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1 Introduction

In this thesis we study nearest neighbour bond percolation on Zd in high dimensions and at the
critical threshold p = pc, conditioned -loosely speaking- on the event that the connected component
containing 0 is infinitely large. This component is called the Incipient Infinite Cluster (IIC). The
main goal is to bound the (upper, lower) mass dimension of the IIC. We obtain that it almost surely
holds that the lower mass dimension of the IIC is ≥ 3 and the upper mass dimension of the IIC is
≤ 4. Furthermore, we introduce a discrete Hausdorff dimension (dHd) and give sufficient conditions
for the dHd of the IIC to be 4. Along the way we also bound dimensions of other random sets like
the backbone (mass dimension ≤ 2) and we present a conditional proof for a sharp almost sure lower
bound on the mass dimension of the IIC, based on a conjecture on certain moment bounds.

1.1 Bond percolation on Zd

Let |x|e denote the Euclidean norm of x ∈ Zd. Consider the infinite graph with vertex set Zd and
set of edges (or bonds) E =

{
(x, y) | x, y ∈ Zd and |x− y|e = 1

}
. We study bond percolation on

this graph. That is, we fix p ∈ [0, 1] and then each edge e ∈ E is declared open (1) with probability
p and closed (0) otherwise, independently of all other edges. The resulting random subgraph of
open edges has many interesting theoretical properties, but it can also be used to model a variety of
physical phenomena, like transport in porous materials, the electrical properties of ionic conductors
or the spread of forest fires and diseases [1]. Formally, the associated probability space (Ω,F ,Pp)
has sample space Ω =

∏
e∈E {0, 1}, the σ-field F is generated by the finite-dimensional cylinder sets

and the probability measure is the product measure Pp =
∏
e∈E µp, where µp(1) = p, µp(0) = 1− p.

The expectation w.r.t. Pp is denoted by Ep. Although we will restrict ourselves to nearest neighbour
percolation, as described above, it is to be expected that many results in this thesis can be generalized
in a rather straightforward way to finite-range spread-out percolation and long-range spread-out
percolation [2], which are examples of bond percolation on Zd where additional bonds (x, y) with
|x− y|e > 1 are open with a positive probability that is decreasing in |x− y|e.

Let {x↔ y} denote the event that the vertices x and y are connected by a path of open edges. The
connected component or open cluster of x ∈ Zd is defined by C (x) :=

{
y ∈ Zd | x↔ y

}
. It is well

known [3] that percolation undergoes a phase transition at the critical threshold

pc := inf {p | θ(p) > 0}

where θ(p) := Pp (|C (0)| =∞). In our context [4] an equivalent definition of pc is:

pc = sup {p | χ(p) <∞}

where
χ(p) :=

∑
x∈Zd

Pp(0↔ x) = Ep (C (0))

is the expected cluster size. In words: if p < pc then the cluster of 0 is almost surely finite. If p > pc
this is no longer the case; in particular the expected value of the cluster of 0 has become infinite.
What happens at p = pc is enigmatic ([3], [1]). It is known that θ(pc) = 0 for the case d = 2 (by
a duality argument) and for d ≥ 19 (follows from a lace expansion). One of the central conjectures
in percolation theory is that this is true too for all d ≥ 2. Another nice property of pc, illustrating
the term ‘phase transition’, is that at pc the probability of the existence of an infinite open cluster
dramatically jumps from 0 to 1:

P(∃x ∈ Zd s.t. |C (x)| =∞) =

{
0 if p < pc

1 if p > pc.
.

Futhermore, if θ(p) > 0 then Pp(there is exactly one infinite open cluster) = 1. Finally we remark
that calculating pc is a nontrivial problem for d ≥ 2; so far this has only been possible for d = 2, in
which case duality arguments show that pc = 1/2. One could argue that this calculation has been
possible because the value 1/2 is ‘easy’.
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Understanding percolation at p = pc becomes less complicated in ‘high’ dimensions d, because then
the clusters obtain tree-like properties; the probability of large cycles of open edges becomes very
small, so a cluster in the percolated graph will resemble a connected graph without cycles: a tree. As
a consequence, percolation on Zd with high d behaves in many ways like percolation on an infinite
tree. An explicit notion of high-dimensionality is given by the triangle condition, which is satisfied
if the following triangle diagram∑

x,y∈Zd
Pp(0↔ x) · Pp(x↔ y) · Pp(y ↔ 0) (1.1)

is finite for all p ≤ pc. The triangle condition is believed to be satisfied whenever d > 6, but so far
it has only been proved to hold for d ≥ 19 and only recently for d ≥ 15, in case of nearest neighbour
percolation [5], [6]. For finite-range spread-out percolation, provided the spread-out parameter is
chosen large enough, there does exist a proof that the triangle condition holds for all d > 6 [7].

1.2 Some notation, the BK-inequality and the two-point function

The volume of a subset A ⊂ Zd is denoted by |A| := # {x ∈ A}, but for a vertex x ∈ Zd we let |x|
denote the supremum norm of x. The choice for this particular norm is not essential, as all norms
on Rd are equivalent and almost all estimates in this thesis hold up to a constant multiple, but is
taken fixed to avoid confusion and because of the useful property that |x| ∈ N for all x ∈ Zd.

For x ∈ Zd and r ∈ N the ball with centre x and radius r is the following vertex set

Qr(x) :=
{
y ∈ Zd such that |x− y| ≤ r

}
.

Its boundary is
∂Qr(x) :=

{
y ∈ Zd such that |x− y| = r

}
.

In case x = 0 whe just write Qr(0) = Qr and ∂Qr(0) = ∂Qr.

For a configuration ω in the sample space Ω = {0, 1}E and a bond e ∈ E we write ω(e) = 0 if e is
closed and ω(e) = 1 if e is open. An event A ⊂ Ω is called increasing if for any two configurations
ω1, ω2 ∈ Ω that satisfy ω1(e) ≤ ω2(e) for all e ∈ E, it holds that (ω1 ∈ A)⇒ (ω2 ∈ A). An example
of an increasing event is {0↔ x}. Indeed: if ω1 ∈ {0↔ x} and ω1 ≤ ω2 then all bonds that are
open in ω1 are also open in ω2, so any open path in ω1 also exists in ω2, so ω2 ∈ {0↔ x}.

Let A,B ⊂ Ω. Then the event that A and B occur on disjoint sets (or: occur disjointly) is given by

A ◦B :=
{
ω ∈ Ω| there exists F ⊂ E such that ωF ∈ A and ωE\F ∈ B

}
,

where for any configuration ω ∈ Ω and any edge subset F ⊂ E:

ωF (e) :=

{
ω(e) for e ∈ F
0 for e /∈ F.

Example: the (increasing) event {0↔ x} ◦ {0↔ y} occurs iff there exist two open paths that don’t
share an open bond, one of which connects x to 0, while the other connects y to 0.

The Van den Berg-Kesten inequality [3], commonly referred to as the BK-inequality, states that for
any two increasing events A and B:

Pp (A ◦B) ≤ Pp(A) · Pp(B). (1.2)

Often we will bound the probabillity of a complicated event by the probability of disjoint occurrence
of other events, which in turn can be bounded above using the BK-inequality.

For nonegative functions f(t), g(t) we write f(t) � g(t) to denote that c · g(t) ≤ f(t) ≤ C · g(t)
holds asymptotically for some constants c, C > 0. Typically these constants are not optimized and
therefore the symbols c and C will often be used for different constants, even within a single proof.
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For x, y ∈ Zd we define the two-point function

τ(x− y) := Ppc(x↔ y).

For nearest neighbour percolation in dimension d ≥ 19 (and for finite-range spread-out percolation
in dimension d > 6) a strong result on the asymptotics of τ(x) is proved in [8],[9]. We will only need
its implication that for those dimensions:

τ(x− y) � |x− y|d−2. (1.3)

It can be shown that (1.3) implies that the triangle condition (1.1) holds and, just as with the
triangle condition, it is widely believed that (1.3) is actually true for all d > 6. From now on we
will assume that our model is high-dimensional, by which we mean that (1.3) is satisfied!

1.3 The Incipient Infinite Cluster

In this thesis we focus on high-dimensional nearest neighbour percolation and we zoom in on what
happens at the phase transition. More specifically: we consider percolation at p = pc and condition
on some event En that, as n → ∞, implies that C (0) is infinitely large. This conditioning can be
done in several ways. For example: one can condition on the event {0↔ x} and let |x| → ∞. Recall
that as we let p increase from pc to a value > pc, the probability that |C (0)| =∞ goes from 0 to a
positive value. Also, for d ≥ 19 and percolation at p = pc it has been shown that there are typically
some very large but finite clusters near the origin (see [10] for a precise statement). Therefore, by
looking at p = pc and ‘conditioning on the event that C (0) is infinitely large’, we can study C (0) at
the point where it is just becoming infinitely large (with positive probability). Hence we call C (0)
the Incipient Infinite Cluster (IIC) in this context. ‘Conditioning on the event that C (0) is infinitely
large’ typically induces a probability measure, which will be referred to as an (or the) IIC-measure.
Several different but equivalent ways of constructing IIC-measures have been found.

Here we describe three constructions of an IIC-measure. Denote by F0 the algebra of cylinder
events (i.e.: events that are determined by finitely many bonds) and by F the σ-algebra of events,
generated by F0. The first construction is

PIIC(F ) = lim
|x|→∞

Ppc (F | 0↔ x) , for F ∈ F0 (1.4)

whenever the limit exists. The second construction is

QIIC(F ) = lim
p↑pc

1

χ(p)

∑
x∈Zd

Pp (F ∩ {0↔ x}) , for F ∈ F0 (1.5)

whenever the limit exists. The third construction is

RIIC(F ) = lim
r→∞

Ppc (F | 0↔ ∂Qr) , for F ∈ F0

whenever the limit exists.

In [11] Van der Hofstad and Járai proved, under assumption that (1.3) holds true, that the measures
PIIC and QIIC exist and are equivalent. That is, the limits PIIC(F ) and QIIC(F ) exist and are
equal for all cylinder events F ; consequently PIIC and QIIC can be extended to the σ−algebra
of events σ(F0) = F and PIIC(F ) = QIIC(F ) for all F ∈ F . Note however that this does not
mean that we can also evaluate any F ∈ F\F0 in (1.4) or (1.5) to calculate PIIC(F )! The event
F = {0↔ x} is an exception; it is not a cylinder event, but it has been shown in [11] that (1.4)
nevertheless does hold for this event. Another ‘exception’ is provided by the so called Backbone
limit reversal lemma [2], which we will not use in this thesis. It roughly says that the probability
of any event occurring on (a certain random subset of) the backbone (see Definition 1.5) of the IIC
may be calculated using almost the same constuction as (1.5).

Kozma and Nachmias [12] proved that for high-dimensional percolation, under assumption that
(1.3) holds, we have that

Ppc (0↔ ∂Qr) � r−2 (1.6)
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and in [2] it is proved that if Ppc (0↔ ∂Qr) � r−2, then there exists an increasing subsequence rn
such that the limit RIIC(F ) = limn→∞ Ppc (F |0↔ ∂Qrn) exists for any cylinder event F . Further-
more, if the measures PIIC , QIIC and RIIC exist, then they are equal.

In this thesis we will actually only make use of the constuctions PIIC and QIIC . Since they are
equivalent in our context (being that d is such that (1.3) holds) we will from now on refer to both
constructions as PIIC . Furthermore, EIIC will denote expectation with respect to PIIC .

1.4 Dimensions

Having introduced the IIC probability measures, we now want to determine some properties of
the IIC. A natural question is: how large is the IIC? By construction we already know that it
(PIIC-almost surely) is infinitely large, so we cannot simply count all vertices in C (0) to sensibly
determine how large it is. Instead we will try to calculate ‘the’ dimension of the IIC. There is not
just one canonical way of defining the dimension of a subset of Zd. In what follows we introduce
several concepts of dimension and some random subsets of Zd of which we would want to calculate
a dimension.

Definition 1.1
The mass dimension of a subset A ⊂ Zd is defined as

dm(A) := lim
r→∞

log |A ∩Qr|
log(r)

if the limit exists. The upper mass dimension of A is

dm(A) := lim sup
r→∞

log |A ∩Qr|
log(r)

and the lower mass dimension of A is

dm(A) := lim inf
r→∞

log |A ∩Qr|
log(r)

.

Definition 1.2
The volume growth exponent of an infinite connected graph G is defined as

df (G) := lim
r→∞

log |BG(x, r)|
log(r)

,

if the limit exists. Here BG(x, r) is the ball, in the shortest-path metric, with center x and
radius r and |BG(x, r)| is its volume. The upper volume growth exponent of G is df (G) :=

lim supr→∞
log |BG(x,r)|

log(r) .

Definition 1.3
The spectral dimension of an infinite connected graph G is defined as

ds(G) := −2 lim
r→∞

log p2r(x)

log(r)
,

where p2r(x) is the return probability of the simple random walk on G after r steps. If the limit
exists then ds is independent of the starting point x ∈ G.

The dimensions introduced above don’t necessarily exist, because of the limits involved. In section 5
we will introduce the discrete Hausdorff dimension dH,ε(r)(A) of a subset A ⊂ Zd with respect
to a function ε(r), which does exist for all A. See Definition 5.3. This thesis focuses on the mass
dimension and the discrete Hausdorff dimension.
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1.5 Some relevant random sets and quantities we want to calculate

Recall that in the context of the IIC-measure we have that C (0) is infinite and we sometimes write

IIC := C (0). Let A ⊂ Zd be a set and let x, y ∈ A, then
{
x

A←→ y
}

denotes the event that x and

y are connected by a path of open edges of which the adjacent vertices are all in A.

Definition 1.4
The following is the most central quantity in this thesis, because (moment) estimates on it provide
information on the mass dimension of the IIC:

Xr := IIC ∩Qr = {x ∈ Qr | 0↔ x} .

In section 6 we will also study

Xr,R :=
{
x ∈ Qr | 0

QR←→ x
}

to find a lower bound on |Xr|, because |Xr,R| ≤ |Xr| for all R ∈ N.

Because there is an open path from 0 to infinity in IIC, the following definitions make sense.

Definition 1.5
The edge backbone of the IIC is defined as

Bb :=
{

‘directed’ edges (b, b) such that {0↔ b} ◦
{
b↔∞

}
and b is open

}
The number of edges in the edge backbone at distance at most r from 0 is

|Bbr| := #
{

‘directed’ edges (b, b) with b ∈ C (0) ∩Qr such that {0↔ b} ◦
{
b↔∞

}
and b is open

}
On the other hand, the vertex backbone of the IIC is defined as

Bb∗ :=
{
x ∈ Zd | {0↔ x} ◦ {x↔∞}

}
and

Bb∗r := {x ∈ Qr | {0↔ x} ◦ {x↔∞}} .

Usually the term backbone refers to the edge backbone, but our dimensions are defined for subsets
of Zd. Note however that |Bbr| � |Bb∗r |, so asymptotic estimates on |Bbr| from literature will also
hold for |Bb∗r |, up to a constant value, allowing us to estimate the dimension of Bb∗ ⊂ Zd.

1.6 Markov’s inequality and Borel-Cantelli

The following are standard results from literature. We will use them in particular to derive the
bounds of Theorem 1.10, stated below. In the proof of that theorem, Markov’s inequality produces
an initial bound on the probability of an event and subsequently Borel-Cantelli transforms it into
an almost sure statement.

Lemma 1.6 (Markov’s inequality [17])
Let X be a non-negative random variable with finite expectation, then it holds for all a > 0 that

P(X ≥ a) ≤ E(X)

a
.

Lemma 1.7 (Borel-Cantelli [17])
Let (An)n≥1 be a sequence of events in a probability space. If

∞∑
n=1

P(An) <∞
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then
P(An i.o.) = 0,

where by definition:

{An i.o.} = lim sup
n→∞

An =

∞⋂
i=0

∞⋃
n=i

An

is the event that An occurs infinitely often (i.o.), that is: for infinitely many n.

1.7 Results

We start out with some known results, for comparison, and from there work to the contributions of
this thesis. Recall that we implicitly assume that our model is high-dimensional.

Theorem 1.8 ([13])

PIIC
(
ds(IIC) =

4

3

)
= 1. (1.7)

Proof. This is part of the statement of Theorem 1.1 in [13].

Theorem 1.9 ([2], [13])
There exist constants c, C > 0 such that for all r > 0:

c · r ≤ Epc
(
|BC (0)(0, r)|

)
≤ C · r. (1.8)

c · r2 ≤ Epc (|Xr|) ≤ C · r2. (1.9)

c · r4 ≤ EIIC (|Xr|) ≤ C · r4. (1.10)

c · r2 ≤ EIIC (|Bbr|) ≤ C · r2. (1.11)

Proof. (1.8) follows from Theorem 1.2 and 1.3 in [13]. Claims (1.9), (1.10) and (1.11) are the subject
of Theorem 1.5 in [2].

A common property of |BC (0)(0, r)|, |Xr| and |Bb∗r | is that they are nondecreasing in r. We will prove
(see Theorem 1.10.i) that this property allows us to transform the upper bounds on the expectation
values in a.s. statements on upper dimensions.

Theorem 1.10
Let Z1, Z2, . . . be a sequence of random variables with values in R>0, such that Z1 ≤ Z2 ≤ . . .

(i) If there exist constants β,C > 0 such that at least one of the following two conditions holds

• E(Zr) ≤ C · rβ for all r > 0.

• P(Zr ≥ λ · rβ) ≤ C · 1λ for all λ, r > 0.

Then:

P
(

lim sup
r→∞

(logr(Zr)) ≤ β
)

= 1. (1.12)

(ii) If there exist constants α,C
′
> 0 such that at least one of the following two conditions holds

• E
(

1
Zr

)
≤ C ′ · r−α for all r > 0.

• P(Zr ≤ 1
λ · r

α) ≤ C ′ · 1λ for all λ, r > 0.

Then:
P
(

lim inf
r→∞

(logr(Zr)) ≥ α
)

= 1. (1.13)
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Corollary 1.11

Ppc
(
df (C (0)) ≤ 1

)
= 1 (1.14)

Ppc
(
dm(C (0)) ≤ 2

)
= 1 (1.15)

PIIC
(
dm(IIC) ≤ 4

)
= 1 (1.16)

PIIC
(
dm(Bb∗) ≤ 2

)
= 1. (1.17)

Proof. Apply Theorem 1.10.i to the upper bounds in Theorem 1.9. For the implication from (1.11)
to (1.17) also use that Bbr � Bb∗r .

Note that (1.14) and (1.15) are actually trivial: as C (0) is almost surely finite at p = pc we have that
df (C (0)) and dm(C (0)) both almost surely equal 0. Still, (1.14) illustrates that the applications
of Theorem 1.10 are not limited to bounding the mass dimension of a random set. The bounds in
(1.16) and (1.17) are believed to be sharp and as matter of fact this thesis is all about trying to
prove it.

Conjecture 1.12

PIIC (dm(IIC) = 4) = PIIC (dm(Bb∗) = 2) = 1

and the same values hold PIIC-almost surely for the discrete Hausdorff dimension.

On first sight it may look like the lower bounds of the form c · rα ≤ E(Zr) in Theorem 1.9 will
provide the complementary statements on the lower dimensions that are necessary to prove the
conjecture for the mass dimension, but this is not true. What we actually would need are, for
example, statements of the form E( 1

Zr
) ≤ C · r−α, because then we can apply Theorem 1.10.ii to

conclude that almost surely: lim infr→∞(logr(Zr)) ≥ α. In fact, bounds of the form c · rα ≤ E(Zr)
(without any other knowledge) provide almost no information on lower dimensions, as the following
example illustrates.

Example 1.13
Let ε > 0. Let Z1, Z2, . . . be a sequence of random variables with values in R≥1 and let P be any
probability measure such that for all r ∈ N it holds that P(Zr = rα · log(r)) = 1

log(r) and P(1 ≤
Zr < rα−ε) = 1− 1

log(r) . Then there is a constant C such that for all r:

rα ≤ E(Zr) ≤ rα log(r) · 1

log(r)
+ rα−ε ·

(
1− 1

log(r)

)
≤ C · rα.

But we have limr→∞ P(logr(Zr) = α) = 0, so logr(Zr) does not converge in probability to α, so it
certainly doesn’t converge almost surely to α. In effect, we see that the existence of constants c, C
such that c · rα ≤ E(Zr) ≤ C · rα (without any other knowledge) implies almost nothing about the
limit probability distribution of logr(Zr): a priori it could be any probability distribution on the
interval [0, α]!

So it turns out that bounding the mass dimension from below is quite a difficult task.

Using moments for a.s. lower bounds on the lower mass dimension of a random set
In Theorem 2.10 we perform a complicated computation of an expectation value, based on the
technical results in section 2. An important corollary is that there exists a constant C > 0 such
that for all r, n ∈ N:

EIIC(|Xr|n) ≤ C · (2n)!

2n · n!
· EIIC(|Xr|)n. (1.18)

We will use the case n = 2 to prove:
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Theorem 1.14
There exists a constant C > 0 such that for all λ ≥ 1 and all r:

PIIC
(
|Xr| ≥

EIIC(|Xr|)
λ

)
≥ C ·

(
1− 1

λ

)2

.

The general case of inequality (1.18) provides us with intuition on the exact values of EIIC(|Xr|n). In
subsection 3.2 we formulate and motivate a conjecture for these moments. Because the conjectured

values for the moments ( (2n)!
2n·n! ) turn out to grow very fast as a function of n, a method for bounding

the lower mass dimension of a random subset of Zd is derived, based on a rather special function
whose power series converges fast enough. In particular we apply this to the IIC-measure and the IIC
itself to investigate conditions on the moments EIIC(|Xr|n) under which logr(|Xr|) would converge
in probability (Corollaries 3.7 and 3.8) or almost surely (Corollary 3.10) to 4.

Bounds on the discrete Hausdorff dimension of a random set
In section 5 we define the discrete Hausdorff dimension dH,ε(r) w.r.t a function ε(r) and we prove

Lemma 5.4, which states that for all A ⊂ Zd:

dH,ε(r)(A) ≤ dm(A). (1.19)

Furthermore, we derive a variant of the so called energy method to find an almost sure lower bound
for the discrete Hausdorff dimension of any random subset of Zd: see Lemma 5.6 and Theorem
5.7. To find these lower bounds explicitly one ‘merely’ needs to calculate a certain expectation
value. In particular we apply this to the IIC-measure: combining the energy method, Cauchy-
Schwarz and an important corollary of the expectation value computation in Theorem 2.10, we
obtain Corollary 5.13, which states that Conjecture 1.12 holds true for the IIC, provided that
EIIC(|Xr|−4) ≤ C · ε(r)−2δr−16 holds for δ = 0 or for all δ > 0.

Volume growth exponent and lower mass dimension of the IIC
Based on (1.8), Markov’s inequality and their result that c · 1r ≤ Ppc(∂BC (0)(0, r) 6= ∅) ≤ C · 1r ,
Kozma and Nachmias proved [13] that there exists a C > 0 such that for fixed r ≥ 1 it holds for
all x ∈ Zd with |x| sufficiently large and all λ > 1 that: Ppc

(
BIIC(0, r) ≥ λ · r2|0↔ x

)
≤ C · 1

λ

and Ppc
(
BIIC(0, r) ≤ 1

λ · r
2|0↔ x

)
≤ C · 1λ . Therefore we may apply Theorem 1.10 ((i) and (ii)) to

conclude that the volume growth exponent of the IIC almost surely equals 2:

Theorem 1.15 (Kozma and Nachmias [13])

PIIC (df (IIC) = 2) = PIIC
(

lim
r→∞

(
log |BIIC(0, r)|

log(r)

)
= 2

)
= 1.

Inspired by the techniques used by Kozma and Nachmias we derive Theorem 1.16. The reason why
our bound is not yet as sharp as the result of Theorem 1.15 is, probably, that the nature of the ball
BIIC(r) (with respect to the shortest-path metric in the random graph formed by the IIC) allows
for finding certain nice independent events, while these events become dependent when translated
to the ‘ball’ IIC ∩ Qr (recall that Qr is the ball with respect to the deterministic metric induced
by the supremum norm). This dependency is caused by the fact that for a set A ⊂ Qr the event
{A = IIC ∩Qr} may also depend on edges that are outside Qr. We circumvent this problem by
considering only points in Qr that are connected to 0 by a path within Qr, that is: we bound |Xr,r|
instead of |Xr|.

Theorem 1.16
There exists a C > 0 such that for all r ≥ 1 and 0 ≤ ε < 1:

PIIC(|Xr,r| ≤ ε · r3) ≤ C · ε

and as a consequence, because |Xr,r| ≤ |Xr| for all r:

PIIC
(
dm(IIC) ≥ 3

)
= 1.
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Our strongest rigorous unconditional results on the mass dimension and discrete Hausdorff dimen-
sions of the IIC can now be summarized as:

Corollary 1.17

PIIC(3 ≤ dm(IIC) ≤ dm(IIC) ≤ 4) = 1

and for all functions ε(r) for which dH,ε(r) is defined it holds that

PIIC(dH,ε(r)(IIC) ≤ dm(IIC) ≤ 4) = 1.

1.8 Motivation for Conjecture 1.12

Why the conjecture that dm(IIC) = 4 and dm(Bb∗) = 2 and that the same values occur for the
discrete Hausdorff dimension, PIIC-almost surely? Before we present some motivations: first note
that -provided the mass dimension exists- it would suffice to bound the discrete Hausdorff dimension
from below by the conjectured values. Indeed, we know (Lemma 5.4) that the discrete Hausdorff
dimension is bounded above by the upper mass dimension, and the upper mass dimensions of the
IIC and the backbone Bb∗ are already almost surely bounded above by their conjectured values
(Corollary 1.11).

The conjectured scaling limit of the IIC, respectively the backbone, has Hausdorff
dimension 4, respectively 2.
In ([20],[21],[22]) Hara and Slade approach the IIC by taking the scaling limit of increasingly large
but finite clusters at p = pc. This involves shrinking the lattice spacing as a function of the cluster
size n in such a way that for n → ∞ a (nontrivial) random subset of Rd is produced. In order to
achieve this, the lattice spacing is scaled down by a factor n1/DH , where DH = 4 is the presumed
Hausdorff dimension of the IIC. This procedure is analogous to the way in which Brownian motion
in a time interval [0, 1] can be constructed [14] as a limit of an increasingly long random walk on a
lattice, in which case the lattice spacing is scaled down by a factor n1/2 because Brownian motion
almost surely has Hausdorff dimension 2.

Let x ∈ R be fixed. Hara and Slade showed that in sufficiently high dimension, the probability
that a site bxn1/4c is connected to the origin in a cluster of size n corresponds, in the scaling limit
n → ∞, to the mean mass density function of integrated super-Brownian excursion (ISE) at x.
ISE is a random probability measure on Rd. For d > 4 the support of this random probability
measure almost surely has Hausdorff dimension 4 [15]! This suggests that the scaling limit of the
IIC is ISE and almost surely has discrete Hausdorff dimension 4. As it turns out though this is
difficult to prove; it already is very complicated and laborious to explicitly derive the scaling limit
of Ppc(A) for just the two events A =

{
bxn1/4cis connected to the origin in a cluster of size n

}
and

A =
{
bxn1/4c and byn1/4care connected to the origin in a cluster of size n

}
.

As to the backbone, it is conjectured and a proof is being prepared [16] that its scaling limit is
Brownian motion, which almost surely has Hausdorff dimension 2 [14], supporting the conjecture
that the backbone almost surely has discrete Hausdorff dimension 2.

Aizenman: the maximal spanning cluster in Qr is of order r4

Let ∂Q+
r = {(x1, . . . , xd) ∈ Qr|x1 = r} and ∂Q−r = {(x1, . . . , xd) ∈ Qr|x1 = −r} be the ‘left’ and

the ‘right’ boundary of the cube Qr. A spanning cluster is a cluster (collection of interconnected
vertices) that intersects both ∂Q+

r and ∂Q+
r . Define |C ∩Qr|max as the maximal value of |C ∩Qr|

where the maximum is taken over all clusters C that intersect both ∂Q+
r and ∂Q+

r .

In [10], Aizenman sketches a proof that in any dimension d > 6 for which assumption (1.3) holds
true, the spanning probability tends to 1 as r →∞ and:

lim
r→∞

Ppc
(
o(r) · r4 ≤ |C ∩Qr|max ≤ c · log(r) · r4

)
= 1 (1.20)

for any function o(r) which tends to 0 as r →∞.
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So although we know that there is no infinite cluster for percolation at p = pc, the result of
Aizenman shows that there are arbitrarily large spanning clusters; for all r there typically exists
a (finite) cluster that is of order r4 and spans the box Qr. So everywhere in Zd there are finite
clusters that are locally of the order that is conjectured to hold for the (infinite) IIC. From Figure 1
and translation invariance it even becomes clear that the event in (1.20) implies that there almost
surely is a cluster of order r4 that intersects the boundaries of the nested cubes Qr and Qr/2.

Figure 1: For critical percolation in dimension d > 6 there exists a (maximal) cluster that spans
the ball Qr and has � r4 vertices in Qr, with probability tending to 1 as r →∞. In this picture both
the ball Qr and a translated ball with radius r/2 are spanned by an open path.

1.9 Approaches that didn’t work

Tweaking Aizenmans proof
It would come as no surprise that the lower bounds on Aizenman’s maximal cluster survive if we
consider the probabilities w.r.t. PIIC instead of Ppc as this - so to speak- only adds a connection
between 0 and∞. But of course a stronger result is preferred; we want to know whether |IIC ∩Qr|
is also of order r4. However, the intricate dependency on the vertex 0 that lies at the heart of
both the IIC-measure and the IIC itself causes the kind of moment bounds in Aizenmans proof
to fail fatally; relevant events A,B that say something about the magnitude of the IIC typically
involve the connection of some vertex with 0, but this very property makes that these events don’t
occur disjointly with high probability, so PIIC(A not disjoint B) ≈ PIIC(A ∩ B), while Aizenmans
proof relies on events for which Ppc(A not disjoint B) � P(A ∩ B). A second problem is that the
BK-inequality, frequently used in Aizenmans proof, does not need to hold for the IIC-measure, but
this is less severe because we can always use a construction of the IIC-measure in terms of Ppc , for
which the BK-inequality does hold.

Explicitly: Aizenman writes

|C ∩Qr|max ≥
∑

C |C ∩Qr| · |C ∩ ∂Q+
r | · |C ∩ ∂Q−r |∑

C |C ∩ ∂Q
+
r | · |C ∩ ∂Q−r |

:=
Hr

Kr

where the summation is over all clusters C that intersect Qr. Subsequently it is shown that

Epc

((
Kr

Epc(Kr)
− 1

)2
)

=
Epc(K2

r )− Epc(Kr)
2

Epc(Kr)2
≤ C · r

d+6

(rd)2
→ 0 as r →∞,

leading to limr→∞ Ppc
(

1
o(r)r

d ≤ Kr ≤ o(r)rd
)

= 1 for all positive functions o(r) with limr→∞ o(r) =

0. Together with a similar result for Hr (and Markov’s inequality) this shows (1.20). The most
difficult step is bounding Epc(H2

r )− Epc(Hr)
2; it involves several applications of the BK-inequality

and convolution bounds.

One of the many ways it has been tried, in vain, to bend this proof in order to let it work for
bounding the IIC is simply writing:

|IIC ∩Qr| =
∑

C |IIC ∩Qr| · |C ∩ ∂Q+
r | · |C ∩ ∂Q−r |∑

C |C ∩ ∂Q
+
r | · |C ∩ ∂Q−r |

:=
H
′

r

Kr
.
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Zero one laws and (in)dependence
A zero-one law states that, under certain conditions, the probability that an event occurs is either
0 or 1. The idea behind applying a zero-one law is: first try to prove that PIIC(dm(IIC) = 4) > 0
(which is already difficult) and then use a zero-one law to conclude that PIIC(dm(IIC) = 4) = 1.
The problem is that laws like the Kolmogorov 0-1 law and the Hewitt-Savage 0-1 law ([17]), as
well as approximate zero-one laws ([18], [19]) require independence of certain events and /or they
require specific properties of the probability measure (‘product measure’, ‘monotone measure’ . . .)
that are not satisfied by the IIC-measure. As to the independence issue: the inherent role of
the origin 0 in both the IIC and the construction of the IIC-measures introduces weird, some-
times counterintuitive, dependencies. A simple example: let b a bond adjacent to the origin, then
PIIC(b is open | all other bonds around the origin are closed ) = 1 6= PIIC(b is open). The most
promising approach is the following, in which we partially neutralize the dependency on the origin
by considering C (Qr) instead of C (0), using the following 0− 1 law.

Lemma 1.18 (Proof can be found in [17])
Let (Ω,F ,P) be a probability space. Let A1, A2, . . . be a collection of events, and letA be the smallest
σ-field of subsets of Ω which contains all of them. If A ∈ A is an event which is independent of the
finite collection A1, A2, . . . , Ar for each value of r, then P(A) ∈ {0, 1}.

Define C (Qr) :=

{
x ∈ Zd\Qr| there is an y ∈ ∂Qr such that y

Zd\Qr←→ x

}
. Provided there is an open

path from 0 to ∞ and there exists exactly one infinite cluster (which is true PIIC-almost surely), it
holds for all r > 0 that

dm(C (Qr)\Qr) = 4⇔ dm(C (0)) = 4

and as a consequence

A := lim inf
r→∞

{dm(C (Qr)\Qr) = 4} = {dm(IIC) = 4} .

Finally one would want to apply Lemma 1.18 to A and Ai := { bond ei is open } to conclude that
P(A) ∈ {0, 1}. The problem is: are we indeed allowed to apply Lemma 1.18; is A independent of the
collection A1, A2, . . . , Ar for each r, with respect to the IIC-measure? Note that if this is true, a slight
adaptation of the proof would immediately yield that for all α it holds that PIIC

(
dm(IIC) = α

)
∈

{0, 1} and PIIC
(
dm(IIC) = α

)
∈ {0, 1}.

Positive probability as in Theorem 1.14 is not strong enough
By Theorem 1.14 we have that for a given 0 < ε < 1 there is a constant C > 0 such that
PIIC (|Xr| ≥ ε · EIIC(|Xr|)) ≥ C. So for all radii r we have that |Xr| is approximately r4 with
positive probability bounded away from zero. At first sight this implies that the mass dimension
of the IIC is 4 with positive probability, but to conclude this one would actually need a stronger
statement of the form PIIC (|Xr| ≥ ε · EIIC(|Xr|)) ≥ 1 − ε(r), such that

∑∞
r=1 ε(r) < ∞, because

then Borel-Cantelli would imply that PIIC(dm(IIC) ≥ 4) = PIIC (lim infr→∞ logr(|Xr|) ≥ 4) =
PIIC

(
logr(|Xr|) ≥ ε · r4 for only finitely many r

)
≈ PIIC (|Xr| ≤ ε · EIIC(|Xr|) i.o. ) = 0.

1.10 Closing remark

For further research we would advise to investigate and generalize the proof of Theorem 1.16 because
it provides, with relatively little effort, our strongest rigorous result on the lower mass dimension
of the IIC. The full potential of the underlying method probably has not been explored yet, as this
theorem came up in the final stage of the research for this thesis.
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2 Technical lemmas, tree diagrams and
moment bounds

2.1 Technical lemmas, convolution and bounding small diagrams

This section is all about technical lemmas on bounds of sums, products and convolutions involving
the function τ(x − y). Recall that τ(x − y) := Ppc(x ↔ y) � |x − y|2−d. From now on we let ‖x‖
denote max(|x|, 1), for all x ∈ Zd.

Lemma 2.1
For all k ≤ d, y ∈ Zd and r ≥ 1: ∑

x∈Qr

1

‖x− y‖d−k
≤
∑
x∈Qr

1

‖x‖d−k
. (2.1)

Proof. The function f : Qr ∩ (−Qr + {y}) → Qr ∩ (−Qr + {y}) defined by f(x) = −x + y is a
bijection. Therefore∑

x∈Qr
y−x∈Qr

1

‖x− y‖d−k
=

∑
x∈Qr∩(−Qr+{y})

1

‖f(x)‖d−k
=

∑
x∈Qr∩(−Qr+{y})

1

‖x‖d−k
=

∑
x∈Qr
y−x∈Qr

1

‖x‖d−k
.

Furthermore: for all x ∈ Qr such that y − x /∈ Qr it holds that ‖x− y‖ > r ≥ ‖x‖, so∑
x∈Qr
y−x/∈Qr

1

‖x− y‖d−k
≤

∑
x∈Qr
y−x/∈Qr

1

‖x‖d−k
.

For generalizations of the results in this section, a bound for more general sets S1, . . . , Sr, . . . , of
the form ∑

x∈Sr

1

‖x− y‖d−k
≤ C ·

∑
x∈Sr

1

‖x‖d−k

would be useful, but unfortunately this doesn’t even hold true for important simple sets like Sr =
∂Qr, so we will not pursue this route.

Lemma 2.2
For all k > 0 there are constants c, C > 0 such that for all r ≥ 1:

c · rk ≤
∑
x∈Qr

1

‖x‖d−k
≤ C · rk (2.2)

and

c · 1

rk
≤
∑
x/∈Qr

1

‖x‖d+k
≤ C · 1

rk
. (2.3)

Proof. We will actually prove the slightly more general result stated in (2.7) below. First note that
the Euclidean norm | · |e and the supremum norm | · | are equivalent norms on Rd. So there exist
constants c, C > 0 such that for all b1, b2 ∈ R≥1:

c ·
∑
x∈Zd

b1≤|x|e≤b2

1

|x|d−ke

≤
∑
x∈Zd

b1≤|x|≤b2

1

|x|d−k
≤ C ·

∑
x∈Zd

b1≤|x|e≤b2

1

|x|d−ke

. (2.4)
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Furthermore, there exist constants c
′
, C
′
> 0 such that for all x ∈ Zd\ {0} and x∗ ∈ [−1/2, 1/2]d it

holds that c
′ · |x|e ≤ |x+ x∗|e ≤ C

′ · |x|e and also:

⋃
x∈Rd

b1≤|x|e≤b2

x ⊂
⋃
x∈Zd

b1≤|x|e≤b2

(
x+

[
−1

2
,

1

2

]d)
⊂

⋃
x∈Rd

−
√
d

2 +b1≤|x|e≤b2+
√
d

2

x.

As a consequence we can approximate the outer sums in (2.4) by an integral:

c
′
·
∫(

x∈Rd
b1≤|x|e≤b2

) 1

|x|d−ke

dx ≤
∑
x∈Zd

b1≤|x|e≤b2

1

|x|d−ke

≤ C
′
·
∫(

x∈Rd

−
√
d

2 +b1≤|x|e≤b2+
√
d

2

) 1

|x|d−ke

dx. (2.5)

Using spherical coordinates in d-dimensional Euclidean space this integral can be calculated:∫(
x∈Rd

b1≤|x|e≤b2

) 1

|x|d−ke

dx

=

∫ 2π

0

∫ π

0

. . .

∫ π

0

∫ b2

b1

(
1

rd−k

)
· rd−1 · sind−2(φ1) sind−3(φ2) . . . sin(φd−2)dr dφ1 . . . dφd−1

= V ·
(
bk2 − bk1

)
k

(2.6)

where V is a constant independent of k, b1, b2 (and V is equal to d times the volume of the d-
dimensional Euclidean ball with radius 1).

Combining (2.4), (2.5) and (2.6) we see that there exist constants c
′′
, C
′′
> 0 such that for all k 6= 0

and b2, b1 such that b2 ≥ b1 ≥
√
d
2 :

c
′′
·
(
bk2 − bk1

)
k

≤
∑
x∈Zd

b1≤|x|≤b2

1

|x|d−k
≤ C

′′
·

(
(b2 +

√
d
2 )k − (b1 −

√
d
2 )k

)
k

. (2.7)

To prove the lemma we now merely need to choose the right parameters in inequality (2.7). If we

choose k < 0, b1 = r and let b2 →∞ then we obtain (2.3). If we choose k > 0, b1 =
√
d
2 and b2 = r

then we obtain (2.2), since we may ignore the (finite and r-independent) sum
∑

x∈Zd

|x|≤
√
d

2

1
‖x‖d−k .

Lemma 2.3 (Convolution bound [23])
If functions f, g on Zd satisfy |f(x)| ≤ ‖x‖−a and |g(x)| ≤ ‖x‖−b with a ≥ b > 0, then there exists
a constant C depending on a, b, d such that

|(f ∗ g)(x)| ≤ C ·

{
‖x‖−b if a > d

‖x‖d−(a+b) if a < d and a+ b > d.

Proof. This proof is the same as the proof found in Proposition 1.7 in [23], only with a little more
explanation. By definition,

|(f ∗ g)(x)| ≤
∑
y∈Zd

|x−y|≤|y|

1

‖x− y‖a
1

‖y‖b
+

∑
y∈Zd

|x−y|>|y|

1

‖x− y‖a
1

‖y‖b
.

Using a ≥ b and the change of variables z = x− y in the second term, we see that

|(f ∗ g)(x)| ≤ 2 ·
∑
y∈Zd

|x−y|≤|y|

1

‖x− y‖a
1

‖y‖b
. (2.8)
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In the above summation, |y| ≥ 1
2 |x|. Therefore it follows from (2.3) that if a > d:

|(f ∗ g)(x)| ≤ 2b+1

‖x‖b
·
∑
y∈Zd

|x−y|≤|y|

1

‖x− y‖a
≤ C · ‖x‖−b. (2.9)

Suppose now that a < d and a + b > d. We split the sum on the right hand side of (2.8) in two
parts.

Case 1: 1
2 |x| ≤ |y| ≤

3
2 |x|:

∑
y∈Zd

|x−y|≤|y|
1
2 |x|≤|y|≤

3
2 |x|

1

‖x− y‖a
1

‖y‖b
≤ 2b+1

‖x‖b
∑
y∈Zd

|x−y|≤ 3|x|
2

1

‖x− y‖a

=
2b+1

‖x‖b
∑

z∈Q 3|x|
2

1

‖z‖a

≤ C

‖x‖b
· ‖x‖d−a, (2.10)

where the last inequality follows from the the bound in (2.2).

Case 2: |y| ≥ 3
2 |x|:

In this case |y − x| ≥ |y| − |x| ≥ |y|3 . So by the bound in (2.3):∑
y∈Zd

|x−y|≤|y|
|y|≥ 3

2 |x|

1

‖x− y‖a
1

‖y‖b
≤ 3a · 2 ·

∑
y∈Zd

|y|≥ 3|x|
2

1

‖y‖a+b
≤ C

‖x‖a+b−d
. (2.11)

Now evaluate (2.10) and (2.11) in (2.8) to obtain the desired inequality.

By combining the Lemmas 2.1, 2.2 and 2.3 with the bound (1.3) on the two-point function, we
obtain the following useful bounds.

Lemma 2.4
There exist constants C,C

′
, C
′′
> 0 such that for all y ∈ Zd,

(i) ∑
x∈Qr

τ(x− y) ≤ C
′
·
∑
x∈Qr

τ(x) ≤ C
′′
·
∑
x∈Qr

1

‖x‖d−2
≤ C · r2,

(ii) ∑
x∈Qr

(τ ∗ τ)(x− y) ≤ C
′
·
∑
x∈Qr

(τ ∗ τ)(x) ≤ C
′′
·
∑
x∈Qr

1

‖x‖d−4
≤ C · r4,

and for all s, t ∈ R such that (s+ t− 1)d− 2(s+ 2t) > 0,
(iii) ∑

x/∈Qr

τ(x)s · (τ ∗ τ)t(x) ≤ C
′
·
∑
x/∈Qr

1

‖x‖(s+t)d−2(s+2t)
≤ C · 1

r(s+t−1)d−2(s+2t)
.

The estimates in Lemma 2.4 are already sufficient to bound EIIC(|Xr|) and EIIC(|Xr|2) from
above, as will be demonstrated in Lemma 2.16. But to bound other expectations, like EIIC(|Xr|n)
for general n ∈ N, we need a more inductive approach to bound a so called tree diagram (see the
next subsection for its definition). At the basis of this inductive approach are the following technical
Lemmas 2.5 and 2.7, that -in particular- bound two small ‘diagrams’ that are the building blocks of
an arbitrary tree diagram. See Figures 2 and 3.
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Figure 2: These tree diagrams illustrate Lemma 2.5. The vertices z, 0 and x are fixed. The dots
denote other vertices and edges of the tree diagram that are not involved in the computation of
Lemma 2.5. The left hand side is summed over all x2 ∈ Qr ∩Qk(x) and z2 ∈ Zd. Up to a constant
value it is bounded above by min(k4, r4) times the right hand side.

Figure 3: These tree diagrams illustrate Lemma 2.7. The vertices z, 0 and x are fixed. The dots
denote other vertices and edges of the tree diagram that are not involved in the computation of
Lemma 2.7. The left hand side is summed over all x2 ∈ Qr2 ∩ Qk(x) and z2 ∈ Zd and x1 ∈ Qr1 .
Up to a constant value it is bounded from above by max(k4, r42) times (the right hand side summed
over x1 ∈ Qr1).

Lemma 2.5
There is a constant C such that for all z ∈ Zd, x ∈ Qr, k, r ∈ N:

δk,r(z, x) :=
∑
x2∈Qr
|x−x2|≤k
z2∈Zd

τ(z − z2)τ(z2 − x2) ≤ C ·min(k4, r4).

Proof. The substitution u := x2 − x and the equivalence |x− x2| ≤ k ⇔ x2 − x ∈ Qk yield

δk,r(z, x) =
∑

u+x∈Qr
u∈Qk

∑
z2∈Zd

τ(z − z2)τ(z2 − x− u)

=
∑
u∈Qk
u+x∈Qr

∑
z2∈Zd

τ(z2 − z)τ(u+ x− z2)

=
∑
u∈Qk
u+x∈Qr

∑
z2∈Zd

τ(z2)τ(u+ x− z − z2)

=
∑
u∈Qk
u+x∈Qr

(τ ∗ τ)(u+ x− z)

≤ C ·min(k4, r4),

where the second equality is just the symmetry of the two-point function and the third equality is
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the result of summing over z2 + z ∈ Zd instead of z2 ∈ Zd. The final inequality follows from Lemma
2.4.ii.

The following is an important corollary of Lemma 2.5.

Corollary 2.6
There is a constant C such that for all z ∈ Zd, r ∈ N:

δ∞,r(z, 0) =
∑
x∈Qr
z2∈Zd

τ(z − z2)τ(z2 − x) ≤ C · r4.

Lemma 2.7
There exists a constant C such that for all z, x ∈ Zd and k, r1, r2 ∈ N:

ηk,r1,r2(z, x) :=
∑
z2∈Zd

∑
x1∈Qr1
x2∈Qr2
|x−x2|≤k

τ(z2 − x1)τ(z2 − x2)τ(z − z2)

≤ C ·min
(
k4, r42

)
·
∑

x1∈Qr1

τ(z − x1) (2.12)

and also

ηk,r1,r2(z) :=
∑
z2∈Zd

∑
x1∈Qr1
x2∈Qr2
|x1−x2|≤k

τ(z2 − x1)τ(z2 − x2)τ(z − z2)

≤ C ·min
(
k4, r42

)
·
∑

x1∈Qr1

τ(z − x1). (2.13)

Proof. We will prove inequality (2.12). It turns out that all bounds in the proof remain valid (and
independent of x1) if we replace x by x1 everywhere, thus also yielding a proof for inequality (2.13).

Observe that |x− x2| ≤ k ⇔ x2 − x ∈ Qk, so substituting u := x2 − x yields

ηk,r1,r2(z, x) =
∑
z2∈Zd

∑
x1∈Qr1
u+x∈Qr2
u∈Qk

τ(z2 − x1)τ(z2 − u− x)τ(z − z2). (2.14)

We will split the sum on the right hand side in two parts and we will bound them separately.

Case 1: |z2 − z| ≥ 1
2 |x1 − z|

In this case there is a constant C
′

such that τ(z2 − z) ≤ C
′ · τ(x1 − z). Therefore:∑

z2∈Zd

|z2−z|≥ |x1−z|2

τ(z2 − x1)τ(z2 − u− x)τ(z2 − z) ≤ C
′
τ(x1 − z)

∑
z2∈Zd

τ(z2 − x1)τ(z2 − u− x)

= C
′
· τ(x1 − z) ·

∑
z2∈Zd

τ(z2 + u+ x− x1)τ(z2)

= C
′
· τ(x1 − z) · (τ ∗ τ)(u+ x− x1). (2.15)

Case 2: |z2 − z| ≤ 1
2 |x1 − z|

In this case |z2−x1| ≥ |x1− z| − |z2− z| ≥ |x1− z| − |x1−z|
2 = |x1−z|

2 . So τ(z2−x1) ≤ C ′ · τ(x1− z).
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Therefore we can apply virtually the same derivation as in Case 1:∑
z2∈Zd

|z2−z|≤ |x1−z|2

τ(z2 − x1)τ(z2 − u− x)τ(z2 − z) ≤ C
′
τ(x1 − z)

∑
z2∈Zd

τ(z2 − u− x)τ(z2 − z)

= C
′
· τ(x1 − z) · (τ ∗ τ)(u+ x− z). (2.16)

Finally combine bounds (2.14), (2.15) and (2.16) to obtain the first of the following two inequalities,
and use Lemma 2.4 (ii) for the second inequality:

ηk,r1,r2(z, x) ≤ C
′
·

 ∑
x1∈Qr

τ(x1 − z) ·

 ∑
u∈Qk

u+x∈Qr2

(τ ∗ τ)(u+ x− x1) + (τ ∗ τ)(u+ x− z)




≤ C
′′
·min

(
k4, r42

)
·

 ∑
x1∈Qr

τ(x1 − z)

 .

The following is an important corollary of Lemma 2.7.

Corollary 2.8
There exists a constant C, independent of z ∈ Zd, r1, r2 ∈ N, such that:

η∞,r1,r2(z, 0) =
∑
z2∈Zd

∑
x1∈Qr1
x2∈Qr2

τ(z2 − x1)τ(z2 − x2)τ(z − z2) ≤ C · r42 ·
∑

x1∈Qr1

τ(z − x1).

18



2.2 Bounding expectation values by bounding tree diagrams

In this section the main object is to estimate some expectation values, culminating in Theorem
2.10. In doing so we often need to bound functions on vertices that are organized in a treelike
way. Typically we are dealing with an unrooted binary tree on n labeled external vertices (and
n − 2 unordered internal vertices), which we will mostly refer to as a tree diagram on n labeled
vertices. By definition, an unrooted binary tree is a binary tree in which each vertex has either one
or three neighbours. Vertices with one neighbour are called external vertices, while those with three
neighbours are called internal vertices. The next Lemma enumerates tree diagrams on n+ 2 labeled
vertices.

Figure 4: On the left the unique tree diagram on three labeled vertices is shown. From this the three
possible tree diagrams on four labeled vertices, shown on the right, can be constructed.

Lemma 2.9
Let n ∈ N and let T (n) denote the number of unrooted binary trees (‘tree diagrams’) on n + 2
labeled external vertices . Then

T (n) =
(2n)!

2n · n!
.

Proof. Let E(n) be the number of edges in a tree diagram connecting n + 2 vertices. The initial
conditions are T (0) = 1 and E(0) = 1. A diagram T ∗ on n+3 vertices is obtained from a diagram T
on n+2 vertices by connecting a new (n+3)-th external vertex to a new internal vertex that is placed
in the middle of some existing edge in T , as depicted in Figure 4. This procedure adds two vertices
and two edges, so: E(n+1) = E(n)+2 and therefore E(n) = 2n+1. Furthermore, in each of the T (n)
diagrams there are E(n) edges to choose from to append a new vertex, so T (n+ 1) = T (n) · E(n) =

T (n) · (2n+ 1). The solution of this recurrence relation is T (n) =
∏n−1
i=0 (2i+ 1) = (2n)!∏n

i=1(2i)
= (2n)!

2n·n! .

Theorem 2.10
Let C denote the maximum of the constants appearing in Lemma 2.5 and 2.7. For all k1, . . . , km ∈ N
and all r1, . . . , rm, . . . , rm+n ∈ N it holds that:

EIIC


m∏
i=1

 ∑
x,y∈C (0)∩Qri
|x−y|≤ki

1

 ·
m+n∏
i=m+1

 ∑
x∈C (0)∩Qri

1


 ≤ C2m+n · T (2m+ n) ·

m∏
i=1

k4i ·
m+n∏
i=1

r4i .

Corollary 2.11
There exist constants C,C1 > 0 such that for all r, n ∈ N:

EIIC(|Xr|n) := EIIC

 ∑
x∈C (0)∩Qr

1

n  ≤ Cn · (2n)!

2n · n!
· r4n ≤ Cn1 ·

(2n)!

2n · n!
· EIIC(|Xr|)n.
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Corollary 2.12
There exists a constant C such that for all r, n, k ∈ N:

EIIC


 ∑
x,y∈C (0)∩Qr
|x−y|≤k

1


n  ≤ C2n · (4n)!

4n · (2n)!
· r4n · k4n.

Corollary 2.12 is important for the (conditional) lower bound on the discrete Hausdorff dimension
of the IIC, discussed in Theorem 5.12. Corollary 2.11 is in particular interesting for the case n = 2,
because of its application in the proof of Theorem 1.14. In general it serves as an intuition for the
exact value of the moments EIIC(|Xr|n), leading to the conditional bounds on the mass dimension
of the IIC in subsection 3.2.

Corollary 2.13
For all n ∈ N there exist constants C

′

n and Cn such that for all r:

C
′

n ≤
EIIC(|Xr|n)

EIIC(|Xr|)n
≤ Cn.

Proof. The right bound is Corollary 2.11. The left bound follows from Jensen’s inequality because
x 7→ xn is a convex function on R≥0.

Conjecture 2.14

For all n ∈ N there exists a constant Cn, perhaps equal to (2n)!
2n·n! , such that

lim
r→∞

EIIC(|Xr|n)

EIIC(|Xr|)n
= Cn.

Due to the generality of the statement of Theorem 2.10, its proof is rather complex and difficult to
read. Therefore we have also included the simpler proof for the case n = 2 of Corollary 2.11, to
boost the intuition of the reader (see Lemma 2.16). It is advisable to read that first.

In order to prove the general Theorem 2.10 we need the following Lemma.

Lemma 2.15
Let T be a tree diagram on the 2m+ n+ 2 labeled vertices 0, x1, . . . , x2m+n, α. Let T ∗ denote the
reduced tree diagram obtained by deleting α from T , along with the edge that is connected to α.
Then it holds for all k1, . . . , km ∈ N and all r1, . . . , rm, . . . , rm+n ∈ N that

Σ∗ :=
∑

x1,x2∈Qr1 ,...,x2m−1,x2m∈Qrm
x2m+1∈Qrm+1

,...,x2m+n∈Qrm+n

such that
|x2i−x2i−1|≤ki for all i∈{1,...,m}

∑
z1,...,z2m+n∈Zd

∏
(v,w) in T∗

v,w∈{x1,...,x(2m+n),z1,...,z(2m+n),0}

τ(v − w),

where the product is over all edges (v, w) that are in T ∗, is bounded above by

C2m+n ·
m∏
i=1

k4i ·
m+n∏
i=1

r4i .

Here C again denotes the maximum of the constants appearing in Lemma 2.5 and 2.7.

Proof. The proof is with induction and is build upon repeatedly applying Lemma 2.5 and 2.7. Each
application to T ∗ of any one of these Lemmas graphically amounts to removing two edges and two
vertices (one labeled external vertex and one unlabeled internal vertex) from T ∗, thus yielding a
smaller reduced tree diagram. For n = m = 0 the reduced tree diagram T ∗ consists only of the
vertex 0. In this case it is natural to set Σ∗ = 1 and claim that the lemma is true for n+ 2m = 0,
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but to make our induction proof completely rigorous we actually need to show the lemma holds if
n+ 2m = 1. We will postpone this and first explain the induction step.

Let N ∈ N and assume that the bound holds for all m,n ∈ N with n + 2m < N . To show: the
bound also holds for all m,n ∈ N with n+ 2m = N .

The main observation is that any reduced tree diagram involving labeled external vertices {0, x1, . . . , x2m+n}
can be constructed from a reduced tree diagram involving only external vertices {0, x1, . . . , x2m+n} \ {xadd},
for some xadd ∈ {0, x1, . . . , x2m+n}. This can be done using one of the three procedures depicted in
Figure 5. Figure 5a represents an application of Lemma 2.5, while Figure 5b represents an applica-
tion of Lemma 2.7. These constructions are sufficient, because any reduced tree diagram with ≥ 2
labeled vertices is of the form of at least one of the RHS pictures in Figure 5. Note that in all cases
we can identify not only an external node xadd, but also a corresponding internal node zadd ∈ Zd.

Case 1: as in Figure 5a.
Before we start to estimate Σ∗, we need to discern two subcases, regarding the nature of xadd,
which must equal xi for some i ∈ {1, . . . , 2m+ n} . In case i ∈ {1, . . . , 2m}, there is an additional
constraint: there exist a vertex x0 in T ∗ and an integer kadd such that |xadd − x0| ≤ kadd. Let’s
address this situation first.

Case 1.1: xadd is constrained
In the derivation below

∑
(...) denotes [summation over z1, . . . , z(2m+n) ∈ Zd, excluding the summa-

tion over zadd ∈ Zd ], combined with [summation over x1, x2 ∈ Qr1 , . . . , x2m−1, x2m ∈ Qm, x2m+1 ∈
Qr2m+1

, . . . , x2m+n ∈ Qr2m+n
, excluding the summation over xadd ∈ Qradd ], under the constraints [

|x2i − x2i−1| ≤ ki for all i ∈ {1, . . . ,m}, excluding the constraint |xadd − x0| ≤ kadd ]. Furthermore:

∏
(...)

denotes
∏

(v,w) in T∗

v,w∈{x1,...,x(2m+n),z1,...,z(2m+n),0}\{xadd,zadd}

.

Using this notation we reorder the terms in Σ∗ and then eliminate the dependency on z0 by the
uniform estimate provided by Lemma 2.5:

Σ∗ =
∑
(...)


∏

(...)

τ(v − w)

 · ∑
xadd∈Qradd
|xadd−x0|≤kadd

∑
zadd∈Zd

τ(xadd − zadd) · τ(zadd − z0)


=

∑
(...)

∏
(...)

τ(v − w)

 · δ(kadd,radd)(z0, x0)


≤

Lemma 2.5

∑
(...)

∏
(...)

τ(v − w)

 · C · k4add
= Σ∗∗ · C · k4add. (2.17)

Here Σ∗∗ denotes the sum corresponding to the tree diagram T ∗∗ one obtains by removing the
vertices xadd and zadd and the corresponding edges xadd ↔ zadd and zadd ↔ z0 from T ∗. Note
that the vertex x0 has been set free; it has become an ordinary vertex in Qradd , no longer suffering
from a constraint of the form |xi − x0| ≤ ki. So T ∗∗ has 2(m − 1) constrained vertices and n + 1
unconstrained vertices.

By the induction hypothesis Σ∗∗ ≤ C2(m−1)+(n+1) ·
(

1
k4add

∏m
i=1 k

4
i

)(
·
∏m+n
i=1 r4i

)
. So the desired

bound emerges: Σ∗ ≤ C2m+n ·
∏m
i=1 k

4
i ·
∏m+n
i=1 r4i .

Case1.2: xadd is not constrained
This can be interpreted as a special case of Case 1.1. By assumption the vertex xadd is already
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(a) In this case zadd lies on the unique edge that is connected to α in the original
(not reduced) tree diagram, depicted on the left.

(b) In this case zadd lies on an edge that is not the edge that is connected to α
in the original (not reduced) tree diagram, depicted on the left.

Figure 5: Given a reduced tree diagram on N labeled vertices (Right Hand Sides) we can restore
the original tree diagram on N + 1 labeled vertices by adding vertex α and its adjacent (grey) edge.
In this tree diagram we can always identify an internal vertex zadd and an external labeled vertex
xadd such that zadd is connected to at least 2 external vertices (either xadd and x∗ or xadd and α).
Removing xadd, zadd and α and their adjacent edges now yields a reduced tree diagram on N − 1
labeled vertices (Left Hand Sides). In case (a), the contribution of xadd and zadd to Σ∗ can be
estimated using Lemma 2.5 (in case we have the additional restriction that |xadd − x0| ≤ kadd)
or Corollary 2.6 (without that restriction), while in case (b) and (c) the contribution of xadd and
zadd can be estimated using Lemma 2.7 (in case of the additional restriction |xadd − x0| ≤ kadd) or
Corollary 2.8 (without that restriction). Remark: the symbols z1 and z∗ in these pictures are not
important for our calculations; they just denote some internal vertices.
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‘free’, so we can remove the restricion |xadd − x0| ≤ kadd in derivation (2.17) and apply Corollary
2.6 to obtain:

Σ∗ =
∑
(...)

∏
(...)

τ(v − w)

 · ∑
xadd∈Qradd

∑
zadd∈Zd

τ(xadd − zadd) · τ(zadd − z0)


=

∑
(...)

∏
(...)

τ(v − w)

 · δ(∞,radd)(z0, 0)


≤

Corollary 2.6

∑
(...)

∏
(...)

τ(v − w)

 · C · r4add
= Σ∗∗ · C · r4add. (2.18)

In this case the new diagram T ∗∗ has 2m constrained vertices and n− 1 unconstrained vertices. So

by the induction hypothesis: Σ∗∗ ≤ C2m+(n−1) ·
(∏m

i=1 k
4
i

) (
1

r4add
·
∏m+n
i=1 r4i

)
. So again the desired

bound emerges: Σ∗ ≤ C2m+n ·
∏m
i=1 k

4
i ·
∏m+n
i=1 r4i .

Case 2: as in Figure 5b.
The proof structure is the same as in case 1. The most important difference is that we apply Lemma
2.7 (resp. Corollary 2.8) instead of Lemma 2.5 (resp. Corollary 2.6).

Case 2.1: xadd is constrained
Instead of the derivation in (2.17) comes the following

Σ∗ =
∑
(...)


∏

(...)

τ(v − w)

 · ∑
xadd∈Qradd
x∗∈Qr∗

|xadd−x0|≤kadd

∑
zadd∈Zd

τ(xadd − zadd) · τ(zadd − x∗) · τ(zadd − z0)


=

∑
(...)

∏
(...)

τ(v − w)

 · η(kadd,r∗,radd)(z0, x0)


≤

Lemma 2.7

∑
(...)

∏
(...)

τ(v − w)

 · C · k4add · ∑
x∗∈Qr∗

τ(z0 − x∗)

= Σ∗∗ · C · k4add. (2.19)

where Σ∗∗ in this case denotes the sum corresponding to the tree diagram T ∗∗ one obtains by
removing from T ∗ the vertices xadd and zadd as well as the corresponding edges x∗ ↔ zadd, xadd ↔
zadd and zadd ↔ z0, while adding the edge z0 ↔ x∗.

This is not entirely correct yet, because we have to pay a little more attention if the labeled vertices
x∗ and x0 coincide: in that case η(kadd,r∗,radd)(z0, x0) must be replaced by η(kadd,r∗,radd)(z0) in the
second equality. Lemma 2.7 then still provides the (same) upper bound.

Case 2.2: xadd is not constrained

23



The derivation in (2.18) must be replaced by:

Σ∗ =
∑
(...)


∏

(...)

τ(v − w)

 · ∑
xadd∈Qradd
x∗∈Qr∗

∑
zadd∈Zd

τ(xadd − zadd) · τ(zadd − x∗) · τ(zadd − z0)


=

∑
(...)

∏
(...)

τ(v − w)

 · η(∞,r∗,radd)(z0, 0)


≤

Corollary 2.8

∑
(...)

∏
(...)

τ(v − w)

 · C · r4add · ∑
x∗∈Qr∗

τ(z0 − x∗)

= Σ∗∗ · C · r4add. (2.20)

Now we have considered all possible subcases, so the proof of the induction step is finished.

Figure 6: Initial condition tree diagram.

To complete the induction proof, it remains to clarify that the lemma also holds for the initial
condition (if n + 2m = 1). If n + 2m = 1 then n = 1. So, including the 0 vertex, the reduced tree
diagram has 2 labeled vertices and one unlabeled internal vertex. There is only one such reduced
tree diagram, shown in Figure 6. Bounding this diagram amounts to the same derivations as in
(2.18), with the only two differences that z0 = 0 (instead of an arbitrary point in Zd) and the terms∑

(...),
∏

(...) and Σ∗∗ are left out. Explicitly:

Σ∗ =
∑

xadd∈Qradd

∑
zadd∈Zd

τ(xadd − zadd) · τ(zadd − 0) = δ(∞,radd)(0, 0) ≤ C · r4add.

24



We are ready to prove the main theorem.

Proof of Theorem 2.10

EIIC


m∏
i=1

 ∑
x,y∈C (0)∩Qri
|x−y|≤ki

1

 ·
m+n∏
i=m+1

 ∑
x∈C (0)∩Qri

1




= EIIC

 m∏
i=1

 ∑
x,y∈Qri
|x−y|≤ki

10↔x,0↔y

 · m+n∏
i=m+1

 ∑
x∈Qri

10↔x




= EIIC


∑

x1,x2∈Qr1 ,...,x2m−1,x2m∈Qrm
x2m+1∈Qrm+1

,...,x2m+n∈Qrm+n

such that
|x2i−x2i−1|≤ki for all i∈{1,...,m}

2m+n∏
i=1

10↔xi


=

∑
x1,x2∈Qr1 ,...,x2m−1,x2m∈Qrm
x2m+1∈Qrm+1

,...,x2m+n∈Qrm+n

such that
|x2i−x2i−1|≤ki for all i∈{1,...,m}

PIIC

(
2m+n⋂
i=1

10↔xi

)

= lim
p↑pc

1

χp

∑
x1,x2∈Qr1 ,...,x2m−1,x2m∈Qrm
x2m+1∈Qrm+1

,...,x2m+n∈Qrm+n

such that
|x2i−x2i−1|≤ki for all i∈{1,...,m}

∑
α∈Zd

Pp

 ⋂
s∈{x1,...,x2m+n,α}

(0↔ s)

 . (2.21)

We proceed by bounding the sum in (2.21). For the vertices in {0, x1, . . . , x2m+n, α} to be connected,
there has to be an unrooted binary tree that connects those 2m+n+2 labeled vertices. By definition
(see Lemma 2.9) there are T (2m + n) of such tree diagrams. Let Tj denote the j-th tree diagram
with respect to some ordering. Then:

∑
α∈Zd

Pp

 ⋂
s∈{x1,...,x2m+n,α}

(0↔ s)

 ≤ T2m+n∑
j=1

∑
z1,...,z2m+n,α∈Zd

Pp

 all vertices that are connected by an
edge in the unrooted binary tree Tj

(that has external vertices 0,x1,...,x2m+n,α
and internal vertices z1,...,z2m+n)

are disjointly connected in Zd


By the BK-inequality the probability in the sum on the right hand side is bounded above by∏

(v,w) in Tj
v,w∈{0,x1,...,x2m+n,z1,...,z2m+n,α}

Pp(v ↔ w). (2.22)

Let T ∗j denote the reduced tree diagram one obtains by deleting from Tj the vertex α and the
(unique) edge that connects α to some internal node zα. Using this notation we can rewrite (2.22)
in such a way that it becomes clear that χ(p) :=

∑
α∈Zd Pp(α↔ 0) can be divided out from (2.21),

which in turn allows for taking the limit p ↑ pc:
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lim
p↑pc

1

χ(p)

∑
α∈Zd

(2.22) = lim
p↑pc

1

χ(p)

∑
α∈Zd

Pp(α↔ zα) ·
∏

(v,w) in T∗j
v,w∈{0,x1,...,x2m+n,z1,...,z2m+n}

Pp(v ↔ w)

=
∏

(v,w) in T∗j
v,w∈{0,x1,...,x2m+n,z1,...,z2m+n}

τ(v − w) (2.23)

Combining everything yields:

(2.21) ≤ lim
p↑pc

1

χp


∑

x1,x2∈Qr1 ,...,x2m−1,x2m∈Qrm
x2m+1∈Qrm+1

,...,x2m+n∈Qrm+n

such that
|x2i−x2i−1|≤ki for all i∈{1,...,m}

T2m+n∑
j=1

∑
z1,...,z2m+n,α∈Zd

(2.22)



=
(2.23)

T2m+n∑
j=1


∑

x1,x2∈Qr1 ,...,x2m−1,x2m∈Qrm
x2m+1∈Qrm+1

,...,x2m+n∈Qrm+n

such that
|x2i−x2i−1|≤ki for all i∈{1,...,m}

∑
z1,...,z2m+n∈Zd

∏
(v,w) in T∗j

v,w∈{0,x1,...,x2m+n,z1,...,z2m+n}

τ(v − w)


.

At this point all efforts converge because we can finally apply the most important, hard-fought
and ugliest lemma of this section. Indeed: Lemma 2.15 bounds all of the terms inside the sum∑T2m+n

j=1 (. . .) by the same factor, yielding:

(2.21) ≤ T2m+n · C2m+n ·
m∏
i=1

k4i ·
m+n∏
i=1

r4i .
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2.3 Relatively intuitive and readable proof that EIIC(|Xr|2) ≤ C · r2

Lemma 2.16
There exists a constant C such that for all r:

EIIC(|Xr|2) ≤ C · EIIC(|Xr|)2.

Proof. By Theorem 1.9 it suffices to show that EIIC(|Xr|2) = O(r8). Note that

EIIC(|Xr|2) = EIIC


∑
x∈Qr

10↔x

2
 = EIIC

 ∑
x,y∈Qr

10↔x,0↔y

 =
∑

x,y∈Qr

PIIC(0↔ x, 0↔ y),

so by construction (1.5) of the IIC-measure:

EIIC(|Xr|2) = lim
p↑pc

1

χp

∑
x,y∈Qr

∑
α∈Zd

Pp(0↔ x, 0↔ y, 0↔ α).

For the four points 0, x, y and α to be connected there has to be a connecting tree, so we can
bound this from above by three sums, which are represented by the diagrams in Figure 7. That is:
EIIC(|Xr|2) ≤ Σ1 + Σ2 + Σ3, where

Σ1 = lim
p↑pc

1

χp

∑
x,y∈Qr

∑
z1,z2,α∈Zd

Pp (0↔ z1 ◦ z1 ↔ x ◦ z1 ↔ z2 ◦ z2 ↔ y ◦ z2 ↔ α)

Σ2 = lim
p↑pc

1

χp

∑
x,y∈Qr

∑
z1,z2,α∈Zd

Pp (0↔ z1 ◦ z1 ↔ y ◦ z1 ↔ z2 ◦ z2 ↔ x ◦ z2 ↔ α)

Σ3 = lim
p↑pc

1

χp

∑
x,y∈Qr

∑
z1,z2,α∈Zd

Pp (0↔ z1 ◦ z1 ↔ z2 ◦ z2 ↔ x ◦ z2 ↔ y ◦ z1 ↔ α) .

Figure 7: From left to right: the tree diagrams corresponding to the sums Σ1,Σ2 and Σ2.

The sums Σ1 and Σ2 are equal so we only have to estimate Σ1 and Σ3. The BK-inequality helps to
get rid of the limit and the factor χp:

Σ1 ≤ lim
p↑pc

∑
x,y∈Qr

∑
z1,z2∈Zd Pp(0↔ z1) · Pp(z1 ↔ x) · Pp(z1 ↔ z2) · Pp(z2 ↔ y) ·

∑
α∈Zd Pp(z2 ↔ α)∑

α∈Zd Pp(0↔ α)

=
∑

x,y∈Qr

∑
z1,z2∈Zd

τ(z1) · τ(x− z1) · τ(z2 − z1) · τ(y − z2).

Similarly:

Σ3 ≤
∑

x,y∈Qr

∑
z1,z2∈Zd

τ(z1) · τ(z2 − z1) · τ(x− z2) · τ(y − z2).
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We first proceed with the estimate on Σ1 by reordering the sum, thus essentially separating the
diagram corresponding to Σ1 in two smaller diagrams.

Σ1 ≤
∑
x∈Qr

∑
z1∈Zd

τ(z1) · τ(x− z1) ·A(z1)

where

A(z1) :=
∑
y∈Qr

∑
z2∈Zd

τ(z2 − z1) · τ(y − z2)

=
∑
y∈Qr

∑
z2∈Zd

τ(z2) · τ(y − z1 − z2)

=
∑
y∈Qr

(τ ∗ τ)(y − z1)

= O(r4).

The final equality follows from Lemma 2.4 (ii).

SinceA(z1) is bounded by a term that is independent of z1 it now suffices to bound
∑
x∈Qr

∑
z1∈Zd τ(z1)·

τ(x − z1). But this equals
∑
x∈Qr (τ ∗ τ)(x) which, again by Lemma 2.4(ii), is O(r4). Thus

Σ1 = O(r4 · r4) = O(r8), as desired.

Bounding Σ3 is slightly more complicated.

Σ3 ≤
∑
z2∈Zd

∑
x∈Qr

τ(x− z2)

 ·
∑
y∈Qr

τ(y − z2)

 · ∑
z1∈Zd

τ(z1) · τ(z2 − z1)


=

∑
z2∈Zd


∑
x∈Qr

τ(x− z2)

2

· (τ ∗ τ)(z2)

 .

We split this in a sum over z2 ∈ Q2r and a sum over the remaining points in Zd, denoted by z2 /∈ Q2r.
The estimate of the first sum needs Lemma 2.4(i) and (ii):

∑
z2∈Q2r


∑
x∈Qr

τ(x− z2)

2

· (τ ∗ τ)(z2)

 ≤ C
′
·

∑
x∈Qr

τ(x)

2

·
∑

z2∈Q2r

(τ ∗ τ)(z2)

= O((r2)2 · r4)

= O(r8).

For the other sum we use Lemma 2.4(i) and (iii):

∑
z2 /∈Q2r


∑
x∈Qr

τ(x− z2)

2

· (τ ∗ τ)(z2)

 ≤ C
′
·
∑

z2 /∈Q2r

(rd · τ(z2))2 · (τ ∗ τ)(z2)

≤ C
′′
· r2d ·

∑
z/∈Q2r

(
1

|z|d−2

)2

· 1

|z|d−4

= C
′′
· r2d ·

∑
z/∈Q2r

1

|z|3d−8

≤ C
′′′
· r2d · 1

r2d−8

= O(r8).

Thus Σ3 = O(r8). So, in conclusion: EIIC(|Xr|2) = O(Σ1 + Σ2 + Σ3) = O(r8 + r8 + r8) = O(r8).
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3 Using moment bounds

3.1 Using moment bounds, Markov’s inequality and Borel-Cantelli for
bounds on the (upper mass) dimension

Lemma 3.1
Let Z1, Z2, . . . be a sequence of random variables with values in R>0. Let g(k) be a positive sequence
such that limk→∞ g(k) =∞. Define rk := bkg(k)c.

(i) If there exist constants β,C > 0 such that at least one of the following two conditions holds

• E(Zr) ≤ C · rβ for all r > 0.

• P(Zr ≥ λ · rβ) ≤ C · 1λ for all λ, r > 0.

Then:

P
(

lim sup
k→∞

(
logrk(Zrk)

)
≤ β

)
= 1. (3.1)

(ii) If there exist constants α,C
′
> 0 such that at least one of the following two conditions holds

• E
(

1
Zr

)
≤ C ′ · r−α for all r > 0.

• P(Zr ≤ 1
λ · r

α) ≤ C ′ · 1λ for all λ, r > 0.

Then:

P
(

lim inf
k→∞

(
logrk(Zrk)

)
≥ α

)
= 1. (3.2)

Proof. We use the notation Yr := logr(Zr). First we prove (3.1). Apply Markov’s inequality (for
the first condition) or set λ = rε (for the second condition) to conclude that for any ε > 0 and r > 0:

P(Zr ≥ rβ+ε) ≤
E(Zr)

rβ+ε
≤ C · 1

rε
.

Now
Zr ≥ rβ+ε ⇐⇒ Yr ≥ logr(r

β+ε) = β + ε.

So for all ε > 0 and all r:

P(Yr − β ≥ ε) ≤ C ·
1

rε
.

Now we come to the more interesting part of the proof. Let µ > 0 and consider the sequence
εk = 1+µ

g(k) ↓ 0. Then

P (Yrk − β ≥ εk) ≤ C · r−εkk ≤ C · (kg(k))−εk = C · k
−g(k)(1+µ)

g(k) =
C

k1+µ
. (3.3)

So
∞∑
k=1

P (Yrk − β ≥ εk) ≤
∞∑
k=1

C

k1+µ
<∞.

This means we can apply Borel-Cantelli, which implies:

P (Yrk − β ≥ εk i.o. ) = 0

So with probability 1: Yrk − β ≤ εk for all k large enough. Id est:

P
(

lim sup
k→∞

(Yrk) ≤ β
)

= 1. (3.4)
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This finishes the proof of (3.1). For (3.2) almost the same argument works, because

P (Yr − α ≤ −ε) = P
(
Zr ≤ rα−ε

)
= P

(
1

Zr
≥ r−α+ε

)
≤

E
(

1
Zr

)
r−α+ε

≤ C
′
· 1

rε

holds for all ε > 0 and all r. By the arguments used in (3.3) - (3.4) we obtain

P (Yrk − α ≤ −εk i.o. ) = 0

so with probability 1: Yrk − α ≥ −εk for all k large enough. That is:

P
(

lim inf
k→∞

(Yrk) ≥ α
)

= 1.

Proof of Theorem 1.10

Proof. Choose some σ ∈ N>1. We use Lemma 3.1, taking g(k) = k
logσ(k)

, so that

rk = bkg(k)c = bσlogσ (kg(k))c = bσg(k)·logσ(k)c = σk.

By Lemma 3.1 we have a.s. convergence on this subsequence rk:

P(lim sup
k→∞

Yσk ≤ β) = 1 (3.5)

holds under the assumptions of (1.12), while under the assumptions of (1.13) we have:

P(lim inf
k→∞

Yσk ≥ α) = 1 (3.6)

As before, the notation Yr := logr(Zr) is employed. We proceed by using the a.s. convergence on
the subsequence rk = σk and the assumption that Z1 ≤ Z2 ≤ . . ., to show a.s convergence for all
radii r. For a given r choose k such that σk ≤ r ≤ σk+1. Then

Yr =
log(Zr)

log(r)
≤ log(Zσk+1)

log(σk)
=

log(Zσk+1)

log(σk+1)
· log(σk+1)

log(σk)
= Yσk+1 · k + 1

k
.

and

Yr =
log(Zr)

log(r)
≥ log(Zσk)

log(σk+1)
=

log(Zσk)

log(σk)
· log(σk)

log(σk+1)
= Yσk ·

k

k + 1
.

Therefore
lim sup
r→∞

Yr = lim sup
k→∞

Yσk (3.7)

and
lim inf
r→∞

Yr = lim inf
k→∞

Yσk . (3.8)

Finally: evaluating (3.7) in (3.5) yields (1.12), while evaluating (3.8) in (3.6) yields (1.13).

Corollary 3.2

PIIC(lim sup
r→∞

Yr ≤ 4) = 1

In other words, we PIIC-almost surely have:

dm(IIC) ≤ 4.
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3.2 Lower bounds on the mass dimension of the IIC, using conjectured
moment bounds

In this subsection we introduce a special function (see Lemma 3.3) that can provide us with a
lower bound on the mass dimension of a random set. After stating results for quite general random
variables, a conditional proof that PIIC(dm(IIC) = 4) is given in Corollary 3.10.

In section 2 it was derived that there is a constant C such that for all n:

EIIC(|Xr|n)

EIIC(|Xr|)n
≤ Cn · (2n)!

2n · n!
.

Recall that this upper bound was derived by bounding EIIC(|Xr|n) from above by (2n)!
2n·n! sums of

order EIIC(|Xr|), each of which corresponds to a tree diagram on n + 2 vertices. There is good
reason to believe that it is possible to derive a comparable lower bound, consisting of sums indexed

by the same (2n)!
2n·n! tree diagrams and each of which is also of order EIIC(|Xr|). This can be done

by the same techniques that were used to derive that EIIC(|Xr|) ≥ c · r4 holds: see [2]. To derive
it rigorously for general n would require a massive calculation, involving (infinitely) many bounds,
as the technique resembles an application of the principle of inclusion and exclusion. Although it
is doable we refrain from doing so because the next step, controling the constant C, is beyond our
possibilities at this moment. Therefore we formulate a conjecture. It is conjectured that for all
n ∈ N:

lim
r→∞

EIIC(|Xr|n)

EIIC(|Xr|)n
· 2n · n!

(2n)!
= 1. (3.9)

Inspired by this conjecture we investigate conditions under which logr(|Xr|) converges in probability
(Corollaries 3.7 and 3.8) or almost surely (Corollary 3.10) to 4. That is: the latter result provides
conditions under which the mass dimension of the IIC almost surely equals 4.

Of course it may be that the conjecture is false. In that case this section is not useless, because
most results are first stated for general random variables with values in R≥0, yielding conditions for
weak and almost sure lower bounds on Zr

E(Zr) and logr(Zr).

Motivation for introducing the function in Lemma 3.3.
Given the values of the moments of a random variable Z and the desire to calculate a ‘probabilistic

lower bound’ of the form P
(

Z
E(Z) ≤

1
λ

)
≤ (. . .) for some positive λ, it is tempting to try to calculate

E
(

1
λ· Z

E(Z)

)
or E

(
exp

(
−λ · Z

E(Z)

))
, because 1

x and e−x are postive functions on R>0 that are large

when x is small and converge to 0 as x→∞. These properties typically cause that P
(

Z
E(Z) ≤

1
λ

)
is

small whenever E
(

1
λ· Z

E(Z)

)
and E

(
exp

(
−λ · Z

E(Z)

))
are small. For simplicity: let’s temporarily only

consider the case λ = 1. By writing E
(

E(Z)
Z

)
= E

(
1

1+( Z
E(Z)
−1)

)
= E

(∑∞
n=0(−1)n ·

(
Z

E(Z) − 1
)n)

,

we already encounter the first problem; the power series expansion of 1
1+x doesn’t converge if

|x| > 1. Trying again with the entire function e−x and naively bringing the expectation inside

the sum we obtain E
(

exp
(
− Z

E(Z)

))
= E

(∑∞
n=0

(− Z
E(Z) )

n

n!

)
=
∑∞
n=0

(−1)n
n!

E(Zn)
E(Z)n . But now there

is another possible problem; what if - approximately as in conjecture (3.9) - the moments satisfy
E(Zn)
E(Z)n = (2n)!

2n·n! . Then
∑∞
n=0

(−1)n
n!

E(Zn)
E(Z)n =

∑∞
n=0(−1/2)n ·

(
2n
n

)
doesn’t converge; the moments just

grow too fast!

To overcome these problems we need an alternative function g(x) which satisfies the following prop-
erties:
- It has a power series expansion that converges everywhere on R≥0.
- Its power series expansion converges fast enough.
- It is positive and decreasing on R≥0 and goes to 0 as x→∞.
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The following lemma provides such a function.

Lemma 3.3

g(x) :=

∞∑
n=0

(−1)n

(2n+ 3)!
xn =

1− sin(
√
x)√
x

x

is positive and decreasing on R≥0 and limx→∞ g(x) = 0.

Proof. Since x − sin(x) ≥ 0 on R≥0, it follows that g(x2) = x−sin(x)
x3 is positive on R≥0. Because

d
dxg(x2) = d

dx
x−sin(x)

x3 = x3·(1−cos(x))−(x−sin(x))·3x2

x6 = 3 sin(x)−x cos(x)−2x
x4 ≤ 0, g(x) is decreasing on

R≥0. The series expansion follows from the Taylor series at 0 for the entire function sin(x). Indeed:

g(x2) = x−sin(x)
x3 =

x−
∑∞
n=0

(−1)n

(2n+1)!
x2n+1

x3 = −
∑∞
n=1

(−1)n
(2n+1)!

x2n+1

x3 =
∑∞
n=0

(−1)n
(2n+3)!x

2n.

Among other things, the next lemma will be used to find conditional lower bounds on the mass
dimension of the IIC. It will serve the role that the Markov inequality had in Lemma 3.1, where the
almost sure upper bound on the mass dimension of the IIC was derived.

Lemma 3.4
Let Z be a random variable with values in R≥0. Define η(n) := E(Zn)

E(Z)n . If

lim
λ→∞

∞∑
n=0

(−λ)n

(2n+ 3)!
η(n) = 0

then it holds for all λ > 0 that

P
(

Z

E(Z)
≤ 1

λ

)
≤
∑∞
n=0

(−λ)n
(2n+3)!η(n)

1− sin(1)

and in particular

lim
λ→∞

P
(

Z

E(Z)
≤ 1

λ

)
= 0.

Proof.

E
(
g

(
λ · Z

E(Z)

))
= E

( ∞∑
n=0

(−λ)n

(2n+ 3)!

(
Z

E(Z)

)n)
=

∞∑
n=0

(−λ)n

(2n+ 3)!
η(n)

where the second equality holds by Dominated Convergence, because the RHS is bounded (for λ
large enough).

Because g is strictly decreasing we have for all λ:

P
(

Z

E(Z)
≤ ε
)

= P
(
g

(
λ · Z

E(Z)

)
≥ g (λ · ε)

)
.

Since g is a positive function we can apply Markov’s inequality to this equality, yielding:

P
(

Z

E(Z)
≤ ε
)
≤

E
(
g
(
λ · Z

E(Z)

))
g(λ · ε)

.

So for all λ > 0:

P
(

Z

E(Z)
≤ 1

λ

)
≤

E
(
g
(
λ · Z

E(Z)

))
g(1)

=

∑∞
n=0

(−λ)n
(2n+3)!η(n)

1− sin(1)

and by assumption the RHS converges to 0 as λ→∞.
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Lemma 3.5
Let Z1, Z2, . . . be a sequence of random variables with values in R≥0. Let h(r), η(n), δ(r) be real
positive functions such that limr→∞ h(r) = ∞ and γ(x) :=

∑∞
n=0

xn

(2n+3)!η(n) converges for all

x ∈ R. If

1− δ(r) ≤ E(Znr )

E(Zr)n
· 1

η(n)
≤ 1 + δ(r)

holds for all r, n ∈ N, and:
lim
r→∞

γ(−h(r)) + δ(r) · γ(h(r)) = 0,

then:

lim
r→∞

P
(

Zr
E(Zr)

≤ 1

h(r)

)
= 0 (3.10)

and if additionally there exist constants c, β ≥ 0 such that E(Zr) ≥ c · rβ for all r, then:

lim
r→∞

P

logr(Zr) ≤ β −
log
(
h(r)
c

)
log(r)

 = 0. (3.11)

Proof.

∞∑
n=0

(−h(r))n

(2n+ 3)!

E(Znr )

E(Zr)n
=

∞∑
n=0

(−h(r))2n

(4n+ 3)!

E(Z2n
r )

E(Zr)2n
− (−h(r))2n+1

(4n+ 5)!

E(Z2n+1
r )

E(Zr)2n+1

≤
∞∑
n=0

(−h(r))2n

(4n+ 3)!
· η(2n)(1 + δ(r))− (−h(r))2n+1

(4n+ 5)!
· η(2n+ 1)(1− δ(r))

=

∞∑
n=0

(−h(r))n

(2n+ 3)!
· η(n) + δ(r) ·

∞∑
n=0

(h(r))n

(2n+ 3)!
· η(n)

= γ(−h(r)) + δ(r) · γ(h(r)).

Therefore Lemma 3.4 can be applied to conclude that:

lim
r→∞

P
(

Zr
E(Zr)

≤ 1

h(r)

)
≤ lim
r→∞

∑∞
n=0

(−h(r))n
(2n+3)!

E(Znr )
E(Zr)n

1− sin(1)
≤ lim
r→∞

γ(−h(r)) + δ(r) · γ(h(r)) = 0. (3.12)

As to the second part of the lemma:

Zr
E(Zr)

≤ 1

h(r)
⇔ logr(Zr) ≤ logr (E(Zr))− logr(h(r))

⇐ logr(Zr) ≤ logr
(
c · rβ

)
− logr(h(r))

⇔ logr(Zr) ≤ β − logr(h(r)) + logr(c)

so

lim
r→∞

P
(

logr(Zr) ≤ β −
log(h(r))

log(r)
+

log(c)

log(r)

)
≤ lim
r→∞

P
(

Zr
E(Zr)

≤ 1

h(r)

)
= 0.

In case the ratios of moments
E(Znr )
E(Zr)n don’t depend on r, the result simplifies considerably.

Corollary 3.6
Let Z1, Z2, . . . be a sequence of random variables with values in R≥0. Let h(r) be a positive real

function such that limr→∞ h(r) =∞ and suppose that η(n) :=
E(Znr )
E(Zr)n ( independent of r!) satisfies:

lim
λ→∞

∞∑
n=0

(−λ)n

(2n+ 3)!
η(n) = 0.
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Then

lim
r→∞

P
(

Zr
E(Zr)

≤ 1

h(r)

)
= 0 (3.13)

and if additionally there exist constants c, β ≥ 0 such that E(Zr) ≥ c · rβ for all r, then:

lim
r→∞

P
(

logr(Zr) ≤ β −
log(h(r))

log(r)

)
= 0. (3.14)

Proof. Apply Lemma 3.5 with zero error function δ(r) = 0 to obtain (3.13). To obtain (3.14): apply
Lemma 3.5 again, but now with c · h(r) instead of h(r), in order to get rid of the annoying factor c
that was necessary in (3.11).

As a side step: it is interesting to consider E0 :=
{
η : N→ R>0 s.t. limλ→∞

∑∞
n=0

(−λ)n
(2n+3)!η(n) = 0

}
,

which is the set of functions that satisfy the assumption of the previous corollary. First note that E0

forms a vector space. Besides linear transformations, are there other transformations under which
E0 is invariant? Yes: for all constants c ∈ R we have the equivalence:

(η(n)) ∈ E0 ⇔ (η(n) · cn) ∈ E0.

Furthermore, it can be verified that E0 contains many natural functions, for example:(
(2n)!

2n · n!

)
, (1) , (n!) ,

(
1

n+ 1

)
,

(
1

n+ 2

)
∈ E0.

In the next corollary we no longer consider general random variables Zr. The focus is shifted to the
IIC. The results on the IIC in this section are conditional; its assumptions are believed to hold true,
but may be incorrect.

Corollary 3.7
Assume there exist positive real functions δ(r) and h(r), such that limr→∞ h(r) =∞ and

1− δ(r) ≤ EIIC(|Xr|n)

EIIC(|Xr|)n
· 2n · n!

(2n)!
≤ 1 + δ(r)

holds for all r, n ∈ N and

lim
r→∞

δ(r) · e
h(r)/2

h(r)3
= 0. (3.15)

Then

lim
r→∞

PIIC
(

|Xr|
EIIC(|Xr|)

≤ 1

h(r)

)
= 0

and in particular:

lim
r→∞

PIIC

(
logr(|Xr|) ≤ 4−

log(h(r)c )

log(r)

)
= 0,

where c is a constant such that c · r4 ≤ EIIC(|Xr|) holds for all r.

Proof. Our goal is to apply Lemma 3.5 with the choices Zr = |Xr|, β = 4 and η(n) = (2n)!
2n·n! . By

definition:

γ(x) :=

∞∑
n=0

(x)n

(2n+ 3)!
· (2n)!

2n · n!
=

∞∑
n=0

(x/2)n · (2n)!

(2n+ 3)! · n!
,
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so

lim
r→∞

γ(−h(r)) = lim
r→∞

∞∑
n=0

(−r)n · (2n)!

(2n+ 3)! · n!

= lim
r→∞

[√
π

4
· erf(

√
r)√

r
·
(

1 +
1

2r

)
+
e−r − 2

4r

]
= 0. (3.16)

Here erf(x) := 2√
π

∫ x
0
e−t

2

dt is the error function encountered in integrating the normal distribution.

We now derive an asymptotic result on γ(x), in order to simplify our analysis. It holds that

γ(x) =

∞∑
n=0

(x/2)n

n!
· 1

(2n+ 3)(2n+ 2)(2n+ 1)
,

while

ex/2

x3
=

∞∑
n=0

(x/2)n

n!
· 1

x3

=

(
1

x3
+

1

2x2
+

1

8x

)
+

1

8

∞∑
n=0

(x/2)n+3

(n+ 3)!
·
(

2

x

)3

=

(
1

x3
+

1

2x2
+

1

8x

)
+

∞∑
n=0

(x/2)n

n!
· 1

(2n+ 6)(2n+ 4)(2n+ 2)
.

Therefore:

lim
x→∞

γ(x)(
ex/2

x3

) = 1. (3.17)

For completeness we also give the converse statement, for x → −∞, which can be derived with
similar standard series manipulations; we state it here without proof:

lim
x→∞

γ(−x)( √
π

2
√
x

) = 1. (3.18)

From (3.16), (3.17) and assumption (3.15) it follows that

lim
r→∞

γ(−h(r)) + δ(r) · γ(h(r)) < 0 + lim
r→∞

δ(r) ·
(
eh(r)/2

h(r)3

)
= 0.

Therefore we are allowed to apply Lemma 3.5, which immediately yields the desired result.

One of the many possible choices for the functions δ(r) and h(r) leads to the following corollary.

Corollary 3.8
Assume:

1− ln(r)2

r1/2
≤ EIIC(|Xr|n)

EIIC(|Xr|)n
· 2n · n!

(2n)!
≤ 1 +

ln(r)2

r1/2

holds for all r, n ∈ N. Then

lim
r→∞

PIIC
(

|Xr|
EIIC(|Xr|)

≤ 1

ln(r)

)
= 0

and:

lim
r→∞

PIIC

(
logr(|Xr|) ≤ 4−

log( ln(r)
c )

log(r)

)
= 0,

where c is a constant such that c · r4 ≤ EIIC(|Xr|) holds for all r.
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Proof. Take h(r) = ln(r) and δ(r) = ln(r)2

r1/2
in Corollary 3.7. and verify condition (3.15).

In this subsection we thusfar only derived conditional results on convergence in probability. But our
main goal is to prove (under some assumptions) that logr(|Xr|) converges almost surely to 4. This

comes at a price: the necessary assumptions on EIIC(|Xr|n)
EIIC(|Xr|)n become much stronger. This is mainly

due to relatively minor simplifications that are necessary to perform a general analysis; if the exact

values of EIIC(|Xr|n)
EIIC(|Xr|)n where known, it would probably be possible to derive almost sure convergence

of logr(|Xr|) to 4, even if not all assumptions are met in the conditional results that we derive below.
First we present a result for general random variables Zr.

Lemma 3.9
Let Z1, Z2, . . . be a sequence of random variables with values in R≥0 such that Z1 ≤ Z2 ≤ . . . and
such that c · rβ ≤ E(Zr) holds for some constant c and all r ∈ N. Suppose η(n) : N → R≥0 is a
function such that γ(x) :=

∑∞
n=0

xn

(2n+3)!η(n) converges for all x ∈ R. Let δ(r) : N → R≥0 be a

function. If

1− δ(r) ≤ E(Znr )

E(Zr)n
· 1

η(n)
≤ 1 + δ(r)

holds for all r, n ∈ N and if for some σ ∈ N, µ > 0 it holds that:

∞∑
k=1

γ(−k1+µ) + δ(σk) · γ(k1+µ) <∞ (3.19)

then
P(lim inf

r→∞
(logr(Zr)) ≥ β) = 1.

Proof. Let ε > 0. As in (3.12) in Lemma 3.5 it can be derived, with the choice h(r) := rε, that

P (logr(Zr) ≤ β − ε− logr(c)) = P
(

Zr
c · rβ

≤ 1

rε

)
≤ P

(
Zr

E(Zr)
≤ 1

rε

)
≤ γ(−rε) + δ(r) · γ(rε).

We now choose subsequences rk := σk and εk := 1+µ
k·logk(σ)

, indexed by k ∈ N. It follows that

rεkk = σ
1+µ

logk(σ) = k1+µ, so:

∞∑
k=1

P
(
logrk(Zrk) ≤ β − εk − logrk(c)

)
≤

∞∑
k=1

γ(−k1+µ) + δ(σk) · γ(k1+µ) <∞.

By Borel-Cantelli this implies that:

P
(
logrk(Zrk) ≤ β − εk − logrk(c) for infinitely many k

)
= 0.

Note that limk→∞
(
εk + logrk(c)

)
= 0. Therefore:

P
(

lim inf
k→∞

(
logrk (Zrk)

)
≥ β

)
= 1.

Finally we want to extend this result to general r ∈ N. Here the assumption that Z1 ≤ Z2 ≤ . . .
becomes necessary. For a given r choose k such that σk ≤ r ≤ σk+1. Then

logr(Zr) =
log(Zr)

log(r)
≥ log(Zσk)

log(σk+1)
=

log(Zσk)

log(σk)
· log(σk)

log(σk+1)
= logσk(Zσk) · k

k + 1
.
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Taking the lim inf yields:

lim inf
r→∞

(logr(Zr)) ≥ lim inf
k→∞

(
logσk(Zσk) · k

k + 1

)
= lim inf

k→∞
(logσk(Zσk))

and in conclusion:

P
(

lim inf
r→∞

(logr(Zr)) ≥ β
)
≥ P

(
lim inf
k→∞

(logσk (Zσk)) ≥ β
)

= 1.

Corollary 3.10
Suppose there exists a function δ(r) : N→ R≥0 such that

1− δ(r) ≤ EIIC(|Xr|n)

EIIC(|Xr|)n
· 2n · n!

(2n)!
≤ 1 + δ(r)

holds for all r, n ∈ N and
∞∑
k=1

δ(σk) · e
(k2+2µ)/2

k6(1+µ)
<∞

is true for some σ ∈ N, µ > 0. Then

PIIC (dm(IIC) = 4) = 1.

Proof. Lemma 3.9 will be applied with Zr = |Xr| and η(n) = (2n)!
2n·n! . Note that just as in Corollary

3.7 we have γ(x) :=
∑∞
n=0(x/2)n · (2n)!

(2n+3)!·n! , so we can use the asymptotic results in (3.17) and

(3.18) to bound γ(−k2+2µ) + δ(σk) · γ(k2+2µ) from above by:

2 ·

(√
π

4 · k2+2µ
+ δ(σk) · e

k2+2µ/2

(k2+2µ)
3

)
:= C1 · k−(2+2µ)/2 + C2 · δ(σk) · e

k2+2µ/2

k3(2+2µ)
.

for all k large enough. This weird expression has been fine-tuned so as to make its summation finite;
there exists a K ∈ N such that:

∞∑
k=K

γ(−k1+(1+2µ)) + δ(σk) · γ(k1+(1+2µ)) ≤ C1 ·
∞∑
k=K

1

k1+µ
+ C2 ·

∞∑
k=K

δ(σk) · e
k(2+2µ)/2

k6(1+µ)

< ∞.

Thus we have verified that condition (3.19) is satisfied, with µ∗ := 1 + 2µ > 0. From Lemma 3.9 we
may now conclude that:

PIIC(lim inf
r→∞

(logr(|Xr|)) ≥ 4) = 1.

In other words: the lower mass dimension of the IIC almost surely is ≥ 4. Finally combine this
with the analogous statement on the upper mass dimension (Corollary 1.11) to obtain the desired
statement: PIIC (dm(IIC) = 4) = 1.
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4 Positive probability lemma

In this section we prove Theorem 1.14 and we investigate an ‘almost independence’ condition under
which it would follow from Theorem 1.14 that PIIC

(
dm(IIC) ≥ 4

)
= 1.

4.1 For all r it holds that |Xr| is of order r4 with probability bounded
away from 0

Lemma 4.1
For all k ∈ R>1, λ ∈ R≥1:

PIIC
(
|Xr| ≥

EIIC(|Xr|)
λ

)
≥
(

1− 1

λ

) k
k−1

·
(
EIIC(|Xr|)k

EIIC(|Xr|k)

) 1
k−1

.

Proof. Write s := EIIC(|Xr|)
λ and define Z≥s := |Xr| · 1|Xr|≥s. From Hölder’s inequality (with

1
p + 1

q = 1) it follows that

EIIC(Z≥s) ≤ EIIC(Zp≥s)
1/p · EIIC(1q|Xr|≥s)

1/q.

Therefore:

PIIC (|Xr| ≥ s) ≥
EIIC(Z≥s)

q

EIIC(Zp≥s)
q/p

=

(
EIIC(Z≥s)

p

EIIC(Zp≥s)

) 1
p−1

. (4.1)

By the definition of Z≥s we have

EIIC(Zp≥s) ≤ EIIC(|Xr|p)

and for all λ > 0:

EIIC(Z≥s)

EIIC(|Xr|)
= 1−

EIIC(|Xr| · 1|Xr|<s)
EIIC(|Xr|)

≥ 1− s

EIIC(|Xr|)
= 1− 1

λ
.

Evaluating these two estimates in (4.1) (and writing k := p > 1) yields the lemma.

Proof of Theorem 1.14

Proof. Evaluate Lemma 2.16 in Lemma 4.1 for the case k = 2.

Unfortunately we cannot conclude from the previous theorem that the mass dimension of the IIC
equals 4 with positive probability, as we explained at the end of subsection 1.9.

4.2 Adapted Borel 0-1 law for almost independent events

Fix a λ > 1 and define the events Ar :=
{
|Xr| ≥ EIIC(|Xr|)

λ

}
. By Theorem 1.14 there exists a C > 0

such that PIIC(Ar) ≥ C holds for all r. Therefore one would expect that

PIIC
(
dm(IIC) ≥ 4

)
= PIIC

(
lim sup
r→∞

Ar

)
:= PIIC (Ar for infinitely many r) = 1, (4.2)

because intuitively it seems inevitable that there exists an increasing subsequence (rk) in N such
that the events Ar1 , Ar2 , . . . are ‘independent enough’, although we were not able to prove such an
independence result yet. In the following we derive a theorem and corollary that make clear what
kind of ‘independent enough’ would be sufficient to affirm claim (4.2).
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Theorem 4.2 (Adapted ‘approximate independence’ Borel 0-1 law)
Let (Ω,A,P) be a probability space. Let (Ai)i≥1 be a sequence of events in A. Suppose there exists
a C > 0 such that P(Ai) ≥ C for all i sufficiently large. Suppose furthermore that there exists a
1 ≤ β < 1

1−C such that for all i:

P
(
∩i≤k≤i+lAk

)∏i+l
k=i P(Ak)

< βl

holds for all l sufficiently large, then

P(lim sup
i

Ai) = 1.

Proof. We want to show that P(lim supiAi) = 1, or, equivalently, that

P(lim sup
i

Ai) = 0.

Note that
lim sup

i
Ai = ∩i≥0 ∪j≥i Aj = ∪i≥0 ∩j≥i Aj = ∪i≥0Bi.

where
Bi := ∩j≥iAj = Ai ∩Bi+1

is an increasing sequence of events. As a consequence

P
(

lim sup
i

Ai

)
= lim
i→∞

P(Bi).

It therefore suffices to show that for all fixed i: P(Bi) = 0. We will do so using the events

Bi,l := ∩i≤k≤i+lAk = Ai+l ∩Bi,l−1

that satisfy the following bound. For all l sufficiently large;

P(Bi,l) =

i+l∏
k=i

P
(
Ak
)
·
P
(
∩i≤k≤i+lAk

)∏i+l
k=i P(Ak)

≤
i+l∏
k=i

(1− P(Ak)) ·
P
(
∩i≤k≤i+lAk

)∏i+l
k=i P(Ak)

≤ (1− C)l · βl

Because Bi,l is decreasing in l we conclude that

P(Bi) = lim
l→∞

P(Bi,l) ≤ lim
l→∞

((1− C)β)l = 0.

Corollary 4.3

Fix a λ > 1. Let C > 0 be such that PIIC(|Xr| ≥ EIIC(|Xr|)
λ ) ≥ C holds for all r (such a C exists by

Theorem 1.14). Suppose there exist a constant β satisfying 1 ≤ β ≤ 1
1−C and a strictly increasing

sequence (rk) in N such that for all i:

PIIC
(
∩i≤k≤i+l

(
|Xrk | <

EIIC(|Xrk |)
λ

))
∏i+l
k=i PIIC

(
|Xrk | <

EIIC(|Xrk |)
λ

) < βl

holds for all l sufficiently large, then

PIIC(dm(IIC) = 4) = 1.
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Proof. Because
{
|Xrk | <

EIIC(|Xrk |)
λ

}
is the complement of the event Ak :=

{
|Xrk | ≥

EIIC(|Xrk |)
λ

}
we may apply Theorem 4.2 to conclude that PIIC (lim supiAi) = 1. From Theorem 1.9 we know
there is a c > 0 such that EIIC(|Xr|) ≥ c · r4 for all r, so

PIIC
(
dm(IIC) ≥ 4

)
= PIIC

(
lim sup

r
(logr |Xr|) ≥ 4

)
≥ PIIC

(
lim sup

i

(
logri |Xri |

)
≥ 4

)
≥ PIIC

(
logri |Xri | ≥ 4 + logri

( c
λ

)
for infinitely many i

)
= PIIC (Ai for infinitely many i)

= PIIC
(

lim sup
i

Ai

)
= 1.

This, together with the upper bound in (1.16), finishes the proof.
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5 Discrete Hausdorff dimension

5.1 Definition Hausdorff dimensions

In the year 1919 Hausdorff introduced the notion of what later became known as Hausdorff dimension
[24]. It was a generalization of an idea which had already been introduced in 1914 by Carathéodory,
but Hausdorff realised that Carathéodory’s consruction made sense and was useful, in particular
for defining fractional dimensions [25]. Almost 100 years later, we are living in an age where
applications in science take place on smaller and smaller scales. Materials can be manipulated on
an atomic level, yielding unexpected properties on a large scale. The study of discrete systems,
rather than continuous systems, gains importance. In this light, though only remotely related, it
is of interest to investigate in what ways the concept of Hausdorff dimension can be defined in a
discrete context.

In 1989 Barlow and Taylor [26] defined such a discrete version of Hausdorff dimension for sets in
Zd. Among other things they show that some simple sets (like k−dimensional hyperplanes) have
the expected discrete Hausdorff dimension (k). They calculate the Hausdorff dimension of a set
A by using the mass dimension of A as upper bound and a discrete version of the so called mass
method to find the (same) lower bound. In short, the mass method depends on choosing an optimal
covering of A by cubes, along with an assumption on all cubes, say Assumption X. Unfortunately, in
our probabilistic setting this seems useless; we can show that Assumption X holds with probability
converging to 1 when we choose a cube uniformly at random, but what we actually need is that
Assumption X holds with probability converging to 1 for a cube chosen uniformly among the cubes
in the optimal covering. We cannot control this optimal covering.

In this section we present an alternative discrete Hausdorff dimension on Zd. Compared to the
definition of Barlow and Taylor it is slightly more flexible. In construction and notation it highly
resembles the usual ‘continuous’ Hausdorff dimension, but it is fundamentally different in that the
discrete Hausdorff dimension of a (countable!) subset of Zd may be nonzero. A particular advantage
of the notational similarities, is that it’s relatively intuitive to generalize the energy method [14] for
continuous Hausdorff dimension to an energy method for discrete Hausdorff dimension (see Lemma
5.6 and Theorem 5.7 below). Just as the mass method, the energy method provides a lower bound on
the Hausdorff dimension, but in a probabilistic setting it is much more powerful because it suffices to
calculate a certain expectation value. For example, in the continuous case this method is employed
to show that Brownian motion almost surely has Hausdorff dimension 2 [14].

Since this is primarily a thesis on a percolation subject and not on Hausdorff dimension, we will not
elaborate on general properties, differences between various definitions, consistency issues, Hausdorff
measures, etcetera. Our main goal is to calculate the discrete Hausdorff dimension of a certain
random subset, the IIC, of which the discrete dimension will be shown to be equal to 4 a.s. under
the assumption on the value of EIIC(|Xr|−4) stated in Corollary (5.13). Unfortunately, due to the
fact that even calculating expectation values is hard when dealing with the IIC, this big assumption
remains necessary.

The majority of this section involves results that hold for a rather general probability space with
probability measure P. Only at the end, where the Hausdorff dimension of the IIC is calculated, it
is necessary to use PIIC .

Before introducing the discrete Hausdorff dimension we recall the definition of the usual continuous
Hausdorff dimension, for comparison. Let (X,m) be a metric space. For any subset U ⊂ X, let
diam(U) := supx,y∈U {m(x, y)} denote its diameter. For a subset A ⊂ X and any real α, ε > 0,
define

Hαε (A) := inf

{ ∞∑
i=1

diam(Ui)
α

∣∣∣∣∣ A ⊂
∞⋃
i=1

Ui such that diam(Ui) ≤ ε

}
where the infimum is over all countable covers ofA by open sets Ui ⊂ X. The Hausdorff dimension
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of A is then defined by

dH(A) = sup

{
α | lim sup

ε↓0
Hαε (A) =∞

}
.

In the discrete context, the role of the covering sets Ui will be taken by the following cubes.

Definition 5.1
For a vertex x = (x1, . . . , xd) ∈ Zd and n ≥ 1 we set

T (x, n) =
{
y ∈ Zd | xi ≤ yi < xi + n

}
. (5.1)

We call T (x, n) the cube with base x and diameter n. If T is a cube we denote by s(T ) the diameter
of the cube, with respect to the metric induced by the supremum norm.

For comparison:

Definition 5.2
The Barlow and Taylor discrete Hausdorff dimension of a subset A ⊂ Zd is defined as

dH(A) := sup {α | mα(A) =∞}

where

mα(A) =

∞∑
n=1

min

 m∑
i=1

(
s(Tj)

2n

)α ∣∣∣∣∣∣ A ∩ Sn ⊂
m⋃
j=1

Tj


and Sn := Q2n−1 \Q2n−2 . The minimum is taken over all covers of A ∪ Sn by any set of cubes Tj
that are of the form (5.1).

Now we finally introduce the discrete Hausdorff dimension that we will use in this section.

Definition 5.3
Let ε : N≥1 → R>0 be a function such that limr→∞ ε(r) = 0 and ε(r) ≥ 1

r for all r. The discrete
Hausdorff dimension with respect to ε(r) of a subset A ⊂ Zd is defined as

dH,ε(r)(A) := sup

{
α

∣∣∣∣ lim sup
r→∞

Hαε(r)(A) =∞
}
,

where

Hαε(r)(A) := min

∑
j

(
s(Tj)

r

)α ∣∣∣∣∣∣ A ∩Qr ⊂
⋃
j

Tj such that
s(Tj)

r
≤ ε(r)

 .

Here the minimum is taken over all covers of A ∩ Qr by any set of pairwise disjoint cubes Tj that
are of the form (5.1).

Note that in the definition of Hαε(r) it suffices to take the minimum, rather than the infimum. Indeed:

A ∩Qr can be covered by a finite set of cubes B1, . . . , Bm for which Σ :=
∑
j

(
s(Bj)
r

)α
. There are

only finitely many cubes Ti such that s(Ti)
r

α
≤ Σ, so there are also finitely many covers of A ∩ Qr

by cubes T1, T2, . . . such that
∑
j

(
s(Tj)
r

)α
≤ Σ.

In the remainder of this section: whenever a function is denoted by ε(r), it is assumed that it satisfies
the requirements stated in Definition 5.3.

Lemma 5.4
(The discrete Hausdorff dimension is smaller than or equal to the upper mass dimension)
Let A ⊂ Zd. Then for all ε(r):

dH,ε(r)(A) ≤ dm(A).
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Proof. Let α > β > dm(A). Recall the definition of upper mass dimension to see that |A∩Qr| ≤ rβ
for all r large enough. Now cover A∩Qr by |A∩Qr| cubes Tj with diameter s(Tj) = 1. These cubes

all satisfy the requirement
s(Tj)
r = 1

r ≤ ε(r) in Definition 5.3. It follows that Hαε(r) ≤
∑
j

(
s(Tj)
r

)α
=

|A∩Qr|
rα ≤ rβ

rα for all r large enough. So lim supr→∞Hαε(r) ≤ lim supr→∞ rβ−α = 0. So dH,ε(r)(A) ≤ α.

Now take the limit α ↓ dm(A).

So by Corollary 1.11 we know in particular that the discrete Hausdorff dimension of the IIC is
almost surely ≤ 4.

5.2 Discrete energy method

In this subsection we derive a discrete variant of the energy method, which in the next subsection
will provide a lower bound on dH,ε(r)(A).

Definition 5.5
A mass distribution µ on a metric space E is a measure on E such that 0 < µ(E) <∞.

Lemma 5.6
(Energy method for discrete Hausdorff dimension)
Let α ≥ 0, let A ⊂ Zd and let µ be a mass distribution on the metric space (A ∩Qr,m), where m
denotes the metric induced by the supremum norm. Then for all r ∈ N≥1.

Hαε(r)(A) ≥ µ(A ∩Qr)2

rα ·
∫∫

m(x,y)
r <ε(r)

dµ(x)dµ(y)
max(m(x,y),1)α

.

Proof. Suppose T1, T2, . . . is a pairwise disjoint covering of A ∩ Qr by cubes of diameter < ε(r)r,
such that

∑
j sm(Tj)

α is minimal.Then∫∫
m(x,y)
r <ε(r)

rαdµ(x)dµ(y)

max(m(x, y), 1)α
≥
∑
j

∫∫
Tj×Tj

dµ(x)dµ(y)

max(m(x,y)
r , 1r )α

≥
∑
j

µ(Tj)
2(

s(Tj)
r

)α
Now we bound µ(A ∩Qr):

µ(A ∩Qr) ≤
∑
j

µ(Tj) =
∑
j

(
s(Tj)

r

)α/2
µ(Tj)(
s(Tj)
r

)α/2 .

Applying Cauchy-Schwarz and then using that
∑
j

(
s(Tj)
r

)α
is minimal, yields:

µ(A ∩Qr)2 ≤
∑
j

(
s(Tj)

r

)α
·
∑
j

µ(Tj)
2(

s(Tj)
r

)α ≤ Hαε(r)(A) · rα
∫∫

m(x,y)<ε(r)

dµ(x)dµ(y)

max(m(x, y), 1)α
.

A notable difference with the original energy method, for the usual ‘continuous’ Hausdorff dimension,
is that we used the factor max(m(x, y), 1) rather than m(x, y). We do this to prevent division by
zero which would otherwise occur in the denominator of the right hand side for natural measures
on Zd like the counting measure. This would render the statement trivial and useless.

Usually the energy method is formulated for general metrics m. Since we will only use the ‘Man-
hattan’ metric induced by the supremum norm and to prevent unnecessary complicated notation
we have refrained from describing the discrete energy method in such generality.
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The next step is to apply Lemma 5.6 with the counting measure. Let µ∗ denote the counting
measure on Zd. Also, from now on we write m(x, y) = |x− y| for all x, y ∈ Zd. It follows that:

Hαε(r)(A) ≥ µ∗(A ∩Qr)2

rα
∫∫

m(x,y)
r <ε(r)

dµ∗(x)dµ∗(y)
max(m(x,y),1)α

=
|A ∩Qr|2∑

x,y∈A∩Qr
|x−y|<ε(r)·r

(
r

max(|x−y|,1)

)α . (5.2)

5.3 Almost sure lower bounds for the discrete Hausdorff dimension of a
random set A ⊂ Zd

In the following Lemmas we derive results for random sets. In the context of the IIC, relevant
examples of random sets are the cluster of the origin A = IIC and its backbone A = Bb∗.

Theorem 5.7
Let A ⊂ Zd be a random set. If for all α < β:

lim
r→∞

E


∑

x,y∈A∩Qr
1≤|x−y|<ε(r)·r

(
r
|x−y|

)α
|A ∩Qr|2

 = 0

then
P(dH,ε(r)(A) ≥ β) = 1.

Proof. Let α < β. Equation (5.2) implies that

lim
r→∞

E
((
Hαε(r)(A)

)−1)
= 0.

This implies by Fatou’s Lemma that

E
(

lim inf
r

(
Hαε(r)(A)

)−1)
= 0

so

P
(

lim sup
r
Hαε(r)(A) =∞

)
= P

(
lim inf

r

(
Hαε(r)(A)

)−1
= 0

)
= 1

so
P(dH,ε(r)(A) ≥ α) = 1.

The statement of the previous lemma can be made a little more symmetric by writing |A ∩Qr|2 =∑
x,y∈A∩Qr (1). We can disect the statement even more by defining

BA(r, k) := E


∑
x,y∈A∩Qr
|x−y|=k

(1)∑
x,y∈A∩Qr (1)

 ,

because

E


∑

x,y∈A∩Qr
1≤|x−y|<ε(r)·r

(
r
|x−y|

)α
∑
x,y∈A∩Qr (1)

 =

bε(r)rc∑
k=1

B(k) ·
( r
k

)α
. (5.3)
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Lemma 5.8
Let A ⊂ Zd be a random set. Let δ(r) : N>0 → R≥0 be any function and let β ∈ R. If there is a

constant C such that for all k, r it holds that BA(r, k) ≤ C · k
β−1

rβ
· δ(r), then

P
(
dH,ε(r)(A) ≥ sup

α

{
lim
r→∞

δ(r) · ε(r)β−α = 0
})

= 1.

Proof. Let α < supα
{

limr→∞ δ(r) · ε(r)β−α = 0
}

. Then:

lim
r→∞

bεrc∑
k=1

BA(r, k)
( r
k

)α
≤ C · lim

r→∞

δ(r)

rβ−α

bε(r)rc∑
k=1

kβ−α−1

≤ C
′
· lim
r→∞

δ(r)

rβ−α
(ε(r)r)β−α

= 0.

In the second inequality we used that for all γ > −1 one has
∑r
k=1 k

γ = O(rγ+1). Indeed:∑r
k=2 k

γ ≤
∫ r
2

(k − 1)γdk = O(rγ+1) if γ < 0, while
∑r
k=2 k

γ ≤
∫ r
2

(k + 1)γdk = O(rγ+1) if
γ ≥ 0.

Now the lemma follows by equality (5.3) and Theorem 5.7.

Corollary 5.9
If (as we conjecture) there exists a constant C such that for all k, r ∈ N it holds that BIIC(r, k) ≤
C · k

3

r4 , then:
PIIC(dH,ε(r)(IIC) ≥ 4) = 1,

irrespective of the function ε(r).

Proof. Apply Lemma 5.8 to the infinite cluster (IIC), with δ(r) = 1 and β = 4.

Lemma 5.8 is already a useful simplification but typically it is still hard to bound BA(r, k) for random
sets like the IIC. As will become clear later in Theorem 5.12, it is relatively easy to bound the sum

EIIC

∑
x,y∈A∩Qr
1≤|x−y|≤K

(1)

∑
x,y∈A∩Qr (1)

 =
∑K
k=1 BA(r, k). In order to make such a bound useful for our purposes

we will need a variant of Lemma 5.8, namely the upcoming Theorem 5.11. First a technical lemma.

Lemma 5.10
Let f(k) : N>0 → R≥0 be a decreasing function. Let g(k) : N>0 → R≥0 be any function. Suppose

there exist β > 0, C > 0 such that for all K:
∑K
k=1 g(k) ≤ C ·Kβ . Then for all K:

K∑
k=1

g(k)f(k) ≤ C ·
K∑
k=1

(kβ − (k − 1)β) · f(k).

Proof. Consider functions of the form h(k) : N>0 → R≥0, with the constraint that for all K > 0 :∑K
k=1 h(k) ≤ C · Kβ . Because f(k) is decreasing,

∑K
k=1 h(k)f(k) is maximized by subsequently

maximizing
∑1
k=1 h(k),

∑2
k=1 h(k), . . .

∑K
k=1 h(k), with maxima C · 1β .C · 2β , . . . , C · Kβ . As a

consequence h(k) =
∑k
x=1 h(x)−

∑k−1
x=1 h(x) = C · (kβ − (k − 1)β) holds for all k if

∑K
k=1 h(k)f(k)

is maximal.

Theorem 5.11
Let A ⊂ Zd be a random set. Let δ(r) : N>0 → R≥0 be any function and let β ∈ R. Suppose there

exists a constant C such that for all r,K ∈ N it holds that
∑K
k=1 BA(r, k) ≤ C · K

β

rβ
· δ(r). Then:

P
(
dH,ε(r)(A) ≥ sup

α

{
lim
r→∞

δ(r) · ε(r)β−α = 0
})

= 1.
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Proof. Let α < supα
{

limr→∞ δ(r) · ε(r)β−α = 0
}

. Apply Lemma 5.10 with the decreasing function

f(k) := ( rk )α and the function g(k) := BA(r, k). Since
∑K
k=1 g(k) ≤ C·δ(r)

rβ
·Kβ , it follows with the

choice K := ε(r)r that:

bε(r)rc∑
k=1

BA(r, k) ·
( r
k

)α
≤ C · δ(r)

rβ
·
bε(r)rc∑
k=1

(kβ − (k − 1)β) ·
( r
k

)α
≤ C

′
· δ(r) · rα−β ·

bε(r)rc∑
k=1

kβ−α−1

≤ C
′′
· δ(r) · rα−β · (ε(r)r)β−α

= C
′′
· δ(r) · ε(r)β−α.

for some constants C
′
, C
′′

independent of r. In the third inequality we again, as in Lemma 5.8, used
that for all γ > −1 one has

∑r
k=1 k

γ = O(rγ+1).

We conclude that

lim
r→∞

E


∑

x,y∈A∩Qr
1≤|x−y|<ε(r)r

(
r
|x−y|

)α
∑
x,y∈A∩Qr (1)

 = lim
r→∞

bε(r)rc∑
k=1

BA(r, k) ·
( r
k

)α
≤ lim

r→∞
C
′′
· δ(r) · ε(r)β−α

= 0.

An application of Theorem reffirstderivationofenergymethod to this equality wraps up the proof.

5.4 Conditional proof of the discrete Hausdorff dimension of the IIC

Until now, this section treated results that are quite general and don’t necessarily have something
to do with our particular probability measure, or even percolation. In the next theorem we use the
expectation value bound of Corollary 2.12, thereby introducing a result that holds specifically for
percolation under the IIC-measure. We obtain almost sure statements on the value of the discrete

Hausdorff dimension of the IIC, under an as yet unverifiable assumption on the value of EIIC
(

1
|Xr|4

)
.

Theorem 5.12
Let δ(r) : N→ R≥1 be a function. Assume there is a constant C such that for all r:

EIIC
(

1

|Xr|4

)
≤ C · δ

2(r)

r16
. (5.4)

Then:

PIIC
(
dH,ε(r)(IIC) ≥ sup

α

{
lim
r→∞

δ(r) · ε(r)4−α = 0
})

= 1.

Proof. The following derivation first uses Cauchy Schwarz and then assumption (5.4) and case n = 2
of Corollary 2.12.

E2
IIC


∑
x,y∈IIC∩Qr
|x−y|≤k

(1)∑
x,y∈IIC∩Qr (1)

 := E2
IIC

 1

|Xr|2
·

∑
x,y∈IIC∩Qr
|x−y|≤k

(1)



≤ EIIC
(

1

|Xr|4

)
· EIIC


 ∑
x,y∈IIC∩Qr
|x−y|≤k

(1)


2

≤ C · δ(r)
2

r16
· r8 · k8.
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So
K∑
k=1

BIIC(r, k) := EIIC


∑
x,y∈IIC∩Qr
|x−y|≤K

(1)∑
x,y∈IIC∩Qr (1)

 ≤ C · K4

r4
δ(r).

Now apply Theorem 5.11 with β = 4.

Corollary 5.13
Let δ ≥ 0. Assume there is a constant C such that for all r:

EIIC
(

1

|Xr|4

)
≤ C · ε(r)

−2δ

r16
. (5.5)

Then:
PIIC

(
dH,ε(r)(IIC) ≥ 4− δ

)
= 1 (5.6)

and in particular, if the assumption is true for all δ > 0 (or for δ = 0), then it PIIC-almost surely
holds that:

dH,ε(r)(IIC) = dm(IIC) = 4.

Proof. Apply Theorem 5.12 with δ(r) = ε(r)−δ and note that supα
{

limr→∞ ε(r)−δ · ε(r)4−α = 0
}

=
4− δ because by definition: limr→∞ ε(r) = 0. This finishes the proof of (5.6).

Lemma 5.4 (”Hausdorff dimension ≤ upper mass dimension”) and Corollary 1.11 (”upper mass
dimension ≤ 4”) conclude the proof that PIIC-almost surely: dH,ε(r)(IIC) = dm(IIC) = 4.

It remains to show that the lower mass dimension PIIC-almost surely equals 4. Note that by
Markov’s inequality and because (by definition) ε(r) ≥ 1

r , it follows that for all ε > 0:

PIIC(|Xr| ≤ r4−
δ
2−ε) ≤ PIIC(|Xr| ≤ r4−ε·ε(r)

δ
2 ) = PIIC

(
1

|Xr|4
≥ r4ε−16

ε(r)2δ

)
≤

EIIC( 1
|Xr|4 )

r4ε−16ε(r)−2δ
≤ C

r4ε
,

so by Theorem 1.10 we have that PIIC
(
lim infr→∞(logr(|Xr|)) ≥ 4− δ

2

)
= 1. Since this by assump-

tion holds for all δ > 0 (or for δ = 0) it follows that PIIC-almost surely: dm(IIC) = 4.
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6 Lower bound on |Xr,r|
This subsection is about Theorem 1.16. To prove it we will bound the IIC-measure of the event{
|Xr,r| ≤ ε · r3

}
. Note that this is a cylinder event, so we are allowed to use construction (1.4). The

proof heavily relies on the result of Kozma and Nachmias [12] that for high dimensional percolation
(that is, in models for which (1.3) holds):

Ppc(0↔ ∂Q) � r−2. (6.1)

First we (re)state some definitions.

Definition 6.1

Xr,R :=
{
x ∈ Qr | 0

QR↔ x
}

∂Xr,R :=
{
x ∈ ∂Qr | 0

QR↔ x
}

and more generally, for any A ⊂ Zd we write

∂A := A ∩ ∂Q(maxx∈A |x|)

and we define A to be the set of edges that have both vertices in Q(maxx∈A |x|), at least one of which
is in A.

Proof of Theorem 1.16

Proof. For the moment, fix a vertex x ∈ Zd with |x| ≥ 2r. If 0 ↔ x and |Xr,r| ≤ ε · r3 then there
must exist a (random) integer j ∈ [r/2, r] such that 0 < |∂Xj,j | ≤ |∂Xj,r| ≤ 2ε · r2. Fix the smallest
such j. We call A ⊂ Zd admissable if Ppc(Xj,j = A) > 0. Here {Xj,j = A} is an abbreviation for
the event{

Xj,j = A and j is the minimal integer in [r/2, r] such that 0 < |∂Xj,j | ≤ 2ε · r2
}
.

Now write

Ppc
(
|Xr,r| ≤ εr3, 0↔ x

)
=

∑
A admissable

Ppc(Xj,j = A, 0↔ x)

=
∑

A admissable

Ppc(0↔ x | Xj,j = A) · Ppc(Xj,j = A). (6.2)

We proceed by bounding Ppc(0↔ x|Xj,j = A). If 0↔ x then there exists an y ∈ ∂Xj,j such that y
is connected to x “off Xj,j”, that is: y is connected to x by an open path that does not use any of
the edges in Xj,j . So

Ppc(0↔ x | Xj,j = A) ≤
∑
y∈∂A

Ppc
(
y ↔ x off A | Xj,j = A

)
. (6.3)

Now: for all admissable A and all y ∈ ∂A the event
{
y ↔ x off A

}
only depends on the edges

that are not in A, while {Xj,j = A} only depends on the edges that are in A. Indeed, since A is
admissable it already holds that j is the minimal integer in [r/2, r] such that |∂Qj ∩ A| ≤ 2εr2, so
{Xj,j = A} occurs iff{

All edges that have exactly one vertex in A and both vertices in Q(maxx∈A |x|) are closed and all vertices in

A are connected to 0 by a path consisting of open edges that all have both vertices in A.

}
occurs, which implies that {Xj,j = A} only depends on the edges in A, as illustrated in Figure 8. The
consequence is that the events {Xj,j = A} and

{
y ↔ x off A

}
are independent. This observation
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is the reason why this proof works for the set Xr,r and not -for example- for Xr, because now it
follows from (6.3) that

Ppc(0↔ x | Xj,j = A) ≤
∑
y∈∂A

Ppc
(
y ↔ x off A

)
. (6.4)

By the assumption on x we have |x− y| ≥ |x| − |y| ≥ |x| − r ≥ |x|2 , so∑
y∈∂A

Ppc
(
y ↔ x off A

)
≤
∑
y∈∂A

Ppc (y ↔ x) ≤
∑
y∈∂A

C

|x− y|d−2
≤ C · |∂A| · 1

|x|d−2
, (6.5)

which is bounded above by C ·2εr2 · 1
|x|d−2 because A is admissable. Combining this with (6.2) yields

Ppc
(
|Xr,r| ≤ εr3, 0↔ x

)
≤ C · εr2 · 1

|x|d−2
·

∑
A admissable

Ppc(Xj,j = A). (6.6)

Now note that the events {Xj,j = A1} , {Xj,j = A2} , . . . are disjoint and the union of these over all
A implies that 0↔ ∂Qr/2, so by (6.1):∑

A admissable

Ppc(Xj,j = A) ≤ Ppc(0↔ ∂Qr/2) ≤ C · r−2. (6.7)

Evaluating (6.7) in (6.6) and using construction (1.4) of the IIC-measure we finally obtain

PIIC
(
|Xr,r| ≤ ε · r3

)
= lim
|x|→∞

Ppc
(
|Xr,r| ≤ εr3, 0↔ x

)
Ppc (0↔ x)

≤ C · lim
|x|→∞

(
ε · |x|2−d

|x|2−d

)
= C · ε,

where the constant C > 0 is independent of ε and r. Now apply Theorem 1.10 and use the fact that
|Xr,r| ≤ |Xr| for all r to conclude that

PIIC
(
dm(IIC) ≥ 3

)
:= PIIC

(
lim inf
r→∞

(
log |Xr|

log r

)
≥ 3

)
≥ PIIC

(
lim inf
r→∞

(
log |Xr,r|

log r

)
≥ 3

)
= 1.
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Figure 8: This picture illustrates the proof of Theorem 1.16. This is an ‘artist impression’, not a
simulation. Note also that in reality we consider high dimensional percolation, not 2-dimensional
percolation. The vertices that are adjacent to fat blue edges form the vertex set Xj,j = A. The fat
blue and the thin blue edges together form the edge set A. The fat blue and the red edges together
form the IIC. The symbol 0 denotes the origin and y denotes one of the 6 vertices in ∂A ⊂ ∂Qj.
The green lines denote the boundaries of Qr/2, Qj and Qr.
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