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Introduction

Let K be a number field, and let E be an elliptic curve over K. We consider
the Weil-Châtelet group of equivalence classes of K-torsors of E. Suppose that
C is such a K-torsor, and let N be its index. That is, N is the minimal integer
such that there exists a field L/K of degree N such that C has an L-rational
point. It turns out, that there exists a function

B(N) = [K : Q]N logN +O(N),

depending only on E, such that this splitting field L may be chosen such that

log
∣∣NK/Q(∆L/K)

∣∣ ≤ B(N).

In the first chapter we will explore the theory of Green functions: real-
valued functions on Riemann surfaces that appear when one attempts to invert
the Laplacian operator. Next, we will introduce admissible line bundles. These
take the place of line bundles in the Arakelov-theoretical divisor theory. Using
the Green functions we will show that admissible line bundles exist. Next, we
will look at a result of Faltings [5] that allows us to assign in a natural way
metrics to the determinant of cohomology of admissible line bundles. Finally,
we will derive an inequality on these metrics, using a result of Elkies (1.3.4).

The next chapter serves as an introduction to the theory of arithmetic sur-
faces. An arithmetic surface is a regular, integral, projective flat scheme X → S
over a Dedekind scheme S of dimension 1. Given a curve C over the fraction
field of S, we may try to construct an arithmetic surface over S such that its
generic fiber is isomorphic to C, called a regular model of C over S. This is
not always possible: when one tries to construct such an arithmetic surface in
a naive way it will probably have singularities. Under some nice assumptions it
turns out that these singularities can be resolved.

On surfaces over a field we have an intersection theory of divisors. When
we try to generalize this to arithmetic surfaces over SpecOK , with OK the ring
of integers of a number field, the intersection number will not behave as nicely
under linear equivalence. The problem here is that the base scheme SpecOK is
not ‘compact’ anymore. We can solve this issue by adding some ‘points at infin-
ity’ to SpecOK ; these are points corresponding to infinite places of K, whereas
the closed points of S correspond to the finite places of K. In the third chapter
we will introduce an intersection theory, the Arakelov intersection theory, based
on this concept. Two well-known theorems from ‘classical’ intersection theory
on surfaces, the Riemann-Roch theorem and the adjunction formula, have an
Arakelov-theoretical analogue.

In the final chapter we will take a closer look at Arakelov intersection theory
on arithmetic surfaces with generic fiber of genus 1. A semi-stable elliptic curve
has a regular model of which the geometric fibers look rather nicely. Using this
information Hriljac [7] has given an upper bound for the discriminant of the
splitting field of torsors of semi-stable elliptic curves over a number field. We
will inspect this upper bound more closely to arrive at the inequality listed at
the beginning of this introduction.

I would like to thank my supervisor, Dr. Robin de Jong, for his guidance,
patience, and the useful and informative advice he has given me before and
throughout the process of writing this thesis. I am also grateful to my family
for all the support they have always given me.
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1 Complex geometry

In this section we will establish the complex geometrical theory behind Arakelov
intersection theory. If X is a compact Riemann surface together with a smooth
volume form µ with

∫
X
µ = 1, then we can define a Laplace operator ∆µ on

the set of smooth functions on X such that (∆µf)µ = i
π∂∂f . This operator

is not injective as it annihilates all constant functions. But we can salvage an
inverse in some cases, by convolution with a so-called Green function. If X has
positive genus then there is a canonical way to define a volume form on X, and
the corresponding Green function plays a crucial role in Arakelov intersection
theory. We will also look at so-called admissible line bundles; these are line
bundles on X with a Hermitian metric that satisfies some nice properties. As it
will turn out these admissible line bundles correspond to Arakelov divisors, just
as Weil divisors correspond to line bundles in the algebraic geometrical case.
In the last paragraph we will define the Faltings metric on the determinant of
cohomology of every admissible line bundle, and this Faltings metric will be
used later on to state the Arakelov-theoretical Riemann-Roch theorem.

1.1 Currents

Let X be a differentiable manifold of dimension n. Let Ep denote the sheaf of
smooth real-valued p-forms on X. For every open U ⊂ X, let Epc (U) ⊂ Ep(U)
denote the subset of smooth p-forms with compact support on U . Notice that
Epc is not a sheaf in general. For open subsets U ⊂ V ⊂ X we have natural
inclusions Epc (U) ↪→ Epc (V ).

Definition 1.1.1. A current of degree p on X is an R-linear form on En−pc (X)
that is continuous in the sense of distributions; that is: if {ωi}i≥0 is a sequence
of forms in Epc (X) with support in a fixed compact subset of X, such that on
every coordinate chart of X all derivatives of all coefficients of the ωi converge
uniformly to 0, then limi→∞ T (ωi) = T (ω). We denote the set of currents of
degree p on X by Dp(X). This set is an R-vector space in a natural way.

If P ∈ X is any point, then the Dirac delta at P is the current of degree n
defined by

δP (f) = f(P ).

More generally, if D =
∑
P∈X nPP is a formal sum of points on X (a Weil

divisor if X is a Riemann surface), then we define the Dirac delta at D to be
the degree n current

δD =
∑
P∈X

nP δP .

Now suppose that X is oriented, so we can take integrals. If α ∈ Ep(X) is a
differential form, then we define the current [α] of degree p by

[α](φ) =

∫
X

α ∧ φ for all φ ∈ En−pc (X).

Notice that [α] = [β] for two p-forms α, β if and only if α = β. Hence we have
an embedding Ep(X) ↪→ Dp(X), so we can view differential forms as currents.
Some operations on differential forms extend to operations on currents in a
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natural way, as we will see later on. A current T of degree p is said to be
represented on an open subset U ⊂ X by a p-form α ∈ Ep(U) if

T (φ) =

∫
U

α ∧ φ for all φ ∈ En−pc (U) ⊂ En−pc (X).

Suppose now that X is a compact differentiable manifold. Let α be a differ-
ential p-form, and β a differential (n−p−1)-form with compact support. Then
d(α∧β) is an n-form with compact support and it is equal to dα∧β+(−1)pα∧dβ.
Taking the integral over X and applying Stokes’ theorem yields

0 =

∫
X

d(α ∧ β) =

∫
X

dα ∧ β + (−1)p
∫
X

α ∧ dβ

so
∫
X
dα ∧ β = (−1)p+1

∫
X
α ∧ dβ, or using the notation introduced above:

[dα](β) = (−1)p+1[α](dβ).

This notion of taking exterior derivatives can be extended in a natural way to
all currents of degree p: if T is a current of degree p, we define dT to be the
current of degree p+ 1 given by

dT (φ) = (−1)p+1T (dφ) for all φ ∈ En−p−1
c (X).

Analogously to real-valued currents, we can introduce complex-valued cur-
rents. A complex-valued current of degree p is an R-linear map En−pc (X) → C
such that its real and imaginary parts are real-valued currents. If φ is a complex-
valued differential form we can write φ = Reφ+ i Imφ with Reφ and Imφ real-
valued differential forms, and we define T (φ) = T (Reφ) + iT (Imφ). Now T is
a C-linear form on the space of complex differential forms of degree n− p with
compact support. The definitions of Dirac delta currents, represented currents
and the exterior differential carry over without any problems to the complex-
valued case. Every current on a complex manifold will be assumed to be a
complex-valued current from now on.

Now suppose that X is a compact complex manifold. In a similar way as for
the differential d we have the identities [∂α](β) = (−1)p+1[α](∂β) and [∂α](β) =
(−1)p+1[α](∂β) for every complex-valued differential p-form α and n−p−1-form
β. Thus we can extend the holomorphic and antiholomorphic differentials of
differential forms to the notion of holomorphic and antiholomorphic differentials
of currents of degree p by setting

∂T (φ) = (−1)p+1T (∂φ) and ∂T (φ) = (−1)p+1T (∂φ).

We will use the rest of this section to compute the degree 2 current ∂∂[log |f |]
on a Riemann surface X; where f is a meromorphic function on X, and [log |f |]
is the degree 0 current given by

[log |f |](φ) =

∫
X\Supp f

log |f | · φ.

Define the operator d = ∂ − ∂. One easily verifies that dd = −2∂∂, that
df ∧dg = dg∧df for all smooth functions f, g, and that fddg−gddf = d(fdg−
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gdf). If P ∈ X is a point and z is a local coordinate on an open neighbourhood
U centered at P , then we can define local coordinates r, θ on U \{P} by setting
z = reiθ and z̄ = re−iθ. We find that for every smooth function h the following
identity holds:

dh =
1

ir

∂h

∂θ
dr + ir

∂h

∂r
dθ.

Lemma 1.1.2. Let z be a chart centered at P , and for r > 0 sufficiently small
let CP (r) be the circle around P given by |z| = r. Let h be a smooth function
around P and let f be of the form f = k log |z| + g, with g a smooth function
around P . Then

lim
r↓0

∫
CP (r)

fdh = 0

and

lim
r↓0

∫
CP (r)

hdf = 2πikh(P ).

Proof. Introduce polar coordinates r, θ by setting z = reiθ and z̄ = re−iθ. On
C(r) we have dr = 0, so we find that

fdh = (k log r + g) · ir ∂h
∂r
dθ.

As g and ∂h
∂r are smooth functions around P and as r log r tends to 0 as r ↓ 0

we find that

lim
r↓0

∫
CP (r)

fdh = lim
r↓0

∫ 2π

0

ir(k log r + g)
∂h

∂r
dθ = 0.

For the second equation: we have f = k log r + g, so

hdf = ir
∂f

∂r
dθ = ir

(
k

r
+
∂g

∂r

)
,

so

lim
r↓0

∫
CP (r)

hdf = lim
r↓0

(
ik

∫ 2π

0

h dθ + ir

∫ 2π

0

h
∂g

∂r
dθ

)
The first summand tends to ik · 2πh(P ) = 2πik · h(P ) as r ↓ 0, and the second
summand tends to 0 as r ↓ 0, proving the second equation.

Let f be a meromorphic function on X, and consider the current [log |f |] of
degree 0 given by

[log |f |](φ) =

∫
X\Supp f

log |f | · φ.

For every P in the support of f , pick a local coordinate zP centered at P , and for
r sufficiently small, let DP (r) be the open disc around P given by |zP | < r, and
let CP (r) be the circle around P , oriented counterclockwise, given by |zP | = r.
Let S(r) be the union of all DP (r), with P ranging over the support of f . We
find that

[log |f |](φ) = lim
r↓0

∫
X\S(r)

log |f | · φ.
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Let us compute the current ∂∂[log |f |]. For h smooth on X we have

∂∂[log |f |](h) = lim
r↓0

∫
X\S(r)

log |f |∂∂h = − 1
2 lim
r↓0

∫
X\S(r)

log |f |ddh.

We have

d(log |f |dh− hd log |f |) = log |f |ddh− hdd log f = log |f |ddh

since ∂∂ log |f | = 0, so

∂∂[log |f |](h) = − 1
2 lim
r↓0

∫
X\S(r)

d(log |f |dh− hd log |f |).

Using Stokes’ theorem we find that this equals

1
2

∑
P∈Supp f

lim
r↓0

∫
DP (r)

(log |f |dh− hd log |f |).

The factor (−1) comes from the fact that the orientation of the circles ob-
tained from the orientation of X is clockwise, but the orientation of the CP (r)
is counterclockwise. Around P ∈ Supp f the function f is of the form f =
zvP (f)g with g a nonzero holomorphic function. Hence log |f | is of the form
vP (f) log |z| + log |g|, and log |g| is a smooth function around P . Using the
previous lemma we find that

∂∂[log |f |](h) = 1
2

∑
P∈Supp f

−(2πivP (f)h(P )) = −πi · δdiv f (h).

We have therefore proven the following theorem:

Theorem 1.1.3. Let X be a Riemann surface, and let f be a meromorphic
function on X. Then

∂∂[log |f |] = −πiδdiv f .

1.2 Green functions on Riemann surfaces

Throughout this section, we will let X denote a compact connected Riemann
surface and µ a volume form on X such that

∫
X
µ = 1. Define the Laplacian

∆µ with respect to µ to be the unique operator on the set E0(X) of smooth
complex-valued functions on X such that

(∆µf)µ =
i

π
∂∂f for all f ∈ E0(X).

This operator is not invertible: its kernel consists of the harmonic functions
on X, and as X is compact, these functions are the constant functions on X.
However, if we let W ⊂ E0(X) denote the subspace of functions f with

∫
fµ = 0,

we get a decomposition E0(X) = C⊕W , and hence ∆µ gives an injective map
W → E0(X). In this section we will give an inverse to this map, using the
following theorem on currents.
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Theorem 1.2.1 ([2, Theorem 2.2]). Let X be a compact connected Riemann
surface, and let µ be a smooth (1, 1)-form on X such that

∫
X
µ = 1. For every

current T of degree 2 on X, there exists a unique current GµT of degree 0 on
X such that

i

π
∂∂GµT = T − T (1) · [µ] and GµT (µ) = 0.

Moreover, if T is represented on U ⊂ X by a 2-form φ ∈ E2(U), then GµT is
represented on U by a function f ∈ E0(U). There is a unique smooth function

gµ : (X ×X) \∆→ R

having a logarithmic (hence integrable) singularity along ∆ ⊂ X ×X, such that
for all φ ∈ E2(X) the current Gµ[φ] is represented by the function Gµφ ∈ E0(X)
given by

Gµφ(P ) =

∫
Q∈X\{P}

gµ(P,Q)φ(Q).

Definition 1.2.2. Let X be a compact connected Riemann surface, and let µ
be a smooth (1, 1)-form on X such that

∫
X
µ = 1. The function gµ occurring in

the previous theorem is called the Green function associated to µ.

If µ is real then the proof of theorem 1.2.1 in [2] shows that the Green
function gµ is real as well.

Lemma 1.2.3 ([2, Lemma 2.3]). Let X be a compact and connected manifold,
let P ∈ X be a point, let µ be a smooth (1, 1)-form of X such that

∫
X
µ = 1,

and let gP,µ let the smooth function on X \ {P} given by gP,µ(Q) = gµ(P,Q).
Let [gP,µ] be the degree 0 current on X defined by

[gP,µ](φ) =

∫
X\{P}

gP,µφ for all φ ∈ E2(X).

Then [gP,µ] is the unique current satisfying

i

π
∂∂[gP,µ] = δP − [µ] and [gP,µ](µ) = 0.

The current [gP,µ] gives us a way to invert the Laplace operator ∆µ. Let
f ∈ W ; so f ∈ E0(X) is a smooth function on X and [µ](f) =

∫
X
fµ = 0. We

then have:

[gP,µ]((∆µf)µ) = [gP,µ]( 1
π∂∂f) = 1

π∂∂[gP,µ](f) = δP (f)− [µ](f) = f(P ).

So we retrieve f from ∆µf as the function P 7→ [gP,µ]((∆µf)µ).
Let’s take a closer look at the Green function, especially around the diagonal.

Proposition 1.2.4 ([1, Proposition 1.1]). Let X be a compact connected Rie-
mann surface, and let µ be a smooth (1, 1)-form on X such that

∫
X
µ = 1. Then

gµ(P,Q) = gµ(Q,P ) for all P 6= Q.

Let P ∈ X, and let z be a local coordinate around P . Let lP be a smooth
function on X \ {P} that is given on some open neighbourhood U of P by
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lP (Q) = log |z(P )− z(Q)|. By applying Stokes’ theorem (cf. the proof of theo-
rem 1.1.3) we find that

∂∂[lP ] = −πiδP on U,

and from lemma 1.2.3 we know that ∂∂[gP,µ] = −πi(δP − [µ]), so ∂∂[gP,µ − lP ]
is represented by a smooth (1, 1)-form on X. Using theorem 1.2.1 we find that
gP,µ − lP can be extended to a smooth function on X. We therefore find that
on U × U the Green function gµ can be written as

gµ(P,Q) = log |z(P )− z(Q)|+ h(P,Q)

with h a smooth function on U × U .
For every Weil divisor D =

∑
P nPP on X, we define the Green function

gD,µ to be

gD,µ =
∑
P

nP gP,µ.

If f is a meromorphic function on X with divisor div f , then we obtain the
following identity, which will be useful later on.

Theorem 1.2.5. Let vµ(f) := −
∫
X

log |f |µ. Then

[gdiv f,µ] = [log |f |]− [vµ(f)].

In particular, on X \ Supp f , we have

gdiv f,µ = log |f | − vµ(f)

as smooth functions.

Proof. Write div(f) =
∑
P nPP . We have

∂∂[gdiv f,µ] = −πi
∑
P

nP (δP − [µ]) = −πiδdiv f

by lemma 1.2.3, and

∂∂([log |f |]− [vµ(f)]) = ∂∂[log |f |] = −πiδdiv f

by theorem 1.1.3. Moreover, we have [gdiv f,µ](µ) = 0, again by lemma 1.2.3,
and [log |f |](µ)− [vµ(f)](µ) = 0, by definition of vµ(f). Using theorem 1.2.1 we
find the desired equality.

1.3 The Arakelov-Green function

Let X be a compact and connected Riemann surface of genus g ≥ 1. We assign
to the g-dimensional complex vector space Ω1

X(X) a hermitian inner product

〈ω, η〉 =
i

2

∫
X

ω ∧ η̄.

Let ω1, . . . , ωg be an orthonormal basis of Ω1
X with respect to this inner product,

and define the smooth (1, 1)-form µ as

µ =
i

2g

g∑
k=1

ωk ∧ ω̄k.
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Using the fact that the chosen basis is orthonormal, we find that
∫
X
µ = 1.

Moreover, the form µ does not depend on the choice of orthonormal basis, as
the following lemma shows.

Lemma 1.3.1. Let {ω1, . . . , ωg} and {η1, . . . , ηg} be two orthonormal bases of
Ω1
X . Then

i

2g

g∑
k=1

ηk ∧ η̄k =
i

2g

g∑
k=1

ωk ∧ ω̄k.

Proof. Using the identity ηk =
∑g
l=1 〈ηk, ωl〉ωl we find:

g∑
k=1

ηk ∧ η̄k =

g∑
k=1

g∑
l=1

〈ηk, ωl〉ωl ∧ η̄k

=

g∑
l=1

g∑
k=1

〈ωl, ηk〉ωl ∧ η̄k

=

g∑
l=1

ωl ∧
g∑
k=1

〈ωl, ηk〉ηk

=

g∑
l=1

ωl ∧ ω̄l

where the last equality follows from the identity ωl =
∑g
k=1 〈ωl, ηk〉ηk.

Lemma 1.3.2. Let ω1, . . . , ωg be an orthonormal basis for Ω1
X(X). Then µ =

i
2g

∑g
k=1 ωk ∧ ω̄k is a volume form.

Proof. Suppose that µ vanishes at P ∈ X. Let z be a local coordinate for X
around P . Then every ωk can be written around P as ωk(z) = fk(z)dz, with fk
a holomorphic function. Then µ can be written as

µ(z) =
i

2g

g∑
k=1

|fk(z)|2dz ∧ dz̄.

We therefore see that fk vanishes at P for all k = 1, . . . , g, and hence that
all ωk vanish at P , so as ω1, . . . , ωg form a basis for Ω1

X(X) we see that every
holomorphic 1-form on X vanishes at P . We will show that this is not the case.

Let K = divω be a canonical divisor on X, induced by a meromorphic
differential form ω. Using Riemann-Roch on the divisors 0 and P we find that

l(P )− l(K − P ) = l(0)− l(K) + 1;

where l(D) = dimH0(X,OX(D)) for every divisor D of X. Since X has positive
genus, H0(X,OX(P )) can only contain the constant functions, as any noncon-
stant global section of OX(P ) would induce an isomorphism with the Riemann
sphere. Therefore we see that l(P ) = l(0) = 1, and hence that l(K − P ) =
l(K)− 1, so H0(X,OX(K − P )) is a proper subspace of H0(X,OX(K)). Take
f ∈ H0(X,OX(K)) \H0(X,OX(K −P )). We see that div fω = K + div f ≥ 0,
so fω is a holomorphic 1-form. Moreover we have f /∈ H0(X,OX(K − P )), so
div fω−P is not effective, showing that fω does not have a zero at P . We have
found a holomorphic 1-form with no zero at P , completing our proof.
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Definition 1.3.3. The form µ defined above is called the canonical (1, 1)-form
on X. We define the Arakelov-Green function of X to be the smooth real-valued
function gAr := gµ on (X ×X) \∆.

Some notation: for every point P ∈ X we will let gP,Ar denote the smooth
function Q 7→ gAr(P,Q) on X \ {P}, and for every divisor D =

∑
P nPP we let

gD,Ar =
∑
P nP gP,Ar.

The following theorem gives a useful upper bound that we will use later in
this thesis.

Theorem 1.3.4 (Elkies, [7, p. 218]). Let X be a Riemann surface of genus 1.
There exists a constant c such that for all n ≥ 2 and every n-tuple of pairwise
different points P1, . . . , Pn ∈ X the inequality∑

i6=j

gAr(Pi, Pj) ≤
n log n

2
+ nc

holds.

1.4 Admissible line bundles

Definition 1.4.1. Let X be a complex manifold, and let E be a holomorphic
vector bundle on X. A Hermitian metric 〈·, ·〉 assigns for every P ∈ X a
Hermitian inner product 〈·, ·〉P on the fiber EP , in such a way that for any
two local sections s, t ∈ E(U) (U ⊂ X open) the complex-valued function
〈s, t〉 : P 7→ 〈s(P ), t(P )〉P on U is smooth. A Hermitian line bundle is a
holomorphic line bundle equipped with a Hermitian metric.

If 〈·, ·〉 is a Hermitian metric on E, then we can assign to any local section

s ∈ E(U) a norm ‖s‖ = 〈s, s〉1/2.
Suppose now that L is a holomorphic line bundle on X. Then giving a

Hermitian metric on L is equivalent to giving for every local section s ∈ L(U)
a function ‖s‖ : U → R≥0, such that for every holomorphic function f on
U the identity ‖f · s‖ = |f |‖s‖ holds, and for every locally generating section
s ∈ L(U) the function ‖s‖ is positive-valued and smooth. We will use this
method of defining a Hermitian metric on a holomorphic line bundle from now
on.

If L and M are two holomorphic line bundles on X with Hermitian metrics
‖·‖L and ‖·‖M , then L⊗M is again a line bundle, and it has a Hermitian metric
‖·‖L⊗M given by ‖s⊗ t‖L⊗M = ‖s‖L · ‖t‖M .

Let L be a holomorphic line bundle on X. For every non-zero meromorphic
section s of L we define a divisor divL(s) =

∑
P nPP of X as follows: if P ∈ X is

any point and t a local generating section of L, then we can write s = ft around
P , with f a meromorphic function around P ; we define nP = ordP (f). For every
non-zero meromorphic function f on X we see that divL(fs) = div(f)+divL(s);
and if L is of the form L = OX(D) with D a divisor of X we have

divOX(D) f = D + div f

for all meromorphic functions f on X.
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Suppose that we have a Hermitian line bundle L on X. We take a non-zero
meromorphic section s of L and consider the current

− i
π∂∂[log ‖s‖] + δdivL s.

By 1.1.3, this current does not depend on the choice of s. This leads us to the
following definition.

Definition 1.4.2. Let X be a Riemann surface, equipped with a holomorphic
line bundle L with a Hermitian metric ‖·‖. The curvature of ‖·‖ is the degree 2
current curv‖·‖ defined by

curv‖·‖ = − i
π∂∂[log ‖s‖] + δdivL s,

with s any non-zero meromorphic section of L.

Definition 1.4.3. Let X be a compact and connected Riemann surface of
positive genus, with a Hermitian line bundle L with metric ‖·‖. Then ‖·‖ is called
admissible if curv‖·‖ = (degL)[µ]. An admissible line bundle is a holomorphic
line bundle equipped with an admissible metric.

If L and M are equipped with an admissible metric, then clearly the induced
metric on L ⊗M is admissible. Every two admissible line bundles are closely
related.

Proposition 1.4.4. If ‖·‖ and ‖·‖′ are two admissible metrics on a holomorphic
line bundle L, then they are equal up to multiplication by a positive real number.

Proof. Let s be a non-zero meromorphic section of L. Then:

0 = curv‖·‖− curv‖·‖ = − i
π
∂∂[log ‖s‖ − log ‖s‖′].

Using theorem 1.2.1 with T = [log ‖s‖−log ‖s‖′] shows that the current [log ‖s‖−
log ‖s‖′] is represented by a constant function. Hence ‖s‖ and ‖s‖′ differ only
up to multiplication with a positive real-valued constant.

The previous proposition limits the number of admissible metrics a holo-
morphic line bundle can have. On the other hand, the Arakelov-Green function
allows us to define an admissible metric on every holomorphic line bundle on a
compact connected Riemann surface, as we will see now. As Cl(X) ∼= Pic(X)
every line bundle on X is of the form OX(D), with D a divisor on X. We define
a smooth metric ‖·‖OX(D) by setting log ‖1‖OX(D) = gD,Ar. Using lemma 1.2.3
one easily verifies that this indeed defines a smooth metric on X, and that this
metric is admissible.

Definition 1.4.5. Let X be a compact connected Riemann surface, and let
D ∈ Div(X) be a divisor. The metric on OX(D) defined above is called the
canonical (admissible) metric on OX(D).

We will also put a metric on Ω1
X , as follows. Let ∆ be the diagonal inclusion

X → X×X, and letOX×X(−∆) be the sheaf of holomorphic functions vanishing
on the diagonal. We will construct an isomorphism ∆∗OX×X(−∆)

∼−→ Ω1
X ,
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called the adjunction isomorphism. Let U be a chart on X with coordinate z;
we define a homomorphism

OU×U (−∆)→ ∆∗(Ω
1
X)|U×U

(z1 − z2) · f(z1, z2) 7→ f(z, z)dz

If w is another coordinate then w = h(z) for some invertible holomorphic func-
tion h. Using a Taylor expansion we find:

(w1 − w2)f(w1, w2) = (h(z1)− h(z2))f(h(z1), h(z2))

= (z1 − z2)

( ∞∑
k=1

h(k)(z2)

k!
· (z1 − z2)k−1

)
f(h(z1), h(z2))

and this is mapped to h′(z)f(h(z), h(z))dz = f(w,w)dw, so we see that this
does not depend on the choice of coordinate. As ∆∗ and ∆∗ are adjoints we
get a homomorphism ∆∗OU×U (−∆) → Ω1

U sending ((z1 − z2) · f(z1, z2))|∆ to
f(z, z)dz, and this is even an isomorphism. By gluing we get the adjunction
isomorphism. We can define a Hermitian metric on OX×X(−∆) as follows:
outside the diagonal we have

log ‖1‖(P,Q) = −gAr(P,Q).

Let U be a chart on X with coordinate z. Then OU×U (−∆) is generated by
z1 − z2. We can write gAr(z1, z2) = log |z1 − z2| + f(z1, z2) with f a smooth
function on U × U . Therefore we have the equality

log ‖z1 − z2‖ = log |z1 − z2|+ log ‖1‖ = log |z1 − z2| − gAr = −f(z1, z2),

so ‖z1 − z2‖ extends to a smooth function on U × U . We get a well-defined
smooth Hermitian metric on OU×U (−∆), and this induces a smooth Hermitian
metric ‖·‖Ar on Ω1

X by requiring that the adjunction isomorphism is an isometry.
Concretely, if U is a chart of X with coordinate z, then

log ‖dz‖Ar(P ) = log ‖z1 − z2‖(P, P ) = lim
Q→P

(log |z(P )− z(Q)| − gAr(P,Q)).

Theorem 1.4.6 ([1]). The metric ‖·‖Ar on Ω1
X is admissible.

1.5 Determinant of cohomology

In this section we will define the determinant of cohomology of coherent sheaves
on projective schemes over a Dedekind ring or a field. We will only use the de-
terminant of cohomology of line bundles over Riemann surfaces, but the theory
generalizes very nicely into a scheme-theoretic language.

Let A be a commutative ring, and let M be a projective A-module of rank
r. We define the determinant of M to be the locally free A-module of rank 1

detM =

r∧
M.

Lemma 1.5.1 ([2, 7.1]). Suppose that

0→M ′
α−→M

β−→M ′′ → 0

13



is an exact sequence of finitely generated projective A-modules, with M ′ and M ′′

of rank r and s, respectively, then there is a canonical isomorphism of A-modules

detM ′ ⊗A detM ′′
∼−→ detM

(x1 ∧ · · · ∧ xr)⊗ (y1 ∧ · · · ∧ ys) 7→ αx1 ∧ · · · ∧ αxr ∧ ỹ1 ∧ · · · ∧ ỹs,

where ỹi denotes an arbitrary element of M such that βỹi = yi.

If A is a Dedekind ring, we can extend this definition to define the deter-
minant of every finitely generated A-module. A finitely generated A-module is
projective if and only if it is torsion-free. If M is a finitely generated A-module,
then we can fit M in a short exact sequence 0→ E → F →M → 0 with E and
F finitely generated projective A-modules, and we can define the determinant
of M to be the invertible A-module

detM = detF ⊗ (detE)∨.

This definition is, up to canonical isomorphism, independent of the choice of
exact sequence [2, 7.2]. Every short exact sequence 0 → M ′ → M → M ′′ → 0
of finitely generated A-modules gives rise to a canonical isomorphism

detM ′ ⊗A detM ′′
∼−→ detM.

Let A be a Dedekind ring, let X = SpecA, and let F be a coherent X-
module. Then F = M̃ , where M = F(X) is a finitely generated A-module. We
can define the determinant of F to be the invertible sheaf

detF = (detM)∼.

As in the case of modules over a ring, a short exact sequence 0 → F → G →
H → 0 of coherent X-modules induces a canonical isomorphism

detG ∼= detF ⊗OX detH.

If f : X → Y is a morphism of topological spaces, then the direct image
functor f∗ is a functor Ab(X) → Ab(Y ). The functor f∗ is left exact and the
category Ab(X) has enough injectives so the right derived functors Rif∗ (i ≥ 0)
of f∗ exist. If f : X → Y is a morphism of ringed spaces, then the functors
Rif∗ : Ab(X) → Ab(Y ) coincide on Mod(X) with the right derived functors
of f∗ : Mod(X)→Mod(Y ). See [6, III.8] for more details.

Suppose that A is a Noetherian ring, let Y = SpecA, and let f : X → Y
be a projective morphism of schemes. For every quasi-coherent OX -module F
we have Rif∗F ∼= (Hi(X,F))∼ (see [6, III.8.5]). If X has dimension n then, by
Grothendieck’s vanishing theorem [6, III.2.7], we have Rif∗F = 0 for all i > n.
If F is coherent then every Hi(X,F) is a finitely generated A-module, so Rif∗F
is a coherent OY -module [6, III.5.2].

The facts stated in the previous paragraphs allow us to state the following
definition.

Definition 1.5.2. Let A be a Dedekind ring or a field, let f : X → SpecA be
a projective morphism, and let F be a coherent OX -module. The determinant
of cohomology of F is the line bundle detRf∗F on SpecA defined by

detRf∗F =

n⊗
i=0

(detRif∗F)⊗(−1)i ,

14



where n = dimX.
Similarly, if X is a projective scheme over a field k, then we can define for

every coherent OX -module F the determinant of cohomology of F to be the
one-dimensional k-vector space

detH(X,F) =

n⊗
i=0

(detHi(X,F))⊗(−1)i .

Lemma 1.5.1 generalizes to the determinant of cohomology in a natural way.

Lemma 1.5.3. Suppose that A is a Dedekind ring or a field, let f : X → SpecA
be a projective morphism, and let

0→ F α−→ G β−→ H → 0

be a short exact sequence of coherent OX-modules. Then there is a canonical
isomorphism of line bundles on SpecA

detRf∗G ∼= detRf∗F ⊗A detRf∗H.

Similarly, if k is a field and f : X → Spec k is a projective morphism, then every
short exact sequence of coherent OX-modules 0 → F → G → H → 0 induces a
canonical isomorphism detH(X,G) ∼= detH(X,F)⊗k detH(X,H).

Proof. Consider the long exact sequence of cohomology

. . .
δi−1

−−−→ Rif∗F
αi−→ Rif∗G

βi−→ Rif∗H
δi−→ . . .

This induces short exact sequences

0→ kerαi → Rif∗F
αi−→ imαi → 0.

As imαi = kerβi we find a natural isomorphism detRif∗F ∼= det kerαi ⊗A
det kerβi. Similarly, we get natural isomorphisms detRif∗G ∼= det kerβi ⊗A
det ker δi and detRif∗H ∼= det ker δi ⊗A det kerαi+1. This induces natural iso-
morphisms

Rf∗F ⊗A Rf∗H =

(
n⊗
i=0

(detRif∗F)⊗(−1)i

)
⊗

(
n⊗
i=0

(detRif∗H)⊗(−1)i

)

∼=
n⊗
i=0

(det kerαi ⊗ det kerβi ⊗ det ker δi ⊗ det kerαi+1)⊗(−1)i

∼=
n⊗
i=0

(det kerβi ⊗ det ker δi)⊗(−1)i

∼=
n⊗
i=0

(detRif∗G)⊗(−1)i

= detRf∗G.

The proof of the second statement is almost completely similar.
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1.6 Faltings metrics on admissible line bundles

Let X be a compact Riemann surface of genus g ≥ 1. The Jacobian Jac(X) of
X can be written as

Jac(X) ∼= Cg/(Zg + τZg),
where τ is a complex valued g×g-matrix that is symmetric with positive-definite
imaginary part. Define on Cg a theta-function ϑ(z; τ) as follows:

ϑ(z; τ) =
∑
n∈Zg

exp(πi(tn)τn+ 2πi(tn)z).

It is an entire function in the variable z. The theta-function is not invariant
under translation by elements from the lattice Zg + τZg and therefore does not
descend to a function on Cg/(Zg + τZg): for all m ∈ Zg we have the identities

ϑ(z +m; τ) = ϑ(z; τ)

ϑ(z + τm; τ) = exp(−πi(tm)τm− 2πi(tm)z) · ϑ(z; τ).

However, translation does leave the order of zeroes of ϑ invariant, and therefore
defines a divisor Θ0 on Cg/(Zg + τZg). We define a hermitian metric ‖·‖Θ0

on
O(Θ0) by setting

‖1‖Θ0
(x+ iy) = 4

√
det(Im(τ)) · exp(−π(ty)(Im τ)−1y) · |ϑ(τ, x+ iy)|.

One easily checks that this metric is well-defined and is invariant under trans-
lation by elements of Zg + τZg. The metric is uniquely determined by the two
properties in the following proposition.

Proposition 1.6.1 ([5]). The metric ‖·‖Θ0
is characterized by the following

two properties:

• The curvature form of ‖·‖Θ0
is

curv‖·‖Θ0
=
i

2

∑
1≤k,l≤g

(Im τ)−1
k,ldzk ∧ dz̄l.

• 1
g!

∫
Cg/(Zg+τZg)

‖1‖2Θ0
νg = 2−g/2.

A Theta characteristic of X is a divisor class L ∈ Pic(X) such that L⊗2 =
K ∈ Pic(X). As Pic0(X) ∼= Jac(X) = Cg/(Zg + τZg) via the Abel-Jacobi map,
we see that Pic0(X) is a divisible group, and this implies that the set of Theta
characteristics is non-empty. Also, Pic0(X)[2] acts on the set of Theta character-
istics of X in a natural way, and this makes the set of Theta-characteristics into
a Pic0(X)[2]-torsor. We therefore see that there are 22g Theta characteristics.

Recall that the Abel-Jacobi map identifies Jac(X) and Pic0(X). Define the
divisor Θ ⊂ Picg−1(X) to be the divisor consisting of the classes of line bundles
of degree g − 1 that admit a global section. The divisors Θ and Θ0 are related
by the following theorem.

Theorem 1.6.2 (Riemann). There exists a Theta characteristic L of X such
that under the induced isomorphism

Picg−1(X)
∼−→ Pic0(X) = Jac(X) :M 7→M⊗L⊗−1

the divisor Θ ⊂ Picg−1(X) corresponds with the divisor Θ0 ⊂ Jac(X).

16



Let L be an admissible line bundle, and let P be a point on X. We have an
exact sequence

0→ L(−P )→ L→ L[P ]→ 0,

where L[P ] is the skyscraper sheaf on P associated to the fiber of L above P . The
admissible metric on L induces a metric on L[P ], and if we equip OX(−P ) with
its canonical metric we also obtain a metric on L(−P ). We have H0(X,L[P ]) =
L[P ] and H1(X,L[P ]) = 0, so the long exact sequence of cohomology of the
above exact sequence gives an isomorphism on the determinants of cohomology

detH(X,L) ∼= detH(X,L(−P ))⊗C L[P ].

We have now acquired enough tools to tackle the following theorem by Falt-
ings.

Theorem 1.6.3 ([5, Theorem 1]). Let X be a compact Riemann surface of
genus g > 0. There is a way to assign for every admissible line bundle L on X
a metric on the one-dimensional complex vector space detH(X,L), such that

1. For every isometric isomorphism L
∼−→ M of admissible line bundles, the

induced isomorphism detH(X,L)→ detH(X,M) is an isometry;
2. If the metric on L is changed by a factor α > 0, the metric on detH(X,L)

is changed by a factor αχ(L), where

χ(L) = dimH0(X,L)− dimH1(X,L);

3. For every admissible line bundle L and every point P ∈ X, the isomor-
phism detH(X,L) ∼= detH(X,L(−P )) ⊗C L[P ] induced by the exact se-
quence

0→ L(−P )→ L→ L[P ]→ 0

is an isometry.
4. The metric on detH(X,Ω1

X) is the metric induced by the canonical inner
product on Ω1

X (see 1.3) via the natural isomorphism detH(X,Ω1
X) ∼=∧g

Ω1
X(X) (Serre duality).

Notice that the first three items determine the metrics up to a common scalar
factor. Item 4 then fixes this scalar factor. If we want to prove the theorem
then it suffices to prove that there exist metrics satisfying the first three items.

Proof. The proof consists of two parts. First we will show that metrics can be
put on the line bundles of the form O(D), with D an Arakelov divisor of X,
such that 2 and 3 hold. Next, we will show that these metrics also satisfy 1,
and then our proof is complete, since PicX ∼= ClX.

For the first part of the proof, we will proceed as follows. We start out by
picking any metric on the determinant detH(X,OX) of the trivial line bundle
OX on X with the canonical metric. Now item 3 should allow us to put in a
recursive way metrics on the determinants detH(X,OX(D)), where D is any
Weil divisor on X and OX(D) is equipped with the canonical admissible metric,
by adding or subtracting points. We still need to check that this gives well-
defined metrics; that is, the metrics obtained in this way do not depend on the
order in which we add or subtract points.

Suppose that we are given a divisor D, and two distinct points P,Q ∈ X
together with a metric on detH(X,O(D− P −Q)). Using item 3, we can then
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put a metric on detH(X,O(D)) in two ways: by first taking the induced metric
on detH(X,O(D−P )) and then the induced metric on detH(X,O(D)), or by
going via detH(X,O(D −Q)) instead. We have isomorphisms

detH(X,O(D)) ∼= detH(X,O(D − P ))⊗O(D)[P ]
∼= detH(X,O(D − P −Q))⊗O(D − P )[Q]⊗O(D)[P ],
∼= detH(X,O(D − P −Q))⊗O(−P )[Q]

⊗O(D)[Q]⊗O(D)[P ]

and similarly,

detH(X,O(D)) ∼= detH(X,O(D−P −Q))⊗O(−Q)[P ]⊗O(D)[P ]⊗O(D)[Q],

both inducing a metric on detH(X,O(D)).
On O(−P )[Q] the canonical norm is defined by

log ‖1‖O(−P )[Q] = gAr(−P,Q) = −gAr(P,Q)

and on O(−Q)[P ] the canonical norm is defined by

log ‖1‖O(−Q)[P ] = gAr(−Q,P ) = −gAr(Q,P ).

As gAr is symmetric we see that the two induced metrics on detH(X,O(D))
are equal, and therefore the metrics are well-defined.

For the second part, we proceed as follows. Suppose that we have an isometry
O(D1) ∼= O(D2) of two admissible line bundles. After adding or subtracting
points we may assume that the degree of D1 and D2 equals g − 1. In this
case dimH0(X,O(Di)) = dimH1(X,O(Di)) by Riemann-Roch, so the metrics
on detH(X,O(Di)) do not change if we scale the metrics on O(Di). We can
therefore move to the case where O(D1) ∼= O(D2) as line bundles, and we need
to show that this isomorphism induces an isometry on determinants.

Faltings proceeds as follows. For r sufficiently large, there exists a divisor E
of degree r+ g− 1 such that D1 and D2 are both of the form E−P1− · · ·−Pr.
One can construct a line bundle N on Xr such that the fiber of N above a point
(P1, . . . , Pr) is the determinant detH(X,O(E − P1 − · · · − Pr)) (see [3][p. 297]
for a detailed construction). The metrics on the detH(X,O(E−P1−· · ·−Pr))
give rise to a metric on N .

Another metric on N is obtained as follows. Consider the morphism

φ : Xr → Picg−1(X)

that sends (P1, . . . , Pr) to the class of O(E − P1 − · · · − Pr). It turns out that
we have a canonical isomorphism

φ∗(−Θ) ∼= N,

and the metric on O(Θ0) defined earlier induces a metric on N via this isomor-
phism and the one in 1.6.2. One can compare the curvature forms of the two
metrics on N that we have defined, something that is done in more detail in
[8, Chapter VI], and it turns out that these curvature forms are in fact equal.
This implies that the two metrics are equal up to a constant scalar factor, so the
metric on N induced by the metrics on the detH(X,O(E−P1−· · ·−Pr)) is the
pullback of a metric on Picg−1(X) over the morphism φ. This shows that the
Faltings metric on detH(X,O(E − P1 − · · · − Pr)) only depends on the image
of O(E−P1− · · · −Pr) in Picg−1(X), and we have proven the second part.
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Definition 1.6.4. If L is an admissible line bundle on a Riemann surface X,
we call the corresponding metric on detH(X,L) in the previous theorem the
Faltings metric on detH(X,L).

It will be useful to know how the Faltings metrics behave with respect to
exact sequences of the form

0→ L(−P1 − · · · − Pr)→ L→
r⊕
i=1

L[Pi]→ 0,

where L is an admissible line bundle on X, and P1, . . . , Pr are distinct points
on X. Taking determinants yields a natural isomorphism

detH(X,L) ∼= detH(X,L(−P1 − · · · − Pr))⊗
r⊗
i=1

L[Pi].

We have Faltings metrics on detH(X,L) and H(X,L(−P1−· · ·−Pr)), and the
metric on L defines a metric on L[Pi]. The isomorphism on determinants we
found is usually not an isometry.

Proposition 1.6.5. The isomorphism

detH(X,L)
∼−→ detH(X,L(−P1 − · · · − Pr))⊗

r⊗
i=1

L[Pi]

has norm α, where

logα =
∑
i<j

gAr(Pi, Pj).

Proof. Consider the exact sequence

0→ L(−P1− · · ·−Pr)→ L(−P1− · · ·−Pr−1)→ L(−P1− · · ·−Pr−1)[Pr]→ 0;

by definition of the Faltings metrics we get an isometry

detH(X,L(−P1 − · · · − Pr−1) ∼= detH(X,L(−P1 − · · · − Pr))
⊗ L(−P1 − · · · − Pr−1)[Pr],

and the metric on L(−P1 − · · · − Pr−1)[Pr] is given by the isometry

L(−P1 − · · · − Pr−1)[Pr] ∼= L[Pr]⊗O(−P1 − · · · − Pr−1)[Pr].

The metric on O(−P1 − · · · − Pr−1)[Pr] is given by

log ‖1‖ = gAr(−P1 − · · · − Pr−1, Pr) = −
∑
i<r

gAr(Pi, Pr),

so the natural isomorphism

O(−P1 − · · · − Pr−1)[Pr]→ C

has norm exp(
∑
i<r gAr(Pi, Pr)), and the induced isomorphism

detH(X,L(−P1 − · · · − Pr−1)
∼−→ detH(X,L(−P1 − · · · − Pr))⊗ L[Pr]

has the same norm. The proposition now follows by induction.
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Suppose that L is an admissible line bundle of degree g − 1 with no global
sections. By Riemann-Roch we find that H1(X,L) = 0, so we have a natural
isomorphism detH(X,L) ∼= C. We let λ(L) denote the norm of 1 under the
Faltings metric on detH(X,L) ∼= C. In this case, the natural isomorphism
detH(X,L)

∼−→ C has norm λ(L)−1.

Corollary 1.6.6. If L is an admissible line bundle of degree r + g − 1 with
r ≥ 1, and P1, . . . , Pr are distinct points on X such that L(−P1 − · · · − Pr) has
no global sections, then the isomorphism

detH0(X,L) = detH(X,L)
∼−→

r⊗
i=1

L[Pi]

induced by the isomorphism

H0(X,L)
∼−→

r⊕
i=1

L[Pi] : s 7→ (s(P1), . . . , s(Pr))

has norm α, where

logα =
∑
i<j

gAr(Pi, Pj)− log λ(L(−P1 − · · · − Pr)).

1.7 Faltings metrics on elliptic curves

Let X be a compact connected Riemann surface of genus g = 1. Recall the
function λ defined in the previous section, that assigns to an admissible bundle
of degree g− 1 = 0 with no global sections a positive real number λ(L), defined
to be the norm of 1 under the Faltings metric on detH(X,L) ∼= C. In this
section, we will compute the constant λ(Ω1

X(Q−R)) for points Q,R on X such
that Ω1

X(Q−R) has no global sections.
The Dedekind η-function is the function η on the upper half plane of C given

by the following product:

η(τ) = eπiτ/12
∞∏
n=1

(1− e2πiτn).

We also define
‖η‖(τ) =

4
√

Im τ · |η(τ)|.

Let τ = a+bi ∈ C with b > 0, and consider the elliptic curveX = C/(Z+Zτ).
The following lemma by Faltings gives an explicit formula for the metric on Ω1

X .
The proof of this theorem uses the theory of modular forms and is omitted.

Theorem 1.7.1 ([5, p. 417]). Let z be the coordinate on X = C/(Z+Zτ). The
metric on Ω1

X is given by ∥∥∥dz/√b∥∥∥ =
1

2π‖η‖(τ)2
;

20



Let Q ∈ X be any point, and let R ∈ X be another point such that the
admissible line bundle Ω1

X(Q− R) = Ω1
X ⊗ OX(Q− R) has no global sections.

Then H1(X,Ω1
X(Q)) = H0(X,O(−Q)) = 0, and dimH0(X,ΩX(Q)) = 1 by

Riemann-Roch. We have an exact sequence

0→ Ω1
X(Q−R)→ Ω1

X(Q)→ Ω1
X(Q)[R]→ 0

inducing an isomorphism on determinants

H0(X,ΩX(Q))
∼−→ Ω1

X(Q)[R] : ω 7→ ω(R)

of norm λ(ΩX(Q − R))−1. Moreover, the natural isomorphism OX [R]
∼−→

OX(Q)[R] has norm exp g(Q,R) by definition of the canonical admissible met-
rics on OX and O(Q). Tensoring this isomorphism with Ω1

X [R] shows that the

natural isomorphism Ω1
X [R]

∼−→ Ω1
X(Q)[R] has norm exp g(Q,R).

Theorem 1.7.2. Let Q and R be any two points in X such that Ω1
X(Q − R)

has no global sections. Then

λ(Ω1
X(Q−R)) =

2π‖η‖(τ)2

exp g(Q,R)
.

Proof. Consider the exact sequence

0→ Ω1
X → Ω1

X(Q)→ Ω1
X(Q)[Q]→ 0.

This exact sequence induces an isometry

detH(X,Ω1
X(Q))

∼−→ detH(X,Ω1
X)⊗ Ω1

X(Q)[Q],

and by using the fact that the residue map Ω1
X(Q)[Q]

∼−→ C is an isometry, we
obtain a natural isometry

detH(X,Ω1
X(Q))

∼−→ detH(X,Ω1
X).

Now consider the exact sequence

0→ Ω1
X(Q−R)→ Ω1

X(Q)→ Ω1
X(Q)[R]→ 0.

We obtain an isometry

detH(X,Ω1
X(Q))

∼−→ detH(X,Ω1
X(Q−R))⊗ Ω1

X(Q)[R].

We have chosen R in such a way that H0(X,Ω1
X(Q − R)) = 0, and the natu-

ral isomorphism detH(X,Ω1
X(Q − R))

∼−→ C has norm λ(Ω1
X(Q − R))−1. We

therefore obtain a natural isomorphism detH(X,Ω1
X(Q))

∼−→ Ω1
X(Q)[R] of norm

λ(Ω1
X(Q−R))−1. The canonical isomorphism

Ω1
X(Q)[R]

∼−→ Ω1
X [R]

has norm exp(g(Q,R))−1: it is obtained by tensoring the inverse of the natural
isomorphism OX [R] → OX(Q)[R] (which has norm exp(g(Q,R))) with Ω1

X [R].
Finally, we have a natural isomorphism detH(X,Ω1

X) = H0(X,Ω1
X) → Ω1

X [R]
given by ω 7→ ω(R). We will compute the norm of this isomorphism. Let ω =

21



dz/
√
b; one easily checks that ω forms an orthonormal basis for the canonical

inner product on H0(X,Ω1
X), and the Faltings metric on H0(X,Ω1

X) is defined
in such a way that the norm of ω equals 1. By the previous theorem, the norm
of ω(R) in Ω1

X [R] is equal to
1

2π‖η‖(τ)2
,

and the norm of the isomorphism detH(X,ΩX)
∼−→ ΩX [R] is equal to this value.

We get a commutative diagram of natural isomorphisms:

detH(X,Ω1
X(Q)) //

��

Ω1
X(Q)[R]

��
detH(X,Ω1

X) // Ω1
X [R].

By comparing the norms of the isomorphisms the theorem follows.

Using Elkies’ upper bound, we can give a lower bound for λ(L) for all ad-
missible line bundles L on X of degree 0. First of all, notice that if L1 and L2

are two admissible line bundles of degree 0 on X, isomorphic as line bundles
on X (so the isomorphism need not be an isometry!), then the Faltings metrics
on detH(X,L1) and detH(X,L2) agree. This follows from the second item of
1.6.3. We therefore see that λ(L1) = λ(L2). In other words, for every admissible
line bundle L on X of degree 0 with no global sections, the value λ(L) depends
only on the isomorphism class of L as a line bundle.

Let L be an admissible line bundle on X with no global sections, and let O
be the zero of X. We consider the map

X → Pic0(X) : Q 7→ [L(O −Q)].

This map is a translation of the surjective Abel-Jacobi map, so there exists a
point Q ∈ X with [L(O−Q)] = [Ω1

X ]. Moreover, we have Q 6= O, since Ω1
X has

global sections, and L has not. We therefore see that L ∼= Ω1
X(Q − O) as line

bundles on X, and hence we see that

λ(L) = λ(Ω1
X(Q−O)) =

2π‖η‖(τ)2

exp g(Q,O)
.

Let c be a constant as in Elkies’ theorem. We then see that

g(Q,O) ≤ 1
2 log 2 + c,

so we obtain the following theorem.

Theorem 1.7.3. Let X be a Riemann surface of the form X = C/(Z + Zτ)
with Im τ > 0, and let c be a constant as in 1.3.4. For every admissible line
bundle L of degree 0 with no global sections we have

λ(L) ≥ 2π‖η‖(τ)2 exp(− 1
2 log 2− c).

Suppose that D > 0 is a positive divisor of degree n on X. Using Riemann-
Roch we see that H0(X,OX(D)) has dimension n and H1(X,OX(D)) = 0, so
we get

detH(X,OX(D)) = ΛnH0(X,OX(D)).
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We can use the lower bound for λ(OX(D)) in 1.7.3 to give the lower bound 1.7.5
for the Faltings metric ‖·‖Fal on detH(X,OX(D)).

Let 〈·, ·〉OX(D) denote the canonical admissible metric on OX(D). This in-

duces an inner product (·, ·)D on H0(X,OX(D)) given by

(f, g)D =

∫
X

〈f, g〉OX(D)µ,

where µ is the canonical volume form on X. We let f1, . . . , fn be an orthonormal
basis of H0(X,OX(D)) with respect to this inner product. For every n-tuple of
points (P1, . . . , Pn) we consider the homomorphism

H0(X,L)→
n⊕
i=1

L[Pi] : f 7→ (f(P1), . . . , f(Pn)).

Taking the n-th external power induces a homomorphism

detH(X,L)→
n⊗
i=1

L[Pi],

and we let det(fi(Pj)) denote the image of f1 ∧ · · · ∧ fn under this homomor-
phism. We let U ⊂ Xn denote the open subset of points (P1, . . . , Pn) such
that P1, . . . , Pn are pairwise different, and OX(D−P1− · · ·−Pn) has no global
sections. The complement Xn \ U is a closed subset of codimension 1. For all
(P1, . . . , Pn) ∈ U we have

‖det(fi(Pj))‖ = ‖f1 ∧ · · · ∧ fn‖Fal ·
exp(

∑
i<j gAr(Pi, Pj))

λ(L(−P1 − · · · − Pr))
,

By squaring both sides, using 1.7.3 and Elkies’ inequality, we find that

‖det(fi(Pj))‖2 ≤ ‖f1 ∧ · · · ∧ fn‖2Fal ·
exp(n logn

2 + nc+ log 2 + 2c)

4π2‖η‖(τ)4

By using the following lemma we can deduce a formula for ‖f1 ∧ · · · ∧ fn‖2Fal.

Lemma 1.7.4. ∫
Xn
‖det(fi(Pj))‖2µ(P1) ∧ . . . µ(Pn) = n!.

Proof. For simplicity, we write 〈·, ·〉 for the Hermitian metric 〈·, ·〉OX(D), and

(·, ·) for the inner product (·, ·)D on H0(X,OX(D)). We can rewrite det(fi(Pj))
as follows:

det(fi(Pj)) = (f1(P1), . . . , f1(Pn)) ∧ · · · ∧ (fn(P1), . . . , fn(Pn))

=
∑
σ

sgn(σ)fσ1(P1) ∧ · · · ∧ fσn(Pn),

where σ ranges over the permutation group of {1, . . . , n}. We now have

‖det(fi(Pj))‖2 = 〈det(fi(Pj)),det(fi(Pj))〉

=
∑
σ,τ

sgn(στ)〈fσ1(P1) ∧ · · · ∧ fσn(Pn), fτ1(P1) ∧ · · · ∧ fτn(Pn)〉

=
∑
σ,τ

sgn(στ)

n∏
i=1

〈fσi(Pi), fτi(Pi)〉
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Taking the integral, we find∫
Xn
‖det(fi(Pj))‖2µ(P1) ∧ · · · ∧ µ(Pn) =

∑
σ,τ

sgn(στ)

n∏
i=1

∫
X

〈fσi(Pi), fτi(Pi)〉µ(Pi)

=
∑
σ,τ

sgn(στ)

n∏
i=1

(fσi, fτi)

and as f1, . . . , fn is an orthonormal basis, we see that

n∏
i=1

〈fσi, fτi〉 =

n∏
i=1

δσi,τi = δσ,τ

so the integral becomes equal to the order of the permutation group of {1, . . . , n},
completing the proof.

If we use this lemma together with the inequality before it, we find as a
result the following theorem.

Theorem 1.7.5. Suppose that D > 0 is a positive divisor on the elliptic curve
X = C/(Z+Zτ) (τ ∈ C, Im τ > 0) of degree n. Let f1, . . . , fn be an orthonormal
basis of H0(X,OX(D)) with respect to the inner product (·, ·)D. Let c be a
constant as in 1.3.4, and let ‖·‖Fal be the Faltings metric on detH(X,OX(D)) =
ΛnH0(X,OX(D)). Then the following inequality holds:

‖f1 ∧ · · · ∧ fn‖2Fal ≥
4π2‖η‖(τ)4n!

exp(n logn
2 + nc+ log 2 + 2c)

.
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2 Arithmetic surfaces and Néron models

This chapter will serve as a brief overview of the theory of arithmetic surfaces.
An arithmetic surface is a regular scheme that can be viewed as a family of curves
over varying fields. For example, if K is a number field with ring of integers
OK , and E/K is an elliptic curve, we may want to reduce the curve modulo the
primes of OK , and store the resulting curves in an arithmetic surface. However,
doing this the naive way will often result in singularities. These singularities
can be resolved under some assumptions. Next, we will look at semi-stable
arithmetic surfaces. The notion of semi-stability here is a generalization of the
notion of semi-stability of elliptic curves over local fields or number fields. We
will look how semi-stable arithmetic surfaces behave under extensions of fields.
Finally we will introduce group schemes and Néron models of abelian varieties.

Let k be a field. An affine variety over k is the affine k-scheme associated
to a finitely generated k-algebra. An algebraic variety over k is a k-scheme X
that has a finite open covering by affine k-varieties. A projective variety over k
is a projective k-scheme. A curve over k is an algebraic variety over k whose
irreducible components are one-dimensional.

2.1 Arithmetic surfaces and regular models

In this section, let S be a Dedekind scheme of dimension 1. That is, S is a
normal integral locally Noetherian scheme of dimension 1. Let K = κ(S) be
its fraction field. In our scenario S will often be the spectrum of the ring of
integers of a number field. The generic point of S will be denoted by η.

Definition 2.1.1. A fibered surface is an integral, projective, flat S-scheme
X → S of dimension 2. An arithmetic surface is a regular fibered surface.

One can view an arithmetic surface as a family of (not necessarily smooth)
curves Xs over the fields κ(s), where s ranges over the closed points of S,
together with a ‘generic’ curve Xη over the field κ(η). Later on, we will see that
there is an interesting intersection theory on regular surfaces over the spectrum
of the ring of integers of a number field, which we will use to prove the main
inequality in this thesis.

Some properties of Xη are inherited by the closed fibers.

Proposition 2.1.2. Let π : X → S be a fibered surface over a Dedekind scheme
S of dimension 1. Let s ∈ S. Then the following properties are true.

1. The fiber Xs is a projective curve over κ(s), and we have pa(Xs) = pa(Xη).
2. If Xη is geometrically connected then the same holds for Xs.
3. If Xη is geometrically regular, then the canonical homomorphism OS →

π∗OX is an isomorphism.
4. Suppose that X is regular. Then the morphisms X → S and Xs →

Specκ(s) are l.c.i.’s, and we have the relation ωXs/κ(s) = ωX/S |Xs be-
tween the canonical sheaves ([9, 6.4.7]).

Irreducible Weil divisors on a fibered surface come in two shapes. If D is an
irreducible Weil divisor then the composition D → S is a proper morphism, so
it either is a constant morphism or a surjective one. In the first case D is an
irreducible component of a closed fiber of X → S, and in the second case D is
the closure in X of a closed point on the generic fiber of X → S.
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Theorem 2.1.3 ([9, 8.3.4]). Let π : X → S be a fibered surface over a Dedekind
scheme of dimension 1.

• Let P ∈ Xη be a closed point. Then its closure {P} in X is an irreducible
closed subset of X, finite and surjective to S.

• Let D ⊂ X be an irreducible closed subset of dimension 1. Then D is
either an irreducible component of a closed fiber, or D = {P}, where P is
a closed point of Xη.

Example 2.1.4. Suppose that S = SpecA is affine, and let X → S be an
arithmetic surface. Let P be a point on the generic fiber of X, and let L = κ(P ),
and D = {P}. Then D → S is finite and surjective, and D ×S SpecK =
Specκ(P ) = SpecL. This implies that D is affine, that A ⊂ OD(D) ⊂ L, that
OD(D) is finitely generated as an A-module, and that OD(D) ⊗A K = L. In
other words, OD(D) is an A-order in L.

In particular, if κ(P ) = K then D is the image of a section S → X of the
morphism X → S. In this case, we see that for every s ∈ S, Xs ∩D is reduced
to a point p ∈ Xs(κ(s)), and Xs is smooth at p (see [9, 9.1.32]), so p belongs
to a single irreducible component of Xs which is of multiplicity 1 in Xs. We
obtain a natural map Xη(K)→ Xs(κ(s)) sending P ∈ Xη(K) to {P} ∩Xs.

Definition 2.1.5. An irreducible Weil divisor D of X is called horizontal if it
is the closure of a closed point of the generic fiber of X, and vertical if it is an
irreducible component of a closed fiber. More generally, a Weil divisor is called
horizontal (resp. vertical) if all its irreducible components are.

One question we will consider is the following: if C is an algebraic curve over
K, then does there exist an arithmetic surface X → S such that its generic fiber
is isomorphic to C? For example, suppose that E = ProjQ[T1, T2, T3]/(F ) is
an elliptic curve over Q, given as the zero locus of an irreducible homogeneous
polynomial F ∈ Z[T1, T2, T3] in the projective plane. We want to construct
an arithmetic surface X → SpecZ with generic fiber Xη = E. A logical first
candidate would be the scheme X = ProjZ[T1, T2, T3]/(F ). This scheme is
integral, projective, and flat ([9, 4.3.10]) over SpecZ, but unfortunately it is not
necessarily regular. For example, let F = T 2

2 T3 − T 3
1 − p2T 3

3 . An affine open
subset of X is then SpecZ[x, y]/(y2−x3− p2). Consider the point P ∈ X given
by the maximal ideal (x, y, p) of X. The local ring OX,P has maximal ideal
m = (x, y, p), and m2 = (x2, xy, xp, y2 = x3 + p2, yp, p2) = (x2, xy, xp, yp, p2),
and we see that dimm/m2 > 2, as x, y, p are linearly independent in m/m2.
Therefore P is a singular point, and X → SpecZ is not an arithmetic surface.

One can, however, show that singularities such as the one in the previous
paragraph can be resolved under some nice assumptions.

Definition 2.1.6. Let X be a reduced locally Noetherian scheme. A proper
birational morphism π : Z → X with Z regular is called a desingularization of
X. If, moreover, π is an isomorphism above every regular point of X, we call
π a desingularization in the strong sense. A minimal desingularization of X is
a desingularization Z → X such that every other desingularization Z ′ → X
factors uniquely through Z ′ → Z → X.

Proposition 2.1.7. Let X → S be a fibered surface over an affine Dedekind
scheme S of dimension 1. Then every desingularization Y → X is an arithmetic
surface Y → S.
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Proof. As Y → X is birational, Y is an irreducible scheme of dimension 2.
Moreover Y is regular, hence normal, so Y is integral. The morphism Y → X
is proper and birational and hence surjective, and X → S is surjective too, so
Y → S is a non-constant morphism from an integral scheme to a Dedekind
scheme, and therefore flat ([9, 4.3.10]). By flatness and surjectivity of Y → S
all its fibers have dimension 1, the morphism Y → S is proper since Y → X
and X → S are. The morphism Y → S is a proper flat morphism to an affine
Dedekind scheme with fibers of dimension 1 and Y regular, and therefore Y → S
is projective ([9, 8.3.16]).

By its universal property, a minimal desingularization, if it exists, is unique
up to a unique isomorphism. If a normal fibered surface has a desingularization,
then it has a minimal desingularization, as the following theorem will state.

Let X → S be an arithmetic surface. We call a prime divisor E on X an
exceptional divisor if there exists an arithmetic surface Y → S and a morphism
f : X → Y of S-schemes, such that f(E) is reduced to a point and f : X \E →
Y \ f(E) is an isomorphism. Such a morphism f is then called a contraction of
E.

Theorem 2.1.8 ([9, 9.3.32]). Let Y → S be a normal fibered surface. If Y
admits a desingularization, then it admits a minimal desingularization. More
precisely, if X → Y is a desingularization such that no exceptional divisor
of X is contained in the exceptional locus of X → Y , then it is a minimal
desingularization.

The proof of this theorem shows that, given a desingularization Z → Y of
a normal fibered surface Y → S, the minimal desingularization of Y → S is
obtained by successive contractions of exceptional divisors in the exceptional
locus of Z → Y . In particular we see that if Z → Y is a desingularization in the
strong sense, then the minimal desingularization of Y → S is a desingularization
in the strong sense.

If S is an excellent scheme (see below), then fibered surfaces over S have
desingularizations.

Theorem 2.1.9 ([9, 10.3.45]). Let S be an excellent scheme. Suppose that
X → S is a fibered surface. Then X admits a desingularization in the strong
sense.

An excellent scheme is a scheme with an affine open covering {Ui}, such that
each OX(Ui) is an excellent ring. The definition of an excellent ring goes beyond
the scope of this thesis. It can be found in [9, 8.2.35]. Examples of excellent
rings are:

• complete, Noetherian local rings (and in particular fields);
• Dedekind domains of characteristic 0;
• all localizations of excellent rings;
• all finitely generated algebras over excellent rings.

The most important thing to remember here is that the ring of integers of a
number field is excellent.

Definition 2.1.10. An arithmetic surface X → S is relatively minimal if it has
no exceptional divisors. We say that X → S is minimal if every birational map
of regular fibered S-surfaces Y 99K X is a birational morphism.
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Proposition 2.1.11 ([9, 9.3.24]). Let X → S be an arithmetic surface. If
X → S is minimal, then it is relatively minimal. Conversely, if X → S is
relatively minimal and pa(Xη) ≥ 1, then X → S is minimal.

Proposition 2.1.12 ([9, 9.3.26]). Let X → S be an arithmetic surface with
pa(Xη) ≥ 1. Let KX/S be a canonical divisor. Then X → S is minimal if and
only if KX/S · C ≥ 0 for every vertical prime divisor C of X.

Definition 2.1.13. Let C be a normal, connected, projective curve over K.
A model of C over S is a normal fibered surface X → S together with an
isomorphism of K-schemes Xη

∼= K. If, moreover, X is regular (resp. regular
and minimal), we call X → S a regular model of C (resp. a minimal regular
model of C). A morphism of two models X → X ′ of two models of C is a
morphism of S-schemes X → X ′ compatible with the isomorphisms Xη

∼= C ∼=
X ′η.

If a regular model exists then it is usually not unique: we can obtain new
regular models by blowing up closed points or contracting exceptional divisors.
Therefore we can not say a lot about the structure of these regular models.
Minimal regular models are much more interesting. In the next section we will
see a classification of the geometric fibers of minimal regular models of semi-
stable elliptic curves over number fields.

Let us reformulate the question stated earlier in this section. Given a
Dedekind scheme S of dimension 1, and a normal, connected, projective curve
C over the fraction field of S, does there always exist a regular model of C over
S? And does a minimal regular model exist? The next theorem gives a positive
answer to these questions under the circumstances we will encounter in the next
chapters.

Proposition 2.1.14 ([9, 10.1.8]). Suppose that S is affine. Let C be a smooth
projective curve over κ(S). Then C admits a regular model over S. If, moreover,
pa(C) ≥ 1, then C admits a minimal regular model over S.

In general the minimal regular model is not stable under base change. The
following proposition shows that the minimal regular model does behave nicely
under étale base changes and completions.

Proposition 2.1.15 ([9, 10.1.17]). Let S be a Dedekind scheme of dimension 1.
Let C be a smooth projective curve over K = κ(S) of positive genus, admitting
a minimal regular model X over S. Let S′ be a Dedekind scheme of dimension
1 that is étale over S or equal to Spec ÔS,s, with s ∈ S a closed point. Let
K ′ = κ(S′). Then X ×S S′ is the minimal regular model of CK′ over S′, where
CK′ is the K ′-curve obtained by base change SpecK ′ → SpecK.

This theorem shows that minimal regular models can be computed one closed
point at a time. It often allows us to reduce proving statements about minimal
regular models in general to proving these statements for minimal regular models
of curves over local fields only. The following propositions allow us to reduce
even further to the case where the residue field of this local field is separably
closed. We say that a local ring (R,m) dominates a local ring (S, n) if R ⊂ S
and R ∩ n = m.
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Proposition 2.1.16 ([9, 10.3.32]). Let OK be a dvr with field of fractions K
and residue field k, and let k′ be a (not necessarily finite) algebraic extension
of k. Then there exists a dvr OL that dominates OK , with residue field k′,
ramification index e(OL/OK) = 1, and such that L is separable algebraic over
K.

Proposition 2.1.17 ([9, 10.3.33]). Let OK be a dvr with residue field k, and
let OL be a dvr that dominates OK , with field of fractions L algebraic over K.
Then the following properties are true.

1. For every projective scheme X → SpecOL, there exists a discrete valua-
tion subring OK′ of OL with K ′ finite over K, and a projective scheme
X ′ → SpecOK′ such that X ∼= X ′ ×SpecOK′ OL.

2. Suppose moreover that L/K is separable, that e(OL/OK) = 1 and that
the residue field of OL is separable algebraic over k. Let C be a smooth
projective curve over K. Then the formation of the minimal regular model
of C over OK (if they exist) commutes with the base change SpecOL →
SpecOK .

2.2 Semi-stability

Let X be a reduced curve over a field k, and let π : X ′ → X be its normalization.
This morphism is finite by [9, 4.1.27]. We define a coherent sheaf S on X using
the exact sequence

0→ OX → π∗OX′ → S → 0.

As π is an isomorphism above the regular points of X, we see that S is supported
on the singular points of X. For every P ∈ X define δP = lengthOX,P SP . We
see that δP = 0 if and only if P is normal (and hence regular).

Definition 2.2.1. Let X be a reduced curve over an algebraically closed field k,
and let π : X ′ → X be the normalization. A closed point P ∈ X is an ordinary
multiple point if δP = mP − 1, where mP = #(π−1(P )). If, moreover, mx = 2
we call x an ordinary double point or a node.

Definition 2.2.2. An algebraic curve C over an algebraically closed field k is
called semi-stable if it is reduced, and if its singular points are ordinary double
points. A curve C over an arbitrary field k is semi-stable if its extension Ck̄
to the algebraic closure k̄ of k is semi-stable. We call an S-scheme f : X → S
semi-stable if f is flat, and if for every s ∈ S the fiber Xs is a semi-stable curve
over κ(s).

Semi-stable schemes are stable under base change.

Proposition 2.2.3 ([9, 10.3.15(a)]). If X → S is semi-stable, and S′ → S a
morphism, then X ×S S′ → S′ is semi-stable.

This proposition, together with propositions 2.1.15, 2.1.16 and 2.1.17, helps
us with classifying the geometric fibers of semi-stable minimal regular arithmetic
surfaces. Let S be a one-dimensional Dedekind scheme with perfect residue
fields, and suppose that X → S is a minimal arithmetic surface. Let s ∈ S be
a closed point. Then the base change X ×S Spec ÔS,s of X → S over Spec ÔS,s
is minimal by 2.1.15. The residue field of ÔS,s is κ(s), and by 2.1.16 there
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exists a dvr OL that dominates OK , has residue field κ(s), ramification index

1 over ÔS,s, and fraction field L separable algebraic over K. Using 2.1.17 we
now see that the base change X ×Spec ÔS,s

OL → SpecOL is still minimal and

semi-stable, and its closed fiber is the geometric fiber of X → S over s.

Theorem 2.2.4 ([9, 7.5.4]). Let X be a reduced projective curve over a field k.
Let Γ1, . . . ,Γn be the irreducible components of X. Then

pa(X) + n− 1 =
∑
i

pa(Γ′i) +
∑
P∈X

[κ(P ) : k]δP ,

where Γ′i is the normalization of Γi.

Example 2.2.5. We will classify the geometric fibers of semi-stable minimal
regular models of genus 1 smooth, projective, geometrically connected curves
over a Dedekind ring with perfect residue fields. As proven in the above dis-
cussion we may restrict ourselves to the case where K is a complete local field
with ring of integers OK and with algebraically closed residue field k, and C
is a smooth geometrically connected projective curve of genus 1 over K. Let
X be its minimal regular model over OK . We consider the special fiber Xs.
Let Γ1, . . . ,Γn be its irreducible components. Using 2.2.4 we find the following
identity:

n =
∑
i

pa(Γ′i) + #{singular points of X}.

If n = 1 then we see that either Xs is smooth, or Xs has one node, and the
normalization of Xs is P1

k. Suppose that n ≥ 2. Consider the graph G with
nodes Γ1, . . . ,Γn, and an edge between Γi and Γj if and only if Γi ∩ Γj 6= ∅. As
Xs is connected, G is connected too. Every edge of this graph corresponds to a
singular point of Xs. We therefore see that G has at least n − 1 edges, and at
most n edges. Suppose that G has n− 1 edges. The graph G then has at least
two nodes of degree 1. By looking at the above formula, we see that either Xs

has a component with a singular point, or all components of Xs are smooth and
exactly one component has positive arithmetic genus. In any case, we see that
there is a node in G of degree 1 such that the corresponding component Γi is
smooth with arithmetic genus 0, and therefore isomorphic to P1

k. It intersects
only one other component transversally, so its (classical) self-intersection is −1,
and by Castelnuovo’s criterion we find that Γi is an exceptional divisor, which
contradicts the minimality of X → SpecOK . We find that G has n edges,
and every component is isomorphic to P1

k. Every vertex of G has degree 2: if
not, G has a vertex of degree 1, and then the corresponding component is an
exceptional divisor. We therefore see that G is a cyclic graph, so Xs is an n-gon
of P1

k’s intersecting transversally.
So we find that Xs is one of the following:

• A smooth elliptic curve over k, or
• An n-gon of P1

k’s meeting transversally, where an 1-gon is understood to
be an irreducible curve with a single node with normalization P1

k

Let S′ → S be a morphism of Dedekind schemes of dimension 1. Suppose
that X → S is a semi-stable arithmetic surface. The base change X ×S S′ is
again semi-stable, but it need not be an arithmetic surface anymore. We can
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try to solve this issue by taking the minimal desingularization X ′ → X×S S′. It
turns out that this minimal desingularization is still semi-stable. The geometric
fibers of X ′ may not be isomorphic to those of X anymore, but they can still
be described rather nicely.

Theorem 2.2.6. Let λ : S′ → S be a finite dominant morphism of one-
dimensional Dedekind schemes, let X → S be a semi-stable arithmetic sur-
face, and X ′ → X ×S S′ be the minimal desingularization. Then X ′ → S′

is semi-stable. Suppose s′ ∈ S′ is a closed point; write s = λ(s′), and let

e = e(s′/s) = e(ÔS′,s′/ÔS,s). Then the geometric fiber of X ′ above s′ is ob-
tained from the geometric fiber of X above s by replacing each double point by
a chain of e− 1 projective lines, of multiplicity 1, meeting transversally.

Proof. This follows from 10.3.21, 10.3.22 and 10.3.25 in [9].

In the semi-stable case, the canonical sheaf behaves nicely with respect to
base changes.

Proposition 2.2.7 ([8, V.5.5]). Let OK be a Dedekind ring with characteristic
0 and perfect residue fields, and denote its field of fractions by K. Let S =
SpecOK and let X → S be a semi-stable arithmetic surface. Suppose that L/K
is a finite extension. We let OL denote the integral closure of OK in L, and
define S′ = SpecOL. We let X ′ → S′ be the minimal desingularization of the
base change X ×S S′ → S′, and let r : X ′ → X be the natural projection. Then
there exists a canonical isomorphism

r∗ωX/S
∼−→ ωX′/S′

on X ′.

Corollary 2.2.8. Suppose that we are in the situation of 2.2.7, and suppose
that pa(Xη) ≥ 1. If X → S is minimal then X ′ → S′ is minimal.

Proof. We need to show that ωX′/S′ is numerically effective. If this is not the
case, then there exists an effective vertical divisor C on X ′ such that ωX′/S′ ·C <
0. By the projection formula ([9, 9.2.12]) and proposition 2.2.7 we find that

r∗C · ωX/S = C · r∗ωX/S = C · ωX′/S′ < 0

so ωX/S is not an effective vertical divisor on X. This contradicts with the fact
that X → S is minimal.

2.3 Group schemes

In this section we will repeat some of the basic definitions and properties of
group schemes.

Definition 2.3.1. Let S be a scheme. A group scheme over S is a scheme
p : G→ S, together with the following morphisms of S-schemes:

• multiplication: m : G×S G→ G;
• unit section: e : S → G;
• inverse: inv : G→ G,
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such that the following identities hold:

• associativity: m ◦ (m× idG) = m ◦ (idG×m) : G×S G×S G;
• right-identity: m ◦ (idG×e) = idG : G×S S → G;
• right-inverse: m ◦ (idG× inv) ◦∆G/S = e ◦ p : G→ G.

Let p1 : G1 → S and p2 : G2 → S be two S-schemes, and let m1 and m2

denote their multiplication morphisms. A homomorphism of group schemes over
S is a morphism f : G1 → G2 of S-schemes, such that f ◦m1 = m2 ◦ (f × f) :
G1 ×G1 → G2.

For any S-scheme T , these axioms give G(T ) the structure of a group. In
fact, by Yoneda’s lemma, giving the group scheme structure on an S-scheme G
is equivalent to giving a group structure G(T ) for every S-scheme T , such that
for every S-morphism T1 → T2 the induced map G(T2) → G(T1) is a group
homomorphism. Similarly, giving a homomorphism G1 → G2 of group schemes
over S is equivalent to giving, for every S-scheme T , a group homomorphism
G1(T ) → G2(T ), functorial in T . One can now define subgroup schemes in a
natural way. If G → S is a group scheme over S and S′ → S is a morphism
then the pullback G×S S′ is a group scheme over S′.

A group scheme over a field k that is moreover of finite type over k is called
an algebraic group over k. An Abelian variety over k is an algebraic group that
is geometrically integral and proper over k.

Proposition 2.3.2. Abelian varieties are smooth.

Proof. We may without loss of generality assume that k is algebraically closed,
and we therefore need to show that A is regular. As A is Noetherian, it suffices
to show that A is regular at its closed points, and by [9, 4.2.21] it has a regular
closed point, since A is (geometrically) reduced. Let x ∈ A(k) be such a point,
and let y ∈ A(k) be another closed point. Consider the point z = y− x ∈ A(k).
Then the isomorphism

A→ A×k Spec k
idA×z−−−−→ A×k A

m−→ A

sends x to y, so y is regular too. We see that every closed point of A is regular,
so A is regular, hence smooth.

Example 2.3.3. • An elliptic curve is an abelian variety.
• Consider the scheme Ga = SpecZ[X]. For every scheme T we have a

natural isomorphism Ga(T ) ∼= OT (T ), thus giving Ga(T ) a group struc-
ture, and for every morphism T1 → T2 of schemes the induced map
Ga(T2) → Ga(T1) is the homomorphism OT2

(T2) → OT1
(T1). This gives

Ga the structure of a group scheme over SpecZ. For every scheme S we
define the additive group over S as the S-group scheme Ga,S := Ga ×Z S.

• In a similar way we can define the structure of a group scheme on Gm =
SpecZ[X, 1/X] by noticing that for every scheme T one has Gm(T ) =
OT (T )∗. For every scheme S we call the S-group scheme Gm,S := Gm×ZS
the multiplicative group over S.

The following theorem states that the group structure on the scheme Gm,k,
with k a field, is in fact unique. The analogous result holds for the additive
group over a field, but a proof is not given as it is very similar.
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Proposition 2.3.4. Let k be a field, and let T be the scheme Spec k[X, 1/X] en-
dowed with the structure of a group scheme. Then T ∼= Gm,k as group schemes.

Proof. After a change of variables we may assume that the homomorphism
k[X]→ k induced by the unit section e : T → T sends X to 1.

The multiplication morphism m : T ×k T → T corresponds to a homomor-
phism

m̃ : k[X, 1/X]→ k[X, 1/X]⊗k k[X, 1/X] = k[X1, 1/X1, X2, 1/X2].

Let P (X1, X2) be the image of X under this homomorphism. As X is a unit
in k[X, 1/X], we see that P (X1, X2) is a unit in k[X1, 1/X1, X2, 1/X2], and it
is therefore of the form aXr

1X
s
2 , with a ∈ k∗ and r, s ∈ Z. The right-identity

in the group scheme axioms translates to the identity P (X1, 1) = X1, so a = 1
and s = 1. Similarly, we have P (1, X2) = X2, so r = 1. We therefore see that
P (X1, X2) = X1X2. The group structure on T agrees with the one on Gm,k,
and the proof is complete.

Let G be an algebraic group over a field k. The identity component G0 of G
is the connected component of G containing the unit element of G.

Theorem 2.3.5 ([9, 10.2.18]). Let X be an algebraic variety over a field k.

• There exists a unique scheme π0(X), finite étale over k, and a morphism
f : X → π0(X), such that the following universal property is satisfied:
every k-morphism X → Z to a finite étale k-scheme Z factors in a unique
way as

X → π0(X)→ Z.

• The morphism f : X → π0(X) is surjective, and for every P ∈ X the fiber
Xf(P ) is the connected component of P in X. In particular f induces a
bijection between the connected components of X and the points of π0(X).

The scheme π0(X) is called the scheme of connected components of X.

Corollary 2.3.6 ([9, 10.2.21]). Let k be a field.

• Let X/k be an algebraic variety. The set of rational points π0(X)(k) corre-
sponds to the connected components of X that are geometrically connected.
A connected component containing a k-rational point is geometrically con-
nected.

• Let G be an algebraic group over k. Then G0 is an open algebraic subgroup
of G, and the scheme π0(G) is a finite étale algebraic group over k.

2.4 Néron models

Throughout this section, S denotes a Dedekind scheme of dimension 1, and
K = K(S) its function field.

Definition 2.4.1. Let A be an Abelian variety over K. The Néron model of
A over S is a scheme N → S which is smooth, separated and of finite type,
together with an isomorphism Nη ∼= A, that satisfies the following universal
property: for every smooth S-scheme X the canonical map

MorS(X,N)→ MorK(Xη, A)

induced by the isomorphism Nη ∼= A is bijective.
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Usually the isomorphism Nη ∼= A is omitted. The universal property char-
acterizes the Néron model up to a unique isomorphism. It also gives the Néron
model the structure of a group scheme over S. By the universal property of the
Néron model, the canonical map

N(S)→ A(K)

is a group isomorphism. Let s ∈ S be a closed point. Then the natural map

N(S)→ N(κ(s))

is a group homomorphism too; see [9, 10.2.25]. Therefore we obtain a natural
group homomorphism

A(K)→ N(κ(s)).

Theorem 2.4.2 ([10]). The Néron model of every abelian variety over K exists.

When E is an elliptic curve over K the Néron model can be described as
follows.

Theorem 2.4.3 ([9, 10.2.14]). Let E be an elliptic curve over K with minimal
regular model X over S. The smooth locus of X → S is the Néron model of E
over S.

In this case, we have a reduction map E(K) → N(κ(s)), and composing
this with the inclusion N → X we get a map E(K) → X(κ(s)). This is the
reduction map from example 2.1.4.
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3 Arakelov intersection theory

Intersection theory of divisors on surfaces is a powerful tool in algebraic geom-
etry. If X → Spec(k) is a smooth projective surface over a field k then we can
assign to every two Weil divisors an intersection number. This intersection num-
ber is invariant under linear equivalence. Similarly, we can define intersection
numbers of divisors on arithmetic surfaces; see [9, Section 9.1]. However, this
intersection number does not behave nicely with respect to linear equivalence of
divisors. For example: if X → SpecZ is an arithmetic surface, then every closed
point s ∈ SpecZ is a principal divisor, and hence its pullback Xs is a principal
divisor. However, the intersection number of a horizontal divisor {P} with Xs is
equal to [κ(P ) : Q] and in particular positive. The problem here is that the base
SpecZ is not ‘compact’ anymore. In this chapter we will overcome this issue
by ‘compactifying’ SpecZ by adding a so-called ‘fiber at infinity’; the Riemann
surface X obtained from the generic fiber of X by the inclusion Q→ C. By tak-
ing into account this fiber at infinity we will find a way to make the intersection
theory work with a suitable notion of linear equivalence.

In this chapter we fix a number field K, and we denote its ring of integers
by OK , and define S = SpecOK . We write Sfin for the set of closed points of
SpecOK , or, equivalently, for the maximal ideals of OK . We let S∞ denote a
maximal set of pairwise non-conjugate embeddings K → C, or equivalently, the
set of equivalence classes of archimedean absolute values on K. For each σ ∈ S∞
we let Kσ denote the completion of K under the absolute value induced by σ
(so Kσ = R if σ is a real embedding, and Kσ = C if σ is a complex embedding),
and define εσ = [Kσ : Kσ] ∈ {1, 2}.

3.1 Arakelov divisors on arithmetic surfaces

Let X → S be an arithmetic surface. For every σ ∈ S∞ we can take the
base change X ×σ C of X over σ : SpecC→ SpecK and take its analytification
(X×σC)(C) to get a Riemann surface Xσ. We extend the notion of Weil divisors
on X by also adding such Riemann surfaces as ‘divisors at infinity’.

Definition 3.1.1. Let p : X → S be an arithmetic surface. An Arakelov divisor
of X is an element of the abelian group

D̂ivX = DivX ⊕
⊕
σ∈S∞

R · Xσ.

So every Arakelov divisor D can be written in a unique way as D = Dfin +D∞,
where Dfin is a Weil divisor of X and D∞ is a formal sum

∑
σ∈S∞ ασ · Xσ with

ασ ∈ R. An Arakelov divisor D with D∞ = 0 will be called a finite divisor, and
one with Dfin = 0 will be called an infinite divisor. A horizontal (resp. vertical)
Arakelov divisor is a horizontal (resp. vertical) finite Arakelov divisor.

Arakelov divisors extend the Weil divisors we know from classical algebraic
geometry. The following definition gives the Arakelov-theoretical analogue of
principal Weil divisors.

Definition 3.1.2. Assume that X → S is an arithmetic surface with generic
fiber of positive genus. Let f ∈ κ(X)∗ be a nonzero rational function. Define
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(f)Ar = (f)fin + (f)∞, where (f)fin ∈ Div(X) is the usual principal Weil divisor
of f , and

(f)∞ =
∑
v∈S∞

vσ(f) · Xσ,

with

vσ(f) = −
∫
Xσ

log |f |σ · µσ,

where µσ is the canonical volume form on Xσ. An Arakelov divisor of this form
is called a principal divisor, and the quotient of D̂ivX modulo the subgroup of

principal divisors, the Arakelov class group, is denoted by ĈlX. Two Arakelov
divisors are called linearly equivalent if their difference is a principal divisor.

Recall that in classical algebraic geometry divisors and invertible sheaves
are closely related. If a scheme is a Noetherian, integral, separated and regular
(e.g. an arithmetic surface), then its divisor class group and Picard group are
isomorphic. We will now introduce in an analogous way the Arakelov-Picard
group of an arithmetic surface with positive genus and show that it is again
isomorphic to the Arakelov class group.

If L is a line bundle on X, and σ : K → C is a complex embedding, then we
can pull back L to obtain a line bundle on X ×σ C, and then its analytification
to get a holomorphic line bundle Lσ on the Riemann surface Xσ.

For example, suppose that L = OX(D), with D = {P} an irreducible hori-
zontal divisor, and let τ1, . . . , τn : κ(P )→ C be the complex embeddings of κ(P )
extending σ. Then the τi induce embeddings X(κ(P ))→ X(C); let P1, . . . , Pn
be the images of P under these embeddings; define Dσ = P1 + · · ·+ Pn. Then
Lσ = OXσ (Dσ).

More generally, by setting Dσ = 0 for vertical divisors D, we can extend
bilinearly to define Dσ for all Weil divisors D on X. We see that (OX(D))σ =
OXσ (Dσ).

Definition 3.1.3. Let X be an arithmetic surface with generic fiber of positive
genus. An admissible line bundle L on X is a line bundle on X together with
admissible metrics on Lσ for every σ ∈ S∞.

If L and M are two admissible line bundles on X then their tensor product
is again admissible, and the dual of an admissible line bundle is admissible too.

Definition 3.1.4. Let X be an arithmetic surface with generic fiber of positive
genus, and let L and M be admissible line bundles on X. An isomorphism of
admissible line bundles is an isomorphism L→M of line bundles such that the
induced isomorphisms Lσ → Mσ are isometries. The Arakelov-Picard group of
X is the group P̂icX of isomorphism classes of admissible line bundles on X,
where the group operation is taking tensor products.

Given a Weil divisor D on X we can construct a line bundle OX(D) on X,
and this induces an isomorphism ClX

∼−→ PicX. In a similar way, we can assign
to every Arakelov divisor D an admissible line bundle OX(D), and this will give

an isomorphism ĈlX
∼−→ P̂icX.

Let D be an Arakelov divisor on X. Write D = Dfin +
∑
σ∈S∞ aσ · Xσ. The

Weil divisor Dfin gives rise to a line bundle OX(Dfin). For every σ ∈ S∞ we let
Dσ denote the pull-back of Dfin to Xσ; then the pull-back of OX(Dfin) to Xσ
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is OXσ (Dσ). We define an admissible metric on OXσ (Dσ) by multiplying the
canonical admissible metric defined in 1.4.5 by exp(−aσ). This gives OX(D)
the structure of an admissible line bundle.

Conversely, given an admissible line bundle L on X, there exists a Weil
divisor Dfin on X such that L ∼= OX(Dfin). The canonical metrics on the
OXσ (Dσ) induce canonical metrics on the Lσ, with σ ranging over the infinite
places, and the admissible metrics on the Lσ differ from these canonical metric
by a positive real scalar multiple (see proposition 1.4.4). We arrive at the
following theorem.

Theorem 3.1.5 ([1]). The homomorphism D̂ivX → P̂icX sending D to OX(D)

induces a canonical isomorphism ĈlX
∼−→ P̂icX.

The previous theorem allows us to use the language of Arakelov divisors and
admissible line bundles interchangably, something we will gladly do from now
on.

One important admissible line bundle on an arithmetic surface is the canon-
ical line bundle. It takes the role of the canonical divisor in Arakelov-theoretical
variants of classical geometric results such as the Riemann-Roch theorem and
the adjunction formula. It is defined as follows.

On X we have a canonical sheaf ωX that is an invertible sheaf and a 1-
dualizing sheaf for X → S. If σ : K → C is an embedding, then the pullback
ωX,σ on Xσ is isomorphic to Ω1

Xσ , and we can therefore equip ωX,σ with the
admissible metric ‖·‖Ar. In this way we give ωX the structure of an admissible
line bundle.

3.2 Intersection numbers of Arakelov divisors

In classical algebraic geometry, one often looks at the intersection number of
two divisors lying on a non-singular projective surface X over a field. A nice
property is that these intersection numbers stay the same when one replaces
the divisors by linearly equivalent ones. We wish to develop a similar theory for
divisors lying on arithmetic surfaces. This is possible in some sense [9, Section
9.1], but the intersection number does not behave nicely when we consider linear
equivalence, as the example in the introduction to this chapter already shows.

Again, fix an arithmetic surface X → S (keep in mind that S is the spectrum
of the ring of integers of a number field, as stated in the beginning of this
chapter). Suppose that D1 and D2 are two effective Weil divisors on X without
a common component, and let x ∈ X be any point. Let f1 and f2 be local
equations for D1 and D2 around x. We define the local intersection number of
D1 and D2 at x to be

ix(D1, D2) = lengthOX,x OX,x/(f, g).

This is a non-negative integer, see [9, Section 9.1.1]. Also ix is symmetric and
bilinear, so we can extend ix bilinearly to define ix(D1, D2) for any two Weil
divisors with no common components. If s ∈ S is a closed point, we define for
every two Weil divisors D1, D2 without common component

is(D1, D2) =
∑

x∈Xs closed

ix(D1, D2)[κ(x) : κ(s)].
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Now suppose that σ ∈ S∞ is an infinite place, and let D1 and D2 be two
distinct irreducible Weil divisors on X. We set

iσ(D1, D2) = −εσ · gσ(D1,σ, D2,σ),

where gσ is the Arakelov-Green function on the Riemann surface Xσ. We see
that iσ is symmetric and bilinear. We also see that iσ(D1, D2) = 0 if D1 or D2

is vertical.

Theorem 3.2.1. [1] There exists a unique symmetric bilinear pairing

(− · −)Ar : D̂ivX × D̂ivX → R

that satisfies the following properties:

• If D1 and D2 are finite divisors of X with no common components, then

(D1 ·D2)Ar =
∑
s∈Sfin

is(D1, D2) · log #κ(s) +
∑
σ∈S∞

iσ(D1, D2);

• If D is a finite divisor and σ ∈ S∞ then

(D ·Xσ)Ar = εσ · degK(D|Xη ) = εσ · degK((Dhor)|Xη );

• For every two σ, τ ∈ S∞:

(Xσ · Xτ )Ar = 0;

• If D1 and D′1 are linearly equivalent as Arakelov divisors then

(D1 ·D2)Ar = (D′1 ·D2)Ar for all D2 ∈ D̂iv(X).

The symmetric bilinear pairing in the theorem is called the Arakelov inter-
section product or Arakelov intersection number.

Remark 3.2.2. Let D1 be a vertical divisor on X, contained in a closed fiber
Xs, and let D2 be a finite divisor on X. The Arakelov intersection number
(D1 ·D2)Ar is log #κ(s) times the ‘classical’ intersection number of Weil divisors
is(D1, D2). Because of this, a lot of statements about intersection numbers with
vertical divisors can be translated easily to the language of Arakelov intersection
numbers.

The following proposition shows that the Arakelov intersection product be-
haves nicely under base change. Suppose that L/K is a finite extension, and
let S′ = SpecOL. The base change X ×S S′ is not necessarily regular anymore,
but this can be resolved by fixing a desingularization X ′ → X ×S S′. We let
r : X ′ → X be the composition. We can define pullbacks r∗D of Arakelov
divisors D ∈ D̂ivX as follows: for a finite divisor D the pullback r∗D is the
same as the pullback of the Cartier divisor D. The pullback of an infinite fiber
Xσ is

∑
τ Xτ , with τ ranging over the embeddings L→ C extending σ.

Proposition 3.2.3 ([4, Proposition 1.3.7]). For every two Arakelov divisors
D1, D2 on X, the equality

(r∗D1 · r∗D2)Ar = [L : K](D1 ·D2)Ar

holds.
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3.3 The Faltings-Riemann-Roch theorem

In this section, we will give an Arakelov-theoretical analogue of the Riemann-
Roch theorem for surfaces. If X → Spec k is a smooth projective surface over
an algebraically closed field k, then for every divisor D of X we have defined
the Euler characteristic χ(D) as

χ(D) = dimH0(X,OX(D))− dimH1(X,OX(D)) + dimH2(X,OX(D)).

The Riemann-Roch theorem for surfaces tells us that the following identity
holds:

χ(D) = 1
2D · (D −K) + χ(0),

where K is a canonical divisor on X. In order to give the Arakelov-theorerical
analogue of this statement, we will define the Euler characteristic χ(L) for every
admissible line bundle L.

Let M be a finitely generated Z-module, and suppose we have a Haar mea-
sure on M ⊗Z R. We then define the absolute Euler characteristic

χ(M,Z) = − log(vol(M ⊗Z R/M)/#Mtorsion).

The ring of integers OK of K has a natural Euclidean measure on

OK ⊗Z R ∼=
∏
σ∈S∞

Kσ.

Proposition 3.3.1. The absolute Euler characteristic of OK with the natural
Euclidean measure on OK ×Z R is

χ(OK ,Z) = s log 2− log
√
|∆K |

where ∆K is the discriminant of K over Q, and s is the number of complex
places in S∞.

Proof. Let σ1, . . . , σr be the real embeddings in S∞, and let σr+1, . . . , σr+s be
the complex embeddings in S∞. Let n = r + 2s be the degree of the extension
K/Q. Identifying C with R2 we have an isometry

OK ⊗Z R ∼−→ Rr+2s.

The embedding OK → OK ⊗Z R ∼−→ Rn sends an element α ∈ OK to

(σ1(α), . . . , σr(α),Reσr+1(α), Imσr+1(α), . . . ,Reσr+s(α), Imσr+s(α)).

Let α1, . . . , αn be a Z-basis of OK . The volume of a fundamental domain of the
lattice OK in OK ⊗Z R ∼= Rn is equal to∣∣∣∣∣det

[
σ1(α1) ··· σr(α1) Reσr+1(α1) Imσr+1(α1) ··· Reσr+s(α1) ··· Imσr+s(α1)

... ···
...

...
... ···

... ···
...

σ1(αn) ··· σr(αn) Reσr+1(αn) Imσr+1(αn) ··· Reσr+s(αn) ··· Imσr+s(αn)

]∣∣∣∣∣.
Now notice that(

z z̄
)

=
(
Re z Im z

)(1 1
i −i

)
for all z ∈ C
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so if we let M denote the block diagonal matrix with on the diagonal r blocks
of the form

(
1
)

followed by s blocks of the form(
1 1
i −i

)
we see that by multiplying the previous large matrix with M on the right gives
us the matrix[

σ1(α1) ··· σr(α1) σr+1(α1) σ̄r+1(α1) ··· σr+s(α1) ··· σ̄r+s(α1)

... ···
...

...
... ···

... ···
...

σ1(αn) ··· σr(αn) σr+1(αn) σ̄r+1(αn) ··· σr+s(αn) ··· σ̄r+s(αn)

]
.

The absolute value of the determinant of this matrix is
√
|∆K |, so we find

vol(OK⊗ZR/OK) = |detM |−1 ·
√
|∆K | =

∣∣det( 1 1
i −i )

∣∣−s ·√|∆K | = 2−s ·
√
|∆K |,

completing the proof.

Suppose that K is a number field, and let M be an OK-module. We define
the relative Euler characteristic as

χ(M,OK) = χ(M,Z)− rankOK (M) · χ(OK ,Z).

Let X → S be an arithmetic surface with generic fiber of positive genus,
and let L be an admissible line bundle on X. For every σ ∈ S∞ we have
defined a Faltings metric on detH(Xσ, Lσ). This metric defines metrics on
detH0(Xσ, Lσ) and detH1(Xσ, Lσ), defined up to a common scalar, and hence
we get Haar measures on H0(Xσ, Lσ) and H1(Xσ, Lσ), again defined up to a
common scalar. We have Hi(Xσ, Lσ) = Hi(X,L) ⊗OK Kσ, so we get Haar
measures on Hi(X,L)⊗OK Kσ, by using the isomorphism Hi(X,L)⊗OK Kσ =
Hi(X,L)⊗OK Kσ ⊕Hi ⊗OK iKσ if Kσ is real. Now we get Haar measures on

Hi(X,L)⊗Z R ∼=
∏
σ∈S∞

Hi(X,L)⊗OK Kσ,

still defined up to a common scalar. The quantity

χ(H0(X,L), OK)− χ(H1(X,L), OK)

does not depend on the choice of the common scalar factor, and this allows us
to state the following definition.

Definition 3.3.2. Let X → S be an arithmetic surface with generic fiber of
positive genus, and let L be an admissible line bundle on X. The real number

χ(L) := χ(H0(X,L), OK)− χ(H1(X,L), OK)

defined in the previous paragraph is called the Euler characteristic of L. Simi-
larly, if D is an Arakelov divisor on X, we let χ(D) denote the Euler character-
istic of the admissible line bundle OX(D).

Theorem 3.3.3 (Faltings-Riemann-Roch, [5, Theorem 3]). Let X → S be an
arithmetic surface with generic fiber of positive genus, and let D be an Arakelov
divisor on X. Then

χ(D) = 1
2 (D ·D − ωX)Ar + χ(OX).
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3.4 The adjunction formula

The adjunction formula in algebraic geometry is the following: if X → Spec k is
a smooth surface over an algebraically closed field, and C is a nonsingular curve
of genus g on X, then

(C +K) · C = 2g − 2,

where K is a canonical divisor on X. The Arakelov-theoretical version of the
adjunction formula gives a formula for the intersection number (D + ωX ·D)Ar

for every irreducible horizontal divisor D.
Let X → S be an arithmetic surface with generic fiber of genus ≥ 1, let

D = {P} be an irreducible horizontal divisor, and define L = κ(P ). By 2.1.3,
the morphism D → S is finite and surjective. In particular it is affine, so D
is affine; let R = OD(D). The inclusion SpecL → D of the generic point is
dominant, as is D → S, so on the level of rings we get inclusions OK ⊂ R ⊂ L,
and R is finite as OK-module. Moreover, we see that R⊗OK K = L so R ⊂ OL
is an OK-order in L. We define the relative discriminant ∆R/K of R to be the
ideal of OK generated by the elements of the form discL/K(α1, . . . , αn) with
αi ∈ R ⊂ OL.

Theorem 3.4.1 (Adjunction formula, [3, Proposition 4.1]). Let X → S be an
arithmetic surface with generic fiber of positive genus, and let D = {P} be an
irreducible horizontal divisor. Define L = κ(P ), let n be the degree of L/K, and
let R = OD(D) be the OK-order in L corresponding to D (see 2.1.4). For every
σ ∈ S∞ write Pσ,1, . . . , Pσ,n for the n points on Xσ defined by the n embeddings
L→ C extending σ. Then

(D + ωX ·D)Ar = log
∣∣NK/Q(∆R/K)

∣∣− ∑
σ∈S∞

εσ
∑
i 6=j

gσ(Pσ,i, Pσ,j).

If D is the image of a section s : S → X of p : X → S, then the field L in
the theorem is equal to K and D = SpecOK , and the adjunction formula takes
the following form:

Corollary 3.4.2. Let X → S be an arithmetic surface, and let D = {P} be an
irreducible horizontal divisor with κ(P ) = K. Then

(D + ωX ·D)Ar = 0.
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4 Elliptic curves

In the final chapter we will use Arakelov intersection theory to put an estimate
on splitting fields of torsors of semi-stable elliptic curves over number fields. In
the first two sections we will show that, given an elliptic curve E over a number
field K, the order of every locally trivial K-torsor C of E in the Tate-Shafarevich
group X(E/K) is equal to the minimal degree of a splitting field for C.

4.1 The Weil-Châtelet group

In this section we will fix a perfect field k, and let Gk = Gal(k̄/k) denote its
absolute Galois group.

Definition 4.1.1. Let A be an Abelian variety over k. A k-torsor of A is a
nonempty algebraic scheme X over k together with a k-morphism

a : X ×k A→ X,

called the A-action on X, such that the induced morphism (pr1, a) : X ×k A→
X ×k X is an isomorphism. A morphism of A-torsors X → X ′ is a morphism
of k-schemes compatible with the A-action on X and X ′, that is, a k-morphism
φ : X → X ′ such that the following diagram commutes:

X ×k A
(φ,idA)//

��

X ′ ×k A

��
X

φ // X ′.

The Weil-Châtelet group WC(A/k) of A is the set of isomorphism classes of
k-torsors of A.

If T is any k-scheme such that X(T ) is nonempty, then the morphism

aT : X(T )×A(T )→ X(T )

defines a A(T )-action on X(T ); the induced isomorphism X(T ) × A(T ) →
X(T ) × X(T ) : (x, g) 7→ (x, x + g) then forces the action to be free and
transitive. Composing the inverse of this isomorphism with the projection
X(T ) × A(T ) → A(T ) gives a map X(T ) × X(T ) → A(T ) sending a pair
(t, t′) to the unique element (t′ − t) ∈ A(T ) satisfying t+ (t′ − t) = t′.

Proposition 4.1.2. Let X be a k-torsor of A. Then X is isomorphic to A as
k-schemes if and only if X(k) 6= ∅.

Proof. One implication is trivial. Suppose that X(k) 6= ∅. Then there exists
a morphism Spec k → X, fix such a morphism from now on. This induces a
morphism f : A = Spec k ×k A→ X ×k A. Composing this with the morphism
X ×k A→ X gives a k-morphism A→ X. Conversely, the morphism Spec k →
X defines a morphism X = Spec k ×k X → X ×k X. Composing this with the
inverse of the isomorphism X ×k A→ X ×kX and the projection X ×k A→ A
gives a k-morphism g : X → A. It remains to show that fg = idX and gf = idA.
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Let T be any other k-scheme. We will denote the composition T → Spec k →
X by x ∈ X(T ). Recall that we have an A(T )-action on X(T ) defined by the k-
morphism X×kA→ X. The morphism f(T ) : A(T )→ X(T ) sends a ∈ A(T ) to
x+a ∈ X(T ). Conversely, one can show that the morphism g(T ) : X(T )→ A(T )
sends y ∈ X(T ) to the unique a ∈ A(T ) with x+ a = y. We therefore see that
f(T )g(T ) = idX(T ) and g(T )f(T ) = idA(T ). An application of Yoneda’s lemma
then proves that fg = idX and gf = idA, so X and A are isomorphic as k-
schemes.

Notice that WC(A/k) is called the Weil-Châtelet group of A over k, while it
is only defined as a set of equivalence classes of k-torsors. The following theorem
shows that we can put a group structure on WC(A/k) in a natural way.

Theorem 4.1.3. Let A be an abelian variety over k. There is a natural well-
defined bijection

WC(A/k)
∼−→ H1(Gk, A(k̄))

defined as follows: for a k-torsor C of A we pick a point x0 ∈ A(k̄) and let

[C] 7→ [σ 7→ xσ0 − x0].

Proof. Silverman ([12, X.3.6]) proves this for elliptic curves; the proof carries
over to arbitrary abelian varieties.

If l/k is a field extension, then for every k-torsor X of A the base change Xl

of X over Spec l → Spec k is an l-torsor for Al. If we fix an embedding k̄ → l̄
then we get a group homomorphism

WC(A/k)→WC(A/l)

that corresponds to the homomorphism H1(Gk, A(k̄))→ H1(Gl, A(l̄)) induced
by the restriction homomorphism Gal(l̄/l)→ Gal(k̄/k) and the inclusion A(k̄) ⊂
A(l̄). This group homomorphism is natural; that is, it does not depend on the
choice of embedding k̄ → l̄ (see [11, VII.5.3]).

Proposition 4.1.4. The Weil-Châtelet group WC(A/k) is torsion. More pre-
cisely: if X is a k-torsor of A and l/k is a finite field extension such that X has
an l-rational point then the order of the class of X in WC(A/k) divides [l : k].

Proof. Let X be a k-torsor of A. There exists a finite extension l/k such that
X has an l-rational point. Consider the restriction and corestriction homomor-
phisms

H1(Gk̄/k, A(k̄))
Res−−→ H1(Gk̄/l, A(k̄))

Cor−−→ H1(Gk̄/k, A(k̄)).

By [11, VII.7.6] the composition is multiplication by [l : k]. Using the isomor-
phism in 4.1.3 we get homomorphisms

WC(A/k)→WC(A/l)→WC(A/k)

where the composition is multiplication by [l : k]. However, the class of X in
WC(A/k) gets mapped to zero by the restriction map WC(A/k) → WC(A/l).
Therefore this class has finite order dividing [l : k].
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Definition 4.1.5. Let A be an abelian variety over k, and let C be a k-torsor
for A. The period of C is the order of [C] in WC(A/k). The index of C is the
smallest m ≥ 1 such that there exists a field extension l/k of degree m such
that C(l) 6= ∅.

By 4.1.4 we immediately see that the period of a k-torsor for A divides its
index.

From now on we will only look at torsors of elliptic curves. In this case the
period and index turn out to be closely related to degrees of divisors. Notice
that (torsors of) elliptic curves are integral and regular, so we can identify Weil
and Cartier divisors.

Definition 4.1.6. Let C be a regular integral curve over a field k, and let
D =

∑
P nPP be a divisor of C (here P ranges over the closed points of C).

The k-degree of D, denoted by degkD, is the integer

degkD =
∑
P

nP [k(P ) : k].

This integer depends on the base field k. The k will be omitted if there is
no ambiguity.

Consider the curve Ck̄ = C ×k k̄. The Galois group Gk = Gal(k̄/k) acts on
Ck̄, and hence on Div(Ck̄).

Proposition 4.1.7. Let E/k be an elliptic curve, and let C be a k-torsor of E.
The following three integers are equal:

• The index of C/k;
• The smallest m > 0 such that there exists D ∈ Div(C) with degkD = m;
• The smallest m > 0 such that there exists D ∈ Div(Ck̄)Gk̄ with degk̄D =
m.

Proof. Denote the three integers in the lemma by m1,m2,m3, respectively. Let
l/k be a field extension of degree m1 with C(l) 6= ∅, and let P ∈ C(l) be a
closed point. Let D = {P} be the corresponding divisor of C. We then have
degkD = [k(P ) : k] = [l : k] = m1 by minimality of the degree of l/k, so we
see that m2 ≤ m1. Conversely, let D ∈ Div(C) be a divisor with degkD = m2.
Using Riemann-Roch we may assume that D is effective, and by minimality of
m2 we can even assume that D is irreducible, say D = {P}. Now [k(P ) : k] =
degkD = m2, so this shows that m2 ≤ m1.

Let again l/k be an extension of degree m1 with C(l) 6= ∅, and let P ∈
C(l) be any point. Let D ∈ Div(Ck̄) be the divisor obtained by adding all
conjugates of P under the action of Gk. By the orbit-stabilizer theorem we
find degk̄D = [k(P ) : k], so m3 ≤ m1. Conversely, let D ∈ Div(Ck̄)Gk̄ . Using
Riemann-Roch we may assume that D is effective, and the orbit of a point P in
its support is at most degD. Using the orbit-stabilizer theorem again we find
that m1 ≤ [k(P ) : k] ≤ m3.

The period of an E-torsor has a similar characterization. In order to prove
it we first need the following theorem.
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Theorem 4.1.8 ([12, X.3.8]). Let E be an elliptic curve over k, let C be a k-
torsor of E, and let x0 ∈ C(k̄) be any point. Consider the group homomorphism

sum : Div0(Ck̄)→ E(k̄) :
∑
x

nxx 7→
∑
x

nx(x− x0).

This homomorphism is a homomorphism of Gk̄-modules that does not depend
on the choice of x0, and there is an exact sequence

1→ k̄∗ → κ(Ck̄)∗
div−−→ Div0(Ck̄)

sum−−→ E(k̄)→ 0.

Hence it induces an isomorphism of Gk̄-modules

Pic0(Ck̄)
∼−→ E(k̄),

and in particular, an isomorphism

Pic0(Ck̄)Gk
∼−→ E(k).

Proposition 4.1.9. Let E/k be an elliptic curve, and let C be a k-torsor of E.
Then the following two integers are equal:

• The period of C;
• The smallest m > 0 such that there exists a divisor class in Pic(Ck̄)Gk of

degree m.

Proof. Consider the short exact sequence of Gk-modules

0→ Pic0(Ck̄)→ Pic(Ck̄)
deg−−→ Z→ 0.

Taking an isomorphism Pic0(Ck̄) ∼= E(k̄) as in the previous theorem and then
taking Galois cohomology yields the exact sequence

0→ E(k)→ Pic(Ck̄)Gk → Z→WC(E/k)

where the morphism Z → WC(E/k) is given by 1 7→ [C]. By exactness of the
sequence the desired result follows.

We can use these propositions to find a relation between the period and
index of a k-torsor of an elliptic curve.

Theorem 4.1.10. Let E/k be an elliptic curve, and let C be a k-torsor of E.
If the natural homomorphism Div(Ck̄)Gk → Pic(Ck̄)Gk is surjective, then the
period of C equals the index of C.

Proof. The first statement follows from 4.1.7 and 4.1.9. We get a commutative
diagram with exact rows:

Div(Ck̄)Gk
deg //

��

Z //

=

��

Z/(index of C)Z

����

// 0

=

��
Pic(Ck̄)Gk

deg // Z // Z/(period of C)Z // 0.

If the leftmost vertical arrow is surjective, then the third vertical arrow from
the left is injective; this follows from the four lemma.
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If the period and index are both equal to 1 then the converse of the last
statement in this theorem holds as well, as the following proposition shows.

Proposition 4.1.11. Let C be a k-curve of genus 1 with C(k) 6= ∅. Then the
map Div(Ck̄)Gk̄ → Pic(Ck̄)Gk̄ is surjective.

Proof. Fix a point x ∈ C(k). Let [D] ∈ Pic(Ck̄)Gk be a divisor class, represented
by D ∈ Div(Ck̄). The divisor D+(1−degk̄D)x ∈ Div(Ck̄)Gk has degree 1 so by
Riemann-Roch it is linearly equivalent to an effective divisor of degree 1, that
is, there exists a point y ∈ C(k̄) with [D] + (1−degk̄D)[x] = [y] ∈ Pic(Ck̄). For
every σ ∈ Gk we have [D]σ = [D] by assumption and xσ = x since x ∈ C(k), so

[y]σ = [D]σ + (1− degD)[x]σ = [D] + (1− degD)[x] = [y].

Hence there exists some f ∈ κ(Ck̄)∗ with div f = yσ−y, and this f is contained
in L(y). By Riemann-Roch L(y) is one-dimensional, and it clearly contains the
constant functions, so f is constant, and yσ = y. We see that

[D] = [y − (1− degD)x] ∈ Pic(Ck̄)

and that y− (1−degD)x is in Div(Ck̄)Gk , so the homomorphism Div(Ck̄)Gk̄ →
Pic(Ck̄)Gk̄ is surjective.

4.2 The Tate-Shafarevich group

Throughout this section we will fix a number field K. We define S = SpecOK ,
let Sfin denote the set of closed points of S, and S∞ denote the set of infinite
places. For every s ∈ Sfin ∪ S∞ we let Ks denote the completion of K with
respect to the absolute value corresponding to s.

Definition 4.2.1. Let E be an elliptic curve over K. The Tate-Shafarevich
group X(E/K) is the subgroup of WC(E/K) given by

X(E/K) =
⋂

s∈Sfin∪S∞

ker (WC(E/K)→WC(E/Ks)) .

A non-trivial element of X(E/K) is a K-curve C isomorphic to E over K̄
(but not over K itself!), that has a Ks-rational point for every place s of K,
but no K-rational point. Such a curve fails the Hasse principle, so the Tate-
Shafarevich group measures the failure of the Hasse principle for K-torsors of
E. It is conjectured that the Tate-Shafarevich group is finite. For more details,
see [12, Section X.4].

Theorem 4.2.2. Let E be an elliptic curve over K, and let C be a K-torsor
of E representing an element of X(E/K). Then the period and index of C are
equal.

Proof. By theorem 4.1.10 it suffices to show that Div(CK̄)Gk → Pic(CK̄)Gk is
surjective. Consider the exact sequence

1→ K̄∗ → κ(CK̄)∗ → Div(CK̄)→ Pic(CK̄)→ 0.

Taking Galois cohomology on the induced sequence 1 → K̄∗ → κ(CK̄)∗ →
κ(CK̄)∗/K̄ → 1 yields the exact sequence

H1(GK , κ(CK̄)∗)→ H1(GK , κ̄(CK̄)∗/K̄∗)→ H2(GK , K̄
∗) = Br(K).
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By imitating the proof of Hilbert’s Theorem 90 one easily finds

H1(GK , κ(CK̄)∗) = 0,

so the homomorphism H1(GK , κ(CK̄)∗/K̄∗)→ Br(K) is injective. Now taking
Galois cohomology on the sequence 1→ κ(CK̄)∗/K̄∗ → Div(CK̄)→ Pic(CK̄)→
0 yields the exact sequence

Div(CK̄)GK → Pic(C)GK → H1(GK , κ(CK̄)∗/K̄∗).

Composition with the injection into Br(K) we found earlier yields the exact
sequence

Div(CK̄)GK → Pic(CK̄)GK → Br(K).

We can do the same while replacing K with Kv for every place of K. We obtain
a commutative diagram with exact rows

Div(CK̄)GK //

��

Pic(CK̄)GK //

��

Br(K)

��∏
v Div(CK̄v )GKv // ∏

v Pic(CK̄v )GKv // ∏
v Br(Kv)

As C represents an element of X(E/K), we see that C(Kv) 6= ∅ for every place v
of K. Therefore the homomorphisms Div(CK̄v )GKv → Pic(CK̄v )GKv are surjec-
tive by proposition 4.1.11, so by exactness the homomorphisms Pic(CK̄v )GKv →
Br(Kv) are zero. The homomorphism Br(K) →

∏
v Br(Kv) is injective [11,

p. 163] so a diagram chase shows that Pic(CK̄)GK → Br(K) is zero too. By ex-
actness of the top row we find that Div(CK̄)GK → Pic(CK̄)GK is surjective.

4.3 Semi-stable elliptic curves

Theorem 4.3.1. Assume that K is either a non-archimedean local field or a
number field, and let OK be its ring of integers. Let E be an elliptic curve
over K, and let X → S = SpecOK be its minimal regular model. Then E is
semi-stable if and only if X → S is semi-stable.

Proof. Both properties need to be checked on each closed fiber. By base change
Spec ÔS,s we reduce to the local field case, and by taking the maximal unramified
extension of FracOS,s we reduce to the case where K is a non-archimedean local
field with algebraically closed residue field. We can then use the classification
of reduction types ([12, p. 448]) to finish the proof.

Let E be a semi-stable elliptic curve over a non-archimedean local field or a
number field K with ring of integers OK . We are interested in the closed fibers
of the Néron model N of E over SpecOK . Recall that this Néron model can be
obtained by taking the minimal regular model of E over SpecOK and removing
all the singular points in the closed fibers. By base change we may assume that
K is non-archimedean local with algebraically closed residue field k. Let us first
look at the unit component N0

s . If Xs is smooth, then N0
s = Xs is an elliptic

curve over κ(s). If Xs is an n-gon of P1
k’s, then N0

s is obtained by taking one
P1
k and removing the two points where it intersects the other lines. We get a

scheme N0
s isomorphic to Spec k[X, 1/X], and by 2.3.4 we see that N0

s
∼= Gm,k.

It can be shown that the component group π0(Ns)(k) is cyclic of order n, see
[9, 10.2.24].
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4.4 The Arakelov projection formula

The formulae in this section will be useful in the next section. They give an
Arakelov-theoretic analogue of the projection formula from the classical inter-
section theory ([9, 9.2.12]).

Theorem 4.4.1 (Arakelov projection formula, [4, 5.3.2]). Let E and E′ be two
elliptic curves over a number field K, and let f : E → E′ be an isogeny. Let
X → S = SpecOK and X ′ → S be regular models of respectively E and E′ over
S, and suppose that f extends to an S-morphism f : X → X ′. For every two
Arakelov divisors D ∈ D̂iv(X) and D′ ∈ D̂iv(X ′) the equality

(f∗D′ ·D)Ar = (D′ · f∗D)Ar

holds.

This theorem is especially useful when X ′ is the minimal regular model of
E′ over S. In this case, X ′ contains the Néron model of E′ over S, and by
the universal property of the Néron model, every isogeny E → E′ extends to a
morphism X → X ′.

Corollary 4.4.2. Assume we are in the situation of 4.4.1. Let N be the degree
of f . Then for all Arakelov divisors D1, D2 on X ′, the equality

(f∗D1 · f∗D2)Ar = N · (D1 ·D2)Ar

holds.

4.5 The self-intersection of a point on a semi-stable elliptic
curve

We will dedicate this section to proving the following theorem. We again fix a
number field K with ring of integers OK and define S = SpecOK .

Theorem 4.5.1. Let E/K be a semi-stable elliptic curve, and let C be a K-
torsor of E. Notice that E (and hence C) is geometrically connected. We
let X → S denote the minimal regular model of C over S, and D = {P} an
horizontal divisor of X. We will prove the following identity:

(D · ωX)Ar =
degK D|Xη

12

∑
s∈Sfin

δs,

where, for each closed s ∈ S, we define δs as follows:

δs = log #κ(s) ·# Sing(X ×S κ(s)).

Szpiro [13] proves this using Néron-Tate heights. A proof using only Arakelov
intersection theory is given in this section. Notice that, as X → S is semi-stable,
δs is zero if the geometric fiber of X above s is smooth, and δs is log #κ(s) · n
if this geometric fiber is an n-gon of P1’s. First notice that the left and right
hand side of 4.5.1 are linear in D, so we may assume with no loss of generality
that D is irreducible.
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Suppose that L/K is a finite field extension, with ring of integers OL, and
S′ = SpecOL. Let X ′ → S′ be the minimal desingularization of the base
change X ×S S′ of X over the morphism λ : S′ → S, and let r : X ′ → X
be the natural morphism. We let r∗L denote the horizontal part of r∗D. Now
r∗D can be written as the sum of r∗LD plus some irreducible components of
closed fibers of X ′ → S′, and the morphism r contracts these components to a
point. By [9, 10.2.12(a)] (the proof generalizes with no issue to our situation)
the intersection number of r∗ωX with these divisors is zero. Moreover, by 2.2.7,
we have r∗ωX = ωX′ . Using 3.2.3 we obtain

(r∗LD · ωX′)Ar = (r∗LD · r∗ωX)Ar = (r∗D · r∗ωX)Ar = [L : K](D · ωX)Ar.

We also have
degL(r∗LD)|X′η = degK D|Xη

by [9, 7.3.7(a)], and∑
s′∈S′fin

δs′ =
∑

s′∈S′fin

log #κ(s′) ·# Sing(X ′ ×S′ κ(s′))

=
∑
s∈Sfin

∑
s′∈λ−1(s)

log #κ(s′) ·# Sing(X ′ ×S′ κ(s′))

=
∑
s∈Sfin

∑
s′∈λ−1(s)

[κ(s′) : κ(s)] log #κ(s) · e(s′/s)# Sing(X ×S κ(s))

= [L : K]
∑
s∈Sfin

δs,

since ∑
s′∈λ−1(s)

e(s′/s)[κ(s′) : κ(s)] = [L : K].

Also, X ′ is again minimal, by 2.2.8. Both sides of 4.5.1 are changed by a factor
[L : K] when we replace K by a finite extension L/K, so we may do so with no
loss of generality. We may therefore assume that C has a K-rational point, so
we may assume that C is an elliptic curve with zero O = P . Let p be a prime
number such that for all s ∈ S with char(κ(s)) = p the fiber Xs is smooth
(such a prime number exists, since an elliptic curve has bad reduction over only
finitely many primes). We extend our field further, such that all p-torsion points
of E are K-rational. We let P1, . . . , Pr (r = p2) denote the p-torsion points, and
identify them with the irreducible horizontal divisors of X they induce.

By the adjunction formula, we have

(O · ωX)Ar = −(O ·O)Ar,

so we need to show that

(O ·O)Ar = − 1

12

∑
s

δs.

By the Arakelov projection formula we have

p2(O ·O)Ar = ([p]∗O · [p]∗O)Ar =
∑
i,j

(Pi · Pj)Ar.
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By symmetry all K-rational points on an elliptic curve have the same self-
intersection, so we find that

0 =
∑
i6=j

(Pi · Pj).

For each 1 ≤ i, j ≤ r with i 6= j, we define a vertical divisor Φij =
∑
s∈Sfin

Φij,s
as follows: we put Φij,s = 0 if Xs is smooth, and we let Φij,s ∈ Divs(X)⊗Q be
a fractional vertical divisor (that is, a divisor with rational instead of integral
coefficients) above s such that (Pi−Pj + Φij,s ·V )Ar = 0 for all vertical divisors
V ∈ Divs(X) above s. The following lemma shows that this is possible. In
this case, every closed fiber is connected, since the generic fiber Xη

∼= C is
geometrically connected (see 2.1.2).

Lemma 4.5.2. Let X → S be an arithmetic surface, let K = κ(S) be the
function field of S, and let P1, P2 be two K-rational points on the generic fiber.
Let D1, D2 be the corresponding irreducible horizontal divisors of X. Let s ∈ S
be a closed point such that Xs is connected. Then there exists a fractional
vertical divisor Φ ∈ Divs(X)Q with

(D1 −D2 + Φ · F )Ar = 0 for all vertical F ∈ Divs(X).

Moreover, this Φ is unique up to a fractional multiple of Xs. In particular, Φ2

does not depend on the choice of Φ.

Proof. Let Γ1, . . . ,Γr be the irreducible components of Xs, and let d1, . . . , dr be
their multiplicity in Xs. The Arakelov intersection product defines a symmetric
bilinear form on Divs(X)Q (and this bilinear form is log κ(s) times the bilinear
form induced by the ‘classical’ intersection product), and hence a Q-linear map

Divs(X)Q → (Divs(X)Q)∨ : F1 7→ (F2 7→ (F1 · F2)Ar).

The kernel of this linear map is spanned by Xs =
∑
i diΓi; see [9, Theorem

9.1.21 and Theorem 9.1.23]. Similarly, we see that the image of this linear map
is contained in, and therefore equal to, the codimension 1 subspace{

f ∈ (Divs(X)Q)∨) :
∑
i

dif(Γi) = 0.

}
.

Now consider the linear form on Divs(X)Q given by F 7→ (D2 − D1, F ). We
have:∑

i

di(D2 −D1 · Γi)Ar = (D2 −D1 ·Xs)Ar = (D2 ·Xs)Ar − (D1 ·Xs)Ar = 0

as P1 and P2 are both K-rational points; see [9, Proposition 9.1.30]. We there-
fore see that this linear form is in the image of the linear map defined above,
and therefore there exists a Φ ∈ Divs(X)Q with (D2−D1 ·F )Ar = (Φ ·F )Ar for
all F ∈ Divs(X).

By construction we have

(Pi − Pj + Φij · V )Ar = 0
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for all vertical divisors V of X. In particular, we have

(Pi − Pj + Φij · Φij)Ar = 0. (4.5.3)

We have another useful identity.

Lemma 4.5.4.
(Pi − Pj + Φij)

2
Ar = 0.

Proof. The divisor pPi − pPj on C is principal; see [12, III.3.5], so there exists
an f ∈ κ(C)∗ = κ(X)∗ with div(f) = pPi − pPj . As divisors on X we have
pPi − pPj = (f)hor. We now have:

(Pi − Pj + Φij · pPi − pPj)Ar = (Pi − Pj + Φij · (f)hor)Ar

= (Pi − Pj + Φij · −(f)ver − (f)∞)Ar.

We have (Pi − Pj + Φij · (f)ver)Ar = 0 by construction of Φij , and (Pi − Pj +
Φij · (f)∞)Ar = 0 as Pi and Pj are both K-rational. We therefore see that

p(Pi − Pj + Φij · Pi − Pj)Ar = (Pi − Pj + Φij · pPi − pPj)Ar = 0.

As (Pi − Pj + Φij · Φij)Ar = 0, we now easily obtain the desired result.

By taking sums and using 4.5.3 and 4.5.4 we now find:

0 =
∑
i 6=j

(Pi − Pj + Φij)
2
Ar

=
∑
i 6=j

(
(Pi − Pj)2

Ar + 2(Pi − Pj · Φij)Ar + (Φij)
2
Ar

)
=
∑
i 6=j

(Pi)
2
Ar + (Pj)

2
Ar − 2(Pi · Pj)2

Ar − (Φij)
2
Ar

= 2(p4 − p2)(O)2
Ar −

∑
i6=j

Φ2
ij − 2

∑
i 6=j

(Pi · Pj)Ar

= 2(p4 − p2)(O)2
Ar −

∑
i6=j

(Φij)
2
Ar.

It is clear that (Φij)
2
Ar = (Φji)

2
Ar. Dividing the above equation by 2(p4 − p2)

gives the following formula for (O ·O)Ar:

(O ·O)Ar =
1

p4 − p2

∑
i<j

(Φij)
2
Ar =

1

p4 − p2

∑
s∈Sfin

∑
i<j

(Φij,s)
2
Ar. (4.5.5)

The following lemma gives a formula for Φij,s:

Lemma 4.5.6. Let Γ0, . . . ,Γns−1 be the components of Xs, numbered cyclically.
Suppose that P1 and P2 are K-rational points on the generic fiber of X, and let
D1, D2 be the corresponding irreducible horizontal divisors. Let 0 ≤ a, b < ns be
the unique integers such that D1 ∩Γa 6= ∅ and D2 ∩Γb 6= ∅. Suppose that Φ is a
rational vertical divisor above s such that (D1 −D2 + Φ · F ) = 0 for all vertical
divisors F above s. Then

(Φ)2
Ar = −|a1 − a2|(r − |a1 − a2|)

r
· log #κ(s).
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Proof (sketch). We need to show that

Φ2 = −|a1 − a2|(r − |a1 − a2|)
r

;

with Φ2 the self-intersection of Φ in terms of ‘classical’ intersection theory. The
above result then follows by definition of the Arakelov intersection product.

Write Φ =
∑
i qiΓi. We have:

0 = (D1 −D2 + Φ) · Φ = qa − qb + Φ2.

Moreover, the identities

0 = (D1 −D2 + Φ) · Γi

with 0 ≤ i < ns give ns linear equations in the variables q0, . . . , qns−1. A purely
combinatorial argument completes the proof.

Fix a closed point s ∈ S, and define k = κ(s). If Xs is smooth then Φij,s = 0
so (Φij,s)

2
Ar = 0. Suppose that Xs is not smooth. Then the geometric fiber

Xk = Xs ×S Spec k is an ns-gon of projective lines meeting transversally. Let
N be the Néron model of X over S. The fiber Ns is obtained by removing
the singular points of Xs. The component group π0(Ns)(k) is cyclic, and the
identity component N0

s has N0
s (k) ∼= k∗. As char(k) 6= p, the reduction map

C(K)[p] → N0
s (k) is injective ([12, VII.3.1(a)]), so we see that the p-torsion

points are distributed as p packets of p points, evenly distributed over the sides
of the geometric fiber Xk. That is, ns is divisible by p, write ns = pms, and if we
number the components of Xk by Γ0, . . . ,Γns−1 with Γ0 the identity component,
then the components Γ0,Γms ,Γ2ms , . . . ,Γ(p−1)ms each intersect with p among
the horizontal divisors P1, . . . , Pr. We therefore see that∑

i<j

(Φij,s)
2
Ar = −p2

∑
0≤a<b<p

(bms − ams)(ns − (bms − ams))

ns
· log #κ(s).

This can be rewritten to∑
i<j

(Φij,s)
2
Ar = −ns

∑
0≤a<b<p

(b− a)(p− (b− a)) · log #κ(s).

The following lemma can be used to further simplify the above equation.

Lemma 4.5.7. Let n be a positive integer. The following formula holds:

12
∑

0≤i<j<n

(j − i)(n− (j − i)) = n4 − n2.

Proof. The identity can be verified by expanding the sum and using the formulae
for the triangular, square piramidal and square triangular numbers.

By using the lemma, we find that∑
i<j

(Φij,s)
2
Ar = −ns

p4 − p2

12
· log #κ(s).
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By summing over all closed s ∈ S we now find:∑
i<j

(Φij)
2
Ar = −

∑
s∈Sfin

ns
p4 − p2

12
· log #κ(s) = −p

4 − p2

12
·
∑
s∈Sfin

δs.

By combining this result with 4.5.5 we obtain

(O · ωX)Ar = −(O ·O)Ar =
1

12

∑
s∈Sfin

δs,

so we have completed the proof.

4.6 The Hriljac-Faltings-Riemann-Roch theorem

Let K be a number field, and let X → S = SpecOK be an arithmetic surface
with generic fiber of arithmetic genus 1. Let, moreover, D be an irreducible
horizontal Weil divisor of X. We will show that H1(X,OX(D)) = 0 using the
following theorem.

Theorem 4.6.1 (Grauert, [6, III.12.9]). Let f : X → Y be a projective mor-
phism of Noetherian schemes, with Y integral, and let F be a coherent sheaf on
X, flat over Y . Suppose that for some i ≥ 0 the function

Y → Z≥0 : y 7→ dimκ(y)H
i(Xy,Fy)

is constant. Then Rif∗(F) is locally free on Y , and for every y ∈ Y there is a
natural isomorphism

Rif∗(F)⊗ κ(y)
∼−→ Hi(Xy,Fy).

Corollary 4.6.2. Let X → S be an arithmetic surface with generic fiber of
arithmetic genus 1. Then H1(X,OX(D)) = 0 for every irreducible horizontal
divisor D on X.

Proof. Since the morphism X → S is flat, the arithmetic genus of every fiber
of X → S is equal to pa(Xη) = 1. For every s ∈ S the fiber Xs is a projective
curve over κ(s) and hence, using Riemann-Roch and Serre duality, we find that
H1(Xs, OXs(Ds)) = 0. By Grauert’s theorem R1f∗(OX(D)) is locally free on S,
and for every s ∈ S we have R1f∗(OX(D))⊗κ(s) = 0. Therefore R1f∗(OX(D))
is zero, and as R1f∗(OX(D)) = H1(X,OX(D))∼ ([6, III.8.5]), we find that
H1(X,OX(D)) = 0.

As H1(X,OX(D)) = 0, the Faltings metrics on the determinants of cohomol-
ogy detH(Xσ, OXσ (Dσ)) induce a Haar measure volFal on H0(X,OX(D))⊗ZR.
The Hriljac-Faltings-Riemann-Roch theorem gives a formula for the volume of
a fundamental domain of the lattice H0(X,OX(D)) in H0(X,OX(D))⊗Z R.

Theorem 4.6.3 (Hriljac-Faltings-Riemann-Roch). Let F be a fundamental do-
main of the lattice H0(X,OX(D)) in H0(X,OX(D))⊗Z R. The volume of F is
given by

− log volFal F = 1
2 (D ·D−ωX)Ar +χ(OX) + degK(D|Xη ) · (s log 2− log

√
|∆K |).

Here ∆K denotes the discriminant of K over Q, and s is the number of pairs
of conjugate complex embeddings K → C.
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Proof. The Faltings-Riemann-Roch theorem gives the identity

χ(OX(D)) = 1
2 (D ·D − ωX)Ar + χ(OX).

As H1(X,OX(D)) = 0 by 4.6.2, we find that

χ(OX(D)) = χ(H0(X,OX(D)), OK)

= χ(H0(X,OX(D)),Z)− rankOK (H0(X,OX(D)) · χ(OK ,Z))

= − log volFal F − degK(D|Xη ) · (s log 2− log
√
|∆K |),

since

rankOK (H0(X,OX(D))) = dimK(H0(X,OX(D))⊗OK K)

= dimK H
0(XK , OXK (D|XK ))

= degK(D|XK ).

Here the second equality follows from the flatness of X → S (cf. [6, III.9.3]),
and the last equality from Riemann-Roch. By putting everything together again
we find the formula stated in the theorem.

4.7 An upper bound for splitting fields of principal homo-
geneous spaces

In this section, we will prove the following main theorem.

Theorem 4.7.1. Let E be a semi-stable elliptic curve over a number field K.
Then there exists a function

B(N) = [K : Q]N logN +O(N)

such that for every K-torsor C of E of index N there exists a field extension
L/K of degree N with C(L) 6= ∅ and

log
∣∣NK/Q(∆L/K)

∣∣ ≤ B(N).

Hriljac [7] proved in his article the following result, which follows from the
above theorem by applying 4.2.2. Therefore, the above theorem is a generaliza-
tion of Hriljac’s result.

Corollary 4.7.2. Let E be a semi-stable elliptic curve over a number field K.
There exists a function B(N) = [K : Q]N logN +O(N) such that the following
holds: if [C] ∈X(E/K) is an element in the Tate-Shafarevich group of order
N , then there exists a field extension L/K of degree N with C(L) 6= ∅ and
log
∣∣NK/Q(∆L/K)

∣∣ ≤ B(N).

The proof of 4.7.1 is very similar to the proof of Hriljac’s result. We will use
the rest of this chapter to provide the proof.

Let K be a number field, and let E/K be an elliptic curve (we will first give
an upper bound 4.7.4 for log

∣∣NK/Q(∆L/K)
∣∣ in the general case, and derive 4.7.1

in the semi-stable case). Let C be a K-torsor of E, and let N be its index. So
there exists a field extension L/K of degree N such that C(L) 6= ∅; let P ∈ C(L)
be a point. We let X → S = SpecOK denote the minimal regular model of
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C over OK , and let D = {P} denote the irreducible horizontal divisor of X
corresponding to P . We have

degK D|Xη = [κ(P ) : K] = N.

We have a natural Haar measure onH0(X,OX(D))⊗ZR, induced by the Faltings
metrics on the detH(X,OXσ (Dσ)) (for all σ ∈ S∞), and by the Hriljac-Faltings-
Riemann-Roch theorem, the volume of a fundamental domain F of the lattice
H0(X,OX(D)) in H0(X,OX(D))⊗Z R is given by

− log volF = 1
2 (D ·D − ω)Ar + χ(OX) +N · (s log 2− log

√
|∆K |),

where s denotes the number of conjugate pairs of complex embeddings of K.
For every σ ∈ S∞, the canonical admissible metric ‖·‖Dσ on OXσ (Dσ) gives

inner products 〈·, ·〉Dσ (P ) on the fibers of OXσ . We obtain a pairing (·, ·)σ on

H0(Xσ, OXσ (Dσ)) = H0(X,OX(D))⊗OK Kσ given by

(f, g)σ =

∫
Xσ
〈f(P ), g(P )〉Dσ (P ) · µσ,

where µσ denotes the canonical (1, 1)-form on Xσ. One easily checks that
this pairing defines an inner product on the (real or complex) vector space
H0(X,OX(D))⊗OK Kσ. Let ‖·‖σ (not to be confused with ‖·‖Dσ !) denote the

norm on H0(X,OX(D)) ⊗Z R associated to this inner product. Consider the
subset

T ⊂ H0(X,OX(D))⊗Z R =
∏
σ∈S∞

H0(X,OX(D))⊗OK Kσ

given by

T =

{
(fσ)σ ∈

∏
σ∈S∞

H0(X,OX(D))OKKσ :
∑
σ∈S∞

εσ‖fσ‖σ ≤ [K : Q]

}
.

This subset is easily seen to be a convex closed subset, symmetric in the origin.

Lemma 4.7.3. For every non-zero (fσ)σ ∈ T we have∑
σ∈S∞

εσ

∫
Xσ

log ‖fσ‖Dσµσ ≤ 0.

More generally, for every a > 0 and every (fσ)σ ∈ aT we have∑
σ∈S∞

εσ

∫
Xσ

log ‖fσ‖Dσµσ ≤ [K : Q] log a.

Proof. The second statement follows from the first, using the identity
∑
σ εσ =

[K : Q]. We will prove the first inequality. Let (fσ)σ ∈ T be any element.
Jensen’s inequality gives, for all σ ∈ S∞:∫

Xσ
log ‖fσ‖Dσµσ ≤ log

(∫
Xσ
‖fσ‖Dσµσ

)
.
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Using the inequality 1 + 1
2 log x ≤

√
x for all x > 0 we find:∫

Xσ
log ‖fσ‖Dσµσ + 1 ≤ log

(∫
Xσ
‖fσ‖µσ

)
+ 1 ≤

(∫
Xσ
‖fσ‖Dσµσ

)1/2

= ‖fσ‖σ.

We therefore see that∑
σ∈S∞

εσ

(∫
Xσ

log ‖fσ‖Dσµσ + 1

)
≤
∑
σ∈S∞

εσ‖fσ‖σ ≤ [K : Q],

and as
∑
σ εσ = [K : Q] the desired result follows.

Let a > 0 be the positive real number defined by

2N [K:Q] volFal(F ) = aN [K:Q] volFal(T ) = volFal(aT ).

Applying Minkowski’s Theorem to the lattice H0(X,OX(D)) and the centrally
symmetric convex closed subset T of the N [K : Q]-dimensional R-vector space
H0(X,OX(D))⊗ZR shows that there exists a non-zero f ∈ H0(X,OX(D)) that
lies in aT . In particular, we see that∑

σ∈S∞

εσ

∫
Xσ

log ‖f‖Dσµσ ≤ [K : Q] log a.

The divisor D + (f)fin is an effective divisor, as f ∈ H0(X,OX(D)). There-
fore its horizontal part D′ := D + (f)hor is effective too, and the degree of its
restriction to Xη

∼= C is N , and therefore D′ is irreducible. Let P ′ be its point
on the generic fiber, and let L = κ(P ) be its field of fractions; the degree of
L/K is N . By theorem 2.1.4 there exists an OK-order R in OL and a morphism
ε : SpecR → X such that D = ε(SpecR). As R is contained in OL, the ideal
∆R/K is contained in ∆L/K , and hence we have:∣∣NK/Q(∆L/K)

∣∣ ≤ ∣∣NK/Q(∆R/K)
∣∣.

The adjunction formula gives us the following equality:

log
∣∣NK/Q(∆R/K)

∣∣ = (D′ + ωX ·D′)Ar +
∑
σ∈S∞

εσ
∑
i 6=j

gσ(P ′σ,i, P
′
σ,j),

where, for every σ ∈ S∞, the points P ′σ,1, . . . , P
′
σ,N are the N points on Xσ

obtained by embedding P ′ in Xσ via the N embeddings L→ C extending σ.
By Elkies’ theorem 1.3.4, there exist constants cσ for every σ such that∑

i6=j

gσ(P ′σ,i, P
′
σ,j) ≤

N logN

2
+Ncσ.

As the Riemann surface Xσ is isomorphic to (E×σC)(C), this constant depends
only on E! By setting c =

∑
σ εσcσ we obtain a constant, depending only on E,

such that ∑
σ∈S∞

εσ
∑
i6=j

gσ(P ′σ,i, P
′
σ,j) ≤

[K : Q] ·N logN

2
+Nc.
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Next, we will give an upper bound for (D′ + ωX ·D′). We have

((D′ + (f)ver) · (D′ + (f)ver))Ar − (D′ ·D′) = ((2D′ + (f)ver) · (f)ver)Ar

= (D +D′ + (f)fin · (f)ver)Ar

= (D +D′ − (f)∞ · (f)ver)Ar

= (D +D′ · (f)ver)Ar

≥ 0

since D and D′ are both effective horizontal divisors and (f)ver is an effective
vertical divisor (it is the vertical part of the effective divisor D + (f)fin). We
have

(D′ + (f)ver)
2
Ar = (D − (f)∞)2

Ar

= (D)2
Ar + 2 degK(D|Xη )

∑
σ∈S∞

εσ

∫
Xσ

log ‖f‖Dσµσ.

By definition of f we have∑
σ∈S∞

εσ

∫
Xσ

log ‖f‖Dσµσ ≤ [K : Q] log a,

so we find that

(D′ ·D′)Ar ≤ ((D′ + (f)ver) · (D′ + (f)ver))Ar ≤ (D ·D)Ar + 2N [K : Q] log a.

We can also give an upper bound for (ωX ·D′). We have:

(ωX ·D′) = (ωX · (D + (f)hor))Ar = (ωX · (D − (f)ver − (f)∞))Ar.

Now (ωX ·(f)ver)Ar is non-negative, as X is minimal, see 2.1.12. The intersection
((f)Ar · ω)Ar is zero, as degK(ωX |C) = degK ΩC/k = 0 by Riemann-Roch. We
therefore see that

(ωX ·D′) ≤ (ωX ·D).

Notice that equality holds if X → S is semi-stable; see 4.5.1.
By combining the previous inequalities we find the following upper bound

for the discriminant of L.

log
∣∣NK/Q(∆L/K)

∣∣ ≤ (D+ ωX ·D)Ar + 2N [K : Q] log a+
N [K : Q] logN

2
+Nc.

By definition of a we have

2N [K : Q] log a = 2N [K : Q] log 2 + 2 log volFal(F )− 2 log volFal(T ).

Now apply Hriljac-Faltings-Riemann-Roch on log volFal(F ) and substitute ev-
erything in the above inequality; we find that:

log
∣∣NK/Q(∆L/K)

∣∣ ≤ 2(D · ωX)Ar + 2N [K : Q] log 2− 2χ(OX)

− 2N(s log 2− log
√
|∆K |)− 2 log volFal(T )

+
[K : Q]N logN

2
+Nc.
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It remains to bound log volFal(T ).
Let σ ∈ S∞ be an infinite place of K. We have encountered two volumes

on H0(X,OX(D))⊗OK Kσ: the Faltings volume volσFal induced by the Faltings
metric on H0(Xσ, OXσ (Dσ)), and the volume volσAr, we will call it the Arakelov
volume, induced by the inner product

(f, g)σ =

∫
Xσ
〈f(P ), g(P )〉Dσµσ.

Let fσ1 , . . . , f
σ
N be an orthonormal basis with respect to this inner product.

We let Pσ be the parallelepiped spanned by fσ1 , . . . , f
σ
N if σ is real, and by

fσ1 , . . . , f
σ
N , if

σ
1 , . . . , if

σ
N if σ is complex. We see that volσAr(P

σ) = 1, so the
Arakelov and Faltings volumes are related as follows:

volσFal = volσFal(P
σ) · volσAr .

The Faltings and Arakelov volumes on the H0(X,OX(D))⊗OK Kσ induce vol-
umes volFal and volAr on H0(X,OX(D)) ⊗Z R, and these are related by the
following equation:

volFal =

(∏
σ

volFal(P
σ)

)
volAr .

One can show that the Arakelov volume of the subset T ⊂ H0(X,OX(D))⊗ZR
is given by the following formula:

volAr(T ) =
V rNV

s
2N [K : Q]N [K:Q](N !)r((2N)!)s

(N [K : Q])!2Ns
,

where r (resp. s) denotes the number of real (resp. complex) places of K, and

Vn =
πn/2

n
2 Γ(n2 )

is the volume of the unit ball in Rn. A proof is given in [7, p. 223]. It only
contains the computation of some integrals, along with some combinatorics, so
it will be omitted from here.

It remains to bound volFal(P
σ) for all σ ∈ S∞. We have

volFal(P
σ) = (‖fσ1 ∧ · · · ∧ fσN‖

σ
Fal)

εσ

where ‖·‖σFal denotes the Faltings metric on Λn(H0(X,OX(D)) ⊗OK Kσ). By
1.7.5 we have

‖fσ1 ∧ · · · ∧ fσN‖
σ
Fal ≥

2π‖η‖(τσ)2
√
N !

exp(N logN
2 +Ncσ + log 2 + 2cσ)1/2

where τσ is a complex number with positive imaginary part, such that the
Riemann surface Xσ is isomorphic to C/(Z + Zτσ).
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We finally find the following upper bound for −2 log volFal(T ):

−2 log volFal(T ) =
∑
σ∈S∞

−2 log volFal(P
σ)− 2 log volAr(T )

=
∑
σ∈S∞

−2εσ log ‖fσ1 ∧ · · · ∧ fσN‖σFal − 2 log volAr(T )

≤
∑
σ∈S∞

εσ

(
N logN

2
+Ncσ + log 2 + 2cσ

− 2εσ log(2π‖η‖(τσ)2
√
N !)

)
− 2 log volAr(T )

= [K : Q]
(
N logN

2
+ log 2

)
+ (N + 2)c− [K : Q] logN !

− 2
∑
σ∈S∞

εσ log(2π‖η‖(τσ)2)− 2 log volAr(T ).

By combining the inequalities found in this section, we find the following
upper bound for the discriminant of L/K:

log
∣∣NK/Q(∆L/K)

∣∣ ≤ 2(D · ω)Ar − 2χ(OX) + (2N + 1)[K : Q] log 2 +N log |∆K |
+ [K : Q](N logN − logN !) + (2N + 2)c− 2r log VN

− 2s log V2N − 2N [K : Q] log[K : Q]− 2r logN !− 2s log(2N)!

+ 2 log(N [K : Q])!− 2
∑
σ∈S∞

log(2π‖η‖(τσ)2). (4.7.4)

If X → S is semi-stable, then we have by 4.5.1:

(D · ω)Ar =
N

12

∑
s∈Sfin

δs,

where δs equals log #κ(s) times the number of singularities in the geometric
fiber of X → S above s. In particular, this value does not depend on X, but
only on E. Similarly, we have an equation for χ(OX), by Faltings ([5, Theorem
7]):

χ(OX) = 1
12

∑
s∈Sfin∪S∞

δs,

where δs is the same as earlier for s finite, and for σ ∈ S∞:

δσ = −εσ log
(
(2π)12‖η‖(τσ)24

)
.

Therefore χ(OX), too, is an invariant of E.
One might be interested in how this upper bound behaves when N becomes

large. Most terms are either O(1) or O(N), but there are some terms that need
further investigation. Let us begin with the term [K : Q](N logN − logN !).
This term is O(N); this follows from Stirling’s approximation of logN !. We are
left with the following term:

−2r log VN − 2s log V2N − 2r logN !− 2s log(2N)! + 2 log(N [K : Q])!.

We have

log VN = log

(
πN/2

Γ(N2 + 1)

)
= −N2 log N

2 +O(N) = −N2 logN +O(n),
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by Stirling’s approximation. By applying Stirling’s approximation to every other
term in a similar way we get

rN logN + 2sN logN − 2rN logN − 4sN logN + 2[K : Q]N logN +O(N)

and as r + 2s = [K : Q] we are left with

[K : Q]N logN +O(N).

We therefore see that the upper bound 4.7.4 is of the form

[K : Q]N logN +O(N).

This proves the main theorem of this section.
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