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Introduction

We fix a point Q on the boundary ∂D of the closed unit disk D and a set S of n distinct

points in the interior of D. An arc (based at Q) of Σ = D \ S is a smooth injective path

α : I → D such that α(I) ∩ ∂D = {α(0)} = {Q} and α(I) ∩ S = {α(1)}. We define

the arc complex A as the simplicial complex whose q-simplices are (q + 1)-tuples of

homotopy classes of arcs of Σ intersecting only in Q.

Figure 1: Three examples of triples of arcs in the case n = 3. The first two represent

2-simplices, while the third does not.

The present thesis has two principal results. The first is a combinatorial descrip-

tion of A in terms of the braid group Bn. The second can be resumed in the statement

Theorem (See 2.48). The geometric realization |A| of A is contractible.

Hatcher and Wahl have shown [9, Proposition 7.2] that |A| is (n− 2)-connected.

This result is used by Ellenberg, Venkatesh and Westerland to prove instances of the

Cohen-Lenstra conjecture over function fields [4]. In this thesis we analyse the topol-

ogy of |A|. In particular we present Hatcher and Wahl’s proof that πi(|A|) = 0 for

all i ≤ n− 2 providing more details. Moreover, we use the combinatorial description

of A to strengthen that result and to show the above theorem.

The n-th braid group Bn is defined to be the fundamental group of the moduli

space C parametrizing subsets of the open disk
◦
D of cardinality n. Artin [2] has given
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explicit generators σ1, . . . , σn−1 of Bn and has shown that the group has a presentation

with relations

σiσj = σjσi

for all i and j with |i− j| ≥ 2 and

σiσi+1σi = σi+1σiσi+1

for all i ∈ {1, . . . , n− 2}. We refer to Section 1.3 for more details.

Let G be the topological group of homeomorphisms of D to itself that fix the

boundary ∂D point-wise. Let H ⊂ G be the stabilizer of S ⊂ D. The mapping class

group of Σ, denoted Γ(Σ), is defined as π0(H ).

In Chapter 1 we construct Artin’s isomorphism between the braid group Bn and

the mapping class group Γ(Σ). The construction goes roughly as follows. First we

show that the map

G → C , g 7→ gS

is a fibration with fibre H (see Theorem 1.16). We then show that πi(G ) = 0 for all

i. The long exact sequence of homotopy groups then gives an isomorphism

Bn ∼= π1(C )→ π0(H ) ∼= Γ(Σ).

The same result holds if we replace G and H by their subgroups Gd respectively Hd

of diffeomorphisms of D.

Chapter 2 concerns the arc complex. If α is an arc of Σ and h ∈ Hd, then the

composition hα is also an arc of Σ. This induces a well defined action of Bn on A.

Studying this action we obtain the aforementioned combinatorial description of A:

Theorem (See 2.20). Let Hq be the subgroup of Bn generated by {σq+2, . . . σn−1}. The

complex A is Bn-equivariantly isomorphic to the (n − 1)-dimensional simplicial complex

whose q-simplices are the left cosets of Hq in Bn and such that for every b ∈ Bn the vertices of

bHq are

bH0, bσ−1
1 H0, . . . , bσ−1

q · · · σ−1
1 H0.

In order to describe the homotopy type of |A| we give Hatcher and Wahl’s proof

that πj(|A|) = 0 for all j ≤ n − 2 which uses purely topological tools. Since the

dimension of A is n− 1, it follows from Hurewicz and Whitehead’s theorems that in

order to prove the contractibility of |A| it suffices to show Hn−1(|A|) = 0. The com-

binatorial description of A allows us to give an explicit description of this homology

group and with a direct computation we conclude that it is trivial.
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1 | Braid groups and mapping class

groups

The closed disk D := {z ∈ C : |z| ≤ 1} is a compact subspace of C with the Euclidean

topology. Its interior is denoted by
◦
D and its boundary by ∂D. The symmetric group

on n letters {1, . . . , n} is denoted by Sn. All the spaces of functions are endowed with

the compact-open topology.

1.1 The configuration space and the braid group

Definition 1.1. Define the space C ′ to be

C ′ = C ′n = {(P1, . . . , Pn) | Pi ∈
◦
D for all i and Pi 6= Pj for all i 6= j }

with the topology induced by the product topology on Dn.

Definition 1.2. The n-th configuration space of D is given by the topological quotient

space

C = Cn = C ′/Sn

where Sn acts on the right on C ′ permuting the n-points, i.e. for every σ ∈ Sn the

action is

σ(P1, . . . , Pn) =
(

Pσ(1) . . . , Pσ(n)

)
.

We identify the elements of C with subsets of
◦
D of cardinality n.

Definition 1.3. Let X be a topological space on which a group G acts. G is said to act

freely and properly discontinuously on X if given any point x ∈ X, there exists an open

set U in X such that x ∈ U and g(U) ∩U = ∅ for all g ∈ G \ {1}.
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1.1. The configuration space and the braid group

Proposition 1.4. Let G be a group acting freely and properly discontinuously on a topological

space X. Then the quotient map q : X → X/G is a covering map.

Proof. We refer to [16, Proposition 4.20].

Corollary 1.5. C ′ is a Galois covering of C with group Sn.

Proof. The action of Sn on C ′ is free because if σ(P) = τ(P) then necessarily σ(i) =

τ(i) for all i ∈ {1, . . . , n} and so σ = τ. Moreover, since C ′ is a Hausdorff space and

Sn is a finite group, the action is also properly discontinuous, hence Proposition 1.4

allows us to conclude.

The following proposition describes the homotopy type of the spaces C ′ and C .

Proposition 1.6. Let P ∈ C ′. Then we have πi(C
′,P) = 0 and πi(C , [P ]) = 0 for every

i 6= 1.

Proof. Since C ′ is a covering of C we only need to check it for C ′. The proof

is by induction on n, so we will stress the dependence on n in the notation us-

ing C ′n in place of C ′ ⊂ Dn. The case n = 1 is clear since C ′1 =
◦
D, so assume

that πi(C
′
j ,P) = 0 for every j < n and i 6= 1. The map φ : C ′n → C ′n−1 de-

fined by (Q1, . . . , Qn) → (Q1, . . . , Qn−1) is a fibration whose fiber is homeomor-

phic to
◦
D \ {P1, . . . , Pn−1}. For more details we refer to [5, Theorem 1.1]. Since

◦
D \ {P1, . . . , Pn−1} is homotopy equivalent to a bouquet of n circles its only non triv-

ial homotopy group is the fundamental group. Thus the long exact sequence in

homotopy groups implies that

πi(C
′
n,P)→ πi(C

′
n−1, φ(P))

is an isomorphism for i 6= 1, 2 and

π2(C
′
n,P)→ π2(C

′
n−1, φ(P))

is an injection. Since by induction hypothesis πi(C
′
n−1, φ(P)) = 0 for all i 6= 1 we can

conclude that πi(C
′
n,P) = 0 for all i 6= 1.

Remark 1.7. In particular Proposition 1.6 tells us that C ′ and C are path-connected,

and from the fact that C ′ → C is a Galois covering we get the following exact se-

quence

0 −→ π1(C
′,P) −→ π1(C , [P ]) −→ Sn −→ 0

Definition 1.8. The n-th pure braid group is B′n := π1(C
′,P), and the n-th braid group

is Bn := π1(C , [P ]).
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1.1. The configuration space and the braid group

Notice that Bn and B′n depend on the choice of the base point P and [P ]. How-

ever, since π0(C ) = 0 = π0(C ′) this dependence is only up to non canonical isomor-

phisms. With this terminology the short exact sequence above becomes

0 −→ B′n −→ Bn −→ Sn −→ 0

We give now a more geometrical interpretation of the braid group. From now on

we consider fixed P = (P1, . . . , Pn) ∈ C ′ and S = {P1, . . . , Pn} ⊂
◦
D corresponds to

[P ] ∈ C .

Definition 1.9. An n-string (based at P) is a n-tuple α = (α1, . . . , αn) with αi : I →
◦
D

such that

1. αi(0) = Pi;

2. αi(1) = σ(Pi) for some σ ∈ Sn;

3. αi(t) 6= αj(t) for all i 6= j and t ∈ I.

Denote by StrP the space of n-strings endowed with the compact-open topology.

The definition implies that the graphs of αi and αj seen as subsets of D × I are

disjoint as long as i 6= j. We can then identify every n-string α with the union of

the graphs of its components. In this way we can depict α as n disjoint paths from
◦
D× {0} to

◦
D× {1} as shown in Figure 1.1.

Figure 1.1: An example of 5-string.

Theorem 1.10. The loop space Ω(C ,P) is homeomorphic to Str[P ].

Proof. Notice that every path in C ′ is described as a n-tuple (αi)
n
i=1 with αi : I →

◦
D

such that αi(t) 6= αj(t) when i 6= j and for all t ∈ I. Moreover every α′ ∈ Ω(C ) is lifted

to a unique α : I → C ′ such that α′(0) = P , and α′(1) = σ(P) for a necessarily unique

σ ∈ Sn. Comparing this to the definition of StrP we get the stated identification.
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1.2. The fundamental isomorphism Bn ∼= Γ(Σ)

In this way StrP becomes an H-space where the composition of α and β can be

described, as depicted in Figure 1.2, by putting the graphs of βi under the graphs of

αi and then shrinking the height of the cylinder to the unitary interval I. In particular

π0(StrP ) is a group.

Figure 1.2: The graphical representation of the composition of two 4-strings.

Corollary 1.11. Bn ∼= π0(StrP ). �

1.2 The fundamental isomorphism Bn
∼= Γ(Σ)

Let S = {P1, . . . , Pn} ⊆
◦
D correspond to [P ] ∈ C . We define the space Σ = D \ S with

the topology induced by D.

Definition 1.12. The mapping class group of Σ is

Γ(Σ) := π0(Homeo(Σ))

where Homeo(Σ) is space of homeomorphisms g : Σ→ Σ such that g|∂D = Id∂D.

The goal of this section is to construct an isomorphism between the braid group

and the mapping class group.

Definition 1.13. Denote with G the topological space

G = {g : D → D | g is a homeomorphism and g|∂D = Id∂D}
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1.2. The fundamental isomorphism Bn ∼= Γ(Σ)

G has two important subspaces depending on the set S:

H ′ := {g ∈ G | g(P) = P for all P ∈ S}

H := {g ∈ G | g(S) = S}

Remark 1.14. Notice that since D is metric and compact, the compact-open topology

in G coincides with the one induced by the distance dG defined, for every f , g ∈ G

as:

dG ( f , g) = sup
P∈D
| f (P)− g(P)| = max

P∈D
| f (P)− g(P)|

The space G has a natural structure of group given by the composition. Since D

satisfies the properties of the proposition below we can conclude that it is a topolog-

ical group.

Proposition 1.15. Let X be a compact and Hausdorff topological space. Then the group G of

homeomorphisms from X to X with the compact-open topology is a topological group.

Proof. We refer to [1, Theorem 3].

The group G acts on C ′ in the obvious way

G × C ′ → C ′, (g, (Q1, . . . , Qn)) 7→ (g(Q1), . . . , g(Qn))

and the induced action on C

G × C → C , (g, [(Q1, . . . , Qn)]) 7→ [(g(Q1), . . . , g(Qn))]

is well defined.

The main results in order to exhibit an isomorphism between Bn and Γ(Σ) are the

following statements.

Theorem 1.16. The map ε[P ] : G → C defined as g 7→ g([P ]) is a fibration with fibre H .

Corollary 1.17. The connecting map δ : π1(C )→ π0(H ) is an isomorphism.

Remark 1.18. The isomorphism in Corollary 1.17 is a group isomorphism. Indeed

even if usually π0 is only a pointed set, in this case the group structure on G induces

a group structure on π0(G , Id), and the same holds for π0(H , Id). The multiplication

µ and the inverse ι are defined as

µ : π0(G , Id)× π0(G , Id)→ π0(G , Id), ([ f ], [g]) 7→ [ f g]

ι : π0(G , Id)→ π0(G , Id), [ f ] 7→ [ f−1]

Lemma 1.19. Every homeomorphism f : D \ {0} → D \ {0} can be extended to a unique

homeomorphism f ext : D → D.
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1.2. The fundamental isomorphism Bn ∼= Γ(Σ)

Proof. Since f ext must agree with f on D \ {0} we can only set f ext(0) = 0. Let U be

an open subset of D. If U ⊆ D \ {0}, then f ext−1
(U) = f−1(U) which is an open.

Otherwise U = {0} t (D \ {0} \ K) where K is a compact of D \ {0}. Then

f ext−1
({0} t (D \ {0} \ K)) = {0} t f−1 (D \ {0} \ K) = {0} t

(
D \ {0} \ f−1(K)

)
and since f is a homeomorphism we have that f−1(K) is a compact subset of D \ {0},
hence we proved the continuity.

Proposition 1.20. The map res : H → Homeo(Σ) which restricts h to Σ is an isomorphism

of groups. Moreover we have the isomorphism π0(res) : π0(H ) ∼= π0(Homeo(Σ)).

Proof. Let Di := {Q ∈ D | |Q − Pi| ≤ ε} with ε > 0 such that Di ⊆
◦
D for all i ∈

{1, . . . , n} and Di ∩ Dj = ∅ for i 6= j. Use the notation Σi := Di \ {Pi}. By definition

each Σi is homeomorphic to a closed disk without the origin. Let f ∈ Homeo(Σ)

and since it is a homeomorphism f (Σi) is homeomorphic to the closed disk without

the origin. For every i ∈ {1, . . . , n} we can apply Lemma 1.19 to f |Σi and hence

we find a unique extension of f |Σi to f |Σi
ext. The maps glue to a homeomorphism

ext( f ) : D → D which extends f . It follows that ext : Homeo(Σ) → H which map f

to ext( f ) realizes the inverse of res. It is only a matter of computation to check that

this bijection is a group isomorphism.

Since res is continuous the map π0(res) : π0(H ) → Γ(Σ) is well defined and a

homomorphism.

Let M : I × Σ → Σ be a continuous map such that for every t ∈ I we have Mt ∈
Homeo(Σ). It follows that Mt is extended to ext(Mt). We define

ext(M) : I × D → D, (t, Q) 7→ ext(Mt)(Q).

For every t ∈ I the map ext(M)(t,−) is continuous since it coincides with ext(Mt).

Let P ∈ D be fixed and let t ∈ I vary. When P ∈ Σ the path ext(M)(−, P) is

continuous since it coincides with M(−, P). If P ∈ S we have that ext(M)(−, P)

is the constant path at ext(M)(0, P), so it is still continuous. We can conclude that

π0(res) has an inverse and hence it is a group isomorphism.

We can then conclude that the following theorem holds.

Theorem 1.21. There exists an isomorphism between Bn and Γ(Σ) given by the composition

of the isomorphisms δ and π0(res):

Bn = π1(C )
δ∼= π0(H , Id)

π0(res)∼= π0(Homeo(Σ), Id) = Γ(Σ)

The last part of this section contains the proofs of Theorem 1.16 and Corollary

1.17.
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1.2. The fundamental isomorphism Bn ∼= Γ(Σ)

Lemma 1.22. There exists a continuous map h :
◦
D → G , Q 7→ hQ such that hQ(0) = Q for

all Q ∈
◦
D.

Proof. For each Q ∈ D define hQ to be the map

hQ

(
αeiθ

)
= αeiθ − (α− 1)Q

which is a continuous bijection of D which fixes the boundary. The inverse can

be computed explicitly in a similar way, interchanging the roles of O and Q, so hQ

belongs to G .

In the case n = 1, the theorem above implies that the action of G on C ′ is transi-

tive. The following theorem gives a similar result for the general case.

Proposition 1.23. For all P ∈ C ′, there exists a neighbourhood U of P and a continuous

map F : U → G such that for all Q ∈ U we have F(Q)(P) = Q. Moreover the action of G

on C ′ is transitive.

Proof. (Sketch) We refer to the proof of [2, Theorem 6], for more details.

Use the Hausdorff property of D to find non intersecting disks Di ⊆
◦
D such that

Pi ∈ Di for each component Pi of P . Define U := ∏ Di and for all Q = (Q1, . . . , Qn) ∈
U, define the map F(Q) to be the identity on D \ ∪Di. For the other points the

definition of F(Q) reduces to the case n = 1 since the disks are disjoint and C ′ has

the product topology. Lemma 1.22 allows us to conclude since the boundary of the

disks is fixed and hence the definitions glue.

Let P1 and P2 ∈ C ′, we need to find a map F ∈ G such that F(P1) = P2. Since C ′

is path connected there exists a path α : I → C ′ such that α(0) = P1 and α(1) = P2.

The compactness of α(I) allows us to find r > 0 such that Br(αi(t)) ∩ Br(αj(s)) = ∅

for all i 6= j and s, t ∈ I. Call Ut = ∏n
i=1 Br(αi(t)) and {Ũtj := α(I) ∩ Ut}t∈I is a

covering of α(I). Using again the compactness of α(I) we can find a finite subset

J = {t0, . . . , tm} of I such that t0 = 0 and α(tj) ∈ Ũtj ∩ Ũtj−1 for all j ∈ {1, . . . , m}.
For all j ∈ {0, . . . , m− 1} let Fj ∈ G be the map such that Fj(α(tj)) = α(tj+1) and

Fm(α(tm)) = P2. Notice that the existence of such maps is guaranteed by the first part

of the theorem. Define F := Fm · · · F0 and by construction it satisfies F(P1) = P2.

Proposition 1.24. H and H ′ are closed subgroups of G . Moreover H ′ is normal in H

with H /H ′ ∼= Sn as discrete topological groups. The canonical projection map ρ : G /H ′ →
G /H is a Galois covering with group Sn.
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1.2. The fundamental isomorphism Bn ∼= Γ(Σ)

Proof. It is clear that H and H ′ are subgroups of G . For the closedness consider the

continuous maps

εP : G → C ′, g 7→ g(P) and ε[P ] : G → C , g 7→ g[P ]

We deduce that H ′ and H are closed since they are the inverse images of the closed

points P and [P ].
To prove the normality notice that H acts continuously on S and H ′ is the kernel

of the action.

In the quotient H /H ′ two elements h and g are the same if and only if h and g act

in the same way on the elements of S. The map φ which associates h to the unique σ ∈
Sn such that h(Pi) = Pσ(i) is a well defined group homomorphism which is injective

by definition of H ′. For each σ ∈ Sn Proposition 1.23 exhibits the map F(σ(P)) as

a preimage of such permutation, so φ turns out to be surjective. Endowing Sn with

the discrete topology this open bijection becomes continuous since H ′ is closed in G

and hence in H . It follows that the spaces are homeomorphic.

The projection ρ corresponds to the quotient by H /H ′ ∼= Sn. Since G is Haus-

dorff and Sn is finite and acts freely we conclude that it is a Galois covering.

Proposition 1.25. G /H ′ ∼= C ′ and G /H ∼= C .

Proof. Notice that the transitivity of the action of G on C ′ implies that G acts transi-

tively also on C . The orbit-stabilizer theorem gives then the continuous bijections:

C ′ ∼= G /Stab(P) and C ∼= G /Stab([P ])

Proposition 1.23 guarantees that those bijections are homeomorphisms and since by

definition Stab(P) = H ′ and Stab([P ]) ∼= H we are done.

The homotopy type of G is completely determined by the following statement.

Proposition 1.26 (Alexander’s trick). πk(G , Id) = 0 for all k ≥ 0.

Proof. The proof generalizes the one given in [6] from k = 1 to k ≥ 0. We prove

that any continuous map α : (Ik, ∂Ik) → (G , IdD) is homotopy equivalent to the map

kId : Ik → G with constant value IdD throughout maps sending the boundary of Ik to

IdD. Such a homotopy is given by a map H : I × Ik × D → D defined as

H(s, t)(P) =


(1− s)α(t)

(
P

1− s

)
if 0 ≤ |P| < 1− s

P if 1− s ≤ |P| ≤ 1

P if s = 1

11



1.2. The fundamental isomorphism Bn ∼= Γ(Σ)

The map is continuous in each interval of definition. We need to check that the

continuity in s = 1. When s tends to 1− we see that |P| tends to s − 1. Write

P = |P|eiπθ for some θ. Hence we have that (1 − s)α(t)
(
|P|eiπθ/(1− s)

)
tends to

(1− s)α(t)
(
eiπθ
)
. Since eiπθ ∈ ∂D we have that (1− s)α(t)

(
eiπθ
)
= (1− s)eiπθ = P.

It follows that H is continuous everywhere. It is clear by definition that H(0, t)(P) =

α(t)P and H(1, t)(P) = P. Moreover, fixing s and t, we can see that H(s, t) is actually

a homeomorphism because it is bijective and I× Ik×D is compact and D Hausdorff.

Moreover, when t ∈ ∂Ik we have that α(t) = Id. This yields that H|I×∂Ik×D is the

identity, so H realizes the wanted homotopy.

Proof of Theorem 1.16. Thanks to the identification C ∼= G /H we need to prove that

the projection map G → G /H is a fibration. Since the map ρ is a covering with

finite fibre, it is enough to show that the projection map G → G /H ′ is a fibration

with fiber H ′. We noticed earlier that H ′ is a closed subspace of G thus, according

to [16, Theorem 4.13], it is sufficient to prove that the projection map p : G → G /H ′

has enough local sections. This means that for every gH ′ ∈ G /H ′ there exists a

neighbourhood U of gH ′and a map s : U → G such that ps : U → G → G /H ′ is

the identity on U. Thanks to Proposition 1.25 the projection corresponds to the map

εP : G → C ′ which associates to g the element g(P). Proposition 1.23 exhibits the

existence of such sections, hence the theorem is proved.

Proof or Corollary 1.17. Since ε[P ] is a fibration we obtain the long exact sequence of

homotopy groups

· · · → π1(G , Id)→ π1(C , [P ]) δ→ π0(H , Id)→ π0(G , Id)→ . . .

hence we get

· · · → π1(G , Id)→ Bn
δ→ π0(H , Id)→ π0(G , Id)→ . . .

Proposition 1.26 states that π0(G , Id) = 0 = π1(G , Id), so we can conclude that δ is

an isomorphism.

Remark 1.27. In particular Alexander’s trick shows that G is path connected. More-

over for every h ∈ H there exists a continuous map α : I × D → D such that

α(0, P) = P and α(1, P) = h(P). It follows that it is possible to give a graphical

representation of h as the union of the graphs ΓP of α(−, P) for all P ∈ D. Let Γ be an

n-string corresponding to δ−1h viewed as subspace of D× I. The explicit construction

of δ guarantees that α can be chosen such that Γ =
⋃

Pi∈S ΓPi .

Remark 1.28. Let Hd be the subgroup of H of diffeomorphisms of D. As proved

in [6, §2.1] the inclusion Hd ⊂ H induces the group isomorphism π0(H , Id) ∼=

12



1.3. The action of Bn on the fundamental group of Σ

π0(Hd, Id). It follows that Bn is also isomorphic to π0(Hd, Id). This smooth version

will be used in the second chapter. Notice that Proposition 1.20 cannot be extended to

the differential case because there are diffeomorphisms of Σ that cannot be extended

to diffeomorphisms of D.

1.3 The action of Bn on the fundamental group of Σ

Let P = (P1, . . . , Pn) ∈ C ′, and let Q be a fixed point belonging to ∂D. Since Σ can

be retracted to a bouquet of n circles π1(Σ, Q) is a free group on n generators. By

definition H fixes S, thus the group acts on Σ = D \ S. Moreover this action induces

an action of H to Ω(Σ, Q), the loop space of Σ with preferred point Q because the

preferred point Q is fixed. The action

H ×Ω(Σ, Q)→ Ω(Σ, Q), (h, α) 7→ hα : t→ h(α(t))

induces

π0 (H ×Ω(Σ, Q))→ π0 (Ω(Σ, Q))

and since π0 commutes with finite products this is

π0(H )× π0 (Ω(Σ, Q))→ π0 (Ω(Σ, Q))

which defines an action of Bn on π1(Σ, Q).

The aim of this section is to describe in a combinatorial way this action. For this

purpose we define generators of Bn and π1(Σ, Q) we can easily work with.

Recall that D ⊂ C. Assume that Q = 1, and also

Pj =
n + 1− 2j

n + 1
· i ∈ C

so that Pk, Pj and Q are not collinear when k 6= j.

We define the loops γj : I → Σ to be

γj(t) =


3t(Pj + δ) + (1− 3t)Q 0 ≤ t ≤ 1/3

Pj + δei2π(3t−1) 1/3 ≤ t ≤ 2/3

(3t− 2)Q + (3− 3t)(Pj + δ) 2/3 ≤ t ≤ 1

with δ > 0 such that γk(t) 6= γj(s) for all t, s ∈ (0, 1) and k 6= j.

Since each Pj is encircled by exactly one loop γj the n-tuple

γ := ([γ1], . . . , [γn])

is a basis for π1(Σ, Q) which is called the standard system of generators.
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γ3

γ1

γ2

γ4

γ5

Figure 1.3: The standard system of generators in the case n = 5.

Definition 1.29. For all k ∈ {1, . . . , n − 1} we define the element σk ∈ Bn as the

n-string whose j-th component is

(σk)j(t) =


Pj + Pj+1

2
+ i

1
n + 1

eiπt if j = k
Pj + Pj+1

2
− i

1
n + 1

eiπt if j = k + 1

Pj otherwise

Theorem 1.30. The group Bn has σ1, . . . , σn−1 as generators and has a presentation with

relations

σiσj = σjσi

for all i and j with |i− j| ≥ 2 and

σiσi+1σi = σi+1σiσi+1

for all i ∈ {1, . . . , n− 2}.

Proof. Two proofs can be found in [3, Theorem 1.8] or [2, Theorem 16].

Example 1.31. The Figures 1.4, 1.5 and 1.6 show some generators and relations of Bn

in terms of n-strings in the case n = 5. The composition is from the top to the bottom.

Figure 1.4: The generators σ1 and σ4.
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1.3. The action of Bn on the fundamental group of Σ

Figure 1.5: The relation σ3σ1 = σ1σ3.

Figure 1.6: The relation σ2σ3σ2 = σ3σ2σ3.

Theorem 1.32. The action of π0(Homeo(Σ)) ' Bn on π1(Σ) satisfies:

σj[γi] =


[γi] if i 6= j, j + 1

[γ−1
j γj+1γj] if i = j

[γj] if i = j + 1

Proof. By definition σj acts trivially on the Pi’s for all i 6= j, j + 1. So we can assume

that the corresponding element in Γ(Σ) acts in a non trivial way only on a connected

neighbourhood of the loops γj and γj+1 which is homeomorphic to the disk D.

In this way the proof is reduced to the case n = 2. The presentation of Bn shows

that B2 is the free group generated by σ1, while the fundamental group of Σ is freely

generated by γ1 and γ2. We are left to prove that

σ1([γ1]) = [γ−1
1 γ2γ1] and σ1([γ2]) = [γ1].

Assuming δ < 1/4 the action of σ1 on the points Pi can be extended to the whole

disk by the following homeomorphism:

s1(αeiϑ) =


αei(ϑ+π) = −αeiϑ 0 ≤ α ≤ 3/4

eiϑ ·
(

1
8
+

7
8
· e4iπ(1−α)

)
3/4 < α ≤ 1

Using the explicit descriptions of the loops γi and of s1 one can deduce the stated

action.
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1.3. The action of Bn on the fundamental group of Σ

Remark 1.27 showed how to give a graphical representation of the elements of

H . We can then use the following picture to convince ourselves of the truthfulness

of the statement.

Figure 1.7: The graphical representation of s1 restricted to the images of γ1 and γ2

together with the sections of the path connecting Id to s1 at levels 0, 0.5 and 1.
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2 | The arc complex

As in Section 1.3 the setting consists of a fixed point Q ∈ ∂D and a set S of n distinct

points Pi ∈
◦
D which defines the punctured disk Σ = D \ S.

2.1 The geometric definition

According to [15] we give the following definition of simplicial complex.

Definition 2.1. A simplicial complex is a collection C of finite non-empty sets, such that

if A is an element of C, so is every non-empty subset of A.

Definition 2.2. We say that A ∈ C is a q-simplex and has dimension q if it has q + 1

elements. The set of all q-simplices is denoted by Cq. The 0-simplices are also called

vertices.

Definition 2.3. Let n ∈ N. The simplicial complex C has dimension n if Cq = ∅ for

all q > n and Cn 6= ∅.

Definition 2.4. We say that C is spanned by C0 if A is an element of C for every

non-empty A ⊆ C0.

Definition 2.5. An arc of Σ is a smooth and injective map α : I → D such that

1. α(0) = Q;

2. α(1) ∈ S;

3. α(t) ∈
◦
Σ for all t ∈ (0, 1).

Denote with Arc the topological space of all the arcs of Σ.

Definition 2.6. Two arcs α and β are isotopic if [α] = [β] as elements of π0(Arc).

17



2.1. The geometric definition

Definition 2.7. Let a0, . . . , aq be q + 1 distinct elements of π0 (Arc). We say that they

are non intersecting if there exist representatives α0, . . . , αq such that αi(I) ∩ αj(I) = Q

for all i and j with i 6= j.

Definition 2.8. The arc complex A is the simplicial complex whose set of vertices is

A0 = π0 (Arc) and whose q-simplices are subsets A ⊆ A0 of q + 1 non intersecting

isotopy classes of arcs.

From the definition it follows that the set of vertices of A is A0, but A is not neces-

sarily the complex spanned by A0 since in Aq we require non intersecting conditions.

Since Aq = ∅ for q ≥ n and An−1 6= ∅ the dimension of A is equal to n− 1.

Example 2.9. Let n = 3. The figure below represents three arcs of Σ.

γβ

α

The sets {[α], [β]} and {[α], [γ]} are elements of A1, while {[β], [γ]} is not since

every pair of representatives of ([β], [γ]) intersect.

Remark 2.10. Suppose that the q-simplex A is represented by both the sets of arcs

{α0, . . . , αq} and {β0, . . . , βq} with the property that αi(I) ∩ αj(I) = Q and βi(I) ∩
β j(I) = Q for all i 6= j. After reordering we can assume that for all i ∈ {0, . . . , q}
there exists a continuous map Hi : I → Arc such that Hi(0) = αi and Hi(1) = βi.

Moreover we can assume that for all t ∈ I the set of arcs {H0(t), . . . , Hq(t)} represents

the q-simplex S.

Remark 2.11. Let A ∈ Aq. We define an order relation on A in the following way.

Let a, b ∈ A and α and β be representatives of a respectively b with the property that

α(I)∩ β(I) = Q. We say that a < b if and only if there exists an ε ∈ I such that for all

t ∈ (0, ε) the set α([0, t]) is before the set β([0, t]) according to the counter-clockwise

order around Q. Thanks to Remark 2.10 the order does not depend on the choice

of the representatives, so it is well defined. It follows that we can associate to every
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2.2. The action of Bn

element A ∈ Aq an ordered (q + 1)-tuple (a0, . . . , aq) of elements of A0 such that

ai < aj if and only if i < j.

2.2 The action of Bn

We denote by Gd the group of diffeomorphisms of D which fix the boundary point-

wise, and Hd its subgroup which stabilizes the set S. As stated in Remark 1.28 there

is a canonical isomorphism Bn ∼= π0(Hd). The group Hd acts on the left on Arc by

composition:

Hd ×Arc→ Arc, (h, α) 7→ hα

and by applying the functor π0 this induces an action of π0(H ) ∼= Bn on A0. The

action on the vertices induces an action on the simplicial complex since the elements

of Hd preserve the non-intersecting condition.

The action of Bn on A gives us a way to describe the arc complex in a combinato-

rial way.

Theorem 2.12. Bn acts transitively on Aq for all q.

Lemma 2.13. The space of injective smooth paths α : I → D such that α(0) = Q and

α(t) ∈
◦
D for all t 6= 0 is path connected.

It may be intuitively clear that the lemma holds, but for completeness we give a

proof.

Proof. Let α and β satisfy the hypothesis of the lemma. We need to find a homotopy

H : I × I → D such that H(0, t) = α(t), H(1, t) = β(t) and for all s ∈ I the path

H(s,−) is smooth, injective and such that H(s, 0) = Q and H(s, t) ∈
◦
D for all t 6= 0.

A priori the map

t 7→ (1− s)α(t) + sβ(t)

is not injective. However it is enough to determine an ε ∈ I such that

t 7→ K(s, t) := (1− s)α(εt) + sβ(εt)

is injective for all s ∈ I. Indeed for such an ε the homotopies

F : I × I → D, (s, t) 7→ α ((1− s(1− ε))t)

K : I × I → D, (s, t) 7→ (1− s)α(εt) + sβ(εt)

G : I × I → D, (s, t) 7→ β ((ε + s(1− ε))t)

are injective for all s ∈ I and smooth in t. Moreover the map H given assembling

those homotopies is still smooth and realizes the wanted homotopy.

19



2.2. The action of Bn

F K G

Figure 2.1: The representation of H as composition of A, K and B.

We are left to prove that such ε exists. We can assume without loss of generality

that Q = 1 and we can write α(t) = α1(t) + iα2(t) and β(t) = β1(t) + iβ(t) with αi

and β j smooth maps of I in R. Moreover since the paths are smooth and the real part

has maximum absolute value in t = 0, there exists ε > 0 such that for all u ∈ [0, ε]

we have
∂α1

∂t
(u) ≤ 0

∂β1

∂t
(u) ≤ 0

These conditions are sufficient to guarantee the injectivity of K(s,−) for all s.

Using the Isotopy Extension Theorem [10, Chapter 8], Lemma 2.13 allows us to

recover the following stronger statement.

Proposition 2.14. Let α and β be two injective and smooth paths in D such that α(0) =

β(0) = Q and α(t), β(t) ∈
◦
D for all t 6= 0. Then there exists F ∈ Gd such that Fα = β.

We are ready to give the proof of Theorem 2.12.

Proof of Theorem 2.12. Let α, β ∈ Aq be represented by two ordered (q + 1)-tuples of

non intersecting arcs (α0, . . . , αq) and (β0, . . . , βq). Since we work up to isotopy we

can assume without loss of generality that there exists an ε > 0 such that αi|[0,ε]

and βi|[0,ε] are straight lines. For all i ∈ {0, . . . , q} define the arcs α̃i(t) := α(εt) and

β̃i(t) = βi(εt).

Since D is metric and S is finite we can find closed spaces Di containing αi(I)

which are homeomorphic to D and such that Di ∩ Dj = Q. For example we can

define δ :=
1
3

min t,s∈[ε,1]
i 6=j∈{1,...,q+1}

|αi(t) − αj(s)|. The spaces Di can be defined as the

closure of
⋃

t∈I Bδ·t(α(t)). In every Di we can apply Proposition 2.14 to the paths αi

and α̃i in order to get a diffeomorphism fi of Di extending the isotopy between αi

and α̃i and fixing ∂Di. Moreover, using bump functions we can assume that there is a

neighbourhood Ui ⊆ Di of ∂Di such that fi|Ui = IdUi . In this way the map f defined

as the identity on D \⋃Di and as fi on each Di is an element of Gd such that f αi = α̃i

for all i ∈ {0, . . . , q}.
Proceeding in a similar way we find g ∈ Gd such that gβ̃i = βi for all i ∈ {0, . . . , q}.

20



2.2. The action of Bn

We can apply Proposition 2.14 to the paths α̃0 and b̃0 to find h0 ∈ Gd such that the

image of α̃0 is β̃0. Since h0 preserves the orientation we can ensure that there exists a

closed set D1 containing

β̃1(I), . . . , β̃q(I), h0(α̃1)(I), . . . , h0(α̃q)(I)

which intersects ∂D and β̃0(I) = h0(α̃0)(I) only in Q and which is homeomorphic to

the closed disk. On this closed disk, with the same argument as before, we can find

a diffeomorphism h′1 fixing the boundary of D1 such that the image of h0(α̃1) is β̃1.

Moreover we can assume, using bump functions, that h′1 is the identity in an open

neighbourhood of D1. It follows that the map h1 : D → D defined as the identity on

the complement of D1 and as h′1 on D1 belongs to Gd. Repeating this process we find

maps h0, . . . , hq ∈ Gd such that hi(. . . (h0(α̃i) . . . ) = β̃i and hi(β̃ j) = β̃ j for each j < i.

The composition h := hq · · · h0 ∈ Gd is such that h(α̃i) = β̃i for all i ∈ {0, . . . , q}.
We can then conclude that the map φ := gh f ∈ Gd is such that φ(αi) = βi for all

i ∈ {0, . . . , q}, and hence maps S to S. Thus φ is actually an element of Hd and hence

the action is transitive.

f h g

Figure 2.2: The steps in proving the transitivity in the case n = 4 and q = 1.

Since the action is transitive for every A, B ∈ Aq the stabilizers of A and B are

conjugate. It follows that in order to have the wanted combinatorial description of

Aq it suffices to compute the stabilizer of only one q-simplex.

Recall that D is the unit disk embedded in the complex plane C. Assume, as in

Section 1.3, that Q = 1 and

Pj =
n + 1− 2j

n + 1
· i ∈ C

so that Pk, Pj and Q are not collinear when k 6= j. For each j ∈ {0, . . . , n − 1} we

define the arc λj : I → D as

λj(t) = (1− t)Q + tPj+1

Definition 2.15. The set Λq = {[λ0], . . . , [λq]} is called the standard q-simplex of A.
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λ2

λ0

λ1

λ3

λ4

Figure 2.3: Representation of λ0, . . . , λ4 in the case n = 5.

Definition 2.16. Hq is the subgroup of Bn generated by {σq+2, . . . , σn−1}.

We have the ingredients to state the following:

Theorem 2.17. The stabilizer of Λq ∈ Aq is Hq ⊆ Bn.

Proposition 2.18. For all i ∈ {0, . . . , q} and j ∈ {1, . . . , n − 1} the action of Bn on A0

satisfies

σj[λi] =


[λi] if i 6= j, j− 1

[λj−1] if i = j

6∈ Λq if i = j− 1

Proof. Since the arcs are linear and the generators permute only two points at the

same time we can reduce to the case n = 2, as in the proof of Theorem 1.32. It is left

to prove that σ1[λ0] 6∈ Λ1 and σ1[λ1] = [λ0]. The element σ1 is represented by the

homeomorphism

s1(αeiϑ) =


αei(ϑ+π) = −αeiϑ 0 ≤ α ≤ 3/4

eiϑ ·
(

1
8
+

7
8
· e4iπ(1−α)

)
3/4 < α ≤ 1

which can be made smooth using bump functions on a neighbourhood of α = 3/4

while it is already smooth outside. We can compute, using the explicit formulas,

the image of λ1 via s1, and since there exists a simply connected neighbourhood of

λ0(I) ∪ s1λ1(I) which does not intersect P2, we can conclude that the two paths are

isotopic. If s1λ0 were an element of Λ1, it should be isotopic to λ1, since its ending

point is P2. Moreover the choice of Pi’s and the definitions of λi’s implies that λ0 < λ1,

and since the order is preserved by the action of Bn also σ1[λ0] < σ1[λ1] = [λ0] < [λ1]

holds. It is then impossible for s1λ0 to be isotopic to λ1, thus σ1[λ0] 6∈ Λ1. We refer

to Figure 2.4 for a graphical representation of the action of σ1.
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2.2. The action of Bn

Figure 2.4: The graphical representation of the action of σ1 on λ0 and λ1.

We can then prove that the stabilizer of Λq is Hq.

Proof of Theorem 2.17. Define the topological group

Hq := {h ∈Hd | h(λi(t)) = λi(t) for all i ∈ {0, . . . , q} and for all t ∈ I}.

The class of h ∈Hd belongs to the stabilizer of Λq if h(Λq) is homotopy equivalent

to Λq. This means that there exists a smooth map K : I× I → Dq+1 such that K(t, 0)i =

λi(t) and K(t, 1)i = hλi(t) for all i ∈ {0, . . . , q} and that for every s ∈ I the paths

K(−, s)i are arcs such that K(I, s)i ∩ K(I, s)j = Q if i 6= j. Thanks to the isotopy

extension theorem this implies the existence of a continuous map K̂ : I × D → D

such that K̂(s, λi(t)) = K(t, s)i for all i ∈ {0, . . . , q}. It follows that the class of h is

the same as the class of any map which fixes Λq point-wise. Hence we deduce that

Stab(Λq) = π0(Hq).

The group π0(Hq) is the mapping class group of Σ \ ⋃q
i=0 λi(I), which coincides

with the mapping class group of the disk with n− q− 1 punctures. It follows that

π0(Hq) is the mapping class group of the n− q− 1 punctured disk, which thanks to

Corollary 1.17 is isomorphic to Bn−q−1.

As a consequence of Proposition 2.18 we have that Hq ⊆ Stab(Λq). Via the iden-

tification Stab(Λq) ∼= Bn−q−1 the inclusion corresponds to the morphism

φ : Hq → Stab(Λq) ∼= Bn−q−1, σk 7→ σk−q−1

It follows that this homomorphism is also surjective because all the generators belong
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to the image of φ. Thus φ is an isomorphism which shows that Hq is the stabilizer of

Λq.

Remark 2.19. The proof of Theorem 2.17 shows also that Hq is isomorphic to Bn−q−1.

We can now state and prove the combinatorial characterization of the arc complex.

Theorem 2.20. Let B be the (n− 1)-dimensional simplicial complex whose q-simplices are

the left cosets of Hq in Bn and such that for every b ∈ Bn the vertices of bHq are

bH0, bσ−1
1 H0, . . . , bσ−1

q · · · σ−1
1 H0.

Then the maps

φq : Bq → Aq, bHq 7→ bΛq

define a Bn-equivariant isomorphism of simplicial complexes.

Proof. The orbit-stabilizer theorem implies that the map

φq : Bn/Hq = Bq → Aq, bHq 7→ bΛq

is a bijection which respects the action of Bn. So we only need to check that the

simplicial structure is preserved. Proposition 2.18 implies that [λk] = σ−1
k · · · σ

−1
1 [λ0]

for all k ∈ {1, . . . , n− 1}, then the q-simplex bΛq is given by the set

{[bλ0], . . . , [bλq]} = {b[λ0], . . . , bσ−1
q · · · σ−1

1 [λ0]}

It follows that the vertices are then of the form bσ−1
k · · · σ

−1
1 [λ0] for all k ∈ {0, . . . , q}

where σ0 = 1. It is clear by definition of B that they correspond to the vertices of bHq

via φ0.

Remark 2.21. Using the combinatorial description and the presentation of Bn we can

see that for all b ∈ Bn the faces of bHq are the (q− 1)-simplices

bHq−1, bσq−1
−1Hq−1, . . . , bσ1

−1 · · · σq−1
−1Hq−1

Remark 2.22. Since φq depends on the choice of the simplex Λq the description of A
in terms of Bn is not canonical.

2.3 Some preliminaries about simplicial complexes

This section is devoted to give some definitions and state properties about simplicial

complexes which will be used in next section. We use [8], [12] and [11] as main

references.

24



2.3. Some preliminaries about simplicial complexes

Definition 2.23. Let C be a simplicial complex. Let I(C0) be the space of functions

t : C0 → I with finite support. The geometric realization |C| of C is the subspace of

maps t such that ∑c∈C0
t(c) = 1 and {c ∈ C0|t(c) > 0} ∈ C.

By the very definition of |C| we can identify every point of |C| with a formal sum

∑c∈C tcc where C ∈ C and tc are non negative real numbers such that ∑c∈C tc = 1.

Definition 2.24. For every simplex C ∈ C we denote by |C| the geometric realization

of the complex ∆(C) = {A ⊆ C | A 6= ∅}. Denote by ∂C the complex ∆(C) \ {C}.

Lemma 2.25. The space |C| is homeomorphic to the closed ball of dimension dim C, denoted

Ddim C, while |∂C| = ∂|C| ∼= Sdim C−1.

Definition 2.26. The space |C|◦ := |C| \ ∂|C| is called the interior of |C|.

Remark 2.27. Fix n ∈ N. Let P(n) be the power set of {0, . . . , n− 1} and define the

standard combinatorial n-simplex ∆(n) to be P(n) \ {∅}. It is a simplicial complex of

dimension n. A point P ∈ |∆(n)| is written as ∑n−1
i=0 aiti with ai ∈ I and ∑ ai = 1. Its

geometric realization is homeomorphic to Dn. The subcomplex S(n − 1) = ∆(n) \
{0, . . . , n− 1} is also denoted ∂∆(n). A point P ∈ |∂∆(n)| is written as ∑n−1

i=0 aiti where

at least one coefficient ai is zero. Its geometric realization is homeomorphic to Sn−1,

the boundary of Dn.

Definition 2.28. A simplicial map between the complexes C and D is a map φ0 : C0 →
D0 such that for every A ∈ C we have φ(A) ∈ D. This determines a map φ : C → D
given by φ(A) = φ0(A) for all A ∈ C.

Lemma 2.29. Let C and D be simplicial complexes with geometric realizations |C| and |D|.
Let φ : C → D be a simplicial map. The map

|φ| : |C| → |D|, ∑
c∈C

tcc 7→ ∑
c∈C

tcφ(c)

is continuous.

Remark 2.30. It is not true that every continuous map f : |C| → |D| arises from a

simplicial map of the simplicial complexes C and D. If this happens we say, by abuse

of language, that f is a simplicial map with respect to the complexes C and D.

Definition 2.31. A triangulation of a topological space X is a simplicial complex C
together with a homeomorphism h : |C| → X.

Example 2.32. Let C be a simplicial complex. Then (C, Id) is a triangulation of |C|.
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Lemma 2.33 ([8, Theorem 2C.1]). Let X be triangulated by (C, h) where C is a finite

complex and Y be triangulated by (D, g). For every continuous map φ : X → Y there exists a

finite triangulation (C ′, h′) that refines (C, h), such that φ is homotopic to a map φ′ : X → Y

which is simplicial with respect to the complexes C ′ and D.

Remark 2.34. The simplicial approximation theorem holds also in a relative way [17,

Theorem 2.34]. This means that if there exists a subcomplex A of C such that φ||A|
is simplicial, then the refinement C ′ can be chosen to contain A and such that the

homotopy between φ and φ′ is relative to |A|.

Lemma 2.35. Let C be a simplicial complex, h : |TS| → Sk a finite triangulation of Sk and

f : TS→ C a simplicial map. The following are equivalent:

1. | f | is null homotopic;

2. There exists a finite simplicial complex TD containing TS, a homeomorphism ĥ : |TD| →
Dk+1 extending h : |TS| → Sk and a simplicial map f̂ : TD → C such that f̂ |TS = f .

Proof. For a continuous map being null homotopic is equivalent to being extendible

to the cone, hence the second statement trivially implies the first.

Assume that | f | : |TS| → |C| is null homotopic. This means that | f | : |TS| ∼=
Sk → |C| can be extended to the cone of Sk, that is there exists f̃ : Dk+1 → |C| which

restricted to Sk is | f |. The finite triangulation (TS, h) of Sk extends to a finite triangu-

lation (T̃D, h̃) of Dk+1. Applying the relative version of the simplicial approximation

theorem to f̃ we find a refinement (TD, ĥ) of (T̃D, h̃) which extends (TS, h), and a

simplicial map f̂ : |TD| → |C| homotopic to f̃ relative to |TS|. It follows that | f̂ |
extends | f |.

We now define some operations with simplicial complexes.

Definition 2.36. Let C be a simplicial complex and C ∈ C. The star of C, denoted by

St(C), is the subcomplex of C whose simplices are the sets B ∈ C such that B∪C ∈ C.

The link of C, denoted by Lk(C), is the subcomplex of C defined as

Lk(C) = {B ∈ C|B ∩ C = ∅ and B ∪ C ∈ C}.

Note that St(C) and Lk(C) are indeed simplicial complexes.

Example 2.37. Define the simplicial complex C as the collection of the sets:

{a}, {b}, {c}, {d}, {a, b}, {b, c}, {c, a}, {a, d}, {d, c}, {a, b, c}

Figure 2.37 gives a graphical representation of the concepts introduced above. The

first picture represents the geometric realization of the complex. In the second one

we coloured the subspace |St(c)| and in the third one |Lk(c)|.
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{a}

{b} {a, b, c}

{a, b}

{b, c}

{a, c}

d

{b, d}

{c, d}

|St(c)| |Lk(c)|

{c} {c} {c}

Definition 2.38. The join of two simplicial complexes C and D, denoted by C ∗ D, is

the simplicial complex

(C ∗ D) := C t D t {C t D | C ∈ C and D ∈ D}.

Definition 2.39. Let X and Y be two topological spaces. The join X ∗ Y is the topo-

logical space X×Y× I/R where R is the equivalence relation generated by

(x, y1, 0) = (x, y2, 0) for all x ∈ X and y1, y2 ∈ Y

(x1, y, 1) = (x2, y, 1) for all x1, x2 ∈ X and y ∈ Y

Equivalently every point P ∈ X ∗Y can be viewed as a formal sum (1− t)x + ty with

t ∈ I subject to the identifications 0x + 1y = y and 1x + 0y = x for all x ∈ X and

y ∈ Y.

Lemma 2.40. The following hold:

1. For every vertex {c} ∈ C, the space |St({c})| is contractible.

2. The join operators commute with the geometric realization: |C ∗ D| = |C| ∗ |D|.

3. For every C ∈ C we have St(C) = C ∗ Lk(C).

Proposition 2.41. Let n, m ∈ N. Every homeomorphism α : Dn ∗ Sm → Dn+m+1 restricts

to a homeomorphism between ∂Dn ∗ Sm and ∂Dn+m+1.

Proof. Let α and β be homeomorphisms Dn ∗ Sm → Dn+m+1. Then there exists a

unique homeomorphism γ : Dn+m+1 → Dn+m+1 such that α = γβ. Notice also that

every homeomorphism γ : Dn+m+1 → Dn+m+1 restricts to a homeomorphism of the

boundary Sn+m to Sn+m. Combining these two results we conclude that it is enough to

prove the statement for only one particular homeomorphism α. We can use Remark

2.27 to substitute |∆(n)| and |S(m)| for Dn and Sm. The simplicial map

α : |∆(n)| ∗ |S(m)| → |∆(n + m + 1)|
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2.4. Contractibility

defined for every ∑n−1
i=0 aiti ∈ |∆(n)| and ∑m

j=0 bjtj ∈ |S(m)| as

n−1

∑
i=0

aiti +
m

∑
j=0

bjtj →
n−1

∑
i=0

aiti +
m

∑
j=0

bjtj+n

is a homeomorphism. The restriction of α to ∂|∆(n)| ∗ |S(m)| maps bijectively to

∂|∆(n + m + 1)|, hence the proposition is proved.

Lemma 2.42. Let C = {t1, . . . , tp} ∈ Cp−1 and define PC := ∑
p
i=1 p−1ti ∈ C. Let pt be a

one point topological space. Then the map φ : ∂|C| ∗ pt → |C| defined for all Q ∈ ∂|C| as

tQ + spt 7→ tQ + sPC is a homeomorphism which fixes ∂|C| point-wise.

The following result is a consequence of the Künneth formula

Lemma 2.43 ([14, Lemma 2.3]). Let X0, . . . , Xm be topological spaces. Assume that Xj

is (nj − 1)-connected for all j. Define N :=
(

m− 1 + ∑m
j=0 nj

)
. Then X0 ∗ · · · ∗ Xm is

N-connected.

The following results can be found in [11, Chapter 1].

Definition 2.44. A simplicial complex C is a combinatorial n-manifold if for all A ∈ C
the space |Lk(A)| is homeomorphic either to Sn−dim(A)−1 or to Dn−dim(A)−1.

Remark 2.45. Let C and C ′ be simplicial complexes such that |C| ∼= |C ′|. Then C is a

combinatorial n-manifold if and only if C ′ is a combinatorial n-manifold.

Example 2.46. The simplicial complex ∆(n) is a combinatorial n-manifold. Since

|∆(n)| ∼= Dn we have that any simplicial complex triangulating Dn is a combinatorial

n-manifold.

Lemma 2.47 ([11, Lemma 1.18]). Let Dn be triangulated by C and let B be the subcomplex

of C which triangulates the boundary Sn−1. Let A ∈ C. Then |Lk(A)| ' Dn−dim(A)−1 if and

only if A ∈ B.

2.4 Contractibility

The main result concerning the topology of the geometric realization of the arc com-

plex is the following theorem.

Theorem 2.48. |A| is contractible.

Example 2.49. We describe the geometric realization in the case n = 2. Since dimA =

1 we have that Aq = ∅ for all q ≥ 2. As described in Theorem 2.20 Ai = {σm
1 Λi | m ∈

Z} for i ∈ {0, 1}. Moreover σm
1 Λi = σn

1 Λi if and only if n = m. The combinatorial

description of A implies that for all m ∈ Z the vertex σm
1 Λ0 is the ending point of

28



2.4. Contractibility

exactly two 1-simplices, σm
1 Λ1 and σm+1

1 Λ1. Hence the geometric realization of A can

be depicted as:

σm−2
1 Λ0 σm−1

1 Λ0 σm
1 Λ0 σm+1

1 Λ0 σm+2
1 Λ0

σm−1
1 Λ1 σm

1 Λ1 σm+1
1 Λ1 σm+2

1 Λ1

It follows that |A| is contractible.

Even if in the case n = 2 the geometric realization of |A| is very explicit, the

situation for n ≥ 3 is harder to describe.

A partial result about the homotopy type of |A| is the following statement.

Theorem 2.50 (Hatcher and Wahl). |A| is (n − 2) connected, i.e. πj(|A|) = 0 for all

j ≤ n− 2.

The theorem is part of the statement of [9, Theorem 7.2]. We give Hatcher and

Wahl’s proof. For that we introduce a complex F containing A whose geometric

realization is contractible.

Definition 2.51. The full arc complex F is the simplicial complex whose set of 0-

simplices is A0 = π0 (Arc) and whose q-simplices are subsets {a0, . . . , aq} of A0 of

cardinality q + 1 such that there exist representatives α0, . . . , αq such that αi((0, 1)) ∩
αj((0, 1)) = ∅ for all i 6= j.

The difference with the arc complex A is that arcs in a simplex of F are allowed

to share both their ending points.

Example 2.52. Observe the figures below representing two triples of arcs in the case

n = 3.

β
α

The first one represents a 2-simplex of bothA and F , while the second one represents

a 2-simplex of F which is not a simplex of A since the ending points of α and β

coincide.

It is clear that the definition implies that A is a subcomplex of F and that they do

not coincide for n > 1.
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2.4. Contractibility

Theorem 2.53. |F | is contractible.

Proof. The proof uses the argument introduced in [7] adapted to the disk.

Let a be a vertex of F . As stated in Lemma 2.40 the space |St(a)| is contractible. It

will be enough to show that |F | can be retracted to |St(a)|. Denote by ι the inclusion

of |St(a)| in |F |. We will construct a continuous map ψ : |F | × I → |F| such that

ψ(−, 0) is the identity, ψ(|F |, 1) ⊆ |St(a)| and for all t ∈ I and P ∈ |St(a)| we have

ψ(P, t) = P.

Fix once and for all a representative α of a. Let P ∈ |F|, then we can write

P = t0b0 + · · ·+ tqbq where the ti are positive real numbers such that t0 + · · ·+ tq = 1

and B = {b0, . . . , bq} ∈ F .

We say that (β0, . . . , βq) is a minimal system for (b0, . . . , bq) if [βi] = bi for all

i ∈ {0, . . . , q} and if for all i 6= j we have that βi((0, 1)) ∩ α((0, 1)) has minimal

cardinality and βi((0, 1))∩ β j((0, 1)) = ∅. For every B there exists a minimal system.

To construct it we can first choose arcs which intersect only in their ending points,

and then minimize the cardinality of intersection with α. Notice that if (β0, . . . , βq)

is a minimal system of (b0, . . . , bq), then every (j + 1)-tuple (βi0 , . . . , βij) is a minimal

system of (bi0 , . . . , bij).

Let β be any minimal system for B. The cardinality i(bj) of the set

I(bj) := β j((0, 1)) ∩ α((0, 1))

is finite and does not depend on the choice of minimal system β, since every two

minimal systems are isotopic via families of minimal systems. We define i(P) the

cardinality of

I(P) :=
⋃

j∈{0,...,q}
β j((0, 1)) ∩ α((0, 1))

which coincide with the sum i(b0) + · · ·+ i(bq).

If i(P) = 0 then {b0, . . . , bq, a} is a simplex of F , and hence B ∈ St(a). It follows

that if i(P) = 0 then P ∈ |St(a)|.
Assume that P 6∈ |St(a)|. We show how to associate to P a map φ(P) : I → |F|

such that φ(P)(0) = P and i(φ(P)(1)) < i(P).

Let T = α(z) ∈ I(P) with minimal z. Then there is a k ∈ {0, . . . , q} such that

T ∈ βk(I) and without loss of generality we can assume that T = βk(z). Notice that

k does not depend on the choice of minimal system. Consider the path p : I → D

defined as

t 7→

α(t) if t ≤ z

βk(t) if t ≥ z
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2.4. Contractibility

It is homotopy equivalent to a smooth arc β̃k by modifying the definition in a

neighbourhood of [0, z] so that

β̃k(I) ∩ α(I) = βk(I) ∩ α(I) \ {T} and β̃k((0, 1)) ∩ βi((0, 1)) = ∅ for all i 6= k.

In this way the cardinality ĩ(P) of the set

Ĩ(P) := β̃k((0, 1)) ∩ α((0, 1)) ∪
⋃
j 6=k

β j((0, 1)) ∩ α((0, 1))

is lower than i(P).

Denote by b̃k the isotopy class of β̃k. Notice moreover that there exists a represen-

tative γ of b̃k such that γ((0, 1)) ∩ βi((0, 1)) = ∅ for all i ∈ {0, . . . , q}. It follows that

B1 := {b0, . . . , bq, b̃k} is an element of F belonging to Fq or Fq+1. We refer to Figure

2.5.

TT TT TT

Figure 2.5: Consider the case B = {[β]} where β is the blue path and α the black one,

both represented in the first picture. The second picture represents in red the path p.

The third one represents in red the path β̃k and the fourth one γ.

Recall that bk was defined to be the number of intersections between βk((0, 1))

and α((0, 1)). We define the map φ(P) : [0, i(bk)tk]→ |F| as

s 7→ P− s
i(bk)tk

· tkbk +
s

i(bk)tk
· tk b̃k ∈ |B1| ⊆ |F|

Since the map is linear in s it is also continuous. Moreover we its value at i(bk)tk is

φ(P)(i(bk)tk) = P− tkbk + tkc = ∑
i 6=k

tibi + tk b̃k

We can then conclude that i(φ(P)(i(bk)tk)) ≤ ĩ(P). Indeed i(φ(P)(i(bk)tk)) is the min-

imal number of intersections between α and representatives of b0, . . . , ck, . . . bq, while

ĩ(P) is the number of intersections between α and the representatives β0, . . . , β̃k, . . . , βq.

Given that ĩ(P) < i(P) we conclude that i(φ(P)(1)) < i(P).

Repeating this argument finitely many times we define a map ψ(P)θ : [0, ∑ tji(bj)]→
|F| such that ψ(P)(θ) ∈ |St(a)|. We rescale linearly the interval [0, ∑ tji(bj)] to I ob-

taining ψ(P) : I → |F| such that ψ(P)(1) ∈ |St(a)|. For every simplex B ∈ F the map

ψ(B) :
◦
|B| × I → |F| sending (P, s)→ ψ(P)(s) is continuous.
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2.4. Contractibility

Let P = ∑ aiti ∈
◦
|B| and C be a simplex of ∂B such that Pk = ∑i 6=k aiti ∈

◦
|C|. The

definitions of the maps ψ(B) and ψ(C) imply that

lim
tk→0

ψ(B)
(
∑ aiti, s

)
= ψ(C)

(
∑
i 6=k

aiti, s

)

for all s ∈ I. It follows that the collection of all maps ψ(B) glue to form a global

continuous map φ : |F | × I → |St(a)|. By construction this satisfies the properties to

be a deformation retraction, so |F | is contractible.

Example 2.54. Let n = 2 and fix α ∈ Arc. Let B = {[β0], [β1]} ∈ F1 satisfying

the following properties: β0((0, 1)) ∩ β1((0, 1)) = ∅ and (β0((0, 1)) ∪ β1((0, 1))) ∩
α((0, 1)) is a unique point T ∈ Σ. Let P = t0[β0] + t1[β1] ∈ |B|. We can represent the

point P via the graphs of β0 and β1 where the thickness of the lines depends on the

coefficients ti. The Figure 2.6 represents, using this “thickness trick”, the images of

the map φ(P) at the times s = 0, s = 0.5 and s = 1. As we can see in the last picture

β̃0((0, 1)) ∩ α((0, 1)) = ∅ = β1((0, 1)) ∩ α((0, 1)), hence {β̃0, β1} belongs to St(α).

Tβ0

β1

α
Tβ0

β1

α

β̃0

β1

α

β̃0

Figure 2.6: A graphical representation of the deformation retraction.

Using the argument of [9, Proposition 7.2] we can prove the (n− 2)-connectedness

of |A|.

Proof of Theorem 2.50. The proof is by induction on n. For n = 1 the statement is

empty.

Assume n ≥ 2 and let k ≤ n − 2. By the induction hypothesis we have that

πj(|A|) = 0 for all j < k. Let f : Sk → |A| be a continuous map. We want to prove

that f is homotopic to a map which can be extended to the cone Sk. Since Sk has a

finite triangulation, without loss of generality we can suppose that f is simplicial with

respect to a finite triangulation TS of Sk. Since |A| ⊆ |F| and the full arc complex

is contractible we know that f : Sk → |F| is null homotopic. Hence by applying

Lemma 2.35 there exists a finite triangulation TD of Dk+1 that extends TS on Sk, and

a simplicial map f̃ : Dk+1 → |F| such that f̂ |Sk = f .
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2.4. Contractibility

By abuse of notation we still denote by f̂ the maps TD → F and |TD| → |F|
induced by f̂ . A simplex σ ∈ TD is bad if for every a ∈ f̂ (σ) there exists b 6= a ∈ f̂

such that a(1) = b(1).

Let σ be a bad simplex of maximal dimension p.

Claim 1. The map f̂ ||Lk(σ)| is null homotopic.

Let {a0, . . . , ar} = f̂ (σ), and for all i fix a representative αi of ai such that αk((0, 1))∩
αj((0, 1)) = ∅ whenever k 6= j. The maximality of σ means that for every simplex

τ ∈ Lk(σ) the image of τ is a simplex of A such that b(1) 6= a(1) for all a ∈ f̂ (σ)

and b ∈ f̂ (τ). In other words every simplex B belonging to the image of Lk(σ) sat-

isfies the following properties: the union f̂ (σ) ∪ B belongs to F and for every b ∈ B

there exists a representative β such that α(I) ∩ β(I) = Q. In particular β((0, 1]) lies

in D̂ = D \⋃p
i=0 αi(I).

Let U1, . . . , Uc be the path components of D̂ which have a non-empty intersection

with S, and for all i ∈ {1, . . . , c} denote by Di the closure of the component Ui. For

each i call Si the intersection S∩Ui, and denote its cardinality by ni. Note that ni ≥ 1.

Define an arc of Di \ Si as an injective smooth path α with starting point Q, ending

point belonging to Si and α((0, 1)) ∈
◦
Di \ Si. Denote by A(Di, Si) the simplicial

complex whose q-simplices are (q + 1)-tuples of homotopy classes of arcs of Di \ Si.

Since Di is homeomorphic to a disk, A(Di, Si) is isomorphic to the arc complex of a

disk with ni punctures.

Figure 2.7: The disks D1 and D2 obtained cutting along the paths belonging to the

image of σ. Note that n1 = 1 and n2 = 2.

The maximality of σ implies that f̂ (Lk(σ)) is contained in the subcomplex A(σ)
of A defined as the join complex

A(σ) := A(D1, S1) ∗ · · · ∗ A(Dc, Sc).

Notice moreover that since the simplex σ is bad, it cannot belong to TS, the subcom-

plex of TD triangulating the boundary Sk of Dk+1. Thanks to Lemma 2.47 we can
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conclude that |Lk(σ)| is homeomorphic to Sk−p.

We can conclude that the restriction of f̂ to |Lk(σ)| can be viewed as a simplicial

map

f̂ ||Lk(σ)| : |Lk(σ)| ∼= Sk−p → |A(σ)|

Notice that ni < n, hence by induction hypothesis |A(Di, Si)| is (ni − 2) connected.

Furthermore from Remark 2.40 we have that

|A(σ)| = |A(D1, S1) ∗ · · · ∗ A(Dc, Sc)| ∼= |A(D1, S1)| ∗ · · · ∗ |A(Dc, Sc)|

We can apply then Lemma 2.43 to |A(σ)| obtaining that |A(σ)| is N-connected with

N = (c− 1)− 1 +
c

∑
i=1

(ni − 1)− 1 =
c

∑
i=1

ni − 2.

Let d be the cardinality of {a(1) | a ∈ f̂ (σ)}, so that ∑c
i=1 ni = n− d. Since f̂ is

simplicial d ≤ dim φ(σ) ≤ dim(σ) = p, and together with k ≤ n− 2 we get that

k− p ≤ n− 2− p =
c

∑
i=1

ni + d− 2− p ≤
c

∑
i=1

ni − 2

This implies that f̂ ||Lk(σ)| is null homotopic.

Claim 2. There exists a continuous map fσ : Dk+1 → |F| such that fσ(P) = f̂ (P) if P 6∈ |St(σ)|◦

fσ(P) ∈ |A| if P ∈ |St(σ)|◦

Since f̂ ||Lk(σ)| is null homotopic it can be extended to a map g : pt ∗ Sk−p ' P ∗
|Lk(σ)| → |A(σ)|. The complex TDg := {pt} ∗ Lk(σ) triangulates pt ∗ |Lk(σ)|.

Choose a homeomorphism φ : ∂|σ| ∗ P → |σ| such that φ|∂|σ| = Id∂|σ| (Lemma

2.42). Using Lemma 2.40 we can find the following homeomorphism:

∂|σ| ∗ |{P} ∗ Lk(σ)| = ∂|σ| ∗ P ∗ |Lk(σ)|
∼=→ |σ| ∗ |Lk(σ)| = |σ ∗ Lk(σ)| = |St(σ)|

where we wrote the equality symbol when the homeomorphism is induced by canon-

ical identifications of complexes. The unique non canonical homeomorphism is in-

duced by φ.

It follows that the space |St(σ)| is triangulated by the complex TDσ := ∂σ ∗ (P ∗
Lk(σ)) via the homeomorphism Φ induced by φ. Notice that the homeomorphism Φ

which defines this new triangulation coincides with the canonical one on |Lk(σ)| and

on ∂|σ|.
Let τ := ∂σ ∗ Lk(σ). Note that τ ∈ St(σ) and also τ ∈ TDσ. Note that Φ||∂σ| =

Id|∂σ| and that Φ||Lk(σ)| = Id|Lk(σ)|. It follows that Φ||τ| = Id|τ|. Using Lemma 2.25
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2.4. Contractibility

we deduce that |σ| ∼= Dp and as we already noticed |Lk(σ)| ∼= Sk−p. It follows that

|St(σ)| ∼= Dp ∗ Sk−p which is homeomorphic to Dk+1. We can apply Proposition 2.41

to deduce that ∂|σ| ∗ |Lk(σ)| triangulates ∂|St(σ)|.
It follows that the triangulations (TD \St(σ), Id) of |TD| \ |St(σ)| and (TDσ, Φ) on

|St(σ)| glue to a new triangulation (T̂Dσ, Ψ) of |TD|. Moreover notice that TS ⊆ T̂Dσ

and that Ψ||TS| = Id|TS|.

We define the map F : ∂|σ| ∗ |{P} ∗ Lk(σ)| → |F| as

tP + sQ 7→ t f̂ (P) + sg(Q)

for every P ∈ ∂|σ| and Q ∈ |{P} ∗ Lk(σ)|. Notice that the image lies in |F | since, by

maximality of σ we have that |A(σ)| and | f̂ (σ)| are disjoint.

We can then deduce that, since g||Lk(σ)| = f̂ ||Lk(σ)| we have that on the boundary

of |St(σ)| the map F coincides with f̂ . So the map fσ : Dk+1 → |F|,

fσ(P) =

 f̂ (P) if P 6∈ |St(σ)|

F(P) if P ∈ |St(σ)|

is continuous. By definition the image of the interior of |St(σ)| via fσ lies in |A(σ)|
while it coincides with f̂ otherwise.

Since the triangulation TD is finite the number of bad simplices of maximal di-

mension is finite too. Notice that given two bad simplices σ and σ′ of maximal

dimension, we have that |St(σ)|◦ ∩ |St(σ′)|◦ = ∅. We can conclude that we can apply

the argument above to any bad simplex of maximal dimension p. In this way we find

a triangulation TD(p) and a continuous map fp : Dk+1 → F extending f and such

that  fp(P) = f̂ (P) if P 6∈ St(p)

fp(P) ∈ |A| if P ∈ St(p)

where St(p) denotes the union
⋃

σ |St(σ)|◦ where σ ranges in the set of bad simplices

of maximal dimension p. It follows that the bad simplices of fp||TD(p)|\St(p) have

dimension strictly less than p.

We can repeat the process by decreasing induction on the dimension of the bad

simplices. In this way we obtain a triangulation TD(0) of Dk+1 and a continuous

map f0 : Dk+1 → |F| with the following properties:

1. The map f0 extends f ;

2. Let ω ∈ TD(0) such that f0(|ω|) ⊆ |F| \ |A|. Then f0||ω| is simplicial.

These conditions are enough to guarantee that the image of f0 lies then in |A|. Indeed

suppose by contradiction that there exists τ ∈ TD0 such that f0(|τ|) 6∈ |A|. Since the
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map f0||τ| is simplicial that means that there exist {a, b} ⊆ f0(τ) such that a(1) = b(1)

but a 6= b. It follows that the simplex {a, b} lies in the image of f0, hence there exists

a subset τ′ ⊆ τ such that f0(τ′) = {a, b}. But this means that τ′ is a bad simplex.

Contradiction!

The map f0 realizes an extension of f to the cone of Sk and so we can conclude

that f is null homotopic. By applying the same argument to every continuous map

f : Sk → Awe deduce that πk(|A|) = 0. By induction we can conclude that πj(|A|) =
0 for all j ≤ n− 2.

We can conclude by proving the contractibility of |A|.

Proof of Theorem 2.48. When n = 1 the space |A| is already reduced to a point. More-

over Example 2.49 showed the contractibility in the case n = 2, hence we can assume

n ≥ 3.

Since the space |A| admits a triangulation, in order to get its contractibility it suf-

fices to prove the triviality of all homotopy groups (J.H.C. Whitehead, [16, Theorem

6.32]). We can relate the homotopy groups to the homology groups thanks to the

Hurewicz Isomorphism Theorem ([16, Theorem 10.25]):

If X is an (n − 2)-connected space, with n ≥ 3, then the Hurewicz homomorphism

hq : πq(X, P)→ Hq(X, Z) is an isomorphism for q ∈ {1, . . . , n− 1}.
Thanks to Proposition 2.50 we can apply the stated theorem to |A| and conclude

that Hq(|A|, Z) = 0 for all q < n− 1. Since the dimension of the complex is n− 1,

we can deduce that Hq(|A|, Z) = 0 for all q > n − 1. Combining the two results

we have that Hq(|A|, Z) = 0 for all q 6= n − 1. If we prove that Hn−1(|A|, Z) =

0, then Hurewicz’s Theorem implies that πn−1(|A|, P) = 0 and consequently that

πq(|A|, P) = 0 for all q.

In this way we are left to prove the triviality of

Hn−1(|A|, Z) = ker
(

Z[An−1]
∂n−2−→ Z[An−2]

)
Let δ ∈ Z[Bn] be defined as

δ := 1− σn−1
−1 + σn−2

−1σn−1
−1 − · · ·+ (−1)n−1σ1

−1 · · · σn−1
−1

The combinatorial description of A asserted in Theorem 2.20 gives the commutative

diagram:

Z[An−1]
∂n−2

//

∼=
��

Z[An−2]

∼=
��

Z[Bn]
·δ // Z[Bn]
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2.4. Contractibility

We hence need to prove that the right multiplication by δ is injective.

Let deg be the group homomorphism

deg : Bn → Z, σi 7→ 1

for all i ∈ {1, . . . , n− 1}. Since the relations between the elements of Bn are generated

by σiσj = σjσi for all i and j such that |i − j| ≥ 2 and σiσi+1σi = σi+1σiσi+1 for all

i ∈ {1, . . . , n− 2} the map deg is well defined.

Since deg is a homomorphism it induces a graded structure on the ring Z[Bn].

The homogeneous component of maximal degree of δ is 1. Since 1 is invertible in

Z[Bn] the multiplication on the right by δ is injective.

We conclude that Hn−1(|A|, Z) = 0 and hence that |A| is contractible.
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