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Preface

Mathematics is a powerful creation of the human mind. Like English, Dutch,
Italian, German, mathematics is a language. It is the language that is univer-
sally recognized in the scientific community as the most adequate to describe,
predict, and eventually explain the phenomena we observe. There is one very
fundamental reason for this: mathematics is, at the same time, flexible and
precise as no other known language is. These two properties (flexibility and
precision) make mathematics an exceptionally powerful tool. Looking back to
the history of Science, we may find however cases in which the mathematical
appearance of certain theories masked underlying unjustified hypotheses and
distracted from critical thinking. In this thesis we provide a concrete example
of one of these cases: the Hodgkin-Huxley model, nowadays the most popular
mathematical model in the neurosciences. It will be shown here that although
this model has a remarkable descriptive power, it has some major flaws from
the explanatory perspective of the phenomena it describes.

My interest in critically studying the Hodgkin-Huxley model arose from nu-
merous discussions with Prof. Dr. Konrad Kaufmann, during my staying at the
Max Planck Institute for Dynamics and Self-Organization in Göttingen. I de-
cided then to choose this specific topic for my thesis for two reasons: (a) I have
been studying neuroscience since more than three years now, actively working
in the field at the MPI since more or less two; and (b) it happened that this year
the 60th anniversary of the publication by Hodgkin and Huxley of their theory
has been celebrated with a World conference on computational neuroscience,
where it happened that no substantial criticism to the model was advanced. It
goes without saying that, except from extremely rare exceptions, the same cel-
ebrative attitude towards the model is observed through all the neuroscientific
community, while the diverse experimental evidences against some of its most
important hypotheses are still ignored. It appeared then to me that a com-
prehensive, critical treatment of the mathematical theory advanced by the two
Nobel-awarded physiologists would have been important, both for reconstruct-
ing the historical development and derivation of the model, and for providing
a critical assessment of the experimental evidence used to support the claim of
the existence of an explanatory power of the model.

The results of my efforts - necessarily highly interdisciplinary, at the interface
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between mathematics, biophysics and electrophysiology - are reported here in
this thesis for obtaining the Master degree in Applied mathematics. The mathe-
matical content mainly focuses on the techniques used in deriving the models, in
particular the one from Hodgkin and Huxley in its static and propagating form,
and the identification of the relationships among them. A detailed analysis of
the behaviour of possible solutions of the Hodgkin-Huxley model was beyond
the scope of this thesis (and mathematically still a topic of advanced research).
More importantly, it seems reasonable to say that one should first establish (or
disprove) the value of the Hodgkin-Huxley model as an explanatory model with
proper hypotheses supported by experimental observations, before starting such
an analysis. For similar reasons, we did not discuss in depth simplifications of
the Hodgkin-Huxley model like for example the FitzHugh-Nagumo model, which
is only briefly mentioned here. These have even less explanatory power than
the detailed model they somehow approximate.

I hope to have managed in such an intent to provide a valuable reading.

Göttingen, April 2013
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CHAPTER I

Introduction

In the history of the biological sciences, there exists no mathematical model that
has been welcomed with such a broad consensus as the Hodgkin-Huxley model.
Since its publication in 1952, the theory developed by the two physiologists from
Cambridge University laid the foundations for the interpretation and planifica-
tion of experiments, for the understanding of diseases and illness conditions as
well as for the design of new drugs. Nobel prizes have been awarded for having
conceived techniques which could be used to collect data interpretable as if in
support of the theory (eg. Neher and Sakmann, Nobel Prizes for Medicine or
Physiology 1991 “for their discoveries concerning the function of single ion chan-
nels in cells") or for having elucidated the fine structure of macromolecules espe-
cially relevant within the framework of the model (eg. MacKinnon, Nobel Prize
for Chemistry 2003 "for structural and mechanistic studies of ion channels").
Nowadays in every university, every neuroscience course includes at least one
lecture dedicated to the mathematical interpretation of nerve excitation given
by Hodgkin and Huxley.

1.1 Objectives of the thesis

This year, the 60th year since the publication of the model of the action po-
tential, the Organization for Computational Neurosciences celebrated the recur-
rency by helding a congress at the Alma Mater of the two scientists, namely the
Trinity College in Cambridge. On the webpage of the event one could read:

“This publication [Hodgkin and Huxley 1952] and the mathematical model it
describes is at the core of our modern understanding of how the action potential
is generated, and has had profound effects on many fields of biological science
in particular on computational studies of neural function”
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The Journal of Physiology - the journal where the model was originally
published as well as one of the most influent journals in physiology since more
than one hundred years ago - dedicated the issue of June of the current year to
the epoch-making achievements and legacy of the Hodgkin-Huxley model. In
the articles published, there appear sentences such as:

“It [the HH model] remains one of the best examples of how phenomenological
description with mathematical modelling can reveal mechanisms long before they
can directly be observed” (Schwiening 2012)

or

“The modern era of research on electrical signalling in nerve, muscle and
other excitable cells began in 1952 with a series of four seminal papers by Hodgkin
and Huxley on analysis of the action potential of the squid giant axon using the
voltage clamp technique” (Catterall 2012)

and even

“Looking forward, we expect that the Hodgkin-Huxley contribution will con-
tinue to propel biomedical research, in areas as diverse as muscle physiology and
pharmacology, autonomic physiology, neuroscience disease patophysiology and
even clinical medicine” (Vandenberg and Waxman 2012)

In this work we show that the model developed by Hodgkin and Huxley cannot
be considred valid in its full generality. This not only because it has obvious
discrepancies with what could in principle be defined fine details such as for
example with some specific neuronal behaviours, but because the very funda-
mental aspects of the theory do not conform with experimental evidence.

The thesis is structured as follows:

After an introductory section on the basic concepts of neuroscience (Section
1.2), an in-depth analysis will be provided of the major scientific influences of the
two physiologists (Chapter II). The purely qualitative as well as the quantitative
ideas (models) that led to the development of the Hodgkin-Huxley theory will
be analyzed.

The third chapter is dedicated to the model as originally conceived in 1952.
There the derivation of the equations for both the static membrane voltage
variation and the propagated action potential will be treated in detail.
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Chapter IV deals with the critics to the model. Here I will focus on the most
fundamental of the assumptions made by Hodgkin and Huxley: the hypothesis
that the inward flow of sodium ions is responsible for the generation of nerve
excitation. The inconsistency of such a claim will be shown first on the basis of
the experimental evidence, then on the theoretical level.

A final section in which the curr ent misunderstanding of the predictive and
descriptive power of the model will discussed, concludes the work (Chapter V).
Possible future directions will be shortly outlined.

1.2 Fundamentals of single cell neurophysiology

This section is based on (Kandel et al. 2000, Purves et al. 2008, Hille 2001,
Heimburg 2007).

Neurons are the cells of the nervous system. From a morphological perspective,
most of them share a characteristic shape in which a dendritic tree is connected
to a soma, in turn connected to an axon and its terminals (Figure 1.1). The
peculiarity that made neurons become so popular in physiology is their capa-
bility to communicate over long distances via the generation, propagation, and
transmission of electrically measurable states of excitation. But what is in fact
neuronal excitation? Or, better, what do we mean nowadays with this term?

Let’s focus on one single neuron. During its life, this will receive several
inputs at its synapses located at the end of the dendritic tree. These inputs,
normally mediated by chemical compounds called neurotransmitters, if strong
enough will perturb the neuron to the point that its constituent structures, the
membrane in particular, will be destabilized. Such a perturbation propagates
along the dendrites, reaches the soma and converges into the axon where an
even greater alteration occurs as a consequence of the superposition of multiple
inputs coming from different dendrites. Along the axon, which can be thought
of roughly as a long cable, the local alteration spreads until it reaches the termi-
nals, where the perturbed synapse will finally release its own neurotransmitters
towards the neighboring neuron, in this way transmitting the excitation.
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Figure 1.1. Examples of neurons: (a) a cortical piramidal neuron of the cerebral
cortex; (b) a Purkinje cell of the cerebellum; (c) a stellate cell of the cerebral cortex.
Reproduced from (Dyan and Abbott 2001).

.

Nowadays we know that the perturbations of the neuronal structures mani-
fest themselves in several (unseparable) ways, as for example electrical, temper-
ature, and pressure signals. Due to historical reasons, however, the first of these
signs has received far greater attention than the others; this in turn has led to
the widely spread misinterpretation of neuronal excitation as a purely electrical
phenomenon. Although this is clearly not the case, being the classical interpre-
tation of nerve excitation the focus of this thesis, electricity alone will be treated
in the following chapters. In the next few lines I will thus just briefly introduce
the concept of membrane potential and mention the techniques commonly used
to measure it.
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Neuronal membranes are bidimensional structures mainly composed of lipids
and proteins. They separate the intracellular space from the extracellular one
and are selectively permeable with respect to ions; in particular, membranes are
largely impermable to the macroscopic negatively charged ions that constitute
the cellular skeleton (intracellular proteins), while being permeable to the small
ions that are dissolved in solution such as sodium or potassium. The concept
of semipermeability has long been extended to the in fact never properly tested
claim of the presence of specific pathways across the neuron for small ions too.
According to this interpretation, there should exist protein-channels embedded
in the membrane which are capable of allowing the passive flow of certain paricles
and not of others (for example potassium but not sodium). In this way, only
the ions whose correspondent channels are open are free to equilibrate across
the membrane according to chemiosmosis, the others being constrained at one
or the other side of the membrane.

In the resting, non excited state, only potassium channels are thought to
be open. As a consequence, potassium ions but not the others will equilibrate.
Consider the simplified example in Figure 1.2: initially the membrane is taken
to be impermeable, and at both of its sides electroneutrality is assumed to hold,
the amount of negatively charged ions A and of positively charged ions K being
the same within each compartment (right and left). If now the membrane is
rendered permeable only to K, K will start to diffuse until an equilibrium will
be reached between the osmotic force due to the concentration gradient and the
electric force due to the generated unbalance of charges at opposite sides. In
the new conditions, a potential difference across the membrane will be measured
with the left side being more negative than the right one. The magnitude of such
potential difference can be calculated with good approximation using Nernst’s
equation

EK =
RT

zF
log

[K]l
[K]r

.

where [K]l and [K]r are the concentrations of the ion species K respectively at
left and right of the barrier, R is the ideal gas constant (8.314 J/mol K), T the
temperature in Kelvin, and F the Faraday constant (96485 C/mol). In pretty
much the same way, the membrane potential of neurons at resting conditions is
normally estimated using the equation above for potassium ions. Being potas-
sium normally highly concentrated inside neurons and rather diluted outside,
the membrane potential is normally expected to be negative. This prediction
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has received experimental confirmation, the usual values of the potential being
around -50 mV.

Figure 1.2: Potential across a membrane. The membrane is first considered im-
permeable to all ions dissolved and no potential difference is recorded (left); when the
membrane becomes selectively permeable to K, the membrane potential eventually
reaches the Nernst potential for such cation (Right). Reproduced from (Hille 2001).

.

During excitation, since the classic work of Hodgkin, Huxley and Katz in the
late 40s, the membrane is assumed to become selectively permeable to sodium
and poorly or non-permeable to potassium. In other words, during excitation
sodium channels are expected to open and potassium channels to close. Given
that at resting conditions the concentrations of sodium are roughly the opposite
of the ones of potassium - in the squid axon under physiological conditions, for
example, [K]inside = 400mM, [K]out = 20mM, while [Na]inside = 50mM and
[Na]out = 440mM - a (large) reverse in potential should (and in fact does)
occur when the neuron is active. Sodium channels would then start to close,
potassium channels to open, thus causing a decrease in the membrane potential
back to the resting values 1. This wave in the transmembrane voltage is usually
what neuroscientists refer to with the term “action potential”.

1 To be more precise, the original resting membrane potential is restored also thanks to
“active transporters”, i.e. proteins which actively pump sodium outside the neuron. As this is
at the moment not necessary and at the same time would add a certain degree of complexity
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Experimenally, action potentials can be both induced and recorded since
long time with the help of electrodes. In single giant neurons in particular,
stimulation is commonly achieved by placing anode and cathode in contact
with the external surface of the cellular membrane and injecting current. Under
these conditions, physiologists distinguish between two cases: cathode and an-
ode excitation (depending on close to which electrode the neuronal perturbation
originates). No qualitative differences are normally observed among cathode
and anode excitation, except that in the first case action potentials occur once
the current is injected, while in the second case once the current is “broken”.
Recording is normally obtained by using external electrodes placed close to the
nerve membrane (possibly far from the stimulating electrodes) or, in sufficiently
large neurons, by inserting an electrode intracellularly and measuring the dif-
ference in potential with respect to a reference electrode put outside. As it is
in fact not necessary, in order to understand the present thesis, to know the
details of how stimulation and recording of action potentials are achieved, this
introductory section is concluded here and space is left for deeper discussions in
the following chapters on more theoretical aspects of nerve excitation.

to the discussion, we decided to omit it.
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CHAPTER II

Theoretical Foundations of the
Hodgkin-Huxley model

As fellows of the Trinity College in Cambridge in the beginning of the 1930s,
both Hodgkin and Huxley were strongly influenced, in the formative period
of their careers, by the lively scientific environment their university offered in
those years. Reading Hodgkin’s personal reminescences (Hodgkin 1976, 1983),
the impression one gets of the two young scientists is that of two extremely active
and curious students: Hodgkin in particular was very dynamic since his early
years and used to enjoy reading a considerable amount of articles and books
on several scientific arguments, physiology included. It is interesting to notice
that, among the literature Hodgkin cites as most formative, there appear the
works of Adrian, Hill, Rushton, Lillie, and Lucas; all of whom were or had been
fellows of the Trinity College. There is little doubt that, for the young Hodgkin
as well as for Huxley, entering in direct contact with icones of neurophysiology
such as the ones just mentioned, was very motivating.

2.1 Premises to the sodium hypothesis

In the early 30s (as in our days) there was, at Cambridge as in most of other
Universities where neurophysiology was taught, the common belief that ions
where the only charged particles in living tissues whose movement could cause
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the generation of an electrical signal. Such idea of the existence of an ionic basis
for the phenomenon of nerve excitation can be traced back to the end of the
XIX century, after the acceptation among scientists of van t’Hoff ’s theory of
osmosis in solutions (van t’Hoff 1887), of the hypothesis of dissociation of salts
into ions by Arrhenius (Arrhenius 1887), and of the dilution law by Ostwald
(Ostwald 1888). The latter scientist in particular was one of the most influential
supporters of the concept of semipermeable membrane and among the firsts
to suggest for it a role of primary importance in a wide range of biological
phenomena, nerve and muscle excitation included. The words Ostwald used in
1890 are very eloquent on this point:

“It is perhaps not too bold to conjecture that through the properties of the
semipermeable membrane discussed here an explanation could be found not only
for electrical current in muscles and nerves but also for the puzzling effects of
electric fish in particular ” (Ostwald 1890, p.80)

Although the existence of semipermeable membranes was first proposed by
Ostwald in 1889, it was his student and collaborator Nerst who, nine years later,
opened the way for quantitative explanations of nerve electrical phenomena on
the basis of the alteration of ion concentrations induced by externally applied
electric currents. Nernst’s famous equation

V =
RT

F
log

[C]i
[C]o

became later the foundation on the basis of which Bernstein proposed in 1902
that the observed potential across nerve membranes in their resting state was
due essentially to a high permeability to K+ ions and a low permeability to
other ion species, in particular to the macroscopic negative ones, which were
known already at the time to be present inside cells. Excitation, on the other
hand, was suggested to originate from a loss in membrane selectivity leading
to the unification of the positive ions of the extracellular space with the just
mentioned intracellular negative ones. Under this perspective, the potential
across the nerve membrane was expected to approach zero during excitation as
a consequence of charge neutralization (Bernstein 1902, 1912).

18



Figure 1.1. Bernstein’s theory of membrane polarization. (A) At resting condi-
tions the negative charges inside and the positive ones outside are separated. (B)
Following injury (specifically following the removal of part of the membrane), positive
and negative ions bind leading to cell depolarization. According to Bernstein, during
excitation a similar phenomenon of unification of charges takes place. Reproduced
from (Bernstein 1912) via (Piccolino1998).

.

It should be noted that the theory just mentioned was the last of several
theories conceived by Berstein during his life and in fact the only one that was
attributed to his name in the years that followed. Although in this theory the
possibility that during excitation the membrane potential could reverse sign (as
we know nowadays) was formally denied, the German scientist was not at all
unaware of that. It was indeed he himself the one who, not yet thirty, recorded
for the first time in history the profile of a negative membrane depolarization
wave (see Fig 1.2 top). Why the theory Bernstein proposed some thirty-fourty
years after these recordings does not allow their explanation still remains un-
clear. One plausible interpretation is that the failure of obtaining qualitatively
similar results from muscle preparations - note that (Fig 1.2) is obtained from
a frog nerve and not from a muscle - might have dissuaded him from relying on
these results in his last comprehensive book Elektrobiologie (Grundfest 1965),
where a modified version of (Fig 1.2 top) now lacking an overshoot appeared
(Fig 1.2 bottom) together with the following sentence:

”Eine Konsequenz dieses Theorie würde nun sein, dass die negative Schwankung
eine maximale Grenze erreichen müsste, welche durch die Stärke des Membran-
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potentials gegeben wäre, und das dieser bei der Reizung sich nicht umkehren
könnte” (Bernstein 1912, p 105)

Figure 1.2. Top: The first published recording of nerve depolarization (from
Bersntein 1868). m and n represent the current which can be seen to exceed more
than two-fold the amplitude of the resting current level h. The abscissa represents
the time, with τ1 and τ2 showing different intervals of recording after delivery of the
electrical stimulus at time t. Bottom: same as top but with no negative variation;
from (Bernstein 1912).

.

Between the end of the nineteenth century and the beginning of the twen-
tieth, the existence of an action potential overshoot was still largely doubted.
Bernstein himself being responsible for that, the work (Bernstein 1968) remained
poorly cited over the following decades and was overshadowed by the late hy-
potheses (Bernstein 1902, 1912, Grundfest 1965).

As mentioned before, Bernstein’s last theory of nerve resting membrane po-
tential and excitation remained the most popular theory of nerve physiology for

20



over thirty years; suitable experimental techniques to test it properly however
lacked until the late 30s.

During the 30s, a revolution in experimental neurophysiology took place:
working on the anatomical structures of squids between the Marine Biological
laboratories of Naples, Plymouth, and Woods Hole, the zoologist and physiol-
ogist Young identified giant nerve fibers which, after a couple of years of work
since the discovery, were demonstrated to be capable to conduct action poten-
tials: the squid giant axon was discovered (Young JZ 1936, 1938). Its extraor-
dinarily large diameter (up to several hundreds of micrometers), together with
the easiness to isolate it, allowed for the first time in history accurate electro-
physiological studies of single neurons. In 1939 Hodgkin and Huxley published
the first trace of an action potential recorded from the squid giant axon using
an intracellular electrode (Fig 1.3). Interestingly, contrary to the expectations
deriving from Bernstein’s last theory, the polarization of the axonal membrane
turned out to undergo a significant reverse in sign upon electrical stimulation.
The long-standing hypothesis of the German physiologist of the absence of over-
shoots had to be dismissed, although an explanation for the large positive peak
in the voltage trace still could not be provided.

Figure 1.3. First published intracellular recording of an action potential from a
squid giant axon. A clear overshoot of 40 mV c.a. can be seen. Reproduced from
(Hodgkin and Huxley 1939).
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2.2 The sodium hypothesis

In 1939 the World War II begun and both Hodgkin and Huxley left the labora-
tories to work for the army. When they returned in Cambridge to continue their
research in 1945, no significant advancements in the understanding of the phe-
nomenon of nerve excitation had been made. The problem was then investigated
again from the point where it had been abandoned, until finally Hodgkin and
Katz published, in 1949, an hypothesis that was going to become one of the most
fundamental assumptions of the neurosciences: the Na+ hypothesis (Hodgkin
and Katz 1949). By systematically varying the concentration of sodium in the
bathing medium of squid axons, the two found a "reasonable agreement" be-
tween the recorded action potential amplitude and the theoretical predictions
deriving from Nernst’s equation applied to sodium ions only (see Fig 1.4); this
observation led them to write the following statement:

"The reversal of membrane potential during the action potential can be ex-
plained if it is assumed that permeability conditions of the membrane in the
active state are the reverse of those in the resting state. The resting membrane
is taken to be more permeable to potassium than sodium, and the active mem-
brane more permeable to sodium than potassium"

22



Figure 1.4. Changes in the amplitude of the action potential upon variations of
the extracellular concentration of sodium. The dotted line is the theoretical prediction
calculated using Nernst’s equation; the open circles are the experimental results. The
ordinata represents the difference between the transmembrane voltage in the presence
of external sea water and of given altered Na+ concentration, according to: ∆V =

Vtest−Vseawater = RT
F

log [Naseawater ]
[Natest]

. Reproduced from (Hodgkin and Huxley 1949).
.

The belief in the validity of the Na+ hypothesis was reinforced after Hodgkin’s
student Keynes managed to show that nerve excitation induced an increase in
the transmembrane flow of sodium ions by tracing the movement of the radioac-
tive isotope Na24 in repeatedly stimulated squid axons (Keynes 1949, 1951). It
should be noted here that these experiments allowed to investigate only very
long timescales (minutes to hours) and by no mean could resolve single millisec-
ond action potentials. More precise measurements of the movement of sodium
was claimed to be possible after the invention by Marmont and Cole of current
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and voltage-clamp techniques respectively (Marmont 1949, Cole 1949). It is
worth making few precisations on these latter techniques too to avoid misun-
derstandings.

Both current and voltage clamp are techniques of electrical stimulation and
recording which, through the use of a system of electrodes with feedback on
the stimulating electrode, allow to control and eventually keep constant either
the current or the voltage across the nerve membrane while recording its re-
sponse. This gives, in fact, only impedance measurements and does not tell
anything about the mechanism behind them. In particular, there is no reason
to assume that the electrical signals recorded come from the movement of ions,
nor especially from the movement of sodium.

Establishing in fact a priori that sodium and potassium were responsible
for the impedance measurements coming from current and voltage clamping the
squid giant axon, Hodgkin, Katz, and Huxley extended their hypotheses in the
beginning of the 50s and claimed to have managed to separate the contribution
of the two ions in the process of nerve excitation. As it will be seen in the
following chapters, it is on this never properly tested basis2 that the famous
mathematical model was conceived in 1952.

2There exists in fact experimental evidence that contradicts the sodium hypothesis in a
wide variety of preparations, the squid giant axon included (see Chapter IV).
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2.3 Quantitative models before 1952
.

Before entering into the details of the quantitative models that either directly
or indirectly influenced the work of Hodgkin and Huxley, a short premise is due.

As mentioned in the previous section, intracellular recordings became pos-
sible only in the late ’30, after the discovery of the squid giant axon by Young.
No detailed voltage trace showing the now well known phenomenon of over-
shoot thus existed before Hodgkin’s and Huxley’s publication (Hodgkin and
Huxley 1939). Not surprisingly, the purpose of the quantitative models con-
ceived during the first three or four decades of the twentieth century was to
describe (or sometimes even explain) how an externally applied electrical stim-
ulus could lead to excitation, rather than the characteristic temporal variation
of the transmembrane potential that we are nowadays used to think about.

Even extracellular recordings were in fact not very common; rather, muscle
twitches were often taken as criterion to establish whether nerve excitation had
been successfully elicited or not. Essentially until Hodgkin and Huxley, thus,
the most important test for the validity of a model was the comparison with
the experimentally found relationships between the applied electrical stimulus
and the time required to induce excitation - i.e. the so called strength-duration
relation -.

The first model of this historical treatment will be Nernst’s model (Nernst
1899, 1908). There exist, of course, quantitative models of nerve excitation
which were worked out before the German physicist had published anything on
the topic. The impact of Nernst’s theory on the neuroscientific community was
however so high that it shaded all previous attempts to quantitative model-
ing. As Lapicque wrote in his classic book of neurophysiology “L’excitation en
fonction du temps” published in 1926,

“All the modern physiology, when it made the effort to build up a physical
theory of electrical excitation, took Nernst’s theory as starting point” (Lapicque
1926, p. 141)

Although Nernst’s model was soon recognized to be untenable, the hypoth-
esis adopted that ionic movements are to be regarded as the only cause of nerve
excitation became the foundation for most of the theories to come, the one
published by Hodgkin and Huxley in 1952 included .
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2.3.1 Nernst (1899 - 1908)

By the end of the nineteenth century, the inefficiency of high frequency
current (∼10 KHz) to stimulate nerves was an established fact. A theoretical
explanation for it was however still lacking. Under the hypothesis that "a gal-
vanic current can in organic tissue (a purely electrolitic conductor) only cause
the movement of ions, i.e. concentration changes, and nothing else" (Nernst
1904), Nernst gave an interpretation of the phenomenon mentioned in terms of
accumulation of salts3 in the vicinity of semipermeable membranes (polariza-
tion).

The German physicist assumed the presence of two membranes permeable
only to some of the salts dissolved in the physiological solution and sufficiently
far from each other to be considered at infinite distance. Under the influence
of an externally applied electric field, the salts to which the membrane was
permeable would guarantee the passage of current, while the non-permeating
ones would accumulate, the whole process of accumulation always occurring
under the opposing tendency of re-equilibration by diffusion. Nernst focused
then on one non-permeating (unspecified) salt, assuming the onset of nerve
excitation to depend exclusively on its concentration at a given distance from
one of the two membranes. Let this latter membrane be at position x = 0 ; call
c the concentration of the salt, D its coefficient of diffusion. The process just
explained is formalized as follows:

ct = Dcxx

cx(0, t) = − k
D
i(t)

c(x, 0) = c0 for 0 ≤ x <∞

where i is the applied current density, k a proportionality constant. Excitation
would occur when c(x̄)− c0 ≥ A, with x̄ any fixed distance from the membrane
where accumulation of c takes place and A positive constant.

The solution of this problem can be derived in the following manner (Strauss
2007):

Let v(x, t) = c(x, t) + x kD i(t) , then
3Note that, in order to stress the electroneutrality condition, Nernst used the term “salts”

and not “ions” in his works, as often wrongly reported by other authors when treating his
theories.
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vt −Dvxx = x
k

D

di

dt

vx(0, t) = 0

v(x, 0) = c0 + x
k

D
i(0) for 0 ≤ x <∞

The method of even extension to the whole line can now be used, by defining

the new function u such that

ut −Duxx = f(x, t) :=


x kD

di
dt x > 0

0 x = 0

−x kD
di
dt x < 0

and

u(x, 0) = φ(x) =


c0 + x kD i(0) x > 0

c0 x = 0

c0 − x kD i(0) x < 0

Since u is even and the extension of v , then ux(0, t) = 0 and u(x, t) = v(x, t)

for x > 0. The solution for the inhomogeneous problem in u is:

u(x, t) =

ˆ ∞
−∞

S(x− y, t)φ(y)dy +

ˆ t

0

ˆ ∞
−∞

S(x− y, t− s)f(y, s)dyds

where

S(x, t) =
1

2
√
πDt

e−
x2

4Dt

is the diffusion kernel. Thus, v is given by

v(x, t) =

ˆ ∞
0

[S (x− y, t) + S (x+ y, t)] [φ(y)] dy

−
ˆ t

0

ˆ ∞
0

[S(x− y, t− s) + S(x+ y, t− s)]
[
−y k

D
i′(s)

]
dyds
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After substitution of v into v(x, t) = c(x, t) + x kD i(t), the solution for c is

obtained:

c(x, t) =

ˆ ∞
0

[S(x− y, t) + S(x+ y, t)]

[
c0 + y

k

D
i(0)

]
dy

−
ˆ t

0

ˆ ∞
0

[S(x− y, t− s) + S(x+ y, t− s)]
[
−y k

D
i′(s)

]
dyds− x k

D
i(t)

i.e.

c(x, t) =

ˆ ∞
0

[
1

2
√
πDt

e−
(x−y)2

4Dt +
1

2
√
πDt

e−
(x+y)2

4Dt

] [
c0 + y

k

D
i(0)

]
dy

−
ˆ t

0

ˆ ∞
0

[
1

2
√
πD(t− s)

e−
(x−y)2

4D(t−s) +
1

2
√
πD(t− s)

e−
(x+y)2

4D(t−s)

] [
−y k

D
i′(s)

]
dyds−x k

D
i(t).

Nernst calculated the explicit form of the solution for both sinusoidal and con-
stant currents. In the case of sinusoidal currents of the form i = I sinnt, where n
and a are constants being respectively amplitude and frequency of the stimulus,
this reads

c(x, t) = c0+

ˆ t

0

ˆ ∞
0

[
1

2
√
πD(t− s)

e−
(x−y)2

4D(t−s) +
1

2
√
πD(t− s)

e−
(x+y)2

4D(t−s)

]
∗ (1)

∗
[
y
k

D
nI cosnt

]
dyds− x k

D
I sinnt.

For constant currents, on the other hand, the explicit solution is

c(x, t) = c0+
k

D
I

[√
4Dt√
π
e−

x2

4Dt + x

ˆ x

−∞

1

2
√
πDt

e−
z2

4Dt dz − x
ˆ +∞

x

1

2
√
πDt

e−
z2

4Dt dz

]
−x k

D
I

meaning

c(x, t) = c0 +
k

D
I

[√
4Dt√
π
e−

x2

4Dt − 2x

ˆ +∞

x

1

2
√
πDt

e−
z2

4Dt dz

]
. (2)
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By considering the concentration of salts at x = 0, (1) and (2) reduce respec-
tively to

c(0, t) = c0 +
k

D

ˆ t

0

nI cosns

√
4D(t− s)√

π
ds

and

c(0, t) = c0 + 2kI

√
t

πD
.

Now, the first solution gives, upon change of variables and integration,

c(0, t) = c0 +
I√
n

2k√
πD

[
sinnt

ˆ √nt
0

cos
(
y2
)
dy − cosnt

ˆ √nt
0

sin
(
y2
)
dy

]

For sufficiently long timescales, the two integrals in the square brackets can then
be approximated by the limit value

√
2π
4 so to give

c(0, t) = c0 +
I√
n

k

2
√
D

(
sinnt− π

4

)
.

Nernst reached in this way the conclusion that the strength-duration relation
for the critical change of salt concentration in eliciting nerve excitation had to
be of the form I√

n
=constant for alternating currents and I

√
t =constant for

constant currents.
An extensive comparison between the theoretical results and the experimen-

tal data was made: for high frequency currents (≥ 100 Hz c.a.) the agreement
turned out to be excellent; for constant currents, however, the predictions could
only partially be satisfied. In particular, while according to Nernst any con-
stant current, independently of its stength, would have sooner or later induced
a nerve response, experiments showed unequivocably that this was not the case
for sufficiently weak currents.

N

The rigorous framework provided by Nernst’s theory revealed to be ex-
tremely attractive to physically acquainted neuroscientists since the very first
publication. As just mentioned, however, Nernst himself, in discussing his re-
sults, pointed out that some experimental observations could not be given an
explanation if his equations were to be used. The tentative to give a physi-
cal basis for the phenomenon of nerve excitation was further pursued by Hill,
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who calculated the changes in the concentration of ions for membranes at short
distance apart, instead of infinite as Nernst had suggested (Hill 1910). This
modified model led to a formula of the form

i =
λ

1− µθt
(3)

i being the applied current, λ, µ and θ constants whose value could be (at least
in principle) deduced from electrophysiological experiments 4. Equation (3)
was found to better describe the experimental findings, in particular the ones
deriving from the application of long stimuli and implying accomodation .

A qualitatively different perspective was investigated by the French physi-
ologist Lapicque, who developed a model that was going to be regarded in the
years that followed as "the simplest and most generally useful model of nerve
excitation" (Cole, page 122) : the resistance-capacity electric circuit model 5.

2.3.2 Lapicque (1907 - 1926)

In 1907 Lapicque published a quantitative theory of nerve excitation based
on the analogy with the circuit in Figure 1.21. This circuit is composed of

(i) a resistance R, representing the sum of the resistances in the stimulating
circuit, the intrinsic resistance of the portion of nerve interposed between the
electrodes, and the local membrane resistance at the anode;

(ii) a capacitor K, representing the capacitance of the nerve membrane
(iii) a resistance ρ, representing the leakage resistance of the portion of mem-

brane in contact with the cathode. It is worth noting that this resistance was
assumed by Lapicque to be very small, for it corresponded to the flow of ions
to which the membrane was considered to be largely impermeable.

4I don’t derive here the equation (3), as a more general approach to the problem nerve
excitation by Hill himself - including also the model from 1910 as a special case - will be
treated in the following pages.

5Lapicque worked also on an hydraulic model, which he conceived in the tentative to
explain qualitatively the phenomenon of accomodation. As this model had however far minor
resonance than the electric circuit one, I have omitted its treatment in the present work. For
details, reference is made to (Lapicque 1926).
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Figure 1.21: Lapicque’s electric circuit model. R and ρ are resistances, K a con-
denser. Reproduced from (Lapicque 1907).

Lapicque mentioned more than once that his model constituted only an ap-
proximation; this clarified, its capability to describe satisfactorily several of the
experimental results that he and his colleagues neurophysiologists had obtained
so far, was emphasized.

Calling V the potential difference between the two extrema of the circuit
and v the one across the capacitor, then the infinitesimal charge increment at
K is (using a physical notation) given by

Kdv =
V − v
R

dt− v

ρ
dt (4)

where V−v
R is the current through R and v

ρ the current through ρ. Rearrange-
ment of (4) gives

−R+ ρ

KRρ
dt =

dv

v − V ρ
R+ρ

which has general solution

C − tR+ ρ

KRρ
= log

(
V ρ

R+ ρ
− v
)
.

Under the initial condition v(0) = 0, C = log V ρ
R+ρ and

e−t
R+ρ
KRρ = 1− R+ ρ

V ρ
v.

The strength of the applied voltage can then be explicited as a function of time:

V = v
R+ ρ

R

1

1− exp
(
−tRρKR+ρ

)
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or

V =
α

1− e−
t
β

(5)

where α = vR+ρ
R , β = RρK

R+ρ .

Assuming K, ρ, and v constant, being moreover R known, Lapicque could
estimate experimentally the value of the parameters α and β by simply exposing
the nerves to two different stimulations and using the equation(s) (5). The va-
lidity of the strength-duration relationship (5) could then be directly tested for
any other electrical stimulus. Although Lapicque’s predictions were confirmed
to a major extent, some unresolved questions were left. In particular, the inef-
ficiency of slowly increasing currents to elicit excitation still could not be given
a formal explanation.

N

The tentatives to describe the process of nerve excitation by using physically
grounded approaches, for example by referring to laws governing the movement
of ions (Nernst, Hill) or to the analogy with electric circuits (Lapicque), proved
incapable to provide a satisfactory explanation the wide variety of experimental
observations available, unless the formulation of ad hoc assumptions far from
having a physiological meaning was made. Not surprisingly, all the efforts in
using existing physical laws soon appeared senseless.

In 1932, Blair published the first purely abstract model of nerve excitation,
i.e. a model that was openly not inspired to any physical phenomenon. This
model was going to influence determinantly the attitude underlying the most
popular quantitative descriptions of nerve activity that were to be produced in
the following decade.

2.3.3 Blair 1932

On purely abstract grounds, Blair defined a variable p generically referred to as
the “state of excitation”, whose temporal variation was directly proportional to
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the applied exciting current or voltage V , and whose tendency to return to the
resting value was proportional to its own magnitude. In mathematical terms, p
was made satisfying the ordinary differential equation

dp

dt
= KV − kp (6)

where K and k are constants. Excitation was then assumed to occur when p

reached a threshold value h that, from the comparison with the experimental
observations, was deduced to be best represented by a linear function of the
applied stimulus, i.e. a function of the form h = h + αV , where h and α are
constants. Imposing as initial condition p(0) = 0, Blair could directly obtain
the strength-duration relation for direct currents by integration

ˆ h+αV

0

kdp

KV − kp
= −k

ˆ t

0

dt

which gives

log
KV

KV − k(h+ αV )
= kt (7)

where t is the time necessary to the stimulus to induce excitation.

By the time Blair conceived his model, the concept of rehobase, i.e. the maxi-
mum current strength such that its constant application for an infinite period
does not cause excitation, had gained popularity in the field of quantitative
neurophysiology. Since the rehobase was experimentally measurable, it became
common to express strength-duration relations in terms of such quantity in or-
der to test the validity of the theories. For Blair’s model, from the definition
itself of the rehobase, it follows that this is the current R satisfying the equality

KR− k(h+ αR) = 0

i.e.

R =
kh

K − kα
.

Equation (7) can thus be written in “canonical form” as

log
KV

(K − αk)V − (K − kα)R
= kt

or
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log
CV

V −R
= kt (8)

where C = K
K−kα .

Blair showed that by a proper choice the parameters it was possible to derive
from his model both Lapicque’s and Hill’s formula (3) for the strength-duration
relations 6:

Lapicque: Consider equation (4). To obtain the explicit expression of the
variation in time of the charge q at the condenser C, one just needs to divide
by dt, for dq

dt = C dV
dt . Thus

C
dv

dt
=

V − v
R
− v

ρ

=
V

R
− v

(
1

R
+

1

ρ

)
=

V

R
− v ρ+R

Rρ
,

which is Blair’s equation (6) with K = 1
R and k = ρ+R

RCρ .

Hill: Equation (8) can be written as

V

V −R
= ekt−logC = Cekt

Now, subtracting and adding R
V−R to the first term, one obtains

1 +
R

V −R
= Cekt

which, after some rearrangement, gives

V =
RCekt

Cekt − 1
=

R

1− e−kt

C

,

that is Hill’s formula (8) for µ = 1
C and θ = e−k.

6Note that the two formulas are in fact already formally equivalent. The derivation of the
two as provided by Blair in the original paper (Blair 1932) is anyway followed here.

34



Regarding Hill’s formula in particular, Blair emphasized that there existed no
way to discern between that and his theory on the basis of the observations
from direct current stimulation. Given the simplicity of the derivation of Blair’s
strength-duration equation, this was undoubtedly a remarkable result.

N

Blair’s model, combining mathematical simplicity and desctriptive accuracy of
the experimental outcomes, attracted the interest of theoretical physiologists,
among which the most important are Rashevsky and Hill. The two extended
Blair’s model to what are known nowadays as the “two factor theories”, i.e.
theories in which the process of nerve excitation is described formally by the
combined dynamics of two variables, one excitatory and one inhibitory.

2.3.4 Rashevsky 1933

By the beginning of the twentieth century, Loeb had demonstrated the primary
importance of a balanced ratio between monovalent and divalent cations in the
bathing medium for the maintenance of nerve activity, evidencing in particular
the destabilizing effects of the former ions as opposed to the stabilizing effects
of the latter ones.

Inspired by the classical work of the German physiologist, observing that
stimulation by means of electric current would have brought to the cathode not
only monovalent but also divalent cations, Rashevsky deduced that the process
of nerve excitation would have been best described by using two independent
variables, which he named e and i, being respectively the excitatory and the
inhibitory variable. It is worth noting that despite of the several references
Rashevsky made in his publications to possible parallelisms between the quan-
tities appearing in the model and the concentrations of different ion species,
the physiological basis of the whole theory was only apparent and superficial.
The use of physical laws governing the movement of ions was indeed carefully
avoided. Instead, e and i were made satisfying, at the cathode, two "Blair-type"
equations:
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de

dt
= KI − k(e− e0) (9)

di

dt
= MI −m(i− i0) (10)

where I is the current, e0 and i0 are the concentrations of monovalent and
divalent cations at resting conditions, K, M , k and m are constants. From the
observation that neurons were normally not spontaneously firing, Rashevsky
deduced that e0 and i0 had to satisfy the inequality e0 < i0. Assuming moreover
in general higher diffusivity for monovalent cations than for divalent ones, m,
k, M and K were chosen such that m � k and K

k < M
m . In this framework,

excitation would occur once the ratio e
i reached a fixed threshold which, without

loss of generality, was taken to be 1.

For a constant current I established at time t = 0, one obtains

e = e0 +
KI

k
(1− e−kt)

i = i0 +
MI

m
(1− e−mt).

It follows that the time t at which excitation takes place has to satisfy the
condition

e0 +
KI

k
(1− e−kt) = i0 +

MI

m
(1− e−mt). (11)

Equation (11) is a transcendental equation and can be only given an approximate
solution. Rashevsky derived it for very short time t or for especially small m.
From these two approximations distinct solutions were obtained, each of which
was found to better describe different experimental results.

Small t: from the Taylor expansion

e−xt = 1− xt+
x2t2

2
− ...

for e−kt and e−mt, truncation after the second power and substitution into (11)
leads to

(Mm−Kk)It2 − 2(M −K)It− 2(i0 − e0) = 0. (12)

The necessary condition for the existence of real solutions for this equation, is
that
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(M −K)2I2 + 2(Mm−Kk)(i0 − e0)I > 0

i.e.

I >
2(Kk −Mm)(i0 − e0)

(M −K)2
.

It follows from this that the rehobase is

R =
2(Kk −Mm)(i0 − e0)

(M −K)2
. (13)

Since the general solutions of (12) are given by

t1 =
(M −K)I −

√
(M −K)2 − 2(Mm−Kk)(e0 − i0)I

(Mm−Kk)I
(14)

t2 =
(M −K)I +

√
(M −K)2 − 2(Mm−Kk)(e0 − i0)I

(Mm−Kk)I
,

the strength-duration relation for cathodal stimulation is obtained by substitu-
tion of (14) into (12), and reads

t1 =
M −K

Mm−Kk

(
1−

√
1− R

I

)

Small m: consider equation (11). If m is made sufficiently small, e will have
reached its asymptotic value e0 + KI

k before i0 has varied significantly. This
means that one could approximate (11) with

e0 +
KI

k

(
1− ekt

)
= i0.

Rearrangement gives

kt = log
KI

KI − k(i0 − e0)
,

i.e. Blair’s formula (7). Identical arguments as the ones made for Blair’s model
apply then to the case small m.

The equations treated so far have been restricted to the description of the
dynamics at the cathode. Rashevsky studied also the dynamics at the anode,
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assuming similar equations as (9-10) to hold during stimulation, the only dif-
ference being the reversed sign of I. To obtain excitation at break, the initial
conditions were first fixed at the stationary values that e and i attained after
exposure of the nerve to a continuous current for sufficiently long time, meaning

e′0 = lim
t→∞

[
e0 −

KI

k

(
1− e−kt

)]
= e0 −

KI

k
(15)

i′0 = lim
t→∞

[
i0 −

MI

m
(1− e−mt)

]
= i0 −

MI

m
. (16)

Upon opening the circuit, no external current is delivered to the nerve anymore,
i.e. I = 0. This means that the equations to be considered are reduced to

de

dt
= −k (e− e′0)

di

dt
= −m (i− i′0)

which, after substitution of (15,16) give

de

dt
= −KI − k (e− e′0)

di

dt
= −MI −m (i− i′0) .

Following a procedure similar to the one just described for cathodal excitation,
Rashevsky obtained also the expressions for anodal rehobase Ra and strength-
duration relation, respectively

Ra =
2(Kk −Mm)(i0 − e0)

(M −K)2 + 2(Kk −Mm)
(
M
m −

K
k

)
and

t = 3.41

[
M −K

Mm−Kk

(
1−

√
1

2

)
− ta + 3.41

√
1− Ra

I

]
,

where

ta = 3.41
M −K

Mm−Kk

(
1−

√
1

2

)
+0.293

√
(M −K)2 − 2(Mm−Kk)

(
M
m −

K
k

)
Mm−Kk

.
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Given the possibility to derive both rehobase and excitation time from the ex-
perimental results, the predictions of the model could finally be tested with the
available data obtaining very good agreement.

N

Few years after Rashevsky proposed his theory, apparently not being aware of
that, Hill published a model which was, at least in its fundamental aspects,
identical to the one of the Russian biophysicist. It is worth going in some detail
into Hill’s approach to understand to which extent the two models are similar
and in which (apparent) aspect they differ. Hill’s treatment is moreover of
historical importance, as the British scientist was one of the most brilliant and
influential figures in the twentieth-century nerve physiology. His choice to avoid
the use of explicit physical laws as the ones he himself had assumed to hold some
twenty-five years before, is especially significant of a spread still-far-from-clear
understanding of the origin of nerve excitation.

2.3.5 Hill 1936

In an extensive work published in 1936 in the Journal of Physiology (Hill
1936), Hill proposed a formal description of nerve excitation using two vari-
ables, which he named V and U , respectively referred to as "local potential"
and threshold. Although these two variables were in fact inspired by the long
investigated quantities in neurophysiology, the parallelism was exploited by the
British scientist only to the extent to provide a guideline for the derivation of
the mathematical equations. In particular, as in Blair’s and Rashevsky’s mod-
els, there was no tentative to bind neither V nor U to any specific biophysical
process.

To derive a formal mathematical description for the dynamics of V and U
under the influence of a stimulating current, Hill started from some basic but
fundamental observations over the phenomenon of accomodation: it was long
known by the mid ’30s that slowly rising currents induced a gradual rise in the
threshold, up to the point that stimulation could become ineffective when the
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gradient of its increase was below a certain value. Similarly to Blair, Hill thought
that this behaviour (accomodation) reflected a variation in time of the threshold
U itself, and that this variation had to be a consequence of the altered physico-
chemical condition of the nerve, generically referred to in his model as the “local
potential”. Under this perspective, both V and U would have been influenced
by the externally applied current, although in a different way: the first directly,
the second indirectly. From the experimental observations available so far, Hill
deduced moreover V as well as U to have a natural tendency to return to their
resting value, the timescale of the relaxation being however much longer for the
latter than for the former quantity.

The simplest equations to describe the observations made turned out to be

dV

dt
= bI − V − V0

k
(17)

dU

dt
=

V − V0

λ
− U − U0

β
(18)

here I is the externally injected current, while b , β , λ and k are constants with
λ and k satisfying λ � k . It follows moreover without saying that excitation
would occur once V equals U .

To simplify the mathematical analysis of his model, Hill assumed the con-
dition β = λ to hold 7. In the most general case then, admitting any form of
current, the solution of (17-18) was given by

V = V0 + be−
t
k

ˆ θ=t

θ=0

Ie
θ
k dθ (19)

U = U0 +
e−

t
λ

λ

ˆ θ=t

θ=0

(V − V0)e
θ
λ dθ (20)

Now, several kinds of stimulations were treated in (Hill 1936); of these, by far the
most interesting for the comparison with the experimental results as well as with
the previously published models, are cathodal and anodal constant currents. I
report them both here below.

Cathode excitation:
7 Note that there exists in fact no objective physiological parallelism for this choice.
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In the case of constant currents, (19-20) become

V = V0 + bkI
(

1− e− t
k

)
(21)

U = U0 + bkI

[
1 +

e−
t
k

λ
k − 1

− e−
t
λ

1− k
λ

]
. (22)

The condition of excitation then translates into

V0 + bkI
(

1− e− t
k

)
= U0 + bkI

[
1 +

e−
t
k

λ
k − 1

− e−
t
λ

1− k
λ

]

i.e.

V0 − U0

bk
= I

[
e−

t
k +

ke−
t
k

λ− k
− λe−

t
λ

λ− k

]

= I
λ

λ− k

(
e−

t
k − e− t

λ

)
,

which, after rearrangement, gives

I =
λ− k
λbk

V0 − U0

e−
t
k − e− t

λ

. (23)

Equation (23) is the strength-duration relation for constant current stimuli. Hill
derived also its compact form in terms of the rehobase, after having calculated
the latter according to the definition by imposing V = U0 at t = ∞ in (21).
This giving bkI0 = U0 − V0, substitution into (23), led to

I =
I0
(
1− k

λ

)
e−

t
λ − e− t

k

. (24)

It is worth noting that under the condition λ � k mentioned above, equation
(24) reduces to

I =
I0

1− e− t
k

which is the formula Hill had proposed in 1910 and that had become famous
since then for its accuracy in fitting a wide variety of experimental observations.
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Anode excitation:

To obtain the strength-duration relation at the anode, Hill assumed that upon
opening the stimulating circuit after exposure of the nerve to an externally
applied constant current over a duration t̄ , a current of opposite intensity is
produced. Considering that at the anode the current is of reversed sign with
respect to that at the cathode, this means that equations (21) and (22) take the
form:

V = V0 − bkI
(

1− e− t
k

)
+ bkI

(
1− e−

t−t̄
k

)
= V0 − bkI

(
e−

t−t̄
k − e− t

k

)

U = U0 − bkI

[
1 +

e−
t
k

λ
k − 1

− e−
t
λ

1− k
λ

]
+ bkI

[
1 +

e−
t−t̄
k

λ
k − 1

− e−
t−t̄
λ

1− k
λ

]

= U0 − bkI

[
e−

t−t̄
λ − e− t

λ

1− k
λ

− e−
t−t̄
k − e− t

k

λ
k − 1

]
Anode excitation is then expected to occur when

V0 − bkI
(
e−

t−t̄
k − e− t

k

)
= U0 − bkI

[
e−

t−t̄
λ − e− t

λ

1− k
λ

− e−
t−t̄
k − e− t

k

λ
k − 1

]

i.e. when

U0 − V0 = bkI
λ

λ− k

[
e−

t−t̄
k − e− t

k − e−
t−t̄
λ + e−

t
λ

]
or

I =
U0 − V0

bk

(
1− k

λ

)
e−

t−t̄
k − e− t

k − e− t−t̄λ + e−
t
λ

.

In the discussion of his paper, Hill very honestly remarked the limitations of
his abstract mathematical treatment which, despite of its capability to describe
the electrical behaviour of many physiological preparations, was still far from
providing a satisfactory explanation of the process of nerve excitation. It is
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worth reporting Hill’s own words in conclusion of this section:

“The statement given above of the two time-factors in electric excitation is
the simplest possible one, and it is realized only too clearly that in certain aspects
it is inadequate. [...] It might be regarded as a further weakness that no physical
model has been proposed. The surface of the nerve has not been supposed to act
as an electrical condenser; the “local potential” has not been identified with the
electrotonic potential; the concentration of ions at a semipermeable membrane
has not been assumed to determine excitation; the constituents of a sensitive
surface have not been imagined to flow, or alter their shape, under the influence
of a current, and so to lead to “accomodation”. [...] No specific physical or
chemical theory is offered of the nature of the “local potential” V, of “threshold”
U, or of their time constants k and λ . Their behaviour is only discussed.”

N

After the publication of the two factor theories of nerve excitation by Hill and
Rashevsky, a considerable amount of mathematicians entered the field of Neu-
roscience, some by proposing brand new (always abstract) approaches, some by
extending the work of the two biophysicists. Among these it is worth mentioning
a group of mathematicians from the University of Chicago who, among the con-
tributions given, formally demonstrated the equivalence of the two models just
treated (see Appendix for details) (Offner F 1937, Young G 1937, Householder
AS 1939, 1944).

Despite of the popularity the two factor theories gained between the 30s
and the 40s, their final contribution to the advancement of the understanding
of nerve activity was objectively inexistent. The most important questions re-
garding the physico-chemical processes involved in the phenomenon of action
potential were indeed left not only unanswered but untackled.

It happened that in 1939 Hodgkin and Huxley obtained the first intracellular
recording of the action potential from a squid giant axon. Their publication
(Hodgkin and Huxley 1939) was a true revolution in the field. Specifically, for
what concerns the approaches to quantitative theories, the reliability, precision
and reproducibility of the recordings caused a paradigm shift from the purpose of
modelling only the processes that lead to nerve excitation, to that of describing
the phenomenon itself too.
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Still, however, even in the mid 40s, there was no real clue of what could
be the effective mechanisms underlying action potentials. This general state
of ignorance is brilliantly reflected in an unfortunately poorly cited work by
Hodgkin and Huxley (Hodgkin and Huxley 1945), where the two advanced a
variety of plausible alternatives to explain the experimental results they them-
selves obtained from squids. Although not extensively quantitative, it is worth
going through this publication before analysing the famous model published in
1952; interestingly, it will be noticed that no reference to sodium ions was made
at the time8.

2.3.6 Hodgkin and Huxley 1945

After the end of the second World War, Hodgkin and Huxley repeated and
extended the experiments performed in 1939 on resting and action potentials
in the squid giant axon (Hodgkin and Huxley 1945); in the section dedicated
to the discussion of the results, the two analyzed four qualitatitatively different
explanations that could account for the phenomenon of nerve excitation. These
are:

(i) The onset of a selective permeability of the membrane towards the anions
in the axoplasm

(ii) A change in the orientation of dipoles present in the membrane surface
(iii) The existence of an inductive element in the membrane
(iv) In series membrane capacity and electromotive force

(i) The first explanation derived from the observation that depolarization
could be produced in principle not only by an inward flow of cations, but by
an outward flow of anions as well. Although plausible, the idea of an increased
mobility of negative particles was subsequently considered unlikely due to the
fact that the contributions of K+ and Cl− to the membrane potential were
believed too high to be overcomed in this way.

(ii) With the second explanation of activity in terms of reorientation of
8As mentioned before, the Na+ hypothesis was published only in 1949.

44



membrane dipoles Hodgkin and Huxley were voluntarily neglecting any direct
influence due to the movement of ions.

Starting from the hypothesis that the cell surface was largely composed of a
double layer of lipid molecules arranged so to have a negative polar hydrophilic
headgroup facing the exterior of the membrane and an hydrophobic hydrocarbon
chain facing the interior 9, Hodgkin and Huxley reasoned that the negatively
charged headgroups could contribute little to the resting potential due to the
symmetry of the bilayer or, assuming asymmetric conditions, due to the reequi-
libration of the ion species free to transverse the membrane. At the same time,
however, they considered that “a transient wave of negativity would occur if
the inner layer of dipoles were removed, or deorientated in some way when the
membrane was excited”. The plausibility of this hypothesis was tested with a
quantitative model based on the electrical circuit in figure (1.5). Referring to
it, E represents the resting electromotive force, R4 the membrane resistance, C
the capacity, ψ the voltage due to the oriented dipoles, Vm the total potential
difference across the membrane, Im the current. This last was then given by

Im =
Vm − E
R4

+
Cd(Vm − ψ)

dt

Figure 1.5: (a) Representation of the membrane as a lipid bilayer; (b) electrical
circuit model for the electrical behaviour of the neuronal membrane.

Considering that at the peak of activity dVm
dt = 0 and substituting to Vm−E,

R4, Im and C the values obtained from the experimental observations available
9Note that Danielli’s hypothesis revealed later to be essentially correct.
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(see Cole and Curtis 1939), Hodgkin and Huxley estimated dψ
dt at the crest of

the action potential to be −4.2 · 103V · sec−1. “This result indicates that the
rate of change of molecular orientation would be equivalent to that produced by
a dipole layer with a potential difference of 420 mV collapsing during a period
of 0.1 msec. This is not an impossible assumption, although it is a little hard to
imagine that such a change would leave the membrane capacity unaltered ” 10

(iii) As third explanation, Hodgkin and Huxley considered the hypothesis of
the existence of an inductive element in the neuron. This hypothesis had been
originally proposed by Cole in 1941 (Cole 1941) and assumed an analogy between
the electrical behaviour of the membrane of the squid giant axon and that of
the circuit in Figure (1.6). Again, as in the previous point, E is the resting
electromotive force, R4 the membrane resistance, C the (fixed) capacity; L is the
inductance, which was suggested to arise from a still non-identified piezoelectric
element in the membrane. Hodgkin and Huxley tested the idea by subsituting
to the variables just mentioned the values in Figure (1.6b), where the switch and
the resistance in series on the right were conceived to account for the observed
drastic decrease in transmembrane resistance during excitation. Simulations
showed that this third explanation could account for an overshoot of the same
order of magnitude of the one normally recorded in living cells; despite of this,
no structure in the membrane could be identified with the required piezoelectric
characteristics, and the hypothesis was not pursued further.

10In fact, it should be noted that the membrane capacity is not at all unaltered upon
excitation: an increase of few point percentage magnitude is indeed known to occur during
the rising phase of the action potential and a correspondent decrease during the repolarizing
one (Cole and Curtis 1939).
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Figure 1.6: (a) Electrical circuit analogue originally adobted by Cole (Cole 1941);
(b) same circuit as in (a) with switch and estimated values for the components.

(iv) The fourth explanation consisted in assuming the electromotive force to
be in series with the membrane capacity. Figure (1.7) shows the electric analogue
of the neuronal membrane conceived according to this hypothesis at resting
conditions (a), in the vicinity of an active region (b), and during excitation (c).
Neither quantitative nor qualitative investigations of this last explanation were
reported in (Hodgkin and Huxley 1945). Its plausibility, in fact only on very
general grounds, was however briefly suggested.

Figure 1.7: Electric circuit model with in-series membrane capacity and
electromotive force.

47



2.4 The legacy of the early quantitative models

Before discussing in detail the model Hodgkin and Huxley conceived in 1952
(Chapter III), it is worth spending few words to emphasize the salient features
of the approaches to quantitative modelling of nerve excitation discussed so
far, as well their impact and relationship with respect to the studies the two
physiologists from Cambridge were finally led to several years later.

We showed that already in the beginning of the XIX century, Nernst pub-
lished a model based on the fundamental assumption that the sole underlying
cause of nerve excitation was the movement of ions. The mathematical frame-
work developed by the German physicist was then recalled to consist not sur-
prisingly of a diffusion equation with specific boundary conditions reflecting the
presence of an hypothetical semipermeable membrane which could allow ion ac-
cumulation in its vicinity (thus the generation of a potential difference). This
approach, although sometimes apparently put aside in favour of simpler and
easy-to-handle models, remained since then at the basis of the conception of
action potentials whenever tentatives of physical interpretation were made.

After having presented Nernst’s theory, we discussed another highly influen-
tial work in the field of mathematical modelling of nerve excitation: Lapicque’s
electric circuit model. This latter, conceived in fact even before Nernst had pub-
lished the final version of his theory, was seen by the most popular physiologists
of the mid 1900 - Hodgkin and Huxley included - as the reference work for any
physically-inspired theoretical work (see for example Cole 1968). The legacy
of Lapicque’s work in our current conception of nerve excitation and related
phenomena certainly cannot be overestimated: the electrical circuit model, to-
gether with Nernst’s ionic theory, will be found at the very foundation of the
physical interpretation on which Hodgkin and Huxley built their model some
half a century later.

Before closing this chapter it seems fair to say that also the abstract models
conceived during the 30s, in particular the ones by Blair, Rashevsky, and Hill,
had some influence on later works. Indeed, although these models did not
strongly and directly influence the one by Hodgkin and Huxley as Nernst’s
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Lapicque’s models did, still it will be possible to recognize their their legacy in
the purely abstract definition of the dynamics of the ion-channel gating variables
11. Moreover, Blair’s, Rashevsky’s and Hill’s efforts towards an analytically
treatable model of excitation can be clearly “ritrovati” in perhaps the most
popular post- Hodgkin-Huxley model, i.e. the one by FitzHugh and Nagumo
(see Chapter V).

11Note that Hill was one of Hodgkin’s reference figures in Cambridge during the years of
his scientific formation (Hodgkin 1976, 1983).
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CHAPTER III

The Hodgkin-Huxley Model

We have seen that by the mid twentieth century the hypothesis of the flow of
ions as the one and only cause for voltage variations in nerve cells had been ad-
vanced (Nernst); that the idea of using RC electric circuit analogues to model the
responses to externally applied electric currents had been proposed (Lapicque);
that ordinary differential equations of purely abstract nature had sometimes
been used with in fact not surprising success (Rashevsky and Hill). We have
moreover seen that in 1945 the understanding of the origin of nerve excitation
was still very far from being clear.

In 1949 Hodgkin and Katz published the so-called sodium hypothesis (Hodgkin
and Katz 1949; see preceeding Chapter); the idea of independent transmembrane
pathways for sodium and potassium was moreover conceived in the few years
that followed thanks to the use of the voltage-clamp technique just introduced
by Cole (see Historical Background, paragraph 2.2) (Hodgkin and Huxley 1952a,
b, c). It is on this theoretical and experimental basis that the famous Hodgkin-
Huxley model was proposed in 1952. I report here in detail the model and
the most salient aspects behind its derivation, with some references to current
interpretations.

3.1 Hodgkin and Huxley 1952: the static model

In the model Hodgkin and Huxley proposed in 1952, the behaviour of a nerve
fiber is described using an electrical network where the membrane is represented
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by a capacitor of fixed capacitance, and the ion pathways through the membrane
are represented by three resistance-capacitor modules arranged in parallel (see
Fig 2.1). Of such modules, two are ion-specific - one for Na+ and one for
K+- while the other is related to leakage phenomena meant to be generated
by unspecified ions. Modern ad hoc extended versions of the model commonly
include ion-specific pathways also for Ca2+and Cl−as well as for other ions.
However, even if these modifications allow more accurate descriptions of the
electrophysiological recordings, no conceptual difference exists between the old
and most of the updated versions.

Figure 2.1 The electric circuit analogue used by Hodgkin and Huxley to describe
nerve excitation. Reproduced from (Hodgkin and Huxley 1952).

Referring to the circuit above, the total current between the inside and the
outside of a nerve cell is given by the sum of both a membrane-capacitive and
an ionic component. Thus

I = CM
dV

dt
+ Ii (25)

where
I is the total membrane current (inward current positive)
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Ii is current density carried by ions (inward current positive)
V is the membrane potential (depolarization negative)
CM is the membrane capacitance (assumed constant)
t is time

From the parallelism of the ionic currents in the circuit in Figure 2.1, it
follows that the term Ii can be further subdivided into the algebraic sum of
the current carried by the sodium ions (INa), the one by potassium (IK), and
the one by the other unspecified ions (Il). Thus Ii = INa + IK + Il. Using
now Ohm’s law I = gV , where g is the conductance (i.e. the reciprocal of the
resistance), the three currents INa, IK and Il can be expressed respectively as
the products

INa = gNa(V − ENa)

IK = gK(V − EK)

Il = gl(V − El)

In this context the conductance terms gi (i = Na,K, l) are related to the facil-
ity that the correspondent ion species encounter in crossing the neuronal mem-
brane, while ENa, EKand El are the specific equilibrium potentials calculated,
according to the ionic hypothesis of nerve conduction, using Nernst’s formula

Vi =
RT

F
log

[i]out
[i]in

where, taking the Na+ ion as example, [Na]out represents the concentration of
Na+ in the extracellular space, and [Na]in is it’s concentration inside.

Hodgkin and Huxley assumed ENa, EK and El to be constant, while gNa
and gK to be function of time and membrane potential. As a consequence, the
derivation of a dynamic equation for the conductances gNa and gK was required.
The procedure the two physiologists followed is given here below. Although it
might be more intuitive to treat gNa before gK since it was the movement of Na+

ions to be believed to be responsible for the generation of the action potential,
the opposite order will be followed as originally done in (Hodgkin and Huxley
1952).
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3.2.1 The potassium conductance

Figure 2.2 Variation of the potassium conductances gK measured after es-
tablishing abruptly a transmembrane voltage equal to the numbers on the right.
The empty circles are the potassium conductances recorded, while the continue
curves are the ones calculated from eq (26)-(27).

In Figure 2.2, the empty circles represent the potassium conductances de-
duced from electrophysiological recordings Hodgkin and Huxley performed on
the squid giant axon at different voltage steps. Given the results obtained, the
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two physiologists proposed the following equations with the intent to fit the
data acquired:

gk = ḡkn
4 (26)

dn

dt
= αn(1− n)− βnn (27)

where ḡk is a constant representing the maximum potassium conductance (ex-
perimentally estimated; dimensions conductance/cm2), αn and βn are voltage-
dependent time-independent rate constants (dimensions of t−1), while n is a
scalar variable ∈ [0, 1].

It is stressed that equations (26) and (27) were choosen among many pos-
sible solutions which could fit the data in Fig 2.2 equally well and that they
lack any physical basis. At the same time, it is worth noting that in their fa-
mous paper from 1952, Hodgkin and Huxley observed a posteriori that such
equations would agree with an hypothetical mechanism of transport of K+ ions
through the membrane based on the cooperativity of four unspecified similar
components. Nowadays, these four components are commonly identified with
the well known tetrameric structure of the so-called K+ channel (Hille 2001),
where the concomitant activation of the four voltage sensing domains (VSD)
opens a central cavity through which the K+ ions are thought to flow driven
by the electrochemical potential gradient across the membrane. Under this per-
spective, n is often interpreted as the proportion of VSD in the active state,
1− n as the proportion of inactive VSD, αn as the rate of activation and βn as
the rate of inactivation.

In order to obtain the fitting curves displayed in Figure 2.2, the voltage
dependency of both the rate constants αn and βn needed to be specified. More-
over, an initial condition n0 had to be given. Hodgkin and Huxley proceeded
then in the following way: first n0 and the corresponding solution of (26) and
(27) in terms of αn and βn were derived, and then the expression of these latter
two was explicited.

During the voltage-clamp experiments of (Fig 2.2), the membrane potential
was initially clamped at a resting level Vm = 0, and only afterwards it was
abruptly brought to the predefined value shown on the right in the figure (num-
bers). When Vm is still equal to zero, the initial condition for n can be written
in terms of the initial values of αn0 and βn0, where the index 0 here stands for
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V = 0. By substitution in () it is obtained that

n0 =
αn0

αn0 + βn0

and that the solution of (27) corresponding to such an initial condition will have
the form

n(t) = n∞ − (n∞ − n0)e−
t
τ

where n∞ = αn
αn+βn

is the value that n eventually attains after the voltage step,
and τ = 1

αn+βn
is the time-scale of the process; αn and βn are respectively the

values of α and β after the new voltage is set. In order to permit the comparison
with the experimental data, the expression for the potassium conductance was
explicited in the form

gK = {(gK∞)
1
4 − [(gK∞)

1
4 − (gK0)

1
4 ] exp(− t

τn
)}4 (28)

where gK∞ and gK0 are respectively the value that gK has after the voltage
step and at time t = 0. In this way the estimation of both the quantities n∞
and τn from the best fit could be achieved. Since αn and βn can be written as

αn =
n∞
τn

βn =
1− n∞
τn

for each voltage clamped, their value could be directly deduced from the esti-
mates of n∞ and τn obtained from eq (28) and the data in Figure 2.2. For each
voltage tested in the electrophysiological experiments, correspondent values for
αn and βn could be derived and the explicit expression deduced by applying the
same procedure of best fit (Fig 2.3). Specifically, for the experimental conditions
under which Hodgkin and Huxley worked, the following results were obtained
(Hodgkin and Huxley 1952):

αn = 0.01(V + 10)/[exp
V + 10

10
− 1] (29)

βn = 0.125 exp(V/80) (30)

This completely determined the expression of the potassium conductance.
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Figure 2.3: Rate constats αn and βn related respectively to the rise and fall of the
potassium conductance. The symbols are the estimates for the correspondent specific
axon used during the experiment (labeled with numbers). The continuous lines are
the curve-fitting.

3.2.2 The sodium conductance

For the derivation of the sodium conductance, Hodgkin and Huxley adopted
a similar approach as for the potassium conductance. Since however the dy-
namics of the former was found to be qualitatively different from the one of
the latter (see Figure 2.4), a new function had to be chosen in order to fit the
data. Among the possibilities available, the use of two variables each of which
obeying a first-order equation was preferred by the two physiologists due to its
simplicity. Specifically, the following equations were used:

gNa = m3h ¯gNa (31)

dm

dt
= αm(1−m)− βmm (32)
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dh

dt
= αh(1− h)− βhh (33)

where ḡNa is a constant representing the maximum sodium conductance, while
αi and βi (i = m,h) are as before voltage-dependent time-independent rates.
m and h play the same role as n for the potassium conductance, respectively
for the activation and inactivation of gNa.

Figure 2.4: Same as Figure 2.2 but for sodium conductance. The voltage steps are
shown on the left. Reproduced from (Hodgkin and Huxley 1952).
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Again, before proceeding with the specification of the unknown terms, it is worth
noting the a posteriori interpretation that was given to the equations (31)-(33).
It was suggested that a physical interpretation would have been possible if a
mechanism of transport of Na+ ions based on the activation of three similar
”molecules” and the non-inactivation of a different one existed. Nowadays, the
so called voltage-gated sodium channels - i.e. the proteins that are commonly
believed to be related to the voltage-dependent Na+ flow through the lipid bi-
layer - are known to be constituted by four membrane-spanning monomers and
an intracellular protuberance named ”activation gate” (Hille 2001). Even ac-
cepting the ion-channel hypothesis, which anyway still lacks an objective proof,
this time no parallelism can be traced with the molecular level.

The deduction of α’s and β’s expressions follows from the same reasoning
used for the potassium rate constants, with the only difference that now there
are two first order differential equations rather than only one.

Given the initial resting conditions m0 and h0, the equations for m and h

are
m(t) = m∞ − (m∞ −m0)e−

t
τm

h(t) = h∞ − (h∞ − h0)e
− t
τh

where

m∞ = αm/(αm + βm) τm = 1/(αm + βm)

and

h∞ = αh/(αh + βh) τh = 1/(αh + βh)

Hodgkin and Huxley observed that both m0 and h∞ could be neglected. The
sodium conductance was then approximated by

gNa = ḡNam
3
∞h0[1− exp(−t/τm)]3 exp(−t/τh).

This last equation was used to fit the data of Figure 2.4 so that for each different
voltage step tested during the experiments, the best estimates of τm and τh were
deduced. From these, the correspondent values of αi and βi (i = m,h) could be
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obtained (symbols in Figure 2.5) using the relationships

αm = m∞/τm , βm = (1−m∞)/τm

and

αh = h∞/τh , βh = (1− h∞)/τh

Figure 2.5a: Similar to Figure 2.3 but for the rate constants of activation of sodium
conductance.
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Figure 1.25b: Similar to Figure 1.23 but for the rate constants of inactivation of
the sodium conductance. “Methods” appearing on the top-right corner are not relevant
in this context, as they are only meant to distinguish between different sources of data.

Iteration of the fitting paradigm to the new data leads to the voltage-dependent
expressions of αm, βm, αh, βh

αm = 0.1(V + 25)/(exp
V + 25

10
− 1) βm = 4 exp(V/18) (34)

αh = 0.07 exp(V/20) βh = 1/(exp V+30
10 + 1) (35)

In this way the expression of the sodium conductance too was specified.
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It is now possible to write the equations that give the time and voltage
dependencies of the transmembrane current density of a nerve fiber:

I = CM
dV

dt
+ ḡKn

4(V − EK) + ḡNam
3h(V − ENa) + ḡl(V − Vl) (36)

where

dn

dt
= αn(1− n)− βnn

dm

dt
= αm(1−m)− βmm

dh

dt
= αh(1− h)− βhh

and

αn = 0.01(v + 10)/[exp
V + 10

10
− 1]

βn = 0.125 exp(V/80)

αm = 0.1(V + 25)/(exp
V + 25

10
− 1)

βm = 4 exp(V/18)

αh = 0.07 exp(V/20)

βh = 1/(exp
V + 30

10
+ 1)

As usual, potentials are given in mV , current densities in µA/cm2, conductances

in mmho/cm2, capacity in µF/cm2, and time in msec. Moreover, it is worth
repeating that the expressions of α’s and β’s were all derived under specific ex-
perimental conditions, in particular at a fixed temperature of 6.3oC. Application
of the equations at different temperatures requires then proper rescaling.

62



3.2 The propagating action potential

The model explained so far is that of a uniform membrane potential, meaning
that it describes the response to an applied stimulus of a neuronal membrane
- specifically the one of the squid giant axon - considering the potential as if
it were uniform at every instant across the whole surface. Under such a static
perspective, the fundamental peculiarity of nerve excitation, i.e. the spreading
of the action potential along the nerve, cannot be taken into account.

The extension of the static model to the dynamical one was obtained by
Hodgkin and Huxley by referring to the already long known cable theory (Taylor
1963, Rall 1977).

Consider Figure 2.6. The neuron is divided longitudinally in subsections
(patches) of length ∆x . For each of these subsections, the representation in-
troduced in the previous paragraph with in-parallel capacitor and resistances is
adopted. Vi(x) and Ve(x) represent respectively the potentials inside and out-
side the cell at position x , which implies the transmembrane potential to be
Vi(x)− Ve(x) . The total current flowing through a membrane patch of length
∆x is given by Im(x)∆x , where Im(x) stands for the membrane current per
unit length. Ii(x) and Ie(x) , ri(x) and re(x) are the longitudinal internal and
external currents and resistances (per unit length).

Figure 2.6 (a) Cilindric cable representation of the neuronal axon. (b) Electric
circuit equivalent a the membrane: the elements at the top are meant to lay at the
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intracellular space, the ones at the bottom to be extracellular, the local Hodgkin-
Huxley type circuits #1, #2, #3 to be at the boundary.

From Ohm’s law one has

Vi(x)− Vi(x+ ∆x) = Ii(x)ri∆x , Ve(x)− Ve(x+ ∆x) = Ie(x)re∆x

which give, by taking the limit for ∆x→ 0 ,

lim
∆x→0

Vi(x)− Vi(x+ ∆x)

∆x
=
∂Vi
∂x

= −riIi(x) ,
∂Ve
∂x

= −reIe(x). (37)

At the same time, the conservation of currents at intracellular and extracellular
nodes gives

Ii(x−∆x)− Ii(x) = Im(x)∆x , Ie(x−∆x)− Ie(x) = −Im(x)∆x

meaning, for ∆x→ 0 , respectively

∂Ii
∂x

= −Im(x) ,
∂Ie
∂x

= Im(x).

By differentiating equations (37), it is obtained that
∂2V

∂x2
=
∂2(Vi − Ve)

∂x2
= −ri

∂Ii
∂x

+ re
∂Ie
∂x

= (ri + re)Im

implying, from the static model derived in the previous paragraph,

Im = cm
∂V

∂t
+ ḡKn

4(V − EK) + ḡNam
3h(V − ENa) + ḡl(V − Vl)

where constants and variables are as defined previously. The following equation
is then obtained:

1

(ri + re)

∂2V

∂x2
= cm

∂V

∂t
+ ḡKn

4(V −EK)+ ḡNam
3h(V −ENa)+ ḡl(V −Vl) (38)

which is the cable equation specific for the Hodgkin-Huxley model.

The two physiologists assumed the squid giant axon to be surrounded by a
large volume of conducting fluid 12, which implies re to be negligible compared
to ri , thus

1

(ri + re)
=

1

ri
=

a

2Ri
(39)

12It should be noted that this assumption is not at all justified, as the squid axon is known
to be surrounded by a continuous sheath of glial cells as close as 10 nm to the neuronal surface,
which significantly alters the movement of ions close to the membranes.
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where a is the radius of the nerve and Ri the specific resistance of the axonal
intracellular space. Substituting eq (39) into (38), one obtains

a

2Ri

∂2V

∂x2
= CM

dV

dt
+ ḡKn

4(V − EK) + ḡNam
3h(V − ENa) + ḡl(V − Vl)

Although this equation is not solvable as it is, experimental evidence suggests
that one can impose the constraint that the action potential has to travel at
constant velocity θ as well as that its shape is manatained unaltered during the
propagation. Substituting the travelling wave ansatz V (x, t) = V̂ (x− θt) gives

a

2R2θ2

d2V

dt2
= CM

dV

dt
+ ḡKn

4(V −EK) + ḡNam
3h(V −ENa) + ḡl(V −Vl) (40)

Equation (40) together with
dn

dt
= αn(1− n)− βnn

dm

dt
= αm(1−m)− βmm

dh

dt
= αh(1− h)− βhh

are often referred to as the complete Hodgkin-Huxley equations for the propa-
gating action potential.
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CHAPTER IV

Criticism on
the sodium hypothesis

As explained in the previous chapters, according to the hypothesis conceived
by Hodgkin and Katz in 1949 (Hodgkin and Katz 1949), action potentials are
generated by an inward flow of sodium ions from the extracellular space to the
intracellular one. In particular, it is assumed that this movement is the one and
only responsible for the reversal of membrane polarization during excitation. We
will demonstrate in this chapter the inadequacy of this hypothesis by providing
and discussing concrete examples of a wide variety of living systems in which
the sodium hypothesis does not hold.

In light of all the evidence discussed in this section, the conjecture that
sodium ions are responsible for the generation of the action potential will have
to be rejected. It follows directly that the Hodgkin-Huxley model, being it based
on the estimates of Nernst equation for the equilibrium potential of sodium ions,
lacks of experimental support thus cannot be considered suitable for physical
interpreatations.
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4.1 Sodium independence in non-squid systems

More than one hundred years ago, Overton found the presence of Na+ ions in
the bathing medium of muscle and nerve cells not to be a necessary requirement
for their excitability (Overton 1902). Specifically, he observed that Na+ could be
entirely substituted with lithium without causing any appreciable reduction in
the response to stimulation. Since the work of Overton, many studies appeared
on the possibility to mantain excitability in the absence of external Na+ ions.
A wide variety of preparations have been used so far for such investigations,
and it would be impossible to report them all in this context. We thus mention
here below only some among the ones that appear to us most significative. It
is worth keeping in mind that each of them is sufficient, alone, to invalidate the
Na+ hypothesis in the system where this was tested.

The first studies we want to cite are the ones that were made by Osterhout
and colleagues on the algal plant Nitella during the ’30s. Nitella is a long
investigated system in electrophysiology for the capability of its macroscopic
cells to develop action potentials. In fact, before the “discovery” of the squid
giant axon by Young (Young 1936, 1938), this algae was the most popular system
for single-cell studies of excitation. There is no objective reason to believe
the mechanisms underlying the electrical activity of Nitella to be qualitatively
different from the ones of animal cells (Cole and Curtis 1938, 1939). This
clarified, what Osterhout, both working alone and with colleagues, did, was the
following: he isolated and bathed Nitella cells in distilled water for several days
until they lost their excitability; taking care that no injury had occurred, he then
added to the solution various compounds in trying to restore proper functioning.
He found in this way that as little as 1 mM CaCl2 was sufficient to make the cell
excitable again. Not only, also ammonia, ammonium ions, guanidine as well as
a number of organic compounds were shown to be capable of the same effects
(Osterhout and Hill 1933, Osterhout 1935, 1940). No trace of sodium was added
during these studies. Osterhout reached the precious conclusion that “we should
expect irritability [...] to be restored by any substance which can put the surfaces
into a condition similar to that found in normal cells in winter 13 and it seems
possible that this might be done by a variety of substances” (Osterhout 1935, p.

13 Note that in winter Nitella cells are excitable while in summer they are not
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994).

Another interesting finding was made by Fatt and Katz in crab muscle fibers
(Fatt and Katz 1951-53): in the tentative to extend the previous work done with
Hodgkin on the squid giant axon (Hodgkin and Katz 1949), Katz (and Fatt)
entirely replaced sodium with choline in the new system. Here is what the two
wrote:

“The effect of the substitution of choline for sodium was unexpected and
striking; in no case were muscle fibres rendered inexcitable; on the contrary, the
action potential became significantly larger, and many fibres which had previously
given small local responses now produced large propagated action potentials. [...]
The observation that the action potential is retained and, indeed, intensified
when the external sodium had been totally replaced by choline is so surprising
that we could not help suspecting some error.” (Fatt and Katz 1953, p 186-187)

All the suspects being ruled out in the same publication, the two authors
further investigated excitability of crab muscle fibers in Na+ -free solutions
and found that, besides choline, several quaternary ammonium ions were able
to substitute for sodium. The studies received confirmation in the years that
followed; in particular, Fatt and Ginsborg showed that crayfish muscle fibers
were able to generate action potentials also when Na+ was replaced by strontium
(or barium): “The presence of Na or Mg, in addition to Sr, did not affect the
action potential ” (Fatt and Ginsborg 1958, p 542).

Before Fatt and Katz examined the effects of substitution of Na+ in crus-
taceans, in fact even before the Na+ hypothesis was conceived, the influence of
quaternary ammonium ions had been extensively investigated on frog nerves by
Lorente de Nó. The seminal work of the Spanish neurophysiologist was pub-
lished in a very detailed 231-pages supplement on the Journal of Cellular and
Comparative Physiology in 1949 (Lorente de Nó 1949). It was shown there that
the ability to conduct impulses by small myelinated and unmyelinated frog nerve
fibers which had been previously rendered inexcitable in sodium-free solutions,
could be restored by tetraetylammonium, as well as several other quaternary
ammonium ions. Also large myelinated fibers, whose electrical activity could
not be restored at the time of the studies by the same treatment, were later
found to be capable to regain excitability in Na+ -free solutions: guanidinium
as well as five other different onium ions turned out to be suitable for the purpose
(Larramendi et al. 1956, Lorente de Nó et al. 1957).
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Always in frogs, Koketsu and coworkers obtained that the excitability of
isolated muscle fibers as well as spinal ganglion cells could be mantained in
complete absence of Na+ (Koketzu et al. 1958a,b, 1959). Very interestingly,
in hydrazinium-solutions the action potentials were found to be “practically
indistinguishable” from the ones in normal Na+ -rich solutions (see Figure 3a).

Figure 3a: Action potentials from isolated frog’s single muscle fibers in (1) Na+-
rich physiological solution; (2) 10 minutes after bathing in sucrose solution; (3) 5
minutes after immersion in Na+-free hydrazine-containing solution.

It is worth citing directly a passage from the paper that appeared in Nature
in 1958: “[...] the striking similarity between ’hydrazinium spikes’ and ’sodium
spikes’ suggests a single mechanism underlying the production of at least both
brief responses, and apparently denies the exclusive necessity of external sodium
for the generation of a ’normal’ type of action potential in spinal ganglion cells.
Moreover, it seems reasonable to assume that hydrazinium ion acts in the same
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way as other onium ions, and it is not responsible for the actual transport of
charge.”

Not only Koketsu and colleagues found that frog neurons could still be arti-
ficially stimulated in the absence of external sodium, but that under the same
conditions even synaptic transmission was perfectly normal (Koketsu and Nishi
1958c).

Now, it should be said that Hodgkin and Huxley were, at least after the pub-
lication of their model, well aware of most of the results just mentioned (see for
example Hodgkin’s book (Hodgkin 1964)). Despite of this, they both sustained
in several occasions that the majority of excitable fibers conformed with the hy-
pothesis that action potentials depend on an increase in Na+ premeability. The
limited relevance the two physiologists attributed to the overwhelming evidence
discussed above in defence of the broad applicability of the results they them-
selves obtained working on the squid giant axon, is a position that can hardly
be shared. To avoid misunderstandings, in confirmation of the general character
of the studies cited, evidence is provided in the following that the squid axon
does not to constitute an exceptionality, inasmuch as the Na+ hypothesis does
not hold for this system too.

4.2 Sodium independence in the squid giant axon

When talking about squid axons, one scientist comes immediately to the
mind: Ichiji Tasaki. As one of the most bright and prolific neurophysiologists of
the last century, Tasaki performed on squids works of primary importance for
the understanding of the role of ions, in particular of sodium, in the process of
nerve excitation.

It should be said that until the 60s there was no way to control the concen-
tration of ions inside neurons, not even in the giant ones. So far, all the exper-
iments that have been cited, included the ones performed by Hodgkin, Huxley,
and Katz (see preceeding Chapters), had been performed ignoring which was
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the effective ionic composition of the intracellular milieu. It was only in 1961
that Baker Hodgkin and Shaw on one side, Tasaki and colleagues on the other,
independently managed to access and control the ionic environment inside the
squid giant axon (Baker et al. 1961, Oikawa et al. 1961).

Already in 1963 Tasaki and Takenaka published the observation that the
sensitivity of the amplitude of the action potential on the variations in the
concentration of Na+ ions inside neurons could not be explained in terms of
Nernst’s theory. In particular, they found that “The overshoot was reduced by a
large increase in the internal sodium, but the observed reduction was far smaller
than is predicted by the Nernst equation applied to the Na-ion concentrations
across the membrane” (Tasaki and Takenaka 1963).

Figure 3b: Action potential overshoot at different concentrations of Na+ inside the
squid axon (dashed line on top). The continuous line represent the prediction derived
from Nernst’s theory. The lower part of the graph deals with the variation of the
resting potential, but is not discussed in this thesis.

Figure 3b is reproduced from (Tasaki and Takenaka 1963). On the left hand
side one can clearly see that the action potential overshoot significantly exceeds
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the expectations deriving from Nernst’s equation. Of special importance is that
even in the absence of a gradient in the concentration of Na+ ions across the
membrane, i.e. when Nernst theory predicts no overshoot at all, a positive po-
tential as high as 40 mV was recorded upon excitation. In 1964 the experments
of Figure 3b were reproduced and confirmed (Tasaki and Luxoro 1964, Tasaki
and Takenaka 1964).

While the findings on Nitella, crustaceans, frogs, and even mammals, could
be ignored and labeled as special cases, the ones made on squids could not,
as the latter were the original (and only) model systems where Hodgkin and
Katz had directly tested their sodium hypothesis. Critics to the work of Tasaki
and colleagues were published in 1965 by Hodgkin and Chandler in which the
experimental techniques used by the Japanese physiologist were put into doubt.
In particular, the “unexpected” results were claimed to be artifacts arising from
the use of high-resistance electrodes as well as from their improper positioning
inside the axon (Hodgkin and Chandler 1965a, b). Tasaki, Luxoro and Ruarte
promptly reproduced the experiments following the technical modifications sug-
gested by Hodgkin and colleague, and still obtained the same results (Tasaki et
al. 1965). Not only, in the years that followed, Tasaki managed to elicit action
potentials in squid giant axons under a wide variety of experimental conditions,
including the complete absence of extracellular sodium and the presence of only
salts of divalent cations such as for example CaCl2 in the bathing medium
(Tasaki 1982).

4.3 Evidence of sodium transmembrane flow

This chapter has been dedicated to the experimental evidence collected
mainly between the 60s and the 70s against the validity of the sodium hy-
pothesis. Given the way the latter hypothesis is presented in neuroscience and
neuroscience-related textbooks (see in particular Kandel et al. 2000, and Purves
et al. 2008), namely as an established fact, it would be natural to wonder wether
there exists in fact a direct evidence, at least in some particular preparation,
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that the transmembrane flow of sodium ions is responsible for the generation
of action potentials. Regarding this issue, we want to remember here clearly
that no such inopinable evidence has been provided so far, and that the sodium
hypothesis remains, as in the mid 1900, an hypothesis in all excitable systems.
In particular, of the experimental techniques which have been available up to
nowadays, none allows to identify the transmembrane movement of any specific
ion species (Na+ included) while guaranteeing, at the same time, high temporal
resolution. Even more specifically, none of the two techniques which are most
often cited when dealing with the Na+ hypothesis, namely radioactive tracers
and voltage clamp, satisfy contemporarily the two necessary requirements just
mentioned (Hodgkin 1951). Indeed, while the use of radioactive Na+ guarantees
ion specificitiy but is to slow to resolve millisecond single action potentials (see
for example Keynes 1951), voltage clamp has a very high temporal resolution
but does not allow to know the identity of the ions which cross the membrane
during the voltage steps (Cole 1949).

Before closing this chapter, it seems worth to recall that the modern methods
of visualisation of sodium movement by fluorescent chelators as well (Fleidervish
et al. 2010, Baranauskas et al. 2013), cannot be considered appropriate for
providing evidence of Na+ - specific flow. As reported in the technical manual
by one of the producing companies of such compounds (Invitrogen 2010), indeed,
although these fluorescent Na+ indicators are “quite selective for Na+ ions, K+

has some effect on their affinity for Na+”. Not only, the fluorescent signal “is
strongly affected by ionic strength and viscosity” (Invitrogen 2010, section 21.1),
both factors which are long known to undergo a sudden change during action
potential propagation (Flaig 1947), thus unavoidably undermining the overall
reliability of the results.
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CHAPTER V

Models of nerve excitation
after 1952

As emphasized by the special issue that the Journal of Physiology dedicated
last year to the achievements of Hodgkin and Huxley (see Introduction and ci-
tations therein), despite of having been conceived more than half a century ago,
the model of the two Nobel-awarded physiologists is still nowadays the reference
model for nerve excitation phenomena. This stated, it is worth remembering
that other attempts to quantitatively describe action potentials appeared as well
even after 1952; the purpose of the latter being most often that of proposing a
set of equations which could have been simpler to handle from the analytical
point of view, or that of including in a more comprehensive framework the phe-
nomenological aspects which were left aside in the original picture by Hodgkin
and Huxley.

Although it is beyond the purpose of this thesis to deal with the develope-
ment of theoretical modelling of nerve excitation after 1952, for the sake of
completeness we decided to dedicate a short chapter to at least mention two
of these tentatives: the FitzHugh-Nagumo and the Heimburg-Jackson models.
For a detailed treatement of them, reference is made to the original publications
(FitzHugh 1961, Heimburg and Jackson 2005).
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5.1 The FitzHugh-Nagumo model

The Hodgkin-Huxley equations for the action potential represent a four-
dimensional dynamical system which, despite of being capable of describing the
voltage variations occurring during excitation across the membrane of a wide
variety of biological preparations, is not easy to handle from the theoretical
perspective. Already in 1961, FitzHugh proposed a simplification of the original
model consisting of a two-dimensional system (FitzHugh 1961).

The reduction conceived by FitzHugh can be obtained from the Hodgkin-
Huxley model on the basis of two observations (Murray 2002): first, the gating
variables n and h have a much slower kinetics than m14; second, the model re-
tains its characteristic features even if h is set constant. Recalling the equations
describing the dynamics of the gating variables in the Hodgkin-Huxley model:

dn

dt
= αn(1− n)− βnn

dm

dt
= αm(1−m)− βmm

dh

dt
= αh(1− h)− βhh,

the first one of these could be rewritten in the form

τ
dn

dt
= n∞ − n,

where n∞ = αn
αn+βn

is the value that n eventually attains after a sufficient period
of time, and τ = 1

αn+βn
is the time-scale of the process; moreover, the variables

m and h could be replaced in the Hodgkin-Huxley equation

I = CM
dV

dt
+ ḡKn

4(V − EK) + ḡNam
3h(V − ENa) + ḡl(V − Vl) (41)

respectively by the limit value m3
∞, and by the constant h0. In this way, the

following two-dimensional system is obtained:
14 For the meaning of n, h, and m, see Chapter III.
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C
dV

dt
= −ḡKn4(V − VK)− gNam3

∞h0(V − VNa)− gL(V − VL) + Iappl

τ
dn

dt
= n∞ − n

Observing now that the V - nullcline and the n-nullcline of this system can be
approximated respectively by a cubic function and a straight line (Murray 2002),
one is led finally to the general form of the two dimensional system that takes
the name of FitzHugh and Nagumo 15:

dv

dt
= v(v − a)(1− v)− w + I (42)

dw

dt
= bv − γw (43)

Here v and w are often related to, respectively, the membrane potential and a
combination of the three gating variables of the Hodgkin Huxley model n, m,
h; a, b, and γ are positive constants.

Although abstract and not directly interpretable in biophysical terms, the
system (42)-(43) was very successful especially among mathematicians due to
its simplicity and at the same time capability to describe several of the salient
features of action potentials.

15 The year after FitzHugh published his model, Nagumo was able to build an electric
circuit whose dynamics are described by the equations (42)-(43); for this reason, FitzHugh’s
model is commonly also known as the FitzHugh-Nagumo model.
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5.2 The Heimburg-Jackson model

The Hodgkin-Huxley model accurately describes the electrical aspects of
action potentials. It doesn’t say anything, however, about the transient tem-
perature and nerve volume variations which are known to be invariably present
during excitation (Watanabe 1986). In 2005 Heimburg and Jackson tried to
address these aspects as well by adopting a thermodynamical framework (He-
imburg and Jackson 2005).

In Heimburg’s and Jackson’s perspective, action potentials are isoentropic
density pulses (sound waves) spreading along neuronal lipid membranes. Re-
stricting the problem to one dimension, the equation for the propagation of
sound-waves in compressible media was thus adopted as the basis for the devel-
opement of the model. Specifically. in the absence of dispersion, this equation
reads (Landau and Lifshitz 1987):

∂2

∂t2
4ρA =

∂

∂x

(
c2
∂

∂x
4ρA

)
, (44)

where t and x are respectively the temporal and spatial variables; 4ρA :=

ρA−ρA0 is a function of both t and x and represents the change in lateral density
of the membrane, ρA and ρA0 being the instantaneous and equilibrium lateral
densities; c is the velocity of sound, which equals 1/

√
ρAkAs (Heimburg and

Jackson 2005), kAs being the isentropic lateral compressibility of the membrane.

From the experimental observation of frequency dependence of the velocity
of sound in two-dimensional artificial membranes (Heimburg and Jackson 2005),
i.e. dispersion, Heimburg and Jackson added to the right hand side of equation
(44), the arbitrarily chosen dispersive term

−h ∂4

∂x4
4ρA, (45)

where (h > 0) . Furthermore, given that close to the liquid-gel phase transition
the isentropic lateral compressibility depends sensitively on the lateral density,
displaying nonlinear properties (Heimburg and Jackson 2005), c2 in equation
(44) can be approximated by using its Taylor expansion in ρA :

c2 =
1

ρAkAs
= c20 + p4ρA + q(4ρA)2 + ... (46)
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where p < 0 and q > 0 are Taylor expansion coefficients which can be exper-
imentally determined using artificial preparations such as pure lipid bilayers.
Substitution of (45) and (46) into (44) leads eventually to the Heimburg-Jackson
wave equation for nerve excitation:

∂2

∂t2
4ρA =

∂

∂x

[(
c20 + p4ρA + q(4ρA)2

) ∂

∂x
4ρA

]
− h ∂4

∂x4
4ρA. (47)

The authors showed that this equation admits solutions which qualitatively
resemble nerve action potentials (solitary waves; see Appendix B).

By treating action potentials as density pulses spreading along the lipid mem-
brane of neurons, the Heimburg-Jackson model implies, as unseparable phenom-
ena related to nerve excitation, the presence of an electric pulse, a volume pulse
(cellular swelling), and a temperature pulse (heat release and absorption). Lat-
eral area density variations, i.e. changes in the packing of lipid molecules, imply
indeed the alteration of the transbilayer electric field, the increase/decrease in
the length of the hydrocarbon chains, and the exchange of heat with the sur-
roundings (Heimburg and Jackson 2005). Interestingly, all these phenomena
have been experimentally observed during action potential propagation (Cole
and Curtis 1939, Tasaki 1989, Abbott and Hill 1958, Ritchie and Keynes 1985).

Before closing, it is important to note that, although accounting qualitatively
for a variety of aspects of nerve excitation, the Heimburg-Jackson model does not
provide a quantitative prediction for them. In particular, a thorough description
of the action potential profile comparable to the one present in the Hodgkin-
Huxley model is still missing. Further work is thus required to understand
whether the framework adopted by Heimburg and Jackson will eventually be
capable of providing a satisfactory physical explanation of nerve excitation.
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CHAPTER VI

Discussion

The mathematical model for the generation and propagation of nerve exci-
tation proposed by Hodgkin and Huxley in 1952 has been critically analyzed.
To this end, the scientific influences and roots of the two physiologists were
first investigated so to neatly identify the theoretical assumptions underlying
the hypotheses adopted as well as the motivation and reasoning that led to
the developement of the quantitative aspects. The derivation of the differential
equations constituting the model and the determination of the related parame-
ters were then presented faithfully to the original works. A section dedicated to
the critics of the model followed, in which the most fundamental assumption un-
derlying the Hodgkin-Huxley model, namely the sodium hypothesis, was shown
to be inconsistent on different levels: theoretical, experimental, and logical.

Despite of its inconsistencies, the sodium hypothesis has received broad ac-
ceptation in time up to the point that it constitutes nowadays one of the basic
principles of our understanding of how neurons function. The reason why this
could be defended by the vast majority of the scientific community in face of the
experimental evidence is at least in part (if not mainly) due to the the attractive
mathematical formalism used by Hodgkin and Huxley.

Among the quantitative models of nerve excitation that have been treated in
the historical analysis in Chapter II, one can neatly discern between two differ-
ent approaches: one physically grounded, starting from first principles and moti-
vated by the analogy with known physical models (Nernst, Hill 1910, Lapicque),
and one purely abstract based on the use of differential equations not at all re-
lated to any specific physiological process (Blair, Rashevsky, Hill 1936). The
first approach allowed to speculate over the the physico-chemical processes in-
volved in action potentials; the second had the significant advantage of precision
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and flexibility deriving from the unconstrained origin of the mathematical for-
mulation. Now, the Hodgkin-Huxley model is a mixture of the two approaches:
although the authors adopted as a starting point the well-defined electric circuit
analogue with Ohm’s and Kirchhoff’s laws, when it came to the description of
the never-experimentally verified selective permeability changes to Na+ and K+

ions, fictitious equations with no physical nor physiological grounds were used.
The abstract nature of the equations adopted was emphasized by Hodgkin and
Huxley themselves:

“The agreement [of the model] must not be taken as evidence that our equa-
tions are anything more than an empirical description of the time-course of the
changes in permeability to sodium and potassium. [...] certain features of our
equations were capable of a physical interpretation, but the success of the equa-
tions is no evidence in favour of the permeability change that we tentatively had
in mind when formulating them” (Hodgkin and Huxley 1952d)

It is worth spending few words on this passage, as it perfectly summarizes
the error the two physiologists from Cambridge made when building their model.
Hodgkin and Huxley declared the complete lack of an a priori physical ground
for their equations, thus allowing their eventual substitution with any other
sufficiently accurate mathematical description of the electrophysiological data.
At the same time, however, they clearly state that whatever formalism one
decides to adopt, this will in any case need to be “a description of the time-
course of the changes in permeability to sodium and potassium”. It is in this
very fundamental basis that the error relies. The model originally conceived
in 1952 and still nowadays so popular, describes with high precision something
that, as shown in Chapter IV of the present thesis, does not conform with the
experimental evidence. It is, thus, purely fictitious. Despite of this, the electric
circuit analogue that the two physiologists used as a basis for their theory gave
the illusion of the existence of a physical ground for it.

It is an unfortunate consequence of the high flexibility of the mathematical
model Hodgkin and Huxley conceived to describe the process of nerve excita-
tion, that unjustified assumptions were accepted without the least criticism.
It is then far from the truth that “the Hodgkin-Huxley model revealed mecha-
nisms long before they could directly be observed ” (see Introductory Chapter);
rather, the two physiologists from Cambridge provided a theoretical framework
whose descriptive power is so strong that the disillusioned, objective interpreta-
tion of the experimental observations was, from then on, highly impared (note
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that for any particular electrophysiological recording one can claim the presence
of specific ion-channels with whatever invented dynamics). In such a difficult
situation, only direct, crucial experiments could clarify the (in)validity of the
underying assumption. It has been shown in this thesis that these experiments
have been performed, and that they leave no possibility of interpretation.

It happened more than once that discussing with some colleagues at the
Max Planck Institute in Goettingen, the claim was advanced that the Hodgkin-
Huxley model, despite of the manifest inconsistencies with the experimental
evidence as well as the incapability to account for certain not at all negligible
phenomena that characterize nerve excitation, should nevertheless be used as
a ground basis from which to start to develop a more accurate theory. It was
foreseen that only a model that incorporates the Hodgkin-Huxley equations for
the description of the electrical aspects of nerve excitation could ever provide a
proper theoretical framework to interpret the phenomenon of action potentials.
With respect to this issue, the present thesis is eloquent: by no mean the theory
developed by Hodgkin and Huxley can be extended nor integrated to obtain a
model that does not contradict the laws that govern nerve excitation.

Given that the Hodgkin-Huxley model has been ruled out, it becomes natural
to wonder which could be then an interpretation of action potentials consistent
with experimental evidence. Still, the work towards an alternative model for
nerve excitation is ongoing (since recently also here at the MPI-Goettingen),
but certain important considerations can already be made. In order to build
a new (possibly valid) theory, one should identify which are the assumptions
that we nowadays adopt that derive either directly or indirectly from the non-
valid sodium hypothesis - among these there is certainly the hypothesis of the
existence of ion-specific channels-. Only once the inconsistencies of our current
common beliefs are identified, a model free from unjustified assumptions can be
finally constructed. With respect to this, it seemed to us due to mention that
here exist already models of nerve excitation that do not rely on the transmem-
brane flow of specific ions to explain the membrane depolarization (Heimburg
and Jackson 2005; see Chapter V). For this purpose some models use, for exam-
ple, piezoelectric effects occurring during the propagation of the action potential.
Experimental observations showed that these phenomena in fact occur during
excitation. It seems likely that such more physically-based approaches will be
capable to provide a much clearer understanding of the phenomenon of nerve
excitation than the one we have nowadays.
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APPENDIX A

Equivalence of Rashevsky’s and Hill’s theories

Rashevsky’s model is given by

de

dt
= KI − k(e− e0)

di

dt
= MI −m(i− i0)

where I is the current, K, k, M and m are constants (with m� k), e and i are
respectively the excitatory and the inhibitory factors. Excitation is assumed to
happen when e = i.

Hill’s model is given by
dV

dt
= bI − (V − V0)/k′

dU

dt
= β(V − V0)− (U − U0)/λ

where V is the excitatory process, U the threshold, b, k’, β and λ are constants
(with λ� k′). Excitation is assumed to happen when V = U .

Starting from this last model, we have that

V = V0 + be−t/k
ˆ θ=t

θ=0

Ieθ/k
′
dθ (48)

U = U0 + βe−t/λ
ˆ θ=t

θ=0

(Vθ − V0)eθ/λdθ. (49)

Substitution of (48) in (49) gives

U = U0 + βb
k′λ

k′ − λ

[
e−t/k

′
ˆ θ=t

θ=0

Ieθ/k
′
dθ − e−t/λ

ˆ θ=t

θ=0

Ieθ/λdθ

]
.

Since excitation occurs once U = V , then we have that this condition translates
into
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λ− k′

βλk′ + 1
e−t/k

′
ˆ θ=t

θ=0

Ieθ/k
′
dθ = (U0 − V0)(λ− k′)/bβλk′ + e−t/λ

ˆ θ=t

θ=0

Ieθ/λdθ.

(50)
From Rashevsky’s model we have

e = e0 +Ke−kt
ˆ θ=t

θ=0

Iekθdθ

i = i0 +Me−mt
ˆ θ=t

θ=0

Iemθdθ

For the nerve to be excited, it is required that e = i , thus that

e0 +Ke−kt
ˆ θ=t

θ=0

Iekθdθ = i0 +Me−mt
ˆ θ=t

θ=0

Iemθdθ

which leads to

K

M
e−kt

ˆ θ=t

θ=0

Iekθdθ =
i0 − e0

M
+ e−mt

ˆ θ=t

θ=0

Iemθdθ. (51)

Now, equation (51) is the same as (50), provided that

K

M
=

(λ− k′)
βλk′ + 1

(i0 − e0)

M
=

(U0 − V0)(λ− k′)
bβλk′

and that k = 1
k′ and m = 1

λ .

It follows that, by a proper choice of the parameters, every experimental
result that can be described by one model can also be described by the other.
The two theories are thus formally equivalent.
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APPENDIX B

The Heimburg-Jackson model: analytical consid-
erations

Let’s consider the Heimburg-Jackson equation (47):
∂2

∂t2
4ρA =

∂

∂x

[(
c20 + p4ρA + q(4ρA)2

) ∂

∂x
4ρA

]
− h ∂4

∂x4
4ρA

and look for solutions propagating without distortion, i.e. of the form 4ρA(z)

with z = x − vt. This allows us to write the equation above in the following
form:

v2 d
2

dz2
4ρA =

d

dz

[(
c20 + p4ρA + q(4ρA)2

) d
dz
4ρA

]
− h d

4

dz4
4ρA. (52)

Moreover, let’s impose the condition that the solution has to be a solitonic wave
4ρA(z) > 0 for all z ∈ R, and for which in particular lim|z|→∞

dk

dzk
4ρA(z) = 0

for k = 0, 1, ..., 4, with 4ρA(z) exponentially decaying. We can then integrate
twice over the interval (−∞, z0] and get, after rearrangement:

h
d2

dz2
4ρA = (c20 − v2)4ρA +

1

2
p(4ρA)2 +

1

3
q(4ρA)3. (53)

Note now that for |z| sufficiently large, (∆ρ)2 and (∆ρ)3 are very small compared
to (∆ρ). This means in turn that under such conditions the equation above is
approximated by

h
d2

dz2
4ρA = (c20 − v2)4ρA, (54)

whose solution reads

4ρA = C1e
z

√
(c20−ν

2)

h + C2e
−z

√
(c20−ν

2)

h

with C1 and C2 constants. Here, three cases are possible depending on the sign
of (c20−ν

2)
h :

(i) if (c20−ν
2)

h < 0, the solution is oscillatory, thus not solitonic and has to be
excluded
(ii) if (c20−ν

2)
h > 0, from the condition imposed before (lim|z|→∞4ρA(z) = 0)

we have that C1 = 0 for z → +∞ and C2 = 0 for z → −∞. We observe that

for |z| → ∞, the solution goes as 4ρA = Ce
−|z|

√
(c20−ν

2)

h with C constant.
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(iii) if (c20−ν
2)

h = 0, the approximate equation is actually not anymore (54), but

h
d2

dz2
4ρA =

1

2
p(4ρA)2.

By multiplying left and right hand sides by d4ρA(z)
dz and integrating, we arrive in

this case, by separation of variables, to solutions of the form u(z) = [az + b]−2.
These are not however exponentially decaying, and will be neglected in the
following.

Of the three cases, thus, only (ii) can be considered. It follows in this way from
the analysis of the behaviour of the solution for |z| sufficiently large, that the
condition |v| < c will have to be satisfied. It is observed furthermore that the
solution has to be symmetric with respect to z = 0.
In order to further proceed with the analysis, multiply both sides of eq. (53) by
the derivative d4ρA(z)

dz and integrate. Observing that

2
d4ρA(z)

dz

d24ρA(z)

dz2
=

(
d4ρA(z)

dz

)2

,

we obtain the equation

h

(
d4ρA(z)

dz

)2

= (c20 − v2)(4ρA)2 +
1

3
p(4ρA)3 +

1

6
q(4ρA)4. (55)

This latter allows to reason on the properties of the first derivative of 4ρA(z).
Referring to (55), the requirement of reality of the solution imposes
p2

9 −
2
3q(c

2
0 − v2) ≥ 0, from which it follows that v2 ≥

(
c20 −

p2

6q

)
, implying

in turn
√
c20 −

p2

6q ≤ |v| < c (combine with the condition found above from eq
(54)). The sign equality between right and left hand sides moreover, requires

(4ρA)2

[
(c20 − v2) +

1

3
p(4ρA) +

1

6
q(4ρA)2

]
≥ 0.

Here, the stationary points of the solitonic solution are those which satisfy
equality. Specifically:
(i) z∗ such that 4ρA(z∗) = 0;
(ii) z∗ such that (c20 − v2) + 1

3p(4ρ
A(z∗)) + 1

6q(4ρ
A(z∗))2 = 0;

If we look for maxima, we further require that the second derivative in z∗ is
such that d2

dz24ρA(z∗) < 0, which means, from eq. (53), that

(c20 − v2)4ρA(z∗) +
1

2
p(4ρA(z∗))2 +

1

3
q(4ρA(z∗))3 < 0.
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We can thus exclude case (i); case (ii) instead, leads to16

4ρA(z∗) = −p
q
± 3

q

√
p2

9
− 2

3
q(c20 − v2)

together with the condition

(c20 − v2) +
1

2
p(4ρA(z∗)) +

1

3
q(4ρA(z∗))2 < 0.

Observing that the latter can be obtained by adding the term 1
6p4ρ

A(z∗) +
1
6q(4ρ

A(z∗))2 to eq (53) (divided by 4ρA(z∗)), which equals zero when evalu-
ated in z∗, we have that this is satisfied if and only if

1

6
p4ρA(z∗) +

1

6
q(4ρA(z∗))2 < 0,

i.e. when, excluding 4ρA(z∗) < 0,

4ρA(z∗) < −p
q
.

Given that q > 0 from experimental observation, the inequality can be satisfied
only if p < 0. This has been found to be the case from studies on artificial
lipid bilayers (Heimburg and Jackson 2005). Under this condition, it follows
that there can be only one maximum, which will correspond to z∗ = 0 due to
symmetry requirements. This maximum 4ρA(z∗) is

4ρA(z∗) = −p
q
− 3

q

√
p2

9
− 2

3
q(c20 − v2).

This is the height of the soliton. We reach in this way the important conclu-
sion that velocity is inversely related to height. In particular, from the Taylor
expansion of the equation above for v → c0

4ρA = 0 +
3

|p|
(c20 − v2) +

9q

|p|
(c20 − v2)2 + ...

it is observed that for fast propagating waves 4ρA becomes smaller and smaller.
On the other hand, when the velocity reaches its lower limit

(
c20 −

p2

6q

)
, we have

that height reaches its maximum−pq .

16Note that in the second equation 4ρA(z∗) has been simplified because we know that
4ρA(z∗) > 0 .
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