2 +

1

λ
τ)◦ = (

1

λ
τ)◦ ∈ E◦1 .
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Thus we find that λ has non-zero standard part.
Claim: σ2 − λ◦σ1 ∈ E1.
Let σ = σ2 − λ◦σ1. Consider

‖τ − σ‖ = ‖τ2 − λτ1 − σ2 + λ◦σ1‖
≤ ‖τ2 − σ2‖+ |λ|‖τ1 − σ1‖+ |λ− λ◦|‖σ1‖.

Hence ‖τ − σ‖ is infinitesimal. So τ has a standard part which naturally belongs to
E◦1 .

3.4 The Theorem of Bernstein-Robinson

The invariant subspace problem is a partially open problem in Functional Analysis.
The question is whether for a bounded operator T ∈ H, where H is a Banach space
of dimension larger than one, there exists a non-trivial closed linear T -invariant
subspace of H. Though P.H. Enflo gave a counter-example for H a Banach space in
1987, the problem remains open for Hilbert spaces. The problem originated from a
problem raised by P.R. Halmos in 1963 in [3], in which it was credited to K.T. Smith.
A generalization of the problem was solved three years later by A.R. Bernstein and
A. Robinson in [1] using non-standard analysis. In the same journal, directly after
the proof of Bernstein and Robinson, Halmos gave a proof for his own problem using
only standard methods [4], though clearly inspired by the proof of Bernstein and
Robinson which he reviewed for the journal. We have done most of the work already
in the previous sections, but here we will give the main proof of the theorem.

Theorem 3.27 (Bernstein-Robinson). Let T be a bounded linear operator on an
infinite-dimensional Hilbert space H over the complex numbers and let p(z) 6= 0 be
a polynomial with complex coefficients such that p(T ) is a compact operator. Then
there exists a closed subspace of H, not equal to H or {0}, which is invariant under
T .

Proof. The proof relies on the fact that if H is finite dimensional, we can find a
chain of closed T -invariant subspace of H

{0} = E0 ⊂ E1 ⊂ ... ⊂ En = H

where Ei is i-dimensional. This can be achieved by looking at the eigenspaces. Our
finite-dimensional space will be (l2(C)∗)ω where ω ∈ N∗ \ N#. First, however, we
must prove that we only have to consider the case H = l2(C).

Claim: If there exists a non-zero σ ∈ H such that Aσ := {σ, Tσ, T 2σ, ...} does not
span H, then span(Aσ) is a non-trivial T -invariant closed subspace.
Clearly span(A) is a non-trivial closed subspace. So we have to prove that it is
T -invariant. For this consider x ∈ span(A). We can find λi ∈ C for i ∈ N such that

x =
∞∑
i=0

λT iσ.
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Hence, by linearity and continuity of T ,

Tx =
∞∑
i=0

λT i+1σ ∈ span(A).

Hence span(A) is T -invariant.

Now we can use that if H is not separable it does not have a countable basis, hence
for all σ ∈ H we find that Aσ does not span H since Aσ is countable. Therefore we
only have to consider infinite-dimensional separable Hilbert spaces which we know
to be isomorphic to l2(C).

With our claim it now is easy to see that if there is a σ such that Aσ is linearly
dependent we can find a non-trivial closed T -invariant subspace. Therefore, from
now on we will assume that H = l2(C), ‖σ‖ = 1 and Aσ spans H and linearly
independent. We can apply the Gram-Schmidt method to Aσ to replace it with an
orthonormal set B = {σ = η0, η1, η2, ...}, and since Aσ is linearly independent B is
an orthonormal basis of H. Also note that span{σ, Tσ, ..., T nσ} = span{η0, ..., ηn},
therefore we find that for all n ∈ N we have that

Tηn ∈ span{σ, Tσ, ..., T nσ} = span{η0, ..., ηn},

thus T is super-diagonal with respect to basis B. We can represent T in matrix
form by taking T = (ajk). Now passing to the realm of non-standard analysis by
Theorem 3.19 we find that there exist a ω ∈ N∗\N# such that aω+1,ω is infinitesimal.
Keep this ω fixed and consider Hω, P its orthogonal projection and T ′ = PTP as
seen before in section 3.3.

Let ξ = (xi) ∈ H∗ be norm-finite and consider:

(TP − T ′)ξ = (I − P )TPξ =: ζ = (zn)

By the super-diagonality of T we find that zn = 0 for all n 6= ω + 1 and
zω+1 = aω+1,ωxω. Hence ‖ζ‖ ≤ |aω+1,ω|‖ξ‖, i.e. ζ is infinitesimal. Thus we have that
TPξ ≈ T ′ξ where by continuity of T and P both TPξ and T ′ξ are norm-finite.

Claim: T rPξ ≈ (T ′)rξ for al norm-finite ξ and all r ∈ N and both are norm-finite.
We just proved the case r = 1. Let R ∈ N>1 be arbitrary and suppose the claim
holds for all r < R and all norm-finite ξ. Then

TRPξ ≈ T (T ′)R−1ξ = TP (T ′)R−1ξ ≈ T ′(T ′)R−1ξ = (T ′)Rξ,

and again by the continuity of T and P both are norm finite. Thus by induction
the claim holds.

Now applying our claim multiple times we see that, for all norm-finite ξ ∈ Hω and
polynomial q, we have

q(T )Pξ ≈ q(T ′).
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Let Tω = T ′|Hω . Since Hω is ‘finite dimensional’ we can find a chain of closed
Tω-invariant internal subspaces

{0} = E0 ⊂ E1 ⊂ . . . ⊂ Eω = Hω

where Ei is i-dimensional for all 0 ≤ i ≤ ω. Note that Ei is also a closed subspace
of H∗. Let Pi be the orthogonal projection from H∗ onto Ei. Let p(z) be as in
Theorem 3.26 and let ξ ∈ H, ξ 6= 0. Then p(ξ) 6= 0 since Aξ is finitely linear
independent by assumption. We choose ξ ∈ H with ‖ξ‖ = 1. As we saw earlier
Pξ ≈ ξ, so p(T )ξ ≈ p(T )Pξ ≈ p(T ′)ξ, hence p(T ′)ξ is not infinitesimal, i.e. there is
some 0 < r ∈ R# such that ‖p(T ′)ξ‖ > r. For all 0 ≤ i ≤ ω we define

ri = ‖p(T ′)ξ − p(T ′)Piξ‖.

Note that ri ≤ ‖p(T ′)‖‖ξ − Piξ‖. Also we have r0 = ‖p(T ′)ξ‖ hence r0 > r and
‖ξ − Pωξ‖ is infinitesimal. Thus rω <

r
2
.

Claim: There exists a λ ∈ N∗≤ω such that r
2
≤ rλ−1 and rλ <

r
2
.

Clearly (ri)0≤i≤ω is a decreasing sequence so the obvious candidate is the smallest i
such that ri ≥ r

2
. Such an i exists since N∗ is well-ordered if {i ∈ N∗ : ri ≥ r

2
} is an

internal set.
For this note that we can view the chain E0 ⊂ . . . ⊂ Eω as an internal function
f with domain dom(f) = {0, . . . , ω} and f(i) = Ei. We know there is an internal
function from the closed linear subspaces to the corresponding orthogonal projec-
tions, hence by Proposition 2.37 we find an internal function f̂ given by f̂(i) = Pi
for all 0 ≤ i ≤ ω.
Now by Proposition 2.38 and 3.15 we find that f̃ given by f̃(i) = ‖p(T ′)ξ −
p(T ′)Piξ‖ = ri for all 0 ≤ i ≤ ω is an internal function. Now by an easy appli-
cation of Proposition 2.34 we find that {i ∈ N∗ : ri ≥ r

2
} is indeed internal, thus

proving our claim.

Now let λ ∈ N∗≤ω be such that r
2
≤ rλ−1 and rλ <

r
2
. We will prove that either

E◦λ−1 or E◦λ is a T -invariant non-trivial closed linear subspace of H. Note that, by
Theorem 3.24 and 3.25, E◦λ−1 and E◦λ are T -invariant closed linear subspaces of H.
So left to show is that one of them is non-trivial.
For this note that E◦λ−1 6= H. If not, then ξ ∈ E◦λ−1, so ‖ξ − Pλ−1ξ‖ would be
infinitesimal. Thus r

2
≤ rλ−1 ≤ ‖p(T ′)‖‖ξ − Pλ−1ξ‖ is infinitesimal which is a

contradiction.
Also note that E◦λ 6= {0}. To see this consider η = p(T ′)Pλξ. Note that η ∈ Eλ since
Pλξ ∈ Eλ and Eλ is p(Tω)-invariant, thus p(T ′)-invariant. Also since Pλξ ∈ Hω we
find

η = p(T ′)Pλξ ≈ p(T )Pλξ.

Here p(T )Pλξ is near-standard by Theorem 3.16, since Pλξ is norm finite and p(T )
is compact. Hence η has a standard part η◦. Suppose η◦ = 0, then η would be
infinitesimal. And thus

rλ ≥ ‖P (T ′)ξ‖ − ‖p(T ′)Pλξ‖ > r − ‖η‖,
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which contradicts that r
2
> rλ. Hence indeed E◦λ 6= {0}. So we find the only way for

both of them to be trivial is if Eλ−1 = {0} and Eλ = H. However, by Theorem 3.26
their dimension cannot differ more than one, which proves the theorem.

Seven years after this proof, in 1973, Lomonosov proved the even stronger Theorem
which said that for every non-trivial compact operator T there exist a non-trivial
closed linear subspace which is S-invariant for every operator S which commutes
with T . [7, p. 269] This is a generalization of the Theorem of Bernstein and Robinson
since every operator commutes with a polynomial of itself.

4 The Hahn-Banach Theorem

4.1 Non-standard maps

Non-standard analysis has another very strong tool at its disposal. For this we will
take a deeper dive into logics and take a closer look at non-standard maps. From
now on we will consider more abstract models and filters again.
Let M̂ be a superstructure of some model M and let ∗ : M̂ → M̂∗, x 7→ [(x)] be a
non-standard map.

Definition 4.1. We call ∗ an κ-enlargement for some cardinal number κ if, for all
non-empty systems A consisting of sets A ∈ M̂ with the finite intersection property
(i.e. all finite intersections are non-empty) and cardinality at most κ, we have that⋂

A# =
⋂
{A∗ : A ∈ A} 6= ∅.

We call ∗ an enlargement if ∗ is a κ-enlargement for every κ.

Note that A is not per definition an element of M̂ . For example

A := {Cn : n ∈ N} 6∈ Ĉ.

Luckily we may ignore such systems.

Lemma 4.2. To prove that ∗ is a κ-enlargement one only has to consider systems
A ∈ M̂ .

Proof. To see this, take A0 ∈ A and consider

A0 := {A ∩ A0 : A ∈ A}.

Evidently A0 inherits the finite intersection property, has cardinality less than the
cardinality of A and is non-empty. Since

∅ 6=
⋂
A#

0 =
⋂
A# ∩ A0 =

⋂
A#

we find that ∗ is a κ-enlargement if
⋂
A# 6= ∅ for all A ∈ M̂ of cardinality less than

κ with the finite intersection property.
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Enlargement are very useful due to their connection to binary relations.

Definition 4.3. We call a binary relation φ satisfied by b ∈ ran(φ) on A ⊂ dom(φ)
if for all a ∈ A we have that (a, b) ∈ φ.
We call φ concurrent on A ⊂ dom(φ) if for all finite A0 ⊂ A there is some b ∈ ran(φ)
that satisfies φ on A0. If φ is concurrent on dom(φ) we just call φ concurrent.

Note the similarity between a concurrent binary relation and the finite intersection
property. This is something we can utilize.

Theorem 4.4. The following are equivalent:

(i) ∗ is a κ-enlargement.

(ii) For any concurrent binary relation φ ∈ M̂ with |dom(φ)| ≤ |κ| we have that
dom(φ)# is satisfied by some b ∈ ran(φ)∗.

(iii) For any A ∈ M̂ of cardinality at most κ there is a ∗-finite B ∈ M̂∗ (i.e. B has
cardinality {1, ..., ω} for some ω ∈ N∗) such that A# ⊂ B ⊂ A∗.

Proof. We start with proving (i)⇒(ii). So assume (i) and let φ ∈ M̂ be a concurrent
binary relation with domain of cardinality at most κ. Let, for all d ∈ dom(φ),

Ad := {y ∈ ran(φ) : (d, y) ∈ φ},

and let A = {Ad : d ∈ dom(φ)}. Clearly A has cardinality at most κ and it has
the finite intersection property since φ is concurrent. Hence

⋂
A# 6= ∅, so there is a

b ∈
⋂
A# ⊂ ran(φ)∗ such that (d, b) ∈ φ for all d ∈ dom(φ), i.e. b satisfies dom(φ)#.

We will now prove (ii)⇒(iii), so assume (ii) and let A ∈ M̂ be of cardinality at most
κ. We define the binary relation φ ⊂ A× P(A) by

φ := {(a, b) : a ∈ b ∧ b is finite}.

Clearly φ is concurrent, hence there is a b ∈ P(A)∗ satisfying φ∗ on A#.
Finally we prove (iii)⇒(i). Thus assume (iii) and let A be a non-empty system of
entities A ∈ M̂ of cardinality at most κ and with the finite intersection property.
We may assume by Lemma 4.2 that A ∈ M̂ . Thus there exists a ∗-finite B such
that A# ⊂ B ⊂ A∗. Since A∗ has the ∗-finite intersection property we find that⋂
A# ⊃

⋂
B 6= ∅.

We will see an application of this theorem in a proof of the Hahn-Banach Theorem.
Before we do this we first have to find out whether these enlargements actually exist.

Definition 4.5. Let λ be a cardinal number. We call a filter F of a set J λ-adequate
if for each non-empty family A of subsets of λ with the finite intersection property
there exists a map f : J → λ such that for each A ∈ A there exists an F ∈ F with
f(F ) ⊂ A.

Theorem 4.6. For each cardinal number λ there exists a λ-adequate ultrafilter F
for an appropriate set J .
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Proof. Let J be the set of all finite collections of subsets of λ. For each A ⊂ λ we
define

FA = {j ∈ J : A ∈ j}.

Then F0 := {FA : A ⊂ λ} has the finite intersection property. Indeed if we consider
A1, ..., An ⊂ λ then j = {A1, ..., An} is in the intersection

⋂n
i=1 FAi

. We then find
that

F̃0 := {X : there exists a finite subset B ⊂ F0 such that
⋂
B ⊂ X)}

is a filter which we can extend to an ultrafilter F . We will now prove that F is
λ-adequate. For this let A be a non-empty family of subsets of λ with the finite
intersection property. We define

JA := {j ∈ J : Bj,A :=
⋂

A∈j∩A

A 6= ∅}

and we define, using the axiom of choice, f : J → λ by f(j) ∈ Bj,A if j ∈ JA
and f(j) arbitrarily otherwise. This function works. To see this let A ∈ A. Then
f(FA) ⊂ A since, for all j ∈ FA we have that A ∈ j, thus Bj,A 6= ∅ since A has the
finite intersection property. Hence f(j) ∈ Bj ⊂ A. Thus F is λ-adequate.

Theorem 4.7. If F is an M̂-adequate filter, then the corresponding map ∗ is an
enlargement.

Proof. Let A be a system of sets A ∈ M̂ with the finite intersection property. Note
that A has at most cardinality M̂ . We have to prove that there exists some b ∈ Ŝ∗
such that b ∈ A∗ for all A ∈ A. Recall, if we write b := [(bj)j∈J ], that b ∈ A∗ if and
only if

{j ∈ J : bj ∈ A} ∈ F .

Since F is M̂ -adequate, there exists a map f : J → M̂ such that for each A ∈ A
there exists an F ∈ F such that f(F ) ⊂ A. So if we take b = [(f(j))j∈J ] we find
that that for all A ∈ A there exists an F ∈ F such that f(F ) ⊂ A. Hence

F ⊂ {j ∈ J : f(j) ∈ A}.

By definition of filters this means that {j ∈ J : f(j) ∈ A} ∈ F and hence b ∈ A∗.

4.2 The Hahn-Banach Theorem

We will now go ahead and prove the Hahn-Banach theorem using the theory of the
previous sections.

Theorem 4.8 (Hahn-Banach). Let X be a normed vector space over K, where K
is R or C, let Y ⊂ X be a linear subspace and let T : Y → K be a bounded linear
functional. Then there exists a linear functional S : X → K such that S|Y = T and
‖S‖ = ‖T‖.
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Before proving the theorem we will prove that we can extend T in a finite way.

Lemma 4.9. Let X be a normed vector space over R, Y ⊂ X a linear subspace,
let T : Y → R be a bounded linear functional and let x1, ..., xn be elements of
X \ Y . Then there exists a linear functional S : span(x1, ..., xn, Y ) → C such that
‖S‖ = ‖T‖ and SY = T .

Proof. Note that, since we can extend T one element at a time, it is enough to prove
this for n = 1. So let x ∈ X \ Y . Note that x is linear independent of Y , thus we
can write each u ∈ span(x, Y ) uniquely as u = y + λx where λ ∈ R and y ∈ Y .
Since the only way of extending T linearly is by putting S(u) = T (y) + λr we only
have to find an appropriate r ∈ R, i.e. an r ∈ R such that ‖S‖ = ‖T‖. So we have
to prove there exists an r such that |T (y) + λr| ≤ ‖T‖‖y + λx‖ for all y ∈ Y and
λ ∈ R. Since λ = 0 is trivial we can divide by λ or just assume that λ = 1. Hence
we have to prove there exists a r such that

−‖T‖‖y + x‖ − T (y) ≤ r ≤ ‖T‖‖y + x‖ − T (y)

for all y ∈ Y . To see that such an r exists, consider that, for all y, z ∈ Y , we have

T (z)− T (y) = T (z − y) ≤ ‖T‖‖z − y‖ = ‖T‖‖z + x− (x+ y)‖
≤ ‖T‖(‖z + x‖+ ‖x+ y‖),

from which we find that

sup
y∈Y
−‖T‖‖y + x‖ − T (y) ≤ inf

z∈Y
‖T‖‖z + x‖ − T (z).

Hence we can find an r between the two values, proving our lemma.

We will also use a result on suprema.

Proposition 4.10. Let r ∈ R# and A ⊂ R∗ such that for all x ∈ A we have x < r
or x ≈ r. Then supx∈A x < r or supx∈A x ≈ r.

Proof. Suppose supx∈A x > r and supx∈A x 6≈ r. Then there exists

y ∈ (r + ε, supx∈A x) ∩A for some ε ∈ R#
>0 which contradicts with the assumptions.

Proof of the theorem of Hahn-Banach. We will now prove the Hahn-Banach Theo-
rem in two stages. First we will give a non-standard proof for the case K = R and
with that result we will prove Hahn-Banach for the case K = C.
So let T : Y → R a linear functional on Y ⊂ X. We define

F(X,R) := {S ⊂ X × R : S is a map},

and consider the binary relation

φ = {(x, y) ∈ X × F(X,R) : dom(y) is a linear subspace ∧
x ∈ dom(y) ∧ y is a linear functional ∧ T ⊂ y ∧ ‖y‖ ≤ ‖T‖}.
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Note that this relation is concurrent by Lemma 4.9, hence we can apply Theorem
4.4 to find a non-standard linear functional S ∈ F(X,R)∗ such that S satisfies φ∗

on X#, i.e. X# ⊂ dom(S), T ∗ ⊂ S and ‖S‖ ≤ ‖T‖. From this we find that for all
x ∈ X# we have

|S(x)| ≤ ‖S‖‖x‖ ≤ ‖T‖‖x‖

which is finite, so S(x)◦ exists for all x ∈ X#.
Claim: U : X → R, x 7→ S(x)◦ is a linear functional, ‖U‖ = ‖T‖ and T ⊂ U .
Since S(x) = T (x) for all x ∈ Y we find that U(x) = S(x)◦ = T (x) for all x ∈ Y so
T ⊂ U .
Also note that for all x, y ∈ X and λ ∈ R we have that

U(x+ y) = S(x+ y)◦ = (S(x) + S(y))◦ = S(x)◦ + S(y)◦ = U(x) + U(y)

and
U(λx) = S(λx)◦ = λ◦S(x)◦ = λU(x, )

so U is linear. Finally note that |U(x)| ≈ |S(x)|. Then by Proposition 4.10 it holds
that

sup
x∈X,‖x‖≤1

|U(x)| ≤ sup
x∈X∗,‖x‖≤1

|S(x)| = ‖S‖.

Hence ‖U‖ = ‖T‖, proving the Hahn-Banach Theorem for K = R.
Now suppose K = C. By considering only multiplication by real scalars we can view
X as a real vector space. We define TR : Y → R, x 7→ Re(T (x)). Then we can extend
TR on the entire space to a real functional S. Now define U(x) = S(x) − iS(ix).
Since S is linear and U(ix) = S(ix)− iS(−x) = S(ix) + iS(x) = iU(x) we find that
U is linear. Finally we look at the norm of U an we find that

‖U‖ = sup
x∈X,‖x‖≤1

|U(x)| = sup
x∈X,‖x‖=1

sup
|λ|=1

Re(λU(x)) =

sup
x∈X,‖x‖=1

sup
|λ|=1

Re(U(λx)) ≤ sup
x∈X,‖x‖=1

|SR(x)| = ‖S‖ = ‖TR‖ = ‖T‖.

5 The Theorem of Hille-Yosida

5.1 Non-standard topology and limits

We will now move on to study non-standard analysis and semigroups. For this we
will again assume that F is a non-principal ultrafilter over N. Before we can start on
semigroups, we will need some results on non-standard topology and non-standard
limits. For convenience we will again assume that F is an ultafilter over N containing
the Fréchet filter.

Proposition 5.1. Let X be a normed vector space over K, where K is R or C.
Then C ⊂ X is closed if and only if C = {x ∈ X# : (∃y ∈ C∗)(x ≈ y)}.
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Proof. Suppose C is closed. Let x ∈ X# and suppose there exists a y ∈ C∗ such
that x ≈ y. Let y be represented by [(yn)]. Since for all ε ∈ R# we have ‖x− y‖ < ε
and y ∈ C we find that

Fε = {n ∈ N : yn ∈ C ∧ ‖x− yn‖ < ε} ∈ F .

Hence we can construct a sequence (zn) in C converging to x by picking zn = ym
where m = min(F 1

n
). Thus, since C is closed, x ∈ C.

Now suppose C = {x ∈ X# : (∃y ∈ C∗)(x ≈ y)}. Let (yn) be a sequence in C
converging to some x ∈ X.
Claim: y := [(yn)] ∈ C∗ is infinitely close to x.
To see this let ε ∈ R>0 and let N ∈ N be such that for all n > N we have ‖x−yn‖ < ε.
Hence

Fε = {n ∈ N : ‖x− yn‖ < ε} ∈ F

since it has a finite complement. So ‖x− y‖ < ε. Because this holds for all ε ∈ R#
>0

we find that y ≈ x and clearly y ∈ C∗. Hence x ∈ C and so C is closed.

Proposition 5.2. Let X be a normed space and let A ⊂ X. Then x ∈ A if and
only if there exists a y ∈ A∗ such that y ≈ x.

Proof. From Proposition 5.1 we know that

A = {x ∈ X# : (∃y ∈ A∗)(x ≈ y)}.

By  Lośwe have

(y ∈ A∗)↔ ((∃z = (zn) ∈ (AN)∗)( lim
n→∞

zn = y)).

Thus there exists some ω ∈ N∗ such that y ≈ zω is infinitesimal. Since zω ∈ A∗ we
find

A = {x ∈ X# : (∃y ∈ A∗)(x ≈ y)}.

Corollary 5.3. Let X be a normed space and let A ⊂ B ⊂ X, with B closed. Then
A is dense in B if and only if for all x ∈ B there exists a y ∈ A∗such that y ≈ x.

This is a direct consequence of Proposition 5.2.

Proposition 5.4. Let X be a normed vector space, let R ⊂ R and let T : R→ X be
continuous. Then, for all y ∈ R for which there is a δ > 0 such that (y, y + δ) ⊂ R,
we have that limx↓y T (x) = c ∈ X if and only if, for all x ∈ R∗ such that x ≈ y and
x > y, it holds that T (x) ≈ c.

Proof. Let y ∈ R for which there is a δ > 0 such that (y, y + δ) ⊂ R.
Suppose limx↓y T (x) = c ∈ X, then for all ε ∈ R>0 there is a δ ∈ R>0 such that for
all x ∈ (y, y + δ) we have ‖T (x)− c‖ < ε. In particular we find for all x ∈ R∗ such
that y ≈ x and x > y, that x ∈ (y, y+ δ)∗ and thus for all ε ∈ R#

>0 by  Loś’ Theorem

38



we have ‖T (x)− c‖ < ε and so T (x) ≈ c.

Now suppose that for all x ∈ R∗, x ≈ y and x > y it holds that T (x) ≈ c. Then we
have that for all ε ∈ R#

>0

M∗ |= (∃δ ∈ R∗>)((y, y + δ) ⊂ R∗ ∧ (∀x ∈ (y, y + δ))(‖T (x)− c‖ < ε))

Hence by  Loś’ Theorem we find that limx↓y T (x) = c.

From this we can also do the other limits.

Corollary 5.5. Let X be a normed vector space, let R ⊂ R and let T : R → X be
continuous. Then for all y ∈ R for which there is a δ > 0 such that (y − δ, y) ⊂ R,
we have that limx↑y T (x) = c ∈ X if and only if, for all x ∈ R∗ such that x ≈ y and
x < y, it holds that T (x) ≈ c.

Corollary 5.6. Let X be a normed vector space, let R ⊂ R and let T : R → X be
continuous. Then, for all y ∈ R for which there is a δ > 0 such that (y−δ, y+δ) ⊂ R,
we have that limx↓y T (x) = c ∈ X if and only if, for all x ∈ R∗ such that x ≈ y, it
holds that T (x) ≈ c.

Proposition 5.7. Let X and Y be normed vector spaces over K and T ∈ L(X, Y ).
Then the following hold.

(i) If y ∈ X is near-standard, then T (y◦) = (Ty)◦.

(ii) If (xn)n∈N∗ is a near-standard sequence in X∗. i.e. if xn is near-standard for
all n ∈ N∗ and limn→∞ xn = x, then x is near-standard and x◦ = limn→∞ x

◦
n.

Proof. We will prove (i) first. Note that if y is near-standard there exists a z ∈ X∗
such that ‖z‖ ∈ R0 and y = y◦ + z. Now consider Ty = T (y◦ + z) = Ty◦ + Tz.
Note that ‖Tz‖ ≤ ‖T‖‖z‖ ∈ R0 since ‖z‖ is infinitesimal and ‖T‖ is finite. So Ty
is near-standard. Furthermore (Ty)◦ = (Ty◦ + Tz)◦ = (Ty◦)◦ + (Tz)◦ = Ty◦.

To prove (ii) note that, since limn→∞ xn = x, there is an N ∈ N∗ such that ‖x−xn‖
is infinitesimal for all n ≥ N . Then the left-hand side of

‖x− x◦N‖ ≤ ‖x− xN‖+ ‖xN − x◦N‖

is infinitesimal since the right-hand side is. Hence x is near-standard. Also note
that the sequence (x◦n)n>N is constant, hence x◦ = limn→∞ x

◦
n.

Proposition 5.8. Let X and Y be Banach spaces over K. Let (Bn) be a bounded
sequence in L(X, Y ). Let D ⊂ X be a dense subset of X, and assume that for all
x ∈ D the sequence (Bnx) is convergent. Then Bx := limn→∞Bnx exists for all
x ∈ X, and B : X → Y , thus defined, is an operator B ∈ L(X, Y ).
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Proof. We will first prove that Bx exists for all x ∈ X. For this let x ∈ X. Since
X = D by Proposition 5.2 there is a y ∈ D∗ such that x ≈ y. Note that for large
enough m,n ∈ N∗ we have

‖Bnx−Bmx‖ ≤ ‖Bnx−Bny‖+ ‖Bny −Bmy‖+ ‖Bmy −Bmx‖
≤ (‖Bn‖ − ‖Bm‖)‖x− y‖+ ‖Bny −Bmy‖ ≈ 0

since limn→∞Bny = By. Hence (Bnx) is a Cauchy sequence and, since Y is a
Banach space, converges. So we can define Bx = limn→∞Bnx. Evidently B is also
a bounded operator since the sequence (Bn) is bounded. The linearity of B follows
from the linearity of the limit.

5.2 Semigroups

Semigroups are designed to give solutions to the well-known differential equation
d
dt
f(t) = λf(t). However instead considering the equation over R or X we consider

d
dt
T (t) = AT (t) where T : [0,∞) → L(X) where X is a Banach space and A is a

linear operator in X, i.e. dom(A) ⊂ X and ran(A) ⊂ X. If A ∈ L(X) it is not hard
to find a solution for this equation. Namely

T (t) = etA =
∞∑
n=0

(tA)n

n!
.

However, if dom(A) 6= X or if A is unbounded it is unclear if there even is a solution,
let alone what kind of solution. We will give an introduction to semigroups to
prove the Theorem of Hille-Yosida, which will give us sufficient conditions to find a
solution.

Definition 5.9. Let X be a Banach space, a one-parameter semigroup on X is a
function T : [0,∞)→ L(X) satisfying

(a) T (t+ s) = T (t)T (s), for all t, s ≥ 0.

If additionally

(b) limt↓0 T (t)x = x, for all x ∈ X,

we call T a C0-semigroup or a strongly continuous semigroup.

For the rest of this article we will simply write ’semigroup’ instead of ’one-parameter
semigroup’. Note that by this definition T (0) is either 0, which implies that T (t) = 0
for all t > 0 since T (t) = T (t+ 0) = T (t)T (0), or T (0) = I.

As already noted we consider linear operators in X which do not necessarily have X
as domain. For those who never encountered such operators we will look into them
in detail.
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Definition 5.10. Let X be a Banach space. We call A a linear operator in X if
A is linear, dom(A) ⊂ X and ran(A) ⊂ X. Instead of ’linear operator’, we will
usually just write ’operator’. We call A bijective or invertible if A is injective and
ran(A) = X. We define A−1 = {(x, y) ∈ X × dom(A) : Ay = x}. Note that
ran(A−1) = dom(A). We call

‖A‖ := sup
x∈dom(A), ‖x‖≤1

‖Ax‖

the operator norm. If A and B are both operators in X we can define A+B by taking
dom(A+B) = dom(A)∩dom(B) and (A+B)x = Ax+Bx for all x ∈ dom(A+B).
We also define a norm on X ×X by

‖(x, y)‖X×X = ‖x‖X + ‖y‖X .

A is called closed if it is a closed subset of X ×X under the norm ‖ · ‖X×X .

Proposition 5.11. Let X be a Banach space and let A be a standard bounded
operator in X and let B and C be internal operators in X such that B ≈ C. Then,
if ran(B) ⊂ dom(A) and ran(C) ⊂ dom(A), AB ≈ AC and, if ran(A) ⊂ dom(B)
and ran(A) ⊂ dom(C), BA ≈ CA.

Proof. Suppose ran(B) ⊂ dom(A) and ran(C) ⊂ dom(A). Let x ∈ dom(AB − AC)
with ‖x‖ ≤ 1 and consider

0 ≤ ‖ABx− ACx‖ ≤ ‖A‖‖B − C‖‖x‖ ∈ R0.

Since ‖A‖ and ‖x‖ are finite and ‖B − C‖ is infinitesimal.
Hence by Proposition 4.10

sup
x∈dom(AB−AC),‖x‖≤1

‖ABx− ACx‖ ≈ 0

and thus AB ≈ AC.
For the other statement suppose ran(A) ⊂ dom(B) and ran(A) ⊂ dom(C) and note
that

0 ≤ ‖BAx− CAx‖ ≤ ‖A‖‖B − C‖‖x‖ ∈ R0

and hence by the same arguments BA ≈ CA.

Proposition 5.12. Let T be a C0-semigroup on X and let τ ∈ R∗≥0 be finite and let
t = τ ◦ ∈ R#. Then T (t) ≈ T (τ).

Proof. It is enough to prove that T (δ) ≈ I for all 0 < δ ∈ R0 since then for all finite
τ ∈ R∗ we have that, if τ ◦ ≤ τ ,

T (τ) = T (τ ◦ + (τ − τ ◦)) = T (τ ◦)T (τ − τ ◦)
5.11
≈ T (τ ◦),

and, if τ ◦ > τ ,

T (τ ◦) = T (τ + (τ ◦ − τ)) = T (τ)T (τ ◦ − τ)
5.11
≈ T (τ ◦).

That T (δ) ≈ I is a direct consequence of Proposition 5.4.
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Lemma 5.13. Let T be a semigroup on X such that there exists δ > 0 such that
M := sup0≤t<δ ‖T (t)‖ <∞. Then there exists ω ∈ R such that

‖T (t)‖ ≤Meωt for all t ≥ 0.

For the proof of this lemma see [2]

Proposition 5.14. Let T be a C0-semigroup on X. Then the following hold:

(a) There exists an M ≥ 0 and ω ∈ R such that

‖T (t)‖ ≤Meωt for all t ≥ 0

(b) For all x ∈ X the function [0,∞)→ X, t 7→ T (t)x is continuous.

Proof. We start by proving a. By Proposition 5.13 we only have to prove that there
exists 0 < δ ∈ R# such that sup0≤t<δ ‖T (t)‖ < ∞. Suppose such δ does not ex-
ists. Then we can find a sequence (tn)n∈N in R such that limn→∞ ‖T (tn)‖ =∞ and
limn→∞ tn = 0.
Then τ = [(tn)] ∈ R∗ is infinitesimal, hence T (τ) ≈ I. In particular ‖T (τ)‖ ≈ 1
which is a contradiction with limn→∞ ‖T (tn)‖ =∞ which implies that ‖T (τ)‖ should
be infinitely large.

To prove b, by Corollary 5.6 we only have to prove that for all x ∈ X, for all
0 < δ ∈ R0 and for all 0 < t ∈ R#, we have T (t+ δ)x ≈ T (t)x ≈ T (t− δ)x.
Thus let x ∈ X, t > 0 and δ ∈ R0. Then T (t + δ)x = T (t)T (δ)x ≈ T (t)x and
T (t− δ)x ≈ T (t− δ)T (δ)x = T (t)x.

Though semigroups are an interesting field of study on their own, most people will
study them to solve differential equations. For this the C0-semigroups are very
important since in a way we can differentiate them.

Definition 5.15. Let T be a C0-semigroup on X. We call

A := {(x, y) ∈ X ×X : y = lim
h↓0

h−1(T (h)x− x) exists}.

the generator of T (t)

Note that A is an operator in X due to the linearity of limits. As promised we can
now differentiate T .

Proposition 5.16. Let T be a C0-semigroup and A its generator. Then:

(i) For all x ∈ dom(A) and for all t ∈ (0,∞) we have that T (t)x ∈ dom(A), T (t)x
is differentiable and

d

dt
T (t)x = AT (t)x = T (t)Ax.
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(ii) dom(A) is dense and A is a closed operator.

Proof. We will first prove (i). Let 0 < δ ∈ R0, and let x ∈ dom(A). We know that
Ax = limh↓0 h

−1(T (h)x− x) exists, so Proposition 5.4 then gives us
δ−1(T (δ)x − x) ≈ Ax. Since T (t) is bounded, by Proposition 5.14 we may use
Proposition 5.11 and 5.12 to find

δ−1(T (t+ δ)x− T (t)x) = T (t)δ−1(T (δ)x− x) ≈ T (t)Ax

and
−δ−1(T (t− δ)x− T (t)x) = T (t− δ)δ−1(T (δ)x− x) ≈ T (t)Ax.

Thus by Corollary 5.6 we have d
dt
T (t)x = T (t)Ax. Finally note that

T (t)h−1(T (h)x− x) = h−1(T (h)− I)T (t)x.

Since we know that this converges for h ↓ 0 we find that T (t)x ∈ dom(A) and that
T (t)Ax = AT (t)x.

Proving (ii) will take more theory than we have right now. People interested can
find more information in [2].

Finally we will take a look at an often used trick in semigroups, which is shifting
semigroups.

Proposition 5.17. Let T be a semigroup on X. Then Tλ(t) = T (t)eλt is a semi-
group on x. Furthermore if ‖T (t)‖ ≤ Meωt with M and ω as in Lemma 5.13, then
‖T (t)‖ ≤Me(ω+λ)t. Additionally, if T is strongly continuous, with generator A, then
Tλ is strongly continuous with generator A+ λI.

The proof of this is elementary, hence we leave it to the reader.

Definition 5.18. Let T be a semigroup on X. We call T contractive if ‖T (t)‖ ≤ 1
for all t ∈ [0,∞).

Contractive semigroups are one of the main reasons we want to be able to shift
semigroups since they are far easier to work with. In several proofs you first shift a
semigroup to a contractive one, work with that, and then shift it back. We will see
an example of this in the proof of the Hille-Yosida Theorem.

5.3 The Hille-Yosida Theorem

Before we can finally prove the Theorem of Hille-Yosida, we take a glimpse into
the world of resolvents. Resolvents and the spectrum of an operator play a major
role in Functional Analysis, with fundamental results such as the Spectral Mapping
Theorem [7, p. 263]. We will only take a look at a small part of the relation they
have with semigroups since they are very important in the proof of the Hille-Yosida
Theorem.
Let X be a Banach space over K and let A be an operator in X.
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Definition 5.19. We call

ρ(A) := {λ ∈ K : λ− A is bijective and (λ− A)−1 ∈ L(X)}

the resolvent set of A, R(λ,A) := (λ− A)−1 the resolvent of A at λ, and

R(·, A) : ρ(A)→ L(X)

the resolvent of A. The set σ(A) = K \ ρ(A) is called the spectrum of A.

Definition 5.20. Let T (t) and S(t) be internal semigroups. We call T (t) and S(t)
infinitely close if T (t) ≈ S(t) for all finite t ∈ R∗. We write S ≈ T . We call S
near-standard if T is a standard semigroup, and we denote the standard part of
S(t) by S(t)◦ = T (t).

Proposition 5.21. Let S(t) be an internal semigroup such that for all t ∈ [0,∞)#

there is a T (t) ∈ L(X)# such that S(t) ≈ T (t). Then T (t) is a semigroup and,
additionally, if S(t) is a contractive semigroup, then so is T (t).

Proof. First note that T (t) : [0,∞)→ X and that for all s, t ∈ R we have

T (s+ t) ≈ S(s+ t) = S(s)S(t)
5.11
≈ T (s)T (t).

Thus T is a semigroup in M and therefore also in M∗.
Suppose additionally that S(t) is contractive. Then ‖S(t)‖ ≤ 1 for all t ∈ [0,∞)∗.
In particular for all t ∈ [0,∞)# we find that ‖T (t)‖ ≈ ‖S(t)‖ and thus ‖T (t)‖ ≤ 1 or
‖T (t)‖ ≈ 1. Since T and t are standard we find that ‖T (t)‖ ≤ 1 for all t ∈ [0,∞).

Theorem 5.22. Let T be a C0-semigroup on X, let A be its generator and let M ≥ 1
and ω ∈ R be such that ‖T (t)‖ ≤Meωt. Then {λ ∈ K : Re(λ) > ω} ⊂ ρ(A).

We will not prove this theorem since the proof is not non-standard; those interested
can find it in [2, p. 42]. Armed with this knowledge we can now prove the Theorem
of Hille-Yosida.

Theorem 5.23 (Hille-Yosida). Let A be a closed densely defined operator in X.
Assume that there exists ω ∈ R such that (ω,∞) ⊂ ρ(A) and that

‖R(λ,A)‖ ≤ 1

λ− ω
(λ ∈ (ω,∞)).

Then A is the generator of a C0-semigroup T satisfying the estimate

‖T (t)‖ ≤ eωt (t ≥ 0).

Proof. Note that due to rescaling we may assume that ω = 0.
Consider the Yosida approximations:

An = A(I − 1

n
A)−1 = nAR(n,A) = n2R(n, a)− nI ∈ L(X).
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Since R(n, a) is bounded we easily find that An is bounded, hence etAn is a C0-
semigroup. Also, using the made assumptions, we can obtain the estimate

‖etAn‖ = ‖etn2R(n,a)−nI)‖ = e−tn‖
∞∑
k=0

(tn2R(n, a))k

k!
‖ ≤ e−tn

∞∑
k=0

(tn)k

k!
= 1

Thus etAn is a contractive C0-semigroup.
Using Proposition 5.21 we only have to prove that etAω is near-standard for some
ω ∈ N∗ \ N# and that A is the generator of (etAω)◦.
So let ω ∈ N∗ \ N# and let t ∈ [0,∞)#. We find that, for all m,n ∈ N∗and all
x ∈ dom(A)∗, we have

etAmx− etAnx =

∫ t

0

d

ds
(e(t−s)AnesAmx)ds

=

∫ t

0

e(t−s)An(Am − An)esAmxds

=

∫ t

0

e(t−s)AnesAm(Am − An)xds.

Since etAn is contractive we find that

‖etAmx− etAnx‖ ≤ t‖(Am − An)x‖.

For n ∈ N∗ \ N# we have that I − 1
n
A ≈ I, thus by Proposition 5.11 we find

A(I − 1

n
A)−1 = A(I − 1

n
A)−1I ≈ A(I − 1

n
A)−1(I − 1

n
A) = A.

Hence for m,n ∈ N∗ \ N# we find

‖(Am − An)x‖ = ‖(A(I − 1

m
A)−1 − A+ A− A(I − 1

n
A)−1)x‖

≤ ‖(A(I − 1

m
A)−1 − A)x‖+ ‖(A− A(I − 1

n
A)−1)x‖ ≈ 0

Since t is finite, etAnx is a Cauchy sequence, and since X is a Banach space, this
sequence converges for all x ∈ dom(A). Since A is densely defined we may now
apply Proposition 5.8 to find that limn→∞ e

tAn ∈ L(X). This means that, for all
t ∈ [0,∞)# and for all ω ∈ N∗ \N#, etAω is near-standard and thus, by Proposition
5.21, T (t) = (etAω)◦ is a contractive semigroup.
To see that T (t) is strongly continuous we will focus on a small interval of the
semigroup. Consider C([0, 1];X) the Banach space of continuous function from
[0, 1] to X equipped with the supremum norm. Since etAn is strongly continuous we
find

Tn : X → C([0, 1];X), x 7→ [t 7→ etAnx].

We now can use our inequality from above to find

‖Tmx− Tnx‖ ≤ ‖(Am − An)x‖ (x ∈ dom(A)).
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Again by taking m,n ∈ N∗ \ N# we find that Tnx is a Cauchy sequence and thus
by Theorem 5.8 Tn converges to some standard T : X → C([0, 1];X). Note that for
standard t ∈ [0, 1]# we have that (Tnx)(t) = etAnx, which converges to T (t)x, hence
for the standard limit we find

lim
t↓0

T (t)x = lim
t↓0
T x(t) = T x(0) = x.

Thus we find that T (t) is strongly continuous.
Finally we have to prove that the generator of T (t) is A. For this let B be the
generator of T (t), let 0 < h ∈ R0 and let x ∈ dom(A) and consider

‖T (h)x− x
h

− Ax‖.

We want to prove that this is infinitesimal. Firstly recall that ‖Aωx − Ax‖ is
infinitesimal for all ω ∈ N∗ \ N#. Also recall that (Tω)ω∈N∗ converges to T (t)|[0,1],
hence for large enough ω ∈ N∗ we find that

∥∥∥T (h)x−etAωx
h

∥∥∥ is infinitesimal. Then we

find∥∥∥∥T (h)x− x
h

− Ax
∥∥∥∥ =

∥∥∥∥T (h)x− etAωx

h
+
etAωx− x

h
− Aωx+ Aωx − Ax

∥∥∥∥
≤
∥∥∥∥T (h)x− etAωx

h

∥∥∥∥+

∥∥∥∥etAωx− x
h

− Aωx
∥∥∥∥+ ‖Aωx − Ax‖

≈
∥∥∥∥(
∑∞

k=0(hAω)kk!)x− x
h

− Aωx
∥∥∥∥

=

∥∥∥∥(
∑∞

k=2(hAω)kk!)x

h

∥∥∥∥
≤

∞∑
k=2

(h‖Aω‖)k

k!h
‖x‖

= h
∞∑
k=2

hk−2‖Aω‖k

k!
‖x‖

≤ he‖Aω‖ ≈ 0.

Hence ‖T (h)x−x
h
− Ax‖ is infinitesimal. Since this holds for all 0 < h ∈ R0 we find

that limh↓0
T (h)x−x

h
= Ax. Hence A ⊂ B.

Of course we want equality. For this note that by assumption (0,∞) ⊂ ρ(A) and
by Theorem 5.22 we have that (0,∞) ⊂ ρ(B). Thus, since I −A ⊂ I −B, I −B is
injective and ran(I − A) = X, we find that I − A = I −B and thus A = B.
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