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Introduction
Throughout this thesis, all modules considered will be left modules.

1. Summary

Let Q be an algebraic closure of Q. For r ∈ Q∗, let

R∞,r = {x ∈ Q∗ : xn ∈ 〈r〉 for some n ∈ Z≥1}

be the subgroup of Q∗ consisting of all radicals of r. Moreover, let

F∞,r = Q(R∞,r)

be the Galois extension of Q generated by all radicals of r in Q. In the present
thesis we are focused on describing the structure of the Galois group Gal(F∞,r/Q).

Theorem 1. Let G be a profinite group. Then the following are equivalent.

(a) There exists r ∈ Q∗ \ {±1} such that

G ∼= Gal (Q(R∞,r)/Q)

as profinite groups.

(b) There is a short exact sequence of profinite groups

0 −→ Ẑ f−→ G
g−→ Ẑ∗ −→ 1,

where Ẑ is the profinite completion of Z and Ẑ∗ is its group of units, such that

(i) the induced action of Ẑ∗ on Ẑ is the natural action, that is, for all x ∈ Ẑ
and σ ∈ G we have σf(x)σ−1 = f(g(σ) · x), where · is the multiplication
of the ring Ẑ;

(ii) the sequence is not semisplit, that is, there is no continuous group homo-
morphism h : Ẑ∗ → G satisfying g ◦ h = idẐ∗.

In §2.2 we briefly explain the proof of (a) implying (b) that was given in [LMS13, §2].
As announced in the same article, the other implication is proven in the present
thesis; see §2.3. The main tool in our proof is the algebraic cohomology of topolog-
ical groups acting continuously on topological modules, which one calls continuous
cochain cohomology. Given a topological group G and a topological G-module A,
the continuous cochain cohomology of G with coefficients in A is the cohomology
obtained from the complex

0 −→ A
d0−→ C1(G,A) d1−→ C2(G,A) d2−→ C3(G,A) d3−→ C4(G,A) d4−→ . . .
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where for n ∈ Z≥1 the group Cn(G,A) consists of all continuous maps of Gn to
A, and dn is the standard coboundary map one also has in non-continuous group
cohomology. For n ∈ Z≥0, the cohomology groups of this complex are denoted by
Hn(G,A). See section §1.1 for more details.

For a topological group G and a topological G-module A, we give in 1.31
and 1.33 the definition of topological group extensions of G by A and equivalence
classes thereof. Moreover, as in non-continuous group cohomology, the set of those
equivalence classes may be identified with H2(G,A).

One easily sees that the other implication of Theorem 1 is implied by the
following theorem.

Theorem 2. There exists a group isomorphism ϕ : H2(Ẑ∗, Ẑ)→ Q∗/±Q∗2 that for
every r ∈ Q∗ \ {±1} maps the equivalence class of any short exact sequence

0 −→ Ẑ −→ Gal(F∞,r/Q) −→ Ẑ∗ −→ 1

satisfying condition (i) of Theorem 1(b), to ±r0Q∗2, where r0 ∈ Q∗ is such that

R∞,r ∩Q∗ = 〈−1, r0〉.

For the proof, see Theorem 2.14.
One of the key steps in the proof of Theorem 2 is to show that H2(Ẑ∗, Ẑ) has

exponent dividing 2. We generalize this result in the following way.
Let M be a profinite abelian group, and let Γ be a closed subgroup of Ẑ∗.

There is a natural topological Ẑ-module structure on M , and this action induces
both a topological Γ-module structure on M and a Ẑ-module structure on each
Hn(Γ,M). We define

WΓ =
∑
γ∈Γ

Ẑ(γ − 1),

which is the closure of the Ẑ-ideal generated by {γ − 1 : γ ∈ Γ}. For example,
one has WẐ∗ = 2Ẑ, so the desired relation 2 · H2(Ẑ∗, Ẑ) = 0 is a special case of the
following theorem.

Theorem 3. Let Γ be a closed subgroup of Ẑ∗, and let M be a profinite abelian
group with the Γ-module structure defined above. Then we have

WΓ · Hn(Γ,M) = 0

for all n ∈ Z≥0.

For the proof, see Theorem 2.16. Its main ingredient is an extension to the present
context of a result on the conjugation map that is familiar from non-continuous
group cohomology (see 1.29). We give two proofs of this extended result. The first
proof makes use of a dimension shifting technique for continuous cochain cohomology
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that appears to be new (see §1.4). One may hope that this technique admits further
applications, although it is restricted to the case of locally compact G. The second
proof, which works for general G, proceeds by a direct calculation with cocycles.

Thus far Theorem 3 is just group-theoretic. Relating Theorem 3 to fields in
the following way, serves as a first step to generalizing Theorem 1 to any field of
characteristic 0, that is, replacing Q with any field extension of it.

Let K be any field of characteristic 0, and let K be an algebraic closure of
K. Let µ be the subgroup of K∗ consisting of all roots of unity; it is a discrete
topological Ẑ-module, which we write additively (see §2.1). There is an inclusion-
reversing bijection between the set of subgroups of µ and the set of closed Ẑ-ideals
that sends a subgroup ν of µ to the Ẑ-annihilator

AnnẐ(ν) = {x ∈ Ẑ : x · ν = 0}

of ν, the inverse bijection sending a closed Ẑ-ideal W to the W -torsion subgroup

µ[W ] = {ξ ∈ µ : W · ξ = 0}

of µ (see Proposition 2.8).
The maximal cyclotomic extension K(µ) of K is Galois with a Galois group

that may be viewed as a closed subgroup of Ẑ∗, which we shall denote by Γ or ΓK
(see §2.4). The interest of the closed Ẑ-ideal WΓ, defined earlier, is that under the
bijection above it corresponds to the subgroup µ(K) = µ∩K∗ of µ, as expressed by
the following theorem.

Theorem 4. Let K be a field of characteristic 0, and let Γ ⊂ Ẑ∗ be its maximal
cyclotomic Galois group. Then the closed ideal WΓ is equal to the Ẑ-annihilator
AnnẐ(µ(K)) of the group µ(K) of roots of unity in K∗.

For the proof, see Theorem 2.17.
Combining Theorem 3 and Theorem 4, we obtain AnnẐ(µ(K)) ·Hn(Γ,M) = 0

for all M as in Theorem 3, and all n ∈ Z≥0. If K contains only finitely many roots
of unity, then one has AnnẐ(µ(K)) = #µ(K) · Ẑ, so that #µ(K) annihilates each
Hn(Γ,M). In particular, as there are exactly two roots of unity in Q, we see again
that 2 · Hn(Ẑ∗, Ẑ) = 0 for all n ∈ Z≥0.

2. Overview

The present thesis is organized as follows.
In Chapter 1 our main goal is to prove that the conjugation map on cohomology

is the identity, in section 5. To this end, we establish, in section 4, the technique
of dimension shifting for locally compact groups acting on topological modules.
We introduce the necessary tools for this, such as the definition of the continuous
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cohomology groups and the long exact sequence in this cohomology, in sections 1
to 3. In the last section of Chapter 1 we briefly address the extension theory of
topological groups.

In Chapter 2 we prove the theorems given above. Section 1 covers the prelim-
inaries of the chapter. In section 2 the first half of the proof of Theorem 1 is shown,
and in section 3 the rest of the proof is given. The last section is concerned with
Theorem 3 and 4.

3. Acknowledgements

I would like to express my sincere gratitude to my advisor Hendrik Lenstra for his
invaluable support, advice and patience. This thesis would not have existed without
his extensive and inspiring guidance.

I would like to thank Peter Stevenhagen and Bart de Smit for serving on the
exam committee, and for being accessible for questions at all times.



chapter 1

Continuous cochain cohomology
In this chapter we first cover some basic continuous group cohomology. This theory
is treated more deeply in [Wilson, Chapter 9] for the particular case of profinite
groups acting on abelian topological groups. However, the notions and proofs of our
interest in this book apply without change to arbitrary topological groups acting on
abelian topological groups, since no properties of profinite groups are used in the
proofs. Therefore, we do refer to [Wilson, Chapter 9] for some omitted proofs in
this chapter.

1. Continuous cohomology groups

Let G and H be topological groups. Let C(G,H) be the set of continuous functions
from G to H. Define multiplication on C(G,H) by defining ϕ ·ψ as the map sending
g ∈ G to ϕ(g) · ψ(g); this is well-defined since ϕ · ψ is the composition of the
continuous map G −→ H × H sending g ∈ G to (ϕ(g), ψ(g)) and the continuous
map defining the operation of H. It is easy to see that C(G,H) is a group under
this operation. The identity element is given by the map sending all elements to
1 ∈ H, and the inverse of an element f ∈ C(G,H) is given by sending g ∈ G to
f(g)−1. Observe that C(G,H) is abelian if and only if H is abelian. When C(G,H)
is an abelian group, we use additive notation and terminology.

Moreover, let CHom(G,H) denote the subset of C(G,H) consisting of contin-
uous group homomorphisms from G to H, and note that it is a subgroup of C(G,H)
when H is abelian.

Let G be a topological group. A G-module A is called topological if A is a
topological group and the action of G on A, viewed as a map G×A −→ A, is con-
tinuous. A morphism of topological G-modules is a G-module homomorphism that
is continuous. This defines the category G-TMod of topological G-modules. We
let CHomG(A,B) be the group of morphisms of two objects A and B in G-TMod.
It is easy to check that G-TMod is an additive category, and that this category is
not abelian in general.

Let A be a topological G-module. For n ∈ Z≥0, endow Gn with the product
topology and let Cn(G,A) denote the group C(Gn, A) of continuous functions from
Gn to A. The elements of Cn(G,A) are called continuous n-cochains. It is clear that
C0(G,A) is canonically isomorphic to A as a group.

For n ∈ Z≥0 define the boundary map dn : Cn(G,A) −→ Cn+1(G,A) by

(dnϕ)(g1, . . . , gn+1) = g1 · ϕ(g2, . . . , gn+1) +∑n
i=1(−1)iϕ(g1, . . . , gigi+1, . . . , gn+1)+

+(−1)n+1ϕ(g1, . . . , gn),
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whose kernel is the group of continuous n-cocycles, and is denoted by Zn(G,A).
One proves that dn+1 ◦ dn = 0 for every n ∈ Z≥0 in the same tedious way this
is done in non-continuous group cohomology (see [EM47]). Hence, for n ∈ Z≥1

the image of dn−1, denoted by Bn(G,A), is contained in Zn(G,A); its elements
are called the continuous n-coboundaries. Moreover, the group of continuous 0-
coboundaries B0(G,A) is defined as the trivial group. For n ∈ Z≥0, we define the
n-th continuous cochain cohomology group of G with coefficients in A as the quotient
Zn(G,A)/Bn(G,A), denoted by Hn(G,A). One notes that for n ∈ Z≥0 the groups
Zn(G,A), Bn(G,A) and Hn(G,A) are abelian groups.

We will often omit ‘continuous’ in the above defined objects. Note that if
G is a discrete topological group, the notions above coincide with the usual group
cohomology notions.

The cohomology group H0(G,A) will often be identified with AG via the group
isomorphism ϕ 7→ ϕ(1). Moreover, one easily checks that if G acts trivially on A,
then H1(G,A) = CHom(G,A).

2. Compatible pairs

Let ϕ : H −→ G and ψ : A −→ B be continuous group homomorphisms, where A
and B are topological modules over G and H, respectively. The pair (ϕ, ψ) is called
compatible if for all h ∈ H and a ∈ A we have ψ(ϕ(h)a) = hψ(a).

Examples. (1) Let G be a topological group, and let A be a topological G-
module. Then the identity idG on G and the identity idA on A form a com-
patible pair (idG, idA).

(2) Let B be another topological G-module and suppose that ψ : A −→ B is a
continuous group homomorphism. Then the pair (idG, ψ) is compatible if and
only if ψ is G-linear.

(3) Let ϕ : H −→ G be a continuous group homomorphism, and let (ϕ, χ : A −→
B) and (ϕ, χ′ : A −→ B) be two compatible pairs. Then the pair (ϕ, χ + χ′)
is compatible.

(4) Now, let K be a normal subgroup of G, and let π : G −→ G/K denote the
quotient map. Then the fixed point subgroup AK of A is a topological G/K-
module. Let ι denote the inclusion of AK in A. Then the pair (π, ι) is com-
patible.

Lemma 1.1. Let ϕ : H −→ G and ψ : A −→ B be a compatible pair. Then the
following statements hold.

(a) For each n ∈ Z≥0 there is an induced group homomorphism

Cn(ϕ, ψ) : Cn(G,A) −→ Cn(H,B)
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given by
Cn(ϕ, ψ)(f) = ψ ◦ f ◦ ϕn,

where ϕn : Hn −→ Gn sends (h1, . . . , hn) ∈ Hn to (ϕ(h1), . . . , ϕ(hn)).

(b) For each n ∈ Z≥0 the diagram

Cn(G,A) dn //

Cn(ϕ,ψ)
��

Cn+1(G,A)

Cn+1(ϕ,ψ)
��

Cn(H,B)
dn

// Cn+1(H,B)

is commutative.

(c) For each n ∈ Z≥0 there is an induced homomorphism

Hn(ϕ, ψ) : Hn(G,A) −→ Hn(H,B)

defined by sending [f ] ∈ Hn(G,A) to [Cn(ϕ, ψ)(f)].

Proof. See [Wil98, Lemma 9.2.1].

Lemma 1.2. Let (ϕ : H −→ G,ψ : A −→ B) and (ϕ′ : I −→ H,ψ′ : B −→ C) be
compatible pairs. Then the following hold.

(a) The pair (ϕ ◦ ϕ′, ψ′ ◦ ψ) is compatible.

(b) For n ∈ Z≥0 we have Cn(ϕ ◦ ϕ′, ψ′ ◦ ψ) = Cn(ϕ′, ψ′) ◦ Cn(ϕ, ψ).

(c) For n ∈ Z≥0 we have Hn(ϕ ◦ ϕ′, ψ′ ◦ ψ) = Hn(ϕ′, ψ′) ◦ Hn(ϕ, ψ).

Proof. Let i ∈ I and a ∈ A. Then

(ψ′ ◦ψ)((ϕ ◦ϕ′)(i)a) = ψ′(ψ(ϕ(ϕ′(i))a)) = ψ′(ϕ′(i)ψ(a)) = iψ′(ψ(a)) = i(ψ′ ◦ψ)(a),

which proves (a). Moreover, (b) and (c) are clear by definition of the maps Cn(ϕ ◦
ϕ′, ψ′ ◦ ψ) and Hn(ϕ ◦ ϕ′, ψ′ ◦ ψ).

Let C be the category defined as follows. Let the objects of C be all pairs (G,A)
where G is a topological group and A is a topological G-module. The morphisms
in this category are given by the following compatible pairs: for two objects (G,A)
and (H,B) of C an element of MorC((G,A), (H,B)) is a compatible pair (ϕ, ψ)
where ϕ : H −→ G and ψ : A −→ B. Moreover, composition of two morphisms
(ϕ : H −→ G,ψ : A −→ B) and (ϕ′ : I −→ H,ψ′ : B −→ C) is given by

(ϕ′, ψ′) ◦ (ϕ, ψ) = (ϕ ◦ ϕ′, ψ′ ◦ ψ),

which is well-defined by the previous lemma and clearly an associative operation.
Note that for every n ∈ Z≥0 and for every object (G,A) of C, the identity ele-

ment (idG, idA) of MorC((G,A), (G,A)) induces the identity on the groups Cn(G,A)
and Hn(G,A).
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Proposition 1.3. Let n ∈ Z≥0. Then

Cn(·, ·) : C −→ Ab and Hn(·, ·) : C −→ Ab

are covariant functors from the category C to the category Ab of abelian groups.

Proof. This follows from Lemma 1.1 and Lemma 1.2.

Let ϕ : H −→ G be a continuous group homomorphism, and let (ϕ, ψ : A −→
B) and (ϕ, ψ′ : A −→ B) be two compatible pairs. One easily checks that the
identities

Cn(ϕ, ψ + ψ′) = Cn(ϕ, ψ) + Cn(ϕ, ψ′)

and
Hn(ϕ, ψ + ψ′) = Hn(ϕ, ψ) + Hn(ϕ, ψ′)

hold, where the addition on the right-hand sides is done in the category Ab of
abelian groups. In particular, if we choose G = H and ϕ = idG, we have a subcate-
gory CG of C consisting of the pairs (G,A) with A a topological G-module, and with
morphisms all compatible pairs (idG, ψ) where ψ is a continuous G-module homo-
morphism. One easily sees that the subcategory CG of C can be canonically identified
with the category G-TMod of topological G-modules. The following proposition is
immediate.

Proposition 1.4. Let G be a topological group, and let n ∈ Z≥0. For a morphism
ψ of topological G-modules, let Cn(G,ψ) = Cn(idG, ψ) and Hn(G,ψ) = Hn(idG, ψ).
Then

Cn(G, ·) : G-TMod −→ Ab and Hn(G, ·) : G-TMod −→ Ab

are additive covariant functors.

Notation 1.5. When the group G is understood, we will for n ∈ Z≥0 sometimes
write Cn(·) and Hn(·) for the functors Cn(G, ·) and Hn(G, ·), respectively.

Proposition 1.6. Let G be a topological group. Then the functors Cn(G, ·) and
Hn(G, ·) commute with arbitrary products.

Proof. Let {Ai}i∈I be a collection of topological G-modules. By the universal
property of topological products, we have for any n ∈ Z≥0 that Cn(G,∏i∈I Ai) is
isomorphic to ∏i∈I Cn(G,Ai) as a group. One easily checks that for every n ∈ Z≥0

the diagram
Cn(G,∏i∈I Ai)

dn //

��

Cn+1(G,∏i∈I Ai)

��∏
i∈I Cn(G,Ai) (dn)i∈I

//
∏
i∈I Cn+1(G,Ai)

is commutative, where the vertical arrows are the isomorphisms mentioned above.
Then we have Hn(G,∏i∈I Ai) = ∏

i∈I Hn(G,Ai).
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3. Long exact sequence

In this section we will construct the long exact sequence of cohomology for special
types of short exact sequences of topological modules. Moreover, we show that if we
slightly generalize these sequences, we have the long exact sequence until the first
cohomology groups.

Proposition 1.7. Let
1 −→ A

f−→ B
g−→ C −→ 1

be a short exact sequence of not necessarily abelian topological groups. Then the
following are equivalent.

(a) The map f induces a homeomorphism from A to its image, and g admits a
continuous set-theoretic section.

(b) There is a homeomorphism ϕ : B −→ A × C, where A × C has the product
topology, such that the diagram

B
g

##
ϕ

��

1 // A

f
;;

ιA ##

C // 1

A× C
πC

;;

commutes, where ιA sends a ∈ A to (a, 1) and πC sends (a, c) ∈ A× C to c.

Proof. Assume (a), that is, suppose that f induces a homeomorphism from A to
its image, and g admits a continuous section, say s. Without loss of generalization,
assume that s(1) = 1, since otherwise we may compose s with the homeomorphism
B −→ B sending b to bs(1)−1, which gives a continuous section of g sending 1 ∈ C
to 1 ∈ B.

Let f † : f(A) −→ A be the continuous map such that f † ◦ f = idA. Let b ∈ B,
and note that

bs(g(b))−1 ∈ ker g = im f.

Define the map ϕ : B −→ A × C by sending b ∈ B to (f †(bs(g(b))−1), g(b)). Note
that ϕ is continuous, since it is equal to the composition of the continuous map
B −→ ker g × im s sending b ∈ B to (bs(g(b))−1, s(g(b))) and the continuous map
ker g × im s −→ A× C sending (b, b′) ∈ ker g × im s to (f †(b), g(b)).

One easily checks that the map ϕ−1 : A× C −→ B given by (a, c) 7→ f(a)s(c)
is a continuous map that is inverse to ϕ. Hence, the map ϕ is a homeomorphism.

At last, it is easy to see that πC ◦ ϕ = g, and moreover, using s(1) = 1, one
easily sees that ϕ ◦ f = ιA. Hence, the desired diagram commutes.
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Conversely, assume (b). Then one easily shows that πA ◦ ϕ induces a homeo-
morphism from im f to A, and that ϕ−1 ◦ ιC is a continuous section of g.

Definition 1.8. A short exact sequence

1 −→ A
f−→ B

g−→ C −→ 1

of not necessarily abelian topological groups is called well-adjusted if it satisfies
either one of the equivalent conditions 1.7(a) and 1.7(b) above.

Note that all short exact sequences of discrete groups are well-adjusted, as are
all short exact sequences of profinite groups, cf. [Wil98, Lemma 0.1.2] and [Wil98,
Proposition 1.3.3].

The following proposition defines a large class of short exact sequences of
topological groups that are well-adjusted, which will be useful later.

Proposition 1.9. Let G be a topological group, and let

0 −→ A
f−→ B

g−→ C −→ 0

be a short exact sequence of topological G-modules. Then the following are equivalent.

(a) The map f admits a retraction that is a continuous G-module homomorphism,
and g is open.

(b) The map g admits a section that is a continuous G-module homomorphism,
and f induces a homeomorphism from A to its image f(A).

(c) There is an isomorphism ϕ : B −→ A × C of topological G-modules, where
A× C has the product topology, such that the diagram

B
g

##
ϕ

��

0 // A

f
;;

ιA ##

C // 0

A× C
πC

;;

commutes, where ιA sends a ∈ A to (a, 0) and πC sends (a, c) ∈ A× C to c.

Proof. One simply imitates the proof of the splitting lemma for abelian groups,
see [Ste12, Theorem 9.3].

Definition 1.10. Let G be a topological group, and let

0 −→ A
f−→ B

g−→ C −→ 0

be a short exact sequence of topological G-modules. Then this sequence is called
split if it satisfies either one of the equivalent conditions 1.9(a), 1.9(b) and 1.9(c)
above. A short exact sequence of abelian topological groups is called split if it is
split as short exact sequence of topological modules over the trivial group.
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Proposition 1.11. Any split short exact sequence of topological groups is well-
adjusted.

Proof. This is immediate from the definition.

Lemma 1.12. Let G be a topological group,and let

0 −→ A
f−→ B

g−→ C −→ 0

be a well-adjusted short exact sequence of topological G-modules. Then for each
n ∈ Z≥0 the sequences

(i) 0 −→ Cn(G,A) Cn(f)−→ Cn(G,B) Cn(g)−→ Cn(G,C) −→ 0

(ii) Hn(G,A) Hn(f)−→ Hn(G,B) Hn(g)−→ Hn(G,C)

of abelian groups are exact.

Proof. We first prove the exactness of (i). To this end, note that injectivity of Cn(f)
follows immediately from the injectivity of f . Moreover, for every an ∈ Cn(G,A) we
have g ◦ f ◦ an = 0, so that im Cn(f) ⊂ ker Cn(g).

Conversely, let bn ∈ ker Cn(g) and observe that g ◦ bn = 0. Then im bn ⊂ ker g,
where ker g = im f . Let ι : im f −→ A be a continuous map such that f ◦ ι = idim f ,
which exists by assumption. Then ι ◦ bn is a continuous map from G to A, that is,
we have ι ◦ bn ∈ Cn(G,A). Moreover,

Cn(f)(ι ◦ bn) = f ◦ ι ◦ bn = bn,

which shows that ker Cn(g) ⊂ im Cn(f). Hence, the sequence is exact at Cn(G,B).
Now, let cn ∈ Cn(G,C), and let s be a continuous map from C to B such that

g ◦ s = idC , which exists by assumption. Note that s ◦ cn is a continuous map from
G to C, that is, we have s ◦ cn ∈ Cn(G,B). Moreover,

Cn(g)(s ◦ cn) = g ◦ s ◦ cn = cn,

which shows that the sequence is exact at Cn(G,C). Thus, sequence (i) is exact.
Now, we prove exactness of (ii), that is, we show that im Hn(f) = ker Hn(g).

To this end, note that Hn(g) ◦ Hn(f) = 0, so that im Hn(f) ⊂ ker Hn(g).
Conversely, let [bn] ∈ Hn(G,B) be such that Hn(g)([bn]) = [g ◦ bn] = 0. Then

g ◦ bn ∈ Bn(G,C), so there is cn−1 ∈ Cn−1(G,C) such that

dn−1(cn−1) = g ◦ bn.

Using (i) in dimension n− 1, there is a bn−1 ∈ Cn−1(G,B) such that

Cn−1(g)(bn−1) = cn−1.
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Moreover, by Lemma 1.1, we have

Cn(g)(bn) = dn−1(Cn−1(g)(bn−1)) = Cn(g)(dn−1(bn−1)),

so that
Cn(g)(bn − dn−1(bn−1)) = 0.

Using (i) in dimension n, there is an ∈ Cn(G,A) such that

Cn(f)(an) = bn − dn−1(bn−1).

Note that

Cn(f)(dn(an)) = dn(Cn(f)(an) = dn(bn − dn−1(bn−1) = 0,

by Lemma 1.1 and the fact that bn ∈ Zn(G,B). By injectivity of Cn(f), we have
dn(an) = 0, so an ∈ Zn(G,A). As Cn(f)(an) = bn − dn−1(bn−1) and dn−1(bn−1) ∈
Bn(G,B), the element [an] ∈ Hn(G,A) maps to [bn]. This shows that (ii) is exact
for all n ∈ Z≥1.

For n = 0, set C−1(G,A) = C−1(G,B) = C−1(G,C) = 0 and do the same as
above to show that (ii) is exact.

Proposition 1.13. Let G be a topological group, and let

0 −→ A
f−→ B

g−→ C −→ 0

be a well-adjusted short exact sequence of topological G-modules. Then for each
n ≥ 0 there is a unique group homomorphism

δn : Hn(G,C) −→ Hn+1(G,A)

such that for every c ∈ Zn(G,C) and for every a ∈ Zn+1(G,A) and b ∈ Cn(G,B)
satisfying Cn(g)(b) = c and Cn+1(f)(a) = dn(b), we have δn([c]) = [a].

Proof. First, we define δn. To this end, let [cn] ∈ Hn(G,C), and observe that there
is bn ∈ Cn(G,B) such that Cn(g)(bn) = cn. Then by Lemma 1.1

0 = dn(cn) = Cn+1(g)(dn(bn)),

so there is an+1 ∈ Cn+1(G,A) such that Cn+1(f)(an+1) = dn(bn). Observe that

Cn+2(f)(dn+1(an+1)) = dn+1(Cn+1(an+1)) = dn+1(dn(bn)) = 0,

so by injectivity of Cn+2(f) we have an+1 ∈ ker dn+1. Now, we define δn([cn]) to be
the element [an+1] ∈ Hn+1(G,A).
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To see that δn is well-defined for n ∈ Z>0, let c′n ∈ [cn]. Then b′n ∈ Cn(G,B)
and a′n+1 ∈ Cn+1(G,A) such that

Cn(g)(b′n) = c′n and Cn+1(f)(dn(b′n)) = a′n+1.

Note that c′n − cn ∈ im dn−1, hence there is cn−1 ∈ Cn−1(G,C) such that

dn−1(cn−1) = c′n − cn.

Moreover, there is bn−1 ∈ Cn−1(G,B) such that Cn−1(g)(bn−1) = cn−1. Observe that

Cn(g)(b′n − bn) = dn−1(cn−1) = Cn(g)(dn−1(bn−1),

so b′n − bn − dn−1(bn−1) ∈ ker Cn(g), where ker Cn(g) = im Cn(f). Hence, we can
write

b′n − bn − dn−1(bn−1) = Cn(f)(an)

for some an ∈ Cn(G,A). Now, note that

Cn+1(f)(a′n+1 − an+1) = dn(b′n − bn) = dn(Cn(f)(an)) = Cn+1(f)(dn(an)),

so that by injectivity of Cn+1(f) we have a′n+1 − an+1 = dn(an). This shows that
[a′n+1] = [an+1] in Hn+1(G,A), and so δn is well-defined for n ∈ Z>0. To see that δ0

is well-defined, set C−1(G,A) = C−1(G,B) = C−1(G,C) = 0 and do the same as
above.

It is clear that for n ∈ Z≥0 the map δn is the unique group homomorphism
having the desired property.

Proposition 1.14. Let G be a topological group, and let

0 −→ A
f−→ B

g−→ C −→ 0

be a well-adjusted short exact sequence of topological G-modules. Then for each
n ∈ Z≥0, the sequence

Hn(G,B) Hn(g)−→ Hn(G,C) δn−→ Hn+1(G,A) Hn(f)−→ Hn+1(G,B)

is exact.

Proof. First we check exactness at Hn(G,C). By Lemma 1.1

(δn ◦ Hn(g))([bn]) = 0

for all [bn] ∈ Hn(G,B). Thus, we have im Hn(g) ⊂ ker δn.
Conversely, suppose [cn] ∈ ker δn, and let an+1 ∈ Zn+1(G,A) and bn ∈ Cn(G,B)

such that Cn+1(f)(an+1) = dn(bn) and Cn(g)(bn) = cn. As [0] = δn([cn]) = [an+1],
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we have an+1 ∈ Bn+1(G,A). Let an ∈ Cn(G,A) be such that dn(an) = an+1. By
Lemma 1.1

dn(bn) = Cn+1(f)(dn(an)) = dn(Cn(f)(an)),

so that bn − Cn(f)(an) ∈ Zn(G,B). Observe that

Cn(g)(bn − Cn(f)(an)) = Cn(g)(bn) = cn,

so that we may conclude that im Hn(g) = ker δn.
Now, let [cn] ∈ Hn(G,C), and suppose that δn([cn]) = [an+1]. Then there is

bn ∈ Cn(G,B) such that Cn+1(f)(an+1) = dn(bn). Hence, the equality

Hn+1(f)([an]) = [Cn+1(f)(an)] = [dn(bn)] = [0]

holds, so that im δn ⊂ ker Hn+1(f).
Conversely, let [an+1] ∈ ker Hn+1(f). Then there is bn ∈ Cn(G,B) such that

Cn+1(f)(an+1) = dn(bn),

since Cn+1(an+1) ∈ Bn+1(G,B). Hence, the element Cn(g)(bn) ∈ Cn(G,C) satisfies
δn([Cn(g)(bn)]) = [an+1], so that we may conclude that im δn = ker Hn+1(f).

Theorem 1.15. Let G be a topological group, and let

0 −→ A
f−→ B

g−→ C −→ 0

be a well-adjusted short exact sequence of topological G-modules. Then the sequence

0 // H0(G,A) H0(f)
// H0(G,B) H0(g)

// H0(G,C) δ0 // H1(G,A) H1(f)
// . . .

. . .
δn−1

// Hn(G,A) Hn(f)
// Hn(G,B) Hn(g)

// Hn(G,C) δn // Hn+1(G,A)H
n+1(f)

// . . .

is exact.

Proof. The injectivity of H0(f) follows from the injectivity of C0(f). The rest
follows from Lemma 1.12 and Proposition 1.14.

Theorem 1.16. Let ϕ : H −→ G be a continuous group homomorphism, and let

0 // A1 //

ψ1
��

A2 //

ψ2
��

A3 //

ψ3
��

0

0 // B1 // B2 // B3 // 0

be a commutative diagram where the upper row is a well-adjusted sequence of topo-
logical G-modules, and the lower row is a well-adjusted sequence of topological H-
modules. Suppose that for all i = 1, 2, 3 the pairs (ϕ, ψi) are compatible. Then the
diagram
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0 // H0(G,A1) //

H0(ϕ,ψ1)
��

H0(G,A2) //

H0(ϕ,ψ2)
��

H0(G,A3) δ0 //

H0(ϕ,ψ3)
��

H1(G,A1) //

H1(ϕ,ψ1)
��

. . .

0 // H0(H,B1) // H0(H,B2) // H0(H,B3) δ0 // H1(H,B1) // . . .

. . .
δn−1

// Hn(G,A1) //

Hn(ϕ,ψ1)
��

Hn(G,A2) //

Hn(ϕ,ψ2)
��

Hn(G,A3) δn //

Hn(ϕ,ψ3)
��

Hn+1(G,A1) //

Hn+1(ϕ,ψ1)
��

. . .

. . .
δn−1

// Hn(H,B1) // Hn(H,B2) // Hn(H,B3) δn // Hn+1(H,B1) // . . .

with rows given by Theorem 1.15, is commutative.

Proof. See [Wil98, Theorem 9.3.4].

Proposition 1.17. Let G be a topological group, and let

0 −→ A
f−→ B

g−→ C −→ 0

be a short exact sequence of topological G-modules such that f induces a homeomor-
phism from A to its image. Then the sequence

0 // H0(G,A) H0(f)
// H0(G,B) H0(g)

// H0(G,C)
δ0

// H1(G,A) H1(f)
// H1(G,B) H1(g)

// H1(G,C)

is exact.

Proof. As for every topological G-module A we have C0(G,A) ∼= A as group, the
given exact sequence

0 −→ A
f−→ B

g−→ C −→ 0

gives the short exact sequence

0 −→ C0(G,A) C0(f)−→ C0(G,B) C0(g)−→ C0(G,C) −→ 0.

Moreover, since there is a continuous map i : B −→ A such that i◦f = idA, we have
the exact sequence

0 −→ C1(G,A) C1(f)−→ C1(G,B) C1(g)−→ C1(G,C).

Now, following the proofs of Lemma 1.12 and Proposition 1.14, the proposition
follows.

The following example shows that we cannot continue this long exact sequence
in general.
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Example 1.18. Let R be the additive group of real numbers endowed with the
usual topology, and let R/Z be the quotient group endowed with the quotient topol-
ogy. One easily checks that the topological group R/Z is compact and connected.
Now, let R/Z act trivially on R, and observe that the inclusion Z ⊂ R induces a
short exact sequence

0 −→ Z −→ R −→ R/Z −→ 0

of topological R/Z-modules with trivial R/Z-action. This sequence is not well-
adjusted, since R is not homeomorphic to Z×R/Z. However, as Z is homeomorphic
to its image in R, we have the long exact sequence of Proposition 1.17. Using the
fact that R/Z acts trivially on R, the sequence is as follows

0→ Z→ R → R/Z→ CHom(R/Z,Z)→ CHom(R/Z,R)→ CHom(R/Z,R/Z).

As R/Z is connected and the only connected components of the discrete group Z
are the singletons, it follows that CHom(R/Z,Z) = 0. Moreover, since R/Z is
compact and the only compact subgroup of R is the trivial subgroup {0}, we have
CHom(R/Z,R) = 0.

As the product of connected spaces is again connected, for every n ∈ Z≥0 all
n-cochains are constant and in particular

Cn(R/Z,Z) ∼= Z

as group. It follows that for n ∈ Z≥0 we have the equality δn = idZ if n is odd and
δn = 0 if n is even. Hence

H2(R/Z,Z) = ker δ2/ im δ1 = Z/Z = 0.

We see that the exact sequence

0 −→ Z −→ R −→ R/Z −→ 0 −→ 0 −→ CHom(R/Z,R/Z)

cannot be continued to H2(R/Z,Z) = 0, since the latter term CHom(R/Z,R/Z),
which is the Pontryagin dual of R/Z, is isomorphic to Z as a discrete group (cf.
[RZ09] or [HR79]) and this is nonzero.

4. Dimension shifting

LetX be a topological space, and let A be an abelian topological group. Let C(X,A)
denote the set of continuous functions from X to A. Define addition on C(X,A) as
in §1.1 and note that C(X,A) is an abelian group under this operation.

Endow C(X,A) with the compact-open topology, that is, the topology on
C(X,A) that has a subbase consisting of the subsets

K(V, U) = {f ∈ C(X,A) : f(V ) ⊂ U}
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with V a compact subset of X, and U an open subset of A.
Recall that if f : X −→ Y is a map between topological spaces, and B is a

subbase for Y , then f is continuous if and only if for every B ∈ B the set f−1(B) is
open in X.

Lemma 1.19. Let G be a topological group. Let U be the neighbourhood system of
the identity element 1 of G. Then the following hold.

(a) For every U ∈ U , there exists V ∈ U such that V · V ⊂ U .

(b) For every U ∈ U , there exists V ∈ U such that V −1 ⊂ U .

(c) For every U ∈ U , there exists V ∈ U such that V ⊂ U .

Proof. See [HR79, Theorem 4.7, Corollary 4.7].

Lemma 1.20. Let G be a topological group. Let C be a compact subset of G, and
let U be an open subset of G containing C. Then there is an open neighbourhood U1

of 1 ∈ G such that CU1 ⊂ U .

Proof. Let c ∈ C. As c ∈ U and U is open, there is an open neighbourhood Uc of
c contained in U . Note that Uc = cVc for some open neighbourhood Vc of 1 ∈ G,
since multiplication by c defines a homeomorphism from G to G. Using the previous
lemma, choose an open neighbourhood Wc of 1 ∈ G such that WcWc ⊂ Vc, and note
that cWc ⊂ cVc ⊂ U .

Note that {cWc}c∈C is an open cover for C, hence by compactness of C there
is a finite subset S = {c1, . . . , cn} of C such that

C ⊂
n⋃
i=1

ciWci
.

Then

C ·
n⋂
j=1

Wcj
⊂
(

n⋃
i=1

ciWci

)
·
n⋂
j=1

Wcj
⊂

n⋃
i=1

ciWci
·
n⋂
j=1

Wcj

 ⊂ n⋃
i=1

ciVci
⊂ U,

which shows that the open neighbourhood ⋂nj=1Wcj
of 1 ∈ G, satisfies the desired

condition.

Proposition 1.21. Let X be a topological space, and let A be an abelian topological
group. Then the abelian group C(X,A) endowed with the compact-open topology is
a topological group.

Proof. For ease of notation write C for C(X,A). Observe that C −→ C given by
ϕ 7→ −ϕ is continuous, since K(V, U) has inverse image K(V,−U) under this map.
Next, consider the addition map π : C × C −→ C given by (ϕ, ψ) 7→ ϕ + ψ. Let
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(ϕ, ψ) ∈ π−1(K(V, U)) for some K(V, U) in the subbase of C. We will find an open
neighbourhood of ϕ in C and an open neighbourhood of ψ in C such that their
product, which is an open neighbourhood of (ϕ, ψ) in C×C, is inside π−1(K(V, U)).

To this end, observe that (ϕ + ψ)(V ) ⊂ U , that is, for every v ∈ V we have
ϕ(v) + ψ(v) ∈ U . As (ϕ + ψ)(V ) is compact and contained in the open U , there
is an open neighbourhood U0 of 0 ∈ A such that (ϕ + ψ)(V ) + U0 ⊂ U . Using the
previous lemma, choose an open neighbourhood T0 of 0 ∈ A such that T0 +T0 ⊂ U0,
and an open neighbourhood S0 of 0 such that S0 +S0 ⊂ T0 and S0 ⊂ T0. For v ∈ V ,
let

Vv = ϕ−1(ϕ(v) + S0) ∩ V and Wv = ψ−1(ψ(v) + S0) ∩ V

and observe that Vv and Wv are compact subsets of X containing v, since they are
closed subsets of a compact set. Note that ϕ(Vv) ⊂ ϕ(v)+T0 and ϕ(Wv) ⊂ ψ(v)+T0,

hence ϕ ∈ K(Vv, ϕ(v) + T0) and ψ ∈ K(Wv, ψ(v) + T0). Moreover, let

Uv = ϕ−1(ϕ(v) + S0) ∩ ψ−1(ψ(v) + S0)

and note that it is an open neighbourhood of v satisfying Uv ∩ V ⊂ Vv ∩Wv. One
may note that for every f ∈ K(Vv, ϕ(v) + T0) and g ∈ K(Wv, ψ(v) + T0), we have

(f + g)(Uv ∩ V ) ⊂ f(Vv) + g(Wv) ⊂ ϕ(v) + ψ(v) + T0 + T0 ⊂ (ϕ+ ψ)(v) + U0 ⊂ U.

As V is compact and {Uv}v∈V is an open cover of V , there is a finite subset S of V
such that V ⊂ ⋃v∈S Uv. Then clearly

ϕ ∈
⋂
v∈S

K(Vv, ϕ(v) + T0) and ψ ∈
⋂
v∈S

K(Wv, ψ(v) + T0).

Let f ∈ ⋂v∈S K(Vv, ϕ(v) + T0) and g ∈ ⋂v∈S K(Wv, ψ(v) + T0) and let v ∈ V .
Then v ∈ Uv′ for some v′ ∈ S, hence

(f + g)(v) = f(v) + g(v) ∈ f(Uv′ ∩ V ) + g(Uv′ ∩ V ) ⊂ f(Vv′) + g(Wv′).

As
f(Vv′) + g(Wv′) ⊂ ϕ(v′) + ψ(v′) + T0 + T0 ⊂ U,

we have (f + g)(V ) ⊂ U . Hence, the open subset(⋂
v∈S

K(Vv, ϕ(v) + T0)
)
×
(⋂
v∈S

K(Wv, ψ(v) + T0)
)

of C × C is an open neighbourhood of (ϕ, ψ) contained in π−1(K(V, U)). It follows
that the map π is continuous, which finishes the proof.

Let G be a topological group, and let A be a topological G-module. For g ∈ G
and ϕ ∈ C(G,A), define gϕ to be the map sending h to ϕ(hg). The latter map
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is continuous, since it is the composition of two continuous maps, namely right-
multiplication by g on G followed by ϕ. Moreover, it is easy to see that this action
defines a G-module structure on C(G,A). However, the following example shows
that this action is not always continuous.

Example 1.22. Let G be the topological group R∞ endowed with the product
topology. Moreover, let A be the topological group R, and let A be a topological
G-module via the trivial action of G on A. We will show that the map

π : G× C(G,A) −→ C(G,A)

given by (g, ϕ) 7→ gϕ is not continuous.
To this end, let 0 be the neutral element of R∞, and consider the open

K({0}, (−1, 1)) of C(G,A). Let 0 be the neutral element of C(G,A), which sends
g ∈ G to 0 ∈ A, and note that

(0,0) ∈ π−1(K({0}, (−1, 1))),

since we have 0 · 0(0) = 0(0) = 0.
Now, suppose that π−1(K({0}, (−1, 1))) is open in G × C(G,A). Then there

are, for some n ∈ Z≥1, open sets K(V1, U1), . . . ,K(Vn, Un) in C(G,A) such that

0 ∈
n⋂
i=1

K(Vi, Ui),

and an open neighbourhood W0 of 0 ∈ G such that

W0 ×
n⋂
i=1

K(Vi, Ui) ⊂ π−1(K({0}, (−1, 1))).

We may assume without loss of generality that the Vi are non-empty. Note that
for all i = 1, . . . , n the open sets Ui are open neighbourhoods of 0 ∈ A, since
0 ∈ K(Vi, Ui). Hence, there is an open interval (−ε, ε) that is contained in every Ui
for i = 1, . . . , n.

By definition of the product topology, we have

W0 =
∞∏
i=1

Wi,

where for all i ∈ Z≥1, the set Wi is an open subset of R, and Wi = R for all but
finitely many i ∈ Z≥1. Choose i0 ∈ Z≥1 such that Wi0 = R, and consider the
continuous map πi0 : G −→ A that projects onto the i0th coordinate, that is, the
map sending g = (gi)∞i=1 ∈ G to gi0 .

Since for i = 1, . . . , n the set Vi is compact, its image under πi0 is compact in
R. Hence, for i = 1, . . . , n, we may choose Ni ∈ R>0 such that πi0(Vi) ⊂ [−Ni, Ni].
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Let N = max{N1, . . . , Nn} and let t ∈ R>0 be such that |t| < ε
N
. Let ψt : A −→ A

be the continuous map sending a ∈ A to ta. Then observe that for all i = 1, . . . , n
we have

(ψt ◦ πi0)(Vi) ⊂ (−ε, ε),

from which it follows that

ψt ◦ πi0 ∈
n⋂
i=1

K(Vi, Ui).

However, we do not have (ψt ◦ πi0)(W0) ⊂ (−1, 1). Indeed, consider the element
(gi)∞i=1 of W0 having i0th coordinate equal to 1

t
, and note that it maps to 1 ∈ R

under ψt ◦ πi0 , which is not an element of (−1, 1). This contradicts

W0 ×
n⋂
i=1

K(Vi, Ui ⊂ π−1(K({0}, (−1, 1))),

hence the map π is not continuous.

One may note that the topological group R∞ of the example above is not
locally compact. This is in fact the only obstacle preventing the action from being
continuous, as the following proposition shows.

Recall that a locally compact topological space is a topological space such
that every point has a compact neighbourhood. Equivalently, every point has a
neighbourhood whose closure is compact.

Proposition 1.23. Let G be a locally compact topological group, and let A be an
abelian topological group. Then C(G,A) is a topological G-module.

Proof. For ease of notation write C for C(G,A). We have to show that

π : G× C −→ C

defined by (g, ϕ) −→ g · ϕ is continuous. To this end, let (g, ϕ) ∈ π−1(K(V, U)) for
some K(V, U) in the subbase of C. We will find an open neighbourhood of g in G
and an open neighbourhood of ϕ in C such that their product, which is an open
neighbourhood of (g, ϕ) in G× C, is inside π−1(K(V, U)).

Note that V g ⊂ ϕ−1(U). As V g is compact, there exists an open neighbour-
hood U1 of 1 ∈ G satisfying V g · U1 ⊂ ϕ−1(U). Choose an open neighbourhood S1

of 1 ∈ G such that S1 ⊂ U1 and S1 ⊂ U1. Observe that V g · S1 ⊂ ϕ−1(U).
As G is locally compact, there exists an open neighbourhood V1 of 1 ∈ G such

that V1 is compact. Note that S1 ∩ V1 is compact, since it is closed in the compact
set V1. Moreover

V g ·
(
S1 ∩ V1

)
⊂ ϕ−1(U), since S1 ∩ V1 ⊂ S1 ⊂ U1.
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It follows that ϕ(V g ·
(
S1 ∩ V1

)
) ⊂ U , and since the product of the compact sets

V g and S1 ∩ V1 is again compact, we have ϕ ∈ K(V g(S1 ∩ V1), U). As g(S1 ∩ V1) is
clearly an open neighbourhood of g, we have

(g, ϕ) ∈ g(S1 ∩ V1)×K(V g(S1 ∩ V1), U).

Let h ∈ g(S1 ∩ V1) and ψ ∈ K(V g(S1 ∩ V1), U). Note that

hψ(V ) = ψ(V h) ∈ ψ(V g(S1 ∩ V1)) ⊂ U,

so that (h, ψ) ∈ π−1(K(V, U)). It follows that

(g(S1 ∩ V1))×K(V g(S1 ∩ V1), U)

is an open neighbourhood of (g, ϕ) contained in π−1(K(V, U)), hence π is continuous.

Lemma 1.24. Let G be a topological group, and let A be an abelian group. Then
the evaluation map ev1 : C(G,A) −→ A defined by ϕ 7→ ϕ(1) is a continuous group
homomorphism.

Proof. It is clear that ev1 is a group homomorphism. Let U ⊂ A be open, and note
that ev−1

1 (U) = K({1}, U). It follows that ev1 is a continuous group homomorphism.

Proposition 1.25. Let G be a locally compact topological group, and let A be an
abelian group. Then for every n ∈ Z≥1 we have Hn(G,C(G,A)) = 0.

Proof. Let n ∈ Z>0, and let ϕ : Gn −→ C(G,A) be an element of Zn(G,C(G,A)).
We will show that ϕ is an n-coboundary by constructing ψ ∈ Cn−1(G,A) that maps
to ϕ via the boundary map dn−1. Then it follows that [ϕ] = [0] ∈ Hn(G,A).

To this end, define ψ : Gn−1 −→ C(G,A) as the map sending (g1, . . . , gn−1) to
the map sending g to ϕ(g, g1, . . . , gn−1)(1), that is, for g1, . . . , gn−1, g ∈ G we have

ψ(g1, . . . , gn−1)(g) = ϕ(g, g1, . . . , gn−1)(1).

Note that for g1, . . . , gn−1 ∈ G the map ψ(g1, . . . , gn−1) is continuous, as it is
the composition of the continuous map ϕ|G×{g1}×...×{gn−1} and the evaluation map
ev1 : C(G,A) −→ A. Hence, the map ψ is well-defined.

To show that ψ is continuous, let K(V, U) be an open of C(G,A), and let

σ = (g1, . . . , gn−1) ∈ ψ−1(K(V, U)).

Write W for the open set ϕ−1(ev−1
1 (U)), and note that ϕ(V, σ)(1) ⊂ U is equivalent

to (V, σ) ⊂ ϕ−1(ev−1
1 (U)) = W . Since W is open, we have for any v ∈ V an open

neighbourhood of (v, σ) contained in W , that is, there is an open neighbourhood Uv
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of v ∈ G and an open neighbourhood U(v,σ) of σ in Gn−1 such that Uv × U(v,σ) is an
open neighbourhood of (v, σ) inside of W .

As the Uv for v ∈ V form an open cover of V and V is compact, there exists
a finite subset S of V such that V ⊂ ⋃v∈S Uv by compactness of V . Clearly the set⋂
v∈S U(v,σ) is an open neighbourhood of (V, σ) contained in W . This shows that ψ

is continuous.
Now, note that for g1, . . . , gn, g ∈ G we have

(g1ψ)(g2, . . . , gn)(g) = ψ(g2, . . . , gn)(gg1) = ϕ(gg1, g2, . . . , gn)(1).

Moreover, note that for g1, . . . , gn, g ∈ G

dn−1(ψ)(g1, . . . , gn)(g) =

= (g1ψ)(g2, . . . , gn)(g) +
n−1∑
i=1

(−1)iψ(g1, . . . , gigi+1, . . . , gn)(g) +

+(−1)nψ(g1, . . . , gn−1)(g)

= ϕ(gg1, g2, . . . , gn)(1) +
n−1∑
i=1

(−1)iϕ(g, g1, . . . , gigi+1, . . . , gn)(1) +

+(−1)nϕ(g, g1, . . . , gn−1)(1)

= (ϕ(gg1, g2, . . . , gn) +
n−1∑
i=1

(−1)iϕ(g, g1, . . . , gigi+1, . . . , gn) +

+(−1)nϕ(g, g1, . . . , gn−1))(1).

Rename g to g0 and note that

(ϕ(g0g1, g2, . . . , gn)+
n−1∑
i=1

(−1)iϕ(g0, g1, . . . , gigi+1, . . . , gn)+(−1)nϕ(g0, g1, . . . , gn−1))(1)

is equal to(
−

n−1∑
i=0

(−1)i+1ϕ(g0, g1, . . . , gigi+1, . . . , gn)− (−1)n+1ϕ(g0, . . . , gn−1)
)

(1).

As dnϕ = 0, it follows that

−
n−1∑
i=0

(−1)i+1ϕ(g0, g1, . . . , gigi+1, . . . , gn)−(−1)n+1ϕ(g0, . . . , gn−1) = g0·ϕ(g1, . . . , gn),

so that

(dn−1ψ)(g1, . . . , gn)(g0) = (g0ϕ)(g1, . . . , gn)(1) = ϕ(g1, . . . , gn)(g0).

Hence we have dn−1ψ = ϕ.

Lemma 1.26. Let G be a locally compact topological group, and let A be a topological
G-module. Then the map iA : A −→ C(G,A) sending a ∈ A to the map πa that
sends g ∈ G to ga, is an injective continuous G-module homomorphism that induces
a continuous group isomorphism from A to iA(A).
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Proof. Let a ∈ A and note that πa : G −→ A given by g 7→ ga is continuous, since
it is the composition of the continuous map G −→ G × A given by h 7→ (h, a) and
the map defining the action of G on A. Hence, the map iA is well defined. Moreover,
it is easy to check that iA is an injective G-module homomorphism.

To see continuity, let K(V, U) be an open of C(G,A) and let a ∈ i−1
A (K(V, U)).

Note that πa(V ) = V a ⊂ U . By continuity of the action of G on A, there exists
for v ∈ V an open neighbourhood Vv of v in G and an open neighbourhood Uv of a
in A, such that VvUv ⊂ U . Note that {Vv}v∈V forms an open cover of V . As V is
compact, there is a finite subset S of V such that V ⊂ ⋃v∈S Vv.

Note that the open set ⋂v∈S Uv is a neighbourhood of a in A that satisfies

V ·
(⋂
v∈S

Uv

)
⊂ U.

Hence, it is an open neighbourhood of a in A contained in i−1
A (K(V, U)), from which

it follows that iA is continuous.
Now, consider the evaluation map ev1 : C(G,A) −→ A given by ϕ 7→ ϕ(1),

and note that it is a continuous group homomorphism. For any a ∈ A we have

ev1(iA(a)) = πa(1) = a,

hence ev1 induces an inverse of iA : A −→ iA(A). It follows that A is isomorphic to
iA(A) as topological groups.

Proposition 1.27. Let G be a locally compact topological group, and let A be a
topological G-module. Then the sequence

0 −→ A
iA−→ C(G,A) π−→ C(G,A)/iA(A) −→ 0

where C(G,A)/iA(A) is endowed with the quotient topology and π is the quotient
map, is a well-adjusted short exact sequence of topological G-modules that is split as
a sequence of abelian topological groups.

Proof. It is clear that it is a short exact sequence of topological G-modules. Now,
as sequence of abelian topological groups, the map ev1 is a retraction of iA, by
the previous lemma. Hence, the sequence splits as sequence of abelian topological
groups. By Proposition 1.11, the sequence is well-adjusted.

5. Conjugation on cohomology groups

Let G be a topological group, and let A be a topological G-module. For g ∈ G, let
ϕg be the endomorphism of G given by h 7→ g−1hg, and let ψg be the endomorphism
of the abelian group A given by a 7→ ga. It is clear that these are continuous group
homomorphisms. Moreover, for a ∈ A and h ∈ G we have

ψg(ϕg(h)a) = ψg(g−1hga) = hga = hψg(a),
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so for any g ∈ G the pair (ϕg, ψg) is compatible.

Theorem 1.28. Let G be a locally compact topological group, and let A be a topo-
logical G-module. Then for every g ∈ G the compatible pair (ϕg, ψg) induces the
identity on cohomology groups, i.e., for every n ∈ Z≥0 the map

Hn(ϕg, ψg) : Hn(G,A) −→ Hn(G,A)

is the identity.

Proof. Let g ∈ G. We prove the statement by induction on n. Let n = 0, and
note that H0(ϕg, ψg) : AG −→ AG is given by a 7→ ga. As g acts trivially on AG, it
follows that H0(ϕg, ψg) is the identity.

Now, suppose n ∈ Z>0 is such that for every topological G-module A the
map Hn−1(ϕg, ψg) is the identity. Note that (ϕg, ψg) is a compatible pair for every
topological G-module A, hence we have a pair for C(G,A) and for C(G,A)/iA(A)
too, which we will by abuse of notation still denote by (ϕg, ψg). One easily checks
that the diagram

0 // A
iA //

ψg

��

C(G,A) //

ψg

��

C(G,A)/iA(A)
ψg

��

// 0

0 // A
iA // C(G,A) // C(G,A)/iA(A) // 0

is commutative, hence Theorem 1.16 gives the following commutative diagram of
long exact sequences

0 // AG //

H0(ϕg ,ψg)
��

C(G,A)G //

H0(ϕg ,ψg)
��

(C(G,A)/iA(A))G δ0 //

H0(ϕg ,ψg)
��

. . .

0 // AG // C(G,A)G // (C(G,A)/iA(A))G δ0 // . . .

of cohomology groups. Note that Proposition 1.25 implies that

Hn(G,C(G,A)) = 0,

so that
Hn−1(G,C(G,A)/iA(A))

Hn−1(ϕg ,ψg)
��

δn−1
// Hn(G,A)

Hn(ϕg ,ψg)
��

// 0 // . . .

Hn−1(G,C(G,A)/iA(A)) δn−1
// Hn(G,A) // 0 // . . . .

By the induction hypotheses Hn−1(ϕg, ψg) is the identity, so that the commutativity
of the diagram implies that Hn(ϕg, ψg) : Hn(G,A) −→ Hn(G,A) is also the identity,
which concludes the proof.
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We will now prove the above statement without the assumption of local com-
pactness. For G a topological group, A a topological G-module, g ∈ G and n ∈ Z≥0,
the proof of the more general theorem below is based on giving a chain homotopy
between the conjugation map Cn(ϕg, ψg) : Cn(G,A) −→ Cn(G,A) and the identity
map idn : Cn(G,A) −→ Cn(G,A). Recall that a chain homotopy between these
maps is a set of maps

{sn : Cn+1(G,A) −→ Cn(G,A)}n∈Z≥0

such that for each n ∈ Z≥0

Cn(ϕg, ψg)− idn = dn−1 ◦ sn + sn+1 ◦ dn,

where d−1 = 0. Then the map Hn(ϕg, ψg) : Hn(G,A) −→ Hn(G,A) sends [f ] ∈
Hn(G,A) to [dn−1(sn(f)) + sn+1(dn(f)) + idn(f)], which is equal to [idn(f)], since
dn−1(sn(f)) ∈ im(dn−1) and dn(f) = 0. Hence, the maps Cn(ϕg, ψg) and idn induce
the same maps on cohomology groups.

Theorem 1.29. Let G be a topological group, and let A be a topological G-module.
Then for every g ∈ G the compatible pair (ϕg, ψg) induces the identity on cohomology
groups.

Proof. For ease of notation and the sake of clarity, we write σ for g, and for h ∈ G
we write hσ for ϕσ(h). Moreover, for n ∈ Z≥0 we write the coboundary map dn as
a sum of three maps dn,1, dn,2 and dn,3, which for F ∈ Cn(G,A) and g1, . . . , gn ∈ G
are given by

dn,1(F )(g1, . . . , gn+1) = g1F (g2, . . . , gn+1)

dn,2(F )(g1, . . . , gn+1) =
n∑
i=1

(−1)iF (g1, . . . , gigi+1, . . . , gn+1)

dn,3(F )(g1, . . . , gn+1) = (−1)n+1F (g1, . . . , gn).

We will show that for n ∈ Z≥1 a chain homotopy sn between Cn(ϕσ, ψσ) and idn is
given by sending F ∈ Cn(G,A) to the map sending (g1, . . . , gn−1) ∈ Gn−1 to

F (σ, gσ1 , . . . , gσn−1)− F (g1, σ, g
σ
2 , . . . , g

σ
n−1) + F (g1, g2, σ, g

σ
3 , . . . , g

σ
n−1)− . . .

. . .+ (−1)nF (g1, g2, . . . , gn−2, σ, g
σ
n−1) + (−1)n+1F (g1, . . . , gn−1, σ).

Moreover, for n = 0 the chain homotopy s0 is just the zero map. It is clear that for
n ∈ Z≥0, the map sn(f) is continuous and that sn(f + g) = sn(f) + sn(g), hence sn
is a well-defined group homomorphism. One easily checks that C0(ϕσ, ψσ) − id0 =
d−1 ◦ s0 + s1 ◦ d0.

Now, let n ∈ Z≥1. For F ∈ Cn(G,A) and i ∈ {1, . . . , n}, we let

Fi,σ : Gn−1 −→ A
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be the map sending (g1, . . . , gn−1) to F (g1, . . . , gi−1, σ, g
σ
i , . . . , g

σ
n−1). Note that

F1,σ(g1, . . . , gn−1) = F (σ, gσ1 , . . . , gσn−1) and Fn,σ(g1, . . . , gn−1) = F (g1, . . . , gn−1, σ).

Then clearly for (g1, . . . , gn−1) ∈ Gn−1, we have

sn(F )(g1, . . . , gn−1) =
n∑
i=1

(−1)i+1Fi,σ(g1, . . . , gn−1).

Now, fix F ∈ Cn(G,A) and g = (g1, . . . , gn) ∈ Gn. Then

sn+1dnF = sn+1dn,1F + sn+1dn,2F + sn+1dn,3F,

and observe that

(sn+1dn,1F )(g) =
n+1∑
i=1

(−1)i+1(dn,1F )i,σ(g)

= σF (gg1 , . . . , ggn) +
n∑
i=1

(−1)ig1Fi,σ(g2, . . . , gn)

and

(sn+1dn,3F )(g) =
n+1∑
i=1

(−1)i+1(dn,3F )i,σ(g)

= (−1)n(−1)n+1F (g1, . . . , gn) + (−1)n+1
n∑
i=1

(−1)i+1Fi,g(g1, . . . , gn−1)

= −F (g1, . . . , gn) +
n∑
i=1

(−1)n+iFi,g(g1, . . . , gn−1).

Moreover

(sn+1dn,2F )(g) =
n+1∑
i=1

(−1)i+1(dn,2F )i,σ(g)

=
n+1∑
i=1

(−1)i+1(dn,2F )(g1, . . . , gi−1, σ, g
σ
i , . . . , g

σ
n)

where for i ∈ {1, . . . , n+ 1} we have

(dn,2F )(g1, . . . , gi−1, σ, g
σ
i , . . . , g

σ
n) =

=
i−2∑
j=1

(−1)jF (g1, . . . , gjgj+1, . . . , gi−1, σ, g
σ
i , . . . , g

σ
n)+

+ (−1)i−1F (g1, . . . , gi−1σ, g
σ
i , . . . , g

σ
n) + (−1)iF (g1, . . . , gi−1, giσ, . . . , g

σ
n)+ (1)

+
n−1∑
j=i

(−1)j+1F (g1, . . . , gi−1, σ, g
σ
i , . . . , (gjgj+1)σ, . . . , gσn).
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Note that the two terms of (1) cancel when summed over i, so that

(sn+1dn,2F )(g) =
n∑
i=1

(−1)i+1
n−1∑
j=1

(−1)j+1Fi,σ(g1, . . . , gjgj+1, . . . , gn).

On the other hand, we have

(dn−1snF )(g) = (dn−1,1snF + dn−1,2snF + dn−1,3snF )(g),

where

(dn−1,1snF )(g) = g1 ·
n∑
i=1

(−1)i+1Fi,g(g2, . . . , gn)

(dn−1,2snF )(g) =
n−1∑
j=1

(−1)j
n∑
i=1

(−1)i+1Fi,g(g1, . . . , gjgj+1, . . . , gn)

(dn−1,3snF )(g) = (−1)n
n∑
i=1

(−1)i+1Fi,g(g1, . . . , gn−1).

As

sn+1dnF + dn−1snF = sn+1dn,1F + sn+1dn,2F + sn+1dn,3F +
+dn−1,1snF + dn−1,2snF + dn−1,3snF,

one easily sees from the above that

(sn+1dnF + dn−1snF )(g) = σF (gσ1 , . . . , gσn)− F (g1, . . . , gn) = Cn(ϕσ, ψσ)− idn,

which shows that the sn indeed form a chain homotopy between Cn(ϕσ, ψσ) and idn.

Let G be a topological group, and let A be a topological G-module. Note that
for every n ∈ Z≥0 there is a natural action of the center Z(G) of G on Hn(G,A) via
the action of G on A. Indeed, the functor Hn(G, ·) gives a group homomorphism
EndG(A) −→ End(Hn(G,A)). As the functor is additive, the latter map is a ring
homomorphism, which, in turn, induces a group homomorphism

g : AutG(A) −→ Aut(Hn(G,A))

on the units. Observe that the image of Z(G) under the homomorphism f : G −→
Aut(A) defining the action of G on A is clearly inside AutG(A). Hence, we can
compose f and g. This gives the homomorphism

g ◦ f : Z(G) −→ Aut(Hn(G,A))

defining the action of Z(G) on Aut(Hn(G,A)).
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Proposition 1.30. Let G be a topological group, and let A be a topological G-
module. Then for every g ∈ Z(G) and every n ∈ Z≥0, the endomorphism

Hn(G,ψg) : Hn(G,A) −→ Hn(G,A)

is equal to the identity on Hn(G,A).

Proof. We have Hn(G,ψg) = Hn(idG, ψg) = Hn(ϕg, ψg), where the latter equality
holds since g ∈ Z(G). The proposition now follows from Theorem 1.29.

6. Topological group extensions

In this section we briefly address the extension theory of topological groups by only
introducing the necessary definitions and the relation to cohomology. Although our
definitions are slightly more general than in [Hu52], the arguments are exactly the
same. Therefore, we do refer to [Hu52] for more details.

Throughout this chapter, let G be a topological group and let A be a topolog-
ical G-module.

Definition 1.31. A topological group extension of G by A is a triple (E, f, g) con-
sisting of a topological group E together with a well-adjusted short exact sequence

0 −→ A
f−→ E

g−→ G −→ 1

of topological groups, such that for all a ∈ A and x ∈ E, we have xf(a)x−1 =
f(g(x) · a).

Notation 1.32. We will often denote the extension (E, f, g) by the well-adjusted
short exact sequence that is associated with it, or just by E when the maps f and
g are understood.

Definition 1.33. Let (E, f, g) and (E ′, f ′, g′) be two topological extensions of G
by A. Then (E, f, g) and (E ′, f ′, g′) are said to be equivalent if there exists an
isomorphism ϕ : E −→ E ′ of topological groups such that the diagram

E
g

  
ϕ

��

0 // A

f
>>

f ′   

G // 1

E ′
g′

>>

commutes.
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It is easy to check that being equivalent as in the definition above is an equiv-
alence relation on the class of all topological extensions of G by A. For convenience,
let X denote the set of all equivalence classes of topological extensions of G by A.

Let (E, f, g) be a topological extension of G by A, and let s be a continuous
section of g. Then associating to (E, f, g), the map G2 −→ A given by

(g1, g2) 7→ s(g1)s(g2)s(g1g2)−1,

induces a well-defined map ϕ : X −→ H2(G,A), cf. [Hu52].

Theorem 1.34. The map ϕ above is a bijection of sets.

Proof. See [Hu52].

The theorem above enables us to identify elements of H2(G,A) with equiva-
lence classes of topological extensions of G by A, and vice versa.





chapter 2

On the cohomology of cyclotomic Galois
groups

1. The profinite completion of the ring of integers

Let n ∈ Z≥1, and observe that for every m ∈ Z≥1 dividing n, there is a unique ring
homomorphism

Z/nZ −→ Z/mZ.

The rings Z/nZ, n ∈ Z≥1, together with these ring homomorphisms form a projec-
tive system, and we let Ẑ denote its projective limit, that is, we have

Ẑ = lim←−
n≥1

Z/nZ.

It is the profinite completion of the ring Z. In particular, it is a profinite ring
containing Z as a dense subring. Its group of units Ẑ∗ is equal to the projective
limit lim←−n≥1(Z/nZ)∗ with the obvious maps. Recall that for a prime number p, the
ring of p-adic integers Zp is the projective limit lim←−i≥0 Z/piZ with the obvious maps.
As projective limits commute with products, it follows by the Chinese remainder
theorem that

Ẑ ∼=
∏

p prime
Zp

as topological rings. Hence, we also have

Ẑ∗ ∼=
∏

p prime
Z∗p.

One easily checks that for n ∈ Z≥0 the ring Ẑ/nẐ is isomorphic to Z/nZ.

Definition 2.1. Let R be a topological ring. An R-module M is called topological
if M is a topological group and the scalar multiplication of R on M is continuous.

Lemma 2.2. (a) Let A be a discrete abelian torsion group. Then there is a unique
Ẑ-module structure on A. Moreover, this structure is topological.

(b) Any group homomorphism of discrete abelian torsion groups is Ẑ-linear.

Proof. Let A be an abelian torsion group, and note that

A =
∞⋃
n=1

A[n] = lim−→
n≥1

A[n],

where A[n] = {a ∈ A : na = 0} is the n-torsion subgroup of A. The endomorphism
ring End(A) is equal to the projective limit of the projective system

{End(A[n]), fn,m : n,m ∈ Z≥1,m|n},
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where fn,m : End(A[n]) −→ End(A[m]) is given by restriction. There is a unique ring
homomorphism Z/nZ −→ End(A[n]) for each n ∈ Z≥1, where Z/nZ is isomorphic
to Ẑ/nẐ. Composing with the quotient map Ẑ −→ Ẑ/nẐ, we get unique ring
homomorphisms Ẑ −→ End(A[n]), which form a compatible system by uniqueness
of the maps. Thus, there is a unique ring homomorphism Ẑ −→ End(A) defining
the Ẑ-module structure on A.

Give A the discrete topology, and observe that A is a topological Ẑ-module if
the annihilator AnnẐ(a) = {r ∈ Ẑ : ra = 0} of each a ∈ A is an open ideal of Ẑ. As
the Ẑ-annihilator of a ∈ A is the open ideal nẐ, where n is the order of a, it follows
that A is a topological Ẑ-module.

Part (b) follows from the fact that group homomorphisms map n-torsion to
n-torsion, for n ∈ Z≥1.

Lemma 2.3. (a) Let A be a profinite abelian group. Then there is a unique Ẑ-
module structure on A. Moreover, this structure is topological.

(b) Any continuous group homomorphism of profinite abelian groups is Ẑ-linear.

Proof. As profinite abelian groups are Pontryagin dual to discrete abelian tor-
sion groups and Ẑ is commutative, we obtain a proof of this lemma by dualiz-
ing the proof of Lemma 2.2. We sketch a proof of this and leave the details to
the reader. First, consider the projective system {A/nA, fn,m : n,m ∈ Z≥0,m|n}
where fn,m : A/nA −→ A/mA sends a + nA ∈ A/nA to a + mA. One checks that
A ∼= lim←−n≥1A/nA as topological groups. Then

End(A) ∼= lim←−
n≥1

End(A/nA),

where the maps End(A/nA) −→ End(A/mA) are the natural maps, for m,n ∈ Z≥1

with m dividing n. Hence, a ring homomorphism Ẑ −→ End(A) is a compatible
system of ring homomorphisms Ẑ −→ End(A/nA), n ≥ 1. As nZ annihilates A/nA
and Ẑ/nẐ ∼= Z/nZ, these homomorphisms exist. Moreover, since they are unique,
we have a unique Ẑ-module structure on A.

To see that this action is topological, let A be the projective limit of a projective
system {Ai, fi,j : i, j ∈ I, i ≤ j} of finite abelian groups. As the Ai are discrete
abelian torsion groups, the ring Ẑ acts continuously on them. It follows that Ẑ acts
continuously on the projective limit A of the system. By uniqueness, this action
coincides with the action above. Hence, the Ẑ-module structure on A is topological.

Part (b) follows from the fact that a homomorphism A −→ B of profinite
groups maps nA to nB for every n ∈ Z≥1.

Convention 2.4. Let A be a profinite abelian group. By Lemma 2.3 there is a
unique Ẑ-module structure on A. Thus, by restriction A is a Ẑ∗-module. We call
this the natural action of Ẑ∗ on A.
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Now, we describe the closed ideals of Ẑ.

Definition 2.5. A Steinitz number m is a formal expression

m =
∏

p prime
pm(p)

with each m(p) ∈ {0, 1, 2, . . . ,∞}.

Note that each positive integer can be identified with a Steinitz number.
Moreover, given a family {mi}i∈I of Steinitz numbers, one can form their product∏
i∈I mi, their greatest common divisor gcdi∈I(mi) and their least common multiple

lcmi∈I(mi) in an obvious manner. One also defines when a Steinitz number divides
another in an obvious way. See [RZ09, p. 33] for more details.

Proposition 2.6. Let the set of Steinitz numbers be ordered by divisibility, and let
the set of closed ideals of Ẑ be ordered by inclusion. Then there is an order-reversing
bijection

f : {Steinitz numbers} −→ {closed ideals of Ẑ}

of sets, given by sending the Steinitz number m to the closed ideal ⋂n|m nẐ, where n
ranges over the positive integers dividing m. Moreover, its inverse is order-reversing
and sends a closed ideal W of Ẑ to the least common multiple of all n ∈ Z≥1 such
that W ⊂ nẐ.

Proof. Let m be a Steinitz number. For n ∈ Z≥1, multiplication by n defines a
continuous group endomorphism of Ẑ, so by compactness of Ẑ we have that nẐ is
compact. Moreover, since Ẑ is Hausdorff, the ideal nẐ is closed. It follows that⋂
n|m,n<∞ nẐ is a closed ideal of Ẑ. This shows that f is well-defined. It is clear that

f is order-reversing.
Observe that an ideal of a product ∏i∈I Ri of topological rings is closed if and

only if it is of the form ∏
i∈I Ji, where Ji is a closed ideal of Ri for i ∈ I. Recall that

for a prime number p, the closed ideals of Zp are the ideals piZp with i ∈ Z≥0∪{∞},
where we put p∞Zp = 0.

Let W be a closed ideal of Ẑ. As Ẑ ∼=
∏
p Zp as topological rings, the ideal

W corresponds to an infinite product of closed ideals pm(p)Zp of Zp for each prime
p. Write mW = ∏

p p
m(p) and observe that W = ⋂

n|mW ,n<∞ nẐ. It is clear that this
defines the inverse of f , and that it is order-reversing.

Notation 2.7. For a Steinitz number m, we denote the closed ideal ⋂n|m,n<∞ nẐ
of Ẑ by mẐ.

Let K be a field of characteristic 0, and let K be an algebraic closure of K.
For n ∈ Z≥1 and any algebraic extension L of K contained in K, let

µn(L) = {ξ ∈ L∗ : ξn = 1}
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be the subgroup of K∗ consisting of the nth roots of unity in L, and let µn = µn(K)
denote the subgroup of K∗ consisting of all nth roots of unity in K. Moreover, let

µ(L) =
∞⋃
n=1

µn(L)

be the subgroup of K∗ consisting of all roots of unity of L, and let

µ = µ(K) =
∞⋃
n=1

µn

be the subgroup of K∗ consisting of all roots of unity in K.
We describe the subgroups of µ by closed ideals of Ẑ in the following way. Give

µ the discrete topology, and consider the topological Ẑ-module structure on it (cf.
Lemma 2.2). As µ is multiplicatively written, we will use exponential notation for
the Ẑ-module structure on µ, that is, for r ∈ Ẑ and ξ ∈ µ we write ξr for the action
of r on ξ.

Proposition 2.8. Let K, K and µ be as above. Then there is an inclusion-reversing
bijection

g : {closed ideals of Ẑ} −→ {subgroups of µ}

of sets, given by sending a closed ideal W to the W -torsion subgroup

µ[W ] = {ξ ∈ µ : ξW = 1}

of µ. Moreover, its inverse is also inclusion-reversing, sending a subgroup ν of µ to
the Ẑ-annihilator AnnẐ(ν) = {r ∈ Ẑ : νr = 1} of ν.

Proof. First, observe that for n ∈ Z≥1 the subgroup µn of µ is the unique subgroup
of order n, and its Ẑ-annihilator is equal to nẐ.

Let W be a closed ideal of Ẑ, and write W = mẐ, where m is the Steinitz
number corresponding to W via Proposition 2.6. One easily checks that µ[W ] =⋃
n|m,n<∞ µn, so that

AnnẐ(µ[W ]) = AnnẐ

 ⋃
n|m,n<∞

µn

 =
⋂

n|m,n<∞
AnnẐ(µn) =

⋂
n|m,n<∞

nẐ = mẐ.

Analogously one shows that for a subgroup ν of µ we have

µ[AnnẐ(ν)] = ν.

Hence, the map g is a bijection, whose inverse is given by sending the subgroup ν
of µ to AnnẐ(ν).
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Now, let K and µ be as above, and consider the topological group End(µ),
endowed with the compact-open topology. Observe that

End(µ) = End
lim−→
n≥1

µn

 ∼= lim←−
n≥1

Hom (µn, µ) ∼= lim←−
n≥1

Z/nZ = Ẑ.

Thus, the topological ring End(µ) is isomorphic to Ẑ. In particular, the topological
group Aut(µ) = End(µ)∗ is isomorphic to Ẑ∗.

Let n ∈ Z≥1, and note that for every m ∈ Z≥1 dividing n, there is a group
homomorphism µn −→ µm sending ξ ∈ µn to ξn/m. This defines a projective system,
and we define the Tate module µ̂ of the multiplicative group as the projective limit
of this system. By Lemma 2.3 it is a profinite module over Ẑ. Moreover, there is a
compatible system of group isomorphisms µn −→ Z/nZ, so that µ̂ is isomorphic to
Ẑ as a Ẑ-module, that is, the Tate module µ̂ is a free Ẑ-module of rank 1.

2. A maximal radical extension

In this section we summarize the exposition done in §2 of [LMS13], and we refer to
this article for the details.

Let Q∗ be an algebraic closure of Q. For r ∈ Q∗, we let F∞,r be the field
obtained by adjoining to Q the group of all radicals

R∞,r = {x ∈ Q∗ : xn ∈ 〈r〉 for some n ∈ Z≥1}

of r in Q∗, that is, the field F∞,r is the infinite Galois extension F∞,r = Q(R∞,r) of
Q. Observe that µ = µ(Q) ⊂ R∞. We give R∞,r the discrete topology, which in
particular gives µ the discrete topology.

Now we fix a rational number r ∈ Q∗ \ {±1} and drop the subscript ‘r’ in the
definitions above. There is a rational number r0 ∈ Q∗ \ {±1} uniquely determined
up to two signs, such that

R∞ ∩Q∗ = 〈r0〉 × 〈−1〉.

Let e be the index of the subgroup 〈r〉 × 〈−1〉 inside 〈r0〉 × 〈−1〉, and observe that
we have r = ±re0 or r = ±r−e0 .

As Q∗ is a divisible group, we may extend the injective group homomorphism
Z −→ Q∗ given by sending 1 ∈ Z to r0 to an injective group homomorphism
Q −→ Q∗, which we denote as

q 7→ rq0.

We fix such an embedding, so that we can write rQ
0 for its image in Q∗. With this

notation, we have
R∞ = rQ

0 × µ.



32 chapter 2. on the cohomology of cyclotomic galois groups

Let A = AutR∞∩Q∗(R∞) be the group of automorphisms of R∞ that restrict
to the identity on R∞ ∩ Q∗. It is the projective limit, over n ∈ Z≥1, of the finite
group AutRn,r∩Q∗(Rn,r) of those automorphisms of the group of nth radicals Rn,r =
{x ∈ Q∗ : xn ∈ 〈r〉} of r in Q that restrict to the identity on Rn,r ∩Q∗, and as such
it is a profinite group.

As µ̂ is a multiplicative group, we use exponential notation for the natural
action of Ẑ∗ on µ̂.

Proposition 2.9. Consider the short exact sequence

1 −→ µ̂ −→ A −→ Ẑ∗ −→ 1,

where the first map sends (ξn)n≥1 ∈ µ̂ to the map sending any nth root n
√
r0 of r0

to ξn n
√
r0, for all n ∈ Z≥1, and the second map is the composition of the restriction

map A −→ Aut(µ) and the isomorphism Aut(µ) ∼= Ẑ∗. Then the induced action of
Ẑ∗ on µ̂ is the natural action, and the map s : Ẑ∗ −→ A extending the action of Ẑ∗

on µ to the identity on rQ
0 , is a continuous section of the exact sequence. Moreover,

there is an isomorphism
A ∼= µ̂os Ẑ∗

of topological groups.

Proof. See [LMS13].

Let G = Gal(F∞/Q), and observe that by Galois theory we have a short exact
sequence

1 −→ Gal(F∞/Q(µ)) −→ G −→ Gal(Q(µ)/Q) −→ 1

of Galois groups. Since it is a sequence of profinite groups, it is well-adjusted. Recall
the canonical isomorphisms Gal(Q(µ)/Q) ∼= Aut(µ) and Aut(µ) ∼= Ẑ∗ of topological
groups, hence we have the well-adjusted short exact sequence

1 −→ Gal(F∞/Q(µ)) −→ G −→ Ẑ∗ −→ 1.

As Q(R∞) = F∞, there is an injective homomorphism

ι : G −→ A

of profinite groups, sending σ ∈ G to σ|R∞ . Furthermore, there is an injective
homomorphism

θ : Gal(F∞/Q(µ)) −→ µ̂

of profinite groups, sending σ ∈ Gal(F∞/Q(µ)) to
(
σ(r1/n

0 )
r

1/n
0

)
n≥1
∈ µ̂.
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Proposition 2.10. The map θ identifies Gal(F∞/Q(µ) with µ̂2, and the diagram

1 // µ̂2 f
//

��

G
g

//

ι

��

Ẑ∗ //

id
��

1

1 // µ̂ // A // Ẑ∗ // 1
of topological groups is commutative, where the lower row is described in Proposition
2.9, the map f is the composition of θ and the given map µ̂ −→ A, and g is the
composition of the restriction map G −→ Aut(µ) and the canonical isomorphism
Aut(µ) ∼= Ẑ∗. Moreover, the induced action of Ẑ∗ on µ̂2 is the natural action, the
upper row is not semisplit, and ι identifies G with a subgroup of index 2 in A.

Proof. See [LMS13].

Composing f with any isomorphism Ẑ −→ µ̂2 of profinite groups, we see that
G is a non-trivial topological extension of Ẑ∗ by Ẑ under the natural action. This
proves the (a) to (b) implication of Theorem 1 of the Introduction.

We conclude this section with an explicit description of G as a subgroup of A.
For u ∈ Ẑ∗ we let σu : Q(µ) −→ Q(µ) be the automorphism of Q(µ) corresponding
to u by the canonical isomorphism Gal(Q(µ)/Q) ∼= Ẑ∗ of topological groups.

As R∞ = rQ
0 ×µ, the field F∞ is the compositum of Q(rQ

0 ) and Q(µ), and the
embedding G ⊂ A = µ̂o Ẑ∗ amounts to a description of the field automorphisms of
F∞ in terms of their action on these constituents. The index 2 of G in A reflects the
fact that the intersection Q(rQ

0 )∩Q(µ) is equal to the quadratic field K = Q(√r0).
This implies that an element ((ξn)n≥1, u) ∈ A is in G if and only if

σu(
√
r0)

√
r0

= ξ2.

We can phrase this slightly more formally as follows.
Let ψK : A −→ µ2 be the map sending ((ξn)n≥1, u) ∈ A to ξ2 and note that

it is a continuous group homomorphism, and let χK : A −→ µ2 be the cyclotomic
character onA of conductor d = disc(K), that is, the character sending ((ξn)n≥1, u) ∈
A to σu(

√
r0)/√r0. Then G is the kernel of the quadratic character ψK · χK . We

summarize this in the following theorem.

Theorem 2.11. Let K = Q(√r0) and let χ : A −→ µ2 be the quadratic character
ψK · χK. Then the sequence

1 −→ G
ι−→ A

χ−→ µ2 −→ 1

of profinite groups is exact, and we can identify G with the subgroup of A = µ̂o Ẑ∗

consisting of the elements ((ξn)n≥1, u) ∈ A such that
σu(
√
r0)

√
r0

= ξ2.
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Proof. See [LMS13].

3. Galois groups of radical extensions

Throughout this section, the action of Ẑ∗ on Ẑ is the natural one.

Lemma 2.12. Let r ∈ Q∗ \ {±1}, and let r0 ∈ Q∗ such that R∞,r ∩Q∗ = 〈r0,−1〉.
Let G be the Galois group of F∞,r over Q, and let

0 −→ Ẑ i−→ G
j−→ Ẑ∗ −→ 1

be a short exact sequence of profinite groups such that the induced action of Ẑ∗ on
Ẑ is the natural one. Then the following statements hold.

(a) There is a unique continuous isomorphism η : µ̂2 −→ Ẑ such that i ◦ η = f ,
and the map j is equal to g, where f and g are defined in Proposition 2.10.

(b) Let ζ be a generator of µ̂, and let α : Ẑ∗ −→ Ẑ be the continuous map defined
by

α(u) =


0 if σu(

√
r0) = √r0,

1 otherwise.

Then s : Ẑ∗ −→ G defined by

s(u) = (ζα(u), u)

where we consider G as a subgroup of the semidirect product A = µ̂o Ẑ∗, is a
continuous set-theoretic section of the given exact sequence.

Proof. To prove (a), we first show that the images of i and f are equal to CG([G,G]).
To this end, note that Ẑ∗ is abelian, so that [G,G] ⊂ i(Ẑ). As i(Ẑ) is abelian, we
have

i(Ẑ) ⊂ CG(i(Ẑ)) ⊂ CG([G,G]).

Conversely, let x ∈ CG([G,G]). For u ∈ Ẑ, observe that i(2u) ∈ [G,G]. Indeed, let
y ∈ G be such that j(y) = −1. Then

yi(−u)y−1 = i(j(y) · −u) = i(u),

where the first equality comes from Definition 1.31 and the second follows from the
fact that Ẑ∗ acts on Ẑ in the natural way. Multiplying on the left by i(u) gives
i(u)yi(u)−1y−1 = i(2u) in G.

As x commutes with every element of [G,G] and i(2) ∈ [G,G], the equality

xi(2)x−1 = i(j(x) · 2)
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shows that i(2) = i(j(x) · 2). By injectivity of i, we have 2 = j(x) · 2, which is
equivalent to (j(x) − 1)2 = 0. As 2 is not a zero divisor in Ẑ, it follows that
j(x) = 1. Hence x ∈ ker j = i(Ẑ), so we may conclude that i(Ẑ) = CG([G,G]). In
the same way one shows that f(µ̂2) = CG([G,G]).

As i and f have the same image, there exists a unique isomorphism η : µ̂2 → Ẑ
of profinite groups such that the diagram

µ̂2 f
//

η
��

G

Ẑ
i

??

is commutative.
The maps f and i give rise to the same map G −→ Aut(CG([G,G])), where

Aut(CG([G,G])) is canonically isomorphic to Ẑ∗. This is exactly equal to the map
g and the map j, implying that g and j are equal. This proves (a).

To prove (b), observe that s is a section for the short exact sequence

1 −→ µ̂2 f−→ G
g−→ Ẑ∗ −→ 1

described in Proposition 2.10. As g and j are equal, the map s is also a section for
the given exact sequence.

Lemma 2.13. Let M be a topological Ẑ∗-module such that −1 ·m = −m for each
m ∈M . Then for each n ∈ Z≥0, the group Hn(Ẑ∗,M) has exponent dividing 2.

Proof. Let n ∈ Z≥0. Since the map ψ−1 is multiplication by −1 on M , the map
Hn(Ẑ∗, ψ−1) is multiplication by −1 on Hn(Ẑ∗,M). On the other hand, Proposition
1.30 implies that the map Hn(Ẑ∗, ψ−1) is equal to the identity on Hn(Ẑ∗,M). Hence,
multiplication by −1 on Hn(Ẑ∗,M) is equal to the identity, that is, for each x ∈
Hn(Ẑ∗,M) we have −1 · x = x. Consequently, for each x ∈ Hn(Ẑ∗,M) we have
0 = −1 · x− x = −2 · x, so that 2 · Hn(Ẑ∗,M) = 0 for each n ∈ Z≥0.

Theorem 2.14. There exists a group isomorphism

ϕ : H2(Ẑ∗, Ẑ) −→ Q∗/±Q∗2

that for every r ∈ Q∗ \ {±1} maps the equivalence class of any topological extension

0 −→ Ẑ −→ Gal(F∞,r/Q) −→ Ẑ∗ −→ 1

of Ẑ∗ by Ẑ, to ±r0Q∗2, where r0 ∈ Q∗ is such that

R∞,r ∩Q∗ = 〈−1, r0〉.
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Proof. By Lemma 2.13, the group Hn(Ẑ∗, Ẑ) has exponent dividing 2, for each
n ∈ Z≥0. (In fact, for n = 2 we know that it has exponent equal to 2, since in
section 1 we saw that Gal(F∞,r/Q) is a non-trivial extension of Ẑ∗ by Ẑ.)

Multiplication by 2 is a continuous Ẑ∗-module endomorphism of Ẑ giving rise
to the short exact sequence

0 −→ Ẑ ·2−→ Ẑ π−→ µ2 −→ 0

of topological Ẑ∗-modules, where Ẑ∗ acts trivially on µ2, and π sends r ∈ Ẑ to (−1)r.
As the groups are profinite, the sequence is well-adjusted. For each n ∈ Z≥0, the
map Hn(·2) = ·2 is the zero map, since Hn(Ẑ∗, Ẑ) has exponent dividing 2. Using
the fact that Ẑ has no non-trivial 2-torsion, one easily sees that H0(Ẑ∗, Ẑ) = ẐẐ∗ is
equal to the trivial group. By Theorem 1.15, we have the long exact sequence

0 // µ2
δ0 // H1(Ẑ∗, Ẑ) 0 // H1(Ẑ∗, Ẑ) H1(π)

// H1(Ẑ∗, µ2) δ1 // H2(Ẑ∗, Ẑ) 0 // . . .

of groups. It follows immediately that δ0 is a group isomorphism, and that

0 // µ2
c // H1(Ẑ∗, µ2) δ1 // H2(Ẑ∗, Ẑ) // 0 (2)

is a short exact sequence of groups, where c = H1(π) ◦ δ0.
As Ẑ∗ acts trivially on µ2, we have

H1(Ẑ∗, µ2) = CHom(Ẑ∗, µ2).

By Kummer theory (cf. [Neu99]), there is a group isomorphism

ψ : Q∗/Q∗2 −→ CHom(Ẑ∗, µ2)

sending aQ∗2 ∈ Q∗/Q∗2 to the character sending u ∈ Ẑ∗ to σu(
√
a)/
√
a.

Now, we compute the image of µ2 under c. Clearly c(1) = [0] ∈ H1(Ẑ∗, Ẑ).
Observe that δ0(−1) sends u ∈ Ẑ∗ to u−1

2 in Ẑ (cf. Proposition 1.13). Moreover, the
map H1(π)(δ0(1)) sends u ∈ Ẑ∗ to (−1)u−1

2 .

Note that ψ sends −Q∗2 ∈ Q∗/Q∗2 to the character sending u ∈ Ẑ∗ to

σu(
√
−1)/

√
−1 = (−1)

u−1
2 .

Hence ψ induces a group isomorphism

ψ′ : Q∗/±Q∗2 −→ CHom(Ẑ∗, µ2)/c(µ2).

It follows that (2) induces the group isomorphism

ϕ : Q∗/±Q∗2 −→ H2(Ẑ∗, Ẑ)
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given by sending ±aQ∗2 to δ1(ψ′(±aQ∗2)), where by abuse of notation δ1 denotes
the induced isomorphism H1(Ẑ∗, µ2)/c(µ2) −→ H2(Ẑ∗, Ẑ).

Let r ∈ Q∗ \ {±1} and let G be the Galois group of Q(R∞,r) over Q. Let
r0 ∈ Q∗ \ {±1} be such that R∞,r ∩Q∗ = 〈r0〉 × 〈−1〉. We will show that ϕ maps
±r0Q∗2 to the equivalence class of any topological extension G of Ẑ∗ by Ẑ.

Using the explicit descriptions of the homomorphisms above and the explicit
description of δn, n ∈ Z≥0, given in Proposition 1.13, one sees that

ϕ(±r0Q∗2) : Ẑ∗ × Ẑ∗ −→ Ẑ

is given by
(u, v) 7→ uα(v)− α(uv) + α(u)

2 ,

where α : Ẑ∗ −→ Ẑ is defined in Lemma 2.12(b).
On the other hand, consider a topological extension

0 −→ Ẑ i−→ G
j−→ Ẑ∗ −→ 1

of Ẑ∗ by Ẑ. By Lemma 2.12(a), the map j is equal to g, defined in Proposition 2.10,
and there is an isomorphism η : µ̂2 −→ Ẑ of profinite groups such that the diagram

µ̂2 f
//

η
��

G

Ẑ
i

??

is commutative. Let ζ be the generator of µ̂ such that η−1(1) = ζ2.
By Lemma 2.12(b), the map s : Ẑ∗ −→ G given by

s(u) = (ζα(u), u)

is a continuous section of this sequence, and ω : Ẑ∗× Ẑ∗ −→ Ẑ defined by ω(u, v) =
s(u)s(v)s(uv)−1 is the 2-cocycle corresponding to the given topological extension.
Note that

ω(u, v) =
(
ζα(u), u

) (
ζα(v), v

) (
ζα(uv), uv

)−1

=
(
ζα(u)+uα(v), uv

) (
ζ−(uv)−1α(uv), (uv)−1

)
=

(
ζα(u)+uα(v)−α(uv), 1

)
,

which defines the element ζα(u)+uα(v)−α(uv) in µ̂2. Composing with the isomorphism
η, we find that the 2-cocycle ω is given by

(u, v) 7→ α(u) + uα(v)− α(uv)
2 .

As this is exactly the image of ±r0Q∗2, we are done.
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Proof of Theorem 1. The implication (a) to (b) was proven after Proposition
2.10. To prove the other implication, let

0 −→ Ẑ −→ G −→ Ẑ∗ −→ 1

be a non-semisplit short exact sequence of profinite groups such that the induced
action of Ẑ∗ on Ẑ is the natural one. Then the group isomorphism ϕ of Theorem 2
maps this extension to a non-trivial element ±aQ∗2 of Q∗/±Q∗2. Choose r to be a
square-free integer in the coset ±aQ∗2. Then r 6= ±1 and R∞,r ∩Q∗ = 〈−1, r〉. By
Theorem 2, the map ϕ−1 sends ±rQ∗2 = ±aQ∗2 to the extension

0 −→ Ẑ −→ Gal(F∞,r/Q) −→ Ẑ∗ −→ 1.

As these extensions are equivalent, it follows that G ∼= Gal(F∞,r/Q).

4. Roots of unity and cohomology

Let Γ be a closed subgroup Ẑ∗. Define

VΓ =
∑
γ∈Γ

Ẑ(γ − 1)

to be the Ẑ-ideal generated by Γ− 1 = {γ − 1 : γ ∈ Γ} and

WΓ = VΓ

to be its closure in Ẑ. For example, one has VẐ∗ = WẐ∗ = 2Ẑ.

Lemma 2.15. Let M be a profinite abelian group, and let Mp be the unique pro-p
Sylow subgroup of M . Then M is the direct product M = ∏

p prime Mp of its pro-p
Sylow subgroups.

Proof. See [RZ09, Proposition 2.3.8].

Let M be a profinite abelian group, and consider the unique topological Ẑ-
module structure on it (cf. Lemma 2.3). By restrictionM is a topological Γ-module.
Moreover, the action of Ẑ onM induces an action of Ẑ on Hn(Γ,M) for each n ∈ Z≥0.

Theorem 2.16. For all n ≥ 0, we have WΓ · Hn(Γ,M) = 0.

Proof. Let n ∈ Z≥0. By Proposition 1.30 we have for each γ ∈ Γ and each x ∈
Hn(Γ,M) that γ · x = x. Hence, for each γ ∈ Γ we have

(γ − 1) · Hn(Γ,M) = 0.

It follows that
VΓ · Hn(Γ,M) = 0.
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It remains to show that the closure of VΓ is also in the annihilator of Hn(Γ,M).
By Lemma 2.15 we have M = ∏

pMp, so by Proposition 1.6 the equality
Hn(Γ,M) = ∏

p Hn(Γ,Mp) holds. As for primes p the action of Ẑ = ∏
p Zp on

Mp factors via Zp, the action of Ẑ on Hn(Γ,Mp) factors via Zp too. Observe that
the Zp-annihilator of Hn(Γ,Mp) is a closed ideal, since all ideals of Zp are closed.
It follows that the Ẑ-annihilator of ∏p Hn(Γ,Mp) is a product of closed ideals of
Zp and therefore a closed ideal of Ẑ. Now, as VΓ is contained in the closed ideal
AnnẐ(Hn(Γ,M)), also its closure is contained in it. Thus, the ideal WΓ annihilates
Hn(Γ,M).

Now, let K be a field of characteristic 0, and let K be an algebraic closure
of K. Let µ be the subgroup of K∗ of roots of unity as defined in §2.1, and let K(µ)
be the maximal cyclotomic extension of K. Note that it is a Galois extension over
K, and let ΓK be its Galois group. There is a canonical injection

ΓK −→ Aut(µ)

of profinite groups. Composing with the canonical isomorphism Aut(µ) ∼= Ẑ∗ given
in §2.1, we have an injection

ΓK −→ Ẑ∗

of profinite groups. As ΓK is compact, its image in Ẑ∗ is compact. Moreover, since
Ẑ∗ is Hausdorff, it follows that we may identify ΓK with a closed subgroup of Ẑ∗,
which we again denote by ΓK . When the field K is understood, we often write Γ
for ΓK .

Theorem 2.17. We have WΓ = AnnẐ(µ(K)).

Proof. By Proposition 2.8 we have that

WΓ = AnnẐ(µ(K)) if and only if µ[WΓ] = µ(K).

Let ξ ∈ µ. Then ξ ∈ µ(K) if and only if for all γ ∈ Γ we have ξγ−1 = 1, which
is equivalent to ξ ∈ µ[VΓ]. As µ is Hausdorff, the kernel of the map Ẑ −→ µ

sending u ∈ Ẑ to ξu, which is the annihilator AnnẐ(ξ), is closed. Now, since the
Ẑ-annihilator of ξ is closed, we have ξ ∈ µ[VΓ] if and only if ξ ∈ µ[WΓ].

Corollary 2.18. For Γ = ΓK and M as in Theorem 2.16, we have for all n ∈ Z≥0

that AnnẐ(µ(K)) · Hn(Γ,M) = 0.

Proof. This follows immediately from Theorem 2.16 and Theorem 2.17.

We end this section with two examples. The first one shows that one does not
generally have VΓ = WΓ.
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Example 2.19. Let U be an F2-vector space of countably infinite dimension such
that the set of nonzero elements of U coincides with the set P of prime numbers.
The group

Γ = HomF2(U, {±1})

may then be viewed as a subgroup of the group {±1}P . As

{±1}P ⊂
∏
p∈P

Z∗p ∼= Ẑ∗,

we can consider Γ as a subgroup of Ẑ∗. One easily checks that Γ is in fact a closed
subgroup of Ẑ∗.

Let Q be an algebraic closure of Q, and let µ be the group of all roots of unity
in Q. By Galois theory we have Gal(Q(µ)/K) = Γ for the subfield K = Q(µ)Γ of
Q(µ). For each p ∈ P there is an F2-homomorphism U −→ {±1} that sends p to
−1, so there is an element of Γ whose pth coordinate is −1; it maps each ξ ∈ µ

of p-power order to ξ−1, so that ξ can only be in K if ξ2 = 1. We conclude that
µ(K) = {±1}, so by Proposition 2.17 we have WΓ = 2Ẑ.

Now, suppose VΓ = WΓ. Then we have 2 ∈ VΓ, so

2 =
∑
γ∈S

aγ(γ − 1)

for some finite subset S of Γ and aγ ∈ Ẑ. For each γ ∈ S, the kernel ker γ has finite
index in U . Hence, the common kernel ⋂γ∈S ker γ is of finite index in U as well, so
that, in particular, it is infinite. Let p ∈ ⋂γ∈S ker γ be nonzero and different from 2.
Then for each γ ∈ S, the element γ − 1 is in the kernel of the ring homomorphism
Ẑ→ Zp; since 2 is not, this contradicts the identity above. We conclude VΓ 6= WΓ.

The second example shows that Theorem 2.16 is not generally valid for any
topological Ẑ-module M , not even when M is also assumed to be Hausdorff.

Example 2.20. Let Γ ⊂ Ẑ∗ be a closed subgroup with VΓ 6= WΓ and AnnẐ(VΓ) = 0,
e.g. as in Example 2.19. Let Γ act on Ẑ by multiplication, and observe that VΓ

is a Γ-submodule of Ẑ. The Γ-invariants of the topological Γ-module Ẑ/VΓ are
equal to Ẑ/VΓ, since every γ ∈ Γ acts as the identity on Ẑ/VΓ. It follows that
H0(Γ, Ẑ/VΓ) = Ẑ/VΓ. As VΓ 6⊃ WΓ, the idealWΓ does not annihilate Ẑ/VΓ. Choosing
K = Q(µ)Γ, M = Ẑ/VΓ and n = 0, we have an example as announced, except that
M is not Hausdorff.

Consider the short exact sequence

0 −→ VΓ −→ Ẑ −→ Ẑ/VΓ −→ 0
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of topological Γ-modules. Note that VΓ is homeomorphic to its image in Ẑ, but
the sequence is not well-adjusted. Indeed, since Ẑ/VΓ is not Hausdorff, the product
VΓ × Ẑ/VΓ is not either, so that Ẑ is not homeomorphic to VΓ × Ẑ/VΓ.

By Proposition 1.17 the sequence

0 // H0(Γ, VΓ) // H0(Γ, Ẑ) // H0(Γ, Ẑ/VΓ)
δ0

// H1(Γ, VΓ) // H1(Γ, Ẑ) // H1(Γ, Ẑ/VΓ)

is exact. Clearly H0(Γ, Ẑ) = 0, so that H0(Γ, VΓ) = 0 by exactness. It follows that
δ0 : H0(Γ, Ẑ/VΓ) −→ H1(Γ, VΓ) is injective. As WΓ does not annihilate H0(Γ, Ẑ/VΓ)
and δ0 is injective, the ideal WΓ does not annihilate H1(Γ, VΓ) either. Hence, with
the same K, we obtain a Hausdorff example by putting M = VΓ and n = 1.

One can in fact show that δ0 is an isomorphism, using that H1(Γ, Ẑ) ∼= Ẑ/WΓ

and H1(Γ, Ẑ/VΓ) = CHom(Γ, Ẑ/VΓ).
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