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Abstract

Medical researchers frequently make statements that one model predicts sur-
vival better than another, and are frequently challenged to provide rigorous sta-
tistical justification for these statements. In general, it is important to quan-
tify how well the model is able to distinguish between high risk and low risk
subjects (discrimination), and how well the model predicts the probability of
having experienced the event of interest prior to a specified time t (predictive
accuracy). For ordinary – right censored – survival data, the two most popular
methods for discrimination and predictive accuracy are the concordance index,
or c-index (Harrell et al. 1986) and the prediction error based on the Brier score
(Graf et al. 1999).
In the absence of censoring, it is straightforward to define and estimate these
measures. Adaptations of these simple estimates for right censored survival
data have been proposed and are now in common use. The novel part of this
thesis is to develop methods for calculating/estimating the concordance index
and the Brier score prediction error in the context of interval censored survival
data. The starting point is that we have interval censored data of the form
(Li, Ri] for subjects i = 1, ..., n, with Li < Ri(Li may be 0, Ri may be infinity
to accommodate right censored data), and a given prediction model yielding a
single (estimated) baseline hazard h0(t), one vector of (estimated) regression
coefficients beta. From this prediction model, prognostic scores βTxi, and pre-
dicted survival probabilities S(t|xi) = exp(−H0(t)β

Txi), may be calculated
for each subject i. Methods to estimate the concordance index and the Brier
score prediction error for exponential and Weibull baseline hazards are pro-
posed and evaluated in a simulation study. An application to real data is also
provided.
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4 1 Introduction

1 Introduction

1.1 Survival data analysis

Survival analysis is generally defined as a set of methods for analyzing data
where the outcome variable is the time until the occurrence of an event of
interest. The event can be death, occurrence of a disease, etc. The time to
event or survival time can be measured in days, weeks, years, etc. Survival
analysis involves the modelling of time to event data; in this context, death
or failure is considered an ”event”. In survival analysis, subjects are usually
followed over a specified time period and the focus is on the time at which the
event of interest occurs.

1.2 Censoring

Censoring is an important issue in survival analysis, representing a particular
type of missing data. Censoring that is random and non informative is usu-
ally required in order to avoid bias. Censoring occurs when observations have
some information available for a variable but the information is not complete.
This lack of information arises when a variable can be measured precisely only
within a certain range. Outside of this range, the only information available
is that it is greater or smaller than a specific value or that it lies between two
values. Analyzing a censored variable requires procedures designed to account
for the censoring. Censoring is a form of missing data problem which is com-
mon in survival analysis. Ideally, both the birth and death dates of a subject are
known, in which case the lifetime is known. If it is known only that the date
of death is after some date, this is called right censoring. Right censoring will
occur for those subjects whose birth date is known but who are still alive when
they are lost to follow-up or when the study ends.

There are three main types of censoring: right, left, and interval. The present
thesis focuses on interval censoring. Interval censoring – a data point is some-
where on an interval between two values. Interval censored data arises when
a failure time T can not be observed, but can only be determined to lie in an
interval obtained from a sequence of examination times. Interval censoring
can occur when observing a value requires follow-ups or inspections. Left and
right censoring are special cases of interval censoring, with the beginning of
the interval at zero or the end at infinity, respectively.
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1.3 Interval censored data

Let T denote a nonnegative random variable representing survival time of a
subject. T is a continuous variable with a known survival function S(t). An
observation on T is interval censored when the exact value of T is unknown
and only an interval (L,R] with L ≤ R is observed for which T ∈ (L,R].
In the case of interval censored data, the event of interest is only known to be
within an interval (in Figure 1.1 , ai and bi). That means that we know that the
event happened in the interval but not the exact time point.

Figure 1.1: The range of an interval and the event of interest

The interval censoring scheme can be described as follows. Suppose n identi-
cal items are put on a life test and let T1, . . . , Tn be the lifetime of these items.
For the i-th item, there is a random censoring interval (Li, Ri], which follows
some unknown bivariate distribution. Here Li and Ri denote the left and right
random end point, respectively, of the censoring interval. Every subject is ob-
served in an interval, where 0 ≤ Li < Ri ≤ ∞. If Ri =∞, the actual value of
Ti is not observed in the interval (Li, Ri] and the i-th item is considered to be
right censored at Li.

Throughout this thesis, it is assumed that the censoring mechanism is inde-
pendent and non-informative. To satisfy this assumption, the design of the
underlying study must ensure that the mechanisms giving rise to censoring of
individual subjects are not related to the probability of an event occurring.

1.4 C-index

Multivariable regression models are widely used in biomedical research with
the aim of predicting the outcome of individual patients. In this context, the as-
sessment of the model performance has to focus on the accuracy of the predic-
tions, rather than merely on the covariate effects and their statistical signicance.
Similarly, when new covariates are available, their possible contribution to the
model may be evaluated by the gain in predictive accuracy. Two concepts play
an important role in assessing the performance of prediction models in survival
analysis, discrimination and calibration.
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Prediction is of fundamental importance in all the sciences. The accuracy of a
measurement is the degree of closeness of measurements of a quantity to that
quantity’s true value. Over many predictions, accuracy can be measured as a
product of both calibration and discrimination:

Figure 1.2: Calibration and Discrimination

Considering the difference between calibration and discrimination (see Figure
1.2), discrimination measures the ability to correctly separate outcome classes
and is typically assessed by c-index, while calibration shows how closely the
predicted probabilities agree with the actual outcome. Perfect calibration and
perfect discrimination are usually inconsistent for predictive models.
Discrimination is important in a diagnostic setting where the classification of
individuals into different groups is the main interest. However, in a prognos-
tic setting, where individuals probabilities of future events are the main goal,
calibration is of paramount importance and should not be ignored.
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Definition 1.4.1

Models that distinguish well between patients who die quickly and those
who die later on are said to have good discrimination. A commonly
used measure of discrimination is the c-index. It is the probability for a
randomly selected pair that the order of dying is correctly predicted by
the model. The c-index ranges from 0 to 1, with higher values indicating
better discrimination. A value of 0.5 corresponds to no discrimination.

Definition 1.4.2

Calibration refers to the ability of a model to match predicted and ob-
served death rates across the entire range of the data. A model in which
the numbers of observed deaths align well with the numbers of deaths
predicted by the model demonstrates good calibration. Good calibration
is essential for reliable risk adjustment.

Most often the event one wants to predict is in the future, but predictive mod-
elling can be applied to any type of unknown event, regardless of when it oc-
curred. This thesis will study prediction models that are defined in the context
of proportional hazards, where the hazard h(t|X) of a subject with covariates
X equals:

h(t|X) = h0(t) exp(βTX)

The baseline hazard h0(t) may either be defined by a parametric model or may
be completely unspecified. The model defines a so-called prognostic score βTx
that orders subjects (through their covariate values) in terms of their risk; high
values of βTx imply a high risk, while low values of βTx correspond to a low
risk.
The concordance index (c-index) is the probability that the order of dying for
a random pair of subjects is correctly predicted by the model. It measures pre-
dictive information derived from a set of predictor variables in a model. If the
predicted survival time is larger for the subject who lived longer, the predic-
tions for that pair are said to be concordant with the outcomes. A null model,
or a model which has no discrimination (when predicted survivals are identical
for a patient pair), will have a concordance index of 0.5, while a perfect model
will have a concordance of 1. In the absence of censoring, this concordance
index may be estimated by considering all pairs and calculating the propor-
tion of these pairs for which the model has correctly identified the order. In a
proportional hazards model, the predicted order for two subjects is completely
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determined by the prognostic scores βTx1 and βTx2; the subject with the high-
est prognostic score is expected to experience the event of interest first. Thus, a
natural estimate of the concordance index for survival data without censoring is
the mean of 0/1 variables over all usable pairs, indicating for each pair whether
the order has been predicted correctly.

Definition 1.4.3

C-index in the case of no censoring The formula used to estimate the
c-index is:

1. Create all pairs of observations.

2. Test whether the corresponding predictions zi = β̂Txi are concor-
dant, i.e, zi > zj and ti < tj, or zi < zj and ti > tj. If so add 1 to the

running sum s. If zi = zj, add 0.5 to the sum. Count the number
(n

2
)

of response pairs.

3. Divide the total sum by the number of response pairs.

In the ideal case of no censoring, the c-index is calculated by the formula:

c =
(n

2
)−1∑∑

i<j

[
1{zi > zjand ti < tj}+ 1{zi < zjand ti > tj}

]

Despite the fact that in the absence of censoring it is straightforward to de-
fine and estimate these measures, in the presence of right censoring – which
is usually the case for survival data, complications arise for the calculation of
the concordance index. The reason is that the order of dying cannot always be
established with certainty. In the context of right censoring, it has been pro-
posed that it could be dealt with by so-called inverse probability of censoring
weighting. The idea is to use only the pairs for which the order of dying can be
established with certainty and to reweight these “usable” pairs or subjects.

1.5 Brier score

The Brier Score is probably the most commonly used verification measure for
assessing the predictive accuracy of a prognostic model. There are various ways
to assess the performance of a statistical prediction model. The Brier score is
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a proper score function that measures the accuracy of probabilistic predictions.
The set of possible outcomes can be either binary or categorical in nature, and
the probabilities assigned to this set of outcomes must sum to one (where each
individual probability is in the range of 0 to 1).
The Brier score prediction error is the squared distance between the indicator
function of the event having taken place before time t and the predicted event
probability, or, equivalently, between the indicator function for survival and
the predicted survival probability. Note that, while the baseline hazard doesn’t
play a role in the concordance index, it does play a role in the prediction error.
The Brier score prediction error at a given time t can easily be estimated, in the
absence of censoring, by the mean over all subjects of the squared distances be-
tween the indicator of survival beyond time t for the subject and the predicted
survival probability given the model for that subject. For right censored sur-
vival data, inverse probability of censoring weighting techniques can be used.
In Chapter 4 an estimate of the Brier score is derived in the case of interval
censored data.

1.6 Data description

A data set of heart transplant monitoring data from the msm package (data(cav))
is used to illustrate our methods. It consists of a series of approximately yearly
angiographic examinations of heart transplant recipients. The state at each time
is a grade of cardiac allograft vasculopathy (CAV), a deterioration of the arterial
walls, eventually leading to death. The data have been (considerably) simpli-
fied, by only extracting information about death. So the endpoint is death, the
column ’la’ corresponds to the left of the interval (last known to be alive), the
column ’fd’ to the right of the interval (first known to be dead). If ’fd’ is infinity,
then the subject is never seen to be dead, so this is right censoring. There are
614 patients (by removing 8 patients with missing values of the covariates), the
rows are grouped by patient number and ordered by years after transplant, with
each row representing an examination and containing additional covariates. An
example of 20 individuals is ordered by the left interval of each individual (Li)
presented in Figure 1.3, as a perception of the data used. The intervals of each
individual have a different start and end point, while the chronological time of
each range also varies. To this extent, the intervals may overlap.
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Figure 1.3: Visualization of interval censored data

The covariates in the data are:

• PTNUM (numeric) Patient identification number

• dage (numeric) Age of heart donor (years)

• sex (numeric) sex (0=male, 1=female)

• pdiag (factor) Primary diagnosis (reason for transplant) IHD=ischaemic
heart disease, IDC=idiopathic dilated cardiomyopathy , Other=other dis-
ease

Patients’ age is distributed between 0 and 61 years with mean at 30 years and
standard deviation at 12 (see Figure 1.4). The majority (85%) of patients in the
dataset is male. In addition, the number of deaths assigned per sex is presented.
Most patients did not experience the event and are censored. Approximately
41% of males and 32% of females patients died. The primary diagnosis (reason
for transplant) is affected by both IHD and IDC in high percentages 50% and
43% respectively (see Table 1).
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n (%) Deaths observed (%)

Males 527 (85.8%) 221 (41.9%)

Gender
Females 87 (14.2%) 28 (32.2%)

IDC 270 (43.9%) 98 (36.3%)

Diagnosis IHD 313 (50.9%) 139 (44.4%)

Other 31 (5.2%) 12 (38.7%)

Total 614 249

Table 1: Death rates by sex and diagnosis
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Figure 1.4: Patient age distribution

1.7 Aims of this thesis

Multivariate regression models are powerful tools that are used frequently in
studies of clinical outcomes. These models can use a mixture of categorical and
continuous variables and can handle partially observed (censored) responses.
However, uncritical application of modelling techniques can result in models
that poorly fit the dataset at hand, or, even more likely, inaccurately predict out-
comes on new subjects.
After having developed a prediction model for survival data, which (assuming
that the proportional hazards model holds) boils down to estimating the regres-
sion coefficients beta and the baseline hazard, it is important to quantify how
well the model is able to distinguish between high risk and low risk subjects
(discrimination), and how well the model predicts the probability of having ex-
perienced the event of interest prior to a specified time t (predictive accuracy).
For ordinary – right censored – survival data, the two most popular methods for
discrimination and predictive accuracy are the concordance index, or c-index
(Harrell et al. 1986) and the prediction error based on the Brier score (Graf
et al. 1999).
The concept of developing methods for calculating/estimating the concordance
index and the Brier score prediction error in interval censored data is the chal-
lenge of this thesis.
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1.8 Structure of the thesis

This thesis is organized as follows. In Chapter 2, it will be shown how para-
metric survival models based on accelerated failure time (AFT) models can be
used to fit proportional hazards models with exponential or Weibull baseline
hazards. These models will be the models for which the c-index and the Brier
scores are to be calculated. The survreg function in R is reviewed and issues of
parametrization will be discussed. In Chapter 3, a detailed explanation of the
basic formula of the c-index is given and the way it will be derived in the case
of interval censored survival data is also provided. Furthermore, the c-index is
described separately for the case that time follows an exponential and a Weibull
distribution respectively. Technical details and results are provided. Chapter 4
starts by introducing the basic concepts of prediction, predictive accuracy, pre-
diction error and Brier score. Also here extensions to the interval censored case
are detailed. To assess the performance of the new methods proposed, a sim-
ulation study is performed in Chapter 5. In Chapter 6, cross-validation is used
to measure c-index and Brier score. To overcome a possible over-optimism
by using the same data to validate the model, leave-one-out cross-validation
is performed. Chapter 7 revisits the data(cav) introduced in Chapter 1 to
illustrate and compare the methods described. Discussion follows about fur-
ther research of these methods. The statistical analysis is performed in the
R-software environment. All R code can be found in the appendix.
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2 Models for interval censoring

Semi-parametric proportional hazards regression models for interval censored
data are notoriously difficult to fit. Methods to fit these models do exist and are
actually implemented in a number of packages in R, but unfortunately they are
far from stable and can give unreliable results. A common approach in case of
interval censored data is to resort to parametric models, i.e. to assume a partic-
ular family of distributions for the baseline hazard in the proportional hazards
regression model. In this thesis, we will follow this practice and concentrate on
the exponential and Weibull models.

2.1 Exponential and Weibull parametrization

As mentioned, there are different ways to parametrize a model. In our analysis,
the parametrization is derived from Klein & Moeschberger (2003).

Definition 2.1.1

Exponential distribution Assume that T denotes the actual survival time and
follows an exponential distribution with scale parameter λ. The expo-
nential distribution has constant hazard λ(t) = λ. Thus, the survivor
function is S(t) = exp(−λt) and the density is f(t) = λ exp(−λt), for
λ > 0, t ≥ 0. It can be shown that E(T ) = 1/λ and var(T ) = 1/λ2.

Many probability distributions are not a single distribution, but are in fact a
family of distributions. This is due to the distributions having scale and/or
shape parameters. Shape parameters allow a distribution to take on a variety
of shapes, depending on the value of the shape parameter. These distributions
are particularly useful in modeling applications since they are flexible enough
to model a variety of data sets. The Weibull distribution is an example of
a distribution that has a shape parameter. In the Weibull distribution, it is
important to mention that in comparison to the exponential distribution, the
baseline hazard function may change over time. Two parameters (shape and
scale) must be estimated to describe the underlying hazard function over time.
The Weibull distribution reduces to the exponential distribution when the shape
parameter γ equals 1. When γ > 1, the hazard function is increasing; when
γ < 1 it is decreasing.
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Definition 2.1.2

Weibull distribution Assume that T denotes the actual survival time and fol-
lows a Weibull distribution with scale parameter λ and shape parameter γ,
denoted T ∼ W (λ, γ). The survival time T is assumed to be conditionally
independent given a (time-invariant) vector of baseline covariates, i.e., the
censoring is supposed to be non-informative. The survivor function is
S(t) = exp(−λt)γ, the density f(t) = λγtγ−1 exp(−λtγ) and the hazard
is λ(t) = λγtγ−1.

Another parametrizations are also in use; for instance the functions survreg and
rweibull in the survival package use two different parametrizations. This will
be discussed in more detail in section 2.4.

2.2 Proportional hazards (PH) models

It is generally of interest in survival studies to describe the relationship of a fac-
tor of interest (e.g.treatment) to the time to event, in the presence of several co-
variates, such as age, gender, etc. A number of models are available to analyze
the relationship of a set of predictor variables with the survival time. Parametric
methods assume that the underlying distribution of the survival times follows
certain known probability distributions. Popular ones include the exponential
and Weibull distributions.
A popular regression model for the analysis of survival data is the Cox propor-
tional hazards regression model. It allows testing for differences in survival
times of two or more groups of interest, while allow adjusting for covariates of
interest. The Cox regression model is usually used as a semi-parametric model,
making fewer assumptions than typical parametric methods. In particular, and
in contrast with parametric models, it usually makes no assumptions about the
shape of the so-called baseline hazard function. The Cox regression model pro-
vides useful and easy to interpret information regarding the relationship of the
hazard function to predictors. While a non-linear relationship between the haz-
ard function and the predictors is assumed, the hazard ratio comparing any two
observations is in fact constant over time in the setting where the predictor vari-
ables do not vary over time. This assumption is called the proportional hazards
assumption and checking if this assumption is met is an important part of a Cox
regression analysis.
Let X denote a set of p covariates. The hazard of failure h(t|X1, ..., Xp) is
related to the covariates by:
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h(t|X1, ..., Xp) = h0(t) exp(β1X1 + ...+ βpXp)

where h0(t) is usually an unspecified baseline hazard function for the refer-
ence subject with all covariates equal to 0. But it is also possible to spec-
ify a parametric hazard like the exponential or Weibull. The linear predictor
βTX = β1X1 + ... + βpXp defines a prognostic score that orders subjects
(through their covariate values) in terms of their risk.

2.3 Accelerated Failure Time (AFT) models

In this thesis, parametric survival regression models are fitted, concerning the
two most common survival distributions, exponential and Weibull. This is a
common approach for interval censored survival data, where semi-parametric
models are notoriously hard to fit. These models are location-scale models for
an arbitrary transform of the time variable, the most common cases use a log-
transformation leading to accelerated failure time models. In the statistical
area of survival analysis, an accelerated failure time model (AFT model) is a
parametric model that provides an alternative to the commonly used propor-
tional hazards models. Whereas a proportional hazards model assumes that
the effect of a covariate is to multiply the hazard by some constant, an AFT
model assumes that the effect of a covariate is to accelerate or decelerate the
life course of a disease by some constant. In full generality, the accelerated
failure time model can be specified as: h(t|θ) = θh0(θt), where θ denotes the
joint effect of covariates, typically θ = exp(−[α1X1 + · · ·+ αpXp]). (Specify-
ing the regression coefficients with a negative sign implies that high values of
the covariates increase the survival time, but this is merely a sign convention;
without a negative sign, they increase the hazard.)

The Weibull distribution (including the exponential distribution as a special
case) can be parametrized as either a proportional hazards model or an AFT
model, and is the only family of distributions to have this property. The results
of fitting a Weibull model can therefore be interpreted in either framework. In
this thesis, AFT models will be fitted using the survreg function in R and then
the results will be transformed to fit a proportional hazards model.
Under AFT models we measure the direct effect of the explanatory variables
on the survival time instead of hazard, as we do in the PH model. This charac-
teristic allows for an easier interpretation of the results because the parameters
measure the effect of the correspondent covariate on the mean survival time.
Similar to the PH model, the AFT model describes the relationship between
survival probabilities and a set of covariates.
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Definition 2.3.1

For a group of patients with covariate (X1, X2, ..., Xp), the model is writ-
ten mathematically as S(t|X) = S0(t/η(X)), where S0(t) is the baseline
survival function and η(X) = α1X1 + ... + αpXp is an ”acceleration
factor” that is a ratio of survival times corresponding to any fixed value of
S(t).

Under an accelerated failure time model, the covariate effects are assumed to be
constant and multiplicative on the time scale, that is, the covariate impacts on
survival by a constant factor (acceleration factor). According to the relationship
of survival function and hazard function, the hazard function for an individual
with covariate X1, X2, ..., Xp is given by:

h(t|X) = [1/η(X)]h0[t/η(X)]

The corresponding log-linear form of the AFT model with respect to time is
given by:

log Ti = µ+ α1X1i + α2X2i + ...+ αpXpi + σεi (1)

where µ is intercept, σ is scale parameter and εi is a random variable, assumed
to have a particular distribution, in our case a Weibull (or exponential) distribu-
tion. This form of the model is adopted by most software for the AFT model.

2.4 Survreg parametrization

To set up a Weibull regression (the same procedure follows for the exponential
case) using the parametrization of Definition 2.1.2, we then assume that the
hazard function, for a given covariate vector X and a corresponding vector β of
regression parameters, can be written as:

h(t|X) = exp(βTX)h0(t) = exp(βTX)λ0γt
γ−1 = λ?γtγ−1

The last equality shows that we model the rate parameter λ? = λ0 exp(βTX)
using a baseline rate λ and the effect of the covariates. The coefficients exp(βj)
feature the proportional hazards property, i.e., can be interpreted as hazard ra-
tios. On the other hand, survreg embeds Weibull regression in the structure
of a more general accelerated failure time model and its output provides es-
timates for log(σ) [denoted Log(scale)], −µ/σ (Intercept), and the regression
parameters α from (1). The reparametrization from Definition 2.1.2 is:
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γ = σ−1, λ0 = exp(−µ/σ), β = −α/σ
After applying the survreg function, we use the output of the survreg as in-
put and transform the parameter estimates to the parametrization in Definition
2.1.2, thereby allowing to easily switch from the accelerated failure time to the
proportional hazard interpretation.



19

3 Concordance index

The concordance index (Harrell et al., 1982) is a well recognized measure of
discrimination for models that predict a time to event. It has been reported
more often than any other prediction model metric in the survival setting.
In survival analysis, as mentioned in Chapter 1, a pair of subjects is called
concordant if the risk of the event predicted by a model is lower for the subject
who experiences the event at a later timepoint. The concordance probability
(c-index) is the proportion of concordant pairs among all pairs of subjects.
Concordant pairs are assigned a score of 1, discordant pairs are assigned a score
of 0, and pairs in which there is equality among either variable are assigned
a score of 0.5. It can be used to measure and compare the discriminative
power of a risk prediction models. Harrell’s c-index has been widely used as a
measure of separation of two survival distributions.

3.1 C-index and censoring

In the absence of censored data, the c-index is estimated by the proportion
of concordant pairs, which is given by the formula:

c =
(n

2
)−1∑∑

i<j

[1{zi > zj and ti < tj}+ 1{zi < zj and ti > tj}] (2)

Now we consider the situation of possibly censored time to event data. For each
patient we observe Ti = min(Ti, Ci) and δi = 1(Ti ≤ Ci), where Ti represents
the time to the event of interest and Ci the (hypothetical) time under observa-
tion (i = 1, 2, ..., n).
In the presence of randomly right censored data, the c-index is no longer es-
timated by (2). In the White and Rapsomaniki (2015), there are several options
of estimating the c-index while censoring:

1. Harrell et al. (1996): Harrell proposed estimating the c-index as the mean
of Cij (c = E[Cij]) over informative pairs, where pair (i, j) is informative
if t?i < t?j and di = 1 or t?i > t?j and dj = 1 : that is, if the first event in the
pair is observed.

where r(xi) is a linear predictor from a correctly specified proportional



20 3 Concordance index

hazards model and

cij =


1{t?i < t?j}, if r(xi) > r(xj)

0.5, if r(xi) = r(xj)

1{t?i > t?j}, if r(xi) < r(xj)

2. Liu et al. (2012): A version of the c-index corrected for censoring can be
obtained by Inverse Probability of Censoring Weighting (IPCW). When
the censoring time C is random, the estimator of the c-index converges to
a quantity depending on the distribution of censoring time. Assuming that
the random censoring time C is independent of predictors, a consistent
estimator of the c-index has the form:

ĉ =

n∑
i=1

n∑
j=1

1{Xi < Xj}1{Yi < Yj}wi

n∑
i=1

n∑
j=1

1{Yi < Yj}wi

where wi = di
G2(Yi)

, di = 1{Ti < ci}, G(t) = P (t < c) for t > 0.

3. Gonen and Heller (2005): Gonen and Heller proposed an alternative
estimator to avoid bias due to censoring. Suppose r?(xi) is a linear
predictor from a correctly specified proportional hazards model. Then
r?(xi) − r?(xj) represents the log hazard ratio between individuals i
and j, and the probability that individuals i and j are concordant is:
expit(r?(xi)− r?(xj)) if r(xi) > r(xj) where expit(η) = 1

1+exp(−η) . Simi-
larly, it is : expit(r?(xj)−r?(xi)) if r(xi) < r(xj) and 0.5 if r(xi) = r(xj).
Then the estimator ĉ is the average of this concordance probability.

4. Heagerty and Zheng (2005): Let τ = maxi ti be the longest follow-up
time observed. The study only gives information about discrimination at
time t ≤ τ and c can only be estimated by extrapolating to times t > τ.
For example, ĉ assumes that the proportional hazards model continues to
hold at times beyond τ . This is called the restricted c-index.

3.2 C-index and interval censoring

In this novel part of the thesis, the derivation of the formulas for calculating the
c-index are presented, taking into account that we use interval censored data.
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The two main distributions in survival analysis are studied (exponential and
Weibull).
The data are of the form (Li, Ri) for n independent subjects and zi = βTXi

defines the risk score of each subject. The actual event times are unknown, but
it is known that Ti ∈ (Li, Ri].
Firstly, we take all pairs of subjects (i, j) and without loss of generality, call
the subject with lowest risk z, number 1 and the one with highest risk number
2. The ordering is correct if T2 < T1. But in interval censored data we do
not observe T1 and T2. So, we replace 1{T2 < T1} by an estimate of P (T2 <
T1|T1 ∈ (L1, R1], T2 ∈ (L2, R2]).

3.2.1 Exponential case

In the exponential case, each ordering of the left and right intervals
L1, L2, R1, R2 could in principle give a different probability of P (T2 < T1|T1 ∈
(L1, R1], T2 ∈ (L2, R2]). There are 4! = 24 of such orderings. But:

• Some orderings are invalid, since we must have L1 ≤ R1 and L2 ≤ R2.

• Some orderings will have probability 0 or 1.

• P (T2 > T1|T1 ∈ (L1, R1], T2 ∈ (L2, R2]) = 1 − P (T1 > T2|T1 ∈
(L1, R1], T2 ∈ (L2, R2]).

Out of the 24 orderings, for 6 of them the probability of P (T2 < T1|T1 ∈
(L1, R1], T2 ∈ (L2, R2]) needs to be calculated. The predicted probability that
”patient1” of each pair will experience the event of interest after ”patient 2”
will be calculated. i.e. P (T2 < T1|T1 ∈ (L1, R1], T2 ∈ (L2, R2]). The 6 cases
are:

1. L1 ≤ L2 ≤ R1 ≤ R2

2. L1 ≤ L2 ≤ R2 < R1

3. L1 < R1 ≤ L2 < R2

4. L2 < L1 ≤ R1 ≤ R2

5. L2 < L1 ≤ R2 < R1

6. L2 < R2 ≤ L1 < R1
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1. If L1 ≤ L2 ≤ R1 ≤ R2

( ]
L1 R1

T1

(
L2

]
R2

T2

T1 < T2 or T1 > T2

2. If L1 ≤ L2 ≤ R2 < R1

( ]
L1 R2

T1

(
L2

]
R1

T2

T1 < T2 or T1 > T2

3. L1 < R1 ≤ L2 < R2

( ]
L1 R1

T1

(
L2

]
R2

T2

T1 < T2

4. If L2 < L1 ≤ R1 ≤ R2

( ]
L2 R1

T2

(
L1

]
R2

T1

T1 < T2 or T1 > T2

5. If L2 < L1 ≤ R2 < R1
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( ]
L2 R2

T2

(
L1

]
R1

T1

T1 < T2 or T1 > T2

6. If L2 < R2 ≤ L1 < R1

( ]
L2 R2

T2

(
L1

]
R1

T1

T1 > T2

Given that T ∼ exponential distribution and a p-dimensional vector of
covariates X , it will be assumed that the hazard function of T will be given by:

h(t|X) = h0(t) exp(β1X1 + ...+ βpXp).

Here h0(t) ≡ λ0 ; λ1 = λ0 exp(β1X11 + ... + βpX1p) = λ0 exp(βTX1) ;
λ2 = λ0 exp(βTX2). We observe T1 ∈ (L1, R1] and T2 ∈ (L2, R2], and X1, X2.
So, we can calculate λ1 = λ0 exp(βTX1) and λ2 = λ0 exp(βTX2), where
T1 ∼ exp(λ1) and T2 ∼ exp(λ2).

Preliminaries: Conditionally given T1 ∈ (L1, R1] and T2 ∈ (L2, R2], T1 and
T2 are still independent and for i = 1, 2 :

P (Ti ≤ ti|Ti ∈ (Li, Ri]) =
P (Li < Ti ≤ ti)
P (Li < Ti ≤ Ri)

=
Si(Li)− Si(ti)
Si(Li)− Si(Ri)

The corresponding density for an individual i is given by:

fTi|Ti∈(Li,Ri](ti) =
d

dti
P (Ti ≤ ti|Ti ∈ (Li, Ri]) =

fTi(ti)

Si(Li)− Si(Ri)
(3)

for ti ∈ (Li, Ri].
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The probability of P (T1 > T2|T1 ∈ (L1, R1], T2 ∈ (L2, R2]) is the integral
over D = {(t1, t2) ∈ R+ : t1 > t2} of the joint density of (T1, T2) given
T1 ∈ (L1, R1] and T2 ∈ (L2, R2]. Since T1 and T2 are conditionally independent
given T1 ∈ (L1, R1] and T2 ∈ (L2, R2], this joint density equals the product
of:

fT1|T1∈(L1,R1](t1) ∗ fT2|T2∈(L2,R2](t2) =
fT1(t1)fT2(t2)

(S1(L1)− S1(R1))(S2(L2)− S2(R2))
(4)

For the special case when T1 ∼ exp(λ1) and T2 ∼ exp(λ2), we can write
fTi(t) = λi and Si(t) = P(Ti > t) = e−λit) in (3) and obtain for T1:

λ1e
−λ1t1

e−λ1L1 − e−λ1R1

and for T2:

λ2e
−λ2t2

e−λ2L2 − e−λ2R2

while the joint density in (4) equals the product of:

λ1e
−λ1t1

e−λ1L1 − e−λ1R1
∗ λ2e

−λ2t2

e−λ2L2 − e−λ2R2

Now, considering the 6 cases, we calculate the P (T2 < T1|T1 ∈ (L1, R1], T2 ∈
(L2, R2]) for each case:

Case1 If L1 ≤ L2 ≤ R1 ≤ R2, the integral over D of the joint density of
(T1, T2) given T1 ∈ (L1, R1] and T2 ∈ (L2, R2]:

R1∫
L2

t1∫
L2

λ1e
−λ1t1

e−λ1L1 − e−λ1R1

λ2e
−λ2t2

e−λ2L2 − e−λ2R2
dt2 dt1.

The numerator equals:
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R1∫
L2

λ1e
−λ1t1

[
−e−λ2t2

]t1
L2
dt1 =

R1∫
L2

λ1e
−λ1t1

(
e−λ2L2 − e−λ2t1

)
dt1 =

e−λ2L2

R1∫
L2

λ1e
−λ1t1 dt1 −

λ1
λ1 + λ2

R1∫
L2

(λ1 + λ2)e
−(λ1+λ2)t1 dt1 =

e−λ2L2(e−λ1L2 − e−λ1R1)− λ1
λ1 + λ2

R1∫
L2

(λ1 + λ2)e
−(λ1+λ2)t1 dt1 =

e−λ2L2(e−λ1L2 − e−λ1R1)− λ1
λ1 + λ2

(e−(λ1+λ2)L2 − e−(λ1+λ2)R1) =

−λ1
λ1 + λ2

e−λ1R1(e−λ2L2 − e−λ2R1) +
λ2

λ1 + λ2
e−λ2L2(e−λ1L2 − e−λ1R1).

So, the probability becomes:

P (T2 < T1|T1 ∈ (L1, R1], T2 ∈ (L2, R2]) =

(5)
−λ1

λ1 + λ2
e−λ1R1(e−λ2L2 − e−λ2R1) +

λ2
λ1 + λ2

e−λ2L2(e−λ1L2 − e−λ1R1)

(e−λ1L1 − e−λ1R1)(e−λ2L2 − e−λ2R2)

Case 4 If L2 < L1 ≤ R1 ≤ R2, the integral over D of the joint density of
(T1, T2) given T1 ∈ (L1, R1] and T2 ∈ (L2, R2]:

R1∫
L1

λ1e
−λ1t1

t1∫
L2

λ2e
−λ2t2 dt2 dt1 = e−λ2L2(e−λ1L1 − e−λ1R1) −

λ1
λ1 + λ2

(e−(λ1+λ2)L1 − e−(λ1+λ2)R1).

So, the probability becomes:
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P (T2 < T1|T1 ∈ (L1, R1], T2 ∈ (L2, R2]) =

(6)

e−λ2L2(e−λ1L1 − e−λ1R1)− λ1
λ1 + λ2

(e−(λ1+λ2)L1 − e−(λ1+λ2)R1)

(e−λ1L1 − e−λ1R1)(e−λ2L2 − e−λ2R2)

Case 2 If L1 ≤ L2 ≤ R2 < R1:

For case 2, consider T3 ∼ exp(λ3) and T4 ∼ exp(λ4) with
T3 ∈ (L3, R3], T4 ∈ (L4, R4] and suppose that L3 ≤ L4 ≤ R4 < R3. Then:

P (T3 < T4|T3 ∈ (L3, R3], T4 ∈ (L4, R4]) =

1− P (T4 < T3|T3 ∈ (L3, R3], T4 ∈ (L4, R4]).

Now take λ3 = λ2, λ4 = λ1, L3 = L2, L4 = L1, R3 = R2, R4 = R1. It
can be seen that P (T4 < T3|T3 ∈ (L3, R3], T4 ∈ (L4, R4]) is given by one
minus the formula (6) where we now interchange all the subscripts 1 and
2.

So, the probability becomes:

P (T2 < T1|T1 ∈ (L1, R1], T2 ∈ (L2, R2]) =

(7)

1−
e−λ1L1(e−λ2L2 − e−λ2R2)− λ2

λ2 + λ1
(e−(λ1+λ2)L2 − e−(λ1+λ2)R2)

(e−λ1L1 − e−λ1R1)(e−λ2L2 − e−λ2R2)

Case 5 If L2 < L1 ≤ R2 < R1:

Using the same idea with case 2, in case 5 the P (T2 < T1|T1 ∈
(L1, R1], T2 ∈ (L2, R2]) is given by one minus formula (5) where we again
interchange the subscripts 1 and 2.
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So, the probability becomes:

P (T2 < T1|T1 ∈ (L1, R1], T2 ∈ (L2, R2]) =

(8)

1−

−λ2
λ1 + λ2

e−λ2R2(e−λ1L1 − e−λ1R2) +
λ1

λ1 + λ2
e−λ1L1(e−λ2L1 − e−λ2R2)

(e−λ1L1 − e−λ1R1)(e−λ2L2 − e−λ2R2)

Case 3 If L1 < R1 ≤ L2 < R2:

In case 3, we have:

P (T2 < T1|T1 ∈ (L1, R1], T2 ∈ (L2, R2]) = 0 (9)

as the intervals do not overlap and R1 ≤ L2.

Case 6 If L2 < R2 ≤ L1 < R1:

In case 6 (similarly to case 3), we have:

P (T2 < T1|T1 ∈ (L1, R1], T2 ∈ (L2, R2]) = 1
(10)

as the intervals do not overlap and R2 ≤ L1.

The corresponding R code can be found in the appendix.

3.2.2 General case

Ideas in Section 3.2.1, apply to general parametric models, if in Equation (3)
and Equation (4), the appropriate density fTi(ti) and the survival probabilities
STi(Li) and STi(Ri) are used. It is very hard to give formulas like (5)-(8) for
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general parametric distributions. It is, however, possible to obtain a Monte
Carlo approximation to these probabilities. The steps are:

1. Given the hazard and the intervals for each individual, generate a large
number (M ) of time points t(1)i , ..., t

(M)
i according to fTi|Ti∈(Li,Ri]. Having

specified the distribution of time (exponential, Weibull), we generate a
large number of random draws from this distribution, assumed to be within
the interval of time.

2. Define pairs of subjects (i, j) and for each pair, if the intervals are not
overlapping:

• If R1 ≤ L2, the probability that the first individual will experience the
event of interest earlier is 1

• If R2 ≤ L1, the probability that the first individual will experience the
event of interest earlier is 0

3. For those individuals that their intervals overlap, the conditional proba-
bilities will be used. To measure the probability that the first individual
experiences the event of interest earlier, we compare the random draws of
each pair. If the event happens earlier for the first individual, value 1 is
given, otherwise 0. The mean of those values of the total number of the
individuals that their intervals overlap gives the desired probability.

4. Finally, for those pairs that the hazard of the first individual is higher than
the one of the second (the risk to experience the event is higher), the proba-
bilities that the first individual will experience the event earlier are summed
and divided by the total number of individuals that overlap.

The R code that describes the function for calculating the c-index in the general
case is shown in the appendix.
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4 Predictive accuracy

4.1 Brier score

The Brier score can be thought of as either a measure of the ”calibration” of
a set of probabilistic predictions, or as a ”cost function”. In order to compare
the predictive abilities of the different risk scores, we calculate the Brier score.
More precisely, across all items i ∈ 1...n in a set of n predictions, the Brier
score measures the mean squared difference between:

• The predicted probability assigned to the possible outcomes for item i

• The actual outcome Oi

The lower this deviation, the better the respective risk prediction model. The
Brier score accounts for both discrimination (i.e. correct classification in dif-
ferent outcome groups) and calibration (agreement of the predictions with the
true risk). This is a clear advantage over other common methods for prediction
assessment, especially the receiver operating characteristic (ROC) curve which
focuses on discrimination. Moreover, the Brier score is easy to interpret and is
not dependent on an arbitrary definition of thresholds for the classification of
individual risk scores to different risk groups.
Therefore, the lower the Brier score is for a set of predictions, the better the
predictions are calibrated. Note that the Brier score, in its most common
formulation, takes on a value between zero and one, since this is the largest
possible difference between a predicted probability (which must be between
zero and one) the actual outcome (which can take on values of only 0 and 1).

In the context of survival analysis, Ti is the time of the event of interest of
subject i, t0 is the exact follow-up time, the outcome is Oi = 1{Ti > t0},
Ŝ(t0|Xi) estimates the probability of observing a subject at risk at t0, given the
covariates X . The Brier score is defined as:

BS(t0) = E(1{Ti > t0} − Ŝ(t0|X))2

This formula can be written as:

BS(t0) = E(1{T > t0} − Ŝ(t0|X))2 =

E(1{T > t0} − S(t0|X)− (Ŝ(t0|X)− S(t0|X)))2 =

E(1{T > t0} − S(t0|X))2 + E(Ŝ(t0|X)− S(t0|X))2
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In the case of no censoring the formula for Brier score is:

B̂S(t0) =
1

n

n∑
i=1

(1{Ti > t0} − Ŝ(t0|Xi))
2

In the presence of right censored data, we observe (ti, δi), the indicator
1{Ti > t0} cannot be always computed and is thus unknown. The indicator
1{Ti > t0} equals 1 when subject i is known to have survived at least until
t0, equals 0 if the person died before t0, otherwise the indicator 1{Ti > t0} is
unknown if the person was censored before t0, i.e. if Ti < t0 and di = 0. To
overcome this issue, Inverse Probability of Censoring Weighting (IPCW) may
be used, in the Liu et al. (2012) version of the c-index mentioned in Section
3.1:

B̂S(t0) =
1

n

n∑
i=1

(1{Ti > t0} − Ŝ(t0|Xi))
2wi

where

wi =


0, if Ti < t0 and di = 0

1

Ĝ(t0)
, if Ti > t0

1

Ĝ(Ti)
, if Ti < t0 and di = 1

4.2 Brier score and interval censoring

In the case of interval censored data, where the observed outcome of subject
i is that Ti ∈ (Li, Ri], the contribution of subject i in Brier score at time t0 is
one of the three possibilities:

1. Ri < t0 ⇒ Ti ≤ t0 with certainty⇒ 1{Ti > t0} = 0

( ]
Li Ri

Ti ∣∣
t0

Ti < t0
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2. Li ≥ t0 ⇒ Ti > t0 with certainty⇒ 1{Ti > t0} = 1

( ]
Li Ri

Ti∣∣
t0

Ti > t0

3. Li < t0 ≤ Ri, so it is uncertain whether Ti > t0, and 1{Ti > t0} cannot
be determined with certainty

( ]
Li Ri

Ti∣∣
t0

If we define

B̂S(t0) =
1

n

n∑
i=1

B̂S(t0|Xi),

with B̂S(t0|Xi) = (1{Ti > t0} − Ŝ(t0|Xi))
2,

this implies the following for these three possibilities:

1. Ri < t0 ⇒ 1{Ti > t0} = 0⇒ B̂S(t0|Xi) = (0− Ŝ(t0|Xi))
2;

2. Li ≥ t0 ⇒ 1{Ti > t0} = 1⇒ B̂S(t0|Xi) = (1− Ŝ(t0|Xi))
2;

3. Li < t0 ≤ Ri, the indicator 1{Ti > t0} is unknown.

In the latter case, to compute the Brier score, we will use the following identity
for the Brier score:

BS(t0) = E(1{T > t0} − Ŝ(t0|X))2

= E(1{T > t0})2 − 2E1{T > t0}Ŝ(t0|X) + EŜ2(t0|X)

= E1{T > t0} − 2E1{T > t0}Ŝ(t0|X) + EŜ2(t0|X),

and in B̂S(t0|Xi) = 1{Ti > t0} − 21{Ti > t0}Ŝ(t0|Xi) + Ŝ2(t0|Xi) we will
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replace 1{Ti > t0} by

E(1{Ti > t0}|Ti ∈ (Li, Ri], Xi) = P(Ti > t0|Ti ∈ (Li, Ri], Xi),

leading to B̂S(t0|Xi) = P̂(Ti > t0|Ti ∈ (Li, Ri], Xi). To calculate this proba-
bility, note that

P̂(Ti > t0|Ti ∈ (Li, Ri], Xi) =
P̂(t0 < Ti ≤ Ri|Xi)

P̂(Li < Ti ≤ Ri|Xi)
=
Ŝ(t0|Xi)− Ŝ(Ri|Xi)

Ŝ(Li|Xi)− Ŝ(Ri|Xi)

where Ŝ(t|Xi) is calculated assuming that Ti follows an exponential or a
Weibull distribution (taking into account the different shape), with rate param-
eter λ̂i depending on Xi.
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5 Simulation study

In this chapter, the performance of the proposed methods (c-index and Brier
score) for interval censored data is evaluated by means of a simulation study.

Definition

Simulation is a way to model random events, such that simulated out-
comes closely match real-world outcomes. By observing simulated out-
comes, researchers gain insight on the real world.

The simulation study will be loosely mimicked after the data set introduced in
Chapter 1 that will also be used as illustration of the methods on real data in
Chapter 7. A Monte Carlo approximation will be explored under different sce-
narios (shape of the Weibull distribution). The true value of the concordance
index and the true value of Brier score in different time points will be calcu-
lated, and this creates the opportunity to study bias and mean squared error of
the proposed measures, and its dependence on the underlying model and the
observation scheme (length of intervals).

5.1 Data simulation

The following steps are used to simulate the data:

Step 1 Generate the covariates Xi = (Xi1, ..., Xip) where i = 1, 2, ..., n:



Xi1 ∼ N(0, 10), where Xi1 is the continuous covariate of age
Xi2, generate a random sample of two values (0 or 1)

with the same probability to form the covariate
of sex

Xi3, Xi4 generate a random sample of three values (1 to
3) with probabilities 0.40, 0.35 and 0.25, re-
spectively and form the dummies of the covari-
ate pdiag

It is important to mention that all covariates are centered to have mean 0,
so from Xi2, Xi3 and Xi4, the values 0.5, 0.35 and 0.25, respectively, are
subtracted.
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Step 2 Different values of the shape parameter γ were chosen, as γ can have
marked effects on the behavior of the distribution. Weibull distributions
with γ < 1 have a failure rate that decreases with time. Weibull distribu-
tions with γ close to or equal to 1 have a fairly constant failure rate and
Weibull distributions with γ > 1 have a failure rate that increases with
time. The three different values that are chosen for shape are: γ = 1,
γ = 0.5 < 1 and γ = 2 > 1.
For given shape of γ, choose baseline λ0 so that the mean survival of the
Weibull at the mean of the covariates equals 10. The formula to calculate
the mean E(X) in the Weibull distribution is:

Γ(1 + 1/γ)

λ
1/γ
0

in which it is needed to be 10 and λ0 = exp(β0). So:

Γ(1 + 1/γ)

exp(β0/γ)
= 10⇒ β0 = log(

Γ(1 + 1/γ)

10
)γ

Step 3 For i = 1, ..., n, generate ti from W (λi, γ), with λi = λ0 exp(β1xi1 +
... + βpxip) = exp(β0 + β1xi1 + ... + βpxip). These are the exact times of
the event of interest for each individual.

Step 4 Apply interval censoring, so that not ti is observed, but only the interval
in which it lies. For simplicity, only equally spaced observation intervals
will be used, with length (by =) 1, 3 or 5 time units, starting at 0 and
ending at 30. Event times ti > 30 are observed to be lying in (30,∞], so
are right censored at 30.

Step 5 This will generate an interval censored data set of the form (Li, Ri] and
Xi, for i = 1, ..., n, on which each of the following methods of calculating
c-index and Brier scores will be applied.

Step 6 Application of methods. For all of the methods, first the parameters
β, λ0 and γ will be estimated using AFT models through survreg func-
tion in R (Weibull regression). After reparametrization to PH model
(see Section 2.4), this leads to estimates λ̂0, β̂ and γ̂, and to estimates
λ̂i = λ̂0 exp(β̂1Xi1 + ...+ β̂pXip).

• C-index: Calculate the c-index using both the exact (Section 3.2.1)
and the general (Section 3.2.2) methods.
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• Brier score: Discrete time points (t = 1.5, 4.5, 7.5, ..., 28.5) lying in
the observation intervals are selected. The Brier score is calculated for
the interval censored data as described in Section 4.2.

Steps 1 – 6 are repeated for m = 1, . . . ,M = 1000 replications. All estimates
of c-index and Brier score are stored.

5.2 Bias and RMSE

The goal of the simulation study is to test whether the ideas discussed in the
thesis are applicable to our data. So, the bias and the root-mean-square-error
are considered in the simulation results.

A statistic is biased if, in the long run, it consistently over or underestimates
the parameter it is estimating. More technically it is biased if its expected
value is not equal to the parameter. A statistic is positively biased if it tends
to overestimate the parameter; a statistic is negatively biased if it tends to
underestimate the parameter. An unbiased statistic is not necessarily an
accurate statistic. If a statistic is sometimes much too high and sometimes
much too low, it can still be unbiased. It would be very imprecise, however. A
slightly biased statistic that systematically results in very small overestimates
of a parameter could be quite efficient.

The mean squared error (MSE) is the second moment (about the true value)
of the error, and thus incorporates both the variance of the estimator and its bias.

MSE(θ̂) = E(θ̂ − θ)2 = var(θ̂) + (Bias(θ̂, θ))2

The root mean squared error (RMSE) of an estimator θ̂ with respect to an esti-
mated parameter θ is defined as the square root of the mean square error:

RMSE(θ̂) =

√
MSE(θ̂) =

√
E(θ̂ − θ)2

For an unbiased estimator, the RMSE is the square root of the variance, known
as the standard error.
To calculate the bias and the RMSE, the parameter θ, which indicates the
’true value’ of each measure is needed. For the c-index and Brier score under
the simulation set up of Section 5.1, this is very hard, if not impossible, to
calculate mathematically. For this reason, a Monte Carlo approximation was
used. Generate a single huge data set of 1000000 subjects under the simulation
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set up of Section 5.1, retaining the uncensored event times ti, and for:

c-index assuming that observe all of them, calculate the proportion of concor-
dant pairs among all pairs of subjects.

Brier score calculate the mean squared difference between 1{Ti > t0} and
Ŝ(t0|Xi) at different discrete time points (t0 = 1.5, 4.5, 7.5, ..., 28.5).

The results of the Monte Carlo approximation (referred to from now on as
“true” values) are shown in Table 2.

Shape=1 Shape=0.5 Shape=2

c-index 0.5487 0.5493 0.5479

Brier score

time

1.5 0.1203 0.2411 0.0174

4.5 0.2293 0.2332 0.1261

7.5 0.2455 0.2041 0.2278

10.5 0.2236 0.1773 0.2397

13.5 0.1891 0.1545 0.1795

16.5 0.1538 0.1355 0.1049

19.5 0.1223 0.1196 0.0510

22.5 0.0958 0.1063 0.0214

25.5 0.0743 0.0951 0.0077

28.5 0.0573 0.0854 0.0025

Table 2: Monte Carlo approximation for c-index and Brier score

It is clear that the c-index is almost independent of the shape of the Weibull
distribution, while the Brier score depends a lot on the shape of the Weibull
distribution.

5.3 Simulation results

The simulation results for the c-index are shown in Table 3, while for Brier
score in Tables 4-6, where ”exact” stands for the c-index in the exponential
case described in Section 3.2.1 and ”sim” for the general case introduced in
Section 3.2.2.
Although flexible and often insightful, Monte Carlo studies are limited by their



5.3 Simulation results 37

finite nature, and as such are subject to sampling variability. When a sim-
ulation is run more than once, different results are obtained. This is called
between-simulation variability Monte Carlo error (MCE) and should be taken
into account when interpreting the simulation results.

c-index results In general, both methods, exact and sim, provide almost
unbiased estimates. The root mean squared error is mostly higher for
sim method, except for shape=0.5. In addition, when n increases, both
bias and RMSE are smaller (especially the RMSE). The shape and the
observational intervals (by=1,3,5) seem not to have an important effect on
the results of c-index, contrary to expectation.

Brier score results Principally, the accuracy of the measurements is
unbiased with low variation. The estimates are more unbiased and have
smaller RMSE at the beginning and at the end of the observation time as
the survival probability is closer to more subjects experience the event
of interest in the meanwhile. The shape appears to influence the ”true
values” of the Brier score given in Table 2.
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Shape=1 Shape=0.5 Shape=2

n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000

by = 1

Bias exact 0.0052 0.0015 -0.0008 0.0118 0.0066 0.0040 0.0014 -0.0016 -0.0035

RMSE exact 0.0194 0.0134 0.0099 0.0226 0.0152 0.0110 0.0177 0.0128 0.0102

Bias sim 0.0093 0.0054 0.0029 0.0099 0.0048 0.0023 0.0092 0.0055 0.0033

RMSE sim 0.0218 0.0151 0.0108 0.0212 0.0142 0.0102 0.0215 0.0151 0.0111

by = 3

Bias exact 0.0066 0.0014 -0.0016 0.0123 0.0062 0.0038 0.0028 -0.0015 -0.0043

RMSE exact 0.0203 0.0135 0.0098 0.0235 0.0159 0.0109 0.0185 0.0132 0.0104

Bias sim 0.0108 0.0054 0.0020 0.0104 0.0044 0.0021 0.0106 0.0056 0.0024

RMSE sim 0.0228 0.0151 0.0104 0.0222 0.0150 0.0102 0.0227 0.0155 0.0108

by = 5

Bias exact 0.0055 0.0006 -0.0011 0.0122 0.0064 0.0038 0.0030 -0.0007 -0.0034

RMSE exact 0.0194 0.0133 0.0095 0.0230 0.0156 0.0108 0.0179 0.0127 0.0100

Bias sim 0.0098 0.0046 0.0025 0.0102 0.0046 0.0021 0.0108 0.0065 0.0035

RMSE sim 0.0219 0.0147 0.0103 0.0215 0.0147 0.0102 0.0223 0.0153 0.0110

Table 3: Simulation results for c-index
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Shape=1 n=250 n=500 n=1000

Bias RMSE Bias RMSE Bias RMSE

by = 1

time

1.5 -0.0011 0.0142 0.0001 0.0103 0.0001 0.0072

4.5 -0.0021 0.0082 -0.0010 0.0058 -0.0004 0.0039

7.5 -0.0027 0.0054 -0.0015 0.0034 -0.0008 0.0023

10.5 -0.0026 0.0091 -0.0016 0.0069 -0.0009 0.0047

13.5 -0.0022 0.0125 -0.0012 0.0092 -0.0006 0.0064

16.5 -0.0018 0.0142 -0.0008 0.0100 -0.0006 0.0072

19.5 -0.0015 0.0146 -0.0008 0.0104 -0.0006 0.0074

22.5 -0.0010 0.0141 -0.0008 0.0102 -0.0003 0.0072

25.5 -0.0008 0.0132 -0.0005 0.0094 -0.0001 0.0068

28.5 -0.0004 0.0125 -0.0003 0.0085 -0.0000 0.0062

by = 3

time

1.5 0.0000 0.0144 -0.0005 0.0106 -0.0000 0.0074

4.5 -0.0019 0.0082 -0.0012 0.0058 -0.0004 0.0041

7.5 -0.0032 0.0058 -0.0014 0.0034 -0.0006 0.0021

10.5 -0.0034 0.0099 -0.0013 0.0070 -0.0006 0.0048

13.5 -0.0029 0.0127 -0.0008 0.0094 -0.0005 0.0066

16.5 -0.0022 0.0139 -0.0004 0.0102 -0.0004 0.0072

19.5 -0.0014 0.0142 -0.0004 0.0101 -0.0004 0.0073

22.5 -0.0009 0.0138 -0.0005 0.0096 -0.0004 0.0070

25.5 -0.0004 0.0130 -0.0004 0.0093 -0.0003 0.0066

28.5 -0.0001 0.0120 -0.0003 0.0087 -0.0002 0.0060

by = 5

time

1.5 -0.0009 0.0145 -0.0000 0.0104 0.0021 0.0073

4.5 -0.0022 0.0086 -0.0008 0.0056 -0.0046 0.0039

7.5 -0.0030 0.0055 -0.0012 0.0032 -0.0075 0.0021

10.5 -0.0033 0.0100 -0.0013 0.0063 -0.0079 0.0046

13.5 -0.0028 0.0127 -0.0010 0.0087 -0.0045 0.0063

16.5 -0.0021 0.0138 -0.0009 0.0100 -0.0029 0.0072

19.5 -0.0017 0.0142 -0.0007 0.0104 -0.0019 0.0074

22.5 -0.0017 0.0138 -0.0002 0.0103 -0.0014 0.0072

25.5 -0.0014 0.0129 -0.0000 0.0096 0.0000 0.0066

28.5 -0.0011 0.0120 0.0001 0.0088 0.0040 0.0061

Table 4: Simulation results for Brier score, shape=1



40 5 Simulation study

Shape=0.5 n=250 n=500 n=1000

Bias RMSE Bias RMSE Bias RMSE

by = 1

time

1.5 -0.0028 0.0066 -0.0013 0.0042 -0.0005 0.0030

4.5 -0.0031 0.0082 -0.0015 0.0051 -0.0009 0.0038

7.5 -0.0029 0.0116 -0.0015 0.0079 -0.0011 0.0058

10.5 -0.0026 0.0133 -0.0013 0.0095 -0.0010 0.0068

13.5 -0.0020 0.0144 -0.0010 0.0101 -0.0008 0.0072

16.5 -0.0017 0.0151 -0.0008 0.0105 -0.0007 0.0074

19.5 -0.0013 0.0152 -0.0005 0.0105 -0.0006 0.0075

22.5 -0.0010 0.0149 -0.0005 0.0105 -0.0005 0.0073

25.5 -0.0009 0.0147 -0.0005 0.0103 -0.0005 0.0072

28.5 -0.0010 0.0143 -0.0004 0.0099 -0.0005 0.0071

by = 3

time

1.5 -0.0032 0.0070 -0.0012 0.0043 -0.0006 0.0030

4.5 -0.0030 0.0083 -0.0018 0.0056 -0.0008 0.0036

7.5 -0.0027 0.0121 -0.0017 0.0084 -0.0009 0.0057

10.5 -0.0024 0.0140 -0.0015 0.0098 -0.0007 0.0067

13.5 -0.0017 0.0150 -0.0012 0.0104 -0.0004 0.0072

16.5 -0.0013 0.0154 -0.0011 0.0107 -0.0002 0.0074

19.5 -0.0008 0.0152 -0.0008 0.0106 -0.0001 0.0074

22.5 -0.0006 0.0149 -0.0007 0.0106 -0.0002 0.0075

25.5 -0.0008 0.0146 -0.0008 0.0104 -0.0002 0.0075

28.5 -0.0009 0.0143 -0.0010 0.0102 -0.0002 0.0073

by = 5

time

1.5 -0.0029 0.0068 -0.0015 0.0046 -0.0006 0.0030

4.5 -0.0034 0.0087 -0.0015 0.0054 -0.0006 0.0036

7.5 -0.0031 0.0123 -0.0015 0.0082 -0.0003 0.0056

10.5 -0.0028 0.0140 -0.0011 0.0096 -0.0001 0.0067

13.5 -0.0023 0.0146 -0.0008 0.0102 -0.0000 0.0071

16.5 -0.0019 0.0148 -0.0006 0.0106 -0.0000 0.0073

19.5 -0.0016 0.0148 -0.0003 0.0108 -0.0000 0.0074

22.5 -0.0015 0.0147 -0.0002 0.0107 -0.0002 0.0074

25.5 -0.0014 0.0145 -0.0003 0.0105 -0.0003 0.0072

28.5 -0.0013 0.0142 -0.0003 0.0102 -0.0003 0.0070

Table 5: Simulation results for Brier score, shape=0.5
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Shape=2 n=250 n=500 n=1000

Bias RMSE Bias RMSE Bias RMSE

by = 1

time

1.5 -0.0001 0.0050 -0.0001 0.0034 -0.0000 0.0024

4.5 -0.0011 0.0138 -0.0006 0.0094 -0.0002 0.0070

7.5 -0.0020 0.0085 -0.0009 0.0056 -0.0005 0.0041

10.5 -0.0027 0.0067 -0.0014 0.0043 -0.0007 0.0029

13.5 -0.0026 0.0137 -0.0013 0.0087 -0.0005 0.0064

16.5 -0.0014 0.0144 -0.0005 0.0096 -0.0002 0.0070

19.5 -0.0004 0.0115 -0.0003 0.0078 -0.0002 0.0054

22.5 -0.0003 0.0077 -0.0002 0.0055 -0.0002 0.0037

25.5 0.0000 0.0047 0.0000 0.0034 0.0001 0.0023

28.5 0.0000 0.0026 0.0000 0.0019 0.0000 0.0013

by = 3

time

1.5 -0.0001 0.0049 -0.0002 0.0034 -0.0000 0.0024

4.5 -0.0007 0.0137 -0.0010 0.0095 -0.0002 0.0068

7.5 -0.0019 0.0086 -0.0012 0.0057 -0.0004 0.0040

10.5 -0.0032 0.0070 -0.0013 0.0042 -0.0006 0.0029

13.5 -0.0032 0.0133 -0.0012 0.0088 -0.0008 0.0063

16.5 -0.0017 0.0139 -0.0005 0.0098 -0.0003 0.0067

19.5 -0.0011 0.0110 -0.0003 0.0079 -0.0001 0.0056

22.5 -0.0005 0.0074 -0.0002 0.0054 -0.0000 0.0038

25.5 0.0000 0.0045 0.0001 0.0033 0.0001 0.0024

28.5 0.0000 0.0026 0.0000 0.0019 0.0000 0.0014

by = 5

time

1.5 -0.0000 0.0048 -0.0000 0.0034 -0.0000 0.0024

4.5 -0.0008 0.0138 -0.0004 0.0093 -0.0003 0.0067

7.5 -0.0022 0.0086 -0.0011 0.0057 -0.0005 0.0040

10.5 -0.0028 0.0067 -0.0015 0.0044 -0.0007 0.0029

13.5 -0.0022 0.0126 -0.0013 0.0090 -0.0007 0.0061

16.5 -0.0008 0.0137 -0.0003 0.0097 -0.0001 0.0066

19.5 -0.0003 0.0110 -0.0001 0.0077 -0.0001 0.0053

22.5 -0.0000 0.0076 0.0000 0.0052 -0.0001 0.0037

25.5 0.0003 0.0048 0.0002 0.0032 0.0001 0.0023

28.5 0.0002 0.0028 0.0001 0.0018 0.0000 0.0013

Table 6: Simulation results for Brier score, shape=2
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6 Cross-validation

The basic idea of the discrimination and prediction error measures studied in
this thesis is to quantify how well the prediction model will predict survival
of future patients. Typically the prediction model is developed on a “training”
data set. When the same data are used to validate the model, the danger is
real that the results of the discrimination and prediction error measures give
an over-optimistic view. Especially in the case of over-fitting the difference
between predictive performance on the same data and on external data can be
substantial.
To overcome this problem, one possibility is to split the data in two parts and
use one part of the data as a training set to build the model and reserve another
part as validation set to validate the model. Especially when the original data
are not really large, this is rather wasteful. We will therefore use leave-one-out
cross-validation to correct for over-optimism in our predictive accuracy mea-
sures. Leave-one-out cross-validation is essentially an estimate of the general-
isation performance of a model trained on n− 1 samples of data.
The procedure is as follows:

1. For i = 1, . . . , n, use the data with subject i removed to fit the exponential
or Weibull regression model, leading to estimates λ̂(−i)0 , β̂(−i)

1 , . . . , β̂
(−i)
p ,

and γ̂(−i) of baseline rate λ0, regression coefficients β1, . . . , βp and shape
parameter γ. For the exponential model, γ is not estimated but set to 1.

2. Define the cross-validated rates λ̂(−i) = λ̂
(−i)
0 exp(β̂

(−i)
1 xi1+ . . .+ β̂

(−i)
p xip)

and shape γ̂(−i) for subject i.

3. c-index All fTi|Ti∈(Li,Ri](ti)’s are now based on Weibull distributions with
rate λ̂(−i) and shape γ̂(−i). The prognostic scores, used for predicting
the order of dying, are based on the leave-one-out values defined by
ẑ(−i) = β̂

(−i)
1 xi1 + . . . + β̂

(−i)
p xip = β̂(−i)Txi. Then the c-index is

calculated according to the formulas described in Section 3.2.

Brier score Here P (Ti > t0|Ti ∈ (Li, Ri]) is based on Weibull distribu-
tions with rate λ̂(−i) and shape γ̂(−i). Given the rate and the shape,
leaving out subject i each time, the Brier score is calculated as de-
scribed in Section 4.2.

The simulation results for the c-index with cross-validation and without are
shown in Table 7 and similarly for Brier score in Tables 8-10. These simulation
results are based on the simulation set-up of Chapter 5. Reported are the mean
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values of M = 1000 replications.

CV results: The cross-validated c-index values are always lower than those
without using cross-validation. The cross-validated Brier scores are generally
higher than those without using cross-validation. This indicates that the
cross-validated results give a more modest, and probably a more realistic, idea
of the discriminative ability and of the predictive accuracy of the model to new
data. The difference between cross-validated and non-cross-validated c-index
values and Brier scores becomes smaller with larger sample sizes. This makes
sense, since the degree of overfitting is usually smaller for larger sample sizes.

In Figures 6.1-6.3, estimates of Brier score are shown with/without cross-
validation at a set of time points, for n=250, by=5, in the three different shapes
used. The dashed line, representing the cross-validated Brier score, is always
slightly higher as expected.

Shape=1 Shape=0.5 Shape=2

n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000 n = 250 n = 500 n = 1000

by = 1

c-exact 0.5540 0.5503 0.5479 0.5611 0.5559 0.5533 0.5494 0.5463 0.5444

c-sim 0.5581 0.5542 0.5516 0.5592 0.5541 0.5516 0.5571 0.5535 0.5513

c-exact CV 0.5137 0.5292 0.5379 0.5229 0.5368 0.5441 0.5042 0.5231 0.5334

c-sim CV 0.5149 0.5316 0.5409 0.5202 0.5346 0.5422 0.5079 0.5281 0.5392

by = 3

c-exact 0.5554 0.5502 0.5471 0.5617 0.5555 0.5531 0.5508 0.5464 0.5436

c-sim 0.5596 0.5542 0.5508 0.5597 0.5537 0.5515 0.5586 0.5536 0.5504

c-exact CV 0.5156 0.5287 0.5369 0.5241 0.5354 0.5439 0.5058 0.5232 0.5325

c-sim CV 0.5170 0.5312 0.5399 0.5214 0.5332 0.5420 0.5097 0.5282 0.5382

by = 5

c-exact 0.5543 0.5494 0.5476 0.5615 0.5557 0.5531 0.5510 0.5472 0.5445

c-sim 0.5586 0.5534 0.5513 0.5595 0.5540 0.5514 0.5588 0.5545 0.5515

c-exact 0.5134 0.5283 0.5376 0.5234 0.5361 0.5437 0.5073 0.5248 0.5336

c-sim CV 0.5148 0.5307 0.5407 0.5205 0.5339 0.5419 0.5112 0.5299 0.5394

Table 7: Simulation results for c-index (the mean value) by applying cross-validation versus without
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Shape=1 n=250 n=500 n=1000

Brier BrierCV Brier BrierCV Brier BrierCV

by = 1

time

1.5 0.1192 0.1198 0.1205 0.1208 0.1204 0.1206

4.5 0.2271 0.2314 0.2282 0.2304 0.2288 0.2299

7.5 0.2427 0.2484 0.2439 0.2467 0.2446 0.2460

10.5 0.2209 0.2266 0.2220 0.2248 0.2226 0.2241

13.5 0.1868 0.1919 0.1878 0.1903 0.1884 0.1896

16.5 0.1519 0.1561 0.1529 0.1550 0.1531 0.1542

19.5 0.1208 0.1240 0.1214 0.1230 0.1216 0.1224

22.5 0.0947 0.0972 0.0949 0.0961 0.0954 0.0960

25.5 0.0735 0.0753 0.0737 0.0746 0.0742 0.0746

28.5 0.0568 0.0582 0.0569 0.0576 0.0572 0.0575

by = 3

time

1.5 0.1204 0.1210 0.1198 0.1201 0.1203 0.1204

4.5 0.2273 0.2317 0.2280 0.2301 0.2288 0.2298

7.5 0.2422 0.2479 0.2440 0.2468 0.2448 0.2462

10.5 0.2201 0.2258 0.2223 0.2251 0.2229 0.2243

13.5 0.1862 0.1912 0.1883 0.1908 0.1886 0.1898

16.5 0.1516 0.1557 0.1534 0.1555 0.1534 0.1544

19.5 0.1208 0.1240 0.1218 0.1234 0.1219 0.1227

22.5 0.0949 0.0973 0.0952 0.0965 0.0954 0.0960

25.5 0.0739 0.0757 0.0739 0.0748 0.0739 0.0744

28.5 0.0571 0.0584 0.0569 0.0575 0.0570 0.0574

by = 5

time

1.5 0.1193 0.1200 0.1203 0.1206 0.1205 0.1207

4.5 0.2270 0.2313 0.2284 0.2306 0.2288 0.2298

7.5 0.2425 0.2481 0.2442 0.2470 0.2447 0.2461

10.5 0.2202 0.2259 0.2222 0.2251 0.2228 0.2242

13.5 0.1862 0.1912 0.1881 0.1906 0.1886 0.1899

16.5 0.1516 0.1558 0.1529 0.1549 0.1535 0.1545

19.5 0.1205 0.1237 0.1216 0.1232 0.1221 0.1229

22.5 0.0940 0.0965 0.0955 0.0967 0.0956 0.0962

25.5 0.0728 0.0747 0.0742 0.0751 0.0744 0.0748

28.5 0.0561 0.0574 0.0574 0.0580 0.0577 0.0580

Table 8: Simulation results for Brier score by applying cross-validation for shape=1
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Shape=0.5 n=250 n=500 n=1000

Brier BrierCV Brier BrierCV Brier BrierCV

by = 1

time

1.5 0.2382 0.2430 0.2398 0.2421 0.2405 0.2417

4.5 0.2301 0.2365 0.2317 0.2348 0.2322 0.2338

7.5 0.2012 0.2070 0.2026 0.2054 0.2030 0.2045

10.5 0.1746 0.1798 0.1759 0.1784 0.1762 0.1775

13.5 0.1524 0.1569 0.1534 0.1556 0.1536 0.1547

16.5 0.1338 0.1377 0.1347 0.1366 0.1348 0.1357

19.5 0.1182 0.1217 0.1190 0.1207 0.1190 0.1198

22.5 0.1052 0.1083 0.1057 0.1073 0.1058 0.1065

25.5 0.0941 0.0968 0.0946 0.0959 0.0945 0.0952

28.5 0.0844 0.0868 0.0850 0.0862 0.0848 0.0854

by = 3

time

1.5 0.2378 0.2426 0.2398 0.2422 0.2405 0.2416

4.5 0.2302 0.2366 0.2314 0.2346 0.2324 0.2339

7.5 0.2014 0.2072 0.2024 0.2053 0.2032 0.2047

10.5 0.1748 0.1799 0.1758 0.1783 0.1766 0.1778

13.5 0.1527 0.1572 0.1532 0.1554 0.1541 0.1552

16.5 0.1342 0.1382 0.1344 0.1363 0.1353 0.1362

19.5 0.1187 0.1222 0.1188 0.1205 0.1194 0.1203

22.5 0.1056 0.1087 0.1056 0.1071 0.1060 0.1068

25.5 0.0942 0.0969 0.0942 0.0955 0.0948 0.0955

28.5 0.0845 0.0869 0.0844 0.0856 0.0851 0.0857

by = 5

time

1.5 0.2381 0.2429 0.2396 0.2419 0.2404 0.2416

4.5 0.2298 0.2362 0.2317 0.2348 0.2326 0.2342

7.5 0.2010 0.2068 0.2026 0.2055 0.2038 0.2052

10.5 0.1744 0.1795 0.1761 0.1787 0.1771 0.1783

13.5 0.1521 0.1566 0.1536 0.1558 0.1544 0.1555

16.5 0.1335 0.1374 0.1348 0.1368 0.1354 0.1364

19.5 0.1179 0.1213 0.1192 0.1210 0.1195 0.1204

22.5 0.1048 0.1078 0.1060 0.1076 0.1061 0.1068

25.5 0.0936 0.0963 0.0948 0.0961 0.0947 0.0954

28.5 0.0841 0.0865 0.0850 0.0862 0.0851 0.0857

Table 9: Simulation results for Brier score by applying cross-validation for shape=0.5
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Shape=2 n=250 n=500 n=1000

Brier BrierCV Brier BrierCV Brier BrierCV

by = 1

time

1.5 0.0172 0.0171 0.0172 0.0172 0.0174 0.0173

4.5 0.1249 0.1260 0.1254 0.1260 0.1258 0.1261

7.5 0.2257 0.2297 0.2269 0.2288 0.2273 0.2282

10.5 0.2370 0.2425 0.2383 0.2410 0.2390 0.2403

13.5 0.1769 0.1813 0.1782 0.1804 0.1789 0.1801

16.5 0.1034 0.1058 0.1043 0.1055 0.1046 0.1052

19.5 0.0505 0.0513 0.0506 0.0510 0.0507 0.0509

22.5 0.0211 0.0212 0.0211 0.0212 0.0211 0.0212

25.5 0.0078 0.0078 0.0078 0.0077 0.0078 0.0078

28.5 0.0025 0.0025 0.0025 0.0025 0.0026 0.0026

by = 3

time

1.5 0.0173 0.0171 0.0171 0.0171 0.0173 0.0173

4.5 0.1253 0.1264 0.1250 0.1256 0.1258 0.1261

7.5 0.2259 0.2299 0.2266 0.2285 0.2274 0.2283

10.5 0.2365 0.2420 0.2384 0.2411 0.2391 0.2404

13.5 0.1763 0.1807 0.1783 0.1805 0.1787 0.1798

16.5 0.1031 0.1055 0.1043 0.1055 0.1045 0.1051

19.5 0.0498 0.0506 0.0506 0.0511 0.0508 0.0511

22.5 0.0208 0.0210 0.0211 0.0212 0.0213 0.0213

25.5 0.0077 0.0077 0.0078 0.0078 0.0078 0.0078

28.5 0.0025 0.0025 0.0026 0.0026 0.0026 0.0026

by = 5

time

1.5 0.0173 0.0171 0.0173 0.0172 0.0173 0.0173

4.5 0.1252 0.1263 0.1257 0.1262 0.1258 0.1260

7.5 0.2256 0.2296 0.2267 0.2286 0.2273 0.2283

10.5 0.2368 0.2423 0.2382 0.2409 0.2389 0.2403

13.5 0.1773 0.1818 0.1782 0.1804 0.1788 0.1799

16.5 0.1041 0.1064 0.1045 0.1057 0.1048 0.1054

19.5 0.0506 0.0514 0.0508 0.0512 0.0508 0.0510

22.5 0.0213 0.0215 0.0214 0.0215 0.0212 0.0213

25.5 0.0080 0.0080 0.0079 0.0079 0.0079 0.0079

28.5 0.0028 0.0027 0.0026 0.0026 0.0026 0.0026

Table 10: Simulation results for Brier score by applying cross-validation for shape=2
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Figure 6.1: Plot of Brier scores with/without CV for n=250, by=5, shape=1

Figure 6.2: Plot of Brier scores with/without CV for n=250, by=5, shape=0.5

Figure 6.3: Plot of Brier scores with/without CV for n=250, by=5, shape=2
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7 Application to the data

The data(cav), introduced in Chapter 1, will be used to evaluate both
measures described in this thesis. Assuming that T ∼ W (λ, γ), a model is
fitted with all the covariates presented in the Introduction. The results are
shown in Table 11.

β se HR LB(HR) UB(HR)

Intercept -2.8441 0.0134

dage 0.0092 0.0055 1.0093 0.9983 1.0204

sex 0.0462 0.2062 1.0473 0.6990 1.5692

pdiag IHD 0.2718 0.1354 1.3123 1.0062 1.7115

pdiag Other 0.2715 0.3089 1.3120 0.7160 2.4039

where γ̂ = 0.9011 and se(γ̂)= 0.0563

Table 11: Output of the model when T ∼W (λ, γ)

The prognostic scores are fitted after estimating the β’s through the formula
zi = β̂TXi taking into account that T ∼ W (λ, γ). (see Figure 7.1)

Figure 7.1: Prognostic scores zi = βTXi when T ∼W (λ, γ)

The results of c-index are given when our methods are applied to the data,
assuming that T follows Weibull and exponential distributions. In addition, c-



49

index is calculated, assuming that T ∼ W (λ, γ) and cross-validation is applied
as described in Chapter 6. The results are shown in Table 12.

T ∼ exp(λ)

c exact 0.5651

c sim 0.5649

T ∼W (λ, γ)

c sim 0.5607

Cross validation results T ∼W (λ, γ)

c sim 0.5406

Table 12: C-index results for data(cav)

The results of Brier score are given when our methods are applied to the data,
when cross-validation is used (Brier CV) and when it is not (Brier) and T is
assumed to follow a Weibull distribution (see Table 13).

Time Brier Brier CV

1.5 0.0817 0.0826

4.5 0.1747 0.1768

7.5 0.2331 0.2358

10.5 0.2449 0.2476

13.5 0.2292 0.2313

16.5 0.2067 0.2082

19.5 0.1843 0.1851

22.5 0.1626 0.1629

25.5 0.1425 0.1423

28.5 0.1242 0.1238

Table 13: Brier score results for data(cav)

From the results in Table 13, the predictive accuracy derived from cross-
validation is very close to the one without, but usually somewhat higher. This
is expected since the same data are used to validate the model and the results
without cross-validation give an over-optimistic view of the performance of the
prediction model on new data. To visualize these difference, Figure 7.2 shows
estimates of the Brier score calculated at a denser set of time points, along
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with a curve of the Brier score for the model without any covariates, so based
on fitting a Weibull model with shape γ and the same rate λ for all patients. It
can be seen that the model without covariates has the highest prediction error
and that including the covariates reduces the prediction error. The assessment
without cross-validation, however, tends to give an over-optimistic idea of how
much the prediction model including the covariates improves the prediction.

Figure 7.2: Brier scores in three different cases
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8 Discussion

In this thesis, two different issues were investigated. The first one was to
employ statistical probabilistic methodology to investigate c-index formulas
concerning interval censored survival data. Censoring mechanism and con-
ditional probabilities were used to address the first problem. Statistical is-
sues in the specification of both exponential and Weibull distributions were
considered. Challenging issues that may be involved in interval censored
data were described: possibility that the event of interest and the exact time
of the observation lie between the interval (Li, Ri] and we do not know if
P (Ti > t0|Ti ∈ (Li, Ri]) is zero or one.
The second goal of this thesis was to test these methods to our data. To
overcome the danger of using the same data to validate the model and produce
over-optimistic results of discrimination and calibration, leave-one-out cross-
validation was used.

In the first part of the thesis, a new method for calculating the c-index to
discriminate subjects was suggested for interval censored data. The two
main distributions, exponential and Weibull, were considered. In the case
of exponential explicit formulas were calculated while for Weibull a more
general idea for calculating the P (T2 < T1|T1 ∈ (L1, R1], T2 ∈ (L2, R2]) for
each pair (i, j) is given. In addition, Brier score was also studied for interval
censored data. The basic idea is when the indicator (1{Ti > t}|Ti ∈ (Li, Ri])
is unknown, to estimate the P (Ti > t0|Ti ∈ (Li, Ri]).

In the second part of the thesis, cross-validation was applied for the simulation
study and for the data(cav). In both cases, cross-validation revealed that
the c-index was lower and the Brier scores were higher, concluding that fitting
a model given the covariates is better than using cross-validation. Though,
when the differences are not very large, more realistic results are produced
through cross-validation.

Simulations suggest that the proposed methods provide estimates for the
c-index and Brier score with relatively small bias and root-mean-squared
error (RMSE). While applying these methods to data(cav), the difference
between the usual and the cross-validated c-index and Brier score is smaller.

For future research it may also be of interest to extend the proposed methods to
other distributions (e.g. gamma, log-normal, log-logistic). In particular, for an
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individual i, c-index could be calculated for any distribution given the density
function (fTi(ti)), the survival function at the left interval (Si(Li)) and at the
right interval (Si(Ri)), for ti ∈ (Li, Ri]. To define the Brier score in other
distributions, Ŝ(t|Xi) should be settled assuming that Ti follows the desired
distribution.
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A Appendix: R code

########## load libraries

library(msm)
library(survival)
library(KMsurv)
library(SurvRegCensCov)

source("Function definitions.R")

############ Start preliminary

head(cav)
names(cav) <- casefold(names(cav))
pats <- sort(unique(cav$ptnum))
n <- length(pats)
head(cav, n=18)
table(diff(which(cav$firstobs==1))) # no pats with only 1 line
cav1 <- subset(cav, firstobs==1)
whlast <- c(which(cav$firstobs==1)-1, nrow(cav))
cavlast <- cav[whlast, ]
cavminlast <- cav[-whlast, ]
whlast <- c(which(cavminlast$firstobs==1)-1, nrow(cavminlast))
cavlastbutone <- cavminlast[whlast, ]
dim(cav1)
dim(cavlast)
dim(cavlastbutone)

# Going to add two columns, la (lastalive) and fd (firstdead), containing
# time at which subject was last known to be alive and first to be dead;
# if right censored, fd will be infinity
table(cavlast$state)
# Those with 4 have died, rest are right censored
# Right censored
cav1$la <- 0
cav1$la[cavlast$state<4] <- cavlast$years[cavlast$state<4]
cav1$fd <- Inf
# Those who died, la comes from cavlastbutone, fd from cavlast
cav1$la[cavlast$state==4] <- cavlastbutone$years[cavlast$state==4]
cav1$fd[cavlast$state==4] <- cavlast$years[cavlast$state==4]
cav1 <- cav1[, c("ptnum", "la", "fd", "dage", "sex", "pdiag")]
# Check whether it is correct
head(cav, n=21)
tail(cav, n=21)
head(cav1)
tail(cav1, n=9)

# Remove the missing values (8 NA’s in pdiag, 622-8=614 observations)

cav1<- cav1[-(which(is.na(cav1$pdiag))),]

# This should be done once and the result should be saved in

cav1$status <- as.numeric(is.finite(cav1$fd)) + 2
cav1$status <- ifelse(is.infinite(cav1$fd), 2, 3)
## If there are zeros in the data R returns the error: "Error in survreg:
## Invalid survival times for this distribution". A trick to get around this problem
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## when you have intervals that begin at time zero is to add a small constant to all
## survival times in the dataset.

cav1$la[cav1$la == 0] <- 1e-04
whc <- complete.cases(cbind(cav1$dage, cav1$sex, cav1$pdiag))
cav1 <- cav1[whc, ]

# Change pdiag to factor with 3 levels, take IDC (reference), IHD and
# other

table(cav1$pdiag)
cav1$pdiag <- as.numeric(cav1$pdiag) - 2
cav1$pdiag[cav1$pdiag <= 0] <- 3 # to other
cav1$pdiag[cav1$pdiag >= 3] <- 3 # to other
cav1$pdiag <- factor(cav1$pdiag, levels = 1:3, labels = c("IDC", "IHD",

"Other"))
table(cav1$pdiag)

cav1<- data.frame(cav1,status)
View(cav1)

save(cav1, file="cav.Rdata")

############ End preliminary

load("cav.Rdata")

######## Chapter 1

## Plot the 25 first individuals interval censored
select <- head(order(cav1$fd - cav1$la, decreasing = TRUE), 25)
data <- cav1[select, ]
lablist <- as.vector(c(1:20))
lablist2 <- as.vector(c(1:20))

plot(lablist, lablist2, type = "n", axes = FALSE, ann = FALSE, xlab = NA, ylab = NA)
axis(1, at = 1:20, side = 1, labels = c(0:19))
axis(2, at = c(1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21),

labels = c(1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21), las = 1)
mtext("Infinity", side = 1, line = -4, outer = TRUE, adj = 1)
mtext("Range of intervals", side = 1, line = 4)
mtext("Individuals", side = 2, line = 3)
box()

arrows(20.5, -0.5, 21.2, -0.5, length = 0.1, xpd = TRUE)

arrows(cav1$la[10], 1, cav1$fd[10], 1, length = 0)
arrows(cav1$la[42], 2, cav1$fd[42], 2, length = 0)
arrows(data$la[6], 3, 51, 3, length = 0)
arrows(cav1$la[6], 4, cav1$fd[6], 4, length = 0)
arrows(data$la[9], 5, 51, 5, length = 0)
arrows(data$la[7], 6, 51, 6, length = 0)
arrows(cav1$la[58], 7, cav1$fd[58], 7, length = 0)
arrows(cav1$la[18], 8, cav1$fd[18], 8, length = 0)
arrows(cav1$la[59], 9, cav1$fd[59], 9, length = 0)
arrows(cav1$la[52], 10, cav1$fd[52], 10, length = 0)
arrows(data$la[8], 11, 51, 11, length = 0)
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arrows(cav1$la[40], 12, cav1$fd[40], 12, length = 0)
arrows(cav1$la[49], 13, cav1$fd[49], 13, length = 0)
arrows(data$la[5], 14, 51, 14, length = 0)
arrows(cav1$la[44], 15, cav1$fd[44], 15, length = 0)
arrows(data$la[4], 16, 51, 16, length = 0)
arrows(data$la[1], 17, 51, 17, length = 0)
arrows(data$la[10], 18, 51, 18, length = 0)
arrows(data$la[3], 19, 51, 19, length = 0)
arrows(data$la[2], 20, 51, 20, length = 0)

text(x = cav1$la[10], y = 1, "(", cex = 1)
text(x = cav1$la[42], y = 2, "(", cex = 1)
text(x = data$la[6], y = 3, "(", cex = 1)
text(x = cav1$la[6], y = 4, "(", cex = 1)
text(x = data$la[9], y = 5, "(", cex = 1)
text(x = data$la[7], y = 6, "(", cex = 1)
text(x = cav1$la[58], y = 7, "(", cex = 1)
text(x = cav1$la[18], y = 8, "(", cex = 1)
text(x = cav1$la[59], y = 9, "(", cex = 1)
text(x = cav1$la[52], y = 10, "(", cex = 1)
text(x = data$la[8], y = 11, "(", cex = 1)
text(x = cav1$la[40], y = 12, "(", cex = 1)
text(x = cav1$la[49], y = 13, "(", cex = 1)
text(x = data$la[5], y = 14, "(", cex = 1)
text(x = cav1$la[44], y = 15, "(", cex = 1)
text(x = data$la[4], y = 16, "(", cex = 1)
text(x = data$la[1], y = 17, "(", cex = 1)
text(x = data$la[10], y = 18, "(", cex = 1)
text(x = data$la[3], y = 19, "(", cex = 1)
text(x = data$la[2], y = 20, "(", cex = 1)

text(x = cav1$fd[10], y = 1, "]", cex = 1)
text(x = cav1$fd[42], y = 2, "]", cex = 1)
text(x = cav1$fd[6], y = 4, "]", cex = 1)
text(x = cav1$fd[58], y = 7, "]", cex = 1)
text(x = cav1$fd[18], y = 8, "]", cex = 1)
text(x = cav1$fd[59], y = 9, "]", cex = 1)
text(x = cav1$fd[52], y = 10, "]", cex = 1)
text(x = cav1$fd[40], y = 12, "]", cex = 1)
text(x = cav1$fd[49], y = 13, "]", cex = 1)
text(x = cav1$fd[44], y = 15, "]", cex = 1)

# Age histogram

hist.age <- hist(cav1$dage, breaks = 10, col = "red", main = "", xlab = "Age in years",
xlim = c(0, 70), ylim = c(0, 130))

hist.age

######### Chapter 2,3

### EXPONENTIAL CASE - CREATE FUNCTIONS FOR EACH OF THE 6 CASES, C-INDEX
### CASE1(L1<L2<R1<R2), P(T1<T2), P(T1>T2)

f <- function(hazard1, hazard2, left1, left2, right1, right2)
{
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a <- -hazard1/(hazard1 + hazard2)
b <- exp(-hazard1 * right1)
c <- exp(-hazard2 * left2) - exp(-hazard2 * right1)
d <- hazard2/(hazard1 + hazard2)
e <- exp(-hazard2 * left2)
z <- exp(-hazard1 * left2) - exp(-hazard1 * right1)

out1 <- a * b * c + d * e * z
denominator1 <- exp(-hazard1 * left1) - exp(-hazard1 * right1)
denominator2 <- exp(-hazard2 * left2) - exp(-hazard2 * right2)

joint <- denominator1 * denominator2

out <- out1/joint
out[out1 == 0 & joint == 0] <- 0 #may get NaN because of 0/0,the result should be 0

return(out)
}

## CASE2(L1<L2<R2<R1), P(T1<T2), P(T1>T2)

h <- function(hazard1, hazard2, left1, left2, right1, right2)
{

a <- exp(-hazard1 * left1)
b <- exp(-hazard2 * left2) - exp(-hazard2 * right2)
c <- hazard2/(hazard1 + hazard2)
d <- exp(-(hazard1 + hazard2) * left2) - exp(-(hazard1 + hazard2) * right2)

out1 <- a * b - c * d

denominator1 <- exp(-hazard1 * left1) - exp(-hazard1 * right1)
denominator2 <- exp(-hazard2 * left2) - exp(-hazard2 * right2)

joint <- denominator1 * denominator2

out <- 1 - (out1/joint)
out[out1 == 0 & joint == 0] <- 0

return(out)
}

## CASE4(L2<L1<R1<R2), P(T1<T2), P(T1>T2)

g <- function(hazard1, hazard2, left1, left2, right1, right2)
{

a <- exp(-hazard2 * left2)
b <- exp(-hazard1 * left1) - exp(-hazard1 * right1)
c <- hazard1/(hazard1 + hazard2)
d <- exp(-(hazard1 + hazard2) * left1) - exp(-(hazard1 + hazard2) * right1)

out1 <- a * b - c * d
denominator1 <- exp(-hazard1 * left1) - exp(-hazard1 * right1)
denominator2 <- exp(-hazard2 * left2) - exp(-hazard2 * right2)

joint <- denominator1 * denominator2
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out <- out1/joint
out[out1 == 0 & joint == 0] <- 0

return(out)
}

## CASE5(L2<L1<R2<R1), P(T1<T2), P(T1>T2)

k <- function(hazard1, hazard2, left1, left2, right1, right2)
{

a <- -hazard2/(hazard1 + hazard2)
b <- exp(-hazard2 * right2)
c <- exp(-hazard1 * left1) - exp(-hazard1 * right2)
d <- hazard1/(hazard1 + hazard2)
e <- exp(-hazard1 * left1)
z <- exp(-hazard2 * left1) - exp(-hazard2 * right2)

out1 <- a * b * c + d * e * z
denominator1 <- exp(-hazard1 * left1) - exp(-hazard1 * right1)
denominator2 <- exp(-hazard2 * left2) - exp(-hazard2 * right2)

joint <- denominator1 * denominator2

out <- 1 - (out1/joint)
out[out1 == 0 & joint == 0] <- 0

return(out)
}

## C-INDEX IN THE EXPONENTIAL CASE

c.exact <- function(hazard, left, right)
{

n <- length(hazard)

### exponential case
allpairs <- t(combn(hazard, 2))
indl <- t(combn(left, 2))
indr <- t(combn(right, 2))
data.new <- data.frame(allpairs, indl, indr)
h11 <- data.new[, 1]
h22 <- data.new[, 2]
indl1 <- data.new[, 3]
indl2 <- data.new[, 4]
indr1 <- data.new[, 5]
indr2 <- data.new[, 6]
data.new <- data.frame(h11, h22, indl1, indl2, indr1, indr2)

case1 <- data.new[which(indl1 <= indl2 & indl2 <= indr1 & indr1 <= indr2), ]
case2 <- data.new[which(indl1 <= indl2 & indl2 <= indr2 & indr2 < indr1), ]
case3 <- data.new[which(indl1 < indr1 & indr1 <= indl2 & indl2 < indr2), ]
case4 <- data.new[which(indl2 < indl1 & indl1 <= indr1 & indr1 <= indr2), ]
case5 <- data.new[which(indl2 < indl1 & indl1 <= indr2 & indr2 < indr1), ]
case6 <- data.new[which(indl2 < indr2 & indr2 <= indl1 & indl1 < indr1), ]

Pt21 <- f(case1$h11, case1$h22, case1$indl1, case1$indl2, case1$indr1, case1$indr2)



59

Pt11 <- 1 - Pt21
Pt22 <- h(case2$h11, case2$h22, case2$indl1, case2$indl2, case2$indr1, case2$indr2)
Pt12 <- 1 - Pt22
Pt23 <- numeric(nrow(case3))
Pt13 <- rep(1, nrow(case3)) - Pt23
Pt24 <- g(case4$h11, case4$h22, case4$indl1, case4$indl2, case4$indr1, case4$indr2)
Pt14 <- 1 - Pt24
Pt25 <- k(case5$h11, case5$h22, case5$indl1, case5$indl2, case5$indr1, case5$indr2)
Pt15 <- 1 - Pt25
Pt26 <- rep(1, (nrow(case6)))
Pt16 <- rep(1, (nrow(case6))) - Pt26
Pt2 <- c(Pt21, Pt22, Pt23, Pt24, Pt25, Pt26)
Pt1 <- c(Pt11, Pt12, Pt13, Pt14, Pt15, Pt16)

final <- rbind(case1[, 1:6], case2[, 1:6], case3[, 1:6], case4[, 1:6], case5[, 1:6],
case6[,1:6])

final <- data.frame(final, Pt2, Pt1)
final1 <- final[final$h11 > final$h22, ]
final2 <- final[final$h22 > final$h11, ]

c.index <- (sum(final1$Pt1) + sum(final2$Pt2))/(nrow(final1) + nrow(final2))
return(c.index)

}

generate <- function(lam, l, r)
{

n <- length(lam)
u <- runif(n)
draws <- -log(exp(-lam * l) - u * (exp(-lam * l) - exp(-lam * r)))/lam
return(draws)

}

generate2 <- function(lam, l, r, gam)
{

n <- length(lam)
u <- runif(n)
draws <- (-log(exp(-lam * lˆgam)-u *(exp(-lam * lˆgam) -

exp(-lam * rˆgam)))/lam)ˆ(1/gam)
return(draws)

}

## GENERAL CASE
c.general <- function(lambda,left,right,M,shape,dist = c("exponential", "weibull"))
{

dist <- match.arg(dist)

n <- length(lambda)
idx11 <- t(combn(1:n, 2))
lambda11 <- t(combn(lambda, 2))
left11 <- t(combn(left, 2))
right11 <- t(combn(right, 2))
all <- data.frame(lambda11, left11, right11)

lambda1 <- all[, 1]
lambda2 <- all[, 2]
left1 <- all[, 3]
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left2 <- all[, 4]
right1 <- all[, 5]
right2 <- all[, 6]

Pt1.simulate <- rep(NA, nrow(all))
Pt1.simulate[right1 <= left2] <- 1
Pt1.simulate[right2 <= left1] <- 0
## test which overlap
overlap <- which(is.na(Pt1.simulate))

## probability for those that overlap
n1 <- length(overlap)

draws <- matrix(NA, n, M)
if (dist == "exponential")
{

for (m in 1:M)
{

draws[, m] <- generate(lambda, left, right)
}

} else if (dist == "weibull")
{

for (m in 1:M)
{

draws[, m] <- generate2(lambda, left, right, shape)
}

}

for (j in 1:n1)
{

subj1 <- idx11[overlap[j], 1]
draws1 <- draws[subj1, ]
subj2 <- idx11[overlap[j], 2]
draws2 <- draws[subj2, ]

# Put the result (mean number of draws for which draws1<draws2) into Pt1.simulate
Pt1.simulate[overlap[j]] <- mean(ifelse(draws1 < draws2, 1, 0))

}

Pt2.simulate <- 1 - Pt1.simulate

data.simulate <- data.frame(lambda1, lambda2, left1, left2, right1, right2,
Pt1.simulate, Pt2.simulate)

final1.simulate <- data.simulate[data.simulate$lambda1 > data.simulate$lambda2, ]
final2.simulate <- data.simulate[data.simulate$lambda2 > data.simulate$lambda1, ]

c.index.simulate <- (sum(final1.simulate$Pt1.simulate) +
sum(final2.simulate$Pt2.simulate))/(nrow(final1.simulate) + nrow(final2.simulate))
return(c.index.simulate)

}

######### Chapter 4

## BRIER SCORE IN THE EXPONENTIAL CASE

prediction.error <- function(hazard, left, right, time)
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{
brier <- numeric(length(time))
for (i in 1:length(time))
{

alive <- ifelse(right > time[i], 1, 0)
uncertain1 <- which(alive == 1 & time[i] > left & is.finite(right))
uncertain2 <- which(alive == 1 & time[i] > left & is.infinite(right))
alive[uncertain1] <- (exp(-hazard[uncertain1] * time[i]) -

exp(-hazard[uncertain1] * right[uncertain1]))/
(exp(-hazard[uncertain1] * left[uncertain1])

* exp(-hazard[uncertain1] * right[uncertain1]))
alive[uncertain2] <- (exp(-hazard[uncertain2] * time[i]))/

(exp(-hazard[uncertain2] * left[uncertain2]))
survival <- exp(-hazard * time[i])
statistic <- alive - survival
statistic2 <- statisticˆ2
brier[i] <- mean(statistic2)

}
return(brier)

}

## BRIER SCORE IN THE GENERAL CASE

brier.score <- function(lambda, left, right, shape, time = seq(1.5, 28.5, by = 3))
{

brier <- numeric(length(time))
for (i in 1:length(time))
{

alive <- ifelse(right > time[i], 1, 0)
uncertain1 <- which(alive == 1 & time[i] > left & is.finite(right))
uncertain2 <- which(alive == 1 & time[i] > left & is.infinite(right))
alive[uncertain1] <- (exp(-lambda[uncertain1] * time[i]ˆshape) -

exp(-lambda[uncertain1] * right[uncertain1]ˆshape))/
(exp(-lambda[uncertain1] * left[uncertain1]ˆshape) -
exp(-lambda[uncertain1] * right[uncertain1]ˆshape))

alive[uncertain2] <- (exp(-lambda[uncertain2] * time[i]ˆshape))/
(exp(-lambda[uncertain2] * left[uncertain2]ˆshape))

survival <- exp(-lambda * time[i]ˆshape)

brier[i] <- mean(alive * (1 - 2 * survival) + survivalˆ2)
}
return(brier)

}

######################### Chapter 5,6

my.rweibull <- function(lam, gam)
{

n <- length(lam)
u <- runif(n)
res <- ((-log(1 - u))/lam)ˆ(1/gam)
return(res)

}
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### SIMULATE DATA

simulate <- function(n,betas,shape,dist = c("exponential","weibull"),by = 3)
{

betas[1] <- log((gamma(1 + 1/shape)/10)ˆshape)

## Generate the covariates
x1 <- rnorm(n, 0, 10) ## age
x2 <- sample(0:1, size = n, replace = TRUE, prob = c(0.5, 0.5)) - 0.5 #sex
x3 <- sample(1:3, size = n, replace = TRUE, prob = c(0.4, 0.35, 0.25))
x32 <- as.numeric(x3 == 2) - 0.35
x33 <- as.numeric(x3 == 3) - 0.25

## Generate the hazard
lambda.simulate <- numeric(n)

X <- model.matrix(˜x1 + x2 + x32 + x33)

lambda.simulate <- as.numeric(exp(X %*% betas))

## Generate the exact event times
if (dist == "exponential")

exactTimes <- rexp(n, rate = lambda.simulate)
else exactTimes <- my.rweibull(lam = lambda.simulate, gam = shape)

## Generate the left and right intervals
obsIntervals <- seq(0, 30, by = by)
time1 <- floor(exactTimes/by) * by
time1[time1 == 0] <- 1e-08
time1[exactTimes < 0] <- NA
time1[exactTimes > 30] <- 30
time2 <- time1 + by
time2[exactTimes > 30] <- Inf

id <- seq(n)
return(data.frame(id = id, lambda = lambda.simulate, left = time1,

right = time2,x1 = x1, x2 = x2, x32 = x32, x33 = x33,
exactTimes = exactTimes))

}

# MONTE CARLO APPROXIMATION OF TRUE C-INDEX

true.c.index <- function(n, betas, shape)
{

betas[1] <- log((gamma(1 + 1/shape)/10)ˆshape)
dfr1 <- simulate(n = n, betas = betas, shape = shape, dist = "weibull")
dfr1$one <- 1
cexact <- coxph(Surv(exactTimes, one) ˜ x1 + x2 + x32 + x33, data = dfr1)
ctrue <- cexact$concordance[1]/(cexact$concordance[1] + cexact$concordance[2])
return(ctrue)

}

# MONTE CARLO APPROXIMATION OF TRUE BRIER SCORE
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true.brier <- function(n, betas, shape, time = seq(1.5, 28.5, by = 3))
{

betas[1] <- log((gamma(1 + 1/shape)/10)ˆshape)
dfr1 <- simulate(n = n, betas = betas, shape = shape, dist = "weibull")
brier.true <- numeric(length(time))
for (i in 1:length(time))
{

alive <- ifelse(dfr1$exactTimes > time[i], 1, 0)
survival <- exp(-dfr1$lambda * time[i]ˆshape)
statistic <- alive - survival
statistic2 <- statisticˆ2
brier.true[i] <- mean(statistic2)

}
return(brier.true)

}

#### SIMULATION RESULTS

sim.results <- function(n,nsim,betas,shape,by,time = seq(1.5, 28.5, by = 3))
{

res.sim <- rep(NA, nsim)
res.exact <- rep(NA, nsim)
brier <- matrix(NA, nsim, length(time))
res.simCV <- rep(NA, nsim)
res.exactCV <- rep(NA, nsim)
brierCV <- matrix(NA, nsim, length(time))

# H Recenter betas[1] so that mean survival at mean of covariates = 10
betas[1] <- log((gamma(1 + 1/shape)/10)ˆshape)
for (j in 1:nsim) {

# Simulate data
dfr1 <- simulate(n = n, betas = betas, shape = shape, dist = "weibull")
# H changed again !!!!!
dfr1$right.na <- dfr1$right
dfr1$right.na[is.infinite(dfr1$right.na)] <- NA
# Estimate betas from the data
model <- survreg(Surv(time = left, time2 = right.na,

type = "interval2") ˜ x1 + x2 + x32 + x33, dist = "weibull",
data = dfr1)

# reparametrization
sigma <- model$scale
mu <- summary(model)$coef[1]
gamma <- 1/sigma
lambda <- -mu/sigma
p <- length(summary(model)$coef) - 1
alpha <- summary(model)$coef[2:(p + 1)]
betasj <- c(lambda, -alpha/sigma)
# cbind(c(shape,betas), c(gamma,betasj))

# Calculate hazard for each subject in the data and add it to the data
X <- model.matrix(model)
lambdastar <- exp(X %*% betasj)
dfr1$lambda <- lambdastar

# Same using cross-validation
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lambdamini <- gammamini <- numeric(n)
for (i in 1:n) {

dfrmini <- dfr1[-i, ]
model <- survreg(Surv(time = left, time2 = right.na, type = "interval2") ˜

x1 + x2 + x32 + x33, dist = "weibull", data = dfrmini)
alpha <- summary(model)$coefficients
sigma <- model$scale
mu <- alpha[1]
gammamini[i] <- 1/sigma
beta0 <- -mu/sigma
betamini <- c(beta0, -alpha[2:(p + 1)]/sigma)

# Calculate cross-validated hazard for subject i
# Use original model matrix
lambdamini[i] <- exp(X[i, ] %*% betamini)

}

if (shape == 1) {
res.sim[j] <- c.general(dfr1$lambda, dfr1$left, dfr1$right,

shape = shape, M = 100, dist = "exponential")
} else {

res.sim[j] <- c.general(dfr1$lambda, dfr1$left, dfr1$right,
shape = gamma, M = 100, dist = "weibull")

}
if (is.na(res.sim[j]))

break
res.exact[j] <- c.exact(dfr1$lambda, dfr1$left, dfr1$right)
brier[j, ] <- brier.score(lambda = dfr1$lambda, left = dfr1$left,

right = dfr1$right, shape = gamma, time = time)

# H Same thing for cross-validated versions
if (shape == 1) {

res.simCV[j] <- c.general(lambdamini, dfr1$left, dfr1$right,
shape = shape, M = 100, dist = "exponential")

} else {
res.simCV[j] <- c.general(lambdamini, dfr1$left, dfr1$right,

shape = gammamini, M = 100, dist = "weibull")
}
if (is.na(res.sim[j]))

break
res.exactCV[j] <- c.exact(lambdamini, dfr1$left, dfr1$right)
brierCV[j, ] <- brier.score(lambda = lambdamini, left = dfr1$left,

right = dfr1$right, shape = gammamini, time = time)

}

return(list(csim = res.sim, cexact = res.exact, brier = brier,
csimCV = res.simCV, cexactCV = res.exactCV, brierCV = brierCV))

}

summarize <- function(res, truec, truebrier) {
meansim <- mean(res$csim)
sdsim <- sd(res$csim)
meanexact <- mean(res$cexact)
sdexact <- sd(res$cexact)
meanbrier <- colMeans(res$brier)
sdbrier <- apply(res$brier, 2, sd)
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biasexact <- meanexact - truec
RMSEexact <- sqrt(biasexactˆ2 + sdexactˆ2)
biassim <- meansim - truec
RMSEsim <- sqrt(biassimˆ2 + sdsimˆ2)
biasbrier <- meanbrier - truebrier
RMSEbrier <- sqrt(biasbrierˆ2 + sdbrierˆ2)
dfrBrier <- data.frame(bias = biasbrier, RMSE = RMSEbrier)
rownames(dfrBrier) <- seq(1.5, 28.5, by = 3)

# Cross-validated results
meansimCV <- mean(res$csimCV)
meanexactCV <- mean(res$cexactCV)
meanbrierCV <- colMeans(res$brierCV)

return(list(cindex = data.frame(meanexact = meanexact, biasexact = biasexact,
RMSEexact = RMSEexact, meansim = meansim,
biassim = biassim, RMSEsim = RMSEsim), Brier = dfrBrier,

cindexCV = list(exact = meanexactCV, sim = meansimCV), BrierCV = meanbrierCV))

# biassim=biassim, RMSEsim=RMSEsim, biasexact=biasexact,
# RMSEexact=RMSEexact, biasbrier=biasbrier, RMSEbrier=RMSEbrier))

}

######################### SIMULATION STUDY
ctrue1 <-true.c.index(n = 1e+06, betas = c(-3, 0.01, 0.05, 0.30, 0.25), shape = 1)
ctrue05 <-true.c.index(n =1e+06, betas = c(-3, 0.01, 0.05, 0.30, 0.25), shape = 0.5)
ctrue2 <-true.c.index(n = 1e+06, betas = c(-3, 0.01, 0.05, 0.30, 0.25), shape = 2)
truecs <-list(ctrue1 = ctrue1, ctrue05 = ctrue05, ctrue2 = ctrue2)
save(truecs, file = "truecs.Rdata")

load("truecs.Rdata")
ctrue1 <- truecs$ctrue1
ctrue05 <- truecs$ctrue05
ctrue2 <- truecs$ctrue2

true.brier1 <- true.brier(n = 1e+06, betas = c(-3, 0.01, 0.05, 0.30, 0.25), shape = 1)
true.brier05 <-true.brier(n = 1e+06, betas = c(-3, 0.01, 0.05, 0.30, 0.25), shape = 0.5)
true.brier2 <- true.brier(n = 1e+06, betas = c(-3, 0.01, 0.05, 0.30, 0.25), shape = 2)
true.briers <- list(true.brier1 = true.brier1, true.brier05 = true.brier05,

true.brier2 = true.brier2)
save(true.briers, file = "true.briers.Rdata")

load("true.briers.Rdata")
true.brier1 <- true.briers$true.brier1
true.brier05 <- true.briers$true.brier05
true.brier2 <- true.briers$true.brier2

## Actual simulations

# shape=1,by=1,n=250
date()
res <- sim.results(n = 250, nsim = 10, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 1, by = 1, time = seq(1.5, 28.5, by = 3))
date()
load("resn250shape1by1M1000.Rdata")
n250shape1by1 <- summarize(res, truec = ctrue1, truebrier = true.brier1)
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n250shape1by1

# shape=1,by=1,n=500
date()
res <- sim.results(n = 500, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 1, by = 1, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn500shape1by1M1000.Rdata")
load("resn500shape1by1M1000.Rdata")
n500shape1by1 <- summarize(res, truec = ctrue1, truebrier = true.brier1)
n500shape1by1

# shape=1,by=1,n=1000
date()
res <- sim.results(n = 1000, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 1, by = 1, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn1000shape1by1M1000.Rdata")
load("resn1000shape1by1M1000.Rdata")
n1000shape1by1 <- summarize(res, truec = ctrue1, truebrier = true.brier1)
n1000shape1by1

# shape=1,by=3,n=250
date()
res <- sim.results(n = 250, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 1, by = 3, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn250shape1by3M1000.Rdata")
n250shape1by3 <- summarize(res, truec = ctrue1, truebrier = true.brier1)
n250shape1by3

# shape=1,by=3,n=500
date()
res <- sim.results(n = 500, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 1, by = 3, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn500shape1by3M1000.Rdata")
n500shape1by3 <- summarize(res, truec = ctrue1, truebrier = true.brier1)
n500shape1by3

# shape=1,by=3,n=1000
date()
res <- sim.results(n = 1000, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 1, by = 3, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn1000shape1by3M1000.Rdata")
n1000shape1by3 <- summarize(res, truec = ctrue1, truebrier = true.brier1)
n1000shape1by3

# shape=1,by=5,n=250
date()
res <- sim.results(n = 250, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 1, by = 5, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn250shape1by5M1000.Rdata")
n250shape1by5 <- summarize(res, truec = ctrue1, truebrier = true.brier1)
n250shape1by5
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# shape=1,by=5,n=500
date()
res <- sim.results(n = 500, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 1, by = 5, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn500shape1by5M1000.Rdata")
n500shape1by5 <- summarize(res, truec = ctrue1, truebrier = true.brier1)
n500shape1by5

# shape=1,by=5,n=1000
date()
res <- sim.results(n = 1000, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 1, by = 5, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn1000shape1by5M1000.Rdata")
n1000shape1by5 <- summarize(res, truec = ctrue1, truebrier = true.brier1)
n1000shape1by5

######################################################################

# shape=0.5,by=1,n=250
date()
res <- sim.results(n = 250, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 0.5, by = 1, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn250shape05by1M1000.Rdata")
n250shape05by1 <- summarize(res, truec = ctrue05, truebrier = true.brier05)
n250shape05by1

# shape=0.5,by=1,n=500
date()
res <- sim.results(n = 500, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 0.5, by = 1, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn500shape05by1M1000.Rdata")
n500shape05by1 <- summarize(res, truec = ctrue05, truebrier = true.brier05)
n500shape05by1

# shape=0.5,by=1,n=1000
date()
res <- sim.results(n = 1000, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 0.5, by = 1, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn1000shape05by1M1000.Rdata")
n1000shape05by1 <- summarize(res, truec = ctrue05, truebrier = true.brier05)
n1000shape05by1

# shape=0.5,by=3,n=250
date()
res <- sim.results(n = 250, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 0.5, by = 3, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn250shape05by3M1000.Rdata")
n250shape05by3 <- summarize(res, truec = ctrue05, truebrier = true.brier05)
n250shape05by3
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# shape=0.5,by=3,n=500
date()
res <- sim.results(n = 500, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 0.5, by = 3, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn500shape05by3M1000.Rdata")
n500shape05by3 <- summarize(res, truec = ctrue05, truebrier = true.brier05)
n500shape05by3

# shape=0.5,by=3,n=1000
date()
res <- sim.results(n = 1000, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 0.5, by = 3, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn1000shape05by3M1000.Rdata")
n1000shape05by3 <- summarize(res, truec = ctrue05, truebrier = true.brier05)
n1000shape05by3

# shape=0.5,by=5,n=250
date()
res <- sim.results(n = 250, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 0.5, by = 5, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn250shape05by5M1000.Rdata")
n250shape05by5 <- summarize(res, truec = ctrue05, truebrier = true.brier05)
n250shape05by5

# shape=0.5,by=5,n=500
date()
res <- sim.results(n = 500, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 0.5, by = 5, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn500shape05by5M1000.Rdata")
n500shape05by5 <- summarize(res, truec = ctrue05, truebrier = true.brier05)
n500shape05by5

# shape=0.5,by=5,n=1000
date()
res <- sim.results(n = 1000, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 0.5, by = 5, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn1000shape05by5M1000.Rdata")
n1000shape05by5 <- summarize(res, truec = ctrue05, truebrier = true.brier05)
n1000shape05by5

######################################################################

# shape=2,by=1,n=250
date()
res <- sim.results(n = 250, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 2, by = 1, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn250shape2by1M1000.Rdata")
n250shape2by1 <- summarize(res, truec = ctrue2, truebrier = true.brier2)
n250shape2by1
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# shape=2,by=1,n=500
date()
res <- sim.results(n = 500, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 2, by = 1, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn500shape2by1M1000.Rdata")
n500shape2by1 <- summarize(res, truec = ctrue2, truebrier = true.brier2)
n500shape2by1

# shape=2,by=1,n=1000
date()
res <- sim.results(n = 1000, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 2, by = 1, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn1000shape2by1M1000.Rdata")
n1000shape2by1 <- summarize(res, truec = ctrue2, truebrier = true.brier2)
n1000shape2by1

# shape=2,by=3,n=250
date()
res <- sim.results(n = 250, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 2, by = 3, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn250shape2by3M1000.Rdata")
n250shape2by3 <- summarize(res, truec = ctrue2, truebrier = true.brier2)
n250shape2by3

# shape=2,by=3,n=500
date()
res <- sim.results(n = 500, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 2, by = 3, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn500shape2by3M1000.Rdata")
n500shape2by3 <- summarize(res, truec = ctrue05, truebrier = true.brier05)
n500shape2by3

# shape=2,by=3,n=1000
date()
res <- sim.results(n = 1000, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 2, by = 3, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn1000shape2by3M1000.Rdata")
n1000shape2by3 <- summarize(res, truec = ctrue2, truebrier = true.brier2)
n1000shape2by3

# shape=2,by=5,n=250
date()
res <- sim.results(n = 250, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 2, by = 5, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn250shape2by5M1000.Rdata")
n250shape2by5 <- summarize(res, truec = ctrue2, truebrier = true.brier2)
n250shape2by5

# shape=2,by=5,n=500
date()
res <- sim.results(n = 500, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 2, by = 5, time = seq(1.5, 28.5, by = 3))
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date()
save(res, file = "resn500shape2by5M1000.Rdata")
n500shape2by5 <- summarize(res, truec = ctrue2, truebrier = true.brier2)
n500shape2by5

# shape=2,by=5,n=1000
date()
res <- sim.results(n = 1000, nsim = 1000, betas = c(-3, 0.01, 0.05, 0.30,

0.25), shape = 2, by = 5, time = seq(1.5, 28.5, by = 3))
date()
save(res, file = "resn1000shape2by5M1000.Rdata")
n1000shape2by5 <- summarize(res, truec = ctrue2, truebrier = true.brier2)
n1000shape2by5

######################### Chapter 7

cav1$fd.na <- cav1$fd
cav1$fd.na[is.infinite(cav1$fd.na)] <- NA
WeibullReg(Surv(time = la, time2 = fd.na, type = "interval2") ˜

dage + sex + pdiag, data = cav1, conf.level = 0.95)
model <- survreg(Surv(time = la, time2 = fd.na, type = "interval2") ˜

dage + sex + pdiag, dist = "weibull", data = cav1)
summary(model)
alpha <- summary(model)$coefficients
alpha

sigma <- model$scale
mu <- alpha[1]
gamma <- 1/sigma
beta0 <- -mu/sigma
p <- length(alpha) - 1
cavbeta <- c(beta0, -alpha[2:(p + 1)]/sigma)
cavbeta

# Calculate hazard for each subject in the data
X <- model.matrix(model)
lambda <- exp(X %*% cavbeta)

# Calculate c-index for the actual data
system.time(ce <- c.exact(lambda, cav1$la, cav1$fd))
ce

# General c-index from Weibull distribution
system.time(cg <- c.general(lambda, cav1$la, cav1$fd, shape = gamma, M = 1000,

dist = "weibull"))
cg

# Brier score at selected time points
tseq <- seq(1.5, 28.5, by = 3)
cavBS <- brier.score(lambda, cav1$la, cav1$fd, shape = gamma, time = tseq)
data.frame(time=tseq, Brier=cavBS)

# With cross-validation
print(date())
n <- nrow(cav1)
lambdamini <- gammamini <- numeric(n)
for (i in 1:n) {

cavmini <- cav1[-i, ]
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model <- survreg(Surv(time = la, time2 = fd.na, type = "interval2") ˜
dage + sex + pdiag, dist = "weibull", data = cavmini)

alpha <- summary(model)$coefficients
sigma <- model$scale
mu <- alpha[1]
gammamini[i] <- 1/sigma
beta0 <- -mu/sigma
betamini <- c(beta0, -alpha[2:(p + 1)]/sigma)

# Calculate cross-validated hazard for subject i
# Use original model matrix
lambdamini[i] <- exp(X[i, ] %*% betamini)

}

# General c-index from Weibull distribution
CVcg <- c.general(lambdamini, cav1$la, cav1$fd, shape = gammamini, M = 1000,

dist = "weibull")
CVcg

CVBS <- brier.score(lambdamini, cav1$la, cav1$fd, shape = gammamini, time = tseq)
data.frame(time=tseq, Brier=cavBS, BrierCV=CVBS)

print(date())
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