
Descriptive analysis and inference of Higher-order Linkage
Disequilibrium
Karasmani, E.

Citation
Karasmani, E. (2016). Descriptive analysis and inference of Higher-order Linkage
Disequilibrium.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in
the Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3597157

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3597157

Mathematical Institute

Master Thesis

Statistical Science for the Life and Behavioural Sciences

Descriptive analysis and inference of
Higher-order Linkage Disequilibrium

Author:
Eleni Karasmani

First Supervisor:
Dr. Stefan Boehringer

Dept of Medical Statistics and
Bioinformatics, LUMC

Second Supervisor:
Prof.dr. A.W. van der Vaart

Mathematical Institute, Leiden University

January 2016

Abstract

Genetic studies in human populations have unveiled a vast number of poly-

morphisms. This variability is shaped by evolutionary forces such as drift,

selection, bottlenecks and more. The approach applied in this thesis is

based on haplotype method meaning that we consider block of SNPs of the

human genome. This method has an advantage over single SNP analysis.

The aim of the thesis is to characterise the genetic history based on the

correlation structure of polymorphisms. This correlation structure is char-

acterised in terms of joint cumulants which generalise linkage disequilibrium

(LD) to more than two loci. The advantage of a multilocus LD (high or-

der LD) measurement over a pairwise LD measurement is that the latter

is not adequate to detect simultaneous allele associations among multiple

markers. Characteristic patterns of this standardised higher-order LD are

summarised in a catalogue for all possible genetic histories in an exponen-

tially growing population. Heatmap approach was applied to visualise and

interpret the behaviour of the LD patterns under different population sce-

narios. Tests were developed to determine whether given data is more likely

to stem from a particular catalogue entry than others. These tests were de-

veloped using Monte Carlo techniques. Simulations were complemented by

an analysis of part of the public HapMap project.

Acknowledgements

I would like to express my sincere and deepest gratitude to my supervisor

Dr. Stefan Boehringer for his encouragement, positive attitude and advice

during the progression of this thesis. His suggestions, feedback and dis-

cussion were instrumental for the completion of this thesis. Furthermore, I

would like to acknowledge Professor Aad van der Vaart for his really helpful

and critical comments. I am also grateful to the Professors from the Statis-

tical Science for the Life and Behavioral Sciences master track, for the great

programme and knowledge that they have offered to us. Moreover, I would

like thank all the people of the of department of Medical Statistics of LUMC

for their great support, nice meetings and work discussions. Finally, I am

really grateful to my family for their support and encouragement during

this endeavour.

Contents

Contents iii

1 Introduction 1

1.1 Aim of this thesis . 2

2 Biological concepts 4

2.1 DNA . 4

2.2 Alleles and haplotype blocks . 5

2.3 Homologous recombination . 7

2.4 Neutral selection . 8

3 Haplotype patterns resulting from genetic events 10

3.1 Catalogue . 11

3.2 Example for three loci . 12

3.3 Algorithm to construct the catalogue . 14

3.4 Structure of catalogue . 16

3.5 Complete catalogue for two loci . 18

4 Linkage disequilibrium 23

4.1 Pairwise linkage disequilibrium . 24

4.2 Standardised LD . 26

4.3 High order of Linkage disequilibrium . 26

5 Data application of visualisation and genetic interpretation of Higher-

order Linkage Disequilibrium. 28

5.1 Compute LD and standardized LD for the catalogue 29

5.2 Compute LD and standardized LD for real data (HapMap project) . . . 30

5.3 Create a Euclidean distance matrix . 30

iii

CONTENTS

5.4 Visualize the patterns using heatmap plots 31

5.5 Interpreting heatmap plots . 31

6 Inference on higher order LD 37

6.1 Introduction to Monte Carlo methods 37

6.2 Parameter testing of parametric bootstrap procedure 37

6.3 Data generation under the Null hypothesis 39

6.4 Algorithm of parametric bootstrap . 39

6.5 Hypothesis testing using pairwise differences of distance measurements . 41

6.6 Performance evaluation . 41

6.6.1 Simulations settings . 41

6.6.2 Type I error . 44

6.6.3 Power . 47

7 Data Example 52

7.1 Multiple testing correction . 54

8 Discussion 58

Appendix A 61

.1 Re-parametrization . 61

.2 Standardised LD for arbitrary number of loci 62

Appendix B 64

References 92

iv

Chapter 1

Introduction

The joint distribution of closely linked (i.e. roughly co-transmitted from generation to

generation) genetic markers contains important information that can be used in genetic

association studies (Gorelick and Laubichler [2004],Lewontin [1988],McPeek and Strahs

[1999]) and population genetics. Deviation from probabilistic independence of alleles at

two different markers (allelic association) has been characterised by various measures.

Allelic association is also known as linkage disequilibrium (LD). One application of

estimating LD in gene mapping (association studies) is to avoid redundancy caused

by strong correlations between markers and allows to optimize association studies.

Multilocus LD (higher order LD) (Balliu et al.) extends the concept of pairwise LD

as the latter is not adequate enough to detect simultaneous allele associations among

multiple markers. Genetic recombination, mutations and changes in allele frequencies

(genetic drift) play an essential role in shaping the patterns of LD in a population.

Therefore, the dependency structure of markers as characterized by multilocus LD

contains information about ancestry.

Humans and their respective genome are quite diverse. Genetic studies such as

the human genome project have unveiled a vast number of polymorphisms (variable

locations within the genome). This staggering complexity is one of the reasons that

every person is unique (Alberts [2007]). This variability is shaped by evolutionary

forces such as drift, selection, bottlenecks (sharp reduction in the population size) and

more. Genetic ancestry as characterized in this thesis is based on the assumption of

neutral evolution (Kimura [1968]) (Chapter 2.4). This is a simplification of reality but

can serve as a good approximation of real data.

An important question in Biology and its related fields is to identify the relationship

between alleles or SNPs and their respective effect on the expression of genes result-

1

1. INTRODUCTION

ing in a specific observed and sometimes unobserved phenotype. The way that those

SNPs affect their target genes is mostly dependent on the location of the SNP by their

relation with genes or regulating elements (e.g. enhancer, silencer, promoter; Alberts

[2007]). Gene mapping is affected by genetic ancestry in at least two ways. First, it is

well known that both phenotypes and genotypes distributions differ strongly between

ethnicities, with the latter to be an important confounder in association studies (Spiel-

man et al. [2007], Consortium [2003]). Second, strong correlations between genetic

markers can make it impossible to distinguish their individual contribution. In this

case the evolutionary history of the SNPs can contribute additional information. It is

therefore important to unveil the genealogy of a given set of joint genotypes at markers

of interest.

Single nucleotide polymorphims (SNPs) are genetic markers for which exactly two

outcomes (alleles) are possible. Variability of SNPs has a large contribution to total

genetic variability and plays an important role in genetic association studies. SNPs

are often used for association but their genetic history is not taken into account. The

importance of SNPs is that they can measured very cost-effectively and the most addi-

tional more complex genetic variation, such as deletions, insertions, or inversions can be

associated with them, so that they can serve as a universal markers. Based on compre-

hensive studies, the human population contains about 10 million SNPs. The HapMap

project (Consortium [2003]) is one of the efforts characterising the joint distribution of

SNPs, i.e. the haplotype distribution. It provides the information about the location

of the SNPs in the genome, their frequencies in several populations, and haplotype fre-

quencies. This database is open assess and is meant to be used by scientists to improve

association studies as well as theoretical investigations. It is used in this thesis to apply

the developed statistical methods.

1.1 Aim of this thesis

The aim of the thesis is to provide a genetic interpretation of Higher-order Linkage

Disequilibrium (LD). For example, recombination between loci results in a reduction of

the dependence between the alleles, hence a reduction of LD. We chose a setup where

we assume an exponential growing population, which approximately allows us to ignore

fixation event, i.e. the loss of alleles due to the random walk exhibited by allele fre-

quencies over time. This leaves mutations and recombinations as major evolutionary

forces that are considered here. We show that after proper standardisation, standard-

ised higher-order LD can summarise population history through cumulant patterns of

2

1. INTRODUCTION

SNPs. These patterns are summarised in a catalogue that can be used for comparison

with actual data. Tests are developed to determine whether such given data is more

likely to stem from a particular catalogue entry. Simulations are complemented by an

analysis of part of the public HapMap project.

3

Chapter 2

Biological concepts

2.1 DNA

The human genome consists of chromosomes, which contains all the inherited infor-

mation. Joe Hin Tjio in 1955, determined that humans contain 46 chromosomes (22

autosomal and 2 sex chromosomes, XX for females and XY for males) with two copies

of each chromosome (one inherited from the mother and one from the father). In

2004, the human genome was almost fully sequenced and revealed that it consists of

approximately 3.2 x 109 base pairs (bp) (Alberts [2007]).

Each chromosome is composed of long strands of the Deoxyribonucleic Acid (DNA).

The DNA was first discovered by Friedrich Miescher in 1869 and its 3D structure was

proposed in 1953 by James Watson and Francis Crick after the pioneering work by

Rosalind Franklin and Maurice Wilkins (Watson and Crick [1953]). The DNA contains

all the necessary information to build up an organism. That information is encoded in

the DNA with format of four different nucleotides, adenine (A), guanine (G), thymine

(T), and cytocine (C). The DNA is double stranded, hence if on a specific position on

one strand we have A, then on the same position on the other strand will be T. The

same is true for G and C.

Genes are regions of the DNA, which contain the necessary information to encode

the proteins (via transcription a process which produces different types of RNA, such

as mRNA, tRNA and rRNA) are necessary for all the different functions of an organism

(Alberts [2007]). When a cell needs a particular protein, the gene that encodes that

protein will transcribe to a single strand RNA (from the double stranded DNA), which

subsequently will translate to a functional protein. Genes, contain regions, the exons,

which are translated to proteins, and the introns, which are spliced out during the

4

2. BIOLOGICAL CONCEPTS

maturation of RNA. A genomic locus is a region of DNA which contains one or more

genes.

Interestingly, humans contain approximately 400 different cell types (Alberts [2007])

with every one containing the same DNA. However, it is the transcriptome of each cell

that provides the cell’s unique identity. Hence, different combination of proteins and/or

different levels of expression of specific genes will result to different cell types.

It is apparent that the diversity of different cell types in each individual person as

well as the diversity between people in a population could be due to different reasons.

SNPs can be one of those aforementioned reasons. In normal conditions, a specific

genomic region, which contains a gene and somewhere close to it its regulatory ele-

ments such as an enhancer, will behave normally. However, as a result of evolutionary

processes not all the people will have the exact DNA composition at this region.

We can discriminate the below two different cases. Some will have different nu-

cleotides in a region (introns or intergenic genomic regions) with no, as yet, apparent

functional role and no apparent phenotype. The other case is when those SNPs are

located in exons and can lead to two different outputs; either a SNP causing a silent

phenotype or causing a new phenotype. The first is when the change in the nucleotide

composition leads to the exact same phenotype like in the normal condition, i.e. the

same amino acid, hence the same protein without any obvious severe effect. The major-

ity of the cases, lies on those aforementioned categories, with no observed phenotype,

disease or trait. However, in some cases, we observe variation in phenotype, when a

SNP in an exon or another functionally relevant position, leads to encoding a different

amino acid, hence either different protein or no functional protein at all.

More recently, the importance of SNPs in the genes’ regulatory elements has been

described. These include enhancers, silencers and promoters which are important for

the proper transcriptional control of their target genes. SNPs in these regulatory ele-

ments can lead to abnormal transcriptional control with either increased or decreased

expression of the target gene when compared to the baseline levels. Likewise, as com-

pared to coding SNPs, these deviations leads to variation in phenotypes.

2.2 Alleles and haplotype blocks

A particular location in a chromosome is called genetic locus. That genetic locus can

exhibit more than one sequence variants and is often called a marker (Alberts [2007]).

Polymorphisms is a marker with at least two of it’s alleles having frequency above 1% in

the population. The different variants of a locus are called alleles. Humans are diploid

5

2. BIOLOGICAL CONCEPTS

organisms; they contain two copies of the same chromosome, hence two copies of the

same gene. In a diploid organism, each gene will typically have two alleles occupying the

same position (locus) on the homologous chromosomes. A haplotype is a combination

of specific alleles, which is inherited to an organism from a single parent.

Humans, on an evolutionary scale, are quite young. Our ancestors were living

in Africa, about 100,000 years ago. Since we are separated by them only by a few

thousand generations, large pieces of the chromosomes without any alteration, were

inherited from parents to their offspring. It is also known, that sets of alleles are

passed from parent to child as one group. These ancestral chromosomal segments

are called haplotype blocks, which have been passed from generation to generation

with little genetic variation. Often these blocks are regions of high order LD (see

Chapter 4). Haplotype blocks may harbour haplotypes that have a low variability

in the human population, each one representing an allele combination passed down

from a shared ancestor long time ago, specific for a particular population. Hence

by studying the haplotype blocks, we can decipher the genotype of our ancestors;

our genetic evolutionary history about how our genome is shaped through different

generations as a result of the different evolutionary forces.

The completion of the sequence of the human genome at 2002, provided the knowl-

edge to the scientific community of the nucleotide composition of the genome. From

2002 until now, the human genome has been updated with new sequences with more

accurate information about the nucleotide sequence. The improvements in the next

generation sequencing technology have been instrumental towards that update (Ro-

manoski et al. [2015]). It became apparent that the genetic variance of the population

should be unveiled. The result of the international HapMap Project, a multinational

effort started at 2002, is a haplotype map of the human genome (HapMap), a database

which describes the common patterns of human sequence variation (Consortium [2003]).

It provides the information about the location of the SNPs in the genome and their

frequency in the population. This database is open free access and is meant to be used

by scientists to improve study design, the analysis of studies and provide deeper insight

into the genome.

Scientists hope that the haplotype maps will provide better insight into the identifi-

cation of disease-causing and disease-susceptibility genes. Instead of looking for all the

million SNPs of the genome and to find out which are ones causing a disease, scientists

have to pinpoint the haplotype block that appears to be inherited by individuals with

the disease. By identifying the haplotypes within blocks that are inherited by indi-

viduals with the disease, scientists can narrow down significantly the mutations linked

6

2. BIOLOGICAL CONCEPTS

or causing that disease. Subsequently, by pinpointing the specific haplotype block,

scientists can unveil the specific gene associated with the disease.

Interestingly, haplotype blocks can also provide an insight about the ancestral his-

tory of a specific allele and whether it has been favoured by natural selection. That

can lead to the identification of specific blocks which were inherited from to generation

to generation and maintained in the population. If an allele does not offer a selective

advantage on the individual, it will be more rare in a population. However, if an allele

provides an evolutionary advantage to an individual, it will be more common in the

population hence older in the evolutionary history. In this case the haplotype blocks

surrounding it will be smaller because it will have had many chances of being separated

from its neighbouring variations by the recombination events.

New alleles, which for example provide a resistance to a disease, can appear in

the population and will spread quick since those individuals will survive and pass the

mutation on to their offspring. Let’s imagine a population of 100 cockroaches; 99 have

the same allele whereas 1 has a different allele for a specific chromosomal locus offering

great resistance to pesticide. In normal conditions, all the 100 cockroaches are alive.

However, when putting them under selection, for example with a pesticide, the 99

will die and the 1 will survive as a result of the selective advantage conferred by that

allele. This cockroach will pass to its offspring the resistance allele which through the

subsequent generations will become prominent

2.3 Homologous recombination

Homologous recombination (also termed general recombination) is the genetic exchange

that takes place between a pair of homologous DNA sequences (Figure 2.1) (Alberts

[2007]). The importance of homologous recombination is apparent in two distinct bio-

logical processes, DNA damage repair and creating new combinations of DNA sequences

in each chromosome.

Radiation, chemicals as well as faults in DNA replication can result in double-

strand DNA breaks. Unless the organism corrects those DNA breaks, they can have

catastrophic downstream consequences. Homologous recombination can repair double-

stranded breaks accurately, without any loss or alteration of nucleotides at the site of

repair. Briefly, the strand from the ”normal” sister chromatid invades to the broken

sister chromatid. Subsequently, the first is used a template, to synthesize and fill up

the missing nucleotides.

A law of genetics is that each parent makes an equal genetic contribution to the

7

2. BIOLOGICAL CONCEPTS

offspring. In meiosis, double-strand breaks are intentionally produced along each chro-

mosome and homologous recombination is initiated by exchanging DNA segments either

in cis (on the same chromosome) or in trans (between chromosomes). The latter often

has catastrophic results leading to lethality as a result of diseases such as cancer like

acute myeloid leukemia, whereas the first often leads to creating genetic diversity. Ho-

mologous recombination, preferentially takes place between the maternal and paternal

chromosomes. It is apparent that when homologous recombination takes place, a spe-

cific sequence of SNPs from either the paternal or the maternal chromosomes will be

mixed resulting in new combinations in the offspring. The evolutionary benefit of that

procedure is that it creates new combinations of genes, new alleles, which can perhaps

be beneficial for the organisms. The recombination during meiosis, results in greater

diversity of the genetic pool of a population, which in terms of evolutionary biology

is a hallmark for evolution and development of species. In this thesis, we consider

homologous recombination only in cis.

Figure 2.1: The plot illustrates recombination event between to chromatids

2.4 Neutral selection

The theory of neutral selection has become central to study the evolution (Duret [2008]).

It was Motoo Kimura who at 1968 proposed that theory (Kimura [1968]).Its principle is

that at the molecular level the evolutionary changes are not caused by natural selection

but by random drift of alleles that are neutral and can be explained by stochastic pro-

8

2. BIOLOGICAL CONCEPTS

cesses. New alleles are introduced by mutations with the alleles frequencies to change

from generation to generation. Mutations with a selective advantage (an advantageous

allele) will have a higher probability of fixation by natural selection; the opposite is true

for deleterious mutations. Growth patterns are important to be considered. Growth

results in less fixation. However, exponential growth, ignores fixation as approximation.

Humans grow exponentially.

Neutral theory suggests that a lot of genetic variation is the result of mutation and

genetic drift, although selection has been proven to take place. Its main advantage

is that it can lead to conclusions which can be tested against actual data. Neutral

mutations are the ones which do not affect an organism. The theory also claims genetic

drift control those mutations. The genetic drift is controlling the fate of the neutral

mutations.

9

Chapter 3

Haplotype patterns resulting

from genetic events

Observed haplotypes either represent the ancestral DNA sequence or have been de-

rived from it through a series of genetic events. There is a large number of possible

such events mentioned earlier and we focus here on the two events mutation and recom-

bination. Moreover, we limit ourselves to bi-allelic markers such as SNPs for describing

variation in DNA sequence. Both simplifications are discussed later.

As a preparation to the later goals of the thesis we ask here: if a certain sequence of

mutations and recombinations occurs which will be the resulting haplotype distribu-

tion. As the actual haplotype frequencies vary across generations we interest ourselves

with the existence of haplotypes and ignore the specific frequency. We call this a hpalo-

type pattern in the following. In order to solve this problem, we make the following

assumptions.

1. Mutations occur only once, i.e. a specific allele at a given locus is created by a

single mutation event. This corresponds to the infinite sites model used in neutral

models.

2. Once a new haplotype is created through a mutation or recombination, it is not

lost again. Drift is a possible genetic force leading to loss of alleles/haplotypes.

The current model is valid for situations when drift does not have a large effect

(such as in large, exponentially growing populations for which humans are a good

example).

3. Every possible sequence of mutations and recombinations can happen.

10

3. HAPLOTYPE PATTERNS RESULTING FROM GENETIC EVENTS

Given these assumptions, possible haplotype patterns are explored.

3.1 Catalogue

In order to relate a haplotype pattern with corresponding genetic events, possible se-

quences of genetic events have to be explored until a given haplotype pattern is found.

As the correspondence is not one-by-one, all possible event sequences have to be ex-

plored for a given pattern. This suggests to explore event sequences once and store all

haplotype patterns that are generated. This tabulation is called the catalogue in the

following.

In the following, we restrict ourselves to bi-allelic loci such as SNPs. We arbitrary

assign 0 or 1 to distinct nucleotides at each locus. A single haplotype becomes an

N -tuple of binary digits if we consider N loci. If we denote with B the set of possible

haplotypes, then |B| = 2N − 1, i.e. B = {Bn} ,Bn = (a
(n)
1 , a

(n)
2 , . . . , a

(n)
N , where

a
(n)
l) ∈ {0, 1} is the allele at locus l ∈ {0, ..., N} for haplotype n.

For example, in case of N = 3 loci, the sequence 001 represents the haplotype with

alleles 0 at locus 1 and locus 2 and alleles 1 at locus 3. One obvious conclusions is -

by our assumption that each mutation occurs at a different locus - that the presence

of all possible haplotypes implies the occurance of a recombination event somewhere in

the evolutionary history (Song and Hein [2005]). However, some of the recombination

events are not detectable as they do not generate a new haplotype pattern. For example,

consider two haplotypes in a random mating population:

B0 = 0 0 0

B2 = 0 1 0

Let’s consider the case, where there is a recombination between locus 1 and locus

2. The two possible haplotypes that we can observe after the recombination happened

are exactly the same with the original ones. This is also the case even if we take

a recombination event between locus 2 and locus 3. Therefore, in both cases the

recombination events are not detectable and we therefore have to focus on events that

do create new haplotype patterns.

Another limitation is that more than a single recombination can happen between

two loci. Only if that number is odd, an actual recombination is observed. It is

impossible to infer the exact number of recombination events (or rather cross-overs)

that have occurred in a given sample. That is not the goal of the present thesis. Again,

11

3. HAPLOTYPE PATTERNS RESULTING FROM GENETIC EVENTS

we focus on the outcome of changes in haplotype patterns. The model presented so far,

allows reconstruction of genetic history as far as it is observable by genetic markers.

Biological knowledge suggests that there are also genetic events that cannot be captured

by our model.

A first summary of the algorithm to generate the catalogue comprises the following

steps:

1. consider ancestral haplotype Bi which is the only haplotype in the ancestral

population

2. consider all possible sequences of events (mutation and/or recombination) for the

given number of loci

3. collect all possible haplotype patterns after applying event sequences from the

previous step to the ancestral haplotype

4. calculate the frequency pattern (allele/haplotypes frequency; discussed in Chapter

4), we assume uniform distribution

5. compute Higher order LD (discussed in Chapter 4)

This algorithm generates a comprehensive list of possible haplotype patterns to-

gether with their genetic history. The last two steps are needed for data applications

and are discussed later.

3.2 Example for three loci

Consider the case of three bi-allelic markers. For the given DNA segment with three

loci, the following haplotypes might be observed, resulting in 23 possible haplotypes.

12

3. HAPLOTYPE PATTERNS RESULTING FROM GENETIC EVENTS

locus 1 locus 2 locus 3

0 0 0

1 0 0

0 1 0

1 1 0

0 0 1

1 0 1

0 1 1

1 1 1

Table 3.1: Haplotypes for three bi-allelic loci; 0 denotes the wild type DNA
composition and 1 a mutation/SNP

However, in biological data not all possible haplotypes might be observed. There are

some potential explanations for this phenomenon. Either some recombination events

have never occurred between specific loci, or recombination events have taken place

but the resulting haplotype leads to lethality and is not observed in the population, or

we have a bottleneck effect or very low haplotype frequencies (Griffiths and Marjoram

[1996]).

Now, we consider the following five haplotypes from three loci:

B0 = 0 0 0

B2 = 0 1 0

B3 = 1 1 0

B4 = 0 0 1

B5 = 1 0 1

In this example, the B0 haplotype indicates the base haplotype, i.e the DNA segment

in which no mutation has yet occurred. B2 might have arisen from a mutation at locus

2. B5 might have been arisen from a mutation at locus 1 on the background B2. B4

is the result of a mutation at locus 3. B5 cannot explained by a mutation at locus 1

on a B4 background based on the infinite sites assumption, but has to result from a

recombination.

13

3. HAPLOTYPE PATTERNS RESULTING FROM GENETIC EVENTS

A very common way of illustrating the history of a sample of chromosomes, is the

ancestral recombination graph (ARG). We can describe and trace the evolutionary

history as an inverted tree. In our examples, the ancestral recombination in Figure

3.1, describes the genealogy of our sample B = {B0, B2, B3, B4, B5} and shows the

importance of recombination events to generate new haplotypes and increase the genetic

diversity. Therefore, the evolution of each haplotype is unfolded backward in time.

B4 B5 B3 B2 B0

B0: 0 0 0

M3

M1 M2

R(2,5,1)

Figure 3.1: A hypothesized ancestral
recombination graph for one example,
shows the effect of recombination in

evolutionary process

The root of the tree is haplotype B0 :

0 0 0. Moreover, Ml denotes the muta-

tion event with l = {1, 2, 3} to indicate

where the mutation takes place. Based

on the plot, B4 haplotype has been arisen

from a mutation at locus 3. B5 haplotype

derives from a mutation at locus 3 and

subsequently a mutation at locus 1. The

haplotype B2, is derived from a mutation

at locus 2. In this tree only one recombi-

nation event has occurred which we denote with R(Bi, Bj , pos) where Bi, Bj ∈ {Bn},
Bi 6= Bj . The argument pos indicates the position where the recombination occurs

i.e pos ∈ {1, 2, 3, . . . , N − 1} and N is the number of loci. Based on the graph the

recombination event has occurred between B2 and B5 haplotypes which generated B3

haplotype. This example ARG represents one evolutionary history from the many that

exists for the given data B = {B0, B2, B3, B4, B5}.
Note, that B0 represented the ancestral sequence in this example. The ancestral

sequence is not known in general. Subsequently, we consider all possible haplotypes as

ancestral haplotypes.

3.3 Algorithm to construct the catalogue

Here, we describe the algorithm that explores all genetic event sequences in detail.

The algorithm considers vectors of indicator variables, where each entry indicates

the presence or absence of a haplotype. By the assumption of no loss of alleles, a haplo-

type never disappears from a pattern once created. We use index i ∈ {0, 1, 2, 3, . . . , 2N−
1} which corresponds to the haplotype represented by the binary representation of i

and consider bi-allelic loci.

Initially, the algorithm starts with a vector containing a single “1”, the base haplo-

type Bi, where Bi ∈ {Bn} for n ∈ {0, . . . , 2N − 1}. In the case of three loci, mutations

14

3. HAPLOTYPE PATTERNS RESULTING FROM GENETIC EVENTS

can occur in different order starting from either the first, second or third loci. Therefore

we have to consider all possible permutations on a set of 3 loci where a mutation can

take place. Specifically, for 3 loci, there are 3! = 1 · 2 · 3 = 6 permutations of {1, 2, 3},
namely {1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, and {3, 2, 1}. Between mutations

a number of recombinations is tried to generate new haplotypes. Since we start with a

single haplotype, we begin with a mutation instead or recombination, because in this

case only a mutation can lead to a new haplotype.

Taking into consideration all these different order of mutations can lead to different

haplotypes. For 3 loci, four possible sequence of events can occur:

• M →M →M → R

• M → R→M →M → R

• M →M → R→M → R

• M → R→M → R→M → R

Here, M indicates a mutation event and R any number of recombinations. Re-

combinations are performed between all possible pairs of haplotypes and all possible

locations and the result checked for new haplotypes. This recombination procedure will

be terminate when no new haplotypes could be generated. The results are saved in a

vectors with 8 elements, where each element indicates the existence of a haplotype (see

section 3.4). These entries are annotated with the sequences as listed above. If two

sequences lead to the same pattern, catalogue entries are merged by concatenating the

alternative sequences. We detail the algorithm by the following pseudo-code.

1. For all base haplotypes Bi

(a) Initialize current haplotype pattern with Bi.

(b) For all permutations PL = (pl1 , ..., plN) of loci

(c) Call [Mutation function] with current permutation p, haplotype Bi, current

pattern

Mutation function : Take first element e of provided permutation p, remainder pr

i. Apply mutation at e to provided haplotype h

ii. Add new haplotype to current pattern, store new pattern with current

annotation

15

3. HAPLOTYPE PATTERNS RESULTING FROM GENETIC EVENTS

iii. Repeat: call [Recombination pattern] with current pattern, pr, stop if

pattern did not change

iv. Return current pattern

Recombination function :

(a) For all pairs of haplotypes, all recombination positions

i. Apply recombination to current pair of haplotypes at given position

ii. If new haplotype is generated, add haplotype, store new pattern with

current annotation

iii. Call [Recombination function] with current pattern, pr

iv. For all haplotypes in current pattern h

A. Call [Mutation function] with pr, h, current pattern

(b) Return current haplotype pattern

In the above, “store” means that the current pattern is saved in a global structure.

Whenever a pattern is saved it is merged with pre-existing descriptions for the pattern

as described above.

3.4 Structure of catalogue

Each catalogue entry is comprised of a character vector describing the genetic events

that happened and an indicator vector containing information on which haplotypes

exist. For three loci, the catalogue contains a list of vectors with 8 entries (Table 3.2).

Each position represents the existence of one of the specific haplotypes (B0, ..., B7) in

the population. We denote with 1 the presence of a haplotype and 0 its absence. Each

indicator, in turn, represents a haplotype.

Next, some examples from the catalogue are shown. The first sub-list (Figure 3.2),

indicates that only the haplotype B0 in position 1 appears in the sample population.

The character string B0 therefore describes the history in this case.

$B0
[1] 1 0 0 0 0 0 0 0

Figure 3.2: A catalogue entry which shows that only one haplotype (B0) appears in
the sample population

16

3. HAPLOTYPE PATTERNS RESULTING FROM GENETIC EVENTS

position of indicator

position 1 2 3 4 5 6 7 8

Haplotypes B0 B1 B2 B3 B4 B5 B6 B7

locus 1 0 1 0 1 0 1 0 1

locus 2 0 0 1 1 0 0 1 1

locus 3 0 0 0 0 1 1 1 1

Table 3.2: An overview about the haplotypes in each position of the vector for three
loci.

In Figure 3.3 we observe two haplotypes (position 1 and 2). Two possible histories

explain this pattern which are given as ’[history1,history2]’. The two histories are

starting with base haplotype B0 or B1 each time followed by a mutation at locus M1

(one time a 0 is flipped into a 1 and the other time the other way round).

$ ‘ [B0−>M1, B1−>M1] ‘

[1] 1 1 0 0 0 0 0 0

Figure 3.3: A catalogue entry which shows that two haplotypes (B0 and B1) appear
in the sample population

The mutation (M) or recombination (R) events which lead to the appearance of a

specific haplotype are depicted above the specific vector. In Figure 3.4, the population

contains four haplotypes {B0, B1, B2, B3}. The genetic history is described by a more

complicated, nested structure with several alternatives. Briefly, in order to explain

this pattern, there are four potential base haplotypes onto which a combinations of

mutations (M) and recombination (R) events is applied. For example starting from

haplotype B0, a mutation at either locus 1 (M1) or at locus (M2) results in B1 and B2

haplotypes respectively. Subsequently, a recombination event (R1) between locus 1 and

2 for the haplotypes B1 and B2 leads to haplotype B3. To keep notation manageable,

the particular haplotypes that were recombined are not mentioned.

17

3. HAPLOTYPE PATTERNS RESULTING FROM GENETIC EVENTS

$ ‘ [B0−>[M1−>M2−>R1 ,M2−>M1−>R1] , B1−>[M1−>M2−>R1 ,M2−>M1−>R1] ,

B2−>[M1−>M2−>R1 ,M2−>M1−>R1] , B3−>[M1−>M2−>R1 ,M2−>M1−>R1]] ‘

[1] 1 1 1 1 0 0 0 0 ,

Figure 3.4: A catalogue entry which shows that four haplotype (B0, B1, B2, B3)
appear in the sample population

The catalogue for three loci has 154 entries, which is different from 256 (28 com-

binations of 0 and 1) that are possible theoretically. This discrepancy is discussed

below.

3.5 Complete catalogue for two loci

As the descriptions of the histories of the catalogue for three loci become very long

(several 1000 characters), we here focus on the minimal case of two loci for which the

complete catalogue can be shown. We assume that we have two bi-allelic markers and

we again denote the haplotypes as B = {Bn}, where n = {0, 1, 2, 3}, Bn = (0, 1)2.

In this particularly example, it produces the following four (2N ; N number of loci)

haplotypes:

locus 1 locus 2

0 0

1 0

0 1

1 1

Table 3.3: Haplotypes for two bi-allelic loci; 0 denotes the wild type DNA
composition and 1 a mutation/SNP

For two loci, the catalogue consists of 13 entries out of the possible 16.

position 1 2 3 4

Haplotypes B0 B1 B2 B3

Table 3.4: An overview about the haplotypes in each position of the vector for two
loci.

18

3. HAPLOTYPE PATTERNS RESULTING FROM GENETIC EVENTS

The Table 3.5 depicts the full catalogue for 2 loci. We use the same notation as

previously described, by denoting M the mutation and R the recombination events.

19

3. HAPLOTYPE PATTERNS RESULTING FROM GENETIC EVENTS

Ancestor History Observed Haplotypes

1. B0 1 0 0 0

2. B1 0 1 0 0

3. [B0 →M1, B1 →M1] 1 1 0 0

4. B2 0 0 1 0

5. [B0 →M2, B2 →M2] 1 0 1 0

6. [B0 → [M1 →M2,M2 →M1], (or)

B1 →M1 →M2, B2 →M2 →M1] 1 1 1 0

7. B3 0 0 0 1

8. [B1 →M2, B3 →M2] 0 1 0 1

9. [B0 →M1 →M2,(or)

B1 → [M1 →M2,M2 →M1], (or)

B3 →M2 →M1] 1 1 0 1

10. [B2 →M1, B3 →M1] 0 0 1 1

11. [B0 →M2 →M1, (or)

B2 → [M1 →M2,M2 →M1], (or)

B3 →M1 →M2] 1 0 1 1

12. [B1 →M2 →M1, (or)

B2 →M1 →M2, (or)

B3 → [M1 →M2,M2 →M1]] 0 1 1 1

13. [B0 → [M1 →M2 → R1,M2 →M1 → R1],(or)

B1 → [M1 →M2 → R1,M2 →M1 → R1], (or)

B2 → [M1 →M2 → R1,M2 →M1 → R1], (or)

B3 → [M1 →M2 → R1,M2 →M1 → R1]] 1 1 1 1

Table 3.5: The complete catalogue for two loci

20

3. HAPLOTYPE PATTERNS RESULTING FROM GENETIC EVENTS

The vectors 1, 2, 4 and 7 indicate the base haplotypes B0, B1, B2, and B3, re-

spectively. The aforementioned vectors, describe the cases where only one haplotype is

occurred.

Adding a mutation leads to new haplotypes. For example the vector 3, describes a

sample population where two haplotypes are observed, the B0 and B1. Here we have

two potential genealogical histories which result in the observed haplotypes. In details:

1. B0 →M1: The ancestor haplotype is B0. After a mutation at loci 1, the observed

haplotype is the B1.

2. B1 →M1: Similarly with above, the ancestor haplotype is B1 and after a muta-

tion at loci 1 we get the B0 haplotype.

In total, vectors 3, 5, 8, and 10 represent the cases of a single mutation occurring.

There are four haplotype patterns in the catalogue, which contain three haplotypes.

For example the vector 12 describes three potential genealogical histories which lead to

the observed haplotype B1, B2 and B3. In details:

1. B1 → M2 → M1: The ancestor haplotype is the B1. The observed haplotypes

were obtained by mutation at loci 2, resulting in the haplotype B3. In the latter

haplotype, a mutation at loci 1 leads to the haplotype B2.

2. B2 → M1 → M2: Here the sequence of events take place in similar manner with

the above case. The ancestor haplotype is the B2. The observed haplotypes

were obtained by mutation at loci 1, resulting in the haplotype B3. In the latter

haplotype, a mutation at loci 2 leads to the haplotype B1.

3. B3 → [M1 →M2,M2 →M1]: In this case, the ancestor haplotype is B3. In order

to have in the population the haplotypes B1 and B2, a mutation takes place at

the ancestor haplotype either at locus 1 (leading to haplotype B2) or at locus 2

(resulting to haplotype B1).

Entries 6, 9, 11, and 12 represent the cases where three haplotypes have occurred.

Finally, vector 13, describes a case where all four possible haplotypes have been

generated. The latter can be achieved by different sequence of events. In contrast with

the previous cases, now we also see recombination (between locus 1 and 2) events. For

example, the ancestor haplotype for the first below sequence of events is the the B0.

A mutation at locus 1 or at locus 2 for the haplotype B0, leads to haplotype B1 or B2

respectively. A recombination between locus 1 and 2 between the haplotypes B1 and

21

3. HAPLOTYPE PATTERNS RESULTING FROM GENETIC EVENTS

B2 results to haplotype B3. Similarly we can explain the rest of the below sequence of

events.

1. [B0 → [M1 →M2 → R1,M2 →M1 → R1]

2. B1 → [M1 →M2 → R1,M2 →M1 → R1]

3. B2 → [M1 →M2 → R1,M2 →M1 → R1]

4. B3 → [M1 →M2 → R1,M2 →M1 → R1]]

All histories mentioned earlier occur as a subsequence of entry 13. As all haplotypes

have been generated the algorithm always stops as no new haplotypes can be generated

any more.

One example of a missing haplotype pattern is the entry (1, 0, 0, 1), i.e. B0 and B3

form the population. This pattern is impossible as B3 contains two “1” alleles, whereas

B0 does not contain any. To go from B0 to B4 (or the other way round) two mutations

would have to occur at once, which we have excluded by our population model.

22

Chapter 4

Linkage disequilibrium

Linkage disequilibrium (LD) is a important statistical concept for genetic mapping of

traits in humans or other in organisms. It is defined as the non-random assortment

of marker alleles at different loci in a population and usually is denoted by D or δ.

It can also be seen as non-zero covariance between allele indicators. In the literature,

sometimes is referred to other synonymous terms such as gametic phase disequilibrium

or allelic association (Lewontin [1988]). Linkage equilibrium (LE) denote the absence

of association between two loci; the alleles at each loci are independent.

The patterns of LD can been affected by many factors like genetic drift, recombina-

tions, natural selection or by the geographical structure and changes in population size.

As an example of the latter, the strength of LD relies on the number of founding hap-

lotypes (after a population bottleneck occurred), on the size of population (small sized

population drifts with bigger effect) and on the number of generations (the number of

populations for which the population existed). Consequently, we expect weak allelic

association (decay of LD) when there have been more meiosis thus, more opportunities

for recombination. However, it difficult to interpret the raw covariance δ in absolute

terms. For this reason, other standardized measures have been proposed. The most

important among them are the coefficients D′ and r2, which play a role in different

applications. In the current thesis, the parameter D′ is more useful since it can be

related to the occurrence of historical recombination, while r2 (the squared correlation

of allele indicators) is more appropriate for the design of association studies (Balding

[2006]).

23

4. LINKAGE DISEQUILIBRIUM

4.1 Pairwise linkage disequilibrium

Let us consider the case of two bi-allelic markers located on the same chromosome. If

the alleles are far apart on the chromosome, then recombination events occur a higher

frequency as compared to alleles more closely located together. Alleles which are close

together on the same chromosome will recombine less frequently, hence having the

potentially higher LD.

There are four possible allele combinations at two loci:

locus 1 locus 2

0 0

0 1

1 0

1 1

Table 4.1: Haplotypes for two bi-allelic loci

Let pi· and p·j be the marginal (or single) frequencies of alleles i and j at loci 1 and

2 respectively, where:

i, j =

{
0, if allele is 0

1, if allele is 1
(4.1)

Thus p0· and p1· denote the allele frequency of allele 0 and 1 at loci 1 respec-

tively. Moreover, we assume that haplotypes follow a multinomial distribution h ∼
Mult(1, pij), where pij denotes the haplotype frequency (i, j). Thus, p01 denotes the

probability of a randomly selected haplotype being the haplotype with alleles 0 or 1

at the two loci 1 and 2. The marginal frequency of alleles 1 at locus 1 is obtained by

summing up the frequencies of all haplotypes contain alleles 1 at locus 1:

p1·= p10 + p11

Similarly, we can obtain the marginal frequencies of the other alleles.

The relationship between haplotype frequencies and alleles frequencies depends on

whether the alleles at two loci are dependent (i.e. in LD) or independent (i.e. in LE).

1. If the alleles at two loci are independent from each other then the joint probability

is equal to the product of marginal probabilities. For instant, p11 = p1· · p·1

24

4. LINKAGE DISEQUILIBRIUM

2. If the alleles at two loci are not independent from each other, then joint proba-

bilities deviate from the product of marginal probabilities (by ± D).

The probabilities can be arranged in a contingency table:

locus 2

0 1 Marginal prob.

actual p00 p01
0

expect p0·p·0 p0· p·1 p0·

actual p10 p11

lo
cu

s
1

1
expect p1·p·0 p1· p·1 p1·

Marginal prob. p·0 p·1 1

Table 4.2: Association between two bi-allelic loci, showing the actual haplotype
frequencies and the expected haplotype frequencies when the loci are in linkage

equilibrium. The marginal probabilities represent the allele frequencies

The pairwise coefficient of linkage disequilibrium for two bi-allelic markers is defined

as:

Dij = pij − pi·p·j (4.2)

As we mentioned above, the definition of LD provides a measure of deviation from

the independence case. If two events A and B are independent then P (A ∩ B) =

P (A)P (B), therefore departure from independence can be measured as D = P (A ∩
B) − P (A)P (B) (Mueller [2004], Gorelick and Laubichler [2004]). This concept can

be utilised for expressing the independence between two loci. D is also the covariance

between allele indicators at two loci. In the case of indicators independency, that is

equivalent to uncorreletedness.

In a bi-allelic system, all Dij ’s only differ by sign, as can easily be seen by summing

the Dij marginally over one of the two loci:

Dij = (−1)i+jD (4.3)

where,

D = p11 − p1·p·1 (4.4)

Thus, any choice of reference alleles leads to the same absolute value. Note, that

the value of the D is sensitive to the marginal probabilities and bounds for D depend

25

4. LINKAGE DISEQUILIBRIUM

on allele frequencies. Bounds for D are given as follows:

D ≥ −min(0, 1− p1· − p·1)− p1·p·1, (4.5)

D ≤ min(p1·, p·1)− p1·p·1 (4.6)

4.2 Standardised LD

To better interpret D, standardized versions have been proposed. The underlying

concept is to normalise D to take values in the fixed interval (0, 1). The standardised

LD is denoted as D′ and is defined as:

D′ij =
Dij

Dmax
ij

(4.7)

where,

Dmax
ij =

{
min(p1·, p·1)− p1·p·1 : Dij > 0

−min(0, 1− p1· − p·1)− p1·p·1) : Dij < 0
(4.8)

Two extreme cases of D′ are worth consideration:

1. D′=0, which is the case of complete equilibrium (D=0)

2. D′=1, when at least one haplotype is missing, and there is no evidence for recom-

bination between markers.

When the value of D′ is lower than 1, there is evidence for the existence of historic

recombination events. When we observe high value for D′, that does not imply that

the two SNPs can predict each other well. Also note, that D′ does not reparametrize

D, i.e. we cannot re-commute D from D′ in general. Therefore also a signed version

can be considered, i.e. D′ lives on (−1, 1). We will consider a signed version in the

following.

4.3 High order of Linkage disequilibrium

LD can be generalized to more than two loci. LD for three or four loci has been consid-

ered in the literature before(Weir [1996]). It turns out that these intuitive definitions

26

4. LINKAGE DISEQUILIBRIUM

coincide with joint cumulants and LD can therefore be defined for any number of loci

using their joint cumulants.

As an illustration, we show the formula for 3 bi-allelic loci which is a sum of hap-

lotype frequencies of all possible subsets of the loci (i.e. allele frequencies, pairwise

frequency, haplotype frequency of all three loci). The joint cumulant of three loci is

given by:

Dijk = pijk − pi··p·jk − p·j·pi·k − p··kpij· + 2pi··p·j·p··k, (4.9)

where i, j, k denote the three loci and variables pL denote marginal haplotype frequency

for subset (of loci) L for which one of the alleles at each locus is chosen in a fixed way

for all terms pL. As a convention we will assume alleles 0, 1 and pL to denote the

haplotype of alleles 1 at each locus in L.

The standardisation method that have been described in section 4.2 can be gener-

alised to establish standardised LD measurements for any number of loci (3,...,N). This

method is described in Appendix A (8). This standardization has been developed else-

where (Balliu et al.) and the formulas are more involved. A similar interpretations as

for the pairwise standardised LD exist, namely, standardised higher-order LD being 1,

has the interpretation that at least one haplotype is unobserved. This implies that not

all possible recombinations have occurred yet.

For completeness, LD for N SNPs can be defined as follows. Briefly, we consider

A = {A1, A2, ..., AN} to be a set of random variables with indicator variable Aj ∈ {0, 1},
j = 1, 2, .., N . If Par(A) refers to the set of partitions of set A into non empty subsets,

then the joint cumulant of the set of random variables A is:

f(A) = f(A1, A2, ..., AN) =
∑

τ∈Par(A)

(−1)|τ |−1(| τ | −1)!
∏
β∈τ

E
(∏
A∈β

A
)

(4.10)

where τ ∈ P (A) (| τ | denotes the cardinality of set τ) and each β ∈ τ is a

block, i.e. a member of the partition (more details in Appendix 1 (8)). The terms∏
A∈β A correspond to marginal haplotype frequencies. For example, the Function 4.10

corresponds to the mean for one loci(N=1), i.e. f(A1) = E(A1), while for 2 loci (N=2)

corresponds to the covariance, i.e. f(A1, A2) = E(A1A2) − E(A1)E(A2), therefore to

the pairwise LD.

27

Chapter 5

Data application of visualisation

and genetic interpretation of

Higher-order Linkage

Disequilibrium.

The aim of this chapter is to visualise and interpret Higher-order Linkage Disequilib-

rium. Also, we will generalize genetic interpretations relating to recombination and

mutation events with respect to the pair-wise situation.

In Chapter 3 and Chapter 4 we have described the way we have contructed the

catalogue. We use the HapMap dataset to obtain SNP data for human chromosome

21. Chromosome 21 has been implicated in many genetic disorders among them Down

syndrome as well as chromosomal translocations resulting in leukemia such as Acute

Myeloid Leukemia (AML). The HapMap data considered in this analysis, consists of

120 haplotypes where we consider a SNP arbitrarily selected in chromosome 21 and

subsequently investigated 100 SNPs downstream of the selected one. For the purpose

of this chapter, I have selected arbitrarly one SNP (rs3843783) and then selected 3

SNPs based on their location; one intronic (rs2829806), one exonic (rs1057885) and

one intergenic (rs11088561) in order to assess whether detectable differences are visible

for the different classes of SNPs(Consortium [2003]). A window of SNPs around these

anchor SNPs is then analysed together. For graphical representation purposes, we will

use heatmap plots which allow to depict relationships in a data matrix where data

values are mapped to a colour range.

28

5. DATA APPLICATION OF VISUALISATION AND GENETIC
INTERPRETATION OF HIGHER-ORDER LINKAGE DISEQUILIBRIUM.

The data analysis can be divided into the following steps:

1. Consider the catalogue for three SNPs

2. For each catalogue entry assume a distribution, for each non-empty subset of

three SNPs, compute LD and standardized LD (or D′).

3. For the real data, around an anchor SNP, select a window of SNPs and consider

a sliding window of three SNPs in this set

4. Compute LD and standardized LD for each sliding window of three as for the

catalogue.

5. Create a Euclidean distance matrix for the catalogue and HapMap dataset by

computing the Euclidean distance of the real data cumulant signature with every

entry of the catalgue.

6. Visualize the patterns using Heat maps plots.

5.1 Compute LD and standardized LD for the catalogue

Each catalogue entry contains an existence pattern of haplotypes. For the purpose of

computing standardized joint cumulants, the existence pattern is transformed into a

uniform distribution on the existing haplotypes. Standardized joint cumulants are then

computed for all non-empty subsets of loci, resulting in seven entries for three loci. The

choice of the uniform distribution leads to joint cumulants of 0 if all haplotypes exist

for a subset (unless a single locus). This corresponds to the case of LE, between alleles

where recombinations have been occurred, i.e. we assume that once a recombination

has occurred further recombinations have eliminated all remaining correlation. For ex-

ample, uniformly distributed haplotypes on two loci lead to lack of correlation between

the SNPs. Missing haplotypes lead to a standardized cumulant of either -1 or 1.

As actual haplotype frequencies in a given sample are subject to genetic drift and

are not uniform in general, the comparisons should not depend on a particular choice

of frequencies. We achieve this by excluding marginal frequencies from the cumulant

signature when performing actual comparisons (see below). The cumulant signature is

added to the catalogue.

29

5. DATA APPLICATION OF VISUALISATION AND GENETIC
INTERPRETATION OF HIGHER-ORDER LINKAGE DISEQUILIBRIUM.

5.2 Compute LD and standardized LD for real data (HapMap

project)

Data from the HapMap project is offered in a phased version, i.e. haplotypes have

been determined from genotype data using family information and statistical inference.

Haplotype frequencies can therefore directly be estimated using sample frequencies.

As described above, for chromosome 21, we selected some anchor SNPs and for each

such anchor SNPs a window of SNPs around it (in this example 100 SNPs). Within

each such window, continuous sets of three SNPs are selected and analysed in a sliding

window approach. That means that two subsequent windows will overlap by two SNPs.

The data set consists of 60 individuals, resulting in 120 haplotypes. This dataset has to

be considered very small. The fact that this is a small sub-sample from the population

implies that the assumption that no haplotypes were lost is violated. As a matter of

fact, the sampling process can be considered a bottleneck effect. Interpretation of the

analysis has therefore to take this into account.

Analogously to the catalogue, standardized LD is calculated based on sample hap-

lotype frequencies. In total, 100 such cumulant vectors are generated for the 100 SNP

windows of size three.

5.3 Create a Euclidean distance matrix

In order to describe ancestry of the SNP data, similarity of the data with catalogue

entries is computed. In principle, there are many possible ways to find numeric sim-

ilarities. Here we use the Euclidean distance between cumulant vectors as a distance

measure. In order to reduce or eliminate the influence of genetic drift on the analysis,

cumulant entries describing allele frequencies were removed from the vectors prior to

calculating the Euclidean distance. Thereby, four elements remained in the cumulant

vectors (three pair-wise, and one three-wise LD entries).

Let us denote by κ1 = (x1, x2, x3, x4) an cumulant signature (from the 154) from the

catalogue with the standardised LD values. Similarly, let us consider κ2 = (y1, y2, y3, y4)

to be a vector including the standardised LD values from the data set. Then, the

Euclidean distance of these two vectors will be

d(κ1, κ2) =

√√√√ 4∑
i=1

(xi − yi)2 (5.1)

30

5. DATA APPLICATION OF VISUALISATION AND GENETIC
INTERPRETATION OF HIGHER-ORDER LINKAGE DISEQUILIBRIUM.

Following the aforementioned principle, we can obtain a Euclidean distance matrix

consisting of all distances between the catalogue and HapMap datasets.

M =


d1,1 d1,2 ... d1,100

d2,1 d2,2 ... d2,100
...

... ...
...

d154,1 d154,2 ... d154,100


where di,j denotes the Euclidean distance between i catalogue entry and j HapMap

dataset. Hence,

M = [dij]

where i = 1, 2, ..., 154 and j = 1, 2, ..., 100.

5.4 Visualize the patterns using heatmap plots

Chromosome 21 from the HapMap project consists from 33863 SNPs. Initially, we

selected arbitrary the 100th SNP and calculated the LD and D′ for the next 99 SNPs,

resulting in a total of 100 SNPs. Considering the Euclidean distance of the D′ values

between the catalogue and the current subset, we visualised that difference in a heatmap

(Figure 5.1). Subsequently, we considered two SNPs, one lying in an intron (Figure 5.2)

and another in an exon (Figure 5.3) respectively of the gene MRPL39 and repeated

the aforementioned analysis for 100 SNPs in this genomic region. Finally we selected

an intergenic SNP lying between the genes USP25 and C21ORF34 (Figure 5.4).

5.5 Interpreting heatmap plots

The aforementioned clustering analysis for the Euclidean distance of their D′, reveals

some distinct clusters (Figure 5.1, Figure 5.2, Figure 5.3, Figure 5.4). There is a

group of events with the same Euclidean distance (red and/or black colour) and lack

of recombination (few recombination/mutation events) since D′ is different, meaning

we cannot conclude anything about the genealogy of those SNPs. Moreover, there

is a cluster (green colours) which are close to have the same genealogy, since they

have a small Euclidean distance, meaning that the history between the SNPs and the

catalogue entries cannot be distinguished based on Euclidean distance. Furthermore,

we observe a cluster (orange colour) where the distance is close to 0, therefore the

catalogue entries can explain the genealogy of the SNPs. Also, we observe a cluster with

31

5. DATA APPLICATION OF VISUALISATION AND GENETIC
INTERPRETATION OF HIGHER-ORDER LINKAGE DISEQUILIBRIUM.

mixed orange and green colours which is combination of the previous two states. It is of

note, that some catalogue entries represent cases where not all mutations have occurred

whereas the data set is conditioned on the fact that polymorphic data exists (i.e. the

corresponding mutation has occurred). For example, catalogue entry 1 contains only

the haplotype B0. In this case, this sample population cannot be observed in real data

based on data ascertainment. By ignoring allele frequencies, we make it impossible to

detect a case where a mutation has “just” occurred (i.e. only very few alleles exist yet).

This indicates that other choices than the Euclidean distance and the elimination of

allele frequencies in the comparisons might be reasonable. The current plots a therefore

only useful when the questions mentioned above are not important.

32

5. DATA APPLICATION OF VISUALISATION AND GENETIC
INTERPRETATION OF HIGHER-ORDER LINKAGE DISEQUILIBRIUM.

Figure 5.1: The heat map and the dendrogram plot of the Euclidean distance for the
100 arbitrary selected SNPs.

33

5. DATA APPLICATION OF VISUALISATION AND GENETIC
INTERPRETATION OF HIGHER-ORDER LINKAGE DISEQUILIBRIUM.

Figure 5.2: The heat map and the dendrogram plot of the Euclidean distance for the
intronic SNP rs2829806.

34

5. DATA APPLICATION OF VISUALISATION AND GENETIC
INTERPRETATION OF HIGHER-ORDER LINKAGE DISEQUILIBRIUM.

Figure 5.3: The heat map and the dendrogram plot of the Euclidean distance for the
exonic SNP rs1057885.

35

5. DATA APPLICATION OF VISUALISATION AND GENETIC
INTERPRETATION OF HIGHER-ORDER LINKAGE DISEQUILIBRIUM.

Figure 5.4: The heat map and the dendrogram plot of the Euclidean distance for the
intergenic SNP rs11088561.

36

Chapter 6

Inference on higher order LD

In the previous chapters, we have introduced descriptive ways to analyse the data

by means of heatmap plots. In this chapter, we will develop tests in order to assess

which catalogue entry among two is closer to actual data. Therefore, it is possible to

decide which of two ancestors is more likely to explain the data. We rely on bootstrap

technique to develop the tests and apply them to the HapMap data.

6.1 Introduction to Monte Carlo methods

Monte Carlo methods (also known as Monte Carlo simulations) are computational

tools which are increasingly used in recent years as a result of the great improvements in

computer performance. It refers to statistical methods used to approximate solutions to

problems through repeated random sampling. It can be applied to estimate parameters

of interest and to develop statistical tests. Monte Carlo simulations have been applied

in this thesis to make inference on the genetic history of given genotype data using

hypothesis testing. The parametric bootstrap which generates datasets using repeated

sampling from a known probability model has been used to develop the tests.

6.2 Parameter testing of parametric bootstrap procedure

In this thesis, we focus on the comparison of pairs of catalogue entries using parametric

bootstrap techniques. Two catalogue entries are pre-specified and it is to be determined

whether a given data set is more likely to stem from one of the histories.

Let us consider M bi-allelic loci and haplotype h{0, 1}M as multinomially distributed,

i.e. h ∼ Mult(1, p), where p = (p1, ..., p2M) denotes the haplotype frequencies and

37

6. INFERENCE ON HIGHER ORDER LD

∑
pi = 1.

Assume that we are interested to compare catalogue entries h1 and h2. Denote with

κ1 and κ2 corresponding cumulant signatures. In principle, all the points in the space

of cumulant signatures, that have equal distances from κ1 and κ2 represent the null

hypothesis. We simplify this situation, by assuming that the a single representative

point can been chosen. In the following we choose the mean κm of κ1 and κ2 as the

null, hence,

κm =
κ1 + κ2

2
. (6.1)

A justification of this simplification is, that we test the most direct path between

the two histories. For illustration, imagine that κ1 and κ2 are located in a two di-

mensional space and κm is their mean (Figure 6.1). Then, we denote with d1, d2, the

Euclidean distances of the cumulant signatures of catalogue entries κ1 and κ2 with κm,

respectively. The null hypothesis can be restated as no differences between d1 and d2,

H0 : d1 = d2. We also consider the null hypotheses H0 : d1 ≤ d2 and H0 : d1 ≥ d2.
Rejecting the null hypothesis implies that either of the two distance d1 and d2, is

smaller. Therefore one catalogue entry is a better explanation for the given data. We

will to try to assess the significance of the hypothesis with the statistic T which is the

difference of the distances d1 and d2.

Figure 6.1: The plot illustrates the Euclidean distance of LD values between
catalogue entry κ1 and κ2 with theκm. In this case the d1 = d2. The null hypothesis

is always directly between two entries

38

6. INFERENCE ON HIGHER ORDER LD

6.3 Data generation under the Null hypothesis

In order to generate datasets under the null hypothesis under a parametric model, we

will generate haplotypes, which follow the multinomial distribution h ∼ Mult(1, p).

Haplotype frequencies p will be defined by mapping back κm to haplotype frequencies

(Balliu et al.).

The following steps are performed:

1. Define which two entries from the catalogue are to be tested, with cumulant

signatures κ1, κ2.

2. Compute κm which represents the null hypothesis.

3. Estimate allele frequencies from the data and replace allele frequencies in the

cumulant signature κm with data frequencies. κ1, κ2 are computed based on

uniformly distributed haplotypes (on those who exist) thereby resulting in arbi-

trary allele frequencies. Higher order LD parameters reflect presence/absence of

haplotypes and do not depend on allele frequencies.

4. Transform the LD values (from the κm) into haplotype frequencies p.

5. The sample haplotype frequencies p are used to generate haplotypes from the

corresponding multinomial distribution which consists of 3 loci and N individuals,

where N is the number of individuals in the data.

6. Haplotype frequencies are estimated from the generated data and cumulant sig-

natures are computed, denoted with κ(i).

6.4 Algorithm of parametric bootstrap

For the parametric bootstrap procedure, the following steps were defined. The below

steps 1, 2, and 3 are described in detail in the previous section.

39

6. INFERENCE ON HIGHER ORDER LD

Algorithm

For fixed cumulant signature κ1, κ2:

Step 1 : Repeat for i = 1, ..., B; typically B=1000.

Step 2 : Draw random sample of size N from the multinomial haplotype

distribution defined by km.

Step 3 : Estimate haplotypes frequencies and transform to cumulant signature.

Step 4 : Compute the Euclidean distances d1 = d(κ1, κ
(i)), d2 = d(κ2, κ

(i))

Step 5 : Compute the test statistic T = d2 − d1
Step 6 : Compute quantiles of Tdata from

F̂ (T) =
1

B

B∑
i=1

I{x ≥ T (i)}

In the implementation the Bootstrap samples are stored as a matrix with B columns

and two rows. Each row represents the a catalogue entry and each column is the

Bootstrap sample. (
d1,1 d1,2 · · · d1,B

d2,1 d2,2 · · · d2,B

)
where di,j denotes the Euclidean distance between cumulant signature κi and the cu-

mulant signature of the bootstrapped sample.

After the collection of the bootstrap Euclidean distances, the test statistic is com-

puted by row-wise differences. Finally, we obtain a vector which contains B bootstrap

test statistics T (i)

T = (d2,1 − d1,1, d2,2 − d2,2, · · · , d2,B − d1,B) = (T (1), T (2), · · · , T (B))

Suppose that we wish to find a confidence level 1 − α interval for the pairwise

differences of distance measurements T . First, we sort the observed B i.i.d realizations

to get T(1),, T(B) and then we use Qα = T (bαB + 0.5c) to estimate the α · 100%

quantile of the distribution of T . We can state with probability 1 − α that the true

difference is covered with 1−α probability in a long sequence of experiments, and will

fall between α/2 and 1−α/2 quantiles of the bootstrap distribution of T̂ . The desired

100(1− α)% is:

[Qα/2, Q1−α/2]

This procedure results in confidence intervals. For α=0.05 and B = 1000 the

40

6. INFERENCE ON HIGHER ORDER LD

confidence interval which corresponds to a confidence level of 95%, can be calculated

as

[T(25), T(975)]

6.5 Hypothesis testing using pairwise differences of dis-

tance measurements

We consider three hypotheses concerning distances dκ1 and dκ2 , the true Euclidean

distances between the parameter vector of the data distribution and the catalogue

entries. The hypotheses of interest are:

H1
0 : dκ2 ≤ dκ1 vs H1

A : dκ2 > dκ1

H2
0 : dκ2 ≥ dκ1 vs H1

A : dκ2 < dκ1

H3
0 : dκ2 = dκ1 vs H3

A : dκ2 6= dκ1

These lead to the rejection rules for given bootstrap sample T(1), T(2), ..., T(B):

1. Reject H1
0 if dκ2 − dκ1 < Q(α)

2. Reject H2
0 if dκ2 − dκ1 > Q(1−α)

3. Reject H3
0 if dκ2 − dκ1 ∈ (Q(α/2), Q(1−α/2))

Two types of error can occur in statistical hypothesis testing. A Type I error occurs

if the null hypothesis is rejected when the null hypothesis is true. A Type II error occurs

if the null hypothesis is not rejected when it is false. In this thesis we investigate Type

I error rate by simulations under the null and power of test when increasing the sample

size of the population under certain alternative scenarios.

6.6 Performance evaluation

6.6.1 Simulations settings

Simulations can be used to evaluate the performance of this procedure for finite sample

sizes. In our experiments, we have conducted 500 replications. We have analysed 12

different cases consisting of pairwise comparisons of two catalogue entries each. The

pairs were chosen to represent pairs with both small and big Euclidean distance. First,

we will assess how the distance influences the outcome of the analysis. Selecting two

41

6. INFERENCE ON HIGHER ORDER LD

catalogue entries based on their Euclidean distance, i.e. entries which are either close

together (small Euclidean distance but above zero), far apart (maximum distance) or

having an average distance, gives an impression on which ancestries can be distinguished

for the realistic sample sizes. The Table 6.1 illustrates the Euclidean distances of

examples investigated. Second, we investigated sample size, therefore, in each simulated

datasets different sample size N have been used. Simulated datasets with N equal to

120, 240, 480 and 720 haplotypes (observations) were generated.

catalogue entries Euclidean distance

1 and 91 2.29
1 and 120 0.5
1 and 62 1
72 and 1 1.72
72 and 60 0.23
72 and 101 0.52
103 and 114 2.16
103 and 146 0.23
103 and 128 0.971
62 and 99 2.5
62 and 1 1

62 and 147 0.577

Table 6.1: The Euclidean distance of standardised LD value between two catalogue
entries

Illustrative example

The following example shows the bootstrap distribution for N = 120 haplotypes,

and B = 1000 bootstrap samples. 500 replications were performed and data was

generated under the null hypothesis. For this simulation, we compare entries 1 and 91

of the catalogue and analyse which of these entries is closer to observed data. From

the Table 6.1 we can see that they have a Euclidean distance equal to 2.29. The Figure

6.2 and 6.3 visualize the bootstrap distribution of the test statistic.

In Figure 6.2 the red line indicates the quantiles 5% and 95% and the blue line the true

expected value of the test statistic T . The right histogram has Tobs = 0.77, Q5% = 0.488

and Q95% = 0.922. Based on this plot we can test one sided hypothesis H1 and H2

and we can not reject either hypothesis. On the contrary, the resulting terms of the

left plot, gives Tobs = 0.48, Q5% = 0.51 and Q95% = 0.954. For this example we reject

the hypothesis H1 whereas, we cannot reject hypothesis H2.

42

6. INFERENCE ON HIGHER ORDER LD

In Figure 6.3 the red lines indicates the upper and low bound of the 2.5% and 97.5%

quantiles and the blue line the true observed test statistic T (see above) . With these

plots we can test two tailed hypothesis H3. The right plot gives Tobs = 1.020, Q2.5%

and Q97.5% and we reject hypothesis H3. Whereas, the left plot indicates that the

data are consistent with the null hypothesis and we can not reject the H3 since Tobs,

which is equal to 0.48, is lying on the confidence interval [0.478, 1.012]. Figure 6.4

illustrates the distribution of the test statistic Tobs of the 500 simulations. Comparing

with the rest of the histograms, we can conclude that under the same null hypothesis

T is approximately normal distributed with mean around 0.7.

Figure 6.2: Both histograms depict the sampling distribution of the test statistics
when we test the catalogue entries 1 and 91 for two experimental simulations. The

red line indicates the quantiles 5% and 95% and the blue line the observed test
statistic T . We can test the hypotheses H1 and H2.

43

6. INFERENCE ON HIGHER ORDER LD

Figure 6.3: Both histograms depict the sampling distribution of the test statistics
when we test the catalogue entries 1 and 91 for two experimental simulations. The
red line indicates the 95% confidence interval and the blue line the observed test

statistic T . We can test the hypothesis H3.

6.6.2 Type I error

Table 6.4 lists all results for type I error simulations for all tests. We test at the

0.05 level and theoretically, the probability to reject the null hypothesis should be

α = 0.05. In simulations studies, finite sample properties are investigated and the

estimated Type I error can deviate, but it should be close to the nominal level α = 0.05

because the simulated dataset was generated under the null hypothesis. With s = 500

replications, the standard error of rejection rate is approximately
√

0.05 · 0.95/s =

0.0097. Therefore, the Type I error rate lies in the interval [0.030,0.069] is acceptable

taking into account sampling fluctuation caused by the replications. From the Table

6.4, we observe that all the tests do not maintain the nominal level a = 0.05. However,

if a type I error is below 0.05 then this does not invalidate the test but it makes it

44

6. INFERENCE ON HIGHER ORDER LD

Figure 6.4: The histogram illustrate the distribution of the observed test statistic T .

conservative. In most of the cases, in test 3 (hypothesis H3), the Type I error tend to

be inflated, making the test invalid. Type I error greater than the acceptable range,

indicates that the test is too liberal.

However, for the cases where we compare the catalogue entry 1 with 120, catalogue

entry 72 with 60, catalogue entry 103 with 114, Type I error is lying in an acceptable

range. For test 2 (hypothesis H2) and test 3, Type I error is either conservative or

liberate, with many cases indicating liberal behaviour. Increasing the sample size we

do not observe stabilization of error rates or clear trends of Type I error. For some of

the investigated examples we can identify an opposite trend between test 1 (hypothesis

H1) and test 2. When Type I error of test 1 becomes conservative, then Type I error of

test 2 is more liberate and via versa. Test 1 maintained Type I error rates at nominal

levels when we compare the catalogue 72 with 60. Whereas, it is slightly inflated in the

case of catalogue 72 with 60.

Two potential reasons why the type I error is not maintained are investigated next.

First, the low number of replications that have been performed leads to type I error

estimates with big confidence intervals. Second, when generating the null hypothesis

for the parametric bootstrap, allele frequency estimates from the data are plugged into

the cumulant signature. This is the only difference in the data generation as compared

to the simulation of the true simulation model. First, we investigate the influence of

bootstrap replications. Table 6.3 lists an example concerning the comparison between

catalogue entries 1 and 91. For these examples we have performed simulation anal-

ysis increasing the number of bootstrap and simulations procedure to 2000 and 1000

respectively. However, we can not observe any improvement, with the results almost

45

6. INFERENCE ON HIGHER ORDER LD

identical to previous results. Second, Table 6.2 illustrates two examples where we per-

form a comparison between catalogue entries 1 and 91 and between 1 and 120. For this

comparison all the simulated datasets have been set to have allele frequencies equal

to 0.5. This implies that the bootstrap samples come from the exact true null dis-

tribution. Thus, instead of sample estimates, true allele frequencies are plugged into

the cumulant signature. In this example, all the tests maintain the Type I error rate

at nominal levels and the plugging in of estimated allele frequencies therefore explains

the size violations of the test. Standardized higher order cumulants depend on lower

order cumulants (e.g. pairwise D’ depends on allele frequencies) which is an intuitive

explanation of this behaviour. On the other hand, with increasing sample size the esti-

mation of allele frequencies should become more accurate improving maintenance of the

α-level. However, this behaviour could not be confirmed by the simulations performed.

A better understanding of this behaviour would require more extensive simulations and

theoretical work that is beyond the scope of this thesis.

In summary, the presented testing procedures are therefore valid for known allele

frequencies but are conservative or liberal for the sample sizes which were investigated.

catalogue entries sample size =120 sample size =240 sample size =480 sample size =720

Type I error rate

1 and 91
test 1 0.044 0.056 0.048 0.05
test 2 0.062 0.044 0.046 0.056
test 3 0.052 0.064 0.054 0.052

1 and 120
test 1 0.05 0.044 0.04 0.048
test 2 0.054 0.056 0.056 0.04
test 3 0.044 0.044 0.04 0.046

Table 6.2: Setting the three allele frequencies equal to 0.5

46

6. INFERENCE ON HIGHER ORDER LD

catalogue entries sample size =120 sample size =240 sample size =480 sample size =720

Type I error rate

1 and 91
test 1 0.077 0.069 0.104 0.104
test 2 0.041 0.032 0.02 0.014
test 3 0.058 0.053 0.051 0.066

Table 6.3: Increase bootstrap replication to 2000 and simulations to 1000

6.6.3 Power

The probability of rejecting the null hypothesis when it is false is called power of the

test and it is defined as follows:

power = 1− prob(no reject H0| H0 false) = 1− prob(Type II error)

Similar to the type I error of a test, which quantifies the probability of taking a

wrong decision (by rejecting the null when is true), power quantifies the probability of

making a correct decision (by rejecting the null when is false). In our case, power allows

to assess the ability to detect differences between two catalogue entries when given data

are truly closer to one of the entries. Typically, 80% or greater power is considered

sufficient for actual studies. Otherwise, the test would be likely to be inconclusive for

the given data. The simulation procedure to calculate the power, only differs from

the procedure to calculate the Type I error, in that we sample under the alternative

hypothesis.

In this thesis, two scenarios are used for generating data sets. In the first scenario,

we simulate data sets that have been generated by the point κH , where:

κH =
κm + κ2

2
(6.2)

and we assume that the artificial population which is generated by the point kH (which

is represented by LD values) is closer to catalogue entry k2 (Figure 6.5).

Power is given in Table 6.5 for the same four sample size scenarios that were used to

assess type I error. Generally, a test becomes more powerful as sample size increases.

Ideally, we would like to have power of 80% for all samples, however, power varies

strongly across scenarios. In the majority of the tests seem to be underpowered.

47

6. INFERENCE ON HIGHER ORDER LD

Figure 6.5: The plot illustrates the Euclidean distance of LD values between
catalogue entry κ1 and κ2 with the κH . In this case the d1 > d2

One example from Table 6.5 is where we test the differences between catalogue entry

1 and 91. The resulting power for the test H1 when the sample size is 720, indicates

that we have a 55.6% chance of drawing the incorrect conclusion by not rejecting H0

and 44.4% chance of drawing the correct conclusion that the two catalogue entries do

not have to the same Euclidean distance to κm for the considered sample. This test may

result in missing interesting findings that one of the two catalogue entries has a better

”story” to tell about the evolutionary history and genealogy of sample population. For

this and other examples, sample size needs to be increased to achieve reasonable power.

However, some examples show power of 81.8% and 71.6% for tests H2 and H3

respectively, for the comparison between catalogue entries 103 and 128 with sample

size equal to 720.

An alternative scenario is to consider the extreme case where we simulated datasets

that are generated based on one of the catalogue entries κ1 or κ2. Arbitrarily, we select

to generate the data based on κ2. Here, we increase the difference of the alternative

to the null, as compared to the previous simulation and again consider the same four

sample sizes. We expect to see increased power as compared to the previous examples.

Results are listed in Table 6.6. Comparing with the previous simulations, we observe

two additional cases having good power. For instance, the comparison between cata-

logue entry 1 and catalogue 91 results to power 98.6% and 95.8% for the tests H1 and

H3 respectively. In this example, we observe strong power increase as the sample size

increases. This indicates that for samples originating from ”pure” catalogue entries,

moderate sample sizes of <1000 are sufficient to reach acceptable power. Some of the

scenarios do not maintain Type I error. The consequences for the interpretation of

power are discussed below.

48

6. INFERENCE ON HIGHER ORDER LD

catalogue entries sample size =120 sample size =240 sample size =480 sample size =720

Type I error rate

1 and 91

test 1 0.074 0.066 0.09 0.116

test 2 0.052 0.048 0.016 0.01

test 3 0.06 0.066 0.062 0.062

1 and 120

test 1 0.032 0.026 0.01 0.012

test 2 0.064 0.064 0.1 0.114

test 3 0.05 0.046 0.058 0.048

1 and 62

test 1 0.032 0.034 0.038 0.006

test 2 0.114 0.124 0.136 0.142

test 3 0.082 0.104 0.098 0.1

72 and 1

test 1 0.038 0.036 0.036 0.062

test 2 0.082 0.066 0.06 0.062

test 3 0.072 0.07 0.086 0.076

72 and 60

test 1 0.056 0.048 0.062 0.062

test 2 0.054 0.068 0.076 0.096

test 3 0.058 0.052 0.06 0.06

72 and 101

test 1 0.052 0.056 0.044 0.058

test 2 0.082 0.034 0.054 0.064

test 3 0.078 0.042 0.056 0.086

103 and 114

test 1 0.024 0.052 0.032 0.056

test 2 0.054 0.056 0.062 0.058

test 3 0.032 0.058 0.052 0.04

103 and 146

test 1 0.04 0.07 0.044 0.038

test 2 0.06 0.038 0.06 0.046

test 3 0.052 0.068 0.048 0.046

103 and 128

test 1 0.04 0.028 0.022 0.01

test 2 0.078 0.078 0.11 0.182

test 3 0.07 0.058 0.074 0.118

62 and 99

test 1 0.064 0.07 0.08 0.054

test 2 0.054 0.08 0.074 0.09

test 3 0.054 0.066 0.058 0.08

62 and 131

test 1 0.046 0.058 0.054 0.09

test 2 0.08 0.078 0.054 0.086

test 3 0.07 0.062 0.082 0.102

62 and 147

test 1 0.172 0.352 0.568 0.758

test 2 0.004 0.002 0 0

test 3 0.092 0.242 0.458 0.61

Table 6.4: Results of Type I error comparing four sample size scenario

49

6. INFERENCE ON HIGHER ORDER LD

catalogue entries sample size =120 sample size =240 sample size =480 sample size =720

Power(%)

1 and 91

test 1 12.4 17.2 30.8 44.4

test 2 2.8 0.8 0.02 0

test 3 9.4 9.8 18.2 30.4

1 and 120

test 1 4.4 2.2 2.2 2.4

test 2 7.4 5.6 6.2 6.2

test 3 4.8 3.8 4.8 4.2

1 and 62

test 1 3.6 1 0.8 2

test 2 20.4 23 31 34

test 3 13.6 15.2 22.8 28.6

72 and 1

test 1 6 4.8 4.2 4.8

test 2 6.6 11.6 12.6 16

test 3 7.6 9 10 13.4

72 and 60

test 1 3.8 4.6 3.4 1.2

test 2 6 8.6 9.4 10

test 3 5.2 7.8 8 5.6

72 and 101

test 1 4.2 4.6 3.4 3.4

test 2 7 5.8 6.2 8

test 3 6 7.2 4.4 6.2

103 and 114

test 1 9.4 12.4 19.4 28.2

test 2 2.6 1.2 0.4 0

test 3 6.8 6.2 11.2 17.6

103 and 146

test 1 4 5.6 6.8 4.2

test 2 4.2 5.2 3.8 6.2

test 3 4 6 5 6

103 and 128

test 1 1.8 0.2 0 0

test 2 22.2 33.4 62.8 81.8

test 3 15.6 23.8 50 71.6

62 and 99

test 1 7.6 11.6 16.8 19.2

test 2 2.2 2 1.8 1.8

test 3 5.6 8.8 10 12.2

62 and 131

test 1 2.8 2.4 2 2.4

test 2 11.2 15.2 18.2 19

test 3 8.6 10.6 12.6 14.2

62 and 147

test 1 10.2 18.6 30.8 32.8

test 2 1.6 0.4 0.2 0

test 3 6.2 10.4 21.6 23.6

Table 6.5: Results of power in approach 1

50

6. INFERENCE ON HIGHER ORDER LD

catalogue entries sample size =120 sample size =240 sample size =480 sample size =720

Power(%)

1 and 91

test 1 42.2 70.6 91.4 98.6

test 2 0.6 0 0 0

test 3 29.6 58 86.6 95.8

1 and 120

test 1 2.4 3.4 2.2 4

test 2 8 4.4 9.6 7.2

test 3 5 4.4 7.4 6

1 and 62

test 1 2.8 1.6 0.2 0.6

test 2 20.4 23.8 34.8 42.6

test 3 15.6 17.4 25.8 32

72 and 1

test 1 5 4.2 4 6.2

test 2 6.6 8 7.2 6

test 3 6.6 7.4 6.6 6.2

72 and 60

test 1 5 4.6 6.6 6.6

test 2 4.8 5.6 6.6 7.8

test 3 4.6 5.6 7.4 8.2

72 and 101

test 1 6.2 4.2 7.6 6.4

test 2 3.4 4.6 4.8 8

test 3 5.4 4.4 6.4 7.4

103 and 114

test 1 2.6 4.2 2 1.8

test 2 8.8 11.8 11.8 15.4

test 3 5.8 9 6.4 12

103 and 146

test 1 5 5.2 7 6.2

test 2 6.2 6.6 6.2 5.4

test 3 5.2 8.2 7 6

103 and 128

test 1 0 0.2 0 0

test 2 57.8 88.4 97.8 99.6

test 3 49.2 80 97.2 99.4

62 and 99

test 1 27.6 48.8 75 87.6

test 2 0.6 0 0 0

test 3 18 33.6 60.4 76.8

62 and 131

test 1 1.4 0.4 8 2

test 2 21.4 32.6 33 45.2

test 3 14.4 21.8 23.6 33.6

62 and 147

test 1 8 9.2 12 18.8

test 2 5 2.2 1.4 4

test 3 7.4 5.4 8 11.2

Table 6.6: Results of power in approach 2

51

Chapter 7

Data Example

To illustrate the proposed methods, we analyse seven SNPs from chromosome 21 of the

HapMap data set. The data set for the SNPs consists of 120 haplotypes. SNPs were

selected to represent different biological categories, namely intragenic and intergenic

SNPs. The analysis is performed using the methods described in Chapter 5 and Chapter

6.

For a selected SNP, we create a window including neighbouring SNPs, resulting in

a window of three SNPs each. Then, we extract the data of haplotypes for each of

these windows of SNPs. Subsequently, we compute the haplotype frequency followed

by mapping to LD and standardised LD (D′). Subsequently, we tested whether this

test statistic is closer to one of two preselected catalogue entries (6). Again we use

cumulant signatures, i.e. standardised LD parameters without allele frequencies.

The test performed for the selected set of SNPs, corresponds to the ones for the

simulated datasets described in Chapter 6. For this analysis, we have repeated the para-

metric bootstrap with B = 1000 iterations and we have collected bootstrap samples of

the test statistic T = (T1, T2, · · · , TB). Table 7.1 shows the raw p-values of investigated

examples and seven sets of SNPs. If the p-value is equal or less than the significant

level α = 0.05 then the null hypothesis is rejected. Based on the reported p-values we

observe that in many cases we have a very strong evidence against the null hypothesis.

If the p-value is small (close to 0) then the sample we have obtained is impossible or

highly unlikely under the null hypothesis meaning that one of the ancestors is to be

preferred in the interpretation.

In the case of comparing the catalogue entries 103 and 128 for the SNP1 (rs2834508)

the empirical distribution of the test statistic T is depicted in in Figure 7.1. The

Euclidean distances are d(103, 128) = 0.971 (Table 6.1; 103, 128 denoting catalogue

52

7. DATA EXAMPLE

entry numbers), d1=d(103, SNP1) = 0.943 (Table 7.2) and d2=d(128, SNP1) = 1

(Table 7.2). The observed test statistics is Tobs = d2 − d1 = 0.058. The resulting

p-values from Table 7.1 indicate that the null hypothesis H3 is rejected. The p-value

is small indicating that the data sample is not under the null. This is graphically

illustrated in Figure 7.1, where the Tobs is located left from the support of the density

(the blue point). In contrast, test H1 and test H3 are not rejected and cannot identify

differences between the catalogue entries 103 and 128. A high p-value close to the

upper boundary (0.999) for hypothesis H2 indicates that the result is not significant

and therefore we can not reject the null hypothesis. High p-values can not be used to

draw any conclusions and do not provide any evidence in favour of the null hypothesis,

in general. That is also the case, when we test one sided hypotheses and we get high

p-value, testing the other tail may or may not result in low p-values.

Figure 7.1: The resulting histogram and box plot of the comparison of the two
catalogue entries 103 with 128

Based on Table 7.1, we can identify six cases where p-values show strong or moderate

evidence against the null hypothesis. For the pair of catalogue entries 72 and 1 which

53

7. DATA EXAMPLE

are tested with SNP1 (rs2834508) and SNP5 (rs11088561), we have found that the

p-value of the test H3 gives a moderate evidence in favour of alternative hypothesis.

Hence, we conclude that the Euclidean distance between the two catalogue entries and

the SNP differ. Comparing the p-values of test H1 and H2 we do not have any evidence

to reject the null hypothesis of test H1, since the test yield a p-value greater than 0.05.

Therefore, we conclude that the Euclidean distance between the catalogue entry 72 and

SNP1 (d2 = d(72, SNP1)) is smaller than the Euclidean distance of catalogue entry 1

and selected SNP1 (d1 = d(1, SNP1)). The same conclusions are drawn for the tests

H1, H2 and H3 when comparing the aforementioned pair of the catalogue entries with

SNP5. Additionally, for test H3, the p-values of the catalogue entries 72 with 101 (for

SNP4), 103 with 114 (for SNP7), 103 with 128 (for SNP7) and 62 with 99 (for SNP6)

are consider significant.

7.1 Multiple testing correction

In the current analysis, we are testing each hypothesis seven times. The probability

to observe at least one significant result, just by chance, is 1 − (1 − 0.05)7 = 0.30,

assuming independent tests. There are many methods to deal with multiple testing

problems. This is often achieved by adjusting α or p-value in order to avoid false

positive results. One option is to apply the Bonferroni correction by adjusting the p-

values by multiplying the number of SNPs with the ”raw” p-values. Another option is

to apply the Holm correction, which is similar to Bonferoni but strictly more powerful.

In this method the p-values are ranked from smallest to largest, with the first one to

be multiplied by the number of SNPs present in the analysis, in this case seven. The

second p-value is multiplied by the number of SNPs-1, the third with the number of

SNPs-2, etc. All adjusted p-values are considered in that order and all p-value less than

the threshold 0.05 are considered significant until the threshold is exceeded for the the

first time.

The above procedures are not optimal for a set of tests that are dependent, such as is

case in overlapping window analyses. We here take the point of view of an exploratory

analysis of the HapMap data and we do not apply any correction in the presented

tables.

54

7. DATA EXAMPLE

catalogue entries rs2834508 rs3843783 rs2829806 rs1057885 rs11088561 rs1534 rs1537118

SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7

P value

1 and 91

test 1 0.971 0.999 0.999 0.999 0.999 0.998 0.209

test 2 0.029 0.001 0.001 0.001 0.001 0.002 0.791

test 3 0.058 0.002 0.002 0.002 0.002 0.004 0.418

1 and 120

test 1 0.999 0.999 0.999 0.999 0.001 0.001 0.001

test 2 0.001 0.001 0.001 0.001 0.999 0.999 0.999

test 3 0.001 0.001 0.001 0.001 0.001 0.001 0.001

1 and 62

test 1 0.999 0.999 0.999 0.999 0.999 0.001 0.001

test 2 0.001 0.001 0.001 0.001 0.001 0.999 0.999

test 3 0.001 0.001 0.001 0.001 0.001 0.001 0.001

72 and 1

test 1 0.978 0.999 0.999 0.999 0.978 0.971 0.104

test 2 0.022 0.001 0.001 0.001 0.022 0.029 0.896

test 3 0.044 0.002 0.002 0.002 0.044 0.058 0.208

72 and 60

test 1 0.167 0.999 0.998 0.996 0.001 0.001 0.001

test 2 0.833 0.001 0.002 0.004 0.999 0.999 0.999

test 3 0.334 0.002 0.002 0.008 0.001 0.001 0.001

72 and 101

test 1 0.001 0.327 0.999 0.995 0.999 0.999 0.862

test 2 0.999 0.673 0.001 0.005 0.001 0.001 0.138

test 3 0.001 0.654 0.002 0.01 0.002 0.002 0.276

103 and 114

test 1 0.406 0.453 0.936 0.938 0.999 0.999 0.992

test 2 0.594 0.546 0.064 0.062 0.001 0.001 0.008

test 3 0.812 0.908 0.128 0.124 0.002 0.002 0.016

103 and 146

test 1 0.001 0.001 0.512 0.511 0.001 0.001 0.383

test 2 0.999 0.999 0.524 0.526 0.001 0.001 0.655

test 3 0.001 0.001 0.952 0.948 0.002 0.002 0.69

103 and 128

test 1 0.001 0.001 0.001 0.001 0.999 0.999 0.978

test 2 0.999 1 0.999 0.999 0.001 0.001 0.021

test 3 0.001 0.001 0.001 0.001 0.002 0.002 0.042

62 and 99

test 1 0.999 0.999 0.999 0.999 0.047 0.018 0.936

test 2 0.001 0.001 0.001 0.001 0.953 0.982 0.064

test 3 0.002 0.002 0.002 0.002 0.094 0.036 0.128

62 and 131

test 1 0.999 0.999 0.999 0.999 0.001 0.001 0.001

test 2 0.001 0.001 0.001 0.001 0.999 0.999 0.999

test 3 0.002 0.002 0.002 0.002 0.001 0.001 0.001

62 and 147

test 1 0.999 0.999 0.999 0.999 0.001 0.001 0.501

test 2 0.001 0.001 0.001 0.001 0.999 0.999 0.499

test 3 0.002 0.002 0.002 0.002 0.001 0.001 0.998

Table 7.1: Results of p-values
55

7. DATA EXAMPLE

catalogue entries rs2834508 rs3843783 rs2829806 rs1057885 rs11088561 rs1534 rs1537118

SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7

Euclidean Distance

1 1.373 1.000 0.000 0.000 1.373 1.414 1.732

91 2.292 2.062 2.291 2.291 2.453 2.500 2.291

120 1.461 1.118 0.500 0.500 1.066 1.118 1.500

62 1.002 0.000 1.000 1.000 1.663 1.732 1.414

72 1.277 1.414 1.528 1.528 1.246 1.291 1.155

60 1.255 1.269 1.394 1.394 1.346 1.394 1.269

101 1.795 1.810 1.810 1.810 1.471 1.509 1.509

103 0.943 0.972 0.972 0.972 0.705 0.782 0.782

114 2.062 2.062 2.291 2.291 2.465 2.500 2.291

146 0.759 0.782 0.972 0.972 0.900 0.972 0.782

128 1.002 0.000 1.000 1.000 1.663 1.732 1.414

99 2.266 2.500 2.291 2.291 2.063 2.062 2.291

131 1.415 1.000 1.414 1.414 1.329 1.414 1.000

147 0.794 0.577 0.816 0.816 1.086 1.155 1.000

Table 7.2: Results of Euclidean distance between catalogue entries and SNPs

56

7. DATA EXAMPLE

Figure 7.2: The heat map and the dendrogram plot of the Euclidean distance for the
seven SNPs.

57

Chapter 8

Discussion

In order to infer details of evolutionary processes as well as to decipher the genealogy of

given data, linkage disequilibrium can be used. Genealogy is here seen as the description

of a sequence of genetic events generating the data. Evolutionary forces can be divided

into neutral (mutation, drift, recombination, migration etc.) and non-neutral forces

(selection). Arguably, in an exponentially growing population such as humans, a model

that only account for mutation, recombination, and drift, while ignoring fixation events,

can explain the major part of genetic variation in the population. Comparison of the

empirical patterns of linkage disequilibrium to the ones expected under such a model,

can provide insight about the genetic diversity and the genealogy of the sample. The

aim of this thesis is to reveal the genealogy of given data by comparing a theoretical

population to observed data. As an example, data acquired from the HapMap project

was used. This is achieved both by visualization in terms of heatmap plots that reveal

closeness of SNP data to possible genealogies (the catalogue) and by developing a

hypotheses testing procedures based on the parametric bootstrap.

All methods are based on haplotypes which exploit more information from the data

as compared to single SNP analysis. However, haplotype based methods can suffer

from problems of their own, such as dealing with rare haplotypes. When a haplotype

is rare, implying that also its allele frequencies are low, hence, the LD values will be

strongly influenced by small changes in allele frequencies. Most of the testing scenarios

considered in this thesis showed limited maintenance of Type I error. In a limited

investigation it was shown that Type I error is well maintained when allele frequencies

are known. This indicates that the strong dependency of standardised LD on allele

frequencies is the most likely reason for this behaviour. More simulations would be

needed to extract exact reasons and possible remedies for this problem. Due to time

constraints they were outside the scope of this thesis. A consequence of inflated type I

58

8. DISCUSSION

error is that power and p-values cannot be interpreted strictly for the cases where type

I error was not maintained. We have provided nominal p-values in this thesis and their

interpretation must be seen in this context. They can still be used as an exploratory,

descriptive measure. Furthermore, when we insert known allele frequencies instead of

estimating them, we maintain the the α-level accurately.

In Chapter 5, we visualised the LD patterns of the catalogue entries using a se-

lected set of SNPs. The results of the heatmap plots, indicate that there are specific

catalogue entries which can be excluded as an explanation for the given SNP data. For

example, catalogue entry 99 cannot explain the genealogy of the four set of 100 SNPs,

indicating few recombination events have taken place into the sample. However, inte-

grating LD patterns based on heatmap plots does not allow to make any inference on

their genealogy. These plots help to get a quick overview of the behaviours of linkage

disequilibrium across a whole genetic regions.

In Chapter 6, we proposed three hypotheses to inferential ends. Apart from the

problems of type I maintenance above, simulations indicate that powerful inference

needs big sample sizes in the thousands of individuals. Big sample sizes are also prefer-

able to meet the assumption that no haplotypes are lost due to genetic drift. The

sampling process itself can be seen as creating a new population which has just gone

through the bottleneck of sampling. For the HapMap sample consisting of 60 inde-

pendent individuals certainly that effect is extremely pronounced and results presented

here must be seen as merely indicative of certain genealogies. Through sampling, only

few haplotypes may be present in the data implying that D′ values may be biased

upwards, indicating that only few historical recombination events appear between two

markers. Also this problem can be remedied by increasing sample size.

In Chapter 7 we apply the proposed tests to real datasets, derived from the HapMap

project. It is not reasonable to test data against any given catalogue pair. If the data is

far away from both entries that are to be compared, a significant result is meaningless

in practice. The inferential procedure should therefore always be accompanied by the

descriptive methods discussed above. Characterising the pairs of the catalogue that can

be used for meaningful comparisons, is another interesting problem for future research.

Under the caveats mentioned above, among all the catalogue entries, three (72, 103 and

99) gave promising results in the dataset and are more likely to explain their genealogy

as compared to their counterparts.

For computational reasons, the analyses were limited to three loci at a time. All the

computations of this thesis were conducted on a UNIX server with 64 CPUs. Super-

computers and/or cluster/grids of servers can be used to apply those computations for

59

8. DISCUSSION

more than 3 loci. However, it seems difficult to go beyond 5 loci, as the computation

of the catalogue is exponential in the square of the number of loci.

In conclusion, we provide both visualization and inferential techniques to analyse

the genealogy of haplotype or genotype data. The visualization allows to quickly assess

whole regions simultaneously. Testing allows to distinguish between two scenarios but

the tests only maintain type I error for certain comparisons in their current form. Lim-

itations are computational cost, some strong assumptions, and the needed for relatively

big samples.

60

Appendix A

.1 Re-parametrization

If we denote as N to be the number loci of a DNA segment, then we consider that

A = {Al}, Al ∈ {0, 1} for every l ∈ 1, 2, ..., N, to be a random random variable for l

markers. Then we denote as βs = {b ∈< 0, 1 > |Al ∈ s ⇐⇒ bl = 1} a set of random

variables A. For example, if N=3 and A = {A1, A2, A3} then all possible sets S of A

is:

S = {A1}, {A2}, {A3}, {A1, A2}, {A1, A3}, {A2, A3}, {A1, A2, A3}}

Then, for instance, β{A1,A2} will contain two haplotypes with allele 1 at loci 1 and 2.

Therefore β{A1,A2} = {{1, 1, 0}, {1, 1, 1}}.
Let’s consider P (A) to be a family of sets of all possible partitions of sets s ∈ S of A

into non empty subsets (blocks). Therefore, for τ ∈ P (A) each β ∈ τ is a block. Then

the joint cumulant of set of random variables A is:

δs =
∑

τ∈P (A)

(−1)|τ |−1(| τ | −1)!
∏
β∈τ

E
(∏
A∈β

A
)

= D

where, ∏
β∈τ

E
(∏
A∈β

A
)

=
∑
B∈βs

pB = ηs

refers to be the joint expectation of random variable s, for s ∈ S of haplotype fre-

quency pB = pijk of B haplotype. Equivalently, ηs = (η1, η2, η3, η12, η12, η23, η123) =

(p2··, p·2·, p··2, p22·, p2·2, p·22, p222). In case of N=3 and A = {A1, A2, A3} then all possible

partitions of A is :

61

. APPENDIX A

P (A) = {{A1, A2, A3}, {{A1, A2}, {A3}}, {{A1, A3}, {A2}}, {{A2, A3}, {A1}}, {{A1}, {A2}, {A3}}}

Then the joint cumulant is:

δs = (−1)1−1(1− 1)!p222 + (−1)2−1(2− 1)!p··2p·22 + (−1)2−1(2− 1)!p·2·p22·

+(−1)2−1(2− 1)!p2··p2·2 + (−1)3−1(3− 1)!p2··p·2·p··2

= p222 − p··2p·22 − p2··p2·2 − p2··p2·2 − p2··p·2·p··2

.2 Standardised LD for arbitrary number of loci

To generalise the concept of pairwise LD for arbitrary number of loci, re-parametrization

method of LD are needed. The joint cumulants δA can been written:

δA = ηA −
∑

τ∈P (A)

(−1)|τ |(| τ | −1)!
∏
β∈τ

ηβ

= ηA −
∑

τ∈P (A)

Rδ(τ) = ηA −Rδ

where. R(τ) depends on loci β ∈ τ with | β |< N . These rest terms Rδ(τ) are

considered fixed and bounds for δA are to be determined completely analogous to the

two locus case based on ηA. First, ηA is upper bound by all lower-order ηs and lower

bound by 0. That is:

ηA ≤ U1(A) = min{ηs | s ∈ S\A}
ηA ≥ L1(A) = 0

Second, further constraints are imposed by the relationship between ηA and lower

order haplotype frequencies ηs. It is straightforward to see that ηs can be restated as:

ηs = ps +
∑

t∈S,s⊂t
(−1)|t|−|s|−1ηt

Here, pBs is the frequency for haplotype Bs = {b ∈ {0, 1}N |Al ∈ s ⇐⇒ bl = 1},

62

. APPENDIX A

the haplotype with N loci with 1-alleles at loci s and 0-alleles elsewhere. Note, that all

the sums above include ηA.Solving for ηA gives us:

ηA = (−1)|A|−|s|−1{ηs − pBs −
∑

t∈S,s⊂t
(−1)|t|−|s|−1}ηt

= (−1)|A|−|s|{pBs −
∑

t∈S,s⊂t
(−1)|t|−|s|ηt}

= σs(pBs −Rs),

where σ = (−1)|A|−|s| and Rs =
∑

t∈S,s⊂t(−1)|t|−|s|ηt. Each ηs therefore contributes an

upper and lower bound toηA by choosing pBs = 0 or pBs = 1:

ηs ≤ Us =

ηs ≤ Us =

{
max(1−Rs, 0) : if σ ≥ 0

min(Rs, 0) : if σ < 0

ηs ≥ Ls =

{
max(−Rs, 0) : if σ ≥ 0

min(1−Rs, 0) : if σ < 0

With U2(A) = min{Us|s ∈ S\{A}} and L2(A) = max{Ls|s ∈ S\{A}}, we get

ηmaxA = min{U1(A), U2(A)},
ηminA = min{L1(A), L2(A)}.
Then ηmaxA and ηminA can be used as above to standardised δA

63

Appendix B

64

Load	
 necessary	
 packages	

library(partitions) 
library(sets) 
library(gtools) 
library(devtools) 
library(Rcpp) 
library(GeneticsLD) 
library(pander) 
library(partitions) 
library(sets) 
library(ggplot2) 
library(gplots)	

The	
 package	
 GeneticsLD	
 was	
 created	
 by	
 Dr	
 Stefan	
 Boehringer	
 and	
 was	
 necessary	
 for	
 the	

completion	
 of	
 the	
 project.	

Helpful	
 functions	
 to	
 load	
 and	
 save	
 lists	

save.list	
 <-­‐function(x,file){ 
	
 	
 save(x,file=file) 
} 
 
load.list	
 <-­‐	
 function(file){ 
	
 	
 load(file) 
	
 	
 return(x) 
}	

We	
 use	
 the	
 two	
 functions	
 ord2bin	
 and	
 bin2ord	
 which	
 convert	
 a	
 number	
 into	
 binary	

representation	
 and	
 vice	
 versa.In	
 the	
 algorithm	
 we	
 index	
 haplotypes	
 from	
 0	
 to	
 3.	
 The	
 binary	

representation	
 then	
 gives	
 the	
 alleles	
 corresponding	
 to	
 this	
 haplotype.	

bin2ord	
 =	
 function(b,	
 base	
 =	
 2) 
	
 	
 as.vector(b	
 %*%	
 sapply(1:length(b),	
 function(i)2^(i-­‐1))) 
 
ord2bin	
 =	
 function(o,	
 digits	
 =	
 2,	
 base	
 =	
 2) 
	
 	
 sapply(1:digits,	
 function(i){(o	
 %/%	
 2^(i-­‐1))	
 %%	
 2})	

In	
 order	
 to	
 calculate	
 the	
 mutation	
 the	
 below	
 fuctions	
 have	
 been	
 used:	

Mutation	
 <-­‐	
 function(htfs,	
 pos.hap,	
 v	
 =	
 rep(0,3)){ 
	
 	
 #htfs=	
 haplotype	
 frequency 
	
 	
 #	
 pos.hap=	
 position	
 of	
 locus 
	
 	
  
	
 	
 v[pos.hap]=1	
 -­‐	
 v[pos.hap] 
	
 	
 htfs[bin2ord(v)+1]=1 
	
 	
 htfs 
} 
 
mutation.name	
 <-­‐	
 function(htfs,	
 pos.hap,v	
 =	
 rep(0,3)){ 

65

	
 	
 m<-­‐list(Mutation(htfs[[1]],	
 pos.hap,v)) 
	
 	
 n<-­‐	
 if	
 (is.null(names(htfs))) 
	
 	
 	
 	
 sprintf("M(%d)",	
 pos.hap)	
 else 
	
 	
 	
 	
 	
 	
 sprintf("%s-­‐>M(%d)",	
 names(htfs)[1],	
 pos.hap) 
	
 	
 names(m)	
 <-­‐	
 n 
	
 	
 m 
} 
 
mut.name.multi	
 <-­‐	
 function(htfs,pos,v	
 =	
 rep(0,3)){ 
	
 	
  
	
 	
 d	
 <-­‐	
 lapply(1:length(htfs),	
 function(i){ 
	
 	
 	
 	
 mutation.name(htfs[i],pos,v) 
	
 	
 	
 	
  
	
 	
 }) 
	
 	
 d	
 <-­‐	
 unlist(d,recursive	
 =	
 F) 
	
 	
 d 
}	

For	
 the	
 recombination	
 event	
 the	
 below	
 functions	
 have	
 been	
 used:	

partition	
 <-­‐	
 function(k,v,pos){ 
	
 	
 #htBin1	
 =	
 ord2bin(ht1,	
 L) 
	
 	
 #htBin2	
 =	
 ord2bin(ht2,	
 L) 
	
 	
  
	
 	
 htBinNew1	
 =	
 c(k[1:pos],	
 v[-­‐(1:pos)]); 
	
 	
 htBinNew2	
 =	
 c(v[1:pos],	
 k[-­‐(1:pos)]); 
	
 	
 l<-­‐list(htBinNew1,htBinNew2) 
	
 	
 return(l) 
	
 	
  
	
 	
  
} 
 
recomb	
 <-­‐	
 function(htfs,k,v,pos){ 
	
 	
 if(htfs[bin2ord(k)+1]==0	
 ||	
 htfs[bin2ord(v)+1]==0	
){ 
	
 	
 	
 	
  
	
 	
 	
 	
 return(htfs) 
	
 	
 } 
	
 	
 rec<-­‐partition(k,v,pos) 
	
 	
 htfs[bin2ord((rec[[1]]))+1]=1 
	
 	
 htfs[bin2ord((rec[[2]]))+1]=1 
	
 	
 htfs 
	
 	
  
} 
 
rec.name	
 <-­‐	
 function(htfs,k,v,pos){ 
	
 	
 m<-­‐list(recomb(htfs[[1]],	
 k,v,pos)) 
	
 	
 n<-­‐	
 if	
 (is.null(names(htfs))) 

66

	
 	
 	
 	
 sprintf("R(%d|%d,%d)",bin2ord(k),bin2ord(v),pos)	
 else 
	
 	
 	
 	
 	
 	
 sprintf("%s-­‐>R(%d|%d,%d)",	
 names(htfs)
[1],bin2ord(k),bin2ord(v),pos) 
	
 	
  
	
 	
 names(m)	
 <-­‐	
 n 
	
 	
 m 
} 
 
all.rec	
 <-­‐	
 function(htfs,N,pos){ 
	
 	
 hf<-­‐which(htfs[[1]]>0) 
	
 	
  
	
 	
 a=set_combn(as.set(1:length(hf)),2)	
 	
 #	
 set	
 with	
 all	
 possiple	

partitions 
	
 	
 mat	
 <-­‐	
 list()	
 #storage	
 the	
 results 
	
 	
 h<-­‐c() 
	
 	
 for(i	
 in	
 1:length(a)){ 
	
 	
 	
 	
 set	
 <-­‐	
 unlist(as.list(as.list(a)[[i]])) 
	
 	
 	
 	
 hap	
 <-­‐	
 hf[set] 
	
 	
 	
 	
 r	
 <-­‐rec.name(htfs,ord2bin(hap[1]-­‐1,N),ord2bin(hap[2]-­‐1,N),pos) 
	
 	
 	
 	
 mat[[i]]	
 <-­‐r 
	
 	
 	
 	
  
	
 	
 } 
	
 	
 mat	
 <-­‐	
 unlist(mat,recursive	
 =	
 F) 
	
 	
 return(mat) 
	
 	
  
}	

Create	
 a	
 table	
 which	
 take	
 all	
 possible	
 sets	
 of	
 all	
 recombinations	
 and	
 check	
 if	
 they	
 are	

identical	
 or	
 not.	

table.rec	
 <-­‐	
 function(htfs,N,pos){ 
	
 	
 rec	
 <-­‐	
 all.rec(list(htfs),N,pos)	
  
	
 	
 k	
 <-­‐	
 length(rec) 
	
 	
 if(k==1){ 
	
 	
 	
 	
 return(data.frame(Recomb.1=1,Recomb.2=1,Identical=T)[-­‐1,]) 
	
 	
 } 
	
 	
 a	
 <-­‐	
 set_combn(as.set(1:k),2) 
	
 	
 mat	
 <-­‐	
 matrix(NA,ncol=3,nrow=length(a)) 
	
 	
  
	
 	
 for(i	
 in	
 1:length(a)){ 
	
 	
 	
 	
 set	
 <-­‐	
 unlist(as.list(as.list(a)[[i]]))	
  
	
 	
 	
 	
 hap	
 <-­‐	
 rec[set] 
	
 	
 	
 	
 id	
 	
 <-­‐	
 identical(hap[[1]],hap[[2]]) 
	
 	
 	
 	
  
	
 	
 	
 	
 mat[i,1]	
 <-­‐	
 names(hap)[1] 
	
 	
 	
 	
 mat[i,2]	
 <-­‐	
 names(hap)[2] 
	
 	
 	
 	
 mat[i,3]	
 <-­‐	
 id 

67

	
 	
 } 
	
 	
 mat	
 <-­‐	
 as.data.frame(mat) 
	
 	
 colnames(mat)<-­‐	
 c("Recomb.1","Recomb.2","Identical") 
	
 	
 return(mat) 
}	

Create	
 a	
 function	
 which	
 returns	
 all	
 possiple	
 recombinations	
 and	
 check	
 which	
 of	
 them	
 return	

the	
 same	
 haplotype.	

CheckF	
 <-­‐	
 function(htfs,N,pos){ 
	
 	
 Table	
 <-­‐	
 table.rec(htfs,N,pos)	
 	
  
	
 	
 lev	
 <-­‐	
 unique(c(levels(factor(Table[,1])),levels(factor(Table[,2])))) 
	
 	
 Re	
 <-­‐	
 all.rec(list(htfs),N,pos) 
	
 	
 p	
 <-­‐	
 list() 
	
 	
 if(nrow(Table)==0){ 
	
 	
 	
 	
 p<-­‐list(htfs) 
	
 	
 	
 	
 names(p)<-­‐"()" 
	
 	
 	
 	
 return(p) 
	
 	
 } 
	
 	
 for(i	
 in	
 1:length(lev)){	
  
	
 	
 	
 	
 sub.T	
 <-­‐	
 subset(Table,Table[,1]==lev[i]|Table[,2]==lev[i])	
 	
  
	
 	
 	
 	
 rowF	
 <-­‐	
 which(sub.T[,3]==F) 
	
 	
 	
 	
 rowT	
 <-­‐	
 which(sub.T[,3]==T) 
	
 	
 	
 	
 Ftbls	
 <-­‐	
 sub.T[rowF,] 
	
 	
 	
 	
 Ttbls	
 <-­‐	
 sub.T[rowT,] 
	
 	
 	
 	
 r	
 <-­‐	
 list(Re[[i]]) 
	
 	
 	
 	
  
	
 	
 	
 	
 if(
 length(rowT)==0){ 
	
 	
 	
 	
 	
 	
  
	
 	
 	
 	
 	
 	
 p[[length(p)+1]]<-­‐(Re[i])	
  
	
 	
 	
 	
 	
 	
  
	
 	
 	
 	
 }	
 else	
 if(length(rowT)>0){ 
	
 	
 	
 	
 	
 	
 select	
 <-­‐	
 unique(c(levels(factor(Ttbls[,
1])),levels(factor(Ttbls[,2])))) 
	
 	
 	
 	
 	
 	
 select	
 <-­‐	
 select[order(select)] 
	
 	
 	
 	
 	
 	
  
	
 	
 	
 	
 	
 	
 if(select[1]==lev[i]){	
 	
  
	
 	
 	
 	
 	
 	
 	
 	
 names(r)	
 <-­‐	
 sprintf("(%s)",(paste(select,collapse=","))) 
	
 	
 	
 	
 	
 	
 	
 	
 p[[length(p)+1]]	
 <-­‐r 
	
 	
 	
 	
 	
 	
 	
 	
  
	
 	
 	
 	
 	
 	
 }	
  
	
 	
 	
 	
 } 
	
 	
 } 
	
 	
 p	
 <-­‐	
 unlist(p,recursive	
 =	
 F) 
	
 	
 return(p) 
	
 	
  

68

} 
 
check.name	
 <-­‐	
 function(htfs,N,pos){ 
	
 	
 m<-­‐(CheckF(htfs[[1]],N,pos)) 
	
 	
 for(i	
 in	
 1:length(m)){ 
	
 	
 	
 	
 names(m)[i]<-­‐	
 if	
 (is.null(names(htfs))) 
	
 	
 	
 	
 	
 	
 names(m)[i]	
 else 
	
 	
 	
 	
 	
 	
 	
 	
 sprintf("%s-­‐>%s",	
 names(htfs),names(m)[i]) 
	
 	
 	
 	
 #print(names(m)[i]) 
	
 	
 } 
	
 	
 return(m) 
} 
 
check.name.multi	
 <-­‐	
 function(htfs,N,pos){ 
	
 	
  
	
 	
 d	
 <-­‐	
 lapply(1:length(htfs),	
 function(i){ 
	
 	
 	
 	
 check.name(htfs[i],N,pos) 
	
 	
 	
 	
  
	
 	
 }) 
	
 	
 d	
 <-­‐	
 unlist(d,recursive	
 =	
 F) 
	
 	
 d 
}	

The	
 names	
 of	
 all	
 recombinations	
 which	
 result	
 to	
 the	
 same	
 haplotypes	
 are	
 saved	
 in	
 a	
 list.	

deduplicate	
 <-­‐	
 function(htfs){ 
	
 	
 hfsMat	
 <-­‐	
 t(sapply(htfs,	
 identity)) 
	
 	
 hfsMatUnique	
 <-­‐	
 unique(as.data.frame(hfsMat)) 
	
 	
  
	
 	
 p	
 <-­‐	
 list() 
	
 	
  
	
 	
 for(i	
 in	
 1:nrow(hfsMatUnique)){	
  
	
 	
 	
 	
 selM	
 <-­‐	
 apply(hfsMat,	
 1,	
 function(r)(r	
 ==	
 hfsMatUnique[i,])) 
	
 	
 	
 	
 sel	
 <-­‐	
 apply(selM,	
 2,	
 all) 
	
 	
 	
 	
 index	
 <-­‐	
 which(sel) 
	
 	
 	
 	
  
	
 	
 	
 	
 r	
 <-­‐list(htfs[[index[1]]]) 
	
 	
 	
 	
 names(r)	
 <-­‐	
 sprintf("(%s)",(paste(names(htfs)
[index],collapse=","))) 
	
 	
 	
 	
 p[[length(p)+1]]	
 <-­‐r 
	
 	
 } 
	
 	
 p	
 <-­‐	
 unlist(p,recursive	
 =	
 F) 
	
 	
 return(p) 
	
 	
  
}	

69

The	
 catalogue	
 is	
 created	
 based	
 on	
 the	
 aforementioned	
 code	
 and	
 taking	
 into	
 account	
 the	

possible	
 events	
 that	
 can	
 been	
 happened	
 between	
 three	
 loci:	

tot.catalog	
 <-­‐	
 function(v	
 =	
 rep(0,3)){ 
	
 	
 N	
 <-­‐	
 length(v)	
 	
 #	
 number	
 of	
 loci 
	
 	
 L	
 <-­‐	
 N-­‐1	
 	
 	
 	
 	
 	
 	
 	
 # 
	
 	
 htfs=rep(0,2^N) 
	
 	
 htfs[bin2ord(v)+1]=1;	
 htfsl=list(htfs);	
  
	
 	
 names(htfsl)	
 <-­‐sprintf("ht(%s)",	
 paste(v,collapse="")) 
	
 	
  
	
 	
 #vector	
 <-­‐	
 c("M","NA","M","NA","M","NA","M","R"...)  
	
 	
 vector<-­‐c(rep(c("M","NA"),L),"M","R") 
	
 	
 seqs	
 <-­‐	
 c(0:(2^L-­‐1)) 
	
 	
 recombs	
 <-­‐	
 ord2bin(0:(2^L-­‐1),L) 
	
 	
 bigvector	
 <-­‐	
 t(replicate(length(seqs),vector)) 
	
 	
  
	
 	
 for(i	
 in	
 1:length(seqs)){ 
	
 	
 	
 	
 k	
 <-­‐	
 which(recombs[i,]==1) 
	
 	
 	
 	
 bigvector[i,2*k]	
 <-­‐	
 as.character("R") 
	
 	
 } 
	
 	
  
	
 	
 bigvector[bigvector=="NA"]	
 <-­‐	
 NA 
	
 	
  
	
 	
 #	
 all	
 possible	
 mutations	
 and	
 recombinations	
 events  
	
 	
 events	
 <-­‐	
 c() 
	
 	
 for(i	
 in	
 1:nrow(bigvector)){ 
	
 	
 	
 	
 events[[i]]	
 <-­‐	
 as.vector(na.omit(bigvector[i,])) 
	
 	
 }	
 	
  
	
 	
 #permutations	
  
	
 	
 loci	
 <-­‐	
 1:N 
	
 	
 per.loci	
 <-­‐permutations(n=N,r=N,v=loci)	
 #	
 all	
 possible	
 permutations	

of	
 N	
 numbers 
	
 	
 row=nrow(per.loci) 
	
 	
  
	
 	
 catalog<-­‐list() 
	
 	
 total.catalog	
 <-­‐list() 
	
 	
 final.catalog	
 <-­‐	
 list 
	
 	
  
	
 	
 for	
 (e	
 in	
 1:length(events)){ 
	
 	
 	
 	
 check	
 <-­‐	
 events[[e]]=="M" 
	
 	
 	
 	
  
	
 	
 	
 	
 for(r	
 in	
 1:(row)){ 
	
 	
 	
 	
 	
 	
 results	
 <-­‐	
 list() 
	
 	
 	
 	
 	
 	
 rec_loci	
 <-­‐	
 list() 
	
 	
 	
 	
 	
 	
 count=1 
	
 	
 	
 	
 	
 	
 results[[1]]	
 <-­‐	
 mut.name.multi(htfsl,per.loci[r,][count],v)	
 	
 #r 

70

	
 	
 	
 	
 	
 	
 for(j	
 in	
 2:length(check)){	
 	
  
	
 	
 	
 	
 	
 	
 	
 	
 if(check[j]==T){ 
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 count=count+1 
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 locus	
 <-­‐	
 per.loci[r,][count]	
 #r 
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 results[[j]]	
 <-­‐	
 (mut.name.multi(results[[j-­‐1]],locus,v)) 
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
  
	
 	
 	
 	
 	
 	
 	
 	
 }else{ 
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for(s	
 in	
 1:L){ 
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 rec_loci[[s]]<-­‐check.name.multi(results[[j-­‐1]],N,s)	
 #bale	
 N 
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 } 
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 results[[j]]	
 <-­‐	
 deduplicate(unlist(rec_loci,recursive=F))	
  
	
 	
 	
 	
 	
 	
 	
 	
 }	
 	
 	
 	
  
	
 	
 	
 	
 	
 	
 } 
	
 	
 	
 	
 	
 	
 results<-­‐unlist(results	
 ,recursive=F) 
	
 	
 	
 	
 	
 	
 results	
 <-­‐	
 deduplicate(results) 
	
 	
 	
 	
 	
 	
  
	
 	
 	
 	
 	
 	
 final	
 <-­‐	
 list() 
	
 	
 	
 	
 	
 	
 iter=1 
	
 	
 	
 	
 	
 	
 results1	
 <-­‐list() 
	
 	
 	
 	
 	
 	
 results1[[iter]]<-­‐results 
	
 	
 	
 	
 	
 	
  
	
 	
 	
 	
 	
 	
 repeat{ 
	
 	
 	
 	
 	
 	
 	
 	
 iter=iter+1 
	
 	
 	
 	
 	
 	
 	
 	
 for(s	
 in	
 1:L){ 
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 final[[s]]<-­‐check.name.multi(results1[[iter-­‐1]],N,s)	
 #	
 N 
	
 	
 	
 	
 	
 	
 	
 	
 } 
	
 	
 	
 	
 	
 	
 	
 	
 results1[[iter]]	
 <-­‐deduplicate(unlist(final,recursive=F))	
  
	
 	
 	
 	
 	
 	
 	
 	
 if	
 (length(results1[[iter]])==length(results1[[iter-­‐1]])){ 
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 break 
	
 	
 	
 	
 	
 	
 	
 	
 }	
  
	
 	
 	
 	
 	
 	
 }	
  
	
 	
 	
 	
 	
 	
 catalog[[r]]<-­‐deduplicate(unlist(results1,recursive=F))	
 	
  
	
 	
 	
 	
 } 
	
 	
 	
 	
 total.catalog[[e]]	
 <-­‐	
 deduplicate(unlist(catalog,recursive=F)) 
	
 	
 } 
	
 	
 final.catalog<-­‐deduplicate(unlist(total.catalog,recursive=F)) 
	
 	
 return(final.catalog) 
}	

Using	
 the	
 above	
 R	
 codes	
 we	
 create	
 the	
 catalogue	
 that	
 has	
 been	
 used	
 to	
 this	
 thesis.	
 A	
 part	
 of	

the	
 catalogue	
 is	
 illustrated	
 below:	

##	
 $B0 
##	
 [1]	
 1	
 0	
 0	
 0	
 0	
 0	
 0	
 0 
##	
  
##	
 $B1 

71

##	
 [1]	
 0	
 1	
 0	
 0	
 0	
 0	
 0	
 0 
##	
  
##	
 $`[B0-­‐>M1,B1-­‐>M1]  ̀
##	
 [1]	
 1	
 1	
 0	
 0	
 0	
 0	
 0	
 0 
##	
  
##	
 $B2 
##	
 [1]	
 0	
 0	
 1	
 0	
 0	
 0	
 0	
 0 
##	
  
##	
 $`[B0-­‐>M2,B2-­‐>M2]  ̀
##	
 [1]	
 1	
 0	
 1	
 0	
 0	
 0	
 0	
 0 
##	
  
##	
 $`[B0-­‐>[M1-­‐>M2,M2-­‐>M1],B1-­‐>M1-­‐>M2,B2-­‐>M2-­‐>M1]`  
##	
 [1]	
 1	
 1	
 1	
 0	
 0	
 0	
 0	
 0 
##	
  
##	
 $B3 
##	
 [1]	
 0	
 0	
 0	
 1	
 0	
 0	
 0	
 0 
##	
  
##	
 $`[B1-­‐>M2,B3-­‐>M2]  ̀
##	
 [1]	
 0	
 1	
 0	
 1	
 0	
 0	
 0	
 0 
##	
  
##	
 $`[B0-­‐>M1-­‐>M2,B1-­‐>[M1-­‐>M2,M2-­‐>M1],B3-­‐>M2-­‐>M1]`  
##	
 [1]	
 1	
 1	
 0	
 1	
 0	
 0	
 0	
 0 
##	
  
##	
 $`[B2-­‐>M1,B3-­‐>M1]  ̀
##	
 [1]	
 0	
 0	
 1	
 1	
 0	
 0	
 0	
 0 
##	
  
##	
 $`[B0-­‐>M2-­‐>M1,B2-­‐>[M1-­‐>M2,M2-­‐>M1],B3-­‐>M1-­‐>M2]`  
##	
 [1]	
 1	
 0	
 1	
 1	
 0	
 0	
 0	
 0 
##	
  
##	
 $`[B1-­‐>M2-­‐>M1,B2-­‐>M1-­‐>M2,B3-­‐>[M1-­‐>M2,M2-­‐>M1]]`  
##	
 [1]	
 0	
 1	
 1	
 1	
 0	
 0	
 0	
 0 
##	
  
##	
 $`[B0-­‐>[M1-­‐>M2-­‐>R1,M2-­‐>M1-­‐>R1],B1-­‐>[M1-­‐>M2-­‐>R1,M2-­‐>M1-­‐>R1],B2-­‐>[M1-­‐
>M2-­‐>R1,M2-­‐>M1-­‐>R1],B3-­‐>[M1-­‐>M2-­‐>R1,M2-­‐>M1-­‐>R1]]`  
##	
 [1]	
 1	
 1	
 1	
 1	
 0	
 0	
 0	
 0 
##	
  
##	
 $B4 
##	
 [1]	
 0	
 0	
 0	
 0	
 1	
 0	
 0	
 0 
##	
  
##	
 $`[B0-­‐>M3,B4-­‐>M3]  ̀
##	
 [1]	
 1	
 0	
 0	
 0	
 1	
 0	
 0	
 0 
##	
  
##	
 $`[B0-­‐>[M1-­‐>M3,M3-­‐>M1],B1-­‐>M1-­‐>M3,B4-­‐>M3-­‐>M1]`  
##	
 [1]	
 1	
 1	
 0	
 0	
 1	
 0	
 0	
 0 
##	
  

72

##	
 $`[B0-­‐>[M3-­‐>M2,M2-­‐>M3],B2-­‐>M2-­‐>M3,B4-­‐>M3-­‐>M2]`  
##	
 [1]	
 1	
 0	
 1	
 0	
 1	
 0	
 0	
 0 
##	
  
##	
 $`[B0-­‐>[M2-­‐>[M3-­‐>M1,M1-­‐>M3],[M1-­‐>[M2-­‐>M3,M3-­‐>M2],M3-­‐>[M1-­‐>M2,M2-­‐
>M1]]],B1-­‐>M1-­‐>[M2-­‐>M3,M3-­‐>M2],B2-­‐>M2-­‐>[M3-­‐>M1,M1-­‐>M3],B4-­‐>M3-­‐>[M1-­‐
>M2,M2-­‐>M1]]  ̀
##	
 [1]	
 1	
 1	
 1	
 0	
 1	
 0	
 0	
 0 
##	
  
##	
 $`[B0-­‐>[M3-­‐>M1-­‐>M2,M1-­‐>[M2-­‐>M3,M3-­‐>M2]],B1-­‐>[M2-­‐>M1-­‐>M3,M1-­‐>[M2-­‐
>M3,M3-­‐>M2]],B3-­‐>M2-­‐>M1-­‐>M3,B4-­‐>M3-­‐>M1-­‐>M2]` 
##	
 [1]	
 1	
 1	
 0	
 1	
 1	
 0	
 0	
 0 
##	
  
##	
 $`[B0-­‐>[M3-­‐>M2-­‐>M1,M2-­‐>[M3-­‐>M1,M1-­‐>M3]],B2-­‐>[M1-­‐>M2-­‐>M3,M2-­‐>[M3-­‐
>M1,M1-­‐>M3]],B3-­‐>M1-­‐>M2-­‐>M3,B4-­‐>M3-­‐>M2-­‐>M1]` 
##	
 [1]	
 1	
 0	
 1	
 1	
 1	
 0	
 0	
 0 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 1	
 1	
 1	
 0	
 0	
 0 
##	
  
##	
 $B5 
##	
 [1]	
 0	
 0	
 0	
 0	
 0	
 1	
 0	
 0 
##	
  
##	
 $`[B1-­‐>M3,B5-­‐>M3]  ̀
##	
 [1]	
 0	
 1	
 0	
 0	
 0	
 1	
 0	
 0 
##	
  
##	
 $`[B0-­‐>M1-­‐>M3,B1-­‐>[M1-­‐>M3,M3-­‐>M1],B5-­‐>M3-­‐>M1]`  
##	
 [1]	
 1	
 1	
 0	
 0	
 0	
 1	
 0	
 0 
##	
  
##	
 $`[B0-­‐>[M2-­‐>M1-­‐>M3,M1-­‐>[M2-­‐>M3,M3-­‐>M2]],B1-­‐>[M3-­‐>M1-­‐>M2,M1-­‐>[M2-­‐
>M3,M3-­‐>M2]],B2-­‐>M2-­‐>M1-­‐>M3,B5-­‐>M3-­‐>M1-­‐>M2]` 
##	
 [1]	
 1	
 1	
 1	
 0	
 0	
 1	
 0	
 0 
##	
  
##	
 $`[B1-­‐>[M3-­‐>M2,M2-­‐>M3],B3-­‐>M2-­‐>M3,B5-­‐>M3-­‐>M2]`  
##	
 [1]	
 0	
 1	
 0	
 1	
 0	
 1	
 0	
 0 
##	
  
##	
 $`[B0-­‐>M1-­‐>[M2-­‐>M3,M3-­‐>M2],B1-­‐>[M2-­‐>[M3-­‐>M1,M1-­‐>M3],[M1-­‐>[M2-­‐>M3,M3-­‐
>M2],M3-­‐>[M1-­‐>M2,M2-­‐>M1]]],B3-­‐>M2-­‐>[M3-­‐>M1,M1-­‐>M3],B5-­‐>M3-­‐>[M1-­‐>M2,M2-­‐
>M1]]  ̀
##	
 [1]	
 1	
 1	
 0	
 1	
 0	
 1	
 0	
 0 
##	
  
##	
 $`[B1-­‐>[M3-­‐>M2-­‐>M1,M2-­‐>[M3-­‐>M1,M1-­‐>M3]],B2-­‐>M1-­‐>M2-­‐>M3,B3-­‐>[M1-­‐>M2-­‐
>M3,M2-­‐>[M3-­‐>M1,M1-­‐>M3]],B5-­‐>M3-­‐>M2-­‐>M1]  ̀
##	
 [1]	
 0	
 1	
 1	
 1	
 0	
 1	
 0	
 0 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 1	
 1	
 0	
 1	
 0	
 0 

73

##	
  
##	
 $`[B4-­‐>M1,B5-­‐>M1]  ̀
##	
 [1]	
 0	
 0	
 0	
 0	
 1	
 1	
 0	
 0 
##	
  
##	
 $`[B0-­‐>M3-­‐>M1,B4-­‐>[M1-­‐>M3,M3-­‐>M1],B5-­‐>M1-­‐>M3]`  
##	
 [1]	
 1	
 0	
 0	
 0	
 1	
 1	
 0	
 0 
##	
  
##	
 $`[B1-­‐>M3-­‐>M1,B4-­‐>M1-­‐>M3,B5-­‐>[M1-­‐>M3,M3-­‐>M1]]`  
##	
 [1]	
 0	
 1	
 0	
 0	
 1	
 1	
 0	
 0 
##	
  
##	
 $`[B0-­‐>[M1-­‐>M3-­‐>R1,M3-­‐>M1-­‐>R1],B1-­‐>[M1-­‐>M3-­‐>R1,M3-­‐>M1-­‐>R1],B4-­‐>[M1-­‐
>M3-­‐>R1,M3-­‐>M1-­‐>R1],B5-­‐>[M1-­‐>M3-­‐>R1,M3-­‐>M1-­‐>R1]]`  
##	
 [1]	
 1	
 1	
 0	
 0	
 1	
 1	
 0	
 0 
##	
  
##	
 $`[B0-­‐>[M2-­‐>M3-­‐>M1,M3-­‐>[M1-­‐>M2,M2-­‐>M1]],B2-­‐>M2-­‐>M3-­‐>M1,B4-­‐>[M1-­‐>M3-­‐
>M2,M3-­‐>[M1-­‐>M2,M2-­‐>M1]],B5-­‐>M1-­‐>M3-­‐>M2]  ̀
##	
 [1]	
 1	
 0	
 1	
 0	
 1	
 1	
 0	
 0 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 1	
 0	
 1	
 1	
 0	
 0 
##	
  
##	
 $`[B1-­‐>[M2-­‐>M3-­‐>M1,M3-­‐>[M1-­‐>M2,M2-­‐>M1]],B3-­‐>M2-­‐>M3-­‐>M1,B4-­‐>M1-­‐>M3-­‐
>M2,B5-­‐>[M1-­‐>M3-­‐>M2,M3-­‐>[M1-­‐>M2,M2-­‐>M1]]]  ̀
##	
 [1]	
 0	
 1	
 0	
 1	
 1	
 1	
 0	
 0 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 0	
 1	
 1	
 1	
 0	
 0 
##	
  
##	
 $`[B0-­‐>[M3-­‐>[M1-­‐>M2-­‐>R1,M2-­‐>M1-­‐>R1],M2-­‐>[M3-­‐>M1-­‐>R1,M1-­‐>M3-­‐>R1]],B2-­‐
>[M1-­‐>M2-­‐>M3-­‐>R1,M2-­‐>[M3-­‐>M1-­‐>R1,M1-­‐>M3-­‐>R1]],B3-­‐>M1-­‐>M2-­‐>M3-­‐>R1,B4-­‐
>[M1-­‐>M3-­‐>M2-­‐>R1,M3-­‐>[M1-­‐>M2-­‐>R1,M2-­‐>M1-­‐>R1]],B5-­‐>M1-­‐>M3-­‐>M2-­‐>R1]`  
##	
 [1]	
 1	
 0	
 1	
 1	
 1	
 1	
 0	
 0 
##	
  
##	
 $`[B1-­‐>[M3-­‐>[M1-­‐>M2-­‐>R1,M2-­‐>M1-­‐>R1],M2-­‐>[M3-­‐>M1-­‐>R1,M1-­‐>M3-­‐>R1]],B2-­‐
>M1-­‐>M2-­‐>M3-­‐>R1,B3-­‐>[M1-­‐>M2-­‐>M3-­‐>R1,M2-­‐>[M3-­‐>M1-­‐>R1,M1-­‐>M3-­‐>R1]],B4-­‐
>M1-­‐>M3-­‐>M2-­‐>R1,B5-­‐>[M1-­‐>M3-­‐>M2-­‐>R1,M3-­‐>[M1-­‐>M2-­‐>R1,M2-­‐>M1-­‐>R1]]]`  
##	
 [1]	
 0	
 1	
 1	
 1	
 1	
 1	
 0	
 0 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 1	
 1	
 1	
 1	
 0	
 0 
##	
  
##	
 $B6 
##	
 [1]	
 0	
 0	
 0	
 0	
 0	
 0	
 1	
 0 
##	
  
##	
 $`[B2-­‐>M3,B6-­‐>M3]  ̀
##	
 [1]	
 0	
 0	
 1	
 0	
 0	
 0	
 1	
 0 

74

##	
  
##	
 $`[B0-­‐>M2-­‐>M3,B2-­‐>[M3-­‐>M2,M2-­‐>M3],B6-­‐>M3-­‐>M2]`  
##	
 [1]	
 1	
 0	
 1	
 0	
 0	
 0	
 1	
 0 
##	
  
##	
 $`[B0-­‐>[M1-­‐>M2-­‐>M3,M2-­‐>[M3-­‐>M1,M1-­‐>M3]],B1-­‐>M1-­‐>M2-­‐>M3,B2-­‐>[M3-­‐>M2-­‐
>M1,M2-­‐>[M3-­‐>M1,M1-­‐>M3]],B6-­‐>M3-­‐>M2-­‐>M1]  ̀
##	
 [1]	
 1	
 1	
 1	
 0	
 0	
 0	
 1	
 0 
##	
  
##	
 $`[B2-­‐>[M1-­‐>M3,M3-­‐>M1],B3-­‐>M1-­‐>M3,B6-­‐>M3-­‐>M1]`  
##	
 [1]	
 0	
 0	
 1	
 1	
 0	
 0	
 1	
 0 
##	
  
##	
 $`[B0-­‐>M2-­‐>[M3-­‐>M1,M1-­‐>M3],B2-­‐>[M2-­‐>[M3-­‐>M1,M1-­‐>M3],[M1-­‐>[M2-­‐>M3,M3-­‐
>M2],M3-­‐>[M1-­‐>M2,M2-­‐>M1]]],B3-­‐>M1-­‐>[M2-­‐>M3,M3-­‐>M2],B6-­‐>M3-­‐>[M1-­‐>M2,M2-­‐
>M1]]  ̀
##	
 [1]	
 1	
 0	
 1	
 1	
 0	
 0	
 1	
 0 
##	
  
##	
 $`[B1-­‐>M2-­‐>M1-­‐>M3,B2-­‐>[M3-­‐>M1-­‐>M2,M1-­‐>[M2-­‐>M3,M3-­‐>M2]],B3-­‐>[M2-­‐>M1-­‐
>M3,M1-­‐>[M2-­‐>M3,M3-­‐>M2]],B6-­‐>M3-­‐>M1-­‐>M2]  ̀
##	
 [1]	
 0	
 1	
 1	
 1	
 0	
 0	
 1	
 0 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 1	
 1	
 0	
 0	
 1	
 0 
##	
  
##	
 $`[B4-­‐>M2,B6-­‐>M2]  ̀
##	
 [1]	
 0	
 0	
 0	
 0	
 1	
 0	
 1	
 0 
##	
  
##	
 $`[B0-­‐>M3-­‐>M2,B4-­‐>[M3-­‐>M2,M2-­‐>M3],B6-­‐>M2-­‐>M3]`  
##	
 [1]	
 1	
 0	
 0	
 0	
 1	
 0	
 1	
 0 
##	
  
##	
 $`[B0-­‐>[M1-­‐>M3-­‐>M2,M3-­‐>[M1-­‐>M2,M2-­‐>M1]],B1-­‐>M1-­‐>M3-­‐>M2,B4-­‐>[M2-­‐>M3-­‐
>M1,M3-­‐>[M1-­‐>M2,M2-­‐>M1]],B6-­‐>M2-­‐>M3-­‐>M1]  ̀
##	
 [1]	
 1	
 1	
 0	
 0	
 1	
 0	
 1	
 0 
##	
  
##	
 $`[B2-­‐>M3-­‐>M2,B4-­‐>M2-­‐>M3,B6-­‐>[M3-­‐>M2,M2-­‐>M3]]`  
##	
 [1]	
 0	
 0	
 1	
 0	
 1	
 0	
 1	
 0 
##	
  
##	
 $`[B0-­‐>[M3-­‐>M2-­‐>R2,M2-­‐>M3-­‐>R2],B2-­‐>[M3-­‐>M2-­‐>R2,M2-­‐>M3-­‐>R2],B4-­‐>[M3-­‐
>M2-­‐>R2,M2-­‐>M3-­‐>R2],B6-­‐>[M3-­‐>M2-­‐>R2,M2-­‐>M3-­‐>R2]]`  
##	
 [1]	
 1	
 0	
 1	
 0	
 1	
 0	
 1	
 0 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 1	
 0	
 1	
 0	
 1	
 0 
##	
  
##	
 $`[B2-­‐>[M1-­‐>M3-­‐>M2,M3-­‐>[M1-­‐>M2,M2-­‐>M1]],B3-­‐>M1-­‐>M3-­‐>M2,B4-­‐>M2-­‐>M3-­‐
>M1,B6-­‐>[M2-­‐>M3-­‐>M1,M3-­‐>[M1-­‐>M2,M2-­‐>M1]]]  ̀
##	
 [1]	
 0	
 0	
 1	
 1	
 1	
 0	
 1	
 0 

75

##	
  
##	
 $... 
##	
 [1]	
 1	
 0	
 1	
 1	
 1	
 0	
 1	
 0 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 1	
 1	
 1	
 0	
 1	
 0 
##	
  
##	
 $`[B0-­‐>[M1-­‐>[M2-­‐>M3-­‐>R2,M3-­‐>M2-­‐>R2],M2-­‐>[M3-­‐>M1-­‐>R2,M1-­‐>M3-­‐>R2]],B1-­‐
>[M3-­‐>M1-­‐>M2-­‐>R2,M1-­‐>[M2-­‐>M3-­‐>R2,M3-­‐>M2-­‐>R2]],B2-­‐>[M3-­‐>M2-­‐>M1-­‐>R2,M2-­‐
>[M3-­‐>M1-­‐>R2,M1-­‐>M3-­‐>R2]],B5-­‐>M3-­‐>M1-­‐>M2-­‐>R2,B6-­‐>M3-­‐>M2-­‐>M1-­‐>R2]`  
##	
 [1]	
 1	
 1	
 1	
 0	
 0	
 1	
 1	
 0 
##	
  
##	
 $`[B1-­‐>[M3-­‐>M2-­‐>M1-­‐>R2,M2-­‐>[M3-­‐>M1-­‐>R2,M1-­‐>M3-­‐>R2]],B2-­‐>[M3-­‐>M1-­‐>M2-­‐
>R2,M1-­‐>[M2-­‐>M3-­‐>R2,M3-­‐>M2-­‐>R2]],B3-­‐>[M1-­‐>[M2-­‐>M3-­‐>R2,M3-­‐>M2-­‐>R2],M2-­‐
>[M3-­‐>M1-­‐>R2,M1-­‐>M3-­‐>R2]],B5-­‐>M3-­‐>M2-­‐>M1-­‐>R2,B6-­‐>M3-­‐>M1-­‐>M2-­‐>R2]`  
##	
 [1]	
 0	
 1	
 1	
 1	
 0	
 1	
 1	
 0 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 1	
 1	
 0	
 1	
 1	
 0 
##	
  
##	
 $`[B4-­‐>[M1-­‐>M2,M2-­‐>M1],B5-­‐>M1-­‐>M2,B6-­‐>M2-­‐>M1]`  
##	
 [1]	
 0	
 0	
 0	
 0	
 1	
 1	
 1	
 0 
##	
  
##	
 $`[B0-­‐>M3-­‐>[M1-­‐>M2,M2-­‐>M1],B4-­‐>[M2-­‐>[M3-­‐>M1,M1-­‐>M3],[M1-­‐>[M2-­‐>M3,M3-­‐
>M2],M3-­‐>[M1-­‐>M2,M2-­‐>M1]]],B5-­‐>M1-­‐>[M2-­‐>M3,M3-­‐>M2],B6-­‐>M2-­‐>[M3-­‐>M1,M1-­‐
>M3]]  ̀
##	
 [1]	
 1	
 0	
 0	
 0	
 1	
 1	
 1	
 0 
##	
  
##	
 $`[B1-­‐>M3-­‐>M1-­‐>M2,B4-­‐>[M2-­‐>M1-­‐>M3,M1-­‐>[M2-­‐>M3,M3-­‐>M2]],B5-­‐>[M3-­‐>M1-­‐
>M2,M1-­‐>[M2-­‐>M3,M3-­‐>M2]],B6-­‐>M2-­‐>M1-­‐>M3]  ̀
##	
 [1]	
 0	
 1	
 0	
 0	
 1	
 1	
 1	
 0 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 0	
 0	
 1	
 1	
 1	
 0 
##	
  
##	
 $`[B2-­‐>M3-­‐>M2-­‐>M1,B4-­‐>[M1-­‐>M2-­‐>M3,M2-­‐>[M3-­‐>M1,M1-­‐>M3]],B5-­‐>M1-­‐>M2-­‐
>M3,B6-­‐>[M3-­‐>M2-­‐>M1,M2-­‐>[M3-­‐>M1,M1-­‐>M3]]]  ̀
##	
 [1]	
 0	
 0	
 1	
 0	
 1	
 1	
 1	
 0 
##	
  
##	
 $... 
##	
 [1]	
 1	
 0	
 1	
 0	
 1	
 1	
 1	
 0 
##	
  
##	
 $`[B1-­‐>M3-­‐>M1-­‐>M2-­‐>R2,B2-­‐>M3-­‐>M2-­‐>M1-­‐>R2,B4-­‐>[M1-­‐>[M2-­‐>M3-­‐>R2,M3-­‐
>M2-­‐>R2],M2-­‐>[M3-­‐>M1-­‐>R2,M1-­‐>M3-­‐>R2]],B5-­‐>[M3-­‐>M1-­‐>M2-­‐>R2,M1-­‐>[M2-­‐>M3-­‐
>R2,M3-­‐>M2-­‐>R2]],B6-­‐>[M3-­‐>M2-­‐>M1-­‐>R2,M2-­‐>[M3-­‐>M1-­‐>R2,M1-­‐>M3-­‐>R2]]]`  
##	
 [1]	
 0	
 1	
 1	
 0	
 1	
 1	
 1	
 0 

76

##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 1	
 0	
 1	
 1	
 1	
 0 
##	
  
##	
 $`[B2-­‐>[M1-­‐>M3-­‐>M2-­‐>R1,M3-­‐>[M1-­‐>M2-­‐>R1,M2-­‐>M1-­‐>R1]],B3-­‐>M1-­‐>M3-­‐>M2-­‐
>R1,B4-­‐>[M1-­‐>M2-­‐>M3-­‐>R1,M2-­‐>[M3-­‐>M1-­‐>R1,M1-­‐>M3-­‐>R1]],B5-­‐>M1-­‐>M2-­‐>M3-­‐
>R1,B6-­‐>[M3-­‐>[M1-­‐>M2-­‐>R1,M2-­‐>M1-­‐>R1],M2-­‐>[M3-­‐>M1-­‐>R1,M1-­‐>M3-­‐>R1]]]`  
##	
 [1]	
 0	
 0	
 1	
 1	
 1	
 1	
 1	
 0 
##	
  
##	
 $... 
##	
 [1]	
 1	
 0	
 1	
 1	
 1	
 1	
 1	
 0 
##	
  
##	
 $... 
##	
 [1]	
 0	
 1	
 1	
 1	
 1	
 1	
 1	
 0 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 0 
##	
  
##	
 $B7 
##	
 [1]	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 1 
##	
  
##	
 $`[B3-­‐>M3,B7-­‐>M3]  ̀
##	
 [1]	
 0	
 0	
 0	
 1	
 0	
 0	
 0	
 1 
##	
  
##	
 $`[B1-­‐>M2-­‐>M3,B3-­‐>[M3-­‐>M2,M2-­‐>M3],B7-­‐>M3-­‐>M2]`  
##	
 [1]	
 0	
 1	
 0	
 1	
 0	
 0	
 0	
 1 
##	
  
##	
 $`[B0-­‐>M1-­‐>M2-­‐>M3,B1-­‐>[M1-­‐>M2-­‐>M3,M2-­‐>[M3-­‐>M1,M1-­‐>M3]],B3-­‐>[M3-­‐>M2-­‐
>M1,M2-­‐>[M3-­‐>M1,M1-­‐>M3]],B7-­‐>M3-­‐>M2-­‐>M1]  ̀
##	
 [1]	
 1	
 1	
 0	
 1	
 0	
 0	
 0	
 1 
##	
  
##	
 $`[B2-­‐>M1-­‐>M3,B3-­‐>[M1-­‐>M3,M3-­‐>M1],B7-­‐>M3-­‐>M1]`  
##	
 [1]	
 0	
 0	
 1	
 1	
 0	
 0	
 0	
 1 
##	
  
##	
 $`[B0-­‐>M2-­‐>M1-­‐>M3,B2-­‐>[M2-­‐>M1-­‐>M3,M1-­‐>[M2-­‐>M3,M3-­‐>M2]],B3-­‐>[M3-­‐>M1-­‐
>M2,M1-­‐>[M2-­‐>M3,M3-­‐>M2]],B7-­‐>M3-­‐>M1-­‐>M2]  ̀
##	
 [1]	
 1	
 0	
 1	
 1	
 0	
 0	
 0	
 1 
##	
  
##	
 $`[B1-­‐>M2-­‐>[M3-­‐>M1,M1-­‐>M3],B2-­‐>M1-­‐>[M2-­‐>M3,M3-­‐>M2],B3-­‐>[M2-­‐>[M3-­‐
>M1,M1-­‐>M3],[M1-­‐>[M2-­‐>M3,M3-­‐>M2],M3-­‐>[M1-­‐>M2,M2-­‐>M1]]],B7-­‐>M3-­‐>[M1-­‐
>M2,M2-­‐>M1]]  ̀
##	
 [1]	
 0	
 1	
 1	
 1	
 0	
 0	
 0	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 1	
 1	
 0	
 0	
 0	
 1 
##	
  

77

##	
 $`[B0-­‐>[M3-­‐>M1-­‐>M2-­‐>R2,M1-­‐>[M2-­‐>M3-­‐>R2,M3-­‐>M2-­‐>R2]],B1-­‐>[M1-­‐>[M2-­‐
>M3-­‐>R2,M3-­‐>M2-­‐>R2],M2-­‐>[M3-­‐>M1-­‐>R2,M1-­‐>M3-­‐>R2]],B3-­‐>[M3-­‐>M2-­‐>M1-­‐
>R2,M2-­‐>[M3-­‐>M1-­‐>R2,M1-­‐>M3-­‐>R2]],B4-­‐>M3-­‐>M1-­‐>M2-­‐>R2,B7-­‐>M3-­‐>M2-­‐>M1-­‐
>R2]  ̀
##	
 [1]	
 1	
 1	
 0	
 1	
 1	
 0	
 0	
 1 
##	
  
##	
 $`[B0-­‐>[M3-­‐>M2-­‐>M1-­‐>R2,M2-­‐>[M3-­‐>M1-­‐>R2,M1-­‐>M3-­‐>R2]],B2-­‐>[M1-­‐>[M2-­‐
>M3-­‐>R2,M3-­‐>M2-­‐>R2],M2-­‐>[M3-­‐>M1-­‐>R2,M1-­‐>M3-­‐>R2]],B3-­‐>[M3-­‐>M1-­‐>M2-­‐
>R2,M1-­‐>[M2-­‐>M3-­‐>R2,M3-­‐>M2-­‐>R2]],B4-­‐>M3-­‐>M2-­‐>M1-­‐>R2,B7-­‐>M3-­‐>M1-­‐>M2-­‐
>R2]  ̀
##	
 [1]	
 1	
 0	
 1	
 1	
 1	
 0	
 0	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 1	
 1	
 1	
 0	
 0	
 1 
##	
  
##	
 $`[B5-­‐>M2,B7-­‐>M2]  ̀
##	
 [1]	
 0	
 0	
 0	
 0	
 0	
 1	
 0	
 1 
##	
  
##	
 $`[B1-­‐>M3-­‐>M2,B5-­‐>[M3-­‐>M2,M2-­‐>M3],B7-­‐>M2-­‐>M3]`  
##	
 [1]	
 0	
 1	
 0	
 0	
 0	
 1	
 0	
 1 
##	
  
##	
 $`[B0-­‐>M1-­‐>M3-­‐>M2,B1-­‐>[M1-­‐>M3-­‐>M2,M3-­‐>[M1-­‐>M2,M2-­‐>M1]],B5-­‐>[M2-­‐>M3-­‐
>M1,M3-­‐>[M1-­‐>M2,M2-­‐>M1]],B7-­‐>M2-­‐>M3-­‐>M1]  ̀
##	
 [1]	
 1	
 1	
 0	
 0	
 0	
 1	
 0	
 1 
##	
  
##	
 $`[B3-­‐>M3-­‐>M2,B5-­‐>M2-­‐>M3,B7-­‐>[M3-­‐>M2,M2-­‐>M3]]`  
##	
 [1]	
 0	
 0	
 0	
 1	
 0	
 1	
 0	
 1 
##	
  
##	
 $`[B1-­‐>[M3-­‐>M2-­‐>R2,M2-­‐>M3-­‐>R2],B3-­‐>[M3-­‐>M2-­‐>R2,M2-­‐>M3-­‐>R2],B5-­‐>[M3-­‐
>M2-­‐>R2,M2-­‐>M3-­‐>R2],B7-­‐>[M3-­‐>M2-­‐>R2,M2-­‐>M3-­‐>R2]]`  
##	
 [1]	
 0	
 1	
 0	
 1	
 0	
 1	
 0	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 0	
 1	
 0	
 1	
 0	
 1 
##	
  
##	
 $`[B2-­‐>M1-­‐>M3-­‐>M2,B3-­‐>[M1-­‐>M3-­‐>M2,M3-­‐>[M1-­‐>M2,M2-­‐>M1]],B5-­‐>M2-­‐>M3-­‐
>M1,B7-­‐>[M2-­‐>M3-­‐>M1,M3-­‐>[M1-­‐>M2,M2-­‐>M1]]]  ̀
##	
 [1]	
 0	
 0	
 1	
 1	
 0	
 1	
 0	
 1 
##	
  
##	
 $... 
##	
 [1]	
 0	
 1	
 1	
 1	
 0	
 1	
 0	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 1	
 1	
 0	
 1	
 0	
 1 
##	
  
##	
 $`[B4-­‐>M1-­‐>M2,B5-­‐>[M1-­‐>M2,M2-­‐>M1],B7-­‐>M2-­‐>M1]`  

78

##	
 [1]	
 0	
 0	
 0	
 0	
 1	
 1	
 0	
 1 
##	
  
##	
 $`[B0-­‐>M3-­‐>M1-­‐>M2,B4-­‐>[M3-­‐>M1-­‐>M2,M1-­‐>[M2-­‐>M3,M3-­‐>M2]],B5-­‐>[M2-­‐>M1-­‐
>M3,M1-­‐>[M2-­‐>M3,M3-­‐>M2]],B7-­‐>M2-­‐>M1-­‐>M3]  ̀
##	
 [1]	
 1	
 0	
 0	
 0	
 1	
 1	
 0	
 1 
##	
  
##	
 $`[B1-­‐>M3-­‐>[M1-­‐>M2,M2-­‐>M1],B4-­‐>M1-­‐>[M2-­‐>M3,M3-­‐>M2],B5-­‐>[M2-­‐>[M3-­‐
>M1,M1-­‐>M3],[M1-­‐>[M2-­‐>M3,M3-­‐>M2],M3-­‐>[M1-­‐>M2,M2-­‐>M1]]],B7-­‐>M2-­‐>[M3-­‐
>M1,M1-­‐>M3]]  ̀
##	
 [1]	
 0	
 1	
 0	
 0	
 1	
 1	
 0	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 0	
 0	
 1	
 1	
 0	
 1 
##	
  
##	
 $`[B3-­‐>M3-­‐>M2-­‐>M1,B4-­‐>M1-­‐>M2-­‐>M3,B5-­‐>[M1-­‐>M2-­‐>M3,M2-­‐>[M3-­‐>M1,M1-­‐
>M3]],B7-­‐>[M3-­‐>M2-­‐>M1,M2-­‐>[M3-­‐>M1,M1-­‐>M3]]]` 
##	
 [1]	
 0	
 0	
 0	
 1	
 1	
 1	
 0	
 1 
##	
  
##	
 $`[B0-­‐>M3-­‐>M1-­‐>M2-­‐>R2,B3-­‐>M3-­‐>M2-­‐>M1-­‐>R2,B4-­‐>[M3-­‐>M1-­‐>M2-­‐>R2,M1-­‐
>[M2-­‐>M3-­‐>R2,M3-­‐>M2-­‐>R2]],B5-­‐>[M1-­‐>[M2-­‐>M3-­‐>R2,M3-­‐>M2-­‐>R2],M2-­‐>[M3-­‐>M1-­‐
>R2,M1-­‐>M3-­‐>R2]],B7-­‐>[M3-­‐>M2-­‐>M1-­‐>R2,M2-­‐>[M3-­‐>M1-­‐>R2,M1-­‐>M3-­‐>R2]]]`  
##	
 [1]	
 1	
 0	
 0	
 1	
 1	
 1	
 0	
 1 
##	
  
##	
 $... 
##	
 [1]	
 0	
 1	
 0	
 1	
 1	
 1	
 0	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 0	
 1	
 1	
 1	
 0	
 1 
##	
  
##	
 $`[B2-­‐>M1-­‐>M3-­‐>M2-­‐>R1,B3-­‐>[M1-­‐>M3-­‐>M2-­‐>R1,M3-­‐>[M1-­‐>M2-­‐>R1,M2-­‐>M1-­‐
>R1]],B4-­‐>M1-­‐>M2-­‐>M3-­‐>R1,B5-­‐>[M1-­‐>M2-­‐>M3-­‐>R1,M2-­‐>[M3-­‐>M1-­‐>R1,M1-­‐>M3-­‐
>R1]],B7-­‐>[M3-­‐>[M1-­‐>M2-­‐>R1,M2-­‐>M1-­‐>R1],M2-­‐>[M3-­‐>M1-­‐>R1,M1-­‐>M3-­‐>R1]]]`  
##	
 [1]	
 0	
 0	
 1	
 1	
 1	
 1	
 0	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 0	
 1	
 1	
 1	
 1	
 0	
 1 
##	
  
##	
 $... 
##	
 [1]	
 0	
 1	
 1	
 1	
 1	
 1	
 0	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 1	
 1	
 1	
 1	
 0	
 1 
##	
  
##	
 $`[B6-­‐>M1,B7-­‐>M1]  ̀
##	
 [1]	
 0	
 0	
 0	
 0	
 0	
 0	
 1	
 1 
##	
  

79

##	
 $`[B2-­‐>M3-­‐>M1,B6-­‐>[M1-­‐>M3,M3-­‐>M1],B7-­‐>M1-­‐>M3]`  
##	
 [1]	
 0	
 0	
 1	
 0	
 0	
 0	
 1	
 1 
##	
  
##	
 $`[B0-­‐>M2-­‐>M3-­‐>M1,B2-­‐>[M2-­‐>M3-­‐>M1,M3-­‐>[M1-­‐>M2,M2-­‐>M1]],B6-­‐>[M1-­‐>M3-­‐
>M2,M3-­‐>[M1-­‐>M2,M2-­‐>M1]],B7-­‐>M1-­‐>M3-­‐>M2]  ̀
##	
 [1]	
 1	
 0	
 1	
 0	
 0	
 0	
 1	
 1 
##	
  
##	
 $`[B0-­‐>[M1-­‐>M2-­‐>M3-­‐>R1,M2-­‐>[M3-­‐>M1-­‐>R1,M1-­‐>M3-­‐>R1]],B1-­‐>M1-­‐>M2-­‐>M3-­‐
>R1,B2-­‐>[M3-­‐>[M1-­‐>M2-­‐>R1,M2-­‐>M1-­‐>R1],M2-­‐>[M3-­‐>M1-­‐>R1,M1-­‐>M3-­‐>R1]],B6-­‐
>[M1-­‐>M3-­‐>M2-­‐>R1,M3-­‐>[M1-­‐>M2-­‐>R1,M2-­‐>M1-­‐>R1]],B7-­‐>M1-­‐>M3-­‐>M2-­‐>R1]`  
##	
 [1]	
 1	
 1	
 1	
 0	
 0	
 0	
 1	
 1 
##	
  
##	
 $`[B3-­‐>M3-­‐>M1,B6-­‐>M1-­‐>M3,B7-­‐>[M1-­‐>M3,M3-­‐>M1]]`  
##	
 [1]	
 0	
 0	
 0	
 1	
 0	
 0	
 1	
 1 
##	
  
##	
 $`[B1-­‐>M2-­‐>M3-­‐>M1,B3-­‐>[M2-­‐>M3-­‐>M1,M3-­‐>[M1-­‐>M2,M2-­‐>M1]],B6-­‐>M1-­‐>M3-­‐
>M2,B7-­‐>[M1-­‐>M3-­‐>M2,M3-­‐>[M1-­‐>M2,M2-­‐>M1]]]  ̀
##	
 [1]	
 0	
 1	
 0	
 1	
 0	
 0	
 1	
 1 
##	
  
##	
 $`[B0-­‐>M1-­‐>M2-­‐>M3-­‐>R1,B1-­‐>[M1-­‐>M2-­‐>M3-­‐>R1,M2-­‐>[M3-­‐>M1-­‐>R1,M1-­‐>M3-­‐
>R1]],B3-­‐>[M3-­‐>[M1-­‐>M2-­‐>R1,M2-­‐>M1-­‐>R1],M2-­‐>[M3-­‐>M1-­‐>R1,M1-­‐>M3-­‐>R1]],B6-­‐
>M1-­‐>M3-­‐>M2-­‐>R1,B7-­‐>[M1-­‐>M3-­‐>M2-­‐>R1,M3-­‐>[M1-­‐>M2-­‐>R1,M2-­‐>M1-­‐>R1]]]`  
##	
 [1]	
 1	
 1	
 0	
 1	
 0	
 0	
 1	
 1 
##	
  
##	
 $`[B2-­‐>[M1-­‐>M3-­‐>R1,M3-­‐>M1-­‐>R1],B3-­‐>[M1-­‐>M3-­‐>R1,M3-­‐>M1-­‐>R1],B6-­‐>[M1-­‐
>M3-­‐>R1,M3-­‐>M1-­‐>R1],B7-­‐>[M1-­‐>M3-­‐>R1,M3-­‐>M1-­‐>R1]]`  
##	
 [1]	
 0	
 0	
 1	
 1	
 0	
 0	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 0	
 1	
 1	
 0	
 0	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 0	
 1	
 1	
 1	
 0	
 0	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 1	
 1	
 0	
 0	
 1	
 1 
##	
  
##	
 $`[B4-­‐>M2-­‐>M1,B6-­‐>[M1-­‐>M2,M2-­‐>M1],B7-­‐>M1-­‐>M2]`  
##	
 [1]	
 0	
 0	
 0	
 0	
 1	
 0	
 1	
 1 
##	
  
##	
 $`[B0-­‐>M3-­‐>M2-­‐>M1,B4-­‐>[M3-­‐>M2-­‐>M1,M2-­‐>[M3-­‐>M1,M1-­‐>M3]],B6-­‐>[M1-­‐>M2-­‐
>M3,M2-­‐>[M3-­‐>M1,M1-­‐>M3]],B7-­‐>M1-­‐>M2-­‐>M3]  ̀
##	
 [1]	
 1	
 0	
 0	
 0	
 1	
 0	
 1	
 1 
##	
  
##	
 $`[B0-­‐>[M1-­‐>M3-­‐>M2-­‐>R1,M3-­‐>[M1-­‐>M2-­‐>R1,M2-­‐>M1-­‐>R1]],B1-­‐>M1-­‐>M3-­‐>M2-­‐
>R1,B4-­‐>[M3-­‐>[M1-­‐>M2-­‐>R1,M2-­‐>M1-­‐>R1],M2-­‐>[M3-­‐>M1-­‐>R1,M1-­‐>M3-­‐>R1]],B6-­‐

80

>[M1-­‐>M2-­‐>M3-­‐>R1,M2-­‐>[M3-­‐>M1-­‐>R1,M1-­‐>M3-­‐>R1]],B7-­‐>M1-­‐>M2-­‐>M3-­‐>R1]`  
##	
 [1]	
 1	
 1	
 0	
 0	
 1	
 0	
 1	
 1 
##	
  
##	
 $`[B2-­‐>M3-­‐>[M1-­‐>M2,M2-­‐>M1],B4-­‐>M2-­‐>[M3-­‐>M1,M1-­‐>M3],B6-­‐>[M2-­‐>[M3-­‐
>M1,M1-­‐>M3],[M1-­‐>[M2-­‐>M3,M3-­‐>M2],M3-­‐>[M1-­‐>M2,M2-­‐>M1]]],B7-­‐>M1-­‐>[M2-­‐
>M3,M3-­‐>M2]]  ̀
##	
 [1]	
 0	
 0	
 1	
 0	
 1	
 0	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 0	
 1	
 0	
 1	
 0	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 1	
 0	
 1	
 0	
 1	
 1 
##	
  
##	
 $`[B3-­‐>M3-­‐>M1-­‐>M2,B4-­‐>M2-­‐>M1-­‐>M3,B6-­‐>[M2-­‐>M1-­‐>M3,M1-­‐>[M2-­‐>M3,M3-­‐
>M2]],B7-­‐>[M3-­‐>M1-­‐>M2,M1-­‐>[M2-­‐>M3,M3-­‐>M2]]]` 
##	
 [1]	
 0	
 0	
 0	
 1	
 1	
 0	
 1	
 1 
##	
  
##	
 $`[B0-­‐>M3-­‐>M2-­‐>M1-­‐>R2,B3-­‐>M3-­‐>M1-­‐>M2-­‐>R2,B4-­‐>[M3-­‐>M2-­‐>M1-­‐>R2,M2-­‐
>[M3-­‐>M1-­‐>R2,M1-­‐>M3-­‐>R2]],B6-­‐>[M1-­‐>[M2-­‐>M3-­‐>R2,M3-­‐>M2-­‐>R2],M2-­‐>[M3-­‐>M1-­‐
>R2,M1-­‐>M3-­‐>R2]],B7-­‐>[M3-­‐>M1-­‐>M2-­‐>R2,M1-­‐>[M2-­‐>M3-­‐>R2,M3-­‐>M2-­‐>R2]]]`  
##	
 [1]	
 1	
 0	
 0	
 1	
 1	
 0	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 0	
 1	
 1	
 0	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 0	
 0	
 1	
 1	
 1	
 0	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 0	
 1	
 1	
 1	
 0	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 1	
 1	
 1	
 0	
 1	
 1 
##	
  
##	
 $`[B5-­‐>M2-­‐>M1,B6-­‐>M1-­‐>M2,B7-­‐>[M1-­‐>M2,M2-­‐>M1]]`  
##	
 [1]	
 0	
 0	
 0	
 0	
 0	
 1	
 1	
 1 
##	
  
##	
 $`[B1-­‐>M3-­‐>M2-­‐>M1,B5-­‐>[M3-­‐>M2-­‐>M1,M2-­‐>[M3-­‐>M1,M1-­‐>M3]],B6-­‐>M1-­‐>M2-­‐
>M3,B7-­‐>[M1-­‐>M2-­‐>M3,M2-­‐>[M3-­‐>M1,M1-­‐>M3]]]  ̀
##	
 [1]	
 0	
 1	
 0	
 0	
 0	
 1	
 1	
 1 
##	
  
##	
 $`[B0-­‐>M1-­‐>M3-­‐>M2-­‐>R1,B1-­‐>[M1-­‐>M3-­‐>M2-­‐>R1,M3-­‐>[M1-­‐>M2-­‐>R1,M2-­‐>M1-­‐
>R1]],B5-­‐>[M3-­‐>[M1-­‐>M2-­‐>R1,M2-­‐>M1-­‐>R1],M2-­‐>[M3-­‐>M1-­‐>R1,M1-­‐>M3-­‐>R1]],B6-­‐
>M1-­‐>M2-­‐>M3-­‐>R1,B7-­‐>[M1-­‐>M2-­‐>M3-­‐>R1,M2-­‐>[M3-­‐>M1-­‐>R1,M1-­‐>M3-­‐>R1]]]`  
##	
 [1]	
 1	
 1	
 0	
 0	
 0	
 1	
 1	
 1 

81

##	
  
##	
 $`[B2-­‐>M3-­‐>M1-­‐>M2,B5-­‐>M2-­‐>M1-­‐>M3,B6-­‐>[M3-­‐>M1-­‐>M2,M1-­‐>[M2-­‐>M3,M3-­‐
>M2]],B7-­‐>[M2-­‐>M1-­‐>M3,M1-­‐>[M2-­‐>M3,M3-­‐>M2]]]` 
##	
 [1]	
 0	
 0	
 1	
 0	
 0	
 1	
 1	
 1 
##	
  
##	
 $`[B1-­‐>M3-­‐>M2-­‐>M1-­‐>R2,B2-­‐>M3-­‐>M1-­‐>M2-­‐>R2,B5-­‐>[M3-­‐>M2-­‐>M1-­‐>R2,M2-­‐
>[M3-­‐>M1-­‐>R2,M1-­‐>M3-­‐>R2]],B6-­‐>[M3-­‐>M1-­‐>M2-­‐>R2,M1-­‐>[M2-­‐>M3-­‐>R2,M3-­‐>M2-­‐
>R2]],B7-­‐>[M1-­‐>[M2-­‐>M3-­‐>R2,M3-­‐>M2-­‐>R2],M2-­‐>[M3-­‐>M1-­‐>R2,M1-­‐>M3-­‐>R2]]]`  
##	
 [1]	
 0	
 1	
 1	
 0	
 0	
 1	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 1	
 0	
 0	
 1	
 1	
 1 
##	
  
##	
 $`[B3-­‐>M3-­‐>[M1-­‐>M2,M2-­‐>M1],B5-­‐>M2-­‐>[M3-­‐>M1,M1-­‐>M3],B6-­‐>M1-­‐>[M2-­‐
>M3,M3-­‐>M2],B7-­‐>[M2-­‐>[M3-­‐>M1,M1-­‐>M3],[M1-­‐>[M2-­‐>M3,M3-­‐>M2],M3-­‐>[M1-­‐
>M2,M2-­‐>M1]]]]  ̀
##	
 [1]	
 0	
 0	
 0	
 1	
 0	
 1	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 0	
 1	
 0	
 1	
 0	
 1	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 0	
 1	
 0	
 1	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 0	
 0	
 1	
 1	
 0	
 1	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 0	
 1	
 1	
 1	
 0	
 1	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 1	
 1	
 0	
 1	
 1	
 1 
##	
  
##	
 $`[B4-­‐>[M1-­‐>M2-­‐>R1,M2-­‐>M1-­‐>R1],B5-­‐>[M1-­‐>M2-­‐>R1,M2-­‐>M1-­‐>R1],B6-­‐>[M1-­‐
>M2-­‐>R1,M2-­‐>M1-­‐>R1],B7-­‐>[M1-­‐>M2-­‐>R1,M2-­‐>M1-­‐>R1]]`  
##	
 [1]	
 0	
 0	
 0	
 0	
 1	
 1	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 0	
 0	
 0	
 1	
 1	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 0	
 1	
 0	
 0	
 1	
 1	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 0	
 0	
 1	
 1	
 1	
 1 
##	
  

82

##	
 $... 
##	
 [1]	
 0	
 0	
 1	
 0	
 1	
 1	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 0	
 1	
 0	
 1	
 1	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 0	
 1	
 1	
 0	
 1	
 1	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 1	
 0	
 1	
 1	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 0	
 0	
 0	
 1	
 1	
 1	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 0	
 0	
 1	
 1	
 1	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 0	
 1	
 0	
 1	
 1	
 1	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 1	
 0	
 1	
 1	
 1	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 0	
 0	
 1	
 1	
 1	
 1	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 1	
 0	
 1	
 1	
 1	
 1	
 1	
 1 
##	
  
##	
 $... 
##	
 [1]	
 0	
 1	
 1	
 1	
 1	
 1	
 1	
 1	

!
Visualiza(on	
 LD	
 using	
 the	
 catalogue	
 and	
 dataset	
 from	
 the	
 HapMap	
 project.	

In	
 this	
 section	
 we	
 need	
 to	
 crate	
 a	
 function	
 which	
 compute	
 the	
 Euclidean	
 distance	
 between	

two	
 vectors(
 which	
 represent	
 LD	
 values),	
 a	
 vector	
 from	
 the	
 catalogue	
 and	
 a	
 vector	
 from	
 the	

real	
 datasets(HapMap).	
 In	
 order	
 to	
 calculate	
 the	
 haplotypes	
 frequencies	
 and	
 the	
 LD	
 values,	

the	
 below	
 functions	
 have	
 been	
 used.	

#	
 functions	
 to	
 calculate	
 the	
 cumulants 
std	
 <-­‐	
 function(v)(v/sum(v)) 
 
#'	
 haplotypes	
 to	
 std.cumulants 
hfs2std.cumu	
 =	
 function(hfs)new(parametrizer)$multinomial2cumuStd(hfs) 
 

83

#'	
 std.cumulants	
 to	
 haplotypes 
cumu2hfs	
 =	
 function(cumuStd){ 
	
 	
 hfs	
 <-­‐new(parametrizer)$cumuStd2multinomial(cumuStd) 
	
 	
 std(hfs+1^(-­‐6)) 
} 
 
#	
 Euclidean	
 distance	
 matrix 
Euc.distanceMatrix	
 <-­‐	
 function(data.cumulants,cat.cumulants){ 
	
 	
 mat	
 <-­‐
matrix(0,ncol=length(data.cumulants),nrow=length(cat.cumulants)) 
	
 	
 for(i	
 in	
 1:length(data.cumulants)){ 
	
 	
 	
 	
 for(j	
 in	
 1:length(cat.cumulants)){ 
	
 	
 	
 	
 	
 	
 mat[j,i]<-­‐
dist(rbind(as.numeric(unlist(data.cumulants[i])),as.numeric(unlist(cat.
cumulants[j])))) 
	
 	
 	
 	
 } 
	
 	
 } 
	
 	
 return(mat) 
} 
 
############################## 
#	
 	
 	
 	
 Catalogue	
 cumulants	
 	
 	
 	
 	
 # 
############################## 
cat.cumulants	
 <-­‐	
 lapply(catalog,function(x)hfs2std.cumu(unlist(x))	
) 
 
#	
 We	
 delete	
 the	
 allele	
 frequencies	
 of	
 the	
 cat.cumulants:  
remove	
 <-­‐	
 c	
 (2,3,5) 
for(i	
 in	
 1:length(cat.cumulants)){ 
	
 	
 cat.cumulants[[i]]<-­‐cat.cumulants[[i]][-­‐remove]  
}	

The	
 same	
 steps	
 we	
 follow	
 using	
 the	
 datasets	
 from	
 the	
 HapMap.	
 Finally,	
 we	
 take	
 a	
 matrix	

("mat")	
 with	
 all	
 Euclidean	
 differences	
 between	
 catalogue	
 and	
 real	
 datasets.	
 We	
 illustrate	
 the	

distances	
 of	
 LD	
 using	
 Heatmaps	
 plots.	

mat	
 <-­‐Euc.distanceMatrix(cumulants,cat.cumulants) 
 
#colnames(mat)<-­‐snp.list 
 
#	
 visualization 
 
#Heatmap 
#colfunc1	
 <-­‐	
 colorRampPalette(c("orange","green",	
 "black"))  
#colfunc2	
 <-­‐	
 colorRampPalette(c("black",	
 "red"))  
#hmcols	
 <-­‐	
 c(colfunc1(200),	
 colfunc2(200*(max(mat)	
 -­‐	
 1)))  
 
#op	
 =	
 par(bg	
 =	
 "#EFEFEF") 
#heatmap.2(mat,Colv=F,Rowv=T,dendrogram="row" 

84

#	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ,scale="none",col=hmcols,trace="none"  
#	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ,	
 margin=c(5,10),	
 key=T,labRow=NA) 
# 
 
#hc	
 =	
 hclust(dist(mat))	

Monte	
 Carlo	
 Simula(ons	
 under	
 the	
 null	
 hypothesis	

In	
 this	
 part,	
 we	
 use	
 parametric	
 bootstrap	
 techniques	
 to	
 simulate	
 dataset	
 based	
 on	
 two	

catalogue	
 entries.	
 First,	
 we	
 select	
 the	
 two	
 catalogue	
 entries	
 then	
 compute	
 the	

std.cumulantsuse	
 the	
 function	
 cumu2hfs	
 in	
 order	
 to	
 get	
 the	
 mean	
 of	
 haplotypes	
 frequencies	

of	
 the	
 2	
 entries:.	
 Simulate	
 based	
 on	
 this	
 hfs	

#	
 simulate	
 datasets 
sim.dataset	
 <-­‐function(N,nsize,catalog,allelefreq){  
	
 	
 #	
 calculate	
 the	
 std.	
 cumulants 
	
 	
 #	
 the	
 catalogue	
 should	
 have	
 two	
 entries 
	
 	
 cat.cumulants	
 <-­‐	
 lapply(catalog,function(x)hfs2std.cumu(x)	
) 
	
 	
 #	
 the	
 mean	
 between	
 cumulants 
	
 	
 lambda	
 <-­‐	
 (1/2)*(cat.cumulants[[1]]+cat.cumulants[[2]]) 
	
  
	
 	
 if(!missing(allelefreq))	
 { 
	
 	
 	
 	
 remove	
 <-­‐c(2,3,5) 
	
 	
 	
 	
 lambda[remove]<-­‐allelefreq 
	
 	
 } 
	
 	
 hfs	
 <-­‐	
 cumu2hfs(lambda) 
	
 	
 #simulate	
 datasets	
  
	
 	
 seqs	
 <-­‐	
 c(0:(2^N-­‐1)) 
	
 	
 index	
 <-­‐seqs	
 %*%	
 rmultinom(nsize,	
 1,	
 hfs) 
	
 	
 snp.sim.data	
 <-­‐t(sapply(index,function(x)	
 {ord2bin	
 (x,N)})) 
	
 	
 return(snp.sim.data) 
} 
 
#### 
distance	
 <-­‐	
 function(sim.data,catalog){ 
	
 	
  
	
 	
 #	
 catalogue	
 std.cumulants: 
	
 	
 cat.cumulants	
 <-­‐	
 lapply(catalog,function(x)hfs2std.cumu(x)	
) 
	
 	
  
	
 	
 #	
 sim.data:	
 calculate	
 the	
 the	
 haplotype	
 frequency	
  
	
 	
 htfs.snps	
 <-­‐	
 haplotypeFrequencies(sim.data) 
	
 	
  
	
 	
 #	
 calculate	
 the	
 cumulants	
 and	
 std.cumulants 
	
 	
 sim.cumulants	
 <-­‐	
 hfs2std.cumu(htfs.snps) 
	
 	
  
	
 	
 #Delete	
 the	
 allele	
 frequency	
  
	
 	
 remove	
 <-­‐	
 c	
 (2,3,5) 

85

	
 	
 sim.cumulants<-­‐	
 sim.cumulants[-­‐remove] 
	
 	
  
	
 	
 for(i	
 in	
 1:length(cat.cumulants)){ 
	
 	
 	
 	
 cat.cumulants[[i]]<-­‐cat.cumulants[[i]][-­‐remove]  
	
 	
 } 
	
 	
  
	
 	
 R	
 <-­‐	
 Euc.distanceMatrix.2(sim.cumulants,cat.cumulants) 
	
 	
 return(R) 
} 
 
#	
 Parametric	
 bootstrap 
rboot	
 <-­‐	
 function(B,data,catalog){ 
	
 	
 #	
 storage	
 the	
 results 
	
 	
 R.b	
 <-­‐	
 matrix(0,nrow=length(catalog),ncol=B) 
	
 	
 #	
 data:	
 calculate	
 the	
 hfs,	
 cumulants	
 and	
 allele	
 frequencies  
	
 	
 data.hfs	
 <-­‐	
 haplotypeFrequencies(data) 
	
 	
 data.cumu	
 <-­‐	
 hfs2std.cumu(data.hfs) 
	
 	
 remove	
 <-­‐	
 c(2,3,5) 
	
 	
 allelefreq	
 <-­‐	
 data.cumu[remove] 
	
 #allelefreq	
 <-­‐c(0.5,0.5,0.5) 
	
 	
 for(b	
 in	
 1:B){	
  
	
 	
 	
 	
 Bsnps	
 <-­‐	
 sim.dataset(ncol(data),nrow(data),catalog,allelefreq) 
	
 	
 	
 	
 R.b[,b]	
 <-­‐distance(Bsnps,catalog) 
	
 	
 } 
	
 	
 return	
 (R.b) 
} 
 
#	
 	
 Estimated	
 Test	
 Statistic	
 T=d2-­‐d1 
row.differences	
 <-­‐	
 function(data){ 
	
 	
 theta	
 <-­‐	
 NULL 
	
 	
 data	
 <-­‐	
 as.data.frame(data) 
	
 	
 theta	
 <-­‐data[2,]-­‐data[1,] 
	
 	
 return(theta) 
} 
 
test.data	
 <-­‐	
 function(B,data,catalog){ 
	
 	
 #simulate	
 datasets 
	
 datasim	
 <-­‐data 
	
 	
  
	
 	
 #	
 the	
 euc.distance	
 between	
 catalogue	
 and	
 sim.data  
	
 	
 true.parameter	
 <-­‐	
 distance(datasim,catalog) 
	
 	
 #	
 the	
 differences	
 of	
 two	
 entries 
	
 	
 cat.diff.Tparameter<-­‐row.differences(true.parameter) 
	
 	
 #	
 bootstrap	
 replications 
	
 	
 boot	
 <-­‐	
 rboot(B,	
 datasim,catalog) 
	
 	
 #simulation	
 diffenences 

86

	
 	
 sim.diff	
 <-­‐row.differences(boot) 
	
 	
 return(list(cat.diff.Tparameter,sim.diff))	
  
} 
 
test.statistic	
 <-­‐	
 function(B,N,nsize,catalog,allelefreq){ 
	
 	
 #simulate	
 datasets 
	
 	
 datasim	
 <-­‐	
 sim.dataset(N,nsize,catalog,allelefreq) 
	
 	
 test.data(B,datasim,catalog)	
  
} 
 
 
#	
 Repeat	
 the	
 bootstrap	
 procedure	
 fon	
 rep=500/1000	
 times  
 
sim.results	
 <-­‐	
 function(B,rep,N,nsize,catalog,allelefreq){  
	
 	
 sboot<-­‐list() 
	
 	
 for(i	
 in	
 1:rep){ 
	
 	
 sboot[[i]]<-­‐test.statistic(B,N,nsize,catalog,allelefreq) 
	
 	
 } 
	
 	
 return(sboot) 
}	

Tes(ng	
 procedure	

quantiles	
 <-­‐function(data,lower,upper){ 
	
 	
 quant	
 <-­‐	
 quantile(data[[2]],prob=c(lower,upper)) 
	
 	
 quant$test.statistic	
 <-­‐data[[1]] 
	
 	
 return(quant) 
} 
 
 
make.data.frame1	
 <-­‐	
 function(confidence.interval){ 
	
 	
 q<-­‐matrix(0,ncol=3,nrow=length(confidence.interval)) 
	
 	
 for(i	
 in	
 1:length(confidence.interval)){ 
	
 	
 	
 	
 q[i,]<-­‐(t(as.numeric(confidence.interval[[i]]))) 
	
 	
 } 
	
 	
 q<-­‐as.data.frame(q) 
	
 	
 colnames(q)	
 <-­‐	
 c(
 "5%","95%","test	
 statistic"	
) 
	
 	
 return(q) 
} 
 
 
#	
 Test	
 of	
 Hypothesis	
 1 
test1	
 <-­‐	
 function(data){ 
	
 	
 #data	
 =	
 is	
 the	
 table	
 with	
 the	
 quantiles 
	
 	
 #data$"Ho.1"<-­‐rep(0,nrow(data)) 
	
 	
 for(i	
 in	
 1:nrow(data)){ 
	
 	
 	
 	
 if(data[i,1]>=data[i,3]){ 

87

	
 	
 	
 	
 	
 	
 data[i,4]	
 <-­‐	
 ("	
 reject") 
	
 	
 	
 	
 }else{ 
	
 	
 	
 	
 	
 	
 data[i,4]	
 <-­‐	
 ("Not	
 reject") 
	
 	
 	
 	
 } 
	
 	
 } 
	
 	
 #colnames(data[,4])	
 <-­‐"Ho.1" 
	
 	
 return(data) 
} 
 
#	
 Test	
 of	
 Hypothesis	
 2 
test2	
 <-­‐	
 function(data){ 
	
 	
 #data	
 =	
 is	
 the	
 table	
 with	
 the	
 quantiles 
	
 	
  
	
 	
 for(i	
 in	
 1:nrow(data)){ 
	
 	
 	
 	
 ifelse(data[i,2]<=data[i,3],	
 data[i,4]	
 <-­‐	
 ("reject") 
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ,data[i,4]	
 <-­‐	
 ("Not	
 reject")) 
	
 	
 } 
	
 	
 #colnames(data[,4])	
 <-­‐"Ho.2" 
	
 	
 return(data) 
} 
 
#	
 Test	
 of	
 Hypothesis	
 3 
test3	
 <-­‐function(data){ 
	
 	
 #data	
 =	
 is	
 the	
 table	
 with	
 the	
 quantiles 
	
 	
 #if	
 the	
 prod(ci)<0	
 then	
 the	
 0	
 exist	
 into	
 the	
 interval  
	
 	
 for(i	
 in	
 1:nrow(data)){ 
	
 	
 	
 	
 ifelse(data[i,1]<=data[i,3]	
 &	
 data[i,2]>=data[i,3],	
 data[i,4]	
 <-­‐	

("Not	
 reject") 
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ,data[i,4]	
 <-­‐	
 ("reject")) 
	
 	
 } 
	
 	
 return(data) 
}	

Example	

The	
 example	
 shows	
 the	
 comparison	
 between	
 catalogue	
 1	
 and	
 catalogue	
 91	
 for	
 different	

seanarios.	
 (Bootstrap=1000,	
 simulations=500,	
 number	
 of	
 loci=3,	
 number	
 of	

haplotypes=120)	

#	
 1_91 
 
results1_91	
 <-­‐sim.results(1000,500,3,120,c(catalog[1],catalog[91])) 
save.list(results1_91,"results1_91") 
 
results1_91.2	
 <-­‐sim.results(1000,500,3,2*120,c(catalog[1],catalog[91])) 
save.list(results1_91.2,"results1_91.2") 
 
results1_91.3	
 <-­‐sim.results(1000,500,3,4*120,c(catalog[1],catalog[91])) 

88

save.list(results1_91.3,"results1_91.3") 
 
results1_91.4	
 <-­‐sim.results(1000,500,3,6*120,c(catalog[1],catalog[91])) 
save.list(results1_91.4,"results1_91.4") 
 
results	
 <-­‐load.list("results1_91") 
 
 
quantiles.results	
 <-­‐	
 lapply(results,function(x)quantiles(x,0.05,0.95)) 
quantiles.results.d	
 <-­‐make.data.frame1(quantiles.results) 
conf.interval	
 <-­‐	
 lapply(results,function(x)quantiles(x,0.025,0.975)) 
conf.interval.d	
 <-­‐make.data.frame1(conf.interval) 
 
#	
 Tests 
 
test1(quantiles.results.d) 
test2(quantiles.results.d) 
test3(conf.interval.d) 
 
t1<-­‐test1(quantiles.results.d) 
mean(as.character(t1[,4])=="	
 reject") 
 
t2<-­‐test2(quantiles.results.d) 
mean(as.character(t2[,4])=="reject") 
 
t3<-­‐test3(conf.interval.d) 
mean(as.character(t3[,4])=="reject")	

Two	
 alternative	
 approaches	
 have	
 been	
 proposed	
 to	
 this	
 thesis:	
 i)	
 to	
 increase	
 the	
 iteration	
 of	

simulation	
 procedure.	
 This	
 can	
 been	
 implemented	
 easily,	
 by	
 introducing	
 B=2000	
 and	

rep=1000.	
 ii)	
 to	
 set	
 up	
 alleles	
 frequencies	
 equal	
 to	
 0.5.	
 Using	
 the	
 attribute	

"allelefreq=c(0.5,0.5,0.5)"	
 and	
 modiXing	
 a	
 little	
 bit	
 the	
 bootstrap	
 function.	

Monte	
 Carlo	
 Simula(ons	
 under	
 the	
 alterna(ve	
 hypothesis	

Here,	
 only	
 the	
 simulation	
 procedure	
 have	
 been	
 modiXied,	
 since	
 the	
 testing	
 procedure	

remains	
 the	
 same.	

A) For	
 the	
 approach	
 1.	

sim.dataset	
 <-­‐function(N,nsize,catalog,allelefreq){  
	
 	
 #	
 calculate	
 the	
 std.	
 cumulants 
	
 	
 #	
 the	
 catalogue	
 should	
 have	
 two	
 entries 
	
 	
 cat.cumulants	
 <-­‐	
 lapply(catalog,function(x)hfs2std.cumu(x)	
) 
	
 	
 #	
 the	
 mean	
 between	
 cumulants 
	
 	
 kappa	
 <-­‐	
 (1/2)*(cat.cumulants[[1]]+cat.cumulants[[2]]) 
	
 	
 lambda	
 <-­‐	
 (1/2)*(kappa	
 +	
 cat.cumulants[[2]]) 
	
 	
 if(!missing(allelefreq))	
 { 
	
 	
 	
 	
 remove	
 <-­‐c(2,3,5) 
	
 	
 	
 	
 lambda[remove]<-­‐allelefreq 

89

	
 	
 } 
	
 	
 hfs	
 <-­‐	
 cumu2hfs(lambda) 
	
 	
 #simulate	
 datasets	
  
	
 	
 seqs	
 <-­‐	
 c(0:(2^N-­‐1)) 
	
 	
 index	
 <-­‐seqs	
 %*%	
 rmultinom(nsize,	
 1,	
 hfs) 
	
 	
 snp.sim.data	
 <-­‐t(sapply(index,function(x)	
 {ord2bin	
 (x,N)})) 
	
 	
 return(snp.sim.data) 
}	

B) For	
 the	
 approach	
 2	

sim.dataset	
 <-­‐function(N,nsize,catalog,allelefreq){  
	
 	
 #	
 calculate	
 the	
 std.	
 cumulants 
	
 	
 #	
 we	
 dont	
 delete	
 the	
 alleles	
 frequencies. 
	
 	
 #	
 the	
 catalogue	
 should	
 have	
 two	
 entries 
	
 	
 cat.cumulants	
 <-­‐	
 lapply(catalog,function(x)hfs2std.cumu(x)	
) 
	
 	
 #	
 cumulants	
 of	
 one	
 catalogue	
 entry 
	
 	
 lambda	
 <-­‐	
 (cat.cumulants[[2]]) 
	
 	
 if(!missing(allelefreq))	
 { 
	
 	
 	
 	
 remove	
 <-­‐c(2,3,5) 
	
 	
 	
 	
 lambda[remove]<-­‐allelefreq 
	
 	
 } 
	
 	
 hfs	
 <-­‐	
 cumu2hfs(lambda) 
	
 	
 #simulate	
 datasets	
  
	
 	
 seqs	
 <-­‐	
 c(0:(2^N-­‐1)) 
	
 	
 index	
 <-­‐seqs	
 %*%	
 rmultinom(nsize,	
 1,	
 hfs) 
	
 	
 snp.sim.data	
 <-­‐t(sapply(index,function(x)	
 {ord2bin	
 (x,N)})) 
	
 	
 return(snp.sim.data) 
}	

HamMap	
 analysis	

For	
 the	
 HapMap	
 analysis	
 we	
 select	
 7	
 SNPs,	
 where	
 each	
 SNP	
 dataset	
 consists	
 of	
 120	

haplotypes.	

chr21	
 =	
 readPhasedData('genotypes_chr21_CEU_r22_nr.b36_fwd') 
 
#	
 SNP	
 1 
snp.name	
 <-­‐	
 chr21$legend[21000,1] 
snps	
 <-­‐	
 SelectSNPsOrder(as.character(snp.name),	
 chr21,	
 marginNeg	
 =	
 1,	

marginPos	
 =	
 1,	
 maf	
 =	
 .05,buffer	
 =5)$hts 
 
#SNP	
 2 
snp.name	
 <-­‐	
 chr21$legend[100,1] 
snps	
 <-­‐	
 SelectSNPsOrder(as.character(snp.name),	
 chr21,	
 marginNeg	
 =	
 1,	

marginPos	
 =	
 1,	
 maf	
 =	
 .05,buffer	
 =5)$hts 
 
#SNP	
 3 

90

snps	
 =	
 SelectSNPsOrder('rs2829806',	
 chr21,	
 marginNeg	
 =	
 1,	
 marginPos	
 =	

1,	
 maf	
 =	
 .05,buffer	
 =5)$hts 
 
#SNP	
 4 
 
snps	
 =	
 SelectSNPsOrder('rs1057885',	
 chr21,	
 marginNeg	
 =	
 1,	
 marginPos	
 =	

1,	
 maf	
 =	
 .05,buffer	
 =5)$hts 
 
#SNP	
 5 
snps	
 =	
 SelectSNPsOrder('rs11088561',	
 chr21,	
 marginNeg	
 =	
 1,	
 marginPos	
 =	

1,	
 maf	
 =	
 .05,buffer	
 =5)$hts 
 
#	
 SNP	
 6 
snps	
 =	
 SelectSNPsOrder('rs1534',	
 chr21,	
 marginNeg	
 =	
 1,	
 marginPos	
 =	
 1,	

maf	
 =	
 .05,buffer	
 =5)$hts 
 
#	
 SNP	
 7 
 
snp.name	
 <-­‐	
 chr21$legend[31363,1] 
snps	
 =	
 SelectSNPsOrder(as.character(snp.name),	
 chr21,	
 marginNeg	
 =	
 1,	

marginPos	
 =	
 1,	
 maf	
 =	
 .05,buffer	
 =5)$hts	

Using	
 the	
 the	
 R	
 codes	
 that	
 have	
 been	
 describe	
 above,	
 we	
 can	
 simulate	
 dataset	
 using	
 the	

haplotypes	
 frequencies	
 of	
 each	
 SNP	
 and	
 we	
 can	
 test	
 the	
 three	
 hypotheses.

91

References

B Alberts. Molecular biology of the cell. 5th edition, 2007. 1, 2, 4, 5, 7

David J Balding. A tutorial on statistical methods for population association studies.

Nat Rev Genet, 7(10):781–91, Oct 2006. doi: 10.1038/nrg1916. 23

B Balliu, Houwing-Duistermaat J J, and Boehringer S. Powerful testing via hierarchical

linkage disequilibrium in haplotype association studies. manuscript submitted. 1, 27

The International HapMap Consortium. The international hapmap project. Nature,

2003. 2, 6, 28

L Duret. The null hypothesis of molecular evolution. Nature, 2008. 8

Root Gorelick and Manfred D Laubichler. Decomposing multilocus linkage disequilib-

rium. Genetics, 166(3):1581–3, Mar 2004. 1, 25

R C Griffiths and P Marjoram. Ancestral inference from samples of dna sequences with

recombination. J Comput Biol, 3(4):479–502, 1996. 13

M Kimura. Evolutionary rate at the molecular level. Nature, 217(5129):624–6, Feb

1968. 1, 8

R C Lewontin. On measures of gametic disequilibrium. Genetics, 120(3):849–52, Nov

1988. 1, 23

M S McPeek and A Strahs. Assessment of linkage disequilibrium by the decay of

haplotype sharing, with application to fine-scale genetic mapping. Am J Hum Genet,

65(3):858–75, Sep 1999. doi: 10.1086/302537. 1

Jakob C Mueller. Linkage disequilibrium for different scales and applications. Brief

Bioinform, 5(4):355–64, Dec 2004. 25

92

REFERENCES

Casey E Romanoski, Christopher K Glass, Hendrik G Stunnenberg, Laurence Wilson,

and Genevieve Almouzni. Epigenomics: Roadmap for regulation. Nature, 518(7539):

314–6, Feb 2015. doi: 10.1038/518314a. 6

Yun S Song and Jotun Hein. Constructing minimal ancestral recombination graphs. J

Comput Biol, 12(2):147–69, Mar 2005. doi: 10.1089/cmb.2005.12.147. 11

Richard S Spielman, Laurel A Bastone, Joshua T Burdick, Michael Morley, Warren J

Ewens, and Vivian G Cheung. Common genetic variants account for differences

in gene expression among ethnic groups. Nat Genet, 39(2):226–31, Feb 2007. doi:

10.1038/ng1955. 2

J D Watson and F H C Crick. A structure for deoxyribose nucleic acid. 1953. Nature,

421(6921):397–8; discussion 396, Jan 1953. 4

Bruce S. Weir. Genetic Data Analysis II. 1996. 26

93

	Contents
	1 Introduction
	1.1 Aim of this thesis

	2 Biological concepts
	2.1 DNA
	2.2 Alleles and haplotype blocks
	2.3 Homologous recombination
	bookmark text is here

	2.4 Neutral selection

	3 Haplotype patterns resulting from genetic events
	3.1 Catalogue
	3.2 Example for three loci
	3.3 Algorithm to construct the catalogue
	3.4 Structure of catalogue
	3.5 Complete catalogue for two loci

	4 Linkage disequilibrium
	4.1 Pairwise linkage disequilibrium
	4.2 Standardised LD
	4.3 High order of Linkage disequilibrium

	5 Data application of visualisation and genetic interpretation of Higher-order Linkage Disequilibrium.
	5.1 Compute LD and standardized LD for the catalogue
	5.2 Compute LD and standardized LD for real data (HapMap project)
	5.3 Create a Euclidean distance matrix
	5.4 Visualize the patterns using heatmap plots
	5.5 Interpreting heatmap plots

	6 Inference on higher order LD
	6.1 Introduction to Monte Carlo methods
	6.2 Parameter testing of parametric bootstrap procedure
	6.3 Data generation under the Null hypothesis
	6.4 Algorithm of parametric bootstrap
	6.5 Hypothesis testing using pairwise differences of distance measurements
	6.6 Performance evaluation
	6.6.1 Simulations settings
	6.6.2 Type I error
	6.6.3 Power

	7 Data Example
	7.1 Multiple testing correction

	8 Discussion
	Appendix A
	.1 Re-parametrization
	.2 Standardised LD for arbitrary number of loci

	Appendix B
	References

