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Abstract

In this thesis we focus on the modeling of large credit losses in corporate as-
set portfolio. We compare loss estimates based on the classic Vasicek’s approach
with the assumption of normal-distributed loss distribution, and the copula ap-
proach generating heavier-tailed loss distribution. We also provide the numeric
implementations of both Vasicek’s and copula modeling approaches which are
widely used in bank’s risk management. In addition, we demonstrate how Va-
sicek’s approach can be adopted for estimating portfolio’s concentration risk
charge. The last work is my own development inspired by my internship expe-
rience at the Royal Bank of Scotland. All presented results are complemented

with review of the corresponding classical works in credit risk modeling.
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Chapter 1

Introduction

1.1 Background

Financial mathematics is one of the oldest branches of mathematical science.
Modern historians believe that banking itself appeared in Babylonia around
3000 BC. It was driven out of temples and palaces storing deposits of grain,
cattle, and precious metals [2]. This activity had brought into life a concept of
risks. For example, a clay tablet called the Code of Hammurabi (CA.1700 BCE)
prescribes that a carrier of caravan should give a receipt for the consignment,
take all responsibility, and exact a receipt upon delivery, or pay fivefold in case
of default [2].

Despite such a long history, management of financial risks remains an un-
solved problem. Recently, Laurence H Meyer [I0] conducted analysis of the
Asian financial crisis of 1997. He demonstrated how the risk management at
many Asian financial institutions was weakened by a decade of rapid economic
growth and prosperity. Many banks were extending loans without assessment
of risks or even simple cash flow analysis. Rather, lending was driven by formal
availability of the collateral regardless its remoteness on default, and on the ba-
sis of relationship with the borrower. As a result, volume of loans was growing
faster than borrowers’ ability to pay back. Also, limits on concentrations in
lending to businesses haven’t been respected and loans were often large relative
in comparison with bank’s capital. As a result, these banks felt sharply already
a very beginning of economic downturn, and created a chain effect in the bank-
ing system. This example illustrates how ignoring basic risk management can
contribute to economy-wide difficulties.

Thinking about such examples from a mathematical point of view, the prob-
lems seem to appear when our apriori expectations of future losses (or risks, in

financial terminology) turn out to be significantly lower the corresponding apos-



teriori estimates. Development of systematic scientific methods of correcting
our optimistic expectations seems to be the only way to address this problem.

This thesis is concerned with potential credit losses (i.e. credit risk) in large
homogeneous asset portfolios. Credit risk refers to the risk that a borrower will
default on a debt by failing to make required payments [8]. Credit risk may im-
pact all credit-sensitive transactions, including loans, securities and derivatives.
Recent historical events, like the default of the large American investment bank
Lehman Brothers and the Greek sovereign crisis, popularised two particular

types of credit risk:

e Concentration risk. As defined by regulators [I5], this risk is associated
with any single exposure or group of exposures with the potential to pro-
duce large enough losses to threaten a bank’s core operations. It may
arise in the form of single name concentration (e.g. loans only to Greek
banks), industry concentration (e.g. loans only to oil industry) or product

concentration (e.g. only mortgages).

e Country transfer risk. The risk of loss arising from a sovereign state

freezing foreign currency payments (e.g. Venezuela)

e Sovereign risk. The risk of loss when a country defaults on its obligations

(e.g. Argentina).

Significant resources and sophisticated programs are used by financial insti-
tutions to analyse and manage credit risk [I5]. Many of them run large credit
risk departments for assessing the financial conditions of their customers, and
adjust their credit practices accordingly. They either use in house capabilities
to advise on reducing and transferring risk, or the credit intelligence solutions
provided by the big international companies like Standard & Poor’s, Moody’s,
Fitch Ratings or their smaller local counterparts like DBRS, Dun and Bradstreet
and Bureau van Dijk.

Although the variety of financial instruments is large, the core idea of ef-
fective risk management is simple: the clients should be accepted taking into
account their ability to pay, and subsequently the riskier clients need to pay
more to compensate for higher potential loss for the bank. There are many

practical implementations of this idea:

e As stated in [8], most lenders employ their credit scoring models to rank
potential and existing customers according to their risk, and then apply

appropriate strategies.

e With products such as unsecured personal loans or mortgages, lenders

charge a higher price for higher risk customers (see []).



e It is remarked in [8] that with revolving products such as credit cards and

overdrafts, risk is controlled through setting of the credit limits.

e It is also mentioned in [§] that some products also require collateral, usu-

ally an asset that is pledged to secure the repayment of the loan.

Importantly, the accurate assessment is ultimately important for large risks
when many customers default on their obligations at the same time. This point

brings us to formulation of the main idea of this thesis.

1.2 Thesis Idea

In this thesis we focus on the modelling of large credit losses in corporate as-
set portfolios. We compare loss estimates based on the classic Vasicek’s ap-
proach [22] with the assumption of normal-distributed loss distribution, and
the copula approach [I3] generating heavier-tailed loss distributions. We also
provide the numeric implementations of both Vasicek’s and copula modeling ap-
proaches which are widely used in bank’s risk management. In addition, we will
demonstrate how Vasicek’s approach can be adopted for estimating portfolio’s
concentration risk charge. The last work is my own development inspired by

my internship experience at the Royal Bank of Scotland.

1.3 Thesis Structure

This thesis consists of the following four parts:

Firstly, we focus on derivation of a price evolution of a European call or put
option under some idealized assumptions using language of stochastic differential
equations. This result - called the Black-Scholes equation - has a fundamental
role in credit risk modelling, since it provides a structural framework of think-
ing about company’s default as settlement of ‘in-the-money’ call option on the
company’s residual asset value.

This model was first published by Fischer Black and Myron Scholes in their 1973
paper [I8]. As pointed out in [6], the key idea behind the model is to hedge the
option by buying and selling the underlying asset in just the right way to elim-
inate risk. This type of hedging is called delta hedging and is the basis of more
complicated hedging strategies such as those engaged in by investment banks
and hedge funds. From the model, one can deduce the BlackScholes formula,
which gives a theoretical estimate of the price of European-style options. The
formula led to a boom in options trading of the Chicago Board Options Ex-
change and other options markets around the world. It is widely used, although

often with adjustments and corrections, by options market participants. It is
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also observed in [7] that many empirical tests have shown that the BlackScholes
price is fairly close to the observed prices, although there are well-known dis-

crepancies such as the option smile.

Secondly, in Chapter [4] we extend our analysis and look not at a single as-
set, but at the large homogeneous portfolio of assets, and derive the probability
distribution of portfolio’s loss. Properties of this loss distribution were first de-
scribed in Oldrich Vasicek 1991 paper [22], which has fundamental importance
for the credit risk management industry.

Its key observation is that in a large portfolio of loans (or large portfolio of
European call options) in Black-Scholes-Merton’s world with correlations gov-
erned by a single economic factor, the distribution of the portfolio’s loss has a
closed analytic form. This results has been extensively used in deriving approx-
imations for more complex portfolios and instruments like derivatives such as
collateralized debt obligations (CDO), as well as in regulatory capital estimates

and portfolio risk management.

Importantly, Vasicek’s result is based on the assumption of normality of
obligor’s asset value. The events of the 2008 financial crisis with many obligors
defaulting within a very short time interval were extremely unlikely according
to the Vasicek’s model, thus corresponding portfolio losses were not covered
by the capital buffers. These events draw a lot of attention to the alternative
models which lead to much heavier-tailed loss distributions. A useful example
of alternative models is the family of multivariate normal mixture distributions,
which include Student’s tdistribution and the hyperbolic distribution. Rudiger
Frey, and Alexander J. McNeil and Mark A. Nyfeler in 2001 paper [I3] showed
that the aggregate portfolio loss distribution is often very sensitive to the exact

nature of the multivariate distribution of the asset values.

We are looking at these results here using a copula approach described in
Chapter [6] and Chapter [} Copula is a useful tool for analysis of heavy-tail dis-
tributions by allowing the modelling of the marginals and dependence structure
of a multivariate probability model separately (see [12]). For example, in our
case, the individual obligor’s asset can be characterised by the choice or mod-
elling of the corresponding loss marginal distribution. As all obligors are in the
same market and interact with each other, this interaction can be captured via
modelling the dependency structure. Paper [I3] showed that it is the copula (or
dependence structure) of the obligor’s asset value variables that determines the
higher order joint default probabilities, and thus determines the extreme risk

that there are many defaults in the portfolio.
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By choosing an asset value distribution from a normal mixture family, we implic-
itly work with alternative copulas which often differ markedly from the normal
copula. Embrechts, McNeil, and Straumann [2I] in 1999 showed that some of
these copulas, such as the t copula, possess tail dependence and in contrast to
the normal copula, they have a much greater tendency to generate simultane-
ous extreme values. As discussed earlier, this effect is highly important since

simultaneous low asset values will lead to many joint defaults.

In 1999, David X. Li [5] made an important contribution to the field of credit
risk modelling. Instead of choosing the obligor’s asset value as modeling vari-
able, he used a random variable called time-until-default to denote the survival
time of each defaultable entity or financial instrument. He modeled the default
correlation of two entities as the correlation between their survival times using
standard normal dependency but each entity’s survival time was characterized
by an exponential marginal distribution with a special parameter called the

hazard rate. In Chapter [7] we look at three methods of estimating hazard rate:
e Obtaining historical default information from rating agencies like Moody;

e Taking the implied approach using market prices of defaultable bonds or

asset swap spreads;
e Taking Merton’s option theoretical approach.

Finally, we provide independent numeric R implementations for the ideas de-
scribed in previous Chapters. We choose three applications which are common
in bank risk management. My internship at the Economic Capital Modeling
team of the Royal Bank of Scotland helped me to absorb the relevant ideas and
inspired me with these implementations. Applications described in Chapter []
are relevant for estimates of portfolio’s default correlations and concentration
risk charges. In Chapter [5] we implement Li’s ‘time-until-default’ copula mod-

eling idea [5]. The implementation method is inspired by Jun Yan [24].
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Chapter 2

Relevant SDE Concepts
and Methods

Formalism of stochastic differential equations in financial applications often sim-
plifies formulation of the corresponding mathematical model. Here we provide

a brief overview of SDE concepts and methods relevant for our further analyses.

2.1 Wiener Processes

A Markov process is a type of stochastic process for which only the present
value of a variable is relevant for predicting the future. The past history of
the variable and the way the present has emerged from the past is irrelevant.
Wiener processes, which are particularly relevant in financial mathematics, are

a special case of Markov processes.

Definition 2.1.1. A stochastic process (Z(t)):>o is a Wiener process if it has

the following properties:

e The change Z(t + At) — Z(t) during a small period of time At > 0 has a

normal distribution with mean 0 and variance At:
AZ =Z(t+ At) — Z(t) = eV AL, (2.1)

where € has a standardized normal distribution N (0, 1).

e The random variable Z(t+At)—Z(t) and Z(s+As)—Z(s) are independent,
provided 0 <t <t+ At <s<s+ As.

e Z(0)=0.

13



e t — Z(t) is continuous almost surely.

A Wiener process is a type of Markov stochastic process with a mean change
of zero and a variance rate of 1 per unit of time. In physics, it is often referred
as Brownian motion as it has been used to describe the motion of a particle

subject to a large number of small molecular shocks.

2.2 Ito Process

An Tto process is composed of a drift part and an Ito integral. Definition of an
Ito process requires defining filtration, adapted process and a class of function

which can be the integrand of Ito integral. see [14] for more information.

Definition 2.2.1. Given a measurable space (2, F), a filtration is a family of
o-algebras {F;};>0 with 7y C F for each ¢ such that when s < ¢, we have
Fs C Fi.

Definition 2.2.2. Let {F;};>0 be an increasing family of o-algebras of subset
of Q. A process g : [0,00) x Q — R™ is called F;-adapted if for each ¢ > 0 the
function

w— g(t,w)
is Fi-measurable.
Using these definitions, we come to the definition of Ito process:

Definition 2.2.3. (1-dimensional Ito processes [14]) Let B; be 1-dimensional
Brownian motion on probability space (2, F, P), and let F;>¢ be a filtration such
that B is F-adapted and B(t) — B(s) is independent of F;, for all ¢ > s > 0. An
Ito process is a stochastic process (X;);>o on (€2, F, P) of the form

X =Xo +/0 ,u(s)ds—l—/o o(s)dBs, (2.2)

where 1 and o are F-adapted and
t
P[/ o(s)?ds < o0,Vt > 0] =1
0

and .
P[/ lp(s)|ds < o00,¥t > 0] = 1.
0

If X is an Ito process of the form (2.2)), it is sometimes written in the shorter
differential form
dX; = p(t)dt + o(t)dB; (2.3)

14



and (t,w) — p(t,w) is then called the expected drift rate, and (¢t,w) — o(t,w)
is called the volatility.

2.3 Asset Price Process

A standard example of an Ito process in financial mathematics is a model of
the price of a non-dividend-paying stock. Here we demonstrate the process of

mapping properties of financial product into the parameters of Ito formula:

e Stochastic variable X should be identified not with the stock price A, but
with its instantaneous return dA/A. The first model would imply that
the expected stock return does not depend on the stock’s price — investors
would require a 12% per annum expected return when the stock price is

$10, as well as when it is $30, which is not realistic.

e Assuming zero uncertainty and a constant expected drift rate p and inte-

grating between time 0 and time T, we get
X = XoetT, (2.4)

where Xy and Xp are the stock price at time 0 and T', respectively. Thus,
1 can be identified with a continuously compounded growth rate of the

stock price per unit of time

e In [3] it is remarked that it is reasonable to assume that the variability of
the instantaneous return in a short period of time does not depend on the
stock price. This suggests that the standard deviation of the change in a

short period of time should be proportional to the stock price.

Thus, we arrive at the most widely used model of stock price behaviour:
dXt = uXtdt + O'XtdBt, (25)

with p being the stock’s expected rate of return, and o being volatility of the

stock price.

2.4 Ito Formula

Ito’s formula is widely employed in mathematical finance, and its best known

application is in the derivation of the Black-Scholes equation for option values.
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2.4.1 The 1-dimensional Ito formula

Theorem 2.4.1. (1-dimensional Ito formula [1])]) Assume X; is a Ito

drift-diffusion process that satisfies the stochastic differential equation
dXt = Mdt + O'dBt,

where By is a Brownian motion. Let f € C%(]0,00) x R) be a twice-differentiable

scalar function, then we have

_(of of o20%f af
where the derivatives of f are evaluated at (t, X3).

It is obvious that f(¢, X;) is an Ito process with a drift rate of

and a volatility of 0%@, Xy).

Example 2.4.2. (Source: B. @ksendal [14]) What is the value of

t
/ sdBg?
0

From classical calculus it seems that the term ¢B; should appear, so we let
f(t,x) = tx, then f(t, By) = tB;. Then by Ito formula,

df(t, B;) = d(tB,) = Bydt + tdB,,

t t
tB; :/ B.ds +/ sd B,
0 0

t t
/ sdBs =tBy — / Bgds.
0 0

Example 2.4.3. Now consider the Stochastic Differential Equation dX; =
uXidt + 0 X By with Xo = 29 € R. We let f(t,z) = xoe(“’%oz)t+"x7 there-

fore

SO

SO

X, = f(t, By) = mpelt— 37 )0 B

16



then by Ito formula,

o) ) 102
dX, =df(t,B;) = a—{ dt + a%: dB; + 587"; (dB;)?

1 1
= (u— 502)Xtdt + o X dB; + 5aQXtdt
/J/Xtdt + O'XtdBt.

So all conditions in the definition of solution (using Ito formula) are satisfied.

Hence the complete solution is

X, = Ioe(uf%oz)wwt'

2.4.2 The multi-dimensional Ito formula

Translating the previous arguments into the higher dimensions, we arrive at the

following

Definition 2.4.4. [14] Let B(t) = (Bi(t),...,Bn(t)) denote m-dimensional
Brownian motion. If each of the processes p;(t) and o,;(t) satisfies the condition
given in Definition (1<i<n,1<j<m)then we can form the following

n Ito processes

Xm(t) = Nldt + UlldBl(t) + -4+ UlmdBm(t)
dXQ(t) = podt + UgldBl(t> + -4 O'deBm<t)

dX,(t) = ppdt + 0p1dB1(t) + - - - + 0pmd B (t)

Or, in matrix notation
dX(t) = pdt + odB(t),

where

X1(t) p1 o1t Oim dBi(t)
X(t): = 0 = ’dB(t):
Xn(t) Lhn Onl " Opm dB,(t)
(2.7)
Such a process X (t) is called an n-dimensional Ito process, we use notation
X (t) instead of X; to indicate the difference between n-dimensional Ito process

and 1-dimensional Ito process.

It is natural to ask what is the Ito formula for n-dimensional Ito process.

An answer is provided by the following:

17



Theorem 2.4.5. (General Ito formula [1]]]) Let
dX (t) = pdt + odB(t)

be an n-dimensional Ito process as above. Let (t,x) — f(t,z) = (fi(t,z),..., fp(t, z))
be a C? map from [0,00) x R™ into RP. Then the process

Y(t,w) = f(t,X(t))
is again an Ito process, whose ng, component, Yy, is given by

Ofk O fi _
S (X dt+z P, X)dX;( Z o 8% (t, X;)dX,(t)dX;(t)

dY(t) =

where dX;(t) is expanded as in Definition with the convention that dB;dB; =
d;;dt, dB;dt = dtdB; = 0.

18



Chapter 3

The Black-Scholes Model

3.1 The Black-Scholes world

Ideas of Ito calculus were formulated in the 1950s, however their application in
finance required a set of additional modelling which were made approximately 30
years later in works of the economists R. Merton, F. Black and M. Scholes [I8].

F. Black and M. Scholes tried to formulate a minimal description of the ‘fair’
world, and asked a question whether in this world the stochasticity (or risk) of
the value of a financial instrument can be completely eliminated by holding
in a portfolio a small number of other financial instruments. The answer to
this question turned out to be positive, and this led to a significant advance in
financial mathematics.

Black and Scholes set the following assumptions for their idealised world:

a riskless profit cannot be made on the market, i.e. two different types
of financial instruments which provide the same payoff for the investors
should have the same price (in financial jargon, there is no arbitrage op-

portunity)

e Any amount, even fractional, of cash can be borrowed and lent at the

market at the riskless rate r

e As well as any amount, even fractional, of any financial instrument can be
bought and sold on the market. Note that this includes so called ’short
selling’: you can sell a financial instrument which is not in your portfolio

at this moment, and purchase it only at the time of its delivery

e The financial transactions on the market are costless (in financial jargon,

the market is frictionless).

19



To study the properties of this ‘fair’ world, Black and Scholes assumed that

a company’s stock has the following properties:

e The instantaneous log returns of the stock price S is a geometric Brownian

motion with constant drift rate p and volatility o, i.e.

d
% — pdt + o dW,, (3.1)
t

where W; is a Brownian motion, and ¢ is time.

e The stock does not pay dividends. Even though this sounds not realis-
tic, there are companies in the real world like Google which never paid

dividends so far.

The riskless rate of borrowing money form the market is realized in Black-
Scholes ’fair’ world by a bond for any required lifetime 7" of the transaction
which pays a constant rate r per unit of time.

Finally, a second stochastic financial instrument in Black-Scholes’s world is
called a call option on a stock. This is a financial contract which gives a buyer
a right but not an obligation to buy a stock at fixed price K at expiry time
t = T regardless of the stock price S(T) at that time point. We view the price
of the option as a function of the stock price and of time, denoting the price
of this call option as C(S,t) and its payoff V(S,T) at expiry. Note that since
the price of the stock is stochastic, the price of the call option on the stock is
stochastic as well. However, Black and Scholes observed that the nature of this
stochasticity is identical for both of them and the right combination of those

two instruments should eliminate this stochasticity completely.

3.2 The Black-Scholes equation

John C. Hull in [3] gave a derivation of The Black-Scholes equation. Consider
a portfolio consisting of one call option on a stock and a certain fraction « of
the stock itself. In order to find the fraction « of the stock which eliminates the
stochasticity of the option’s price, we need to know how the payoff price of the
option at expiry V changes as a function of S and ¢ over an infinitesimaly small
time increment dt. By Ito’s lemma and 7 we have:

ov oV oV

1 >*V

20



Thus, if we allow « to vary in time, we can choose o = %, which makes the

price II of the portfolio equal to

ov
I=-V+ %S. (3.3)
Over the small time interval [t, t+At], the change of the value of the portfolio
is approximately:
All = —AV + o AS. (3.4)
oS
We will assume that this is a self-financing portfolio, i.e. the infinitesimal change
in its value is only due to the infinitesimal changes in the values of its assets,
and not due to changes in the positions in the assets.

Discretizing the equations for dS/S and dV,

AS = puS At + oS AW, (3.5)
ov. v 1 0%V ov
AV = — +— 4+ =028 —— | A — A .
14 <M585+8t+205852) t—l—USaS W, (3.6)
we get the following expression for AII:
B V1, 0%V

Since the volatility part has been completely eliminated now, the rate of

return for this portfolio must be equal to the rate of return on a bond, i.e.
rII At = AIL (3.8)

Otherwise, the assumption of no arbitrage would be violated.

Finally, equating the two formulas for AIl we obtain:

V1,0V ov

and simplifying, we arrive at the celebrated Black - Scholes partial differential
equation:

ov. 1 , ,0°V ov

— 4+ -0°S*—— +rS— —rV =0. 3.10

ot "27 % 95T Tas T (3.10)
In [3] it is remarked that under the assumptions of the Black - Scholes world, this
equation holds for any type of option if its price V(S,t) is twice differentiable

with respect to S and once with respect to t.
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3.3 The Black-Scholes formula

John C. Hull in [3] provided a derivation of the The Black-Scholes formula.
For the call option on a stock, the Black-Scholes PDE has the following boundary

conditions:

C(0,1) =0 forallt (3.11)

. C5t)
Sl;n;o 5 =1forallt (3.12)
C(S,T) =max{S - K,0} (3.13)

The Black Scholes PDE can be transformed into a standard diffusion equa-
tion 5 L &2
u 207U
— =—0‘=— 14
or ~ 27 0 (3.14)

by using the following transformations:

T - (3.15)
u =C(S,t)e™, (3.16)
z =ln(2)+(r—2120%)7 (3.17)

The terminal condition C'(S,T) = max{S — K,0} transforms into an initial
condition,
u(z,0) = up(x) = K (=% 1), zeR. (3.18)

Using the standard textbook method for solving a diffusion equation, we

have

w(z, 7) = — /o;uo(y)exp [W] dy, (3.19)

oV 2rT

which, after some manipulations, yields

w(z,7) = Ke* 27 "N(dy) — KN(ds), (3.20)
where

di =z [(z+ 50%7) + 30°7], (3.21)

dy = %ﬁ [(w + %027) — %(727] , (3.22)

and N(z) is the standard normal cumulative distribution function.

Reverting u, z, 7 to the original set of variables, yields the final expression
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for the solution of the Black-Scholes equation,

C(S,t) = N(d)S — N(dy)Ke 7T, (3.23)
0_2

dy = W%_t [m <Ii> + <1" + 2) (T — t)} , (3.24)

dy=dy —oVT —t. (3.25)
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Chapter 4

Portfolio Loss Distribution

A main idea behind the Black-Scholes equation was a perfect hedging of risk
for an option by a fraction of the underlying stock in a portfolio. However,
it was very well known that in large portfolios of even identical financial in-
struments, there are risks, and those risks tend to materialise at different time
points (see [23]). This observation inspired another fundamental results which
gives the likelihood of losses in a large portfolio of options.

Note that the binary nature of an option at expiry can be used in a context
of corporate finance to model an indicator of default. If the stock price is
above zero, the company is performing, whereas if it becomes equal to zero, the
investors choose to liquidate the company and declare its default. This analogy
was made rigorous in work of R. Merton. However, we will not elaborate on
his results here, and simply assume that an obligor ¢ defaults if the value of its
assets A; at time ¢t = T falls below the contractual value B of its obligations.
As in Merton’s model (2.5)), the value of its assets A;(¢) will be described by the
process

dA;(t) = pA;(t)dt + o A;(t)dWy,

where W; is a Brownian motion and p and o are positive constants. As A;(0) >
0, A;(T) can be formally solved as (see example in Chapter

log A;(T)) = log A;(0) + puT — %UZT +oVTW, (4.1)

with X; now being a standard normal variable. The probability of default of

obligor 7 is equal to

pi = H’D[AZ(T) < Bl] = ]P)[)(z < CZ‘] = N(Cl)
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where
_logB; —log A; — uT + %O'QT

oVT

and N(z) is the cumulative normal distribution function.

Ci

Now consider a portfolio consisting of n identical loans with the same term
T and identical obligors. Let the probability of default on each loan be p; = p,
and assume the same correlation p between asset values of any two obligors.
For the sake of simplicity, let’s assume that the gross loss L; on the i-th loan is
L; = 1 if the i-th borrower defaults and L; = 0 otherwise. It is convenient to

denote by L the portfolio fraction gross loss,

1 n
L:ﬁ;Li

For independent defaults and in a limit of n — oo, the distribution of L would
converge, by the central limit theorem, to a normal distribution. In a more
realistic model, the defaults are not independent. The conditions of the central
limit theorem are not satisfied and L is not asymptotically normal. It turns out,
however, that the closed form analytical expression for the portfolio probability
loss distribution P(L) can be derived.

4.1 The Limiting Distribution of Portfolio Losses

Vasicek in [22] assumes that the pairwise correlations p between obligors log
returns in one time unit can be represented by splitting the variables X; in
Equation as

Xi=Y\/p+2Zi/1-p (4.2)

where Y and Z; are mutually independent standard normal variables, and
p € [0,1] is a constant, ¢ = 1,--- ,n. The variable Y can be interpreted as a
portfolio common economic factor over the interval (0,T), whereas Z;/(1 — p)
characterises the company’s specific risk. We also call such a model a ‘factor
model’ (see [22]).

Since p = P[X; < ¢;] = N(¢;), we have ¢; = N~!(p). For the fixed common
factor Y, the conditional probability of loss on any one loan is

p(Y) =P[Li = 1]Y] = N (W) . (4.3)

Conditional on the value of Y, the variables L; are independent equally
distributed Bernoulli variables, hence with a finite variance. The portfolio loss

conditional on Y converges, by the law of large numbers, to its expectation
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p(Y) as n — oco. Then in a limit as n — oo and hence approximately for large

portfolios,

PIL<z] =

I
%

Thus, the cumulative distribution function of loan losses in a large portfolio’s

]P’[Lgﬂ—N(Vl_pN1\(/?_N1(p)>. (4.4)

Note that the assumption of equal obligor’s weights in the portfolio is not

limit is

critical. Let the portfolio weights be wy,ws, - , w, with Z:l qw; = 1. It has
been shown by Vasicek in [22] that the portfolio loss L = > | w;L; conditional
on Y converges to its expectation p(Y’) whenever (and this is a necessary and
sufficient condition) Y"1 ; w? — 0 and the portfolio loss distribution converges
to the form In other words, if the portfolio contains a sufficiently large
number of loans without it being dominated by a few loans much larger than the
rest, the limiting distribution provides a good approximation for the portfolio

loss.

4.2 Properties of the Loss Distribution

As stated in (4.4]), the portfolio loss distribution is given by the cumulative

distribution function

Faip.p) = N (V L= pN (o) = N_l<p)) . (4.5)

VP

In this section we discuss some more properties of this distribution follow-
ing [22], we find that

e When p — 1:
We have P(L<z)=1—-p=P(L =0) for all z € (0,1) , and
P(L=1)=p
Thus all loans default with probability p.

e When p — 0:
We have P(L < z) — 0 for = < p, and
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P(L<z)=1for x> p.
This yields P(L = p) = 1.

The corresponding probability density can be derived by calculating the
derivative of F'(x;p, p) with respect to x, which is

flzip,p) = W,
1—p
= P X exp
(_ (1-2p)(N"1(2))? — 2T = pN~Hz)N~L(p) + (N‘l(p))2>
2p 7
1—p 1 1 _ _
= e (3@ - v ) - VTSN ).

Proposition 4.2.1. [22] For any given level of confidence «, the a-quantile
da(L) of a random variable L with distirbution function F(z;p, p) is given by

N7 Hp) 4+ /pga(Y)
VIi—=p

where Y has distribution N(0,1) and g, (Y") denotes the a-quantile of the stan-

dard normal distribution.

da(L) = p(—qa(Y)) = N( )

Proposition 4.2.2. [22] The expectation and the variance of a random variable

L with distribution function F(x;p,p) are given by
E(L)=p

and
V(L) = No(N~H(p), N~ (p); p) — p°,

where Ny(-,+;p) denotes the cumulative bivariate normal distribution function

with correlation p.

4.3 Use of Vasicek’s distribution

In this section, we give two examples and the corresponding R programming
implementations of the practical use of Vasicek’s portfolio loss distribution func-
tion, i.e. Equation . Ideas of these examples were inspired by my internship
at the Economic Capital Modeling team of the Royal Bank of Scotland.
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4.3

The

and

Vi V2 v3 V4 Vs V6
-0.46016284 -2.388099357 -1.672394161 -1.568652210 -0.7198926288  -1.34006611
-1.17559669 -0.458309968 -0.539554131 -0.292844823 -1.4224019654 -0.52797879
1.07050446  -0.402853357 0.348621166  0.672726412  ©.0029852489  1.05555638
0.83023690  0.874382137  0.633159582  0.457235426  ©.7073049354  0.54558034
1.89580825  0.903555845  2.049568040  1.904875655  1.6201421133  1.57604889
-0.94184744  -0.465969830 -1.038212702 -0.132383782 -2.2616306867 -1.54461518
-0.10829635 -0.437857259 -0.956303341 -0.554764242 -0.4084855297 -0.77370502
-1.54211042 -0.419208176 -1.511868723 -1.209224883 -1.7658007901 -@.70611556
-1.26333648 -0.450296731 -0.167246674 -1.638648376 -0.3944178520 -1.06318266
10 -0.82537053 -0.905390843 -1.890200166 0.446197446  -0.1277498390 -@.97355569
11  0.23649862  0.363431008  0.838822644  -0.643690742 -0.3210261417 -@.22971728
12 0.55000756  ©.509799255  -0.061107957 0.644344540  1.1289425378  0.41786844
13 -1.68249568 -0.299426133 -1.173373567 -1.515719794 -1.3917803872 -1.17980513
14 -1.91001377 -1.851116599 -1.809398685 -1.573691875 -1.7416143921 -1.59054932
15 0.60633221  1.284962830  0.102024757  0.368731026  -0.7502315884  0.72906181

© ® N O U A W N

Figure 4.1: Obligors’ standardized asset in 15 time points

.1 Correlation estimation

value of the pairwise correlations p are not known in practical situations,

it needs to be determined from empirical time series of portfolios default

rates. These correlations p are usually also used in the required level of the

bank’s economic capital to ensure its solvency with specified confidence at a

future time point. Since we have no real historic data, we will first generate a

data set.

The algorithm is as follows:

1.

Randomly generate 2000 obligors with assets satisfying normal distribu-
tion with mean 0 and correlation 0.7, in 100 time points. Figure [£.1]shows

part of the obligors’ asset in 15 time points.

Set corresponding 2000*100 standard liability threshold matrix, with thresh-
old N~1(p), where p is the default probability. In our case, p = 0.1,
therefore the threshold equals to -1.28.

Compare asset and liability threshold matrix, finding ‘default or not’ ma-

trix. (see Figure

For each time point (i.e. each realization of Y), calculate the default rate,

which equals to the fraction (the number of default)/(total number of
obligors), i.e., p(Y') in Equation (4.3)

After getting p(Y), we can estimate the correlation p based on a small

derivation:
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Vi v2 V3 V4 V5 \'(3

1 FALSE TRUE TRUE TRUE FALSE  TRUE
2 FALSE FALSE FALSE FALSE TRUE FALSE
3 FALSE FALSE FALSE FALSE FALSE  FALSE
4 FALSE FALSE FALSE FALSE FALSE  FALSE
5 FALSE FALSE FALSE FALSE FALSE  FALSE
6 FALSE FALSE FALSE FALSE TRUE TRUE
7 FALSE FALSE FALSE FALSE FALSE  FALSE
8 TRUE FALSE  TRUE FALSE  TRUE FALSE
9 FALSE FALSE FALSE TRUE FALSE  FALSE
10 FALSE FALSE  TRUE FALSE  FALSE  FALSE
11 FALSE FALSE FALSE FALSE  FALSE  FALSE
12 FALSE FALSE FALSE FALSE  FALSE  FALSE
13 TRUE FALSE  FALSE  TRUE TRUE FALSE
14 TRUE TRUE TRUE TRUE TRUE TRUE
15 FALSE FALSE  FALSE  FALSE  FALSE  FALSE

Figure 4.2: Obligor’s default-or-not matrix in 15 time points

(a) We know from Equation (4.3)) that:

p(Y) = P[L; = 1]Y] = N <W> .

(b) Next, we introduce a variable: Distance-to-Default(DD).

-1 .
DD = N7 o)) = P
(¢) Then
var(DD) = T f pvar(Y) = %

due to the assumption of var(Y) = 1.

(d) Thus, the estimated value of p is

var(DD)
p=————
1+ var(DD)

The whole R code is as follows:
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library (MASS)

#number of time points
T <— 100

#number of obligors
Nobl <— 2000

#average value of assets is 0
mu <— rep (0,Nobl)

#correlation rho = 0.7
rho = 0.7

#correlation matrix

Sigma <— matrix (rho, nrow=Nobl, ncol=Nobl) + diag(Nobl)*(1—rho)

#values of assets

assets <— mvrnorm(n=T, mu=mu, Sigma=Sigma)

#portfolio default rate
p<— 0.1

#thus the corresponding standard liability threshold
Lthr <— gnorm(p)

#and all liab tresholds in matrix form
liab <— matrix(rep (Lthr, T*Nobl), nrow=T, ncol=Nobl)

#observed defaults
defaults <— assets < liab

#portfolio default rate at each time point, i.e. left side of Eq
portDefaultRate <— rowSums(defaults)/Nobl

#time average portfolio default rate, should be close to p
avDefaultRate <— mean(portDefaultRate)

#so called distance to default series (excluding points of no
default), i.e. it is N {—1}(p(Y)), (p(Y)) is in Eq.(4.3)
distanceToDefault <— gnorm(portDefaultRate[portDefaultRate > 0])

#variance of distance to default
varAvDefaultRate <— var(distanceToDefault)

#Vasicek’s estimate of rho, should be close to rho
rhoVasicek <— varAvDefaultRate / (1 + varAvDefaultRate)

corrVasicek.R
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4.3.2 Concentration risk charge

The implementation of the example of a concentration risk charge discussed be-
low is my original work, inspired by discussions with my former RBS colleagues.

The Concentration Risk Charge covers the risk of losses which a regulated
institution acquires via excessive exposures to a particular asset, counterparty or
group of related counterparties. For example, people were very optimistic about
the economy prior to the 2008 financial crisis, and were simply borrowing to-
morrow’s money on today. Many banks acquired large exposures on mortgages,
focusing on profit and ignoring increasing credit risk. Therefore, during the
crisis, when defaults on mortgages were high, these banks easily got bankrupt
due to the large exposure on mortgage business.

Regulators recognize this problem, however they assume that it cannot be
solved within a standardized regulatory approach. The regulatory capital re-
quirements are calculated using a Vasicek-like formula with predefined parame-
ters which (mostly) don’t take into account differences between different sectors
of the economy. Thus, a portfolio with all exposures in a single sector attracts
the same amount of regulatory capital as a portfolio with exposures spread over
multiple sectors. Therefore, regulators require from banks to develop their in-
ternal methodology of calculating their concentration risk charge and report the
number to the central bank. Finding the right exposure of each business sector

in a bank’s portfolio, is the key to calculate right concentration risk charge.

The algorithm is as follows:

1. Estimate the value of the portfolio’s quantile risk measure for the current

portfolio composition.

2. Choose a risk diversification measure. A common choice is a variance of

portfolio’s loss since it is typically used for portfolio risk management.

3. Estimate the value of the chosen risk diversification measure for the marginal

(sector) loss distribution for the current portfolio composition. (see Fig-

ure

4. Choose risk diversification strategy. For example, a diversification strategy
might consist of shifting a fraction of the portfolio proportional to sector’s

loss variance from a sector with high variance to a sector with low variance.

5. Repeat execution of risk diversification strategy until a stationary state

or a predefined business constraint is reached.

6. Estimate the value of the portfolio’s quantile risk measure for the diversi-
fied portfolio. (see Figure
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Histogram of totalLoss0O
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Figure 4.3: The initial portfolio losses with 99% quantile line

Histogram of totalLossDiv
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Figure 4.4: The diversified portfolio losses with 99% quantile line
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7. The difference between the quantile’s risk measure for the current and
diversified portfolios constitutes a concentration risk charge. We can see
from Figure and Figure that under 99% quantile’s measure, the
concentration risk charge is 0.6-0.37=0.23.

The following code provides a method to calculate concentration risk
charge:

We Assume the portfolio consists of two different sectors: mortgage and credit-

card.

require (lattice)

library (mvtnorm)

#probability of default of obligor
PD <— 0.1

#bank’s respective exposure of mortgage portfolio and creditcard
portfolio
exposure <— ¢(0.9,0.1)

#corresponding obligor correlation within mortgage portfolio and
creditcard portfolio
rhol <— ¢(0.4,0.1)

#difine a function caluculating default probability , i.e. Equation
(4.3)
vasCondPD <— function (PD,rho,Y){
return ( pnorm( (gnorm(PD) — sqrt(rho) * Y) / sqrt(l — rho) ))

#number of scenarios
nScenarios <— 1000

#correlation between mortgage portfolio and creditcard porfolio
rho <— 0.6

#generating 1000 scenarios standardized normal—distributed mortgage
portfolio and creditcard porfolio with correlation
mat <— rmvnorm(nScenarios, mean=c(0,0), sigma=(l—rho)xdiag (2)+rho)

mat <—as.matrix (mat)

#calculating initial losses for 2 portfolios respectively , loss=
exposurexdefault probability

lossMort0 <— exposure[l] x vasCondPD(PD,rhol[1],mat[,1])

lossCards0 <— exposure[2] * vasCondPD (PD,rhol[2] ,mat[,2])

#total initial losses
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totalLoss0O <— lossMort0 + lossCardsO

#calculating 99% quantile of the initial total losses
q99 <— quantile (totalLoss0 , probs=0.99)

#histogram of the initial total losses with 99% quantile line
hist (totalLoss0, freq=FALSE)
abline (v=q99)

#concentration adjustment processes:

#1. set the initial portfolio losses for mortgage and creditcard
respectively

lossMort <—lossMort0

lossCards <— lossCardsO

#2. everytime adjust the exposure with the change proportional on
the variance of the losses from previous round until it reaches
the balance

for(t in 1:1000){

lossMort <— exposure[1l] * vasCondPD (PD,rhol[1],mat[,1])
lossCards <— exposure[2] * vasCondPD (PD,rhol [2] ,mat[,2])

dExpMort <— var (lossMort)*exposure [1]
dExpCards <— var (lossCards)*exposure [2]

exposure [1] <— exposure[l] — dExpMort + dExpCards
exposure [2] <— exposure [2] + dExpMort — dExpCards

#total losses after diversifification
totalLossDiv <— lossMort + lossCards

#calculating 99% quantile of the diversified total losses
q99Div <— quantile (totalLossDiv ,probs=0.99)

#histogram of the diversified total losses with 99% quantile line
hist (totalLossDiv, freq=FALSE)
abline (v=q99Div)

#the difference of the quantile between the initial portfolio and
diversified portfolio, i.e. the so—called concentration charge

concCharge = q99 — q99Div

vasicek.R
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Chapter 5

Copula

5.1 Mathematical Definition of Copula

As stated in [I3], a copula function is simply a multivariate joint distribution
function of random vectors with standard uniform marginal distributions. As
mentioned in Chapter [0} a copula gives a way of putting marginal distributions
of several individual obligor’s asset returns, or survival time in Li’s case, to-
gether to form a joint distribution of groups of risks. We can simply say that a
copula is a tool which enables us to model the marginal distribution, as well as

the dependency structure of a vector of latent variables separately.

For example, the obligor’s asset return can be described by modeling the
marginals. Also, as all obligors are in the same market, each obligor’s action
and financial status has an interaction effect with other obligors. This interac-

tion effect can be described by modeling the dependency structure.

Definition 5.1.1. [12] Given a random vector (X1, X, ..., X4) with continuous
marginal distributions F;(z) = P(X; < z),z € R,i =1,...,d, a copula function
is a multivariate distribution function such that its marginal distributions are

standard uniform. A common notation for a copula is:

C(ul,ug, e ,ud) = P(Ul S ul,Ug S U, .. .,Ud S ud), (51)
where (Ul,UQ, . .,Ud) = (Fl(Xl),FQ(XQ), N .,Fd(Xd)).

The marginal diatribution F; contains all the information about each variable
X;, whereas the copula C contains all the information about the dependency

structure.
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If for each i the inverse of F; exists, equation (5.1)) can also be written as

follows:

Clug,uz, ... uq) = P(X1 < F{ M ur), X2 < Fy Yug), ..., Xa < Fy Hua)),
(5.2)

where F[l is the inverse of Fj.

Example 5.1.2. [I3] If the vector of latent variables X has a multivariate
Gaussian distribution with correlation matrix R, then the copula of X may be

represented by
Cg“(ul, oy t) = Nr(N"Huy), ..., N Y (uy)), (5.3)

where Ny denotes the joint distribution function of a centered m-dimensional
normal random vector with correlation matrix R, and N is the distribution
function of univariate standard normal. Cg“ is known as the Gaussian copula

with the correlation matrix R.

Example 5.1.3. [23] The independence copula is defined by

C(ul,...,ud):u1><~-~><ud.

5.1.1 Sklar’s theorem

A copula is powerful because of Sklar’s theorem, which enables the seperation

of modeling marginal distributions and dependency structure.

Theorem 5.1.4. (Sklar [19], see also [13]) Let F be a multivariate d-
dimensional distribution function with marginals Fy, ..., Fy. Then there exists

a copula C' such that
F(zi,...,zq) = C(F1(x1),..., Fa(zq)), (z1,...,24 € R).

Moreover, if the marginal distributions Fi,...,Fyq are continuous, then C 1is

unique.
The converse is also true:

Proposition 5.1.5. [13] For any copula C and marginal distribution functions
Fy, ..., Fy, the function

F(x1,...,2q) = C(F1(2z1), ..., Fa(zq)), (21,...,24 €R)

defines a multivariate distribution function with marginals Fy, ..., Fy.
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Summarizing Theorem and Proposition [5.1.5] one can say that every
multivariate distribution with continuous marginals admits a unique copula rep-
resentation. Also copulas and distribution functions are the building blocks to
derive new multivariate distributions with prescribed correlation structure and

marginal distributions.

5.2 Copula for Fatter-tail Loss Distribution

We are interested in the model which would generate a fatter-tailed portfolio loss
distribution, for the reason, see Chapter[6] In this section, we will consider some
examples given in [23] of how the copula approach can be used for constructing
loss distributions with fatter tails than it would be for the normally distributed
asset value log-returns introduced in Chapter [

We look at the vector of asset value log-return but replace the assumption of
multivariate normal distribution with multivariate t distribution for the reasons
given in Section [6.3] of Chapter [} We first recall some basic test distributions

from statistics (see [I7]).

Definition 5.2.1. (The Chi-square distribution) Given an i.i.d. sample
Xi1,..., X, ~N(0,1), X2+ -+ X2 is said to be x2-distributed with n degrees

of freedom.

Definition 5.2.2. (The Student’s ¢-distribution) Given a standard normal
variable Y ~ N(0,1) and a y?-distributed variable X ~ x?(n), such that ¥ and
X are independent. Then the variable Z defined by Z = Y/+/X/n is said to be

t-distributed with n degrees of freedom.

In general the ¢-distribution has more mass in the tails than a normal dis-
tribution. Due to the property of a t-distribution that as the degree of freedom
parameter v goes to infinity, it converges to the normal distribution. If we start
with an approximately normal distribution, we can gradually move away from

this model by choosing smaller values of v step-by-step.

Definition 5.2.3. (The multivariate ¢-distribution) Given a multivariate
Gaussian vector Y = (Y1,...,Y,,) ~ N(0,R) with correlation matrix R, the
scaled vector 0Y is said to be multivariate t-distributed with n degrees of free-
dom, if § = \/71/7 with X ~ x?(n) and X is independent of Y. And

5.2.1 t-Copula

Definition 5.2.4. [23] Given n > 3 and F,, a t-distribution function with n

degrees of freedom, given the multivariate t-distribution function with n degrees
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of freedom and correlation matrix R, denoted by F, r ~ t(n,R), we define a

t-copula function as follows:
OmR(ul, e ud) = FmR(F;l(ul), e F;l(ud)), ULy .., Ug € (O, 1) (54)

The copula C), r incorporates a multivariate {-dependency structure. Simi-
larly with Gaussian copulas, we can combine with a t-copula with any marginal
distributions we like. For example, if we want to build a factor model which
would generate the fatter-tailed loss distribution, we can choose a t-copula with
Gaussian marginals, or a Gaussian copula with t-marginals just like the follow-

ing:

Example 5.2.5. [23] A multivariate distribution function with ¢-dependency

and Gaussian marginals can be defined by
F(z1,...,2q) = Cpr(N(21),...,N(z4)), 21,...,24 €R,

where N(-) denotes the standard normal distribution function.

Example 5.2.6. [23] A multivariate distribution function with Gaussian de-

pendency and t-marginals can be defined by
F(x1,...,2q) = CSYFy(x1),...,F(2q)), x1,...,74 € R,

where F,,(-) denotes the student’s ¢-distribution function.

Replacing Gaussian dependency by t-dependency, or replace Gaussian marginal
by t-marginals will both significantly shift mass into the tail of the loss distri-

bution arising from a corresponding factor model.

Figure contrasts the lack of tail dependence of the normal copula with
the strong tail dependence of the t copula with n = 3 degrees of freedom. The
left hand plot shows 7000 points from bivariate normal distribution, whereas the
right hand plot shows 7000 points from a bivariate t distribution. The correla-
tion in each plot is 0.7. Clearly, in the lower left and upper right quadrants, the

t dependence structure produces more joint extreme values close to the diagonal.

5.3 Common Copula Families

Article [24] divide copulas into two main families, the most frequently used

copula families are Elliptical copulas and Archimedean copulas.
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Figure 5.1: Normal dependence vs. t dependence. Vertical and horizontal lines
at 99.5% and 0.5% quantiles of marginal distribution

5.3.1 Elliptical copula

An elliptical copula has a correlation matrix inherited from the corresponding
elliptical distributions, which determines the dependency structure. J. Yan [24]
implemented the four commonly used dependency structures in R: autoregres-
sive of order 1, exchangeable, toeplitz, and unstructured, depending on the
correlation between each variable. For example, in the case of dimension d = 3,

the corresponding correlation matrices are as follows (see [24]):

L popi L pi m L p1 po L p1 po
pr L opufsfp 1 pr|s|pn 1 pi|s|p 1 ops|,  (55)
piopm 1 propo 1 p2 p1 1 p2 p3 1

where p;’s are correlation parameters.

5.3.2 Archimedean copula

Another common copula family is Archimedean copula. Archimedean copulas
are popular because they allow modeling dependency structure in arbitrarily

high dimensions with only one parameter [12].
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Family | Parameter & Generator ¢(t) Inverse o~ 1(s)
Clayton a>0 —o 1 1+ s)_l o
Frank a>0 —mer=l o (1l et(e™ — 1)

Gumbel a>1 (—Int)> exp(—s'/%)

Table 5.1: Summary of three One-Parameter Archimedean copulas for d > 2

Definition 5.3.1. [24] A copula is called Archimedean if it has the following

representation:

C(ulv"'?ud) :Qo_l((p(ul)—i_"'""_tp(ud))v (56)

where ¢ is a continuous, strictly decreasing and convex function, and is the

1

so-called generator, ¢~ " is the inverse of the generator ¢. A generator uniquely

determines an Archimedean copula.

Table gives three common one-parameter multivariate Archimedean cop-
ulas (d > 2). It is worth to know that Archimedean copulas with dimension 3
or higher only allow positive correlation, whereas negative correlation is allowed
for bivariate Archimedean copulas. Figure [5.2| compares four common bivariate
copula, bivariate Gaussian (normal), Student-t, Gumbel, and Clayton copula.
We can see from the figure that all of Student-t, Gumbel and Clayton copula
have a fatter tail dependence than Gaussian copula.

5.4 R Implementation

In this section we will implement Li’s model introduced in Chapter [7] Part
of the approach was initially explored by Jun Yan in paper [24]. We do the

following steps in our code:

1. We firstly plot 1000 random points generated from a trivariate normal
copula and a trivarite t copula. (see Figure |5.3)

2. Then we generate a 200-sized object from a trivariate normal copula with
exponential margins with respective parameter (hazard rate): 0.015, 0.02,

0.025. We set the correlation parameter as 0.5.
3. Finally, we use maximum likelihood method to fit this copula-based model.

The result is shown in Figure 5.4

The R code is as follows:

40



Bivariate Gaussian copula with p = 0.5 Bivariate Student-t copula with p = 0.5 and dof = 1

Bivariate Gumbel copula with .= 4 Bivariate Clayton copula with .= 5

Figure 5.2: An example of the bivariate Gaussian (normal), Student-t, Gumbel,
and Clayton copula. Source: [12]
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21

;'1og1ﬁke.Fﬁt <- fitmvdc(dat, cop.normexp, c(0.015,0.020,0.025,0.5))
> loglike.Fit
The Maximum Likelihood estimation is based on 200 observations.

Margin 1

Estimate Std. Error
ml.rate 0.01615 0.001
Margin 2

Estimate Std. Error
m2.rate 0.0203 0.001
Margin 3

Estimate std. Error
m3.rate 0.02778 0.002
Copula:

Estimate Std. Error

rho.1 0.4866 0.034

The maximized loglikelihood is -2845.281
optimization converged
Number of Toglikelihood evaluations:
function gradient

99 8

Figure 5.4: The estimation of copula correlation and marginal parameters by
maximum likelihood method

library (copula)
require (scatterplot3d)

###1. plot 1000 random points from a trivariate normal copula and a
trivarite t copula

#create a 3—dim normal copula without specifying magins with
correlation 0.5

myCop.norm <— ellipCopula (family=normal, dim=3, dispstr=ex, param
=0.5)

#create a 3—dim t copula without specifying margins with
correlation 0.5 and 3 degree of freedom

myCop.t <— ellipCopula (family=t, dim=3, dispstr=ex, param = 0.5, df
=3)

#random generate 1000 points from a trivariate normal copula and a
trivarite t copula

n <— 1000

Norm <— rcopula (myCop.norm, n)

StudT <— rcopula (myCop.t, n)

#plot 1000 random points
par (mfrow=c (1,2))
scatterplot3d (Norm)
scatterplot3d (StudT)

###2. generate a 200—sized sample from a trivariate normal copula

with exponential margins with different parameter
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22

23

24

25

26

27

28

29

30

cop .normExp <— mvdc(copula=myCop.norm, margins=c(exp,exp,exp),
paramMargins = list (0.015,0.02,0.025))
dat <— rmvdc(cop.normExp, 200)

###3. using maximum likelihood method to fit the copula—based model
generated from process 2

#the loglikelihood at the true parameter value:

loglike .True <— loglikMvdc (¢ (0.015,0.020,0.025,0.5), dat, cop.

normExp)

#estimate the copula correlation and margins’ parameter by moments

estimate .
loglike . Fit <— fitMvdc(dat, cop.normExp, ¢(0.015,0.020,0.025,0.5))

copula.R
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Chapter 6

Latent Variable Models

6.1 Latent Variable Models

The formalism of a latent variable underlies essentially all credit risk models
derived from Merton’s firm value model, as discussed in Chapter |4} Each latent
variable model of credit risk contains three components: a latent variable, a
threshold, and a corresponding binary default indicator with value of 0(non-
default) or 1(default). A latent variable is typically chosen as a value of obligor’s
assets, and a threshold is associated with values of the long-term liabilities. If
the value of the latent variable falls below the threshold, we know that the
default happened, and as a result the value of the indicator will be 1.

Consider a portfolio of m obligors. At time ¢t = 0 all obligors are assumed
to be in a non-default state. Following Frey, McNeil and Nyfeler [I3], we give

the following formal definition of a latent variable model:

Definition 6.1.1. [I3] Let X = (Xi,...,X,,) be an m-dimensional random
vector with continuous marginal distributions representing the latent variables
at time T, and let (D, ..., D,,) be a vector of deterministic cut-off levels. We
call (X;,D;)1<i<m a latent variable model for the binary random vector Y =
(Y1,...,Y,,) if the following relationship holds:

In the factor model introduced in Chapter |4} the latent variables X; are
assumed to be Gaussian random variables and are interpreted as the relative
changes in asset’s log-returns.

For modelling of a portfolio’s credit risk, Definition [6.1.1] should be com-
plemented with a specification of the dependency structure between the latent

variables. This dependency plays a crucial role in determining large losses in
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the portfolio. Again, in the factor model introduced in Chapter [4] the depen-
dency between latent variables X; is a multivariate Gaussian with a uniform
correlations p (we have looked at a way of estimating p in Chapter [4)).

It is natural to specify this dependency using a copula approach. Copula
gives a way of putting marginal distribution of an individual obligor’s asset
return, or survival time in Li’s case [5], together to form a joint distribution of
groups of risks. A good introduction to copulas is provided in [12].

Copula approach allows to provide an alternative definition of the equiva-
lence of latent variable models as was also pointed out by Frey, McNeil and
Nyfeler [13].

6.2 Equivalence for Latent Variable Models

Consider the following definition of the structurally equivalent latent variable

models.

Definition 6.2.1. [13](Equivalence for latent variable models)
Let (X;, D;)1<i<m and (X/, D})1<i<m be two latent variable models generating
default indicator vectors Y and Y’. The models are called equivalent if Y = Y”,

i.e. Y and Y’ has the same distribution.

In other words, the equivalence in distribution for the corresponding default
indicators defines the equivalence of the latent variable models.

As stated in [13], a sufficient condition for two latent variable models to be
equivalent is that individual default probabilities are the same in both models
and the copulas of the latent variables are the same. The following propositions

was proved in Frey, McNeil and Nyfeler [13].

Proposition 6.2.2. [13] Consider two latent variable models (X;, D;)1<i<m
and (X[, D})1<i<m with default indicator vectors Y and Y'. These two models

are equivalent if:
1. P(X; <D;)=P(X/<D)),ie{l,...,m}, and
2. X and X' have the same copula.

Thus, as stated in [I3], even if the terms defining the model (X;, D;)1<i<m
are interpreted and calibrated in different ways, the models still can be struc-
turally equivalent.

Gaussian copula, whose definition we have already given in Chapter [5] is
the latent variable dependence structure which implicitly underlies all standard

industry models.
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6.3 Change of Dependence Structure

Many factor models in credit risk assume the multivariate normality of the
corresponding latent variables. However, this choice is not supported by solid
empirical evidence - unfortunately, the world is not Gaussian. Also, it has been
shown in [13] that the aggregate portfolio loss distribution can be very sensitive
to the exact nature of the multivariate distribution of the latent variables.

The models which lead to heavy-tailed loss distributions, can be developed
even keeping the individual default probabilities of obligors and the matrix of
latent variable correlations fixed.

It is elegant to use a copula, which we will introduce in Chapter [5] as a
bridge to connect a multivariate latent variable distribution with the portfolio
loss distribution which banks are mostly interested in. If we want a model which
can generate a heavier-tailed loss distribution, which represents the higher si-
multaneous joint default probability, we can simply choose a copula which has

the property of heavier tail dependence.

To illustrate this point, Frey, McNeil and Nyfeler [13] used the ¢-distribution

for the following reasons:

e As the degree of freedom parameter v goes to infinity, the t-distribution
converges to the normal distribution. Therefore if we start with an ap-
proximately normal distribution, we can gradually move away from this

model by choosing smaller values of v.

e The t copula is very different to the Gaussian copula. It has the property of
tail dependence, so that it tends to generate simultaneous extreme events,
such as bigger losses (see Figure [11]), with higher probabilities than
the Gaussian copula [2I]. This is exactly what we want, since we want a
realistic credit model which is able to give sufficient weight to scenarios

where large joint defaults occur.

6.4 Alternative Latent Variable Model Proposed
by Li (1999)

We leave the detailed mathematical definition of copula to Chapter [5l In this
section we only explain a brief idea of Li’s model in 1999 for the preparation of
the next chapter.

In 1999, David X. Li [5] took another route of relaxing constraints of Guas-

sian models, which we will discuss in Chapter [7]
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Frequency of events

Higher probability
of big losses

Losses < » Gains

Figure 6.1: Normal vs. fat-tailed loss distribution (Source: [11])

Using the converse of Sklar’s Theorem (see Proposition [5.1.5), assuming
there are m entities, a copula of the form:

CS(1 — exp(Miz1), ..., 1 — expAmim)),

where A1,..., A\, are the parameters of each marginal exponential distribution,
can be used to model the whole dependency structure.
We will elaborate on Li’s model and the meaning of the parameter A;, which

is actually the hazard rate in survival analysis, in Chapter [7]
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Chapter 7

Li’s Model and Hazard
Rate

7.1 Main Idea of Li

In 1999, David X. Li [5] built a special latent variable model, where he modeled
the survival time of each defaultable entity 7 as a latent variable X;. He assumed
that each X; satisfies an exponential distribution marginally, but globally the
vector of these latent variables X = (X7,...,X,,) has a Gaussian copula, with
the correlation as the same as the correlation between the variables X;.

So basically Li applied the essence of survival analysis widely used in bio-
logical statistical modeling, to the credit risk modeling. He first made a very
interesting choice of the latent variable, which is the survival time rather than
the asset return of an entity, and built a model still using normal dependence,
but with exponential marginal distribution with a special parameter, which is

so-called hazard rate.

7.1.1 Survival function

Inspired by [5], let us first consider an individual obligor. This obligor’s time-
until-default, T', is a continuous random variable, which measures the length of
time from today to the time when default occurs.

First we give the definition of the survival function given in [5]:

S(t)=P(T >t), t>0. (7.1)

It gives the probability that an obligor will survive until time t.

49



Let F(t) denote the distribution function of T,
Fit)=P(T<t)=1-5(), t>0. (7.2)

If the obligor has already survived x years, the future life time for this obligor
has the conditional distribution of T'— z given T' > z. Li [5] also introduced

two more notations,

q(t,x) =P[T —x <t|T >x], t>0,2>0. (7.3)
pt,x) =1—tg, =PT —x>t|T >z], t>0,2>0. (7.4)

q(t, ) can be interpreted as the conditional probability that the obligor will
default within the next ¢ years conditional on its survival for = years, and p(¢, x)
can be interpreted as the conditional probabilty that the obligor will still survive
t years more on its survival for z years. In the special case of x = 0, we have
p(t,0) = S(t), t>0.

If t = 1, we have following definition:

Definition 7.1.1. [5]
gz =PT — 2 < 1T > 7]

is called the marginal default probability, which gives the probability of default

in the next year conditional on the survival until the beginning of this year.

7.1.2 Hazard rate function

The hazard rate is defined as the instantaneous default probability rate for an
obligor that has survived until age x. It can be seen as the conditional default

rate during the next instant of time.

Definition 7.1.2. The function

f(z)

S 75

is called hazard rate function, where f(xz) = F'(z) is the probability density

function of T'.

The relationship of the hazard rate function with the survival function is as

follows:

h(z) = —g((j)), x > 0.

So, the survival function can be expressed in terms of the hazard rate func-

tion:
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Figure 7.1: two obligor’s survival plot (Source: [I])

S(t) =e Joh)ds 4>, (7.5)

In addition the distribution function is
Ft)=1-8t)=1—e Joh®ds 4> (7.6)

The hazard rate has many similarities with the short-term interest rate [5].
Therefore many modeling techniques for the short-term interest rate can be
applied to model the hazard rate. In reality, people usually assume that the
hazard rate is a constant, h. This is the key assumption for our following
section, where we provide three ways to calculate this constant. In this case,
the density function is

f(t) =F'(t) = he™™,

which shows that the survival time follows an exponential distribution with
parameter h.

Generally, survival analysis involves the modeling of time to ‘event’, for
example, death or failure, therefore it is widely used in biological organizations
and medical institutions. To visualize the survival time and its relationship
with hazard rate, we found two plots from [I] (see Figure Figure , it is

obvious that the survival declines with time.
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Figure 7.2: Two obligor’s hazard rate plot (Source: [1)

7.1.3 Joint survival function

Finally, we give the definition of the joint survival function for two obligors
introduced in [20]. Given obligors A and B, based on their survival times T4

and T, we have the joint survival function
STATB (8, t) = ]P)[TA > s, T > t],
and the joint distribution function is

F(S,t) = P[TA <s,Tp < t] =1- STA(S) — STB<t) + STATB<S7t)~

7.2 Estimation of Constant Hazard Rate

The term structure of default rates can be obtained in three significantly differ-

ent ways:

e From time series of historical default rates provided by rating agencies like
Moody’s and Fitch.

e From market prices of defaultable bonds or asset swap spreads.
e From a framework of the Merton model.

We will next discuss each of these approaches.
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Years 1 2 3 4 5 7 10 15 20
Aaa  0.000 0.012 0.012 0.037 0.105 0.245 0.497 0927 1.102
Aa 0.022  0.059 0.091 0.159 0.234 0384 0.542 1.150  2.465

A 0.051  0.165 0.341  0.520 0.717  1.179  2.046 3.572  5.934
Baa  0.176 0494 0912 1404 1926 2996 4.851 8.751 12.327
Ba 1.166  3.186  5.583  8.123 10.397 14.318 19.964 29.703 37.173

B 4.546 10.426 16.188 21.256 25.895 34.473 44.377 56.098 62.478
Caa  17.723 29.384 38.682 46.094 52.286 59.771 71.376 77.545 80.211

Table 7.1: Average cumulative default rates (%), 1970 - 2009. Source: Moody’s.

7.2.1 Method 1: Historical default probability

Rating agencies, such as Moody’s, S&P, and Fitch, systematically rate credit-
worthiness of corporate bonds. For example, Moody’s long-term rating scale
consists of 9 categories, Aaa, Aa, A, Baa, Ba, B, Caa, Ca, and C, in order from
the best to the worst rating category. Assignment of a rating category is not
purely model based, and takes into account a whole range of qualitative and
quantitative factors.

Table gives a typical example of data provided by the rating agencies.
It shows the cumulative default rates for the corporate bonds with a particu-
lar rating between 1 and 20 years within a 39-years observation window. As
illustrated in [3], for example, a bond with an A credit rating has a 0.051%
chance of defaulting during the first year, a 0.165% chance of defaulting by
the end of the second year, and so on. The probability of a bond defaulting
during a particular year can be calculated from the table. For example, the
probability that an initially rated A bond will default during the second year is
0.165% — 0.051% = 0.114%.

Note that the probability of default within a year can be both increas-
ing and decreasing function of time. Typically, it is an increasing function
for investment-grade bonds (e.g., the probabilities of an A-rated bond default-
ing during years 0-5, 5-10, 10-15, and 15-20 are 0.717%, 1.329%, 1.526%, and
2.362%, respectively): the bond issuer is initially considered to be creditwor-
thy, and the factors affecting its financial health arrive rather randomly over a
long period of time. For bonds with a poor credit rating, the probability of de-
fault can be a decreasing function of time (e.g., the probabilities that a B-rated
bond will default during years 0-5, 5-10, 10-15, and 15-20 are 25.895%, 18.482%,
11.721%, and 6.380%, respectively). For these bond issuers the factors which
might be leading to default are already identifiable, and the next year or two
may be critical for all of them. However, the longer such an issuer survives, the

greater the chance of improvement for its financial health.
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Hazard rate estimation from historical default probability

The hazard rates can be easily estimated from Table [7.1] For example, the
unconditional default probability for a Caa-rated bond during the third year as
seen at time 0 is 38.682 - 29.384=9.298%. Its survival probability in the first
two years is 100 - 29.384 = 70.616%. The default probability during the third
year conditional on no earlier default is therefore 0.09298/0.70616, or 13.17%.

These conditional default probabilities are the hazard rates entering equation

5).
Obviously, we can transform the default probability function (|7.6))

F(t)=1— ¢ Joh(s)ds
into
F(t)=1—e®t, (7.7)

where h(t) is the average hazard rate(or default intensity) between time 0 and

time t.

Example 7.2.1. For an A-rated company, if we want to calculate the default

intensity using historical data and based on equation ([7.7)), when ¢ = 7, we have
— 1
h(7) = —= In[l — F(7)].

The value of F(7) is taken directly from table[7.1} which is 0.01179. The average

7-year hazard rate is therefore

_ 1
A(7) = — 1n[0.98821] = 0.0017.

7.2.2 Method 2: Estimate hazard rate from bond price

This methods looks at estimating the hazard rate without using historical de-

fault rates but based on the other market information.

Recovery rate

The recovery rate for a bond is typically defined as the bond’s market value (as
a fraction of its face value) right after a default. Table provides historical
average recovery rates for different categories of bank loans and bonds in the
United States. It shows that bank loans with a first lien on assets had the best
average recovery rate, 65.6%. For bonds, the average recovery rate ranges from
49.8% for those that are both senior to other lenders and secured to 24.7% for
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Class Average recovery rate (%)

First lien bank loan 65.6
Second lien bank loan 32.8
Senior unsecured bank loan 48.7
Senior secured bond 49.8
Senior unsecured bond 36.6
Senior subordinated bond 30.7
Subordinated bond 31.3
Junior subordinated bond 24.7

Table 7.2: Recovery rates on corporate bonds as a percentage of face value,
1982-2009. Source: Moody’s.

those that rank after other lenders with a security interest that is subordinate
to other lenders.

Interestingly, recovery rates are significantly negatively correlated with de-
fault rates. This means that a bad year for the default rate is usually doubly bad
because it is accompanied by a low recovery rate. Moody’s looked at average
recovery rates and the average default rates each year between 1982 and 2009,

and found [16] that the following relationship provides a good fit to the data:

Average recovery rate = 0.503 — 6.3 x Average default rate. (7.8)

Hazard rate estimation from bond price

In the simplest approach, the only reason for the price of a corporate bond
being lower than a similar risk-free bond (this difference in financial jargon is
called ‘credit spread’) is the possibility of default. Consider first the following
approximate calculation, John C. Hull in [3] supposes that a bond yields 2%
more than a similar risk-free bond and that the expected recovery rate in the
event of a default is 40%, from the expectation to lose 2% per year from defaults
and the recovery rate of 40%, an estimate of the probability of a default per
year conditional on no earlier default is 0.02/(1-0.4), or 3.33%. In a more formal
form,
s
h= TR (7.9)
where h is the hazard rate per year, s is the annualised spread of the corporate
bond yield over the risk-free rate, and R is the expected recovery rate.
To calculate average hazard rates from bond prices, we use equation
and bond yields published by Merrill Lynch (see [3]). The recovery rate is
assumed to be 40%. To calculate the bond yield spread, we assume that the

risk-free interest rate is the 7-ear swap rate minus 10 basis points (see [3]).

Example 7.2.2. [3] For an A-rated bond, the average Merrill Lynch yield was
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5.995%. The average 7-year swap rate was 5.408%, so that the average risk-free

rate was 5.308%. This gives the average 7-year hazard rate as

0.05995 — 0.05308
1-04

=0.0115,

or 1.15%.

7.2.3 Comparison between method 1 and method 2

The described approaches differ significantly and might lead to quite different
results. People intend to use market information rather than historical infor-

mation for the following reasons:

e A bank market unit is required to base its calculation of profit and loss on
current market information. This information reflects the market expec-
tations about the future which will determine the actual profit and loss.

This forward-looking view is not present in historical default data.

e Market’s response in anticipation of future credit quality modifications
is much faster than the rating agencies. A typical example is the rating

agencies reaction to the Asian financial crisis in 1997.

e Factors influencing deterioration of corporate’s credit quality change over
long periods of time which make the longer term estimates of default

probabilities unstable.

7.2.4 Method 3: Using Black-Scholes formula to estimate

hazard rate

K. Merton [9] pioneered an approach of modelling a company’s equity as an
option on the assets of the company. Suppose that a firm has one zero-coupon
bond outstanding with maturity time T'. Let A(¢) be the value of the company’s
assets at time ¢, E(t) the value of its equity, and D(T') be the debt repayment
due at time T, and let o4 and o be the volatility of the assets (assumed
constant) and instantaneous volatility of the equity, respectively.

If A(T) = D, the value of its equity is zero, therefore it is (at least in theory)
rational for the company to default on the debt at time T. If A(T) > D, the
company should make the debt repayment at time T', therefore, the value of the

firm’s equity at time 7" in Merton’s model is

Er =max(A(T) — D,0).
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John C. Hull in [3] gives a way to estimate hazard rate using Black-Scholes
formula. He shows that the equity is a call option on the value of the assets
with a strike price equal to the repayment required on the debt. The Black-

Scholes-Merton formula gives the value of the equity today as

E(0) = A(0)N(dy) — De” "' N(dy), (7.10)
where
iy — In(A(0)/D) + (r + 0% /2)T
oaVT ’
and

dgzdl—JA\/T,

and N is the univariate standard normal distribution function. The value of the
debt today is A(0) — E(0).

The risk-neutral probability that the company will default on the debt is
N (—dz). To calculate this, we require A(0) and o 4. Neither of these are directly
observable. However, if the company is publicly traded, we can observe E(0)
and og. Also, from Ito’s formula and explanation in [3],
ok

opE(0) = 5oaA(0). (7.11)

This provides another equation that must be satisfied by A(0) and o4, so com-

bining equation (7.10) and (7.11)), we can get A(0) and o 4.

Example 7.2.3. (Source:[3]) The value of a company’s equity is $3 million
and the volatility of the equity is 80%. The debt that will have to be paid in 1
year is $10 million. The risk-free rate is 5% per annum. In this case E(0) = 3,
og = 0.80, r =0.05, T =1, and D = 10. Solving equations and
yields A(0) = 12.40 and oy = 0.2123. The parameter ds is 1.1408, so that
the probability of default is N(—ds) = 0.127, or 12.7%. The market value of
the debt is A(0) — E(0), or 9.40. The present value of the promised payment
on the debt is 10e79-05%1 = 9,51, The expected loss on the debt is therefore
(9.51 — 9.40)/9.51, or about 1.2% of its no-default value. The expected loss
(EL) equals the probability of default (PD) times one minus the recovery rate.
It follows that the recovery rate equals one minus EL/PD. In this case, the
recovery rate is (12.7 — 1.2)/12.7, or about 91%, of the debt’s no-default value.
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Chapter 8

Further work

8.1 Further work

We found there are still some interesting problems which can be researched on

in the future, for example,

e For the asset price model described in of Chapter we have assumed
that the stochastic part is a Brownian Motion. Based on this simple diffu-
sion model, Vasicek derived the portfolio credit loss distribution function.
However, we are interested in a kind of asset model, whose stochastic part
is not standard Brownian Motion, but with jumps. Also in the future we

hope to derive a loss distribution based on jump-diffusion models.

e In this thesis and in practice, hazard rate is usually being assumed to be
a constant. This definitely simplified the risk modeling. However, we are
interested in a stochastic hazard rate, and we want to find a way to model

hazard rate in the future research.

e In Chapter Figure gives an example of the bivariate Gaussian,
Student-t, Gumbel, and Clayton copula. It is obvious that all of Student-,
Gumbel, and Clayton copula have a fatter tail than the Gaussian copula.
However, we also see that the tails of the Gumbel and Clayton copula
are fatter in a different way. In the future we want to go deeper to the
comparison between Archimedean copulas, in order to use them better to

model dependency structure.
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