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Abstract

Genetic studies in human populations have unveiled a vast number of poly-
morphisms. This variability is shaped by evolutionary forces such as drift,
selection, bottlenecks and more. The approach applied in this thesis is
based on haplotype method meaning that we consider block of SNPs of the
human genome. This method has an advantage over single SNP analysis.
The aim of the thesis is to characterise the genetic history based on the
correlation structure of polymorphisms. This correlation structure is char-
acterised in terms of joint cumulants which generalise linkage disequilibrium
(LD) to more than two loci. The advantage of a multilocus LD (high or-
der LD) measurement over a pairwise LD measurement is that the latter
is not adequate to detect simultaneous allele associations among multiple
markers. Characteristic patterns of this standardised higher-order LD are
summarised in a catalogue for all possible genetic histories in an exponen-
tially growing population. Heatmap approach was applied to visualise and
interpret the behaviour of the LD patterns under different population sce-
narios. Tests were developed to determine whether given data is more likely
to stem from a particular catalogue entry than others. These tests were de-
veloped using Monte Carlo techniques. Simulations were complemented by

an analysis of part of the public HapMap project.
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Chapter 1

Introduction

The joint distribution of closely linked (i.e. roughly co-transmitted from generation to
generation) genetic markers contains important information that can be used in genetic
association studies (Gorelick and Laubichler [2004],Lewontin [1988],McPeck and Strahs
[1999]) and population genetics. Deviation from probabilistic independence of alleles at
two different markers (allelic association) has been characterised by various measures.
Allelic association is also known as linkage disequilibrium (LD). One application of
estimating LD in gene mapping (association studies) is to avoid redundancy caused
by strong correlations between markers and allows to optimize association studies.
Multilocus LD (higher order LD) (Balliu et al.) extends the concept of pairwise LD
as the latter is not adequate enough to detect simultaneous allele associations among
multiple markers. Genetic recombination, mutations and changes in allele frequencies
(genetic drift) play an essential role in shaping the patterns of LD in a population.
Therefore, the dependency structure of markers as characterized by multilocus LD
contains information about ancestry.

Humans and their respective genome are quite diverse. Genetic studies such as
the human genome project have unveiled a vast number of polymorphisms (variable
locations within the genome). This staggering complexity is one of the reasons that
every person is unique (Alberts [2007]). This variability is shaped by evolutionary
forces such as drift, selection, bottlenecks (sharp reduction in the population size) and
more. Genetic ancestry as characterized in this thesis is based on the assumption of
neutral evolution (Kimura [1968]) (Chapter 2.4). This is a simplification of reality but
can serve as a good approximation of real data.

An important question in Biology and its related fields is to identify the relationship

between alleles or SNPs and their respective effect on the expression of genes result-
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ing in a specific observed and sometimes unobserved phenotype. The way that those
SNPs affect their target genes is mostly dependent on the location of the SNP by their
relation with genes or regulating elements (e.g. enhancer, silencer, promoter; Alberts
[2007]). Gene mapping is affected by genetic ancestry in at least two ways. First, it is
well known that both phenotypes and genotypes distributions differ strongly between
ethnicities, with the latter to be an important confounder in association studies (Spiel-
man et al. [2007], Consortium [2003]). Second, strong correlations between genetic
markers can make it impossible to distinguish their individual contribution. In this
case the evolutionary history of the SNPs can contribute additional information. It is
therefore important to unveil the genealogy of a given set of joint genotypes at markers
of interest.

Single nucleotide polymorphims (SNPs) are genetic markers for which exactly two
outcomes (alleles) are possible. Variability of SNPs has a large contribution to total
genetic variability and plays an important role in genetic association studies. SNPs
are often used for association but their genetic history is not taken into account. The
importance of SNPs is that they can measured very cost-effectively and the most addi-
tional more complex genetic variation, such as deletions, insertions, or inversions can be
associated with them, so that they can serve as a universal markers. Based on compre-
hensive studies, the human population contains about 10 million SNPs. The HapMap
project (Consortium [2003]) is one of the efforts characterising the joint distribution of
SNPs, i.e. the haplotype distribution. It provides the information about the location
of the SNPs in the genome, their frequencies in several populations, and haplotype fre-
quencies. This database is open assess and is meant to be used by scientists to improve
association studies as well as theoretical investigations. It is used in this thesis to apply

the developed statistical methods.

1.1 Aim of this thesis

The aim of the thesis is to provide a genetic interpretation of Higher-order Linkage
Disequilibrium (LD). For example, recombination between loci results in a reduction of
the dependence between the alleles, hence a reduction of LD. We chose a setup where
we assume an exponential growing population, which approximately allows us to ignore
fixation event, i.e. the loss of alleles due to the random walk exhibited by allele fre-
quencies over time. This leaves mutations and recombinations as major evolutionary
forces that are considered here. We show that after proper standardisation, standard-

ised higher-order LD can summarise population history through cumulant patterns of
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SNPs. These patterns are summarised in a catalogue that can be used for comparison
with actual data. Tests are developed to determine whether such given data is more
likely to stem from a particular catalogue entry. Simulations are complemented by an

analysis of part of the public HapMap project.



Chapter 2

Biological concepts

2.1 DNA

The human genome consists of chromosomes, which contains all the inherited infor-
mation. Joe Hin Tjio in 1955, determined that humans contain 46 chromosomes (22
autosomal and 2 sex chromosomes, XX for females and XY for males) with two copies
of each chromosome (one inherited from the mother and one from the father). In
2004, the human genome was almost fully sequenced and revealed that it consists of
approximately 3.2 x 109 base pairs (bp) (Alberts [2007]).

Each chromosome is composed of long strands of the Deoxyribonucleic Acid (DNA).
The DNA was first discovered by Friedrich Miescher in 1869 and its 3D structure was
proposed in 1953 by James Watson and Francis Crick after the pioneering work by
Rosalind Franklin and Maurice Wilkins (Watson and Crick [1953]). The DNA contains
all the necessary information to build up an organism. That information is encoded in
the DNA with format of four different nucleotides, adenine (A), guanine (G), thymine
(T), and cytocine (C). The DNA is double stranded, hence if on a specific position on
one strand we have A, then on the same position on the other strand will be T. The
same is true for G and C.

Genes are regions of the DNA, which contain the necessary information to encode
the proteins (via transcription a process which produces different types of RNA, such
as mRNA, tRNA and rRNA) are necessary for all the different functions of an organism
(Alberts [2007]). When a cell needs a particular protein, the gene that encodes that
protein will transcribe to a single strand RNA (from the double stranded DNA), which
subsequently will translate to a functional protein. Genes, contain regions, the exons,

which are translated to proteins, and the introns, which are spliced out during the
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maturation of RNA. A genomic locus is a region of DNA which contains one or more
genes.

Interestingly, humans contain approximately 400 different cell types (Alberts [2007])
with every one containing the same DNA. However, it is the transcriptome of each cell
that provides the cell’s unique identity. Hence, different combination of proteins and/or
different levels of expression of specific genes will result to different cell types.

It is apparent that the diversity of different cell types in each individual person as
well as the diversity between people in a population could be due to different reasons.
SNPs can be one of those aforementioned reasons. In normal conditions, a specific
genomic region, which contains a gene and somewhere close to it its regulatory ele-
ments such as an enhancer, will behave normally. However, as a result of evolutionary
processes not all the people will have the exact DNA composition at this region.

We can discriminate the below two different cases. Some will have different nu-
cleotides in a region (introns or intergenic genomic regions) with no, as yet, apparent
functional role and no apparent phenotype. The other case is when those SNPs are
located in exons and can lead to two different outputs; either a SNP causing a silent
phenotype or causing a new phenotype. The first is when the change in the nucleotide
composition leads to the exact same phenotype like in the normal condition, i.e. the
same amino acid, hence the same protein without any obvious severe effect. The major-
ity of the cases, lies on those aforementioned categories, with no observed phenotype,
disease or trait. However, in some cases, we observe variation in phenotype, when a
SNP in an exon or another functionally relevant position, leads to encoding a different
amino acid, hence either different protein or no functional protein at all.

More recently, the importance of SNPs in the genes’ regulatory elements has been
described. These include enhancers, silencers and promoters which are important for
the proper transcriptional control of their target genes. SNPs in these regulatory ele-
ments can lead to abnormal transcriptional control with either increased or decreased
expression of the target gene when compared to the baseline levels. Likewise, as com-

pared to coding SNPs, these deviations leads to variation in phenotypes.

2.2 Alleles and haplotype blocks

A particular location in a chromosome is called genetic locus. That genetic locus can
exhibit more than one sequence variants and is often called a marker (Alberts [2007]).
Polymorphisms is a marker with at least two of it’s alleles having frequency above 1% in

the population. The different variants of a locus are called alleles. Humans are diploid
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organisms; they contain two copies of the same chromosome, hence two copies of the
same gene. In a diploid organism, each gene will typically have two alleles occupying the
same position (locus) on the homologous chromosomes. A haplotype is a combination
of specific alleles, which is inherited to an organism from a single parent.

Humans, on an evolutionary scale, are quite young. Our ancestors were living
in Africa, about 100,000 years ago. Since we are separated by them only by a few
thousand generations, large pieces of the chromosomes without any alteration, were
inherited from parents to their offspring. It is also known, that sets of alleles are
passed from parent to child as one group. These ancestral chromosomal segments
are called haplotype blocks, which have been passed from generation to generation
with little genetic variation. Often these blocks are regions of high order LD (see
Chapter 4). Haplotype blocks may harbour haplotypes that have a low variability
in the human population, each one representing an allele combination passed down
from a shared ancestor long time ago, specific for a particular population. Hence
by studying the haplotype blocks, we can decipher the genotype of our ancestors;
our genetic evolutionary history about how our genome is shaped through different
generations as a result of the different evolutionary forces.

The completion of the sequence of the human genome at 2002, provided the knowl-
edge to the scientific community of the nucleotide composition of the genome. From
2002 until now, the human genome has been updated with new sequences with more
accurate information about the nucleotide sequence. The improvements in the next
generation sequencing technology have been instrumental towards that update (Ro-
manoski et al. [2015]). It became apparent that the genetic variance of the population
should be unveiled. The result of the international HapMap Project, a multinational
effort started at 2002, is a haplotype map of the human genome (HapMap), a database
which describes the common patterns of human sequence variation (Consortium [2003]).
It provides the information about the location of the SNPs in the genome and their
frequency in the population. This database is open free access and is meant to be used
by scientists to improve study design, the analysis of studies and provide deeper insight
into the genome.

Scientists hope that the haplotype maps will provide better insight into the identifi-
cation of disease-causing and disease-susceptibility genes. Instead of looking for all the
million SNPs of the genome and to find out which are ones causing a disease, scientists
have to pinpoint the haplotype block that appears to be inherited by individuals with
the disease. By identifying the haplotypes within blocks that are inherited by indi-

viduals with the disease, scientists can narrow down significantly the mutations linked
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or causing that disease. Subsequently, by pinpointing the specific haplotype block,
scientists can unveil the specific gene associated with the disease.

Interestingly, haplotype blocks can also provide an insight about the ancestral his-
tory of a specific allele and whether it has been favoured by natural selection. That
can lead to the identification of specific blocks which were inherited from to generation
to generation and maintained in the population. If an allele does not offer a selective
advantage on the individual, it will be more rare in a population. However, if an allele
provides an evolutionary advantage to an individual, it will be more common in the
population hence older in the evolutionary history. In this case the haplotype blocks
surrounding it will be smaller because it will have had many chances of being separated
from its neighbouring variations by the recombination events.

New alleles, which for example provide a resistance to a disease, can appear in
the population and will spread quick since those individuals will survive and pass the
mutation on to their offspring. Let’s imagine a population of 100 cockroaches; 99 have
the same allele whereas 1 has a different allele for a specific chromosomal locus offering
great resistance to pesticide. In normal conditions, all the 100 cockroaches are alive.
However, when putting them under selection, for example with a pesticide, the 99
will die and the 1 will survive as a result of the selective advantage conferred by that
allele. This cockroach will pass to its offspring the resistance allele which through the

subsequent generations will become prominent

2.3 Homologous recombination

Homologous recombination (also termed general recombination) is the genetic exchange
that takes place between a pair of homologous DNA sequences (Figure 2.1) (Alberts
[2007]). The importance of homologous recombination is apparent in two distinct bio-
logical processes, DNA damage repair and creating new combinations of DNA sequences
in each chromosome.

Radiation, chemicals as well as faults in DNA replication can result in double-
strand DNA breaks. Unless the organism corrects those DNA breaks, they can have
catastrophic downstream consequences. Homologous recombination can repair double-
stranded breaks accurately, without any loss or alteration of nucleotides at the site of
repair. Briefly, the strand from the "normal” sister chromatid invades to the broken
sister chromatid. Subsequently, the first is used a template, to synthesize and fill up
the missing nucleotides.

A law of genetics is that each parent makes an equal genetic contribution to the
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offspring. In meiosis, double-strand breaks are intentionally produced along each chro-
mosome and homologous recombination is initiated by exchanging DNA segments either
in cis (on the same chromosome) or in trans (between chromosomes). The latter often
has catastrophic results leading to lethality as a result of diseases such as cancer like
acute myeloid leukemia, whereas the first often leads to creating genetic diversity. Ho-
mologous recombination, preferentially takes place between the maternal and paternal
chromosomes. It is apparent that when homologous recombination takes place, a spe-
cific sequence of SNPs from either the paternal or the maternal chromosomes will be
mixed resulting in new combinations in the offspring. The evolutionary benefit of that
procedure is that it creates new combinations of genes, new alleles, which can perhaps
be beneficial for the organisms. The recombination during meiosis, results in greater
diversity of the genetic pool of a population, which in terms of evolutionary biology
is a hallmark for evolution and development of species. In this thesis, we consider

homologous recombination only in cis.

Figure 2.1: The plot illustrates recombination event between to chromatids

2.4 Neutral selection

The theory of neutral selection has become central to study the evolution (Duret [2008]).
It was Motoo Kimura who at 1968 proposed that theory (Kimura [1968]).Its principle is
that at the molecular level the evolutionary changes are not caused by natural selection

but by random drift of alleles that are neutral and can be explained by stochastic pro-
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cesses. New alleles are introduced by mutations with the alleles frequencies to change
from generation to generation. Mutations with a selective advantage (an advantageous
allele) will have a higher probability of fixation by natural selection; the opposite is true
for deleterious mutations. Growth patterns are important to be considered. Growth
results in less fixation. However, exponential growth, ignores fixation as approximation.
Humans grow exponentially.

Neutral theory suggests that a lot of genetic variation is the result of mutation and
genetic drift, although selection has been proven to take place. Its main advantage
is that it can lead to conclusions which can be tested against actual data. Neutral
mutations are the ones which do not affect an organism. The theory also claims genetic
drift control those mutations. The genetic drift is controlling the fate of the neutral

mutations.



Chapter 3

Haplotype patterns resulting

from genetic events

Observed haplotypes either represent the ancestral DNA sequence or have been de-
rived from it through a series of genetic events. There is a large number of possible
such events mentioned earlier and we focus here on the two events mutation and recom-
bination. Moreover, we limit ourselves to bi-allelic markers such as SNPs for describing
variation in DNA sequence. Both simplifications are discussed later.

As a preparation to the later goals of the thesis we ask here: if a certain sequence of
mutations and recombinations occurs which will be the resulting haplotype distribu-
tion. As the actual haplotype frequencies vary across generations we interest ourselves
with the existence of haplotypes and ignore the specific frequency. We call this a hpalo-
type pattern in the following. In order to solve this problem, we make the following

assumptions.

1. Mutations occur only once, i.e. a specific allele at a given locus is created by a
single mutation event. This corresponds to the infinite sites model used in neutral

models.

2. Once a new haplotype is created through a mutation or recombination, it is not
lost again. Drift is a possible genetic force leading to loss of alleles/haplotypes.
The current model is valid for situations when drift does not have a large effect
(such as in large, exponentially growing populations for which humans are a good

example).

3. Every possible sequence of mutations and recombinations can happen.

10
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Given these assumptions, possible haplotype patterns are explored.

3.1 Catalogue

In order to relate a haplotype pattern with corresponding genetic events, possible se-
quences of genetic events have to be explored until a given haplotype pattern is found.
As the correspondence is not one-by-one, all possible event sequences have to be ex-
plored for a given pattern. This suggests to explore event sequences once and store all
haplotype patterns that are generated. This tabulation is called the catalogue in the
following.

In the following, we restrict ourselves to bi-allelic loci such as SNPs. We arbitrary
assign 0 or 1 to distinct nucleotides at each locus. A single haplotype becomes an
N-tuple of binary digits if we consider N loci. If we denote with B the set of possible
haplotypes, then |B| = 2V — 1, ie. B = {B,} ,B, = (agn), agn), e ag\?), where
al(n)) € {0,1} is the allele at locus [ € {0, ..., N} for haplotype n.

For example, in case of N = 3 loci, the sequence 001 represents the haplotype with
alleles 0 at locus 1 and locus 2 and alleles 1 at locus 3. One obvious conclusions is -
by our assumption that each mutation occurs at a different locus - that the presence
of all possible haplotypes implies the occurance of a recombination event somewhere in
the evolutionary history (Song and Hein [2005]). However, some of the recombination
events are not detectable as they do not generate a new haplotype pattern. For example,

consider two haplotypes in a random mating population:

Let’s consider the case, where there is a recombination between locus 1 and locus
2. The two possible haplotypes that we can observe after the recombination happened
are exactly the same with the original ones. This is also the case even if we take
a recombination event between locus 2 and locus 3. Therefore, in both cases the
recombination events are not detectable and we therefore have to focus on events that
do create new haplotype patterns.

Another limitation is that more than a single recombination can happen between
two loci. Only if that number is odd, an actual recombination is observed. It is
impossible to infer the exact number of recombination events (or rather cross-overs)

that have occurred in a given sample. That is not the goal of the present thesis. Again,

11



3. HAPLOTYPE PATTERNS RESULTING FROM GENETIC EVENTS

we focus on the outcome of changes in haplotype patterns. The model presented so far,
allows reconstruction of genetic history as far as it is observable by genetic markers.
Biological knowledge suggests that there are also genetic events that cannot be captured
by our model.

A first summary of the algorithm to generate the catalogue comprises the following

steps:

1. consider ancestral haplotype B; which is the only haplotype in the ancestral

population

2. consider all possible sequences of events (mutation and/or recombination) for the

given number of loci

3. collect all possible haplotype patterns after applying event sequences from the

previous step to the ancestral haplotype

4. calculate the frequency pattern (allele/haplotypes frequency; discussed in Chapter

4), we assume uniform distribution

5. compute Higher order LD (discussed in Chapter 4)

This algorithm generates a comprehensive list of possible haplotype patterns to-
gether with their genetic history. The last two steps are needed for data applications

and are discussed later.

3.2 Example for three loci

Consider the case of three bi-allelic markers. For the given DNA segment with three

loci, the following haplotypes might be observed, resulting in 23 possible haplotypes.

12
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locus 1 locus 2 locus 3

0 0 0
1 0 0
0 1 0
1 1 0
0 0 1
1 0 1
0 1 1
1 1 1

Table 3.1: Haplotypes for three bi-allelic loci; 0 denotes the wild type DNA
composition and 1 a mutation/SNP

However, in biological data not all possible haplotypes might be observed. There are
some potential explanations for this phenomenon. Either some recombination events
have never occurred between specific loci, or recombination events have taken place
but the resulting haplotype leads to lethality and is not observed in the population, or
we have a bottleneck effect or very low haplotype frequencies (Griffiths and Marjoram
[1996]).

Now, we consider the following five haplotypes from three loci:

By=0 0 0
B,=0 1 0
Bi=1 1 0
Bi=0 0 1
B;=1 0 1

In this example, the By haplotype indicates the base haplotype, i.e the DNA segment
in which no mutation has yet occurred. Bs might have arisen from a mutation at locus
2. Bs might have been arisen from a mutation at locus 1 on the background By. By
is the result of a mutation at locus 3. Bs cannot explained by a mutation at locus 1
on a B4 background based on the infinite sites assumption, but has to result from a

recombination.

13
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A very common way of illustrating the history of a sample of chromosomes, is the
ancestral recombination graph (ARG). We can describe and trace the evolutionary
history as an inverted tree. In our examples, the ancestral recombination in Figure
3.1, describes the genealogy of our sample B = {By, Be, Bs, B4, B5} and shows the
importance of recombination events to generate new haplotypes and increase the genetic
diversity. Therefore, the evolution of each haplotype is unfolded backward in time.
The root of the tree is haplotype By : B;:000

00 0. Moreover, M; denotes the muta-
tion event with [ = {1,2,3} to indicate

where the mutation takes place. Based

on the plot, B4 haplotype has been arisen

from a mutation at locus 3. Bj haplotype B
derives from a mutation at locus 3 and

Figure 3.1: A hypothesized ancestral
recombination graph for one example,

shows the effect of recombination in
at locus 2. In this tree only one recombi- evolutionary process

subsequently a mutation at locus 1. The

haplotype Bs, is derived from a mutation

nation event has occurred which we denote with R(B;, Bj, pos) where B;, B; € {B,},
B; # Bj. The argument pos indicates the position where the recombination occurs
ie pos € {1,2,3,...,N — 1} and N is the number of loci. Based on the graph the
recombination event has occurred between By and Bs haplotypes which generated Bj
haplotype. This example ARG represents one evolutionary history from the many that
exists for the given data B = {By, B, Bs, B4, Bs}.

Note, that By represented the ancestral sequence in this example. The ancestral
sequence is not known in general. Subsequently, we consider all possible haplotypes as

ancestral haplotypes.

3.3 Algorithm to construct the catalogue

Here, we describe the algorithm that explores all genetic event sequences in detail.

The algorithm considers vectors of indicator variables, where each entry indicates
the presence or absence of a haplotype. By the assumption of no loss of alleles, a haplo-
type never disappears from a pattern once created. We use index i € {0,1,2,3,...,2" —
1} which corresponds to the haplotype represented by the binary representation of i
and consider bi-allelic loci.

Initially, the algorithm starts with a vector containing a single “1”, the base haplo-
type B;, where B; € {B,} for n € {0,...,2Y —1}. In the case of three loci, mutations

14
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can occur in different order starting from either the first, second or third loci. Therefore
we have to consider all possible permutations on a set of 3 loci where a mutation can
take place. Specifically, for 3 loci, there are 3! = 1-2-3 = 6 permutations of {1, 2, 3},
namely {1,2,3},{1,3,2},{2,1,3},{2,3,1},{3,1,2}, and {3,2,1}. Between mutations
a number of recombinations is tried to generate new haplotypes. Since we start with a
single haplotype, we begin with a mutation instead or recombination, because in this
case only a mutation can lead to a new haplotype.

Taking into consideration all these different order of mutations can lead to different

haplotypes. For 3 loci, four possible sequence of events can occur:

o M - M—M—R
e M - R—-M—M—R
o M -M—+R—M-—R

e M - R—-M—R—M—R

Here, M indicates a mutation event and R any number of recombinations. Re-
combinations are performed between all possible pairs of haplotypes and all possible
locations and the result checked for new haplotypes. This recombination procedure will
be terminate when no new haplotypes could be generated. The results are saved in a
vectors with 8 elements, where each element indicates the existence of a haplotype (see
section 3.4). These entries are annotated with the sequences as listed above. If two
sequences lead to the same pattern, catalogue entries are merged by concatenating the

alternative sequences. We detail the algorithm by the following pseudo-code.

1. For all base haplotypes B;

(a) Initialize current haplotype pattern with B;.
(b) For all permutations Pr, = (py,, ..., pi,y ) of loci

(c) Call [Mutation function] with current permutation p, haplotype B;, current
pattern
Mutation function : Take first element e of provided permutation p, remainder p,
i. Apply mutation at e to provided haplotype h

ii. Add new haplotype to current pattern, store new pattern with current

annotation

15
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iii. Repeat: call [Recombination pattern| with current pattern, p,., stop if

pattern did not change

iv. Return current pattern

Recombination function :
(a) For all pairs of haplotypes, all recombination positions

i. Apply recombination to current pair of haplotypes at given position

ii. If new haplotype is generated, add haplotype, store new pattern with

current annotation
iii. Call [Recombination function] with current pattern, p,
iv. For all haplotypes in current pattern h

A. Call [Mutation function| with p,, h, current pattern

(b) Return current haplotype pattern

In the above, “store” means that the current pattern is saved in a global structure.
Whenever a pattern is saved it is merged with pre-existing descriptions for the pattern

as described above.

3.4 Structure of catalogue

Each catalogue entry is comprised of a character vector describing the genetic events
that happened and an indicator vector containing information on which haplotypes
exist. For three loci, the catalogue contains a list of vectors with 8 entries (Table 3.2).
Each position represents the existence of one of the specific haplotypes (B0, ..., B7) in
the population. We denote with 1 the presence of a haplotype and 0 its absence. Each
indicator, in turn, represents a haplotype.

Next, some examples from the catalogue are shown. The first sub-list (Figure 3.2),
indicates that only the haplotype By in position 1 appears in the sample population.

The character string By therefore describes the history in this case.

$B0
[1] 10000000

Figure 3.2: A catalogue entry which shows that only one haplotype (By) appears in
the sample population
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3. HAPLOTYPE PATTERNS RESULTING FROM GENETIC EVENTS

position of indicator

position 1 2 3 4 5 6 7 8
Haplotypes By B1 Bo Bs By Bs Bg By
locus 1 0 1 0 1 0 1 0 1
locus 2 0 0 1 1 0 0 1 1
locus 3 0 0 0 0 1 1 1 1

Table 3.2: An overview about the haplotypes in each position of the vector for three
loci.

In Figure 3.3 we observe two haplotypes (position 1 and 2). Two possible histories
explain this pattern which are given as ’[historyl,history2]’. The two histories are
starting with base haplotype By or By each time followed by a mutation at locus M;

(one time a 0 is flipped into a 1 and the other time the other way round).

$ ¢ [BO—M1,B1—>M1]
(1] 11000000

Figure 3.3: A catalogue entry which shows that two haplotypes (B and B;) appear
in the sample population

The mutation (M) or recombination (R) events which lead to the appearance of a
specific haplotype are depicted above the specific vector. In Figure 3.4, the population
contains four haplotypes { By, B1, B2, Bs}. The genetic history is described by a more
complicated, nested structure with several alternatives. Briefly, in order to explain
this pattern, there are four potential base haplotypes onto which a combinations of
mutations (M) and recombination (R) events is applied. For example starting from
haplotype By, a mutation at either locus 1 (Mj) or at locus (Ms) results in By and Be
haplotypes respectively. Subsequently, a recombination event (R;) between locus 1 and
2 for the haplotypes By and B» leads to haplotype Bs. To keep notation manageable,

the particular haplotypes that were recombined are not mentioned.
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3. HAPLOTYPE PATTERNS RESULTING FROM GENETIC EVENTS

$ ¢ [ BO—>Ml—>M2—>R1,M2->MI1—>R1] ,B1—>Ml-—>M2—>R1,M2->M1—>R1] ,

[1]

B2—>Ml-—>M2—>R1,M2->M1—>R1]| ,B3—>MIl-—>M2—>R1,M2->MI1—>R1]] *
1111000 0,

Figure 3.4: A catalogue entry which shows that four haplotype (By, B, B2, B3)

appear in the sample population

The catalogue for three loci has 154 entries, which is different from 256 (2% com-

binations of 0 and 1) that are possible theoretically. This discrepancy is discussed

below.

3.5 Complete catalogue for two loci

As the descriptions of the histories of the catalogue for three loci become very long

(several 1000 characters), we here focus on the minimal case of two loci for which the

complete catalogue can be shown. We assume that we have two bi-allelic markers and
we again denote the haplotypes as B = {B,}, where n = {0,1,2,3}, B, = (0,1)2.

In this particularly example, it produces the following four (2V¥; N number of loci)

haplotypes:

locus 1 locus 2

0 0
1 0
0 1
1 1

Table 3.3: Haplotypes for two bi-allelic loci; 0 denotes the wild type DNA

composition and 1 a mutation/SNP

For two loci, the catalogue consists of 13 entries out of the possible 16.

position 1 2 3 4
Haplotypes Bo Bl BQ Bg

Table 3.4: An overview about the haplotypes in each position of the vector for two

loci.
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3. HAPLOTYPE PATTERNS RESULTING FROM GENETIC EVENTS

The Table 3.5 depicts the full catalogue for 2 loci. We use the same notation as

previously described, by denoting M the mutation and R the recombination events.
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3. HAPLOTYPE PATTERNS RESULTING FROM GENETIC EVENTS

Ancestor History Observed Haplotypes
1. By 1000
2. By 0100
3. [By — My, By — Mj] 1100
4. Bo 0010
5. [Bog — Ma, By — Ms)] 1010

6. [BO — [Ml — MQ,MQ — Ml], (01")

Bl—>M1—>M2,BQ—>M2—>M1] 1110
7. Bs 0001
8. [Bl—>M2,B3—>M2] 0101

9. [BO — My — MQ,(OI‘)
Bl — [Ml — MQ,MQ — Ml], (OI‘)
B3 — My — M| 1101

10. [BQ-)Ml,Bg%Ml] 0011

11. [B() — M2 — Ml, (OI‘)
BQ — [Ml — MQ,MQ — Mﬂ, (01“)
Bg—>M1—>M2] 1011

12. [Bl — M2 — Ml, (OI‘)
BQ — M1 — MQ, (OI‘)
Bg—>[M1—>M2,M2—>M1H 0111

13. [By — [M} — My — Ry, My — My — Ry],(or)
By — [M; — My — Ry, My — M; — Ry], (or)
By — [M; — My — Ry, My — M; — Ry], (or)
Bs — [M} — My — Ry, My — My — Ry]] 1111

Table 3.5: The complete catalogue for two loci
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3. HAPLOTYPE PATTERNS RESULTING FROM GENETIC EVENTS

The vectors 1, 2, 4 and 7 indicate the base haplotypes By, Bi, B2, and Bj, re-
spectively. The aforementioned vectors, describe the cases where only one haplotype is
occurred.

Adding a mutation leads to new haplotypes. For example the vector 3, describes a
sample population where two haplotypes are observed, the By and B;. Here we have

two potential genealogical histories which result in the observed haplotypes. In details:

1. By — M;j: The ancestor haplotype is By. After a mutation at loci 1, the observed
haplotype is the Bj.

2. By — Mj: Similarly with above, the ancestor haplotype is By and after a muta-
tion at loci 1 we get the By haplotype.

In total, vectors 3, 5, 8, and 10 represent the cases of a single mutation occurring.

There are four haplotype patterns in the catalogue, which contain three haplotypes.
For example the vector 12 describes three potential genealogical histories which lead to
the observed haplotype By, Bo and Bs. In details:

1. By — My — M;: The ancestor haplotype is the B;. The observed haplotypes
were obtained by mutation at loci 2, resulting in the haplotype Bjs. In the latter
haplotype, a mutation at loci 1 leads to the haplotype Bo.

2. By — My — Ms: Here the sequence of events take place in similar manner with
the above case. The ancestor haplotype is the Bs. The observed haplotypes
were obtained by mutation at loci 1, resulting in the haplotype Bs. In the latter
haplotype, a mutation at loci 2 leads to the haplotype B;.

3. Bs — [My — My, My — M;]: In this case, the ancestor haplotype is Bs. In order
to have in the population the haplotypes B; and Bs, a mutation takes place at
the ancestor haplotype either at locus 1 (leading to haplotype Bs) or at locus 2
(resulting to haplotype Bj).

Entries 6, 9, 11, and 12 represent the cases where three haplotypes have occurred.
Finally, vector 13, describes a case where all four possible haplotypes have been
generated. The latter can be achieved by different sequence of events. In contrast with
the previous cases, now we also see recombination (between locus 1 and 2) events. For
example, the ancestor haplotype for the first below sequence of events is the the By.
A mutation at locus 1 or at locus 2 for the haplotype By, leads to haplotype B; or Bs

respectively. A recombination between locus 1 and 2 between the haplotypes B; and
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3. HAPLOTYPE PATTERNS RESULTING FROM GENETIC EVENTS

B> results to haplotype Bs. Similarly we can explain the rest of the below sequence of

events.

1. [Bo—>[M1—>M2—>R1,M2—>M1—>R1]
2. Bl—>[M1—>M2—)R1,M2—)M1—>R1]
3. BQ-)[M1—>MQ—>R1,MQ—>M1—>R1]

4. Bg — [Ml — MQ —>R1,MQ —)Ml — Rl]]

All histories mentioned earlier occur as a subsequence of entry 13. As all haplotypes
have been generated the algorithm always stops as no new haplotypes can be generated
any more.

One example of a missing haplotype pattern is the entry (1,0,0,1), i.e. By and Bs
form the population. This pattern is impossible as B3 contains two “1” alleles, whereas
By does not contain any. To go from By to By (or the other way round) two mutations

would have to occur at once, which we have excluded by our population model.
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Chapter 4
Linkage disequilibrium

Linkage disequilibrium (LD) is a important statistical concept for genetic mapping of
traits in humans or other in organisms. It is defined as the non-random assortment
of marker alleles at different loci in a population and usually is denoted by D or §.
It can also be seen as non-zero covariance between allele indicators. In the literature,
sometimes is referred to other synonymous terms such as gametic phase disequilibrium
or allelic association (Lewontin [1988]). Linkage equilibrium (LE) denote the absence
of association between two loci; the alleles at each loci are independent.

The patterns of LD can been affected by many factors like genetic drift, recombina-
tions, natural selection or by the geographical structure and changes in population size.
As an example of the latter, the strength of LD relies on the number of founding hap-
lotypes (after a population bottleneck occurred), on the size of population (small sized
population drifts with bigger effect) and on the number of generations (the number of
populations for which the population existed). Consequently, we expect weak allelic
association (decay of LD) when there have been more meiosis thus, more opportunities
for recombination. However, it difficult to interpret the raw covariance § in absolute
terms. For this reason, other standardized measures have been proposed. The most
important among them are the coefficients D’ and r2, which play a role in different
applications. In the current thesis, the parameter D’ is more useful since it can be
related to the occurrence of historical recombination, while 72 (the squared correlation
of allele indicators) is more appropriate for the design of association studies (Balding
[2006]).
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4. LINKAGE DISEQUILIBRIUM

4.1 Pairwise linkage disequilibrium

Let us consider the case of two bi-allelic markers located on the same chromosome. If
the alleles are far apart on the chromosome, then recombination events occur a higher
frequency as compared to alleles more closely located together. Alleles which are close
together on the same chromosome will recombine less frequently, hence having the
potentially higher LD.

There are four possible allele combinations at two loci:

locus 1 locus 2

0 0
0 1
1 0
1 1

Table 4.1: Haplotypes for two bi-allelic loci

Let p;- and p.; be the marginal (or single) frequencies of alleles i and j at loci 1 and

2 respectively, where:

(4.1)

o 0, if allele is 0
1,] =
J 1, if alleleis 1

Thus pg- and pi- denote the allele frequency of allele 0 and 1 at loci 1 respec-
tively. Moreover, we assume that haplotypes follow a multinomial distribution A ~
Mult(1,p;;), where p;; denotes the haplotype frequency (4,j). Thus, pp1 denotes the
probability of a randomly selected haplotype being the haplotype with alleles 0 or 1
at the two loci 1 and 2. The marginal frequency of alleles 1 at locus 1 is obtained by

summing up the frequencies of all haplotypes contain alleles 1 at locus 1:

P1-= p1o + P11

Similarly, we can obtain the marginal frequencies of the other alleles.
The relationship between haplotype frequencies and alleles frequencies depends on

whether the alleles at two loci are dependent (i.e. in LD) or independent (i.e. in LE).

1. If the alleles at two loci are independent from each other then the joint probability

is equal to the product of marginal probabilities. For instant, p1; = p1. - p1
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4. LINKAGE DISEQUILIBRIUM

2. If the alleles at two loci are not independent from each other, then joint proba-

bilities deviate from the product of marginal probabilities (by + D).

The probabilities can be arranged in a contingency table:

locus 2
0 1 Marginal prob.
0 actual P00 Po1
— expect Po-p-0  Po- P Do.
wn
§ 1 actual P10 P11
- expect P1p-o  Pi- P D1
Marginal prob.  p.g Pa 1

Table 4.2: Association between two bi-allelic loci, showing the actual haplotype
frequencies and the expected haplotype frequencies when the loci are in linkage
equilibrium. The marginal probabilities represent the allele frequencies

The pairwise coefficient of linkage disequilibrium for two bi-allelic markers is defined

as:

Dij = pij — pi-pj (4.2)

As we mentioned above, the definition of LD provides a measure of deviation from
the independence case. If two events A and B are independent then P(A N B) =
P(A)P(B), therefore departure from independence can be measured as D = P(AN
B) — P(A)P(B) (Mueller [2004], Gorelick and Laubichler [2004]). This concept can
be utilised for expressing the independence between two loci. D is also the covariance
between allele indicators at two loci. In the case of indicators independency, that is
equivalent to uncorreletedness.

In a bi-allelic system, all D;;’s only differ by sign, as can easily be seen by summing

the D;; marginally over one of the two loci:
Dij = (-1)""D (4.3)

where,

D = p11 — p1.p1 (4.4)

Thus, any choice of reference alleles leads to the same absolute value. Note, that

the value of the D is sensitive to the marginal probabilities and bounds for D depend
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4. LINKAGE DISEQUILIBRIUM

on allele frequencies. Bounds for D are given as follows:

D > —min(0,1 —p1. — p1) — p1.p-1, (4.5)

D < min(p1.,p1) — p1.p1 (4.6)

4.2 Standardised LD

To better interpret D, standardized versions have been proposed. The underlying
concept is to normalise D to take values in the fixed interval (0,1). The standardised
LD is denoted as D’ and is defined as:

D..
Dy = = (4.7)
) Dgpax
where,
pmaT _ min(pl,,p,l) —P1.p1 : Dz’j >0 (4 8)
Y —min(0,1 = p1. — pa) — p1pa) : Di; <0

Two extreme cases of D’ are worth consideration:
1. D'=0, which is the case of complete equilibrium (D=0)

2. D'=1, when at least one haplotype is missing, and there is no evidence for recom-

bination between markers.

When the value of D’ is lower than 1, there is evidence for the existence of historic
recombination events. When we observe high value for D', that does not imply that
the two SNPs can predict each other well. Also note, that D’ does not reparametrize
D, i.e. we cannot re-commute D from D’ in general. Therefore also a signed version
can be considered, i.e. D’ lives on (—1,1). We will consider a signed version in the

following.

4.3 High order of Linkage disequilibrium

LD can be generalized to more than two loci. LD for three or four loci has been consid-

ered in the literature before(Weir [1996]). It turns out that these intuitive definitions
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4. LINKAGE DISEQUILIBRIUM

coincide with joint cumulants and LD can therefore be defined for any number of loci
using their joint cumulants.

As an illustration, we show the formula for 3 bi-allelic loci which is a sum of hap-
lotype frequencies of all possible subsets of the loci (i.e. allele frequencies, pairwise
frequency, haplotype frequency of all three loci). The joint cumulant of three loci is

given by:

Diji = pijk — Di--D-jk — P-j-Pi-k — D-kPij- + 2Di-D-j. Pk (4.9)

where 17, j, k denote the three loci and variables p;, denote marginal haplotype frequency
for subset (of loci) L for which one of the alleles at each locus is chosen in a fixed way
for all terms pr. As a convention we will assume alleles 0,1 and p;, to denote the
haplotype of alleles 1 at each locus in L.
The standardisation method that have been described in section 4.2 can be gener-
alised to establish standardised LD measurements for any number of loci (3,...,N). This
method is described in Appendix A (8). This standardization has been developed else-
where (Balliu et al.) and the formulas are more involved. A similar interpretations as
for the pairwise standardised LD exist, namely, standardised higher-order LD being 1,
has the interpretation that at least one haplotype is unobserved. This implies that not
all possible recombinations have occurred yet.

For completeness, LD for N SNPs can be defined as follows. Briefly, we consider
A ={A, Ay, ..., AN} to be a set of random variables with indicator variable A; € {0, 1},
j=1,2,..,N. If Par(A) refers to the set of partitions of set A into non empty subsets,

then the joint cumulant of the set of random variables A is:

J(A) = (A, Agy s Av) = 30 ()R- [TE(TT4)  (@10)

TE€Par(A) BeT Aegp

where 7 € P(A) (| 7 | denotes the cardinality of set 7 ) and each f € 7 is a
block, i.e. a member of the partition (more details in Appendix 1 (8)). The terms
[Tac 3 A correspond to marginal haplotype frequencies. For example, the Function 4.10
corresponds to the mean for one loci( N=1), i.e. f(A;1) = E(A1), while for 2 loci (N=2)
corresponds to the covariance, i.e. f(A1,As) = E(A1A2) — E(A1)E(A2), therefore to
the pairwise LD.
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Chapter 5

Data application of visualisation
and genetic interpretation of
Higher-order Linkage

Disequilibrium.

The aim of this chapter is to visualise and interpret Higher-order Linkage Disequilib-
rium. Also, we will generalize genetic interpretations relating to recombination and
mutation events with respect to the pair-wise situation.

In Chapter 3 and Chapter 4 we have described the way we have contructed the
catalogue. We use the HapMap dataset to obtain SNP data for human chromosome
21. Chromosome 21 has been implicated in many genetic disorders among them Down
syndrome as well as chromosomal translocations resulting in leukemia such as Acute
Myeloid Leukemia (AML). The HapMap data considered in this analysis, consists of
120 haplotypes where we consider a SNP arbitrarily selected in chromosome 21 and
subsequently investigated 100 SNPs downstream of the selected one. For the purpose
of this chapter, I have selected arbitrarly one SNP (rs3843783) and then selected 3
SNPs based on their location; one intronic (rs2829806), one exonic (rs1057885) and
one intergenic (rs11088561) in order to assess whether detectable differences are visible
for the different classes of SNPs(Consortium [2003]). A window of SNPs around these
anchor SNPs is then analysed together. For graphical representation purposes, we will
use heatmap plots which allow to depict relationships in a data matrix where data

values are mapped to a colour range.
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5. DATA APPLICATION OF VISUALISATION AND GENETIC
INTERPRETATION OF HIGHER-ORDER LINKAGE DISEQUILIBRIUM.

The data analysis can be divided into the following steps:
1. Consider the catalogue for three SNPs

2. For each catalogue entry assume a distribution, for each non-empty subset of
three SNPs, compute LD and standardized LD (or D’).

3. For the real data, around an anchor SNP, select a window of SNPs and consider

a sliding window of three SNPs in this set

4. Compute LD and standardized LD for each sliding window of three as for the

catalogue.

5. Create a Fuclidean distance matrix for the catalogue and HapMap dataset by
computing the Euclidean distance of the real data cumulant signature with every

entry of the catalgue.

6. Visualize the patterns using Heat maps plots.

5.1 Compute LD and standardized LD for the catalogue

Each catalogue entry contains an existence pattern of haplotypes. For the purpose of
computing standardized joint cumulants, the existence pattern is transformed into a
uniform distribution on the existing haplotypes. Standardized joint cumulants are then
computed for all non-empty subsets of loci, resulting in seven entries for three loci. The
choice of the uniform distribution leads to joint cumulants of 0 if all haplotypes exist
for a subset (unless a single locus). This corresponds to the case of LE, between alleles
where recombinations have been occurred, i.e. we assume that once a recombination
has occurred further recombinations have eliminated all remaining correlation. For ex-
ample, uniformly distributed haplotypes on two loci lead to lack of correlation between
the SNPs. Missing haplotypes lead to a standardized cumulant of either -1 or 1.

As actual haplotype frequencies in a given sample are subject to genetic drift and
are not uniform in general, the comparisons should not depend on a particular choice
of frequencies. We achieve this by excluding marginal frequencies from the cumulant
signature when performing actual comparisons (see below). The cumulant signature is

added to the catalogue.
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INTERPRETATION OF HIGHER-ORDER LINKAGE DISEQUILIBRIUM.

5.2 Compute LD and standardized LD for real data (HapMap
project)

Data from the HapMap project is offered in a phased version, i.e. haplotypes have
been determined from genotype data using family information and statistical inference.
Haplotype frequencies can therefore directly be estimated using sample frequencies.

As described above, for chromosome 21, we selected some anchor SNPs and for each
such anchor SNPs a window of SNPs around it (in this example 100 SNPs). Within
each such window, continuous sets of three SNPs are selected and analysed in a sliding
window approach. That means that two subsequent windows will overlap by two SNPs.
The data set consists of 60 individuals, resulting in 120 haplotypes. This dataset has to
be considered very small. The fact that this is a small sub-sample from the population
implies that the assumption that no haplotypes were lost is violated. As a matter of
fact, the sampling process can be considered a bottleneck effect. Interpretation of the
analysis has therefore to take this into account.

Analogously to the catalogue, standardized LD is calculated based on sample hap-
lotype frequencies. In total, 100 such cumulant vectors are generated for the 100 SNP

windows of size three.

5.3 Create a Euclidean distance matrix

In order to describe ancestry of the SNP data, similarity of the data with catalogue
entries is computed. In principle, there are many possible ways to find numeric sim-
ilarities. Here we use the Euclidean distance between cumulant vectors as a distance
measure. In order to reduce or eliminate the influence of genetic drift on the analysis,
cumulant entries describing allele frequencies were removed from the vectors prior to
calculating the Euclidean distance. Thereby, four elements remained in the cumulant
vectors (three pair-wise, and one three-wise LD entries).

Let us denote by k1 = (21, x2, x3, x4) an cumulant signature (from the 154) from the
catalogue with the standardised LD values. Similarly, let us consider k2 = (y1, Y2, Y3, Y4)
to be a vector including the standardised LD values from the data set. Then, the

Euclidean distance of these two vectors will be

(5.1)
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INTERPRETATION OF HIGHER-ORDER LINKAGE DISEQUILIBRIUM.

Following the aforementioned principle, we can obtain a Euclidean distance matrix

consisting of all distances between the catalogue and HapMap datasets.

dig dip ... di100
day  d22 ... d2100
M =
di541 disa2 ... dis4,100

where d; ; denotes the Euclidean distance between i catalogue entry and j HapMap
dataset. Hence,
M = [di]

where ¢ = 1,2,...,154 and j =1, 2, ..., 100.

5.4 Visualize the patterns using heatmap plots

Chromosome 21 from the HapMap project consists from 33863 SNPs. Initially, we
selected arbitrary the 100th SNP and calculated the LD and D’ for the next 99 SNPs,
resulting in a total of 100 SNPs. Considering the Euclidean distance of the D" values
between the catalogue and the current subset, we visualised that difference in a heatmap
(Figure 5.1). Subsequently, we considered two SNPs, one lying in an intron (Figure 5.2)
and another in an exon (Figure 5.3) respectively of the gene MRPL39 and repeated
the aforementioned analysis for 100 SNPs in this genomic region. Finally we selected
an intergenic SNP lying between the genes USP25 and C210RF34 (Figure 5.4).

5.5 Interpreting heatmap plots

The aforementioned clustering analysis for the Euclidean distance of their D’, reveals
some distinct clusters (Figure 5.1, Figure 5.2, Figure 5.3, Figure 5.4). There is a
group of events with the same Euclidean distance (red and/or black colour) and lack
of recombination (few recombination/mutation events) since D’ is different, meaning
we cannot conclude anything about the genealogy of those SNPs. Moreover, there
is a cluster (green colours) which are close to have the same genealogy, since they
have a small Euclidean distance, meaning that the history between the SNPs and the
catalogue entries cannot be distinguished based on Euclidean distance. Furthermore,
we observe a cluster (orange colour) where the distance is close to 0, therefore the

catalogue entries can explain the genealogy of the SNPs. Also, we observe a cluster with
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INTERPRETATION OF HIGHER-ORDER LINKAGE DISEQUILIBRIUM.

mixed orange and green colours which is combination of the previous two states. It is of
note, that some catalogue entries represent cases where not all mutations have occurred
whereas the data set is conditioned on the fact that polymorphic data exists (i.e. the
corresponding mutation has occurred). For example, catalogue entry 1 contains only
the haplotype By. In this case, this sample population cannot be observed in real data
based on data ascertainment. By ignoring allele frequencies, we make it impossible to
detect a case where a mutation has “just” occurred (i.e. only very few alleles exist yet).
This indicates that other choices than the Euclidean distance and the elimination of
allele frequencies in the comparisons might be reasonable. The current plots a therefore

only useful when the questions mentioned above are not important.
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Figure 5.1: The heat map and the dendrogram plot of the Euclidean distance for the
100 arbitrary selected SNPs.
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Figure 5.2: The heat map and the dendrogram plot of the Euclidean distance for the
intronic SNP rs2829806.
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Figure 5.3: The heat map and the dendrogram plot of the Euclidean distance for the
exonic SNP rs1057885.
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Figure 5.4: The heat map and the dendrogram plot of the Euclidean distance for the
intergenic SNP rs11088561.
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Chapter 6
Inference on higher order LD

In the previous chapters, we have introduced descriptive ways to analyse the data
by means of heatmap plots. In this chapter, we will develop tests in order to assess
which catalogue entry among two is closer to actual data. Therefore, it is possible to
decide which of two ancestors is more likely to explain the data. We rely on bootstrap

technique to develop the tests and apply them to the HapMap data.

6.1 Introduction to Monte Carlo methods

Monte Carlo methods (also known as Monte Carlo simulations) are computational
tools which are increasingly used in recent years as a result of the great improvements in
computer performance. It refers to statistical methods used to approximate solutions to
problems through repeated random sampling. It can be applied to estimate parameters
of interest and to develop statistical tests. Monte Carlo simulations have been applied
in this thesis to make inference on the genetic history of given genotype data using
hypothesis testing. The parametric bootstrap which generates datasets using repeated

sampling from a known probability model has been used to develop the tests.

6.2 Parameter testing of parametric bootstrap procedure

In this thesis, we focus on the comparison of pairs of catalogue entries using parametric
bootstrap techniques. T'wo catalogue entries are pre-specified and it is to be determined
whether a given data set is more likely to stem from one of the histories.

Let us consider M bi-allelic loci and haplotype h{0, l}M as multinomially distributed,
ie. h ~ Mult(1l,p), where p = (p1,...,pom) denotes the haplotype frequencies and
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6. INFERENCE ON HIGHER ORDER LD

>pi=1

Assume that we are interested to compare catalogue entries hy and hy. Denote with
k1 and ko corresponding cumulant signatures. In principle, all the points in the space
of cumulant signatures, that have equal distances from x; and ko represent the null
hypothesis. We simplify this situation, by assuming that the a single representative
point can been chosen. In the following we choose the mean k,, of k1 and k9 as the

null, hence,

K1+ Ko
K = 5

A justification of this simplification is, that we test the most direct path between

(6.1)

the two histories. For illustration, imagine that x; and ko are located in a two di-
mensional space and K, is their mean (Figure 6.1). Then, we denote with dj, da, the
Euclidean distances of the cumulant signatures of catalogue entries k1 and ko with &,
respectively. The null hypothesis can be restated as no differences between dy and ds,
Hy : dy = ds. We also consider the null hypotheses Hy : di < ds and Hyp : dy > ds.
Rejecting the null hypothesis implies that either of the two distance d; and da, is
smaller. Therefore one catalogue entry is a better explanation for the given data. We
will to try to assess the significance of the hypothesis with the statistic 7" which is the

difference of the distances di and ds.

A
y

Y

Figure 6.1: The plot illustrates the Euclidean distance of LD values between
catalogue entry k1 and ke with thek,,. In this case the d; = do. The null hypothesis
is always directly between two entries
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6.3

Data generation under the Null hypothesis

In order to generate datasets under the null hypothesis under a parametric model, we

will generate haplotypes, which follow the multinomial distribution h ~ Mult(1,p).

Haplotype frequencies p will be defined by mapping back k., to haplotype frequencies
(Balliu et al.).

The following steps are performed:

1.

6.4

Define which two entries from the catalogue are to be tested, with cumulant

signatures K1, Ko.
Compute x,, which represents the null hypothesis.

Estimate allele frequencies from the data and replace allele frequencies in the
cumulant signature k,, with data frequencies. ki, ko are computed based on
uniformly distributed haplotypes (on those who exist) thereby resulting in arbi-
trary allele frequencies. Higher order LD parameters reflect presence/absence of

haplotypes and do not depend on allele frequencies.
Transform the LD values (from the k,,) into haplotype frequencies p.

The sample haplotype frequencies p are used to generate haplotypes from the
corresponding multinomial distribution which consists of 3 loci and IV individuals,

where N is the number of individuals in the data.

Haplotype frequencies are estimated from the generated data and cumulant sig-

natures are computed, denoted with (.

Algorithm of parametric bootstrap

For the parametric bootstrap procedure, the following steps were defined. The below

steps 1, 2, and 3 are described in detail in the previous section.
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6. INFERENCE ON HIGHER ORDER LD

Algorithm

For fixed cumulant signature i, xo:

Step 1 : Repeat for ¢ =1, ..., B; typically B=1000.

Step 2 : Draw random sample of size N from the multinomial haplotype
distribution defined by k.

Step 3 : Estimate haplotypes frequencies and transform to cumulant signature.
Step 4 : Compute the Euclidean distances di = d(k1, ), dy = d(kg, ?)
Step 5 : Compute the test statistic T = do — dy

Step 6 : Compute quantiles of Ty, from

. 1 E .
F(T) =4 > I{z>1TW}
=1

In the implementation the Bootstrap samples are stored as a matrix with B columns

and two rows. Each row represents the a catalogue entry and each column is the

dig dig - dip
doy dgo -+ dop

where d; ; denotes the Euclidean distance between cumulant signature x; and the cu-

Bootstrap sample.

mulant signature of the bootstrapped sample.

After the collection of the bootstrap Euclidean distances, the test statistic is com-
puted by row-wise differences. Finally, we obtain a vector which contains B bootstrap
test statistics 7

T = (doy —di1,doo —dag, - ,dop—diB) = (W, 7@ ... 7B

Suppose that we wish to find a confidence level 1 — « interval for the pairwise
differences of distance measurements T'. First, we sort the observed B i.i.d realizations
to get T(qy,....,T(p) and then we use Qo = T(|aB + 0.5]) to estimate the a - 100%
quantile of the distribution of 7. We can state with probability 1 — « that the true
difference is covered with 1 — a probability in a long sequence of experiments, and will
fall between /2 and 1 — /2 quantiles of the bootstrap distribution of 7. The desired
100(1 — a)% is:

[Qay2; Q1—a/2]

This procedure results in confidence intervals. For a=0.05 and B = 1000 the
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6. INFERENCE ON HIGHER ORDER LD

confidence interval which corresponds to a confidence level of 95%, can be calculated

as

[Ti25), T(o75)]

6.5 Hypothesis testing using pairwise differences of dis-

tance measurements

We consider three hypotheses concerning distances d,, and dy,, the true Euclidean
distances between the parameter vector of the data distribution and the catalogue

entries. The hypotheses of interest are:
H) :dyy <dg, vs HY:dey > de,
HZ:dgy >de, vs HY:dey <d
HP :dey =de, vs H3:dy, # dy,
These lead to the rejection rules for given bootstrap sample T(y), T(2), ..., I(p):
1. Reject Hy if dyy — dwy < Qo)
2. Reject H if dy, — dye; > Q(1-a)

3. Reject HJ if dy;, — dy, € (Qray2)s Q1-ay2))

Two types of error can occur in statistical hypothesis testing. A Type I error occurs
if the null hypothesis is rejected when the null hypothesis is true. A Type II error occurs
if the null hypothesis is not rejected when it is false. In this thesis we investigate Type
I error rate by simulations under the null and power of test when increasing the sample

size of the population under certain alternative scenarios.

6.6 Performance evaluation

6.6.1 Simulations settings

Simulations can be used to evaluate the performance of this procedure for finite sample
sizes. In our experiments, we have conducted 500 replications. We have analysed 12
different cases consisting of pairwise comparisons of two catalogue entries each. The
pairs were chosen to represent pairs with both small and big Euclidean distance. First,

we will assess how the distance influences the outcome of the analysis. Selecting two
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6. INFERENCE ON HIGHER ORDER LD

catalogue entries based on their Euclidean distance, i.e. entries which are either close
together (small Euclidean distance but above zero), far apart (maximum distance) or
having an average distance, gives an impression on which ancestries can be distinguished
for the realistic sample sizes. The Table 6.1 illustrates the Euclidean distances of
examples investigated. Second, we investigated sample size, therefore, in each simulated
datasets different sample size N have been used. Simulated datasets with N equal to

120, 240, 480 and 720 haplotypes (observations) were generated.

catalogue entries Euclidean distance

1 and 91 2.29
1 and 120 0.5
1 and 62 1
72 and 1 1.72
72 and 60 0.23
72 and 101 0.52
103 and 114 2.16
103 and 146 0.23
103 and 128 0.971
62 and 99 2.5
62 and 1 1
62 and 147 0.577

Table 6.1: The FEuclidean distance of standardised LD value between two catalogue
entries

Illustrative example

The following example shows the bootstrap distribution for N = 120 haplotypes,

and B = 1000 bootstrap samples. 500 replications were performed and data was
generated under the null hypothesis. For this simulation, we compare entries 1 and 91
of the catalogue and analyse which of these entries is closer to observed data. From
the Table 6.1 we can see that they have a Euclidean distance equal to 2.29. The Figure
6.2 and 6.3 visualize the bootstrap distribution of the test statistic.
In Figure 6.2 the red line indicates the quantiles 5% and 95% and the blue line the true
expected value of the test statistic 7. The right histogram has Tpps = 0.77, Q50 = 0.488
and Qgso, = 0.922. Based on this plot we can test one sided hypothesis H' and H>
and we can not reject either hypothesis. On the contrary, the resulting terms of the
left plot, gives Typs = 0.48, Q59, = 0.51 and Qg59, = 0.954. For this example we reject
the hypothesis H! whereas, we cannot reject hypothesis H?2.
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In Figure 6.3 the red lines indicates the upper and low bound of the 2.5% and 97.5%
quantiles and the blue line the true observed test statistic 7' (see above) . With these
plots we can test two tailed hypothesis H2. The right plot gives Ty, = 1.020, Q9 59
and Qg7 59 and we reject hypothesis H3. Whereas, the left plot indicates that the
data are consistent with the null hypothesis and we can not reject the H? since Ty,
which is equal to 0.48, is lying on the confidence interval [0.478,1.012]. Figure 6.4
illustrates the distribution of the test statistic T,ps of the 500 simulations. Comparing
with the rest of the histograms, we can conclude that under the same null hypothesis

T is approximately normal distributed with mean around 0.7.

-~ Guantiles Q5% and Q95% ||

G' == Test-Slatistic
o
2z &
w
c
@
e 2
=]
e f T T T T 1
0.2 04 0.6 0.8 1.0 1.2
T estimator of simulation 488
o .
0." e ﬂu!ntwlesﬂﬁ%ar\dﬂgﬁ%: [

== TestSlatisic

Density

0.2 0.4 0.6 0.8 1.0 1.2

T estimator of simulation 465

Figure 6.2: Both histograms depict the sampling distribution of the test statistics
when we test the catalogue entries 1 and 91 for two experimental simulations. The
red line indicates the quantiles 5% and 95% and the blue line the observed test
statistic 7. We can test the hypotheses H' and H?.
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Figure 6.3: Both histograms depict the sampling distribution of the test statistics
when we test the catalogue entries 1 and 91 for two experimental simulations. The
red line indicates the 95% confidence interval and the blue line the observed test
statistic 7. We can test the hypothesis H3.

6.6.2 Type I error

Table 6.4 lists all results for type I error simulations for all tests. We test at the
0.05 level and theoretically, the probability to reject the null hypothesis should be
« = 0.05. In simulations studies, finite sample properties are investigated and the
estimated Type I error can deviate, but it should be close to the nominal level o = 0.05
because the simulated dataset was generated under the null hypothesis. With s = 500
replications, the standard error of rejection rate is approximately \/m =
0.0097. Therefore, the Type I error rate lies in the interval [0.030,0.069] is acceptable
taking into account sampling fluctuation caused by the replications. From the Table
6.4, we observe that all the tests do not maintain the nominal level a = 0.05. However,

if a type I error is below 0.05 then this does not invalidate the test but it makes it
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Figure 6.4: The histogram illustrate the distribution of the observed test statistic T

conservative. In most of the cases, in test 3 (hypothesis H?), the Type I error tend to
be inflated, making the test invalid. Type I error greater than the acceptable range,
indicates that the test is too liberal.

However, for the cases where we compare the catalogue entry 1 with 120, catalogue
entry 72 with 60, catalogue entry 103 with 114, Type I error is lying in an acceptable
range. For test 2 (hypothesis H?) and test 3, Type I error is either conservative or
liberate, with many cases indicating liberal behaviour. Increasing the sample size we
do not observe stabilization of error rates or clear trends of Type I error. For some of
the investigated examples we can identify an opposite trend between test 1 (hypothesis
H') and test 2. When Type I error of test 1 becomes conservative, then Type I error of
test 2 is more liberate and via versa. Test 1 maintained Type I error rates at nominal
levels when we compare the catalogue 72 with 60. Whereas, it is slightly inflated in the
case of catalogue 72 with 60.

Two potential reasons why the type I error is not maintained are investigated next.
First, the low number of replications that have been performed leads to type I error
estimates with big confidence intervals. Second, when generating the null hypothesis
for the parametric bootstrap, allele frequency estimates from the data are plugged into
the cumulant signature. This is the only difference in the data generation as compared
to the simulation of the true simulation model. First, we investigate the influence of
bootstrap replications. Table 6.3 lists an example concerning the comparison between
catalogue entries 1 and 91. For these examples we have performed simulation anal-
ysis increasing the number of bootstrap and simulations procedure to 2000 and 1000

respectively. However, we can not observe any improvement, with the results almost
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identical to previous results. Second, Table 6.2 illustrates two examples where we per-
form a comparison between catalogue entries 1 and 91 and between 1 and 120. For this
comparison all the simulated datasets have been set to have allele frequencies equal
to 0.5. This implies that the bootstrap samples come from the exact true null dis-
tribution. Thus, instead of sample estimates, true allele frequencies are plugged into
the cumulant signature. In this example, all the tests maintain the Type I error rate
at nominal levels and the plugging in of estimated allele frequencies therefore explains
the size violations of the test. Standardized higher order cumulants depend on lower
order cumulants (e.g. pairwise D’ depends on allele frequencies) which is an intuitive
explanation of this behaviour. On the other hand, with increasing sample size the esti-
mation of allele frequencies should become more accurate improving maintenance of the
a-level. However, this behaviour could not be confirmed by the simulations performed.
A better understanding of this behaviour would require more extensive simulations and
theoretical work that is beyond the scope of this thesis.

In summary, the presented testing procedures are therefore valid for known allele

frequencies but are conservative or liberal for the sample sizes which were investigated.

catalogue entries sample size =120 sample size =240 sample size =480 sample size =720

Type I error rate

test 1 0.044 0.056 0.048 0.05
1 and 91 test 2 0.062 0.044 0.046 0.056
test 3 0.052 0.064 0.054 0.052
test 1 0.05 0.044 0.04 0.048
1 and 120 test 2 0.054 0.056 0.056 0.04
test 3 0.044 0.044 0.04 0.046

Table 6.2: Setting the three allele frequencies equal to 0.5
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catalogue entries sample size =120 sample size =240 sample size =480 sample size =720

Type I error rate

test 1 0.077 0.069 0.104 0.104
1 and 91 test 2 0.041 0.032 0.02 0.014
test 3 0.058 0.053 0.051 0.066

Table 6.3: Increase bootstrap replication to 2000 and simulations to 1000

6.6.3 Power

The probability of rejecting the null hypothesis when it is false is called power of the

test and it is defined as follows:

power = 1 — prob(no reject Hy| Hy false) = 1 — prob(Type II error)

Similar to the type I error of a test, which quantifies the probability of taking a
wrong decision (by rejecting the null when is true), power quantifies the probability of
making a correct decision (by rejecting the null when is false). In our case, power allows
to assess the ability to detect differences between two catalogue entries when given data
are truly closer to one of the entries. Typically, 80% or greater power is considered
sufficient for actual studies. Otherwise, the test would be likely to be inconclusive for
the given data. The simulation procedure to calculate the power, only differs from
the procedure to calculate the Type I error, in that we sample under the alternative
hypothesis.

In this thesis, two scenarios are used for generating data sets. In the first scenario,
we simulate data sets that have been generated by the point kg, where:

gy = o 2 (6.2)
2
and we assume that the artificial population which is generated by the point kg (which

is represented by LD values) is closer to catalogue entry ko (Figure 6.5).

Power is given in Table 6.5 for the same four sample size scenarios that were used to
assess type I error. Generally, a test becomes more powerful as sample size increases.
Ideally, we would like to have power of 80% for all samples, however, power varies

strongly across scenarios. In the majority of the tests seem to be underpowered.
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Y

Figure 6.5: The plot illustrates the Euclidean distance of LD values between
catalogue entry k1 and k9 with the k. In this case the d; > da

One example from Table 6.5 is where we test the differences between catalogue entry
1 and 91. The resulting power for the test H' when the sample size is 720, indicates
that we have a 55.6% chance of drawing the incorrect conclusion by not rejecting H°
and 44.4% chance of drawing the correct conclusion that the two catalogue entries do
not have to the same Euclidean distance to &, for the considered sample. This test may
result in missing interesting findings that one of the two catalogue entries has a better
”story” to tell about the evolutionary history and genealogy of sample population. For
this and other examples, sample size needs to be increased to achieve reasonable power.

However, some examples show power of 81.8% and 71.6% for tests H? and H?®
respectively, for the comparison between catalogue entries 103 and 128 with sample
size equal to 720.

An alternative scenario is to consider the extreme case where we simulated datasets
that are generated based on one of the catalogue entries k1 or k9. Arbitrarily, we select
to generate the data based on k9. Here, we increase the difference of the alternative
to the null, as compared to the previous simulation and again consider the same four
sample sizes. We expect to see increased power as compared to the previous examples.
Results are listed in Table 6.6. Comparing with the previous simulations, we observe
two additional cases having good power. For instance, the comparison between cata-
logue entry 1 and catalogue 91 results to power 98.6% and 95.8% for the tests H' and
H? respectively. In this example, we observe strong power increase as the sample size
increases. This indicates that for samples originating from ”pure” catalogue entries,
moderate sample sizes of <1000 are sufficient to reach acceptable power. Some of the
scenarios do not maintain Type I error. The consequences for the interpretation of

power are discussed below.
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catalogue entries sample size =120  sample size =240 sample size =480 sample size =720

Type I error rate

test 1 0.074 0.066 0.09 0.116
1 and 91 test 2 0.052 0.048 0.016 0.01
test 3 0.06 0.066 0.062 0.062
test 1 0.032 0.026 0.01 0.012
1 and 120 test 2 0.064 0.064 0.1 0.114
test 3 0.05 0.046 0.058 0.048
test 1 0.032 0.034 0.038 0.006
1 and 62 test 2 0.114 0.124 0.136 0.142
test 3 0.082 0.104 0.098 0.1
test 1 0.038 0.036 0.036 0.062
72 and 1 test 2 0.082 0.066 0.06 0.062
test 3 0.072 0.07 0.086 0.076
test 1 0.056 0.048 0.062 0.062
72 and 60 test 2 0.054 0.068 0.076 0.096
test 3 0.058 0.052 0.06 0.06
test 1 0.052 0.056 0.044 0.058
72 and 101 test 2 0.082 0.034 0.054 0.064
test 3 0.078 0.042 0.056 0.086
test 1 0.024 0.052 0.032 0.056
103 and 114 test 2 0.054 0.056 0.062 0.058
test 3 0.032 0.058 0.052 0.04
test 1 0.04 0.07 0.044 0.038
103 and 146 test 2 0.06 0.038 0.06 0.046
test 3 0.052 0.068 0.048 0.046
test 1 0.04 0.028 0.022 0.01
103 and 128 test 2 0.078 0.078 0.11 0.182
test 3 0.07 0.058 0.074 0.118
test 1 0.064 0.07 0.08 0.054
62 and 99 test 2 0.054 0.08 0.074 0.09
test 3 0.054 0.066 0.058 0.08
test 1 0.046 0.058 0.054 0.09
62 and 131 test 2 0.08 0.078 0.054 0.086
test 3 0.07 0.062 0.082 0.102
test 1 0.172 0.352 0.568 0.758
62 and 147 test 2 0.004 0.002 0 0
test 3 0.092 0.242 0.458 0.61

Table 6.4: Results of Type I error comparing four sample size scenario
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catalogue entries sample size =120 sample size =240 sample size =480 sample size =720
Power(%)
test 1 12.4 17.2 30.8 44.4
1 and 91 test 2 2.8 0.8 0.02 0
test 3 9.4 9.8 18.2 30.4
test 1 4.4 2.2 2.2 2.4
1 and 120 test 2 7.4 5.6 6.2 6.2
test 3 4.8 3.8 4.8 4.2
test 1 3.6 1 0.8 2
1 and 62 test 2 20.4 23 31 34
test 3 13.6 15.2 22.8 28.6
test 1 6 4.8 4.2 4.8
72 and 1 test 2 6.6 11.6 12.6 16
test 3 7.6 9 10 13.4
test 1 3.8 4.6 3.4 1.2
72 and 60 test 2 6 8.6 9.4 10
test 3 5.2 7.8 8 5.6
test 1 4.2 4.6 3.4 3.4
72 and 101 test 2 7 5.8 6.2 8
test 3 6 7.2 4.4 6.2
test 1 9.4 124 19.4 28.2
103 and 114 test 2 2.6 1.2 0.4 0
test 3 6.8 6.2 11.2 17.6
test 1 4 5.6 6.8 4.2
103 and 146 test 2 4.2 5.2 3.8 6.2
test 3 4 6 5 6
test 1 1.8 0.2 0 0
103 and 128 test 2 22.2 33.4 62.8 81.8
test 3 15.6 23.8 50 71.6
test 1 7.6 11.6 16.8 19.2
62 and 99 test 2 2.2 2 1.8 1.8
test 3 5.6 8.8 10 12.2
test 1 2.8 2.4 2 2.4
62 and 131 test 2 11.2 15.2 18.2 19
test 3 8.6 10.6 12.6 14.2
test 1 10.2 18.6 30.8 32.8
62 and 147 test 2 1.6 0.4 0.2 0
test 3 6.2 10.4 21.6 23.6

Table 6.5: Results of power in approach 1
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catalogue entries sample size =120 sample size =240 sample size =480 sample size =720
Power(%)
test 1 42.2 70.6 91.4 98.6
1 and 91 test 2 0.6 0 0 0
test 3 29.6 58 86.6 95.8
test 1 2.4 3.4 2.2 4
1 and 120 test 2 8 4.4 9.6 7.2
test 3 5 4.4 7.4 6
test 1 2.8 1.6 0.2 0.6
1 and 62 test 2 20.4 23.8 34.8 42.6
test 3 15.6 17.4 25.8 32
test 1 5 4.2 4 6.2
72 and 1 test 2 6.6 8 7.2 6
test 3 6.6 7.4 6.6 6.2
test 1 5 4.6 6.6 6.6
72 and 60 test 2 4.8 5.6 6.6 7.8
test 3 4.6 5.6 7.4 8.2
test 1 6.2 4.2 7.6 6.4
72 and 101 test 2 3.4 4.6 4.8 8
test 3 5.4 4.4 6.4 7.4
test 1 2.6 4.2 2 1.8
103 and 114 test 2 8.8 11.8 11.8 15.4
test 3 5.8 9 6.4 12
test 1 5 5.2 7 6.2
103 and 146 test 2 6.2 6.6 6.2 5.4
test 3 5.2 8.2 7 6
test 1 0 0.2 0 0
103 and 128 test 2 57.8 88.4 97.8 99.6
test 3 49.2 80 97.2 99.4
test 1 27.6 48.8 75 87.6
62 and 99 test 2 0.6 0 0 0
test 3 18 33.6 60.4 76.8
test 1 14 0.4 8 2
62 and 131 test 2 21.4 32.6 33 45.2
test 3 14.4 21.8 23.6 33.6
test 1 8 9.2 12 18.8
62 and 147 test 2 5 2.2 1.4 4
test 3 7.4 5.4 8 11.2

Table 6.6: Results of power in approach 2
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Chapter 7
Data Example

To illustrate the proposed methods, we analyse seven SNPs from chromosome 21 of the
HapMap data set. The data set for the SNPs consists of 120 haplotypes. SNPs were
selected to represent different biological categories, namely intragenic and intergenic
SNPs. The analysis is performed using the methods described in Chapter 5 and Chapter
6.

For a selected SNP, we create a window including neighbouring SNPs, resulting in
a window of three SNPs each. Then, we extract the data of haplotypes for each of
these windows of SNPs. Subsequently, we compute the haplotype frequency followed
by mapping to LD and standardised LD (D’). Subsequently, we tested whether this
test statistic is closer to one of two preselected catalogue entries (6). Again we use
cumulant signatures, i.e. standardised LD parameters without allele frequencies.

The test performed for the selected set of SNPs, corresponds to the ones for the
simulated datasets described in Chapter 6. For this analysis, we have repeated the para-
metric bootstrap with B = 1000 iterations and we have collected bootstrap samples of
the test statistic T' = (T3, Ts, - -+, Tp). Table 7.1 shows the raw p-values of investigated
examples and seven sets of SNPs. If the p-value is equal or less than the significant
level o« = 0.05 then the null hypothesis is rejected. Based on the reported p-values we
observe that in many cases we have a very strong evidence against the null hypothesis.
If the p-value is small (close to 0) then the sample we have obtained is impossible or
highly unlikely under the null hypothesis meaning that one of the ancestors is to be
preferred in the interpretation.

In the case of comparing the catalogue entries 103 and 128 for the SN P; (rs2834508)
the empirical distribution of the test statistic 1" is depicted in in Figure 7.1. The
Euclidean distances are d(103, 128) = 0.971 (Table 6.1; 103, 128 denoting catalogue
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entry numbers), d;=d(103, SNP;) = 0.943 (Table 7.2) and dp=d(128, SNP;) = 1
(Table 7.2). The observed test statistics is Tpps = d2 — di = 0.058. The resulting
p-values from Table 7.1 indicate that the null hypothesis H? is rejected. The p-value
is small indicating that the data sample is not under the null. This is graphically
illustrated in Figure 7.1, where the T, is located left from the support of the density
(the blue point). In contrast, test H' and test H® are not rejected and cannot identify
differences between the catalogue entries 103 and 128. A high p-value close to the
upper boundary (0.999) for hypothesis H? indicates that the result is not significant
and therefore we can not reject the null hypothesis. High p-values can not be used to
draw any conclusions and do not provide any evidence in favour of the null hypothesis,
in general. That is also the case, when we test one sided hypotheses and we get high

p-value, testing the other tail may or may not result in low p-values.
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Figure 7.1: The resulting histogram and box plot of the comparison of the two
catalogue entries 103 with 128

Based on Table 7.1, we can identify six cases where p-values show strong or moderate

evidence against the null hypothesis. For the pair of catalogue entries 72 and 1 which
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are tested with SNP1 (rs2834508) and SNP5 (rs11088561), we have found that the
p-value of the test H? gives a moderate evidence in favour of alternative hypothesis.
Hence, we conclude that the Euclidean distance between the two catalogue entries and
the SNP differ. Comparing the p-values of test H' and H? we do not have any evidence
to reject the null hypothesis of test H', since the test yield a p-value greater than 0.05.
Therefore, we conclude that the Euclidean distance between the catalogue entry 72 and
SNP; (dy = d(72,SNPy)) is smaller than the Euclidean distance of catalogue entry 1
and selected SNP; (di = d(1,SNP;)). The same conclusions are drawn for the tests
H', H? and H? when comparing the aforementioned pair of the catalogue entries with
SN Ps. Additionally, for test H?, the p-values of the catalogue entries 72 with 101 (for
SNPy), 103 with 114 (for SN P7), 103 with 128 (for SN P;) and 62 with 99 (for SN Pg)

are consider significant.

7.1 Multiple testing correction

In the current analysis, we are testing each hypothesis seven times. The probability
to observe at least one significant result, just by chance, is 1 — (1 — 0.05)7 = 0.30,
assuming independent tests. There are many methods to deal with multiple testing
problems. This is often achieved by adjusting a or p-value in order to avoid false
positive results. One option is to apply the Bonferroni correction by adjusting the p-
values by multiplying the number of SNPs with the "raw” p-values. Another option is
to apply the Holm correction, which is similar to Bonferoni but strictly more powerful.
In this method the p-values are ranked from smallest to largest, with the first one to
be multiplied by the number of SNPs present in the analysis, in this case seven. The
second p-value is multiplied by the number of SNPs-1, the third with the number of
SNPs-2, etc. All adjusted p-values are considered in that order and all p-value less than
the threshold 0.05 are considered significant until the threshold is exceeded for the the
first time.

The above procedures are not optimal for a set of tests that are dependent, such as is
case in overlapping window analyses. We here take the point of view of an exploratory
analysis of the HapMap data and we do not apply any correction in the presented
tables.
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7. DATA EXAMPLE

catalogue entries rs2834508  rs3843783  1rs2829806 rs1057885 rs11088561 rs1534 rs1537118

SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7
P value

test 1 0.971 0.999 0.999 0.999 0.999 0.998 0.209
1 and 91 test 2 0.029 0.001 0.001 0.001 0.001 0.002 0.791
test 3 0.058 0.002 0.002 0.002 0.002 0.004 0.418
test 1 0.999 0.999 0.999 0.999 0.001 0.001 0.001
1 and 120 test 2 0.001 0.001 0.001 0.001 0.999 0.999 0.999
test 3 0.001 0.001 0.001 0.001 0.001 0.001 0.001
test 1 0.999 0.999 0.999 0.999 0.999 0.001 0.001
1 and 62 test 2 0.001 0.001 0.001 0.001 0.001 0.999 0.999
test 3 0.001 0.001 0.001 0.001 0.001 0.001 0.001
test 1 0.978 0.999 0.999 0.999 0.978 0.971 0.104
72 and 1 test 2 0.022 0.001 0.001 0.001 0.022 0.029 0.896
test 3 0.044 0.002 0.002 0.002 0.044 0.058 0.208
test 1 0.167 0.999 0.998 0.996 0.001 0.001 0.001
72 and 60 test 2 0.833 0.001 0.002 0.004 0.999 0.999 0.999
test 3 0.334 0.002 0.002 0.008 0.001 0.001 0.001
test 1 0.001 0.327 0.999 0.995 0.999 0.999 0.862
72 and 101 test 2 0.999 0.673 0.001 0.005 0.001 0.001 0.138
test 3 0.001 0.654 0.002 0.01 0.002 0.002 0.276
test 1 0.406 0.453 0.936 0.938 0.999 0.999 0.992
103 and 114 test 2 0.594 0.546 0.064 0.062 0.001 0.001 0.008
test 3 0.812 0.908 0.128 0.124 0.002 0.002 0.016
test 1 0.001 0.001 0.512 0.511 0.001 0.001 0.383
103 and 146 test 2 0.999 0.999 0.524 0.526 0.001 0.001 0.655
test 3 0.001 0.001 0.952 0.948 0.002 0.002 0.69
test 1 0.001 0.001 0.001 0.001 0.999 0.999 0.978
103 and 128 test 2 0.999 1 0.999 0.999 0.001 0.001 0.021
test 3 0.001 0.001 0.001 0.001 0.002 0.002 0.042
test 1 0.999 0.999 0.999 0.999 0.047 0.018 0.936
62 and 99 test 2 0.001 0.001 0.001 0.001 0.953 0.982 0.064
test 3 0.002 0.002 0.002 0.002 0.094 0.036 0.128
test 1 0.999 0.999 0.999 0.999 0.001 0.001 0.001
62 and 131 test 2 0.001 0.001 0.001 0.001 0.999 0.999 0.999
test 3 0.002 0.002 0.002 0.002 0.001 0.001 0.001
test 1 0.999 0.999 0.999 0.999 0.001 0.001 0.501
62 and 147 test 2 0.001 0.001 0.001 0.001 0.999 0.999 0.499
test 3 0.002 0.002 0.002 0.002 0.001 0.001 0.998

Table 7.1: Re%%lts of p-values



7. DATA EXAMPLE

catalogue entries 1s2834508 1s3843783 rs2829806 rs1057885 rs11088561 1rs1534 rs1537118
SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7

Euclidean Distance

1 1.373 1.000 0.000 0.000 1.373 1.414 1.732
91 2.292 2.062 2.291 2.291 2.453 2.500 2.291
120 1.461 1.118 0.500 0.500 1.066 1.118 1.500
62 1.002 0.000 1.000 1.000 1.663 1.732 1.414
72 1.277 1.414 1.528 1.528 1.246 1.291 1.155
60 1.255 1.269 1.394 1.394 1.346 1.394 1.269
101 1.795 1.810 1.810 1.810 1.471 1.509 1.509
103 0.943 0.972 0.972 0.972 0.705 0.782 0.782
114 2.062 2.062 2.291 2.291 2.465 2.500 2.291
146 0.759 0.782 0.972 0.972 0.900 0.972 0.782
128 1.002 0.000 1.000 1.000 1.663 1.732 1.414
99 2.266 2.500 2.291 2.291 2.063 2.062 2.291
131 1.415 1.000 1.414 1.414 1.329 1.414 1.000
147 0.794 0.577 0.816 0.816 1.086 1.155 1.000

Table 7.2: Results of Euclidean distance between catalogue entries and SNPs
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7. DATA EXAMPLE
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Figure 7.2: The heat map and the dendrogram plot of the Euclidean distance for the
seven SNPs.

o7



Chapter 8

Discussion

In order to infer details of evolutionary processes as well as to decipher the genealogy of
given data, linkage disequilibrium can be used. Genealogy is here seen as the description
of a sequence of genetic events generating the data. Evolutionary forces can be divided
into neutral (mutation, drift, recombination, migration etc.) and non-neutral forces
(selection). Arguably, in an exponentially growing population such as humans, a model
that only account for mutation, recombination, and drift, while ignoring fixation events,
can explain the major part of genetic variation in the population. Comparison of the
empirical patterns of linkage disequilibrium to the ones expected under such a model,
can provide insight about the genetic diversity and the genealogy of the sample. The
aim of this thesis is to reveal the genealogy of given data by comparing a theoretical
population to observed data. As an example, data acquired from the HapMap project
was used. This is achieved both by visualization in terms of heatmap plots that reveal
closeness of SNP data to possible genealogies (the catalogue) and by developing a
hypotheses testing procedures based on the parametric bootstrap.

All methods are based on haplotypes which exploit more information from the data
as compared to single SNP analysis. However, haplotype based methods can suffer
from problems of their own, such as dealing with rare haplotypes. When a haplotype
is rare, implying that also its allele frequencies are low, hence, the LD values will be
strongly influenced by small changes in allele frequencies. Most of the testing scenarios
considered in this thesis showed limited maintenance of Type I error. In a limited
investigation it was shown that Type I error is well maintained when allele frequencies
are known. This indicates that the strong dependency of standardised LD on allele
frequencies is the most likely reason for this behaviour. More simulations would be
needed to extract exact reasons and possible remedies for this problem. Due to time

constraints they were outside the scope of this thesis. A consequence of inflated type I
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8. DISCUSSION

error is that power and p-values cannot be interpreted strictly for the cases where type
I error was not maintained. We have provided nominal p-values in this thesis and their
interpretation must be seen in this context. They can still be used as an exploratory,
descriptive measure. Furthermore, when we insert known allele frequencies instead of
estimating them, we maintain the the a-level accurately.

In Chapter 5, we visualised the LD patterns of the catalogue entries using a se-
lected set of SNPs. The results of the heatmap plots, indicate that there are specific
catalogue entries which can be excluded as an explanation for the given SNP data. For
example, catalogue entry 99 cannot explain the genealogy of the four set of 100 SNPs,
indicating few recombination events have taken place into the sample. However, inte-
grating LD patterns based on heatmap plots does not allow to make any inference on
their genealogy. These plots help to get a quick overview of the behaviours of linkage
disequilibrium across a whole genetic regions.

In Chapter 6, we proposed three hypotheses to inferential ends. Apart from the
problems of type I maintenance above, simulations indicate that powerful inference
needs big sample sizes in the thousands of individuals. Big sample sizes are also prefer-
able to meet the assumption that no haplotypes are lost due to genetic drift. The
sampling process itself can be seen as creating a new population which has just gone
through the bottleneck of sampling. For the HapMap sample consisting of 60 inde-
pendent individuals certainly that effect is extremely pronounced and results presented
here must be seen as merely indicative of certain genealogies. Through sampling, only
few haplotypes may be present in the data implying that D’ values may be biased
upwards, indicating that only few historical recombination events appear between two
markers. Also this problem can be remedied by increasing sample size.

In Chapter 7 we apply the proposed tests to real datasets, derived from the HapMap
project. It is not reasonable to test data against any given catalogue pair. If the data is
far away from both entries that are to be compared, a significant result is meaningless
in practice. The inferential procedure should therefore always be accompanied by the
descriptive methods discussed above. Characterising the pairs of the catalogue that can
be used for meaningful comparisons, is another interesting problem for future research.
Under the caveats mentioned above, among all the catalogue entries, three (72, 103 and
99) gave promising results in the dataset and are more likely to explain their genealogy
as compared to their counterparts.

For computational reasons, the analyses were limited to three loci at a time. All the
computations of this thesis were conducted on a UNIX server with 64 CPUs. Super-

computers and/or cluster/grids of servers can be used to apply those computations for
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8. DISCUSSION

more than 3 loci. However, it seems difficult to go beyond 5 loci, as the computation
of the catalogue is exponential in the square of the number of loci.

In conclusion, we provide both visualization and inferential techniques to analyse
the genealogy of haplotype or genotype data. The visualization allows to quickly assess
whole regions simultaneously. Testing allows to distinguish between two scenarios but
the tests only maintain type I error for certain comparisons in their current form. Lim-
itations are computational cost, some strong assumptions, and the needed for relatively

big samples.
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Appendix A

.1 Re-parametrization

If we denote as N to be the number loci of a DNA segment, then we consider that
A ={A}, A € {0,1} for every | € 1,2,..., N, to be a random random variable for [
markers. Then we denote as §; = {b €< 0,1 > |4 € s <= b = 1} a set of random
variables A. For example, if N=3 and A = {A;, A, A3} then all possible sets S of A
is:

S ={A1}, {A2}, {43}, {Ar, Ao}, {A1, Az}, { A2, A3}, {Ar, A2, A}

Then, for instance, B4, 4,) Will contain two haplotypes with allele 1 at loci 1 and 2.
Therefore B4, 4,3 = {{1,1,0},{1,1,1}}.

Let’s consider P(A) to be a family of sets of all possible partitions of sets s € S of A
into non empty subsets (blocks). Therefore, for 7 € P(A) each 5 € 7 is a block. Then

the joint cumulant of set of random variables A is:

5= > (-~ r | -1 HE( I1 A) - D

TEP(A) BET Aep

where,

HE(HA)z > pp=ns

Ber Aeg BepSs

refers to be the joint expectation of random variable s, for s € S of haplotype fre-

quency pp = p;;ir of B haplotype. Equivalently, 7, = (71, M2, M3, 125 125 W23, M123) =
(pg..,p.g.,p..g,ng.,pgq, p.QQ,pQQQ). In case of N=3 and A = {Al, AQ, Ag} then all pOSSible

partitions of A is :
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. APPENDIX A

P(A) = {{A1, A2, A3}, {{A1, Ao}, {As}}, {{A1, Az}, {A2} ), {{A2, As}, {Ad ), {{Ad ) {42}, {43}

Then the joint cumulant is:
s = (—1)1_1(1 — 1)!])222 + (—1)2_1(2 — 1)!p..2p.22 + (—1)2_1(2 — 1)!p.2.p22.

+(—1)271(2 — 1)!p2..p2.2 + (—1)371(3 — 1)!p2..p.2.p..2

= P222 — P-2P-22 — P2..pP2.2 — P2..p2.2 — P2..P-2.P--2

.2 Standardised LD for arbitrary number of loci

To generalise the concept of pairwise LD for arbitrary number of loci, re-parametrization

method of LD are needed. The joint cumulants d 4 can been written:

ba=na— Y (=D r| -1 ]ns

TEP(A) BeT

=na— Y Rs(r)=na—Rs
TEP(A)

where. R(7) depends on loci § € 7 with | 8 |[< N. These rest terms Rs(7) are
considered fixed and bounds for 4 are to be determined completely analogous to the
two locus case based on n4. First, n4 is upper bound by all lower-order 75 and lower
bound by 0. That is:
na < Ui(A) = min{n, | s € S\A}
na > L1(A) =0

Second, further constraints are imposed by the relationship between 14 and lower

order haplotype frequencies 7. It is straightforward to see that ns can be restated as:

=pet 3 (DU,

teS,sCt

Here, pp, is the frequency for haplotype B, = {b € {0,1}V|4; € s <= b = 1},

62



. APPENDIX A

the haplotype with N loci with 1-alleles at loci s and 0-alleles elsewhere. Note, that all

the sums above include 7n4.Solving for n4 gives us:

ma= (OB g, —p — ST (—) Ty,
teS,sCt

= ()P s, — 3T ()Pl
teS,sCt
= Us(sz - Rs)a
where o = (=1)l4=Isl and R, = Ztes,sct(_l)lﬂ_'Sl"?t’ Each n, therefore contributes an

upper and lower bound tona by choosing pp, = 0 or pp, = 1:

nngs:

<7 — maz(l — Rs,0) :ifo >0
=T min(Rs,0) tifo <0

nsZLs:{ max(—Rs,0) 2ifo>0
min(l — Rs,0) :ifo <0
With Us(A) = min{Us|s € S\{A}} and La(A) = maz{Ls|s € S\{A}}, we get
n3ee = min{Uy (A), Uy(A)},
;"™ = min{L1(A), L2(A)}.
Then 77%% and n’f" can be used as above to standardised &4
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Load necessary packages

library(partitions)
library(sets)
library(gtools)
library(devtools)
library(Rcpp)
library(GeneticsLD)
library(pander)
library(partitions)
library(sets)
library(ggplot2)
library(gplots)

The package GeneticsLD was created by Dr Stefan Boehringer and was necessary for the
completion of the project.

Helpful functions to load and save lists

save.list <-function(x,file){
save(x,file=file)

}

load.list <- function(file){
load(file)
return(x)

}

We use the two functions ord2bin and bin2ord which convert a number into binary
representation and vice versa.In the algorithm we index haplotypes from 0 to 3. The binary
representation then gives the alleles corresponding to this haplotype.

bin2ord = function(b, base = 2)
as.vector(b %*% sapply(1:length(b), function(i)27~(i-1)))
ord2bin = function(o, digits = 2, base = 2)
sapply(1l:digits, function(i){(o %/% 2~(i-1)) %% 2})
In order to calculate the mutation the below fuctions have been used:

Mutation <- function(htfs, pos.hap, v = rep(0,3)){
#htfs= haplotype frequency
# pos.hap= position of Llocus

v[pos.hap]=1 - v[pos.hap]
htfs[bin2ord(v)+1]=1
htfs

}

mutation.name <- function(htfs, pos.hap,v = rep(0,3)){
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}

m<-list(Mutation(htfs[[1]], pos.hap,v))
n<- if (is.null(names(htfs)))
sprintf("M(%d)", pos.hap) else
sprintf("%s->M(%d)", names(htfs)[1], pos.hap)
names(m) <- n
m

mut.name.multi <- function(htfs,pos,v = rep(9,3)){

}

d <- lapply(1:1length(htfs), function(i){
mutation.name(htfs[i],pos,V)

1)

d <- unlist(d,recursive = F)
d

For the recombination event the below functions have been used:

partition <- function(k,v,pos){

}

#htBinl = ord2bin(htl, L)
#htBin2 = ord2bin(ht2, L)
htBinNewl = c(k[1l:pos], v[-(1:pos)]);

htBinNew2 = c(v[1l:pos], k[-(1:pos)]);
1<-1list(htBinNewl, htBinNew2)
return(l)

recomb <- function(htfs,k,v,pos){

}

if(htfs[bin2ord(k)+1]==0 || htfs[bin2ord(v)+1]==0 ){

return(htfs)
}
rec<-partition(k,v,pos)
htfs[bin2ord((rec[[1]]))+1]=1
htfs[bin2ord((rec[[2]]))+1]=1
htfs

rec.name <- function(htfs,k,v,pos){

m<-list(recomb(htfs[[1]], k,v,pos))
n<- if (is.null(names(htfs)))

66



sprintf("R(%d|%d,%d)",bin2ord(k),bin2ord(v),pos) else
sprintf("%s->R(%d|%d,%d)", names(htfs)

[1],bin2ord(k),bin2ord(v),pos)

}

names(m) <- n

m

all.rec <- function(htfs,N,pos){

hf<-which(htfs[[1]]>90)

a=set_combn(as.set(1:1length(hf)),2) # set with all possiple

partitions

}

mat <- list() #storage the results
h<-c()
for(i in 1:1length(a)){
set <- unlist(as.list(as.list(a)[[1i]]))
hap <- hf[set]
r <-rec.name(htfs,ord2bin(hap[1]-1,N),ord2bin(hap[2]-1,N),pos)
mat[[i]] <-r

}
mat <- unlist(mat,recursive = F)
return(mat)

Create a table which take all possible sets of all recombinations and check if they are
identical or not.

table.rec <- function(htfs,N,pos){

rec <- all.rec(list(htfs),N,pos)

k <- length(rec)

if(k==1){
return(data.frame(Recomb.1=1,Recomb.2=1,Identical=T)[-1,])

}

a <- set_combn(as.set(1:k),2)

mat <- matrix(NA,ncol=3,nrow=length(a))

for(i in 1:1length(a)){
set <- unlist(as.list(as.list(a)[[i]]))
hap <- rec[set]
id «<- identical(hap[[1]],hap[[2]])

mat[i,1] <- names(hap)[1]

mat[i,2] <- names(hap)[2]
mat[i,3] <- id
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}

}

mat <- as.data.frame(mat)
colnames(mat)<- c("Recomb.1","Recomb.2","Identical")
return(mat)

Create a function which returns all possiple recombinations and check which of them return
the same haplotype.

CheckF <- function(htfs,N,pos){

Table <- table.rec(htfs,N,pos)
lev <- unique(c(levels(factor(Table[,1])),levels(factor(Table[,2]))))
Re <- all.rec(list(htfs),N,pos)
p <- list()
if(nrow(Table)==0){
p<-list(htfs)
names(p)<-"()"
return(p)
}
for(i in 1:1length(lev)){
sub.T <- subset(Table,Table[,1]==1lev[i]|Table[,2]==1lev[i])
rowF <- which(sub.T[,3]==F)
rowT <- which(sub.T[,3]==T)
Ftbls <- sub.T[rowF, ]
Ttbls <- sub.T[rowT,]
r <- list(Re[[i]])

if( length(rowT)==0){
p[[length(p)+1]]<-(Re[i])

} else if(length(rowT)>0){
select <- unique(c(levels(factor(Ttbls],

1])),levels(factor(Ttbls[,2]))))

select <- select[order(select)]

if(select[1]==1lev[i]){
names(r) <- sprintf("(%s)",(paste(select,collapse=",")))
p[[length(p)+1]] <-r

}
}
}

p <- unlist(p,recursive = F)
return(p)
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}

check.name <- function(htfs,N,pos){
m<-(CheckF(htfs[[1]],N,pos))
for(i in 1:1length(m)){
names(m)[i]<- if (is.null(names(htfs)))
names(m)[i] else
sprintf("%s->%s", names(htfs),names(m)[i])
#print(names(m)[1])
}

return(m)

}

check.name.multi <- function(htfs,N,pos){

d <- lapply(1:1length(htfs), function(i){
check.name(htfs[i],N,pos)

1)

d <- unlist(d,recursive = F)
d
}

The names of all recombinations which result to the same haplotypes are saved in a list.

deduplicate <- function(htfs){
hfsMat <- t(sapply(htfs, identity))
hfsMatUnique <- unique(as.data.frame(hfsMat))

p <- list()

for(i in 1:nrow(hfsMatUnique)){
selM <- apply(hfsMat, 1, function(r)(r == hfsMatUnique[i,]))
sel <- apply(selM, 2, all)
index <- which(sel)

r <-list(htfs[[index[1]]])

names(r) <- sprintf("(%s)", (paste(names(htfs)
[index],collapse=",")))

p[[1length(p)+1]] <-r

}
p <- unlist(p,recursive = F)
return(p)

}
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The catalogue is created based on the aforementioned code and taking into account the
possible events that can been happened between three loci:

tot.catalog <- function(v = rep(0,3)){
N <- length(v) # number of Lloci
L <- N-1 #
htfs=rep(0,2~N)
htfs[bin2ord(v)+1]=1; htfsl=1list(htfs);
names (htfsl) <-sprintf("ht(%s)", paste(v,collapse=""))

#vector <- c("M", "NA","M", "NA", "M", "NA","M", "R"...)
vector<-c(rep(c("M","NA"),L),"M","R")

seqgs <- c(9:(2”L-1))

recombs <- ord2bin(@:(2~L-1),L)

bigvector <- t(replicate(length(segs),vector))

for(i in 1:1length(seqs)){
k <- which(recombs[i, ]==1)
bigvector[i,2*k] <- as.character("R")

}
bigvector[bigvector=="NA"] <- NA

# all possible mutations and recombinations events
events <- c()
for(i in 1:nrow(bigvector)){

events[[i]] <- as.vector(na.omit(bigvector[i,]))

}
#permutations
loci <- 1:N

per.loci <-permutations(n=N,r=N,v=1oci) # all possible permutations
of N numbers
row=nrow(per.loci)

catalog<-list()
total.catalog <-1list()
final.catalog <- list

for (e in 1l:length(events)){
check <- events[[e]]=="M"

for(r in 1:(row)){
results <- list()
rec_loci <- list()
count=1
results[[1]] <- mut.name.multi(htfsl,per.loci[r,][count],v) #r
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for(j in 2:1length(check)){
if(check[j]==T){
count=count+1
locus <- per.loci[r,][count] #r
results[[j]] <- (mut.name.multi(results[[j-1]],locus,vVv))

}else{
for(s in 1:L){
rec_loci[[s]]<-check.name.multi(results[[j-1]],N,s) #bale N
}
results[[j]] <- deduplicate(unlist(rec_loci,recursive=F))
}
}

results<-unlist(results ,recursive=F)
results <- deduplicate(results)

final <- list()

iter=1

resultsl <-list()
resultsl[[iter]]<-results

repeat{
iter=iter+l
for(s in 1:L){
final[[s]]<-check.name.multi(resultsi[[iter-1]],N,s) # N
}
resultsl[[iter]] <-deduplicate(unlist(final,recursive=F))
if (length(resultsl[[iter]])==1ength(resultsi[[iter-1]])){
break
}
b

catalog[[r]]<-deduplicate(unlist(resultsl,recursive=F))

}
total.catalog[[e]] <- deduplicate(unlist(catalog,recursive=F))

}
final.catalog<-deduplicate(unlist(total.catalog,recursive=F))
return(final.catalog)

}

Using the above R codes we create the catalogue that has been used to this thesis. A part of
the catalogue is illustrated below:

## $BO

# [1] 10000000
#

## $B1
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## [1] ©1 000000

##

## $ [BO->M1,B1->M1]"

## [1] 11000000

##

## $B2

## [1] 00100000

#i#

## $ [BO->M2,B2->M2]"

# [1] 10100000

##

## $ [BO->[M1->M2,M2->M1],B1->M1->M2,B2->M2->M1]"
# [1]11100000

#H#

## $B3

## [1] 20010000

#i#

## $ [B1->M2,B3->M2]"

## [11 01010000

#H#

## $ [BO->M1->M2,B1->[M1->M2,M2->M1],B3->M2->M1]"
# [1] 11010000

#i#

## $ [B2->M1,B3->M1]"

## [1] 00110000

#H#

## $° [BO->M2->M1,B2->[M1->M2,M2->M1],B3->M1->M2]"
## [1] 10110000

#i#

## $ [B1->M2->M1,B2->M1->M2,B3->[M1->M2,M2->M1]]"
## [1] 01110000

#H#

## $° [BO->[M1->M2->R1,M2->M1->R1],B1->[M1->M2->R1,M2->M1->R1],B2->[M1-
>M2->R1,M2->M1->R1],B3->[M1->M2->R1,M2->M1->R1]]"
## [1]11110000

#i#

## $B4

## [1] o0 001000

#H#

## $ [BO->M3,B4->M3]"

### [1] 10001000

##

## $ [BO->[M1->M3,M3->M1],B1->M1->M3,B4->M3->M1]"
# [1] 11001000

#H#
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## $° [BO->[M3->M2,M2->M3],B2->M2->M3,B4->M3->M2]"

## [1] 10101000

##

## $ [BO->[M2->[M3->M1,M1->M3],[M1->[M2->M3,M3->M2],M3->[M1->M2,M2-
>M1]]],B1->M1->[M2->M3,M3->M2],B2->M2->[M3->M1,M1->M3],B4->M3->[M1-
>M2,M2->M1]]"

## [1] 11101000

##

## $°[BO->[M3->M1->M2,M1->[M2->M3,M3->M2]],B1->[M2->M1->M3,M1->[M2-
>M3,M3->M2]],B3->M2->M1->M3,B4->M3->M1->M2]"

#t [1] 11011000

##

## $ [BO->[M3->M2->M1,M2->[M3->M1,M1->M3]],B2->[M1->M2->M3,M2->[M3-
>M1,M1->M3]],B3->M1->M2->M3,B4->M3->M2->M1]"

# [1]1 0111000

#H#

##t $...

## [1] 11111000

##

## $B5

## [1] 00000100

#H#

## $°[B1->M3,B5->M3]"

## [1] ©1 000100

##

## $ [BO->M1->M3,B1->[M1->M3,M3->M1],B5->M3->M1]"

## [1] 11000100

##

## $° [BO->[M2->M1->M3,M1->[M2->M3,M3->M2]],B1->[M3->M1->M2,M1->[M2-
>M3,M3->M21],B2->M2->M1->M3,B5->M3->M1->M2]"

## [1] 11100100

##

## $ [B1->[M3->M2,M2->M3],B3->M2->M3,B5->M3->M2]"

#t [1] 01010100

#H#

## $° [BO->M1->[M2->M3,M3->M2],B1->[M2->[M3->M1,M1->M3], [M1->[M2->M3,M3-
>M2],M3->[M1->M2,M2->M1]]],B3->M2->[M3->M1,M1->M3],B5->M3->[M1->M2,M2-
>M1]]

# [1]11010100

#H#

## $ [B1->[M3->M2->M1,M2->[M3->M1,M1->M3]],B2->M1->M2->M3,B3->[M1->M2-
>M3,M2->[M3->M1,M1->M3]],B5->M3->M2->M1]"

## [1] 01110100

##

#it $...

## [1] 11110100
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#H#

## $ [B4->M1,B5->M1]"

## [1] 00001100

##

## $ [BO->M3->M1,B4->[M1->M3,M3->M1],B5->M1->M3]"

# [1] 10001100

#H#

## $ [B1->M3->M1,B4->M1->M3,B5->[M1->M3,M3->M1]]"

## [1] 01001100

#i#

## $ [BO->[M1->M3->R1,M3->M1->R1],B1->[M1->M3->R1,M3->M1->R1],B4->[M1-
>M3->R1,M3->M1->R1],B5->[M1->M3->R1,M3->M1->R1]]"

# [1]11001100

#i#

## $ [BO->[M2->M3->M1,M3->[M1->M2,M2->M1]],B2->M2->M3->M1,B4->[M1->M3-
>M2,M3->[M1->M2,M2->M1]],B5->M1->M3->M2]"

# [1]1 0101100

#H#

##H $...

## [1]11101100

#i#

## $° [B1->[M2->M3->M1,M3->[M1->M2,M2->M1]],B3->M2->M3->M1,B4->M1->M3-
>M2,B5->[M1->M3->M2,M3->[M1->M2,M2->M1]]]"

# [1]01011100

##

#H $...

# [1]11011100

##

## $ [BO->[M3->[M1->M2->R1,M2->M1->R1],M2->[M3->M1->R1,M1->M3->R1]],B2-
>[M1->M2->M3->R1,M2->[M3->M1->R1,M1->M3->R1]],B3->M1->M2->M3->R1,B4-
>[M1->M3->M2->R1,M3->[M1->M2->R1,M2->M1->R1]],B5->M1->M3->M2->R1]"

# [1]1 0111100

##

## $° [B1->[M3->[M1->M2->R1,M2->M1->R1],M2->[M3->M1->R1,M1->M3->R1]],B2-
>M1->M2->M3->R1,B3->[M1->M2->M3->R1,M2->[M3->M1->R1,M1->M3->R1]],B4-
>M1->M3->M2->R1,B5->[M1->M3->M2->R1,M3->[M1->M2->R1,M2->M1->R1]]]"

# [1] 01111100

##

#it $...

# [1]11111100

##

## $B6

## [1] 00000010

#i#

## $ [B2->M3,B6->M3]"

## [1] 00100010
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#H#

## $ [BO->M2->M3,B2->[M3->M2,M2->M3],B6->M3->M2]"

## [1] 10100010

##

## $° [BO->[M1->M2->M3,M2->[M3->M1,M1->M3]],B1->M1->M2->M3,B2->[M3->M2-
>M1,M2->[M3->M1,M1->M3]],B6->M3->M2->M1]"

### [1] 11100010

##

## $ [B2->[M1->M3,M3->M1],B3->M1->M3,B6->M3->M1]"

# [1] 00110010

#H#

## $° [BO->M2->[M3->M1,M1->M3],B2->[M2->[M3->M1,M1->M3], [M1->[M2->M3,M3-
>M2],M3->[M1->M2,M2->M1]]],B3->M1->[M2->M3,M3->M2],B6->M3->[M1->M2,M2-
>M1]]°

# [1]1 0110010

#H#

## $° [B1->M2->M1->M3,B2->[M3->M1->M2,M1->[M2->M3,M3->M2]],B3->[M2->M1-
>M3,M1->[M2->M3,M3->M2]],B6->M3->M1->M2]"

## [1] 01110010

#i#

#it $...

# [1]1111001080

#H#

## $ [B4->M2,B6->M2]"

## [1] 00001010

#i#

## $ [BO->M3->M2,B4->[M3->M2,M2->M3],B6->M2->M3]"

# [1]1 0001010

#H#

## $ [BO->[M1->M3->M2,M3->[M1->M2,M2->M1]],B1->M1->M3->M2,B4->[M2->M3-
>M1,M3->[M1->M2,M2->M1]],B6->M2->M3->M1]"

## [1] 11001010

##

## $° [B2->M3->M2,B4->M2->M3,B6->[M3->M2,M2->M3]]"

# [1]o 0101010

#HH#

## $ [BO->[M3->M2->R2,M2->M3->R2],B2->[M3->M2->R2,M2->M3->R2],B4->[M3-
>M2->R2,M2->M3->R2],B6->[M3->M2->R2,M2->M3->R2]]"

# [1]1 010101080

#H#

#it $...

## [1]11101010

#i#

## $° [B2->[M1->M3->M2,M3->[M1->M2,M2->M1]],B3->M1->M3->M2,B4->M2->M3-
>M1,B6->[M2->M3->M1,M3->[M1->M2,M2->M1]]]"

# [1l] o0 11101080
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#H#

## $...

## [1]1 0111010

##

##H $...

# [1]11111010

#H#

## $ [BO->[M1->[M2->M3->R2,M3->M2->R2],M2->[M3->M1->R2,M1->M3->R2]],B1-
>[M3->M1->M2->R2,M1->[M2->M3->R2,M3->M2->R2]],B2->[M3->M2->M1->R2,M2-
>[M3->M1->R2,M1->M3->R2]],B5->M3->M1->M2->R2,B6->M3->M2->M1->R2]"

# [1]11100110

#H#

## $ [B1->[M3->M2->M1->R2,M2->[M3->M1->R2,M1->M3->R2]],B2->[M3->M1->M2-
>R2,M1->[M2->M3->R2,M3->M2->R2]],B3->[M1->[M2->M3->R2,M3->M2->R2],M2-
>[M3->M1->R2,M1->M3->R2]],B5->M3->M2->M1->R2,B6->M3->M1->M2->R2]"

# [1]01110110

#H#

## $...

## [1] 1111011090

##

## $ [B4->[M1->M2,M2->M1],B5->M1->M2,B6->M2->M1]"

#t [1] 00001110

#H#

## $ [BO->M3->[M1->M2,M2->M1],B4->[M2->[M3->M1,M1->M3], [M1->[M2->M3,M3-
>M2],M3->[M1->M2,M2->M1]]],B5->M1->[M2->M3,M3->M2],B6->M2->[M3->M1,M1-
>M31]

#t [1] 10001110

#H#

## $ [B1->M3->M1->M2,B4->[M2->M1->M3,M1->[M2->M3,M3->M2]],B5->[M3->M1-
>M2,M1->[M2->M3,M3->M2]],B6->M2->M1->M3]"

## [1] 01001110

#H#

#it $...

## [1] 11001110

##

## $ [B2->M3->M2->M1,B4->[M1->M2->M3,M2->[M3->M1,M1->M3]],B5->M1->M2-
>M3,B6->[M3->M2->M1,M2->[M3->M1,M1->M3]]]"

# [l] o0 10111680

#H#

## $...

## [1] 1010111090

##

## $ [B1->M3->M1->M2->R2,B2->M3->M2->M1->R2,B4->[M1->[M2->M3->R2,M3-
>M2->R2],M2->[M3->M1->R2,M1->M3->R2]],B5->[M3->M1->M2->R2,M1->[M2->M3-
>R2,M3->M2->R2]],B6->[M3->M2->M1->R2,M2->[M3->M1->R2,M1->M3->R2]]]"

## [1] 0110111090
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#H#

#H $...

# [1]11101110

##

## $°[B2->[M1->M3->M2->R1,M3->[M1->M2->R1,M2->M1->R1]],B3->M1->M3->M2-
>R1,B4->[M1->M2->M3->R1,M2->[M3->M1->R1,M1->M3->R1]],B5->M1->M2->M3-
>R1,B6->[M3->[M1->M2->R1,M2->M1->R1],M2->[M3->M1->R1,M1->M3->R1]]]"
## [1]0 0111110

#i#

#it $...

# [1]1011111080

#H#

#H $...

## [1] 01111110

#i#

#it $...

#[1]1111111080

#H#

## $B7

## [1] 00000001

#i#

## $ [B3->M3,B7->M3]"

# [1] 00010001

#H#

## $ [B1->M2->M3,B3->[M3->M2,M2->M3],B7->M3->M2]"

## [1] 01010001

#i#

## $ [BO->M1->M2->M3,B1->[M1->M2->M3,M2->[M3->M1,M1->M3]],B3->[M3->M2-
>M1,M2->[M3->M1,M1->M3]],B7->M3->M2->M1]"

# [1]11010001

#H#

## $ [B2->M1->M3,B3->[M1->M3,M3->M1],B7->M3->M1]"

### [1] 00110001

##

## $° [BO->M2->M1->M3,B2->[M2->M1->M3,M1->[M2->M3,M3->M2]],B3->[M3->M1-
>M2,M1->[M2->M3,M3->M2]],B7->M3->M1->M2]"

## [1]1 0110001

##

## $ [B1->M2->[M3->M1,M1->M3],B2->M1->[M2->M3,M3->M2],B3->[M2->[M3-
>M1,M1->M3], [M1->[M2->M3,M3->M2],M3->[M1->M2,M2->M1]]],B7->M3->[M1-
>M2,M2->M1]]"

## [1] 01110001

#i#

#t $...

# [1]11110001

#H#
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## $ [BO->[M3->M1->M2->R2,M1->[M2->M3->R2,M3->M2->R2]],B1->[M1->[M2-
>M3->R2,M3->M2->R2],M2->[M3->M1->R2,M1->M3->R2]],B3->[M3->M2->M1-
>R2,M2->[M3->M1->R2,M1->M3->R2]],B4->M3->M1->M2->R2,B7->M3->M2->M1-
>R2]°

# [1] 11011001

##

## $ [BO->[M3->M2->M1->R2,M2->[M3->M1->R2,M1->M3->R2]],B2->[M1->[M2-
>M3->R2,M3->M2->R2],M2->[M3->M1->R2,M1->M3->R2]],B3->[M3->M1->M2-
>R2,M1->[M2->M3->R2,M3->M2->R2]],B4->M3->M2->M1->R2,B7->M3->M1->M2-
>R2]°

# [1]10111001

##

#t $...

# [1]11111001

##

## $ [B5->M2,B7->M2]"

### [1] 20000101

##

## $ [B1->M3->M2,B5->[M3->M2,M2->M3],B7->M2->M3]"

# [1]01000101

##

## $ [BO->M1->M3->M2,B1->[M1->M3->M2,M3->[M1->M2,M2->M1]],B5->[M2->M3-
>M1,M3->[M1->M2,M2->M1]],B7->M2->M3->M1]"

# [1]11000101

##

## $° [B3->M3->M2,B5->M2->M3,B7->[M3->M2,M2->M3]]"

# [1]0 0010101

##

## $ [B1->[M3->M2->R2,M2->M3->R2],B3->[M3->M2->R2,M2->M3->R2],B5->[M3-
>M2->R2,M2->M3->R2],B7->[M3->M2->R2,M2->M3->R2]]"

# [1] 01010101

##

#t $...

# [1] 11010101

##

## $ [B2->M1->M3->M2,B3->[M1->M3->M2,M3->[M1->M2,M2->M1]],B5->M2->M3-
>M1,B7->[M2->M3->M1,M3->[M1->M2,M2->M1]]]"

# [1]0 0110101

##

#t $...

# [1]01110101

##

#t $...

# (1111110101

##

## $ [B4->M1->M2,B5->[M1->M2,M2->M1],B7->M2->M1]"
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## [l1] o 0001101

##

## $ [BO->M3->M1->M2,B4->[M3->M1->M2,M1->[M2->M3,M3->M2]],B5->[M2->M1-
>M3,M1->[M2->M3,M3->M2]],B7->M2->M1->M3]"

# [1]1 0001101

#H#

## $ [B1->M3->[M1->M2,M2->M1],B4->M1->[M2->M3,M3->M2],B5->[M2->[M3-
>M1,M1->M3], [M1->[M2->M3,M3->M2],M3->[M1->M2,M2->M1]]],B7->M2->[M3-
>M1,M1->M3]]"

# [1]e 1001101

#H#

## $...

## [1]110601101

##

## $ [B3->M3->M2->M1,B4->M1->M2->M3,B5->[M1->M2->M3,M2->[M3->M1,M1-
>M3]1],B7->[M3->M2->M1,M2->[M3->M1,M1->M3]]]"

## [1] 00011101

##

## $ [BO->M3->M1->M2->R2,B3->M3->M2->M1->R2,B4->[M3->M1->M2->R2,M1-
>[M2->M3->R2,M3->M2->R2]],B5->[M1->[M2->M3->R2,M3->M2->R2],M2->[M3->M1-
>R2,M1->M3->R2]],B7->[M3->M2->M1->R2,M2->[M3->M1->R2,M1->M3->R2]]]"
## [1] 10011101

##

## $...

## [1] 01011101

#H#

#it $...

#[1] 11011101

##

## $ [B2->M1->M3->M2->R1,B3->[M1->M3->M2->R1,M3->[M1->M2->R1,M2->M1-
>R1]],B4->M1->M2->M3->R1,B5->[M1->M2->M3->R1,M2->[M3->M1->R1,M1->M3-
>R1]],B7->[M3->[M1->M2->R1,M2->M1->R1],M2->[M3->M1->R1,M1->M3->R1]]]"
## [1] 00111101

##

## $...

## [1]1 0111101

##

#it $...

# [1] 1111101

##

## $...

## [1] 11111101

##

## $°[B6->M1,B7->M1]"

## [1] 0000011

#H#
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## $° [B2->M3->M1,B6->[M1->M3,M3->M1],B7->M1->M3]"

## [1] 00100011

##

## $ [BO->M2->M3->M1,B2->[M2->M3->M1,M3->[M1->M2,M2->M1]],B6->[M1->M3-
>M2,M3->[M1->M2,M2->M1]],B7->M1->M3->M2]"

# [1]1 0100011

#i

## $° [BO->[M1->M2->M3->R1,M2->[M3->M1->R1,M1->M3->R1]],B1->M1->M2->M3-
>R1,B2->[M3->[M1->M2->R1,M2->M1->R1],M2->[M3->M1->R1,M1->M3->R1]],B6-
>[M1->M3->M2->R1,M3->[M1->M2->R1,M2->M1->R1]],B7->M1->M3->M2->R1]"

# [1]11100011

#i#

## $ [B3->M3->M1,B6->M1->M3,B7->[M1->M3,M3->M1]]"

### [1] 00010011

##

## $° [B1->M2->M3->M1,B3->[M2->M3->M1,M3->[M1->M2,M2->M1]],B6->M1->M3-
>M2,B7->[M1->M3->M2,M3->[M1->M2,M2->M1]]]"

### [1] 01010011

#i#

## $° [BO->M1->M2->M3->R1,B1->[M1->M2->M3->R1,M2->[M3->M1->R1,M1->M3-
>R1]],B3->[M3->[M1->M2->R1,M2->M1->R1],M2->[M3->M1->R1,M1->M3->R1]],B6-
>M1->M3->M2->R1,B7->[M1->M3->M2->R1,M3->[M1->M2->R1,M2->M1->R1]]]"

# [1]11010011

#i#

## $ [B2->[M1->M3->R1,M3->M1->R1],B3->[M1->M3->R1,M3->M1->R1],B6->[M1-
>M3->R1,M3->M1->R1],B7->[M1->M3->R1,M3->M1->R1]]"

# [1]0 0110011

##

#H $...

# [1]1 0110011

##

#it $...

# [1] 01110011

#H#

#H $...

# [1]11110011

#i#

## $ [B4->M2->M1,B6->[M1->M2,M2->M1],B7->M1->M2]"

# [1] 00001011

#H#

## $ [BO->M3->M2->M1,B4->[M3->M2->M1,M2->[M3->M1,M1->M3]],B6->[M1->M2-
>M3,M2->[M3->M1,M1->M3]],B7->M1->M2->M3]"

# [1]1 0001011

##

## $ [BO->[M1->M3->M2->R1,M3->[M1->M2->R1,M2->M1->R1]],B1->M1->M3->M2-
>R1,B4->[M3->[M1->M2->R1,M2->M1->R1],M2->[M3->M1->R1,M1->M3->R1]],B6-
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>[M1->M2->M3->R1,M2->[M3->M1->R1,M1->M3->R1]],B7->M1->M2->M3->R1]"
## [1] 11001011

##

## $ [B2->M3->[M1->M2,M2->M1],B4->M2->[M3->M1,M1->M3],B6->[M2->[M3-
>M1,M1->M3], [M1->[M2->M3,M3->M2],M3->[M1->M2,M2->M1]]],B7->M1->[M2-
>M3,M3->M2]1"

## [1] 00101011

#i#

#it $...

#[1]1 0101011

#H#

##H $...

# [1]11101011

#i#

## $° [B3->M3->M1->M2,B4->M2->M1->M3,B6->[M2->M1->M3,M1->[M2->M3,M3-
>M2]1]1,B7->[M3->M1->M2,M1->[M2->M3,M3->M2]]]"

# [1]e 0011011

#H#

## $° [BO->M3->M2->M1->R2,B3->M3->M1->M2->R2,B4->[M3->M2->M1->R2,M2-
>[M3->M1->R2,M1->M3->R2]],B6->[M1->[M2->M3->R2,M3->M2->R2],M2->[M3->M1-
>R2,M1->M3->R2]],B7->[M3->M1->M2->R2,M1->[M2->M3->R2,M3->M2->R2]]]"
# [1]1 0011011

#i#

#H $...

# [1]11011011

#i#

#it $...

# [1]e 0111011

#H#

#H $...

# [1]10111011

#i#

#it $...

# [1]11111011

#H#

## $° [B5->M2->M1,B6->M1->M2,B7->[M1->M2,M2->M1]]"

## [1] 00000111

#i#

## $ [B1->M3->M2->M1,B5->[M3->M2->M1,M2->[M3->M1,M1->M3]],B6->M1->M2-
>M3,B7->[M1->M2->M3,M2->[M3->M1,M1->M3]]]"

# [1]01000111

#i#

## $° [BO->M1->M3->M2->R1,B1->[M1->M3->M2->R1,M3->[M1->M2->R1,M2->M1-
>R1]],B5->[M3->[M1->M2->R1,M2->M1->R1],M2->[M3->M1->R1,M1->M3->R1]],B6-
>M1->M2->M3->R1,B7->[M1->M2->M3->R1,M2->[M3->M1->R1,M1->M3->R1]]]"
# [1]11000111
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#H#

## $° [B2->M3->M1->M2,B5->M2->M1->M3,B6->[M3->M1->M2,M1->[M2->M3,M3-
>M2]],B7->[M2->M1->M3,M1->[M2->M3,M3->M2]]]"

## [1] 00100111

#H#

## $° [B1->M3->M2->M1->R2,B2->M3->M1->M2->R2,B5->[M3->M2->M1->R2,M2-
>[M3->M1->R2,M1->M3->R2]],B6->[M3->M1->M2->R2,M1->[M2->M3->R2,M3->M2-
>R2]],B7->[M1->[M2->M3->R2,M3->M2->R2],M2->[M3->M1->R2,M1->M3->R2]]]"
# [1]01100111

#H#

#it $...

# [1] 11100111

#i#

## $ [B3->M3->[M1->M2,M2->M1],B5->M2->[M3->M1,M1->M3],B6->M1->[M2-
>M3,M3->M2],B7->[M2->[M3->M1,M1->M3], [M1->[M2->M3,M3->M2],M3->[M1-
>M2,M2->M11111

# [1] 00010111

#i#

#it $...

## [1] 01010111

#H#

#it $...

# [1] 11010111

##

#t $...

# [1]e0 110111

#H#

#it $...

# [1]01110111

#i#

#H $...

#[1] 11110111

##

## $° [B4->[M1->M2->R1,M2->M1->R1],B5->[M1->M2->R1,M2->M1->R1],B6->[M1-
>M2->R1,M2->M1->R1],B7->[M1->M2->R1,M2->M1->R1]]"

# [1]0 0001111

#i#

#it $...

# [1]10001111

#H#

#it $...

# [1] 01001111

#i#

#t $...

#[1]11001111

#H#
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## $...

## [1] 00101111
##

## 5. ..

# [1] 10101111
##

## 5. ..

## [1] 01101111
##

## 5. ..

## [1] 11101111
##

## 5. ..

# [1] 00011111
##

## 5. ..

## [1] 10011111
##

## 5. ..

## [1] 01011111
##

## 5. ..

## [1] 11011111
##

## 5. ..

## [1] 00111111
##

## 5. ..

## [1] 10111111
#H

#$...
## [1

()
=
=
=
=
=
=
=

Visualization LD using the catalogue and dataset from the HapMap project.

In this section we need to crate a function which compute the Euclidean distance between
two vectors( which represent LD values), a vector from the catalogue and a vector from the
real datasets(HapMap). In order to calculate the haplotypes frequencies and the LD values,
the below functions have been used.

# functions to calculate the cumulants
std <- function(v)(v/sum(v))

#' haplotypes to std.cumulants
hfs2std.cumu = function(hfs)new(parametrizer)$multinomial2cumuStd(hfs)
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#' std.cumulants to haplotypes

cumu2hfs = function(cumuStd){
hfs <-new(parametrizer)$cumuStd2multinomial(cumuStd)
std(hfs+17(-6))

}

# Euclidean distance matrix
Euc.distanceMatrix <- function(data.cumulants,cat.cumulants){
mat <-
matrix(@,ncol=1ength(data.cumulants),nrow=1length(cat.cumulants))
for(i in 1:1length(data.cumulants)){
for(j in 1:1length(cat.cumulants)){

mat[j,i]<-
dist(rbind(as.numeric(unlist(data.cumulants[i])),as.numeric(unlist(cat.
cumulants[j]))))
}

}

return(mat)
}
HHtHH SR
# Catalogue cumulants #

e R T
cat.cumulants <- lapply(catalog,function(x)hfs2std.cumu(unlist(x)) )

# We delete the allele frequencies of the cat.cumulants:

remove <- ¢ (2,3,5)

for(i in 1:1length(cat.cumulants)){
cat.cumulants[[i]]<-cat.cumulants[[i]][-remove]

}

The same steps we follow using the datasets from the HapMap. Finally, we take a matrix
("mat") with all Euclidean differences between catalogue and real datasets. We illustrate the
distances of LD using Heatmaps plots.

mat <-Euc.distanceMatrix(cumulants,cat.cumulants)
#colnames (mat)<-snp.list
# visualization

#Heatmap

#colfuncl <- colorRampPalette(c("orange”, "green"”, "black"))
#colfunc2 <- colorRampPalette(c("black", "red"))

#thmcols <- c(colfunci(200), colfunc2(200*(max(mat) - 1)))

#op = par(bg = "#EFEFEF")
#heatmap.2(mat, Colv=F, Rowv=T, dendrogram="row"
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# ,Sscale="none", col=hmcols, trace="none"
# , margin=c(5,10), key=T,labRow=NA)
#

#hc = hclust(dist(mat))

Monte Carlo Simulations under the null hypothesis

In this part, we use parametric bootstrap techniques to simulate dataset based on two
catalogue entries. First, we select the two catalogue entries then compute the
std.cumulantsuse the function cumu2hfs in order to get the mean of haplotypes frequencies
of the 2 entries:. Simulate based on this hfs

# simulate datasets
sim.dataset <-function(N,nsize,catalog,allelefreq){
# calculate the std. cumulants
# the catalogue should have two entries
cat.cumulants <- lapply(catalog,function(x)hfs2std.cumu(x) )
# the mean between cumulants
lambda <- (1/2)*(cat.cumulants[[1]]+cat.cumulants[[2]])

if(!missing(allelefreq)) {
remove <-c(2,3,5)
lambda[remove]<-allelefreq
}
hfs <- cumu2hfs(lambda)
#simulate datasets
seqs <- c(0:(2”"N-1))
index <-seqs %*% rmultinom(nsize, 1, hfs)
snp.sim.data <-t(sapply(index,function(x) {ord2bin (x,N)}))
return(snp.sim.data)

}

HHHH
distance <- function(sim.data,catalog){

# catalogue std.cumulants:
cat.cumulants <- lapply(catalog,function(x)hfs2std.cumu(x) )

# sim.data: calculate the the haplotype frequency
htfs.snps <- haplotypeFrequencies(sim.data)

# calculate the cumulants and std.cumulants
sim.cumulants <- hfs2std.cumu(htfs.snps)

#Delete the allele frequency
remove <- ¢ (2,3,5)
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sim.cumulants<- sim.cumulants[-remove]

for(i in 1:length(cat.cumulants)){
cat.cumulants[[i]]<-cat.cumulants[[i]][-remove]

}

R <- Euc.distanceMatrix.2(sim.cumulants,cat.cumulants)
return(R)

}

# Parametric bootstrap
rboot <- function(B,data,catalog){
# storage the results
R.b <- matrix(@,nrow=length(catalog),ncol=B)
# data: calculate the hfs, cumulants and allele frequencies
data.hfs <- haplotypeFrequencies(data)
data.cumu <- hfs2std.cumu(data.hfs)
remove <- c¢(2,3,5)
allelefreq <- data.cumu[remove]
#allelefreq <-c(0.5,0.5,0.5)
for(b in 1:B){
Bsnps <- sim.dataset(ncol(data),nrow(data),catalog,allelefreq)
R.b[,b] <-distance(Bsnps,catalog)
}
return (R.b)

}

# Estimated Test Statistic T=d2-d1
row.differences <- function(data){
theta <- NULL
data <- as.data.frame(data)
theta <-data[2,]-data[1,]
return(theta)

}

test.data <- function(B,data,catalog){
#simulate datasets
datasim <-data

# the euc.distance between catalogue and sim.data
true.parameter <- distance(datasim,catalog)

# the differences of two entries
cat.diff.Tparameter<-row.differences(true.parameter)
# bootstrap replications

boot <- rboot(B, datasim,catalog)

#simulation diffenences
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sim.diff <-row.differences(boot)
return(list(cat.diff.Tparameter,sim.diff))

}

test.statistic <- function(B,N,nsize,catalog,allelefreq)
#simulate datasets
datasim <- sim.dataset(N,nsize,catalog,allelefreq)
test.data(B,datasim,catalog)

}

# Repeat the bootstrap procedure fon rep=500/1000 times

sim.results <- function(B,rep,N,nsize,catalog,allelefreq){
sboot<-1list()
for(i in 1:rep){
sboot[[i]]«-test.statistic(B,N,nsize,catalog,allelefreq)
}

return(sboot)

}

Testing procedure

quantiles <-function(data,lower,upper){
quant <- quantile(data[[2]],prob=c(lower,upper))
quant$test.statistic <-data[[1]]
return(quant)

}

make.data.framel <- function(confidence.interval){
g<-matrix(@,ncol=3,nrow=1length(confidence.interval))
for(i in 1:1length(confidence.interval)){

q[i,]<-(t(as.numeric(confidence.interval[[i]])))

}
g<-as.data.frame(q)
colnames(q) <- c( "5%","95%","test statistic" )
return(q)

# Test of Hypothesis 1
testl <- function(data){
#data = is the table with the quantiles
#datag"Ho.1"<-rep(0,nrow(data))
for(i in 1:nrow(data)){
if(data[i,1]>=data[i,3]){
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data[i,4] <- (" reject")

}else{
data[i,4] <- ("Not reject")
}
b
#colnames(data[,4]) <-"Ho.1"
return(data)

}

# Test of Hypothesis 2
test2 <- function(data){
#data = 1is the table with the quantiles

for(i in 1:nrow(data)){
ifelse(data[i,2]<=data[i,3], data[i,4] <- ("reject")
,data[i,4] <- ("Not reject"))
}
#colnames (data[,4]) <-"Ho.2"
return(data)

}

# Test of Hypothesis 3
test3 <-function(data){

#data = is the table with the quantiles

#1f the prod(ci)<@ then the @ exist into the interval

for(i in 1:nrow(data)){

ifelse(data[i,1]<=data[i,3] & data[i,2]>=data[i,3], data[i,4] <-
("Not reject")
,data[i,4] <- ("reject"))
}

return(data)

}

Example

The example shows the comparison between catalogue 1 and catalogue 91 for different
seanarios. (Bootstrap=1000, simulations=500, number of loci=3, number of
haplotypes=120)

# 191

resultsl 91 <-sim.results(1000,500,3,120,c(catalog[1],catalog[91]))
save.list(resultsl_91,"resultsl 91")

resultsl 91.2 <-sim.results(1000,500,3,2*120,c(catalog[1],catalog[91]))
save.list(resultsl 91.2,"resultsl 91.2")

resultsl 91.3 <-sim.results(1000,500,3,4*120,c(catalog[1],catalog[91]))
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save.list(resultsl 91.3,"resultsl 91.3")

resultsl 91.4 <-sim.results(1000,500,3,6*120,c(catalog[1],catalog[91]))
save.list(resultsl 91.4,"resultsl 91.4")

results <-load.list("resultsl 91")

quantiles.results <- lapply(results,function(x)quantiles(x,0.05,0.95))
quantiles.results.d <-make.data.framel(quantiles.results)
conf.interval <- lapply(results,function(x)quantiles(x,0.025,0.975))
conf.interval.d <-make.data.framel(conf.interval)

# Tests

testl(quantiles.results.d)
test2(quantiles.results.d)
test3(conf.interval.d)

tl<-testl(quantiles.results.d)
mean(as.character(tl[,4])==" reject")

t2<-test2(quantiles.results.d)
mean(as.character(t2[,4])=="reject")

t3<-test3(conf.interval.d)
mean(as.character(t3[,4])=="reject")

Two alternative approaches have been proposed to this thesis: i) to increase the iteration of
simulation procedure. This can been implemented easily, by introducing B=2000 and
rep=1000. ii) to set up alleles frequencies equal to 0.5. Using the attribute
"allelefreq=c(0.5,0.5,0.5)" and modifing a little bit the bootstrap function.

Monte Carlo Simulations under the alternative hypothesis

Here, only the simulation procedure have been modified, since the testing procedure
remains the same.

A)  For the approach 1.

sim.dataset <-function(N,nsize,catalog,allelefreq){
# calculate the std. cumulants
# the catalogue should have two entries
cat.cumulants <- lapply(catalog,function(x)hfs2std.cumu(x) )
# the mean between cumulants
kappa <- (1/2)*(cat.cumulants[[1]]+cat.cumulants[[2]])
lambda <- (1/2)*(kappa + cat.cumulants[[2]])
if(!missing(allelefreq)) {
remove <-c(2,3,5)
lambda[remove]<-allelefreq
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}

B)

}
hfs <- cumu2hfs(lambda)

#simulate datasets

seqs <- c(0:(2”"N-1))

index <-seqgs %*% rmultinom(nsize, 1, hfs)

snp.sim.data <-t(sapply(index,function(x) {ord2bin (x,N)}))
return(snp.sim.data)

For the approach 2

sim.dataset <-function(N,nsize,catalog,allelefreq){

}

# calculate the std. cumulants
# we dont delete the alleles frequencies.
# the catalogue should have two entries
cat.cumulants <- lapply(catalog,function(x)hfs2std.cumu(x) )
# cumulants of one catalogue entry
lambda <- (cat.cumulants[[2]])
if(!'missing(allelefreq)) {
remove <-c(2,3,5)
lambda[remove]<-allelefreq
}
hfs <- cumu2hfs(lambda)
#simulate datasets
seqs <- c(0:(2"N-1))
index <-seqgs %*% rmultinom(nsize, 1, hfs)
snp.sim.data <-t(sapply(index,function(x) {ord2bin (x,N)}))
return(snp.sim.data)

HamMap analysis

For the HapMap analysis we select 7 SNPs, where each SNP dataset consists of 120
haplotypes.

chr21 = readPhasedData( 'genotypes chr2l CEU r22 nr.b36 fwd')

# SNP 1

snp.name <- chr2l$legend[21000,1]

snps <- SelectSNPsOrder(as.character(snp.name), chr2l, marginNeg
marginPos = 1, maf = .05,buffer =5)$hts

#SNP 2
snp.name <- chr2l$legend[100,1]
snps <- SelectSNPsOrder(as.character(snp.name), chr2l, marginNeg

marginPos = 1, maf = .05,buffer =5)$hts

#SNP 3
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snps = SelectSNPsOrder('rs2829806', chr2l, marginNeg
1, maf = .05,buffer =5)$hts

1, marginPos

#SNP 4

snps = SelectSNPsOrder('rs1057885', chr2l, marginNeg
1, maf = .05,buffer =5)$hts

1, marginPos

#SNP 5
snps = SelectSNPsOrder('rs11088561', chr2l, marginNeg = 1, marginPos =
1, maf = .05,buffer =5)$hts

# SNP 6
snps = SelectSNPsOrder('rs1534', chr2l, marginNeg = 1, marginPos = 1,
maf = .05,buffer =5)$hts

# SNP 7
snp.name <- chr2l$legend[31363,1]
snps = SelectSNPsOrder(as.character(snp.name), chr2l, marginNeg = 1,

marginPos = 1, maf = .05,buffer =5)$hts

Using the the R codes that have been describe above, we can simulate dataset using the
haplotypes frequencies of each SNP and we can test the three hypotheses.
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