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Abstract

For the applied statistician, data augmentation is a powerful tool for
solving optimization problems. In this thesis, I address a problem in
some data augmented Gibbs samplers. I show that although introduc-
ing latent variables renders a sampling problem tractable, this comes
at the price of raising the autocorrelation of the Markov chain, as the
number of parameters increases, in this case the number of items in
a test. By means of an example, I show that data augmentation is
a powerful yet inefficient tool in cases of increased number of items,
since the autocorrelation (and hence the rate of the convergence) of
the addressed augmented Gibbs sampler is proved to be dependent on
the number of item parameters. We wish to show that although most
data-augmented samplers are well behaved, in this example the algo-
rithm becomes really slow and faces the possibility of grinding to a
halt.
KEY WORDS: Gibbs sampler, Posterior sampling, Autocorrelation
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2 Introduction

Data augmentation (DA) is a statistical tool for constructing sampling and
optimization algorithms by introducing unobserved or latent variables. Ever
since the seminal paper of Tanner and Wong (1987), in which the authors
introduced the term data augmentation algorithm, an increasing number
of difficult statistical problems has been addressed and has yielded results
that could not be obtained so far. Since then, the applications of the DA
algorithm have been numerous and diverse. Tanner and Wong used DA
schemes for posterior calculation, Swendsen and Wang (1987) to sample
from the Ising model, Albert (1992) to estimate Item Response Theory (IRT)
models and Albert and Chib (1993) for probit regression, to name a few.

In this thesis we study the asymptotic behavior of data augmented Gibbs
samplers. Our objective is to show that the autocorrelation between succes-
sive samples may depend on the number of items in a test. To this aim, we
discuss an example where the Markov chain will eventually stop mixing as
more items are being observed. Note that most data-augmented samplers
are well behaved and normally become slower when the amount of latent
data increases. In the content of this thesis, we will address an example
where the algorithm might grind to a halt and therefore fail in exploring the
posterior support.

The thesis is organized as follows: In Chapter 2, an introduction and
background information of the problem are given. We briefly describe the
Gibbs sampler and key concepts of item response theory. In Chapter 3,
the data augmentation and data augmentation-transformation algorithms
are explained thoroughly. In Chapter 4, we study the asymptotic behavior
of the algorithm for the Normal Ogive and the Rasch model. Chapter 5,
describes the relation of lag-1 autocorrelation to the sample size in terms
of increase of item parameters of a test. The paper ends with a discussion.
The R-code (R Core Team, 2013) used to obtain the figures in this thesis is
presented in Appendix C.

3 Introduction and Background Concepts of the
Problem

3.1 Introduction and Model Specification

We consider the situation of a random sample of N persons; each responds
to items. The items are constructed to measure some sort of ability and
are scored as right or wrong. Thus, for each person p = 1, ..., N and item
i = 1, ..., n we observe one realization xpi of a Bernoulli response variable
Xpi, where xpi = 1 if the response of person p to item i was correct, and
xpi = 0 if the answer was incorrect, respectively.

4



It is assumed that each person in the sample is characterized by a uni-
dimensional ability denoted θ, sampled independently from a population
model f(θ|λ) as a function of a parameter λ. An Item Response The-
ory model is used for the conditional distribution, P (Xp = xp|θ, δ), of the
response vector Xp = {Xp1, Xp2, . . . , XpN} of a person p as a function of
ability θ, and item parameters δ = {δ1, . . . , δn}. Conditional on ability, the
responses are assumed to be independent, and together the IRT model and
population model induce the following statistical model:

P (Xp = xp|δ, λ) =

∫
R

∏
i

P (Xpi = xpi|δi, θ)f(θ|λ)dθ, (1)

called a marginal IRT model.
We consider two simple but commonly used IRT models:

1. The 1-Parameter Normal Ogive model:

P (Xpi = 1|θp, δi) = Φ(θp − δi), where Φ is the cumulative distribution
function of the standard normal distribution

2. The Rasch model (1960):

P (Xpi = 1|θp, δi) = eθp−δi

1+eθp−δi

A simple argument leading to these models is as follows: Assume that there
exists a continuous latent response variable Zpi such that the person p
solves item i if Zpi is larger than a threshold δi. That is:

P (Xpi = 1|θp, δi) = P (Zpi > δi|θp)

It is seen that the probability of a correct response depends on the threshold
as well as the ability of the respondent. Depending on the distribution of
the latent response variable we obtain either of the aforementioned models:

Zpi|θ ∼

{
N(θp, 1) gives the Normal Ogive model

L(θp, 1) gives the Rasch model

where N stands for the Normal distribution and L for the Logistic distri-
bution, respectively. Thus, both models can be derived from a similar ar-
gument involving very little theory about the response process. Note that
the Rasch model belongs to an exponential family, while the Normal Ogive
model does not. The Rasch model is an exponential family IRT model and
all information about the ability in the response vector Xp is contained in
the sufficient statistic

∑
i xpi = xp+, the number of correct responses. In

the context of this thesis we will focus more on the Rasch model yet some
concepts will be explained also for the Normal Ogive in terms of comparison
of the data augmentation algorithm for the two models.
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3.2 Item Response Theory and the Rasch model

Each IRT model predicts the probability that a certain person will give
a certain response to a certain item. People can have different levels of
ability and items can differ in terms of difficulty. We are always interested
in calculating the probability of a correct response P(θ), which is a function
of the ability θ.

The Rasch model (1960) is a model for dichotomous responses. It is also
called one-parameter logistic (1PL) model and is the simplest IRT model
for a dichotomous item since it has only one item parameter. The item
response function (i.e. the probability of a correct response given the item
parameter δi and the individual ability θ) is given on Figure 1. The function
shown in the graph is known as the one-parameter logistic function and it
has the mathematical property that its values are between 0 and 1 for any
argument in (−∞, ∞). Therefore it is obvious that the probability of a

Figure 1: The item response function of the Rasch model

correct response is modeled as a logistic function of the difference between
the person and the item parameter. Note that we denoted the horizontal
axis with the ability θ, but is also the axis for the difficulty parameter δ.
One can find the position of δ on the shared ability/ difficulty axis at the
point for which the predicted probability P(θ− δ) equals 0.5. It is apparent
from the plot that the higher a person’s ability relative to the difficulty of
an item, the higher the probability of a correct response on that item.

In the context of IRT analysis, difficulty and ability (trait) level are sep-
arate issues but are intrinsically connected. Specifically, as already stated, a
difficult item requires a relatively high ability level in order to be answered
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correctly compared to an easy item. For example, consider two mathemati-
cal items: the item “What is the square root of 10000?” is less likely to be
answered correctly than the item “What is the square root of 25?”.

3.2.1 Item Characteristic Curves

In an IRT analysis, item characteristics are combined in order to reflect
characteristics of the test as a whole. In this context, item characteristics
such as difficulty and discrimination can be used to evaluate the items and
to maximize the overall quality of a test.

Figure 2: Item Characteristic Curves

In the item characteristic curves-plot, which is presented in Figure 2,
the X-axis reflects a wide range of ability levels and the Y-axis reflects the
probabilities of the correct response. Each item has a curve, and we can
examine the curve of an item to find the likelihood that an individual with
a particular trait level will answer the item correctly. Take a moment to
study the curve for Item 1: what is the probability that an individual with
an average level of mathematical ability will answer the item correctly? We
find the point on the Item 1 (depicted in blue) curve that is directly above
the 0 point on the X-axis (recall that the trait level is in z score units, so zero
is the average trait level), and we see that this point lies between 0.80 and
0.90 on the Y-axis. Now have a look at the third item (depicted in black);
an individual with an average level of mathematical ability has a probability
of about 30% of answering it correctly. Thus, the item characteristic curves
provide clues about the likelihoods with which individuals of any ability
level would answer any of the five items correctly. Note that the order of
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the curves, from left to right on the X-axis, reflects their difficulty levels.
Item 1 (blue), with the left-most curve, is the easiest item, and Item 4(red),
with the right-most curve, is the most difficult item.

3.3 The Gibbs sampler

In a Bayesian framework, the parameters of the model θ, δ, λ are viewed as
random variables. Inferences about the parameters are made in terms of
their posterior distribution. However, in many cases the simultaneous pos-
terior distribution of all model parameters can be quite complicated. The
major advantage of Bayesian estimation is that it allows us to study the
properties of the posterior by drawing a sample from it. In fact, all the prop-
erties of a posterior distribution can be approximated to a degree of accuracy
by drawing a sample that is sufficiently large. This approach to statistical
estimation is called sampling-based estimation. Sampling-based estimation
enables one to study distributions that are analytically intractable, given
that one can sample from them. For the cases that the posterior distribu-
tion is intractable, there is extensive literature of remedies in order to render
the intractable distributions tractable.

In the last decade, much attention has been paid to Markov chain Monte
Carlo (MCMC) methods for generating a sample from a posterior (Gelman,
Carlin, Stern, & Rubin, 2004). These methods involve (a) setting up a
Markov chain which in the limit generates a dependent identically dis-
tributed (did) sample from the posterior and (b) the use of the Monte Carlo
method for estimating properties of the did sample. Three important ques-
tions rise to the scientist wishing to use a MCMC-method for a particular
problem:

• How to set up a Markov chain which converges to a did sample from
the posterior

• How to assess whether the length of the Markov chain is sufficient for
it to be adequately close to its stationary distribution

• How to assess whether the sample size (after convergence) is sufficient
for the Monte Carlo estimates to be sufficiently precise

Within the scope of this thesis, we focus on the first question and more pre-
cisely in the estimation of the parameters of the Rasch model. Therefore for
the cases that the posterior distribution is intractable, there is extensive lit-
erature of remedies in order to render the intractable distributions tractable.
Some of the most popular approaches are: the acceptance-rejection sam-
pling, the Metropolis-Hastings algorithm (Metropolis, Rosenbluth, Rosen-
bluth, & Teller, 1953) and data augmentation schemes (Tanner & Wong,
1987).
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Here, we focus on one MCMC method, Gibbs sampling, to generate a
sample from the posterior distribution. The Gibbs sampler (introduced in
the context of image processing by Geman & Geman, 1984 and also known
as the heat-bath algorithm) is a Markov Chain Monte Carlo (MCMC) al-
gorithm, special case of Metropolis-Hastings sampling wherein the random
variable is always accepted. In each iteration, we generate a sample from
each of the full-conditional distributions of the posterior; i.e., the dis-
tribution of a parameter (or set of parameters) conditional on the data and
all the other parameters. Typically, the full conditionals are of moderate
dimensionality. Hence the complete set of parameters is divided into a num-
ber of subsets in such a way that the distribution of every subset given all
other parameters has a tractable form and can be easily simulated. Thus,
one simulates n random variables sequentially from n univariate conditionals
rather than generating a single n-dimensional vector in a single pass using
the full joint distribution.1

As with other MCMC methods, draws produced at subsequent iterations
are dependent and the method produces a Markov chain of samples. The
Gibbs sequence converges to a stationary (equilibrium) distribution that
is independent of the starting values and by construction this stationary
distribution is the target distribution we are trying to simulate, under mild
regularity conditions (see, e.g., Tierney, 1994).

In order to explain how the Gibbs sampler works, I provide an example
in which we are interested in sampling from the posterior p(θ|y), where θ is
a vector of three parameters, θ1, θ2, θ3. The steps to a Gibbs sampler are
the following:

1. Pick a vector of starting values θ(0). (Defining a starting distribution
Π(0) and drawing θ(0) from it.)

2. Start with any θ, the order does not influence the result but for the

terms of the example I start with θ
(1)
1 . Draw a value from the full

conditional p(θ1|θ(0)2 , θ
(0)
3 ,y).

3. Draw a value θ
(1)
2 from the full conditional p(θ2|θ(1)1 , θ

(0)
3 ,y). Note that

we must use the updated value of θ
(1)
1 .

4. Draw a value θ
(1)
3 from the full conditional p(θ3|θ(1)1 , θ

(1)
2 ,y) using both

updated values.

5. Draw θ(2) using θ(1) as in steps 2 to 4

6. Repeat until we get M draws, where each draw is a vector θ(t).

7. Optional burn-in and/or thinning.

1One iteration of all univariate distributions is often called a scan of the sampler.

9



Therefore, our result is a Markov chain with some draws of θ that are ap-
proximately from our posterior distribution.

Gelfand & Smith, 1990 illustrated the power of the Gibbs sampler to
address a wide variety of statistical issues while further details can be found
in Casella & George (1992), and Tanner & Wong (1987). Finally, note that
the Gibbs sampler can be thought of as a stochastic analogue to the EM
(Expectation-Maximization) algorithm used to maximize likelihood func-
tions when missing data are present. In the sampler, random sampling
replaces the expectation and maximization steps.

As an illustration, Figure 1 shows contour plots of 50 draws of two abil-
ities produced by a Gibbs sampler where successive draws are connected by
a line segment. This example describes the situation where two students in-
dependently took a test with items designed to measure one specific ability
and a Gibbs sampler to compute the joint posterior density of ability. The
left panel of Figure 1 shows the result for a test with 20 items, and the right
panel for a test that is five times longer as witnessed by the posterior density
that is more concentrated around the true ability. Both plots depict simula-
tions of the data augmentation-transformation Gibbs sampler of the Rasch
model which is described in detail in section 3.1 of this thesis. In both plots,
the sampler moves from an initial guess to the support of the posterior. A
well-behaved Gibbs sampler is then expected to “walk around” producing
a (dependent) sample from the posterior. The more item responses we ob-
serve the more we know about a person’s ability and this is reflected in the
tighter support of the posterior in the right panel. The interesting observa-
tion is that the sampler takes smaller steps in the right panel. This means
that we need more iterations to get to the area where the posterior prob-
ability mass is concentrated but this can be remedied with better starting
values. It becomes more serious if the steps get smaller relatively to the
posterior variance. That this might be the case here, is suggested by Figure
2. It would imply that sampling is less effective for the test of 100 items;
even if the chain has converged and we start inside the posterior support.
Furthermore, if it is true that the step-size diminishes with the number of
observations at a faster rate than the posterior variance, the sampler will
eventually grind to a halt.
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Figure 3: First 50 samples produced by the Gibbs sampler connected by a
line segment. Contour plots of the posterior densities of two abilities, where
θ1 = 0.25 and θ2 = 0.5.
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Figure 4: First 50 samples produced by the Gibbs sampler connected by a
line segment. Contour plots of the posterior densities of two abilities, where
θ1 = 0.25 and θ2 = 0.5. Note that the scales in the two panels are different;
the right panel is plotted in a smaller scale. We can easily notice that the
steps get smaller faster than the posterior tightens.
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3.4 The Data Augmentation Algorithm

Unfortunately, straightforward application of the Gibbs sampler to IRT
models does not lead to tractable full conditional distributions. Albert
(1992) noted that the Gibbs sampler becomes feasible if we include the latent
responses. Though the joint distribution of (Z, θ, δ) has an intractable form,
the full conditional distributions of each of the three parameters are easy
to sample from. The introduction of latent data is often useful in Gibbs
sampling and is called Data Augmentation (DA). The DA Gibbs sampler
alternates samples from the conditional distributions of the latent data de-
noted Z, and parameters θ and δ, given the remaining variables as seen in
Algorithm 1.

Algorithm 1 A Gibbs sampler algorithm for a marginal IRT model

1: for iter = 1 to nIter do
2: {Sample latent data.}
3: for i = 1 to M do
4: Sample z

(iter)
pi from f(zpi|xpi, θ(iter−1), δ(iter−1)).

5: end for
6: {Sample person parameters.}
7: for p = 1 to N do

8: Sample θ
(iter)
p from f(θp|xpi, z(iter), δ(iter−1)).

9: end for
10: {Sample item parameters.}
11: for i = 1 to M do
12: Sample δ

(iter)
i from f(δi|xpi, z(iter), θ(iter)).

13: end for
14: end for

From the algorithm we can see that the step of sampling first the latent
data can be seen as the imputation step and the steps of sampling from the
ability parameter distribution and the difficulty parameter distribution as
the posterior steps.

In the context of this report, we are only focused on sampling from
the full conditional of the ability parameter θ assuming that δ is known.
Therefore, the iterative scheme alternates the steps of first sampling from
the full conditional of the latent data and then from the full conditional of
θ. We should also note that we assume that the distribution of ability is
known.
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4 Transformation and Asymptotic Behavior

4.1 The Data Augmentation-Transformation Algorithm for the
Rasch model

As we described in the previous section, the sampling scheme is iterative and
alternates between sampling from the full conditional of the latent responses
and the full conditional of the ability parameter. At this point, note that
when conjucacy between the distribution of the latent data and the prior of
ability does not hold or when the product of distributions is not tractable,
sampling from the full conditionals is not possible. Whereas Albert (1992)
found that the full conditionals for the DA-Gibbs sampler for the Normal
Ogive model were all simple, this is not the case for the Rasch model. For
the Normal Ogive model, the distribution of the latent data and the prior of
the parameters combine in an nice conjugate manner, for each parameter,
whereas this is not the case for the Rasch model. To tackle this problem
Maris and Maris (2002) proposed the Data augmentation-transformation
(DA-T) algorithm, which, as its name implies, uses a transformation of the
latent data in order to render the intractable full conditionals tractable. The
latent data are transformed as follows: Ypi = Zpi− (θp− δi). With all item-
parameters equal to zero (δi = 0), the full conditional of the latent data
is:

f(ypi|xpi, θp) ∝ f(ypi)(ypi ≤ θp)xpi(ypi > θp)
1−xpi

=
exp(ypi)

(1 + exp(ypi))2
(ypi ≤ θp)xpi(ypi > θp)

1−xpi ,
(2)

which is a truncated logistic distribution: truncated on the left at θp if
xpi = 1 and on the right at θp otherwise. The full conditional distribution
of ability if we assume that θ has a prior logistic distribution is:

f(θp|xpi, ypi) ∝
[∏

i

(θp ≥ ypi)xpi(θp < ypi)
1−xpi

]
f(θp)

∝
(

max
i:xpi=1

(ypi) ≤ θp < min
i:xpi=0

(ypi)

)
exp(θp)

(1 + exp(θp))2
.

(3)

This is a doubly truncated logistic distribution. The distribution is trun-
cated on the left at max(ypi) for all i for which xpi = 1 and on the right
at min(ypi) for all i for which xpi = 0. From equations (2) and (3) we can
observe that the full conditionals of the transformed latent data are trun-
cated distiributions of the transformed latent data and the full conditionals
for the ability parameter θ is a truncated prior.

Note that a product of indicator functions corresponds to an intersection
of intervals. In general,∏

i

(li ≤ x < ui) = (max
i

(li) ≤ x < min
i

(ui)),
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where either li= ∞ or ui=∞. Hence each term (li ≤ x < ui) restricts the
range of xi to a half open interval extending to either plus or minus infinity.
As illustrated, their product is the intersection of these intervals, ranging
from maxi(li) to mini(ui). Thus, maxi(li) and mini(ui) are the truncation
constants for the full conditional.

It can be proven that this intersection is never empty and maxi(ypi) and
mini(ypi) are valid truncation constants for the full conditional, see Maris
and Bechger (2005).

4.2 The Data-Augmented Gibbs sampler for the Normal Ogive
model

For the DA algorithm by Albert, the latent data zpi follow a Normal distri-
bution. It easily follows that the data augmented model is:

f(xpi, zpi|θp) ∝
∏
p

∏
i

P (xpi|zpi)f(zpi|θp)

=
∏
p

∏
i

(zpi ≥ 0)xpi(zpi < 0)1−xpi
1√
2π

exp

(
− (zpi − θp)2

2

)
where (zpi ≥ 0) is an indicator function for the condition within parenthesis.
Note that the distribution of the observed responses given the latent data
is simple:

Xpi =

{
1 if zpi ≥ 0

0 otherwise

For the Normal Ogive model, the distribution of the latent data and the
prior of the ability parameter θp combine in a nice conjugate manner, hence
we can easily derive the full conditional of ability parameter θp as follows:

f(θp|xpi, zpi) ∝
∏
i

f(zpi|θp)f(θp) ∝ exp

(
− (zpi − θp)2

2

)
exp

(
−
θ2p
2

)

= exp

(
−
∑

i(zpi − θp)2 + θ2p
2

)
⇓ by completing the squares

=
1√
π 2
n+1

exp

(
−

(
θp −

∑
i zpi
n+1

)2

2
n+1

)
(4)

We can easily notice that the full conditional of ability is a normal distribu-
tion from which is easy to obtain a sample from.

Finally, the full conditional distribution of the latent data is:

f(zpi|x, θ) ∝ (zpi ≥ 0)xpi(zpi < 0)1−xpi
1√
2π

exp

(
− (zpi − θp)2

2

)
(5)
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which is a truncated normal distribution. Depending on the observed re-
sponse we sample from a normal distribution truncated at zero from the left
or from the right. Specifically, if xpi = 0, the distribution of Zpi is left trun-
cated at zero, and if xpi = 0 it is right truncated at zero, respectively. Note
that DA sampler does not show the behaviour of the DA-T Gibbs sampler.
Its autocorrelation is constant with respect to the number of observations.
The example that is described in this thesis is a case where the asymptotic
behavior depends on the parameterization of the Gibbs sampler.

4.3 Data Augmentation-Transformation Algorithm for the Nor-
mal Ogive model

For the DA sampler, the simplicity of the full conditional distribution of
the ability parameter θp depends on the conjugacy of the distribution of
the latent responses and the prior of ability. This approach, as has been
previously described, breaks down for the Rasch model. As a remedy, Maris
and Maris (2002) proposed the following transformation of the latent data:
Ypi = Zpi− (θp− δi). Hence, this remedy is called DA-T where T stands for
Transformation. With all items parameters equal to zero (δi = 0) the joint
posterior density is the following:

f(xpi, ypi, θp) =
∏
p

(∏
i

(ypi ≤ θp)xpi(ypi > θp)
1−xpi 1√

2π
exp

(
−
y2pi
2

))
1√
2π

exp

(
−
θ2p
2

)
(6)

Hence the full conditional of the latent data is:

f(ypi|xpi, θp) ∝ f(ypi)(ypi ≤ θp)xpi(ypi > θp)
1−xpi

=
1√
2π

exp

(
−
y2pi
2

)
(ypi ≤ θp)xpi(ypi > θp)

1−xpi ,
(7)

which is a truncated normal distribution: truncated on the left at θp if
xpi = 1 and on the right at θp otherwise. The full conditional distribution
of ability is:

f(θp|xpi, ypi) ∝
[∏

i

(θp ≥ ypi)xpi(θp < ypi)
1−xpi

]
f(θp)

=

(
max
i:xpi=1

(ypi) ≤ θp < min
i:xpi=0

(ypi)

)
1√
2π

exp

(
−
θ2p
2

) (8)

This is a doubly truncated normal distribution. The distribution is trun-
cated on the left at max(ypi) for all i for which xpi=1 and on the right at
min(ypi) for all i for which xpi = 0.
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5 Asymptotic Behavior

The introduction of latent continuous variables renders the Gibbs sampler
for IRT models tractable but it comes with a cost: the amount of latent
data increases when the number of persons and/or items increases, raising
the autocorrelation between successive draws.

In this Section, we are concerned to show how the step size of the sampler
diminishes when the number of items increases. The interesting observation
is that the step sizes correspond to the rate that the truncation limits of the
full conditional of the ability parameter shrink. Our goal is to derive the
distribution of the truncated area, which is the difference between the upper
and the lower bound. Note that the rationale used to derive the asymptotic
distribution of the DA-T samplers for both the Normal Ogive model and
the Rasch model is the same, yet we choose to present them in two separate
subsections for the sake of completeness.

5.1 Asymptotic behavior of the DA-T for the Normal Ogive
model

For the Normal Ogive model, we look carefully at the at the full-conditional
distribution of ability for the DA-T sampler (8). This is a doubly truncated
normal distribution where the truncation limits correspond to the step sizes
of the algorithm.

We wish to know how the step size diminishes when the number of items
increases. To this aim, we consider a second transformation of variables:
Upi = Φ(Ypi) and Πp = Φ(Θp), where Φ denotes the cumulative normal
distribution function, which gives full conditional distributions:

f(πp|x, u, π(p)) ∝

(
max
i:xpi=1

(Φ−1(upi)) ≤ Φ−1(πp) < min
i:xpi=0

(Φ−1(upi))

)

=

(
max
i:xpi=1

(upi) ≤ πp < min
i:xpi=0

(upi)

) (9)

and f(upi|x, u(p), π) ∝ (0 ≤ upi < πp)
xpi(πp < upi ≤ 1)1−xpi . It follows that:

1. For i : xpi = 0
Upi − πp
1− πp

∼ U(0, 1)

2. For i : xpi = 1
Upi
πp
∼ U(0, 1)
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After we have obtained these full conditionals and by using the results ex-
plained in Appendix (see section “The Beta Distribution”) and (15) and
(16) it can be seen that:

maxi:xpi=1(Upi)

πp
∼ Beta(xp+, 1)

mini:xpi=0(Upi)

1− πp
∼ Beta(1, n− xp+)

It follows that:

E [ min
i:xpi=0

(Upi)− max
i:xpi=1

(Upi)] = πp+(1−πp)
1

n− xp+ + 1
−πp

xp+
xp+ + 1

= o(1/n)

(10)
which means that for large n the sequence πp + (1− πp) 1

n−xp++1 − πp
xp+
xp++1

is an order of magnitude smaller than 1/n. Simply stated, this sequence
tends to 0 faster than 1/n. Thus we find that the maximum (expected)
step size in an iteration of the Gibbs sampler is of order 1/n, whereas the
posterior standard deviation decreases with rate 1/

√
n (Stout, 2002), which

implies that the Markov chain gets stickier as the sample size increases until
it ultimately grinds to a halt.

5.2 Asymptotic behavior of DA-T for the Rasch model

In order to study the asymptotic behavior of the DA-T sampler for the
Rasch model we need to make use of theorems. To this aim we make use of
the following theorem:

Theorem 1. Suppose that X1, . . . , Xn are independent and identically dis-
tributed positive random variables from a distribution with probability density
f which is continuous and positive at x = 0. Then n·mini(Xi) is asymptot-
ically exponentially distributed with rate λ = f(0).

Note that the assumption about a continuous density implies that the dis-
tribution function is differentiable and in particular, its derivative from the
right at 0, F ′(0), equals the density function at (0, f(0)). To this aim we
use the survival function of n times the minimum.
Proof Sketch.

Sn(a) = Pr(n·minXi ≥ a) = Pr(Xi ≥ a
n for all i)=(1− F ( an))n

The rationale behind this idea is that for n → ∞, F ( an) is approximately
equal to a

nf(0) and that (1−f(0) an)n → exp(−af(0)) as n→∞. We also use
the log survival function. This is n · log(1−F ( an)) and we need to show that
it converges to −af(0) when n → ∞. There are numerous ways to prove
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this but in this thesis we make use of the first order Taylor expansion.2 Now,
nlog(1− F ( an)) = nlog(1− f(0)) an + o( 1

n) = n[−f(0) an + o( 1
n)] = −af(0) as

n→∞.
Therefore, as trying to derive the distribution of the truncated area by

using the minimum and the maximum, we realize that the two distributions
are both truncations (to the right and to the left, respectively) of the same
distribution; and the two sample sizes are asymptotically proportional to the
probabilities to the right and to the left in the same distribution. Thus, the
normalized densities(i.e., after the truncations) stand for the inverse propor-
tions to the sample sample sizes. The two exponentials have asymptotically
the same rate when we use the same normalization on both sides; the sum
converges in distribution to a Gamma (shape=2)

βα

Γ(α)
xα−1e−βx,

where β = 1 and α = 2.
The distribution of the scaled truncation constants is a Gamma(2, 1)

distribution. Walker (1969) and Chang and Stout (1993) show that the
posterior distribution converges to a normal distribution with mean equal
to the maximum likelihood (ML) estimator of θ, i.e., θ̂n and variance equal
to σ2n = −L′′(θ̂n)−1, i.e., the second derivative of the log-likelihood function
evaluated at the ML estimator. In our case this boils down to σ2n = (npq)−1,
where p is the probability of a correct response and q the probability of an
incorrect response. It follows that the posterior standard deviation σn ≈
(npq)−

1
2 , which is of order n

1
2 . Properties of the Gamma(α, β) show that

on average:
α

β
=

2

npq
,

where n is the number of items of the test, and p and q are the probabilities
of a correct and incorrect response for a person with ability equal to θ,
respectively and converges to 0 as n → ∞. If we compare the rate of
convergence for the average difference with that of the posterior standard

2A Taylor series is a series expansion of a function about a point. A one-dimensional
Taylor series is an expansion of a real function f(x) about a point x = a is given by:

f(x) = f(α) + f ′(α)(x− α) +
f ′′(α)

2!
(x− α)2 +

f (3)(α)

3!
(x− α)3 + ...

If α = 0, the expansion is known as a Maclaurin series.
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deviation, we are:

limn→∞

2
npq
1√
n

= limn→∞
2
√
n

npq

= limn→∞
2√
npq

= 0.

Thus, the posterior standard deviation shrinks slower than the truncated
area under the Gamma approximation. As a result, autocorrelation in the
Markov chain increases as the number of items in the test grows.

6 Autocorrelation

Looking at the step sizes is an intuitive but indirect way to look at the
autocorrelation of the Markov chain. By definition the autocorrelation is:

ρ(θ(t), θ(t+1)) =
Cov(θ(t), θ(t+1))

σθ(t)σθ(t+1)

(11)

where θ(t) and θ(t+1) are the values of the ability parameter for time t and
t+ 1, respectively. If the chain has converged it holds that

Cov(E[θ(k)|Z,X], E[θ(k+1)|Z,X]) = Var(E[θ|Z,X]),

where X denotes the observed data, Z the latent data and θ an ability.
Since, Cov(θ(k), θ(k+1)|Z,X) = 0, it follows from the covariance decomposi-
tion formula that the autocorrelation can be computed as:

ρ(θ(t), θ(t+1)|X) =
Var(E[θ|Z,X])

Var(θ|X)
= 1− E(Var[θ|Z,X])

Var(θ|X)
(12)

This expression known as the (Bayesian) fraction of missing information
(FMI), was derived by Liu and shows that the autocorrelation depends on
the ratio of the augmented posterior variance and the posterior variance.

As an intuition of this is that the higher the fraction of missing infor-
mation, the more “sticky” the sample outputs from the data augmentation
and vice versa. The fraction of missing information is also important for
one to decide how many imputations should be provided. Also, in terms of
the augmented-data Fisher information, the less we augment the faster the
algorithm will be as measured by its theoretical rate of convergence. On the
other hand, the less we augment the more difficult the implementation is
expected to be.
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7 Discussion

For our sampler, we have shown that the variance of the augmented pos-
terior may decrease at a much faster rate than the posterior variance thus
raising the autocorrelation of the chain. This result can be interpreted as:
with increasing amount of data, the complete data information increases
faster than the the observed data information. Note that in order to der-
mine whether a Gibbs sampler may suffer “asymptotic impotence” is the
asymptotics of the augmented posterior. More precisely, whether or not the
augmented posterior follows the usual central limit theorem asymptotics or
something else: e.g., extreme value.

Hence, we can conclude that although data augmentation is a powerful
tool, it is not guaranteed that it is efficient especially for large datasets. The
fact that the constructed Markov chain may grind to a halt as the sample
size increases provides a cautionary argument in the implementation of the
algorithm. This thesis focused only in one-dimensional IRT models therefore
provides evidence of caution when using data augmented schemes for models
with one parameter. Maris and Bechger (2005) provided also an expository
account of the DA-T Gibbs sampler for the two-parameter (2PL) model.

Finding an efficient augmentation scheme is however difficult since it
needs to be worked out on a case-by-case basis. For example, while the
“Slice” sampling3 is a general strategy, it can be challenging to implement
when p(x|z) is not easy to sample from and can result in extremely slow
algorithms when certain asymmetries arise in the target density. The DA-T
sampler is also a slice sampler. Much recent work has been devoted to the
development of general strategies for construction MCMC algorithms that
are both fast and simple; for example, the work of Damien, Wakefield and
Walker (1999).

3Slice sampling is a type of Markov chain Monte Carlo algorithm for pseudo-random
number sampling, i.e., for drawing random samples from a distribution. The method is
based on the observation that to sample a random variable one can sample uniformally
from a region under the graph of its density function.
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Appendices

A Background information on Beta Distribution
and Order of Uniform Variables

A.1 The Beta Distribution

The beta distribution is a continuous distribution for random variables de-
fined on the interval [0, 1] parametrized by two positive shape parameters,
denoted by α and β. In Bayesian statistics it is the conjugate prior distri-
bution for the binomial and geometric distribution. The probability density
function is:

f(x) ∝ xα−1(1− x)β−1 (13)

and the expected value of a Beta distribution random variable is E[x] = α
α+β .

A.2 Order Statistics of Uniform variables

Assume U1, U2, ..., Un i.i.d uniformally distributed on (0,1). Hence, FU (x) =
x and fU (x) = 1. Let Ui:n denote the i-th order statistic. In particular,
U1:n = min{Ui} and Un:n = max{Ui}. The distribution of the maximum is
easily derived to be:

P (Un:n ≤ x) =
∏
i

P (Ui ≤ x) = [FU (x)]n (14)

Similarly we see that P (U1:n ≤ x) = 1 − [1 − FU (x)]n. Differentiating we
find that:

fUn:n(x) = n[FU (x)]n−1fU (x) = nxn−1

and
fU1:n(x) = n[1− FU (x)]n−1fU (x) = n(1− x)n−1

Comparison to the density of the beta distribution shows that both the
minimum and maximum of i.i.d uniform variables are distributed according
to a beta distribution: That is

U1:n ∼ Beta(1, n) (15)

Un:n ∼ Beta(n, 1) (16)

B The Probability Transform

Suppose that a random variable X has a continuous distribution for which
the cumulative distribution function is F . Then the random variable Y =
F (x) has a uniform distribution. This follows from the fact that:

F (X) ≤ F (x)⇔ (X ≤ x) ∪ (X > x,F (X) = f(x))
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Since P

(
X > x,F (X) = f(x)

)
= 0 it follows that

P

(
F (X) ≤ F (x)

)
= F (x) (17)

Thus if F (x) = p, where p lies between 0 and 1, we have P(F (X) ≤ p) = p.
This fact is often used in derivations and also implies a way to simulate
data:

P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x) (18)

This method is called inverse probability sampling.

C R Code

k <- 20 # number of items

theta <- 0.25 # ability parameter 1

x <- 1*(rlogis(k)<=theta)

r.trunc <- function(l, h, n)

{ p <- runif(n)*(1/(1+exp(-h)) - 1/(1+exp(-l))) + 1/(1+exp(-l))

return(log(p)-log(1-p)) }

niter<-1000000

z <- vector(length=k)

pv <- rep(-3, niter)

for(iter in 2:niter)

{

z <- x*r.trunc(-Inf, pv[iter-1], k) + (1-x)*r.trunc(pv[iter-1], Inf, k)

pv[iter] <- r.trunc(max(z[x==1]), min(z[x==0]), 1)

}

theta1 <- pv

k <- 20

theta <- 0.5 # ability parameter 2

x <- 1*(rlogis(k)<=theta)

r.trunc <- function(l, h, n)

{ p <- runif(n)*(1/(1+exp(-h)) - 1/(1+exp(-l))) + 1/(1+exp(-l))

return(log(p)-log(1-p)) }

niter <- 1000000

z <- vector(length=k)

pv <- rep(-3, niter)
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for(iter in 2:niter)

{

z <- x*r.trunc(-Inf, pv[iter-1], k) + (1-x)*r.trunc(pv[iter-1], Inf, k)

pv[iter] <- r.trunc(max(z[x==1]), min(z[x==0]), 1)

}

theta2 <- pv

library(MASS)

kde.dat=kde2d(theta1, theta2, n=50) # joint density

z_1 <- vector(length=k)

z_2 <- vector(length=k)

pv_1 <- rep(0.4, niter)

pv_2 <- rep(-1, niter)

contour(kde.dat,x\lim = c(-3, 2), y\lim = c(-3, 2), xlab="Ability 1",

ylab="Ability 2", drawlabels=FALSE)

for(iter in 2:50)

{

z_1 <- x*r.trunc(-Inf, pv_1[iter-1], k) + (1-x)*r.trunc(pv_1[iter-1], Inf, k)

z_2 <- x*r.trunc(-Inf, pv_2[iter-1],k) + (1-x)*r.trunc(pv_2[iter-1], Inf, k)

pv_1[iter] <- r.trunc(max(z_1[x==1]), min(z_1[x==0]), 1)

pv_2[iter] <- r.trunc(max(z_2[x==1]), min(z_2[x==0]), 1)

segments(pv_1[iter-1], pv_2[iter-1], pv_1[iter], pv_2[iter-1])

segments(pv_1[iter], pv_2[iter-1], pv_1[iter], pv_2[iter])

}

##########################################################################

k <- 100 # number of items

theta <- 0.25

x <- 1*(rlogis(k)<=theta)

r.trunc <- function(l, h, n)

{ p <- runif(n)*(1/(1+exp(-h)) - 1/(1+exp(-l))) + 1/(1+exp(-l))

return(log(p)-log(1-p)) }

niter <- 1000000

z <- vector(length=k)

pv <- rep(-3, niter)

for(iter in 2:niter)

{

z <- x*r.trunc(-Inf, pv[iter-1], k) + (1-x)*r.trunc(pv[iter-1], Inf, k)

pv[iter] <- r.trunc(max(z[x==1]) , min(z[x==0]),1)

}

theta1 <- pv
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k <- 100

theta <- 0.5

x <- 1*(rlogis(k)<=theta)

r.trunc <- function(l, h, n)

{ p <- runif(n)*(1/(1+exp(-h)) - 1/(1+exp(-l))) + 1/(1+exp(-l))

return(log(p)-log(1-p)) }

niter <- 1000000

z <- vector(length=k)

pv <- rep(-3, niter)

for(iter in 2:niter)

{

z <- x*r.trunc(-Inf, pv[iter-1], k) + (1-x)*r.trunc(pv[iter-1], Inf, k)

pv[iter] <- r.trunc(max(z[x==1]), min(z[x==0]), 1)

}

theta2 <- pv

library(MASS)

kde.dat <- kde2d(theta1, theta2, n=50)

z_1 <- vector(length=k)

z_2 <- vector(length=k)

pv_1 <- rep(0.4, niter)

pv_2 <- rep(-1, niter)

contour(kde.dat, x\lim=c(-3, 3), y\lim=c(-3, 3), xlab="Ability 1",

ylab="Ability 2", drawlabels=FALSE)

for(iter in 2:50)

{

z_1 <- x*r.trunc(-Inf, pv_1[iter-1],k) + (1-x)*r.trunc(pv_1[iter-1], Inf, k)

z_2 <- x*r.trunc(-Inf, pv_2[iter-1],k) + (1-x)*r.trunc(pv_2[iter-1], Inf, k)

pv_1[iter] <- r.trunc(max(z_1[x==1]), min(z_1[x==0]), 1)

pv_2[iter] <- r.trunc(max(z_2[x==1]), min(z_2[x==0]), 1)

segments(pv_1[iter-1], pv_2[iter-1], pv_1[iter], pv_2[iter-1])

segments(pv_1[iter], pv_2[iter-1], pv_1[iter], pv_2[iter])

}
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