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1 Introduction

Ranking data arise when a group of individuals is asked to rank a fixed set of objects
according to their preferences. For example, if you want to know the preferences of
members about the future president of a society.

In this thesis, we will look into partitioning methods for ranking data. Partitioning
methods presuppose that a population of individual decision makers, called judges, can
be decomposed into several components. Groups, components and clusters are used
interchangeably, but have the same meaning. They imply that all judges in a data set
can be grouped into a defined number of clusters, wherein judges rank objects more
similarly than judges do in other clusters. Defining the interrelation between judges is
based on a distance measure that indicates the dissimilarity between their rankings.

Cluster analysis is a statistical technique whereby groups are discovered solely based
on the structure and geometry of the data at hand. It is a form of an explorative,
unsupervised learning technique where no criterion measure is available. The outcome
is a label or ranking that describes the group, associated by a spread parameter that
takes the variability of the rankings of the group into account. It may well be that a
population of judges consists of different groups of judges. The aim is to identify the
appropriate number of clusters hidden in the data. Furthermore, each cluster is part of
the whole population indicated by a probability of belonging to that population.

We will look at two classification methods that have been proposed for the decom-
position of a heterogeneous population into a defined number of homogeneous groups.
The first method K-Median Cluster Component Analysis (CCA), proposed by Heiser
& D’Ambrosio (in press), is a clustering method where rankings are assigned with pro-
babilities to all clusters. The second is a mixture of distance-based models (DBM) and
was proposed by Murphy & Martin (2003). It is the extension of Mallows’ φ-model
(Mallows, 1957).

We will answer the following research question in a simulation study: which clus-
tering method is most suitable for recovering the centers. The recovery of the cluster
centers is measured as an external validation criterium. In addition, we will examine
which model identifies the appropriate number of clusters based on real data sets.

As of yet, only (weighted) mixtures of distance-based models based on Kendall’s cor-
relation coefficient have been implemented in the statistical package R (R Development
Core Team, 2012) in packages developed by Lee & Yu (2011) and Gregory (2012). The
aforementioned methods have been implemented in R and the code can be send upon
request.

The structure of this thesis is as follows. The next section introduces the structure of
ranking data. Section 3 describes the most used distance measures for ranking data. In
section 4, summary statistics for ranking data are described. The methods for clustering
ranking data are described in section 5. Section 6 gives an overview of techniques for
cluster validation. In section 7 the methods are applied to simulated and real data. The
discussion, to conclude with, is found in section 8.
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2 Structure of ranking data

The collected data are listed by individuals called judges that order the set of m objects
with integer values from 1 to m. The process of ranking can be seen as the assignment
of a specific permutation of these integers. Usually, we deal with n independent judges,
where an individual judge’s ranking is denoted by yi where i = 1, . . . , n. The data
matrix has dimensions n ×m and can be reduced by only taking the unique rankings,
associated with a weight vector wi that corresponds with the frequency of ranking yi.

2.1 Rankings and orderings

The two representations of a ranking are the rank vector and the order vector. The
rank vector lists the ranks given to the objects, where 1 denotes the best rank and
the value of m denotes the worst rank. It is a permutation of the set of integers and
presumes the objects are listed in a pre-specified order. The rank vector is denoted in
between brackets. More formally, yi =

(
yi(1), yi(2), . . . , yi(m)

)
such that yi(r) is the

rank given to object r. The order vector lists the true order of objects in order from
best to worst. It is denoted in between triangular brackets, where the object labels
(here, each object is given a letter) given to the object represent the order in which
the objects are ordered. More formally, y−1

i = <y−1
i (1), y−1

i (2), . . . , y−1
i (m)> such that

y−1
i (r) is the object assigned to rank r. The rank vector representation is used to

calculate distances between pairs of rankings and to list the observed rankings, whereas
the order representation is easily interpreted as summary statistic.

In this section and the next two, a small example of ranking data will be used. It
concerns three movies (objects) that have to be watched with three friends (judges)
during an evening. The movies are: a = Into the Wild (2007), an adventure movie, b
= Old School (2003), a comedy, and c = Stand van de Sterren, a documentary (2010).
Suppose that person one prefers Into the Wild, person two prefers to watch Stand van
de Sterren, while the last person is indifferent between watching Into the Wild and Old
School and ranks them tied. Their preferences are listed in Table 1.

Table 1: Preferences of the friends example.

Person Ranking Ordering
a b c

1 (1 2 3) <a b c>
2 (2 3 1) <c a b>
3 (2 1 1) <b–c a>

2.2 Types of rankings

When a judge assigns distinct integer values from 1 to m to all m objects this is called a
complete ranking, linear or full ordering. Whenever a judge fails to distinguish between
two (or more) objects and assigns them equally, the literature calls this a tied ranking or
a weak ordering. Allowing ties enlarges the freedom of the judges, but complicates the
analysis, as we will see later on. A tied ranking can be interpreted as a positive statement
of agreement or as a statement of indifference between those objects. Explanations and
interpretations of tied rankings can be found in Kendall (1948, Chapter 3) and Emond
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& Mason (2002, p. 24). The ordering of the third person in is a weak ordering (notice
the hyphen between objects b and c, where he cannot distinguish movies b and c.

A further extension of complete and tied rankings is with partial and incomplete
rankings, where a best subset of q of m objects is listed and q < m. Partial rankings
occur when judges are asked to rank a specific subset of the entire set of objects. An
example of partial rankings is the study in which people were asked to specify their top
three out of five named parts of marriage (Critchlow, 1985, p. 1). With incomplete
rankings there many different subsets with m objects possible. The obtained data
contains rankings of different object lengths. An example is the ‘APA subset’ data
set (to be discussed in section 7.2), where 64% of the 15,449 psychologists ranked a
subset of the five candidates.

If there is a single object missing, its rank can uniquely be determined. When two
or more objects are not being ranked, it becomes more complicated. Baggerly (1995)
suggested to treat the missing rankings as tied at the last position. By doing this,
all objects are now being ranked and the obtained ranking is located on the sample
space (to be discussed in the next subsection). Critchlow (1985, Chapter 3) extended
the group-theoretic approach to partial rankings, using coset spaces of the sample size.
Busse et al. (2007) also extended Mallows’ φ–model to fit it with top−q rankings based
on a maximum entropy model. Emond & Mason (2002, p. 23) suggested to insert a
value of zero in equation (3.3) in the score matrix a′rs when the object is not ranked.
The value of zero represents absence of information regarding that pair of objects. We
do not consider partial and incomplete rankings in the rest of this thesis, because they
are not located on the sample space that we start from.

2.3 Sample space of ranking data

With m objects there are m factorial possible complete rankings. When including ties
this number gets even larger. Gross (1962) showed that by including tied rankings the
number of possible rankings approximates 1

2( 1
log(2))m+1m!. The set Ωm is defined as

the collection of all possible permutations of m objects and embraces complete and tied
rankings. Any complete or tied ranking yi is an element of Ωm. The total number of
rankings for up to ten objects is given in Table 2.

Table 2: Number of rankings for up to 10 objects.

m Number of rankings

2 3
3 13
4 75
5 541
6 4,683
7 47,293
8 545,835
9 7,087,261
10 102,247,563
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2.4 Geometry of ranking data

The sample space of m objects can be shown in a m− 1 dimensional hyperplane. This
space is called the permutation polytope and is a convex hull on the points yi ∈ Ωm ⊂
Rm, where the complete rankings form the vertices. The sample space of three objects is
a hexagon given in Figure 1. Moving across the polytope goes by pairwise transposition
of two adjacent objects. For example, going from ordering <a b c> to <a c b> the
objects b and c are transposed. On the edge between these complete rankings, the weak
ordering <a b–c>, with a tie between objects b and c, is located. The two new edges
formed this way have the same length. In the center of the permutation polytope, the
all-ties ranking is located. Every ranking, except the all-ties ranking, can be reversed.
The reversal of any ranking is located at the opposite side of the polytope.

The sample space of four objects with the complete rankings is given in Figure 2. It
has the shape of a truncated octahedron. It is a combination of six squares and eight
hexagons, where each square connects to four hexagons. When looking at the rankings
with a tie at the first or last position, these rankings form form a truncated tetrahedron.
The rankings that have a tie in the middle, “are the intersection of a cube and an
octahedron, forming a cuboctahedron” (Heiser & D’Ambrosio, in press). The ranking
with two ties are located in the center of the squares or hexagons. The center of the
squares has the ranking where the first and last two objects are tied. When looking at
the six rankings that have the first and last two objects tied forming an octahedron. The
rankings in the middle of the hexagons have either the first or the last object in common,
the other objects are tied. The four rankings with a tie-block at the first or last position
form each a tetrahedron. More about the graphical representation of ranking data can
be found in Thompson (1993), Heiser (2004) and Heiser & D’Ambrosio (in press).

<a b c>

<c b a>

<a c b>

<b c a>

<b a c>

<c a b>

<a b-c>

<a-c b>

<c a-b><b-c a>

<b a-c>

<a-b c>

<a-b-c>

1

1

1

1

1 1

1 1

1 1

1 1

2

2 2

2

22

Figure 1: Sample space of 3 objects.
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<d b a c>
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<b a d c>
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<b c d a>

<c b d a>

<c d b a>

<c d a b>

<c a d b>

<a c d b>

<a d c b>

<a d b c>

<a b d c>

<d c a b>

<d a b c>

<d a c b>

<d c b a>

<b c a d>

<c b a d>

<a c b d>

<c a b d>

Figure 2: Sample space of 4 objects.
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3 Distance measures for ranking data

In order to classify a heterogeneous population of n judges into K homogeneous clusters,
we need to have a dissimilarity or distance measure defined on all rankings. Several
distance measures have been proposed for ranking data. Extensive overviews are given
in Critchlow (1985), Diaconis (1988) and Marden (1996). We restrict ourselves here to
Kendall’s and Emond & Mason’s correlation coefficients, the Kemeny and the Spearman
distance.

The reversal of a ranking (except the all-ties ranking) is located at the opposite side
of the polytope. The reversal of a ranking has to be taken into account by a maximum
distance or negative correlation. A distance measure associates to any pair of rankings
y and y∗ a distance d(y, y∗). To be a valid distance measure, it needs to satisfy the
following properties:

1. Reflexivity: d(y, y) = 0,

2. Positivity: d(y∗, y) ≥ 0 if y∗ and y ∈ Ωm,

3. Symmetry: d(y, y∗) = d(y∗, y) ≥ 0 if y 6= y∗, and

4. Triangle inequality: d(y∗, y) ≤ d(y∗, z) + d(z, y).

These properties are called axioms by Kemeny & Snell (1972, Chapter 2). A distance
measure is said to be metric when it satisfies the triangle inequality. A label-invariant
distance guarantees that the distance between two rankings remains the same even if
the labels of the objects are permuted, which is a standard assumption when dealing
with ranking data.

3.1 Kendall’s correlation coefficient τb

Kendall’s correlation coefficient is probably the best known measure for ranking data
(Kendall, 1948). Kendall presented multiple versions of its correlation coefficient τ ,
where τb should be used when tied rankings are involved. It can be calculated in two
ways. One is via the difference of the sum of the number of concordant and disconcordant
pairs divided by m(m − 1)/2 for any pair of judges. The other is by creating a score
matrix of a ranking. The second alternative is applied here. A rank vector yi with m
objects can be transformed into a symmetric m×m score matrix ars, where its elements
are defined by:

ars =


1 if object r is ranked ahead of object s,

−1 if object r is ranked behind object s,

0 if objects r and s are tied, or if r = s.

(3.1)

The diagonal elements in the score matrix are zero and the lower triangular matrix is
the reverse of the upper triangular matrix. Kendall’s correlation coefficient τb between
two judges y with score matrix ars and y∗ with score matrix brs is defined as

τb(y, y
∗) =

∑m
r=1

∑m
s=1 arsbrs√∑m

r=1

∑m
s=1 a

2
rs

∑m
r=1

∑m
s=1 b

2
rs

, (3.2)

which is the sum of the products of the elements of two score matrices, divided by the
square root of the product of the sum of squares of the two score matrices. For any
two identical rankings the correlation is 1. When two rankings are the reversal of each
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other, they are completely dissimilar and τb becomes -1. Emond & Mason (2002, p. 19)
pointed out that an all-ties ranking results in a zero filled score matrix and can never
be estimated as a solution, because of the zeros in the numerator divided zeros in
the denominator results in an unknown number. Kendall’s correlation coefficient is a
measure of similarity and can be transformed into a dissimilarity or distance measure
via the linear transformation dτb = 1− τb, where dτb is Kendall’s distance.

3.2 Emond & Mason’s correlation coefficient τx

When dealing with tied rankings Emond & Mason (2002, p. 20) showed that Kendall’s
distance (dτb) violates the triangle inequality. An example with three rankings will
illustrate this, where A is the weak ordering <a–b c>, B the full ordering <a c b> and
C the full ordering <a b c> located in between A and B. The corresponding Kendall’s
distance matrix is given in Table 3. The distance between A and B has to be smaller
than the sum of the other two distances but 1.00 < 0.18 + 0.67, hereby violating the
triangle inequality.

Table 3: Triangle inequality.

dτb A B C

A 0.00 1.00 0.18
B 1.00 0.00 0.67
C 0.18 0.67 0.00

To solve this difficulty, Emond & Mason (2000, p. 11–12 and 2002, p. 21) redesigned
the elements in Kendall’s τb score matrix in equation (3.1) and renamed it to τx, where
x stands for extension. The elements in the new score matrix a′rs for rank vector yi are
now defined by

a′rs =


1 if object r is ranked ahead or tied with object s,

−1 if object r is ranked behind object s,

0 if r = s.

(3.3)

Again, the score matrix defines the diagonal elements with zeros but all off-diagonal
elements are either -1 or 1 including tied objects. Emond & Mason (2000, p. 12) showed
that the value assigned to a tied ranking in equation (3.3) can also be -1. Their corre-
lation coefficient between two complete or tied rankings y and y∗ is defined as

τx(y, y∗) =

∑m
r=1

∑m
s=1 a

′
rsb
′
rs

m(m− 1)
. (3.4)

The denominator is adjusted such that the correlation between a tied ranking and itself
is 1. Emond & Mason’s distance (dτx) is equal to dτx = 1− τx.

3.3 Kemeny distance dKem

Another distance measure that has been developed independently from Kendall’s dis-
tance is the Kemeny distance, Kemeny (1959, p. 586–590) and Kemeny & Snell (1972,
Chapter 2). This distance measure satisfies all properties stated earlier, including the
triangular inequality. Like the correlation coefficients, the rank vector yi is transformed
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into a score matrix. It is defined by the same representation of elements given in equation
(3.1). The Kemeny distance allows complete and tied rankings and is defined between
two rankings y and y∗ by

dKem(y, y∗) =
1

2

m∑
r=1

m∑
s=1

∣∣ars − brs∣∣. (3.5)

Thus, the Kemeny distance is the sum of the absolute differences of the two score
matrices divided by two. The factor a half takes into account that the two triangular
matrices that are created by the sum of absolute differences of the score matrices are
identical. The Kemeny distance is of city block type and a geodesic distance in the
permutation polytope. It takes the shortest path between two rankings.

The associated Kemeny distances with the sample space of three objects are also
printed in Figure 1. The Kemeny distance between two complete rankings is always
even. From a complete ranking to a tied ranking between two objects has an uneven
distance, to three tied rankings again has an even distance. The maximum distance from
a complete ranking to its reversal is m(m− 1). The reversal of a tied ranking is shorter
than for complete rankings. The distance between the weak ordering <a b–c> and its
reversal <c–b a> is four by going through the center, as can be seen in Figure 1. In
general, the maximum distance of a ranking containing t ties is given by: m(m−1)−2t.

Emond & Mason (2002, p. 25–26) proved that the Kemeny distance is equivalent to
their correlation coefficient for complete and tied rankings by

τx(y, y∗) = 1− 2dKem(y, y∗)

m(m− 1)
, (3.6)

where the denominator is the maximum Kemeny distance with m objects to transform
a correlation coefficient into a distance measure and vice versa.

3.4 Spearman’s distance dS

The Spearman’s distance is calculated by taking the square root of the well know Spear-
man’s ρ. The Spearman’s distance between two rank vectors y and y∗ is defined by

dS(y, y∗) =

√√√√ m∑
r=1

(
y(r)− y∗(r)

)2
, (3.7)

which is the square root of the sum of the squared rank differences. When a ranking
contains tied objects, these objects must be given the average of the corresponding rank
values. For example, the ordering of person three in the friends example obtains rank
values of (11

2 11
2 3).

A problem identified by Emond (1997, p. 4) and Emond & Mason (2000, p. 16)
showed that Spearman’s ρ suffers from what is known as the sensitivity to irrelevant
alternatives. The most simple case wherein three judges order two objects: <a b>,
<a b> and <b a>. The most obvious solution would be <a b>. If we would add two
irrelevant tied objects to judges one and two and two extra objects behind object one
to judge three. The new orderings become: <a b c–d>, <a b c–d> and <b c–d a>.
The maximum agreement now is <b a c–d>, where the first two objects are transposed.
The addition of two irrelevant objects according to Emond & Mason (2000, p. 17):
“This anomaly appears to occur because Spearman’s ρ uses the ranks as if they were
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variate values instead of purely order values. Because of this sensitivity to irrelevant
alternatives, Spearman’s ρ is not suitable as a rank correlation coefficient in the weighted
rankings problem.”

If we return to the friends stated in section 2, we can create the score matrices of
the three persons given by the elements in (3.1) and (3.3). The results are listed in the
tables in Table 4. The tied ranking of the third person between objects b and c in the
second row is given for both representations because it handles ties differently.

Table 4: Score matrices of the friends example.

ars Person 1

a b c

a 0 1 1
b -1 0 1
c -1 -1 0

ars Person 2

a b c

a 0 1 -1
b -1 0 -1
c 1 1 0

ars Person 3

a b c

a 0 -1 -1
b 1 0 0
c 1 0 0

a′rs Person 3

a b c

a 0 -1 -1
b 1 0 1
c 1 1 0
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4 Summarizing ranking data

When summarizing a sample of judges, we look for that particular ranking which des-
cribes the data best. We distinguish between the modal, median and mean ranking.
With univariate interval data, it is not hard to identify the median and mean. However,
the sample space of ranking data explained in section 2.4 and the associated distance
measures discussed in the previous section, making it more complicated.

4.1 Modal ranking

The modal ranking is the ranking with highest frequency present in the data

ĉmode = arg max
i

wiyi. (4.1)

It is the ranking given by most judges in the sample. A problem that can occur is
whenever two or more rankings are equally often observed.

4.2 Median ranking

The median ranking maximizes the agreement of judges’ preferences in the sample. It
is defined as the ranking that minimizes the Kemeny distance of all observed rankings
to the rankings in the sample space (Kemeny & Snell, 1972, p. 19). So, minimizing the
Kemeny distance is equivalent to maximizing Emond & Mason’s correlation coefficient.
The median ranking is determined by

ĉmedian = arg min
c ∈ Ωm

n∑
i=1

widKem(yi, c), (4.2)

where wi is a non-negative weight vector taking the frequency of ranking yi into account
and Ωm the sample space of m objects. The use of weights highly reduces computation
time, especially when many judges rank the objects similarly. The median ranking does
not have to be an observed ranking, but it is always located in the sample space. The
interpretation of the median ranking is the maximization of the judges agreement, since
it located closest to everyone’s preferences. The median ranking has especially been of
interest by researchers in the field of social choice theory, where it is called the consensus
ranking (Regenwetter et al., 2006).

A problem of estimating the median ranking is that it may not always be uniquely
defined, as was pointed out by Kemeny & Snell (1972, p. 20) and Marden (1996, p. 21).
For example, if we take four complete orderings of four objects: <a b c d>, <a d c b>,
<c a d b> and <c a b d>. Nine orderings satisfy the minimum Kemeny distance
of twelve: <a c b d>, <a c d b>, <c a b d>, <c a d b>, <a–c b–d>, <a–c b d>,
<a–c d b>, <a c b–d> and <c a b–d>. All of them have object a up front or tied with
object c, but it is far from convenient. When the distance between a few rankings is
larger, even more rankings qualify as median ranking.

In addition, finding the median ranking is a known NP-hard problem, meaning that
it is not possible to find the median ranking of m objects in polynomial time. Recall
the number of possible rankings with m objects in Table 2. Emond & Mason (2000 and
2002) developed a branch and bound algorithm that works with up to twenty objects
and speeds up this process. Their method is based on τx, but instead of maximizing the
correlation coefficient the Kemeny distance could be minimized as well. However, for
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the computation in this thesis a brute force approach is implemented by enumerating
all possible rankings and finding the median ranking by an exhaustive search.

4.3 Mean ranking

Ranking data can also be summarized by the mean ranking (Kemeny & Snell, 1972, p. 19).
With the Kemeny distance it is estimated by

ĉmean = arg min
c ∈ Ωm

n∑
i=1

widKem(yi, c)
2. (4.3)

It penalizes larger distances harder, since the sum of the squared distances has to be
minimized. The mean ranking is also located on the sample space, but tends to prefer
tied rankings. It can be highly impractical as the next example shows.

Let us summarize the friends example introduced in section 2. Suppose that they
want to decide upon the order of movies to watch. There is no modal ranking, because
all three rankings are different. The median ranking coincides with the preferences
of the second person, namely <c a b>. This ranking minimizes the sum of Kemeny
distances in the next-to-last column in Table 5. The mean ranking on the other hand is
highly uninformative. The ranking that minimizes the sum of squared distances given
in the last column is the all-ties ranking, where every movie goes. The most informative
summary statistic is the median ranking to determine the order of movies to watch.

When calculating Emond & Mason’s correlation coefficient between persons two and
three, one will obtain zero correlation. This can be explained by the location of person
three which is perpendicular to the location of person two and its opposite ranking.
The reverse approach is also valid. From the Kemeny distance framework this can be
motivated by half the maximum distance.

Table 5: Kemeny distances of the friends example.

Ordering Person 1 Person 2 Person 3
∑
dKem

∑
d2Kem

<a b c> 0 4 5 9 41
<a b–c> 1 3 6 10 46
<a c b> 2 2 5 9 33
<a–c b> 3 1 4 8 26
<c a b> 4 0 3 7 25
<c a–b> 5 1 2 8 30
<c b a> 6 2 1 9 41
<b–c a> 5 3 0 8 34
<b c a> 4 4 1 9 33
<b a–c> 3 5 2 10 38
<b a c> 2 6 3 11 49
<a–b c> 1 5 4 10 42
<a–b–c> 3 3 2 8 22
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5 Partitioning methods for ranking data

Given the rankings by a heterogeneous sample of n judges, we want to partition them
into K homogeneous components or clusters. The following two probabilistic clustering
methods assume that within a cluster judges rank objects more similarly than in other
clusters. The maximum number of clusters K should be smaller than the total number
of unique rankings in the sample. When K is equal to the number of unique rankings,
then all centers correspond to these rankings with probability inversely related to their
observed frequencies. The center of each cluster is given by the median ranking. So, the
ranking defining each cluster is in best agreement with the judges of that cluster.

5.1 K-Median cluster component analysis

K-Median Cluster Component Analysis (CCA) was proposed by Heiser & D’Ambrosio
(in press). It is an iterative partitioning algorithm for ranking data. It is a form of soft
clustering where each ranking is assigned to all K clusters by a membership probability,
a degree of belonging to that cluster. The membership matrix uik has dimensions
n × K and the probabilities sum to 1 over all clusters. The algorithm is built on the
probabilistic clustering framework of Ben-Israel & Iyigun (2008). The working principle
of probabilistic clustering states that probabilities and distances are inversely related
and their product is constant, so for an individual ranking yi:

uik(yi)dKem(yi, ck) = constant, depending on yi.

Ben-Israel & Iyigun state that a cluster center should not coincide with an observed
ranking. This cannot always be true with CCA, where the median ranking may coincide
with an observed ranking.

The algorithm works as follows. After initializing the algorithm with K random
rankings as centers, the algorithm proceeds by alternating between two steps. The first
step estimates the membership probability. The second step updates each cluster’s me-
dian ranking, depending on the membership probabilities. The membership probabilities
for ranking yi are estimated by

ûik(yi) =

∏
l 6=k

dKem(yi, cl)

K∑
k′=1

∏
l 6=k′

dKem(yi, cl)

, k = 1, . . . ,K, (5.1)

where the membership probability to cluster k is determined by the product of dis-
tances except cluster k divided by the sum of all products, making the denominator a
normalizing constant. When a ranking coincides with its center it receives probability
one, because for all other membership probabilities multiplying a distance of zero in the
numerator will always result in a zero probability.

The second step of the algorithm is to update the cluster centers by its median
ranking. The center of each component k is estimated by the weighted median ranking

ĉk = arg min
ck ∈ Ωm

n∑
i=1

wiuikdKem(yi, ck). (5.2)
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It is equal to the median ranking defined earlier in equation (4.2), but also takes into
account the membership probabilities. In each iteration only the membership proba-
bilities change. In order to force the centers to change and to speed up the algorithm
timing, we decided to crisp the membership probabilities. Crisping means that the
highest membership probability of a ranking gets probability one and zero probability
otherwise.

The probability of each cluster in the population of judges is estimated by

p̂k =
1

n

n∑
i=1

wiuik, (5.3)

which is the weighted average of the membership probabilities or weighted column means
of the membership matrix.

A measure of homogeneity of each cluster is estimated by

ĥk =

∑n
i=1wiuikτx(yi, ck)∑n

i=1wiuik
(5.4)

and is the weighted sum of the product of the membership probabilities and Emond
& Mason’s τx, divided by the weighted sum of the membership probabilities. If the
homogeneity is close to 1, then all rankings of that cluster are closely located around
the center and is smaller otherwise.

The individual joint distance function (JDF) D(yi) measures the classificability of a
single ranking yi with respect to all centers

D(yi) =

K∏
k=1

dKem(yi, ck)

K∑
k′=1

∏
l 6=k′

dKem(yi, cl)

, (5.5)

where the numerator is the product of Kemeny distances to all centers and the deno-
minator is equal to the denominator of estimating the membership probabilities. It is
different from equation (5.1) where the distance to the center ck in the numerator is not
taken into account. When a ranking coincides with the estimated center, the JDF is
zero. The JDF of the entire sample of judges is: Dtotal =

∑n
i=1wiD(yi).

The output of CCA is the membership matrix and the median rankings but also the
homogeneity and mixing probability of each cluster. With each iteration the location of
the centers may change. There are two ways for the CCA algorithm to converge. Ac-
cording to Ben-Israel & Iyigun the probabilistic distance clustering algorithm converges
if

K∑
k=1

dKem

(
c

(l)
k , c

(l−1)
k

)
< ε,

meaning that the sum of Kemeny distances between the current (l) and previous (l− 1)
iteration for all centers should be smaller or equal than ε. Practically, it converges
whenever the centers stop changing, since it is the sum of integers and ε is small. But
according to Heiser & D’Ambrosio (in press), it converges if the objective loss function
is minimized. The loss function is defined as

loss(uik, ck) =
n∑
i=1

wi

K∑
k=1

u2
ikdKem(yi, ck), (5.6)
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the incorrect classification at the lth iteration. It decreases monotonically until the
difference in loss between two consecutive iterations is small to converge if

loss(uik, ck)
(l) − loss(uik, ck)

(l−1) ≤ ε, (5.7)

where ε = 10e−6. It is possible that in a single run the loss may not have reached its
global minimum. If the algorithm estimates two (or more) similar centers and these
rankings correspond with an observed ranking, then all membership probabilities in
equation (5.1) of that ranking are zero and do not sum up to one. To prevent this from
occurring and to minimize the loss over a range of rankings to initialize the algorithm
with, it is implemented with 50 starts with K different rankings from the sample space.
The starting value that minimizes the overall loss is used as final estimate for ĉ1, . . . , ĉK ,
p̂1, . . . , p̂K and ĥ1, . . . , ĥK . The CCA algorithm can be summarized as given in Table 6.

The algorithm can be demonstrated with n unique rankings (without the weight
vector wi) and two clusters. The optimality can be shown, where:

minimize
n∑
i=1

2∑
k=1

u2
ik(yi) · dKem(yi, ck)

subject to ui1(yi) + ui2(yi) = 1 and

ui1(yi), ui2(yi) ≥ 0, for i = 1, . . . , n.

The probabilities are squared because it is a smoothed version of the original function,
wherein the derivatives of the probabilities are linear. The Lagrangian of this problem
is:

L(p1, p2, λ) = u2
i1(yi) · dKem(yi, c1) + u2

i2(yi) · dKem(yi, c2)− λ
(
ui1(yi) + ui2(yi)− 1

)
When taking the partial derivatives with respect to ui1(yi) and ui2(yi) and set them to
zero. The result is

2ui1(yi) · dKem(yi, c1) + λ = 0 and

2ui2(yi) · dKem(yi, c2) + λ = 0.

Under the working principle of probabilistic clustering this is

ui1(yi) · dKem(yi, c1) = ui2(yi) · dKem(yi, c2).

To obtain the optimal value for the Lagrangian of all n unique rankings is

L(ui1, ui2, λ) =

n∑
i=1

dKem(yi, c1) · dKem(yi, c2)

dKem(yi, c1) + dKem(yi, c2)
.

This corresponds with the JDF of the entire sample. So, minimizing the loss is min-
imizing the JDF. Due to this membership probability matrix it is a form of fuzzy or
soft clustering. In fuzzy clustering each ranking is a member of all clusters associated
by a membership probability. An advantage of fuzzy clustering is that the membership
probability matrix generates more information than deterministic (hard) clustering. In
hard clustering rankings are assigned to a single component uik = 1 to some k ∀i (Gor-
don, 1999). Hard clustering results can still be obtained by assigning the ranking to
that cluster with highest membership probability.
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Table 6: Summary of the CCA algorithm.

Step Procedure

1 Initialize K different random centers, (l = 0).
2a Calculate membership probabilities, ûik.
2b Update median ranking cluster centers, ĉk.
3 Repeat steps 2a and 2b until the difference in loss

between two iterations (l) and (l − 1) ≤ ε.
4 Final solution minimizes the loss over multiple starts.

5.2 Mixture of distance-based models

The second method is based on Mallows’ seminal paper (1957). Mallows’ model assumes
that the probability of observing a ranking depends on the distance between the observed
rankings and the central ranking. The distance-based model (DBM) also assumes that
rankings that have equal distances from the central ranking should have equal probability
and the further away from the central ranking the probability decreases. The most
common used distance-based model is based on Kendall’s distance (dτb) and is better
known as Mallows’ φ-model (Mallows, 1957 and Marden, 1996). It belongs to the family
of exponential distributions

f(yi) = P(yi|c, λ) =
1

Z(λ)
exp

(
− λdτb(yi, c)

)
, (5.8)

where the probability of observing ranking yi depends on the negative exponential of the
spread parameter λ and Kendall’s distance to center c. Z(λ) is the normalizing constant
making the density integrates to 1.

This model has been extended to a mixture model by Murphy & Martin (2003). An
extensive overview about mixture models can be found in McLachlan & Peel (2000).
A mixture model assumes that the observed rankings are coming from K probability
distributions where each distribution represents a cluster. Each cluster has mixing
probability pk, with 0 ≤ pk ≤ 1 of being represented in the population and

∑K
k=1 pk = 1.

Each density fk has central ranking ck and spread parameter λk. The complete density
of the mixture model is

f(yi) =
K∑
k=1

pkfk(yi|ck, λk). (5.9)

Transforming the distance-based model into a mixture of distance-based components
means combining equation (5.8) of the population model with the mixture of densities
in equation (5.9). The mixture model becomes

f(yi) =
K∑
k=1

pk
1

Z(λk)
exp

(
− λkdτb(yi, ck)

)
. (5.10)

This expression illustrates that each component has its own central ranking ck, spread
parameter λk and mixing probability pk. Z(λk) is the normalizing constant and depends
on the spread parameter and is given in Critchlow (1985, p. 98) by

Z(λk) =
∑
yi∈ck

exp
(
− λkdτb(yi, ck)

)
. (5.11)
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The likelihood function of the mixture of the weighted distance-based model is

L =

n∏
i=1

wi

K∑
k=1

pk
1

Z(λk)
exp

(
− λkdτb(yi, ck)

)
. (5.12)

The model is fitted by maximum likelihood using the EM algorithm to obtain max-
imum likelihood estimates. The EM algorithm is well known for obtaining maximum
likelihood estimates with incomplete data (Dempster et al., 1977). Fitting this model
with unknown components, a latent Bernoulli variable for allocating rankings to com-
ponents uik is introduced to the log-likelihood:
`(c, λ, p|yi) =

∑n
i=1wi log

{∑K
k=1 pk

1
Z(λk) exp

(
−λkdτb(yi, ck)

)}
. This latent variable uik

indicates the probability of ranking yi belonging to component k. The complete-data
consists of both yi and uik. This allocation matrix has dimension n × K, similar to
CCA. By including uik the complete-data log-likelihood becomes

`C(p, c, λ|yi, uik) =

n∑
i=1

wi

K∑
k=1

uik

{
log(pk)− log

(
Z(λk)

)
− λkdτb(yi, ck)

}
. (5.13)

The EM algorithm is applied to the complete-data log-likelihood and iteratively improves
maximum likelihood estimates by alternating between two steps, the expectation (E) and
maximization (M) step. It heavily depends on starting values, therefore the algorithm
is initiated with 50 different allocation matrices sampled from the uniform distribution.
Murphy & Martin (2003) and Lee & Yu (2012) fitted mixture models to ranking data
and they implemented it with 30 and 50 starts, respectively.

The E-step takes the expectation of the complete-data log-likelihood conditional on
the ranking data depending on the current parameter estimates in the lth iteration of
the algorithm

ûik =
pkf(yi|ck, λk)

K∑
k′=1

pk′f(yi|ck′ , λk′)

. (5.14)

This can be interpreted as the posterior probability via Bayes’ theorem of belonging to
cluster k, conditioned on the center and spread parameters.

The M-step maximizes the expected conditional complete log-likelihood given uik
with respect to the central ranking ck and spread λk. The central ranking of each
cluster is the median ranking estimated by

ĉk = arg min
ck ∈ Ωm

n∑
i=1

wiuikdτb(yi, ck). (5.15)

The spread parameter can be estimated in two ways. One way is restricting λ to be
equal for all K clusters λ = λ1, . . . , λK is

λ̂ =

∑K
k=1

∑n
i=1wiuikdτb(yi, ck)∑K

k=1

∑n
i=1wiuik

. (5.16)

The other way is estimating unrestricted spread parameters λk for each cluster λ1, . . . , λK
via

λ̂k =

∑n
i=1wiuikdτb(yi, ck)∑n

i=1wiuik
. (5.17)
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Similar to CCA, we can estimate the mixing probabilities pk by

p̂k =
1

n

n∑
i=1

wiuik. (5.18)

When estimates of the mixing probabilities, spread parameters and the median rankings
are obtained, the complete-data log-likelihood can be calculated with equation (5.13).
The EM algorithm converges if the absolute change in complete-data log-likelihood

between the current `
(l)
C (ΨK) iteration and the previous `

(l−1)
C (ΨK) iteration is small∣∣∣∣∣`

(l)
C (ΨK)− `(l−1)

C (ΨK)

`
(l−1)
C (ΨK)

∣∣∣∣∣ ≤ ε, (5.19)

where ΨK contains the estimated parameters (ĉ1, . . . , ĉK , λ̂1, . . . , λ̂K , p̂1, . . . , p̂K) and ε =
10e−6. The DBM with unrestricted spread parameters is fitted with 3×K parameters
because for each cluster ck, λk and pk have to be estimated. By restricting the spread
parameter, the model is fitted with 2×K+1 parameters. The mixture of distance-based
model algorithm can be summarized as given in Table 7. The EM algorithm has a few
but noteworthy drawbacks. It may fail to converge to the global optimum and get stuck
at a local optimum or even fails to reach maximum likelihood values at all, because of
bad starting values. To overcome this issue it is implemented with 50 different starts.
Each start has a different matrix uik and a maximum of 1,000 iterations. The solution
that maximizes the complete-data log-likelihood is used as final estimate. Since the
iterative nature of the procedure, it can be slow regarding the number of iterations
necessary.

Table 7: Summary of the EM algorithm for distance-based models.

Step Procedure

1 Give initial values for uik, (l = 0).
E step

2 Estimate ûik.
M step

3a Estimate ĉk, p̂k, λ̂k and P (yi).
3b Calculate the complete-data log-likelihood.
4 Repeat steps 2 and 3 until the absolute change in complete-data log-

likelihood between two iterations l and l − 1 is smaller than or equal to ε.
5 Final solution maximizes the complete-data log-likelihood

over multiple starts.
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6 Validation methods

When the methods discussed in the previous section are used in practice, the results
need to be analyzed objectively (Gordon, 1999). One issue that needs to be addressed is
the number of K clusters hidden in the data. The number of clusters has to be verified
quantitatively, because it is generally of major interest to researchers. There is no golden
standard, since different algorithms partition the data differently. There are two ways
to evaluate the results of a clustering, namely internal and external evaluation. Several
criteria are described in the following two subsections.

6.1 Internal criteria

Internal criteria only depend on the structure of the observed data. They focus on the
compactness, connectedness or isolation of the clusters and aim to give an answer to the
issue regarding the selection of the appropriate number of clusters.

6.1.1 Partition coefficient

Bezdek (1974) proposed the partition coefficient (PC) as a performance measure based
on minimizing the overall information in the membership matrix uik. It is a measure
for compactness of the clustering. He defined the index as follows

PC(K) =
1

n

n∑
i=1

wi

K∑
k=1

u2
ik, (6.1)

where n is the number of judges in the sample, wi the weight corresponding membership
probability uik and K the number of clusters in the partition. It is the weighted average
of the squared membership probabilities. The minimum number of clusters to evaluate
is two. It ranges between 1/K and 1. When the PC is 1, the result of the clustering
is completely crisp and when it is close to 1/K this indicates no clustering tendency in
the data set or in the clustering algorithm to reveal it. A disadvantage of the PC is
that it only relies on the membership matrix. When dealing with the PC we look for
the maximum.

6.1.2 Partition entropy

Another index by Bezdek (1974) is the partition entropy (PE) defined as

PE(K) = − 1

n

n∑
i=1

wi

K∑
k=1

uik log(uik), (6.2)

where n is the number of judges in the sample, wi the weight corresponding membership
probability uik and K the number of clusters. Again, the minimum number of clusters
to evaluate is two. The PE ranges between 1/ log(K) and 1. When the PE is 1/ log(K)
the partition is a crisp partition and when it comes close to 1 absence of any clustering
structure. The best clustering is obtained when the PE is minimum.

6.1.3 Joint distance function

The Joint distance function (JDF) of the entire sample (Dtotal) is used as a convergence
criterion of CCA. The JDF decreases monotonically. According to Iyigun (2007, p. 61–
63) we look for a ‘knee’ as a function of the JDF and the number of clusters. To identify
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the appropriate number of clusters in the data, a line through the largest number of
clusters and the second largest number of clusters. Once the JDF of the entire sample
significantly deviates from this line, the number of clusters is found.

6.1.4 Bayesian information criterion

To select the most appropriate number of components in a mixture model, the Bayesian
information criterion (BIC) by Schwarz (1978) is a simple but well known tool for
validation. It is defined as

BIC(K) = −2`(Ψ̂K) + d log(n), (6.3)

where `(Ψ̂K) is the maximized log-likelihood of the K-component mixture, d is the
number of independent parameters in the model and n is the number of judges in the
sample. With the BIC we choose the model that has the smallest value, corresponding
to a better fit of the model-based clustering model. The parameter d penalizes the
unrestricted DBM harder, because it requires an additional K−1 parameters to estimate
the spread of the densities.

6.2 External criterium

External criteria evaluate a clustering by matching the clustering result to a priori
information. In the simulation study performed in section 7.1, we fixed the labels of the
centers and sampled rankings by Mallows’ model in order to generate a heterogeneous
population of judges.

Our external validity index is a recovery measure based on Kendall’s τx between
centers (cS

1 , . . . , c
S
K) fixed in the sampling procedure and the centers estimated by the

partitioning algorithm (cA
1 , . . . , c

A
K). However, the algorithms do not precisely know the

order in which the clusters were generated. Therefore, the centers estimated by the
algorithm are reordered in such a way that the centers are as similar to the centers
specified in the population. When calculating τx between the population centers and
the centers estimated by the algorithm we get a squared K ×K correlation matrix. We
assume that by maximizing the diagonal elements of this matrix the centers estimated by
the algorithm closely approximate the centers defined in the population. The reordering
of the elements in this matrix works as follows. If we fix the population centers and
re-allocate the centers estimated by the algorithm such that the correlations on the
diagonal are maximimal. The recovery index is defined by

R(K) =
1

K

K∑
k=1

τx(cS
k, c

A
k ), (6.4)

which is the mean of the reorganized diagonal elements of the correlation matrix. We
only use the diagonal elements, because the off-diagonal elements depend on the location
of the other centers. The recovery has an upper bound of 1 if and only if the algorithm
perfectly recovers all labels of the population median rankings. A lower value indicates
that at least one cluster is not perfectly recovered.
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7 Data analysis

In section 3 the various distance measures for ranking data are described. The violation
of the triangle inequality by the Kendall distance suggests that it should not be used
as a proper distance measure, especially in a distance based model. The adjustment in
equation (3.3) by Emond & Mason lead to Emond & Mason’s distance. Mallows’ φ–
model can easily be fitted with Emond & Mason’s distance (dτx). This distance measure
associates proper distances when tied rankings are involved, equivalent to the Kemeny
distance. It can also be used with the Kemeny distance with a small modification of
the spread parameter. Kendall’s maximum distance is 2, independent of the number of
objects. This is similar to the transposition of two adjacent objects with the Kemeny
distance. The maximum Kemeny distance depends on the number of objects and is
m(m−1). Therefore, the product of the spread parameter and Kemeny distance increase.
The negative exponential of this product rapidly decreases, resulting in underestimated
probabilities. We know that τx is equal to dKem for complete and tied rankings and can
be solved with equation (3.6) to ensure that the probabilities are equal again.

We have chosen to fit the mixture of DBM in section 5.2 with the Kemeny distance,
because it can be applied to both methods and the external evaluation is similar.

7.1 Simulation study

To evaluate the recovery of CCA and DBM for both spread parameters described in
section 5, a simulation study has been set up to answer our main research question. Ar-
tificial data sets have been generated with factors with different levels to mimic real-life
situations of a heterogeneous population of judges based on Mallows’ model in equation
(5.10). The rankings are generated for each cluster independently and combined.

We designed a full factorial experimental design, containing seven factors with two
or more levels. The following factors have been manipulated: (a) the number of objects,
(b) type of input rankings, (c) correlation between the centers, (d) the number of centers,
(e) the sample size, (f) cluster size and (g) spread parameter. We tried to perform a
full factorial design, but if the centers were not identifiable given the number of objects,
input rankings and correlation between centers it was left out. A description of each
factor is described next. When multiplying the levels of the factors, we obtain a total of:
3× 2× 3× 3× 3× 2× 2× 3 = 648 experiments. However, for only 420 experiments the
appropriate centers were identified. Each experiment is replicated ten times, analyzing
a total of 4,200 data sets. A summary of the manipulated factors is given in Table 8.

Table 8: Factors and levels in the simulation study.

Factor Levels

Objects Four, five and seven objects.
Input rankings Complete rankings, complete and tied rankings.
Correlation Uncorrelated, positive and negative.
Clusters Two, three and four clusters.
Sample size 300 and 1,500 judges.
Group size Equal and unequal.
Spread Low, high and varying.
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7.1.1 Description of the factors

Number of objects As we have seen, the number of objects is crucial. It defines
the sample space and the number of rankings rapidly increases. The simulation studies
in Lee & Yu (2012) and Murphy & Martin (2003) applied their methods to four and five
objects, respectively. We also look at seven objects, so this factor has three levels.

Input rankings Not only is the number of objects important, but distinguishing
between complete rankings and tied rankings may also be of interest. The number of
tied rankings given any number of objects exceeds the number of complete rankings.
As we have seen, tied rankings are located at the intersection of complete rankings.
Therefore, tied rankings are located closer when the center is a complete ranking. Here,
we distinguish between input space. With a tied ranking as center, we can never recover
it by sampling complete rankings as input rankings. When dealing with complete ran-
kings the centers are complete rankings and with tied rankings it can be a combination
of both.

Number of clusters The number of clusters that can be discovered in a population
of judges is simulated by this factor. Here, we distinguish a population of judges that
can be decomposed into two, three and four clusters. If the number of clusters increase,
we expect that it becomes more difficult to correctly recover them.

Correlation between centers We distinguish three different locations between
the cluster centers namely negatively, uncorrelated and positively correlated centers.
The first center in any simulation study is always the full ordering <1 · · · m> with m
objects is the reference ranking. Uncorrelated centers are located halfway the reference
ranking and its reversal, simply dividing the maximum distance by two. Positively
correlated cluster centers are located closer, whereas negatively correlated cluster centers
are located further away from the reference ranking. When dealing with tied rankings,
if possible, the all-ties ranking is not chosen as center.

In this simulation study all centers are equidistant, meaning that all off-diagonal
elements in the distance matrix are similar. With three clusters, we can identify an
equilateral triangle which satisfies the property that the distance between the centers
is equal. Let A, B and C denote these centers, so: d(A,C) = d(B,C) = d(A,B) in
Figure 3. When moving from three to four centers, this is done similarly. In Figure 4 a
rhombus with four centers A, B, C and D is given. This rhombus is a combination of
four equilateral triangles, where:

Triangle α (ABD) : d(A,B)= d(B,D) = d(A,D),

Triangle β (DBC) : d(D,B)= d(B,C) = d(D,C),

Triangle γ (ACD) : d(A,C) = d(C,D) = d(A,D) and

Triangle δ (ACB) : d(A,C) = d(C,B) = d(A,B).

Adding triangle β to triangle α we get: d(A,B) = d(B,D) = d(A,D) = d(B,C) =
d(D,C). Then adding triangle γ to α and β we get: d(A,B) = d(B,D) = d(A,D) =
d(B,C) = d(D,C) = d(A,C). Finally, adding triangle δ to the previous three, to con-
clude that: d(A,B) = d(B,D) = d(A,D) = d(B,C) = d(D,C) = d(A,C) = d(A,C).
The distance from one center to any other is equal. By combining multiple equilateral
triangles it is possible to identify situations with more than four equidistant centers.
To form equilateral triangles on the polytope between complete rankings we can only
use even distances. The correlations between the centers and the reference ranking
are chosen such that τx comes close to -0.50 and 0.50. Given the distances associated
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Table 9: Distance dKem and correlation (τx) between centers.

Objects

Correlation 4 5 7

Negative 8 (-0.33) 14 (-0.40) 30 (-0.43)
Uncorrelated 6 (0.00) 10 (0.00) 20 (0.05)
Positive 4 (0.33) 6 (0.40) 12 (0.43)

A

B C

Figure 3: Equilateral triangle between three
centers.

A

B

C

D

Figure 4: Rhombus between four cen-
ters.

with the number of objects it is not possible to identify centers with these specific
correlations. The correlation between clusters is given in Table 9. The identified cluster
centers (cS

1 , . . . , c
S
K) associated rank vectors are listed in Table 10. The correlation

between centers can be seen as the location parameter between clusters, wherein judges
rank objects more similar. The location means that the difference between the judges
that agree to the reference ranking rank objects more similar compared to the negatively
correlated centers. We expect a better recovery when the centers are more apart from
each other.

Sample size We consider two sample sizes for the entire population of judges, a
small sample containing 300 judges and a large sample containing in total 1,500 judges.
We expect that the larger sample size leads to a better recovery.

Cluster size This factor determines the size and probability of being represented
in the population of judges. We distinguish between balanced and unbalanced cluster
sizes. With equal cluster size, it is determined by the entire sample size (see previous
factor) divided by the number of clusters: n1, . . . , nK = n

K . If we deal with unbalanced
cluster sizes, the size of the first cluster is taken to be twice as large as the remaining
clusters. The size of the first cluster is given by: n1 = 2n

K+1 and the remaining K − 1
clusters: n2, . . . , nK = n

K+1 .
Spread parameter Lastly, the spread parameter controls the peakedness of the

density and can be seen as the within group parameter. It is controlled by λ in Mallows’
model. If the spread parameter is zero, then all rankings are uniformly distributed over
the sample space. When the spread parameter increases the probabilities around the
center increase. With this factor we distinguish three levels for λ. A low level for λ
is fixed at 0.3, so λ1, . . . , λK = 0.3 for all centers. The high level is fixed at 0.5, so
λ1, . . . , λK = 0.5. To vary the levels, values for λ alternate between 0.5 and 0.3 for up
to K clusters. With three centers the vector for λ is: λ1 = 0.5, λ2 = 0.3 and λ3 = 0.5
and with four centers the vector for λ is: λ1 = 0.5, λ2 = 0.3, λ3 = 0.5 and λ4 = 0.3.
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Table 10: Median rankings defined in the experimental design.

4 objects 5 objects 7 objects

Complete Tied Complete Tied Complete Tied
Cor 1 K a b c d a b c d a b c d e a b c d e a b c d e f g a b c d e f g

Neg

2
(1 2 3 4) (1 2 3 4) (1 2 3 4 5) (1 2 3 4 5) (1 2 3 4 5 6 7) (1 2 3 4 5 6 7)
(3 4 1 2) (2 1 2 1) (3 4 5 2 1) (3 3 1 2 2) (7 6 5 1 2 3 4) (5 4 2 4 1 3 3)

3
(1 2 3 4) (1 2 3 4)
(3 4 1 2) (3 4 1 2)
(3 2 4 1) (3 2 4 1)

Unc

2
(1 2 3 4) (1 2 3 4) (1 2 3 4 5) (1 2 3 4 5) (1 2 3 4 5 6 7) (1 2 3 4 5 6 7)
(2 4 1 3) (1 2 2 1) (2 5 3 1 4) (2 3 1 3 2) (4 3 6 5 1 2 7) (4 2 3 2 4 1 5)

3
(1 2 3 4) (1 2 3 4 5) (1 2 3 4 5 6 7) (1 2 3 4 5 6 7)
(1 2 2 1) (2 3 1 3 2) (4 3 6 5 1 2 7) (4 2 3 2 4 1 5)
(2 4 1 3) (2 5 3 1 4) (7 4 1 3 2 5 6) (7 4 1 3 2 5 6)

4

(1 2 3 4 5) (1 2 3 4 5 6 7) (1 2 3 4 5 6 7)
(2 3 1 3 2) (4 3 6 5 1 2 7) (4 2 3 2 4 1 5)
(2 5 3 1 4) (7 4 1 3 2 5 6) (7 4 1 3 2 5 6)
(2 1 1 1 2) (6 2 3 4 7 1 5) (5 2 7 1 3 6 4)

Pos

2
(1 2 3 4) (1 2 3 4) (1 2 3 4 5) (1 2 3 4 5) (1 2 3 4 5 6 7) (1 2 3 4 5 6 7)
(2 3 1 4) (1 2 1 2) (2 4 1 3 5) (2 1 1 3 3) (3 2 1 6 4 7 5) (2 4 3 4 1 5 5)

3
(1 2 3 4) (1 2 3 4) (1 2 3 4 5) (1 2 3 4 5 6 7) (1 2 3 4 5 6 7)
(2 3 1 4) (2 3 1 4) (2 1 1 3 3) (3 2 1 6 4 7 5) (2 4 3 4 1 5 5)
(1 4 2 3) (1 4 2 3) (2 4 1 3 5) (3 1 5 2 7 4 6) (5 2 1 4 3 6 7)

4

(1 2 3 4 5) (1 2 3 4 5 6 7) (1 2 3 4 5 6 7)
(2 1 1 3 3) (3 2 1 6 4 7 5) (2 4 3 4 1 5 5)
(2 4 1 3 5) (3 1 5 2 7 4 6) (5 2 1 4 3 6 7)
(1 1 1 1 2) (3 2 1 4 7 6 5) (3 5 1 2 4 7 6)

1 Cor is the abbreviation for correlation between centers, where ‘Neg’ stands for negatively correlated
centers, ‘Unc’ stands for uncorrelated centers and ‘Pos’ stands for positively correlated centers.

Figure 5 shows the density of Mallows’ model with four objects and the reference
ranking as its center. The upper figure shows the density considering only complete
rankings, whereas the lower figure shows both complete and tied rankings. The two
lines represent the high and low value of the spread parameter. If we increase the value
of the spread parameter, the probability of observing the cluster center also increases.
Therefore, we expect a better recovery when the value of the spread parameter is high.

Sampling ranking data In Table 11 a description is given about the sampling
procedure that was applied for generating the heterogeneous population of judges.
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Figure 5: Observed probabilities under Mallows’ model.

Table 11: Sampling ranking data.

Step Procedure

1 With m objects generate the input rankings.
2 Given the input rankings and centers, calculate the distance matrix.
3 Estimate the probabilities with λ of these rankings.
4 Calculate the size for each cluster nk.
5 Sample rankings for each cluster by the probability of that ranking.
6 Combine all sampled rankings to obtain the data of the population.

7.1.2 Effect of the factors

It is not possible to identify more than two negatively correlated centers, except with
four objects. Similarly, with five objects it is not possible to identify uncorrelated and
positively correlated cluster centers for complete rankings. The 35 identified centers
in Table 10 are evaluated with the manipulations for sample and cluster size and the
spread parameter. That is why 420 out of 648 experiments have been performed. The
most global results are given in Appendix A, where each cell is the mean recovery of ten
replications.

Analyzing the results based with a complete ANOVA would not be appropriate

because the underlying assumptions, where ei
iid∼ N(0, σ2

e) would be violated. There is
no constant variance and many recoveries are close to one. After identifying the centers,
the design of this experiment became highly unbalanced. Therefore we analyze the mean
recovery and standard deviation per factor level averaged out over the other factors. The
results are given in Table 12. Lets look at the recovery of each factor in turn.
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Table 12: Marginal mean and (standard error) recovery.

Method

Factor Levels CCA Restricted DBM Unrestricted DBM

Objects
4 0.95 (0.08) 0.79 (0.22) 0.69 (0.23)
5 0.95 (0.08) 0.83 (0.19) 0.73 (0.21)
7 0.98 (0.05) 0.80 (0.20) 0.74 (0.19)

Input rankings
Complete rankings 0.99 (0.03) 0.90 (0.16) 0.78 (0.21)
Tied rankings 0.94 (0.09) 0.73 (0.20) 0.68 (0.20)

Correlation
Negative 0.98 (0.06) 0.79 (0.28) 0.68 (0.29)
Uncorrelated 0.97 (0.07) 0.77 (0.21) 0.68 (0.21)
Positive 0.94 (0.08) 0.84 (0.12) 0.78 (0.12)

Clusters
2 0.98 (0.04) 0.87 (0.20) 0.78 (0.22)
3 0.94 (0.09) 0.75 (0.19) 0.67 (0.18)
4 0.92 (0.09) 0.71 (0.15) 0.64 (0.16)

Sample size
Small 0.95 (0.08) 0.81 (0.20) 0.71 (0.20)
Large 0.97 (0.06) 0.80 (0.21) 0.73 (0.21)

Cluster size
Equal 0.97 (0.06) 0.83 (0.21) 0.74 (0.22)
Unequal 0.95 (0.08) 0.78 (0.19) 0.70 (0.19)

Spread
Low 0.93 (0.09) 0.74 (0.21) 0.61 (0.17)
Varying 0.96 (0.08) 0.80 (0.19) 0.72 (0.20)
High 0.99 (0.04) 0.86 (0.18) 0.83 (0.20)

Objects The best recovery is obtained with seven objects for CCA, followed by the
unrestricted DBM. The best recovery with the restricted DBM is with five objects. The
highest recovery is associated with the smallest standard error. The worst recovery for
all models is with four objects. An explanation could be that the sample size is limited
and the recovery quickly decreases by a small deviation from the population centers.
For example, if the estimated median ranking is only a transposition of two adjacent
objects wrong with four objects this already leads to a decrease of 0.33 with Emond &
Mason’s τx.

Input rankings The average recovery in Table 12 clearly indicates that all methods
recover the centers better with complete rankings. It shows the highest recovery for CCA
and restricted DBM for complete rankings. Given the design of our simulation study,
we only identified centers listed in Table 10. It shows that there are more situations
possible with tied rankings than with complete rankings. Recall Figure 5, where the
probability of observing the reference ranking with tied rankings is much smaller than
with complete rankings.

The boxplots in Figure 6 show the variation between the number of objects and
input rankings. For CCA there is no variation with complete rankings, but the recovery
increases and variation decreases when the number of objects increase with tied rankings.
When looking at the DBM models and complete rankings, the picture is much more
diverse; the best recovery is with five objects and four and seven objects it is less.
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Correlation This factor reveals an unexpected trend. We expected to see better
recovery with negatively correlated centers, because they are further away from the
reference ranking. Therefore, it is easier for the algorithms to recover them. This is
indeed what happened with CCA. With DBM the reverse seemed to happen, where the
best recovery is obtained by positively correlated centers. An explanation of this could
be found in the range of sampled rankings. The range of sampled rankings is much
wider when considering negatively correlated centers.

The thick black line in Figure 7 is the same in Figure 5, where the density of Mallows’
model is printed with four objects, complete rankings and a high value for λ. In this
figure, the density of a second cluster with negatively correlated center at <c d a b> is
given by the dashed line. The dotted line is the average of these two densities, to show
that the sampling procedure in Table 11 does not lead to unintended situations. How-
ever, the sampling of rankings in step 5 may result in sampling the ordering <a c d b>
and rankings that overlap for different clusters. Another explanation could be that
the rankings in between cluster centers are sampled more often, resulting in a local
maximum for the DBM.

The variation between the correlation between centers and input rankings in Figure 8
shows that with CCA for complete rankings there is no variation but almost perfect
recovery. The variation in recovery with tied rankings increase when centers are located
closer together and the median recovery with positive correlation is not 1 anymore.
With the DBM models the median recovery with negative correlation and complete
rankings is 1, but with tied rankings it comes close to 0.6. With complete rankings and
uncorrelated centers the median recovery of the restricted DBM is one, whereas for the
unrestricted DBM it is much lower, around 0.7. With tied rankings the recovery of the
DBM for uncorrelated and positively correlated centers is somewhat smaller.

Clusters We expected to see a decrease in recovery when the number of clusters
increase. This is indeed what has happened. With two centers it returns the second
best recovery of all averaged medians in Table 12, with only the high value of lambda
and the input of only complete rankings in advance. Even though the recovery may be
better, the standard errors of the DBM’s indicated that there is more variation than
with more clusters.

Sample size This factor is not of much influence. Our expectation that recovery
increases with sample size does not show noticeable differences on the recovery of the
methods. If we look at the average recovery over ten replications in Appendix A, there
are small improvements with CCA if the sample size is increased. The DBM on the
other hand shows more variation between sample sizes.

Cluster size All methods prefer balanced clusters. When fixing the first cluster size
to be twice as large as the remaining clusters it leads to a small decrease in recovery,
but the standard error is smaller with unequal cluster size for the DBM’s.

Spread The high value for lambda in our data generation model leads to the best
recovery for CCA. The unrestricted DBM and with low values for the spread parameter
lambda lead to the second worst and worst recovery, respectively. We expected that the
unrestricted spread parameter in equation (5.17) would show better recovery compared
to its restricted counterpart. The mean recovery however suggests otherwise. With 0.72
the recovery of the unrestricted DBM is worse than the restricted DBM with 0.80.
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When looking at the boxplots in Figure 9 where the variation between spread and
input rankings are displayed, CCA shows a perfect median recovery of the centers with
complete rankings, irrespective of the value of the spread parameter. The recovery
increases and the variation decreases when the spread parameter increases with tied
rankings. In addition, the restricted DBM has a perfect median recovery with complete
rankings. However, there is a big difference with tied rankings. Even with high values
for lambda, the median recovery is around 0.80 and gets lower if there is more variation
within a cluster. The unrestricted DBM only attains perfect recovery with complete
rankings and a high value of the spread parameter. With lower values of lambda and
complete rankings, the recovery decreases more rapidly than with tied rankings.

7.1.3 Discussion of the simulation results

Given the results of our simulation experiment, we conclude the following. CCA recovers
the median rankings best for each factor for all levels. In addition, CCA has the smallest
standard error indicating more stable clustering results. All models tend to prefer more
objects, complete rankings, two clusters, a large and balanced sample size and a high
value for lambda. The worst model in terms of recovering the population centers is
the unrestricted DBM, followed by the restricted distance based model. In general, the
better the recovery, the smaller the standard error.

A counterintuitive observation is that the DBM’s have more difficulties in recovering
cluster centers that are located further away from the reference ranking, instead of
centers that are located closer to each other. In addition, the unrestricted DBM is not
an improvement over the restricted DBM when it comes to the recovery with unequal
values for lambda.

The differences between CCA and the DBM’s cannot be easily explained. Both
methods estimate the median rankings as cluster centers, spread parameter and mixing
probabilities similarly. The difference is in the estimating the membership probabilities.
In each iteration the membership probabilities with CCA only depend on the distances
of the ranking to the centers, whereas with DBM the densities have to be evaluated.
The densities of Mallow’s model depend on the centers, as well as the spread parameters
and mixing probabilities (Iyigun, 2007, Chapter 6).
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Figure 6: Variation between number of objects and input rankings.
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Figure 8: Variation between the correlation between centers and input rankings.
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7.2 Real data applications

The aim of this subsection is to identify which internal measure seems to be able to
identify the number of clusters in the data. Eight data sets have been published and
analyzed by different authors. They will be analyzed again by the partitioning methods.
These data sets are: ‘Voting’, ‘Living places’, ‘Political goals’, ‘Song’, ‘Idea’, ‘Rice
subset’, ‘APA subset’ and ‘Sports’. The observed rankings and observed frequencies are
given in Appendix B. A description of these data sets is given next.

7.2.1 Description of the data sets

Voting This data set, described in Plackett (1975, p. 197) and Marden (1996, p. 30),
is about the order of candidates a, b and c that appeared on the ballot. These ballots
have been disseminated in six areas. The data are the aggregated 908 votes of these
areas.

Living places This data set is described in Diaconis (1988, p. 92). It is a question
of a larger questionnaire from a survey of the National Opinion Research Center about
where people want to live. The choicer were: a = in a big city, b = near a big city
(suburbs; ≤ 50 miles) and c = far from a big city (≥ 50 miles). In total 1,493 people
answered this question.

Political goals This data set comes from Croon (1989, p. 111) and has been analyzed
in Lee & Yu (2012) and describes “Changing mass publics”. A subset of N = 2, 262
German respondents were asked to rank the following four political goals according to
their desirability: a = Maintain order in the nation, b = Give people more say in the
decision of the government, c = Fight rising prices and d = Protect freedom of speech.
Of the four alternatives there is a distinction between materialistic and post-materialistic
value orientation. The first entails social and economic stability and security and goals
like a and c, whereas b and d agree more to humane and spiritual aspects of life.

Song This data set comes from Critchlow et al. (1991, p. 313) and is about the
ranking of five words according to strength of association with a target word “song”.
The five choices to rank were: a = score, b = instrument, c = solo, d = benediction and
e = suit. In this study 83 university students participated.

Idea This data set from Fligner & Verducci (1986, p. 364) has a similar structure as
the ‘Song’ data set. It is about the ranking of five words according to strength of associa-
tion with a target word “idea”. The five choices were: a = though, b = play, c = theory,
d = dream, and e = attention. In total 98 university students participated.

Rice subset This data set comes from Baggerly (1995, p. 105–106) and the rankings
comprise the ballots in a preferential election to choose a faculty member to serve on the
Rice Presidential Search Committee. In total 300 people casted their vote. However,
only a total of 210 people completely listed their preferences of five persons: a, b, d and
e with the remaining 90 rankings incomplete.

APA subset This data set comes from Diaconis (1988, p. 96) and is a subset where
15,449 psychologists were asked to rank five candidates for the 1980 American Psycholog-
ical Association (APA). It has been analyzed in Diaconis (1988), Marden (1996, p. 37),
Murphy & Martin (2003) and Busse et al. (2007). The candidates are a = William
Bevan, b = Ira Iscoe, c = Charles Kiesler, d = Max Siegle and e = Logan Wriths.
Furthermore, candidates a and c are research psychologists, d and e are clinical psy-
chologists and b is a community psychologist. From all rankings, we only analyzed the
complete rankings, which is a subset of 5,738 rankings (only 37%).
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Sports The ‘Sports’ data set comes from Louis Roussos and is described in Marden
(1996). He asked 130 students at the University of Illinois to rank seven sports according
to their preference of participating in. The sports to choose from were: a = baseball, b
= football, c = basketball, d = tennis, e = cycling, f = swimming and g = jogging.

7.2.2 Clustering outcomes

When summarizing these data sets, the following summary statistics of the entire sample
with the Kemeny distance are listed in Table 13. For some data sets the median ordering
coincides with the modal ordering. The mean ranking on the other hand, tends to prefer
tied rankings. Lets take a closer look at the outcomes of each data set separately. The
outcomes of the internal validity measures are given in Table 14. Figure 10 shows the
JDF of the entire sample of judges of the data sets. In Tables 15 to 17 the outcomes
of the best fitting models are given, ordered by the probability of belonging to the
population.

Table 13: Summary statistics of the data sets.

Data set Modal ordering Median ordering Mean ordering

Voting <a b c> <a b c> <a–b–c>
Living places <c a b> <c a b> <c–a b>
Political goals <b c a d> <a b c d> <a–b c–d>
Song <c b a d e> <c b a d e> <c b a d e>
Idea <b e d c a> <b e d c a> <b e d–c a>
Rice subset <a c b e d> <a b c e d> <a–b c e d>
APA subset <c a b e d> <a c e d b> <a–b–c–d–e>
Sports <g e f d c a b> <e f c a d b g> <e c a f d b g>

Voting The modal and median ranking are the same, listing the candidates <a b c>.
The mean ranking is of little use, it the all ties ranking of the three candidates. When
partitioning this data, the internal validity measures are give in Table 14. With CCA
applied, the best result is with six clusters. This is the complete crisp partition of the
membership matrix, indicated by a JDF of zero. The mixing probability is about the
inverse of its frequency. The BIC of both DBM’s suggest a two component mixture
where they both estimate the largest cluster as the modal ranking of the entire sample.
The second cluster is the ordering <a c b> with a small probability of being represented
for the restricted DBM, whereas the second cluster of the unrestricted DBM has zero
probability of being present in the data.

Living places The modal and median ranking are the same namely <c a b>, the
mean ranking is a tied ranking of the first two objects c and a of the modal ranking.
When partitioning this data set we obtain internal validity measures similar to the
partition of the Voting data set. The PC and PE indicate a six component mixture
with CCA. If we look for a knee with the JDF, it is located at four centers in Figure 10.
When comparing the outcomes of the four and six cluster results, then the four clusters
are estimated with similar probabilities and spread parameter and the estimated centers
coincide with the observed frequencies. The additional two clusters do not account for
more than 3% of the entire sample. The BIC indicates a two component mixture for
both DBM’s. They estimate the same centers with the first center equal to <c a b> and
the second center as <a b c>. These centers correspond with the modal ranking and the
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third most observed ranking. The unrestricted DBM has the smallest BIC indicating a
better fit to the data.

Political goals The modal ordering is <b c a d>, the median ordering is different,
namely <a b c d>. The mean ranking places the first and last two objects as tied. When
we partition the data the PC indicates that six clusters fits the data best and the PE
with two clusters.

This data set has been analyzed in Lee & Yu (2012). They suggest that the best
fitting model contains a three clusters with orderings: <a c b d> with 0.441 probability,
<c a b d> with 0.352 probability and <b d c a> with 0.208 probability. In the obtained
clustering there is a distinction between the value orientations. Croon (1989) also fitted
a different kind of model to the same data and also identified that a three component
mixture would fit this data best. However, none of the methods identify the same three
cluster outcome.

The PE for CCA identifies a two cluster outcome, where the ordering of the centers
are <c a b d> and <a d c b>. The largest estimated center corresponds with the second
largest center. The six cluster outcome has the first center estimated as in Lee & Yu.

The BIC indicates that a four components mixture should be fitted with the un-
restricted DBM and a two component mixture with the unrestricted DBM. There is a
large difference between the BIC’s in favour of the unrestricted DBM. With this model,
the two estimated centers coincide with the median ranking with probabilities of one
and zero. The restricted DBM estimates the largest center <a c b d> with an inverse
of values d and b compared to the four cluster CCA outcome. The second centers are
similar and the remaining two centers are reversed.

Song For this particular data set the modal, median and mean ranking are the
same and the ordering is <c b a d e>. Clearly, the word ‘solo’ is associated by the
word song. When partitioning this data all indices identify that a two cluster outcome
fits the data best. The BIC is slightly smaller in favour of the unrestricted DBM. Both
DBM’s estimate the same cluster centers with very similar spread parameters and mixing
probabilities. The estimated centers correspond with the two most observed rankings.
CCA’s validity measures also indicate a two cluster outcome. The largest estimated
cluster center is similar to the median ranking. The estimated center of the second
cluster is the ordering <b a c d e> with probability 0.380. This center has the first three
objects reversed, compared to the center of the DBM model.

Idea The modal and median ranking are equal and the ordering is <b e d c a>.
The mean ranking ranks the words d and c of the modal ranking as tied. This data set
has not been partitioned before. With CCA the PE identifies the two cluster solution
as best fitting model, whereas the PC suggests six clusters. The largest cluster of these
models is the median ranking of all students and the second largest cluster is the inverse
of the words a and c. From the remaining four centers, the first is the inverse of words
b and e, the second center is the inverse of words d and e, the third cluster the inverse
of words a and c of the median ranking and the final ranking is with only 2% mixing
probability entirely different. Of these four centers, three are small deviations from
the median ranking. The BIC for the DBM’s identifies a two component mixture with
centers equal to the two cluster outcome with PE.

Rice subset The modal ranking is <a c b e d>. The median ranking is the inverse
of candidates c and b of the modal ranking. The mean ranking places the candidates
a and b of the median ranking as tied. When partitioning this data, we obtain for all
methods a best fitting solution with two clusters. The largest cluster has the ordering
<b a c e d> and is the second most observed ranking in the data. The second largest
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estimated cluster center is <c a b e d>, where the first three candidates (b, a and c) are
reversed and this ranking is the third most observed ranking. The mixing probabilities
of CCA and the restricted DBM are about the same. The unrestricted DBM has a much
lower BIC and estimates the mixing probability of the first clusters much higher than
the other two. The BIC indicates that the unrestricted DBM fits the data better.

APA subset The three summary rankings are completely different. The modal
ordering is <c a b e d>, the median ordering is <a c e d b> and the mean ranking is
the all-ties ranking of the psychologists. The partitioning of all models suggest that a
two cluster solution fits the data best. Marden (1996, p. 36-37) has analyzed the same
data with an adjusted K-Means clustering algorithm to ranking data based on Kendall’s
distance. Even though we showed that Kendall’s distance violates the triangle inequality,
the estimated centers and the mixing probabilities are exactly the same with respect to
the CCA algorithm, namely the orderings: <c a b e d> and <d e b a c> with mixing
probabilities 52% and 48%, respectively. The result is a distinction between the research
psychologists a and c and the clinical psychologists d and e. The first estimated center
by CCA and the restricted DBM is the modal ranking of the entire data set. The
second estimated center is the reversal of the modal ranking. The unrestricted DBM
on the other hand estimates the median ranking of the entire sample twice with mixing
probabilities of one and zero, respectively. Murphy & Martin (2003) also analyzed
the subset of the APA data and obtained with another distance measure, the Cayley
distance, a five cluster solution with orderings: <d b e c a>, <c d e a b>, <b c a d e>,
<b c a e d> and <b d a e c>. This outcome does not reveal the distinction between the
specialization of psychologists that well.

Sports It is interesting to see that the modal ranking is given by just three students
that rank jogging as their most preferred sport of participating in, whereas it is least
preferred in the median and mean ranking. The classification in Marden (1996, p.
37) identifies the following centers of the clusters <e f c a d b g> with 53.46 mixing
probability and <a b c d e f g> with 46.5% of being represented in the data. The CCA
algorithm identifies the second cluster correctly, but estimates a different ranking for
the first cluster. The unrestricted DBM identifies the first cluster similar to the student
population median, but with mixing probability of zero for the second cluster indicating
a homogeneous population of students.

7.2.3 Discussion of the real data sets

The internal validity measures with CCA show counterintuitive results for the real data
sets: Voting, Living places, Political Goals and Idea. Of the data sets with three objects
it tends to look after the crisp partition, overestimating the number of clusters. That is
obtained by the maximum possible number of clusters that coincides with the number
of unique rankings present in the data set. The number of clusters identified by JDF
of the entire sample as validity measure in Figure 10 ranges in between the results of
PC and PE. In the case of the data examples with three objects, the JDF identifies less
clusters than the crisp partition. In the other cases it identifies more clusters than the
PE. For the Political goals and the Idea data set, the PC identifies more clusters than
the PE. Therefore, we suggest to use the PE as internal validity criterium. The number
of clusters in the real data examples may be small but the outcomes between CCA and
the unrestricted DBM are largely the same namely: Idea, Rice subset and APA subset.
The unrestricted DBM identifies in half of the data sets the first cluster to have a mixing
probability of one and the other cluster to have zero mixing probability.
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Table 14: Internal validity measures of real data sets.

CCA DBM
Restricted Unrestricted

Data set # clusters PC PE JDF BIC BIC

Voting

2 0.730 0.386 766.667 3,982.80 3,410.97
3 0.745 0.424 376.618 4,181.30 4,385.64
4 0.810 0.351 166.667 4,895.99 4,426.85
5 0.908 0.183 68.400 5,381.67 4,708.92
6 1.000 0.000 0.000 5,403.15 4,772.33

Living Places

2 0.848 0.226 845.500 5,273.05 5,300.17
3 0.912 0.147 219.855 5,865.69 5,831.90
4 0.980 0.037 26.667 6,763.15 5,889.04
5 0.994 0.013 7.200 6,783.11 6,920.98
6 1.000 0.000 0.000 7,867.74 7,400.78

Political goals

2 0.654 0.499 4,611.429 16,253.75 14,124.60
3 0.599 0.672 2,440.613 16,482.14 14,147.77
4 0.675 0.599 1,294.702 15,483.68 14,171.12
5 0.674 0.648 907.782 15,499.16 14,194.29
6 0.695 0.646 692.385 15,514.62 15,177.74

Song

2 0.740 0.421 96.000 529.14 533.83
3 0.494 0.856 54.590 610.28 620.43
4 0.382 1.095 34.879 658.80 645.66
5 0.361 1.253 24.676 675.10 695.08
6 0.308 1.491 17.874 742.14 762.09

Idea

2 0.782 0.310 86.611 553.21 558.19
3 0.774 0.374 47.862 606.67 608.40
4 0.790 0.388 32.714 678.59 687.71
5 0.780 0.434 27.493 728.37 769.92
6 0.808 0.405 20.339 767.64 779.10

Rice subset

2 0.628 0.530 525.477 1,912.25 1,842.04
3 0.519 0.798 333.677 1,935.12 1,858.08
4 0.506 0.913 234.310 1,945.82 1,874.15
5 0.440 1.119 190.610 2,102.95 1,890.19
6 0.472 1.118 149.847 2,082.50 1,948.54

APA subset

2 0.632 0.542 21,109.000 58,319.48 54,923.77
3 0.471 0.891 13,951.153 60,490.18 57,014.59
4 0.381 1.147 10,328.322 61,749.40 57,609.80
5 0.341 1.314 8,022.973 62,591.26 57,650.10
6 0.306 1.469 6,576.992 63,601.73 57,504.06

Sports

2 0.616 0.566 972.019 1,541.79 1,410.30
3 0.430 0.956 655.376 1,679.89 1,424.91
4 0.338 1.224 490.412 1,781.34 1,439.53
5 0.290 1.415 388.986 1,813.05 1,463.07
6 0.268 1.554 318.330 1,721.49 1,426.59
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Figure 10: Internal validation measures of the JDF of the entire data set.

Table 15: Best clustering estimates of data sets, 1/3.

Data set Method Index Center Spread1 pk

Voting

CCA

JDF

<a b c> 0.813 0.313
<b a c> 0.764 0.248
<c a b> 0.744 0.227
<c b a> 0.724 0.213

PC & PE

<a b c> 1.000 0.245
<b a c> 1.000 0.184
<c a b> 1.000 0.159
<c b a> 1.000 0.149
<a c b> 1.000 0.143
<b c a> 1.000 0.120

Restricted DBM BIC
<a b c> 0.119 0.908
<a c b> 0.119 0.092

Unrestricted DBM BIC
<a b c> 0.112 1.000
<b a c> 0.652 0.000

1 The spread parameters are estimated different, for CCA equation (5.4), for
DBM equations (5.16) and (5.17), respectively.
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Table 16: Best clustering estimates of data sets, 2/3.

Data set Method Index Center Spread1 pk

Living places

CCA

JDF

<c a b> 0.986 0.444
<c b a> 0.975 0.256
<a b c> 0.966 0.176
<b a c> 0.950 0.124

PC & PE

<c a b> 0.999 0.436
<c b a> 0.998 0.249
<a b c> 0.999 0.168
<b a c> 0.999 0.118
<a c b> 0.976 0.019
<b c a> 0.959 0.008

Restricted DBM BIC
<c a b> 0.637 0.740
<a b c> 0.637 0.260

Unrestricted DBM BIC
<c a b> 0.651 0.733
<a b c> 0.597 0.267

Political goals

CCA

PE
<c a b d> 0.352 0.525
<a d c b> 0.284 0.475

JDF

<a c b d> 0.644 0.267
<b c a d> 0.635 0.263
<b c d a> 0.594 0.236
<a d b c> 0.594 0.234

PC

<a c b d> 0.756 0.210
<b c a d> 0.748 0.202
<b d a c> 0.740 0.196
<a d b c> 0.730 0.190
<c b a d> 0.518 0.106
<c d a b> 0.463 0.095

Restricted DBM BIC

<a c d b> 0.700 0.295
<b c a d> 0.700 0.260
<a d b c> 0.700 0.230
<b d a c> 0.700 0.215

Unrestricted DBM BIC
<a b c d> 0.195 1.000
<a b c d> 0.414 0.000

Song

CCA

PC & PE
<c b a d e> 0.814 0.620
<b a c d e> 0.696 0.380

JDF

<c b a d e> 0.904 0.314
<c a b d e> 0.855 0.206
<c b d a e> 0.835 0.182
<a b c d e> 0.813 0.158
<b c a d e> 0.784 0.140

Restricted DBM BIC
<c b a d e> 0.779 0.685
<c a b d e> 0.779 0.315

Unrestricted DBM BIC
<c b a d e> 0.781 0.682
<c a b d e> 0.775 0.318

1 The spread parameters are estimated different, for CCA equation (5.4), for DBM equa-
tions (5.16) and (5.17), respectively.
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Table 17: Best clustering estimates of data sets, 3/3.

Data set Method Index Center Spread1 pk

Idea

CCA

PE
<b e d c a> 0.852 0.595
<b e c d a> 0.783 0.405

JDF

<b e d c a> 0.918 0.410
<b e c d a> 0.877 0.273
<e b d c a> 0.834 0.199
<b d e c a> 0.716 0.119

PC

<b e d c a> 0.944 0.377
<b e c d a> 0.916 0.246
<e b d c a> 0.879 0.174
<b d e c a> 0.791 0.097
<b e d a c> 0.752 0.084
<a b c d e> 0.045 0.022

Restricted DBM BIC
<b e d c a> 0.826 0.670
<b e c d a> 0.826 0.330

Unrestricted DBM BIC
<b e d c a> 0.852 0.643
<b e c d a> 0.779 0.357

Rice subset

CCA

PC & PE
<b a c e d> 0.507 0.507
<c a b e d> 0.493 0.493

JDF

<b a c e d> 0.604 0.281
<a c b e d> 0.590 0.271
<c a b e d> 0.576 0.262
<b a d e c> 0.400 0.185

Restricted DBM BIC
<b a c e d> 0.547 0.549
<c a b e d> 0.547 0.451

Unrestricted DBM BIC
<b a c e d> 0.441 0.759
<c a b e d> 0.771 0.241

APA subset

CCA

PC & PE
<c a b e d> 0.296 0.523
<d e b a c> 0.229 0.477

JDF
<c a b e d> 0.355 0.377
<e d a b c> 0.268 0.332
<d b a c e> 0.165 0.291

Restricted DBM BIC
<c a b e d> 0.408 0.535
<d e b a c> 0.408 0.465

Unrestricted DBM BIC
<a c e d b> 0.060 1.000
<a c e d b> 0.817 0.000

Sports

CCA

PC & PE
<f e d c g a b> 0.295 0.281
<a b c d e f g> 0.139 0.505

JDF
<a b c d e f g> 0.332 0.359
<e f d g c a b> 0.273 0.330
<f e a c d g b> 0.228 0.311

Restricted DBM BIC
<d a e f c b g> 0.234 0.501
<e c f a b d g> 0.234 0.499

Unrestricted DBM BIC
<e f c a d b g> 0.144 1.000
<e f d c g a b> 0.953 0.000

1 The spread parameters are estimated different, for CCA equation (5.4), for DBM equa-
tions (5.16) and (5.17), respectively.
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8 Discussion

In this thesis, we have studied partitioning methods for ranking data. Let us recall our
research questions: which method is the most suitable for recovering the population me-
dian ranking in a simulation study and which internal validity index adequately reveals
the number of clusters. Based on the extensive simulation experiment in section 7.1 we
conclude that the K-Median Cluster Component Analysis (CCA) algorithm performs
best under all possible factor levels, with smallest standard error: indicating stable and
good recovery. Of the two mixtures of distance-based models (DBM), the configuration
with restricted spread parameter recovers the estimated population rankings better than
its unrestricted counterpart. In addition, the unrestricted DBM shares more similari-
ties when looking at real data sets. Based on the partitioning of the real data sets in
section 7.2 we suggest to use CCA and to verify the number of components in the data
with the partition entropy (PE).

Four distance measures that measure dissimilarity between pairs of judges have been
distinguished. The traditional Kendall distance (dτb) violates the triangle inequality
between complete and tied rankings. This has been corrected by Emond & Mason
(2000, 2002) to dτx that properly deals with tied rankings and is equivalent to the
Kemeny distance. Spearman’s ρ suffers from the sensitivity of irrelevant alternatives.
The appropriate distance measures are Emond & Mason’s distance and the Kemeny
distance, which are equivalent.

A homogeneous population of n judges ofm objects can be summarized by the modal,
median or mean ranking. The modal ranking is defined as the most observed ranking in
the sample. It can be troublesome if two (or more) rankings are observed equally often.
The median ranking is defined as the ranking that minimizes the distance to a single
ranking on the space of rankings. However, this ranking may not be uniquely defined
when many rankings satisfy the minimum distance. With many observed rankings and
high frequencies this is not a problem as the data examples show. The mean ranking
based on the Kemeny distance does not always generate much insight into the data. It
prefers tied rankings and can return the uninformative all-ties ranking as the estimate.

If a population may be composed of multiple groups, it can be partitioned into a
finite number of K clusters. The two partitioning methods are CCA, and the DBM.
They estimate the central ranking, mixing probabilities and spread parameter simi-
larly. However, they estimate the membership probabilities differently. When updating
the membership probabilities CCA only depends on the Kemeny distances to the clus-
ter centers of the previous iteration, whereas the DBM also depends on the estimated
spread and mixing probability parameters. Both algorithms were fitted with 50 different
starting values to minimize the loss function (CCA) and to maximize the complete-data
log-likelihood (DBM).

An interesting proposition for future research would be to extend these models to be
fitted with partial and incomplete rankings. If the missing objects in the case of partial
rankings are treated as tied on the last position, they are located on the sample space.
Then the models can be fitted, without any further adjustment.

Another suggestion for further research is to model the ranking process instead of the
population of judges like we did here, Marden (1996, p. 111). This can be done by the
Plackett-Luce model proposed by Plackett (1975) and Luce (1959). The ranking process
is modeled by decomposing the most preferred of m objects into m − 1 stages. This
model has recently been extended to a heterogeneous population of judges by Gormley &
Murphy (2006) and Csiszár (2012) to multiple groups with the MM and EM algorithm,
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respectively. The difference between these algorithms can be found in Hunter (2004). A
third model to sort rankings has very recently been proposed by Biernacki & Jacques
(2013) based on the insertion sort algorithm.

A final suggestion that could be interesting to follow up is the procedure given in
Iyigun (2007, Chapter 4), where the probabilistic d-clustering model is extended to
probabilistic dq-clustering. The membership probabilities are adjusted for cluster size.
The numerator and denominator in equation (5.1) are adjusted by dividing the distances
with the cluster probability in equation (5.3). This extension could be an improvement
of the CCA algorithm. In our simulation study CCA showed a lower recovery with
unequal cluster sizes.
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A Results of the recovery simulation

The following tables present the results of the simulation study described in section 7.1.
Each cell represents the mean recovery of ten replications. Table 18 gives the results
with four objects. Table 19 gives the results with five objects. Table 20 gives the results
of the first part with seven objects and Table 21 the remaining part with seven objects.
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B Observed rankings of the real data sets

The observed rankings of the data sets in section 7.2 are given in the following tables.
Table 22 lists the observed rankings and frequencies of the ‘Voting’ data set. Table 23
lists the observed rankings and frequencies of the ‘Living places’ data set. Table 24 lists
the observed rankings and frequencies of the ‘Political goals’ data set. Table 25 lists the
observed rankings and frequencies of the ‘Song’ data set. Table 26 lists the observed
rankings and frequencies of the ‘Idea’ data set. Table 27 lists the observed rankings
and frequencies of the ‘Rice subset’ data set. Table 28 lists the observed rankings and
frequencies of the ‘APA subset’ data set. Table 29 lists the observed rankings and
frequencies of the ‘Sports’ data set.

Table 22: Observed rankings and frequencies of the ‘Voting’ data set.

Ranking Frequency Ranking Frequency

a b c a b c

(1 2 3) 232 (2 3 1) 151
(1 3 2) 132 (3 1 2) 114
(2 1 3) 213 (3 2 1) 141

Table 23: Observed rankings and frequencies of the ‘Living places’ data set.

Ranking Frequency Ranking Frequency

a b c a b c

(1 2 3) 242 (2 3 1) 628
(1 3 2) 28 (3 1 2) 12
(2 1 3) 170 (3 2 1) 359

Table 24: Observed rankings and frequencies of the ‘Political goals’ data set.

Ranking Frequency Ranking Frequency

a b c d a b c d

(1 2 3 4) 137 (3 1 2 4) 330
(1 2 4 3) 29 (3 1 4 2) 294
(1 3 2 4) 309 (3 2 1 4) 117
(1 3 4 2) 255 (3 2 4 1) 69
(1 4 2 3) 52 (3 4 1 2) 70
(1 4 3 2) 93 (3 4 2 1) 34
(2 1 3 4) 48 (4 1 2 3) 21
(2 1 4 3) 23 (4 1 3 2) 30
(2 3 1 4) 61 (4 2 1 3) 29
(2 3 4 1) 55 (4 2 3 1) 52
(2 4 1 3) 33 (4 3 1 2) 35
(2 4 3 1) 59 (4 3 2 1) 27
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Table 25: Observed rankings and frequencies of the ‘Song’ data set.

Ranking Frequency Ranking Frequency

a b c d e a b c d e

(1 2 3 4 5) 7 (3 2 1 5 4) 6
(1 3 2 4 5) 9 (4 1 2 3 5) 2
(2 1 3 4 5) 4 (4 2 1 3 5) 8
(2 3 1 4 5) 10 (4 3 1 2 5) 2
(2 4 1 3 5) 3 (5 2 1 3 4) 5
(3 1 2 4 5) 6 (5 2 1 4 3) 2
(3 2 1 4 5) 19

Table 26: Observed rankings and frequencies in the ‘Idea’ data set.

Ranking Frequency Ranking Frequency Ranking Frequency

a b c d e a b c d e a b c d e

(1 3 4 5 2) 1 (4 2 3 5 1) 2 (5 1 4 2 3) 6
(1 4 2 3 5) 1 (4 3 5 2 1) 1 (5 1 4 3 2) 33
(3 2 5 4 1) 2 (5 1 2 4 3) 5 (5 2 3 4 1) 8
(4 1 2 5 3) 1 (5 1 3 2 4) 2 (5 2 4 1 3) 1
(4 1 5 3 2) 5 (5 1 3 4 2) 18 (5 2 4 3 1) 12

Table 27: Complete rankings and frequencies of the ‘Rice subset’ data set.

Ranking Frequency Ranking Frequency Ranking Frequency

a b c d e a b c d e a b c d e

(1 2 3 5 4) 8 (2 3 1 4 5) 5 (4 1 3 5 2) 1
(1 2 4 3 5) 2 (2 3 1 5 4) 18 (4 1 5 2 3) 1
(1 2 5 3 4) 7 (2 4 1 3 5) 1 (4 2 1 5 3) 1
(1 3 2 4 5) 10 (2 4 1 5 3) 5 (4 2 3 1 5) 3
(1 3 2 5 4) 20 (2 4 3 5 1) 1 (4 2 3 5 1) 1
(1 3 4 5 2) 2 (2 4 5 3 1) 1 (4 3 1 2 5) 2
(1 3 5 4 2) 1 (2 5 4 3 1) 1 (4 3 1 5 2) 1
(1 4 2 3 5) 3 (3 1 2 4 5) 2 (4 3 5 1 2) 1
(1 4 2 5 3) 1 (3 1 2 5 4) 11 (4 5 1 2 3) 1
(1 4 3 2 5) 1 (3 1 4 2 5) 1 (4 5 1 3 2) 1
(1 5 2 3 4) 2 (3 1 5 4 2) 2 (4 5 2 1 3) 1
(1 5 2 4 3) 2 (3 2 1 4 5) 9 (5 1 2 4 3) 2
(1 5 3 2 4) 1 (3 2 1 5 4) 4 (5 1 3 4 2) 1
(1 5 3 4 2) 1 (3 2 4 1 5) 3 (5 1 4 3 2) 2
(1 5 4 3 2) 1 (3 2 5 1 4) 3 (5 2 1 3 4) 1
(2 1 3 4 5) 7 (3 2 5 4 1) 1 (5 2 4 3 1) 1
(2 1 3 5 4) 19 (3 4 1 2 5) 1 (5 3 1 2 4) 1
(2 1 4 3 5) 1 (3 4 5 2 1) 1 (5 3 1 4 2) 1
(2 1 4 5 3) 1 (3 5 1 4 2) 1 (5 3 2 1 4) 1
(2 1 5 3 4) 4 (4 1 2 5 3) 4 (5 4 1 2 3) 1
(2 1 5 4 3) 7 (4 1 3 2 5) 2 (5 4 1 3 2) 1

47



Table 28: Complete rankings and frequencies of the ‘APA subset’ data set.

Ranking Frequency Ranking Frequency Ranking Frequency

a b c d e a b c d e a b c d e

(1 2 3 4 5) 30 (2 4 5 1 3) 53 (4 2 3 1 5) 51
(1 2 3 5 4) 28 (2 4 5 3 1) 63 (4 2 3 5 1) 24
(1 2 4 3 5) 27 (2 5 1 3 4) 79 (4 2 5 1 3) 66
(1 2 4 5 3) 29 (2 5 1 4 3) 106 (4 2 5 3 1) 58
(1 2 5 3 4) 35 (2 5 3 1 4) 21 (4 3 1 2 5) 35
(1 2 5 4 3) 34 (2 5 3 4 1) 40 (4 3 1 5 2) 38
(1 3 2 4 5) 102 (2 5 4 1 3) 34 (4 3 2 1 5) 35
(1 3 2 5 4) 95 (2 5 4 3 1) 35 (4 3 2 5 1) 30
(1 3 4 2 5) 35 (3 1 2 4 5) 34 (4 3 5 1 2) 84
(1 3 4 5 2) 37 (3 1 2 5 4) 30 (4 3 5 2 1) 91
(1 3 5 2 4) 28 (3 1 4 2 5) 42 (4 5 1 2 3) 30
(1 3 5 4 2) 35 (3 1 4 5 2) 40 (4 5 1 3 2) 38
(1 4 2 3 5) 45 (3 1 5 2 4) 34 (4 5 2 1 3) 24
(1 4 2 5 3) 70 (3 1 5 4 2) 30 (4 5 2 3 1) 34
(1 4 3 2 5) 24 (3 2 1 4 5) 74 (4 5 3 1 2) 54
(1 4 3 5 2) 51 (3 2 1 5 4) 82 (4 5 3 2 1) 31
(1 4 5 2 3) 48 (3 2 4 1 5) 75 (5 1 2 3 4) 29
(1 4 5 3 2) 52 (3 2 4 5 1) 34 (5 1 2 4 3) 11
(1 5 2 3 4) 50 (3 2 5 1 4) 64 (5 1 3 2 4) 19
(1 5 2 4 3) 70 (3 2 5 4 1) 41 (5 1 3 4 2) 25
(1 5 3 2 4) 17 (3 4 1 2 5) 35 (5 1 4 2 3) 46
(1 5 3 4 2) 36 (3 4 1 5 2) 87 (5 1 4 3 2) 50
(1 5 4 2 3) 35 (3 4 2 1 5) 28 (5 2 1 3 4) 50
(1 5 4 3 2) 40 (3 4 2 5 1) 62 (5 2 1 4 3) 35
(2 1 3 4 5) 40 (3 4 5 1 2) 133 (5 2 3 1 4) 24
(2 1 3 5 4) 30 (3 4 5 2 1) 107 (5 2 3 4 1) 26
(2 1 4 3 5) 26 (3 5 1 2 4) 36 (5 2 4 1 3) 44
(2 1 4 5 3) 24 (3 5 1 4 2) 45 (5 2 4 3 1) 54
(2 1 5 3 4) 42 (3 5 2 1 4) 27 (5 3 1 2 4) 26
(2 1 5 4 3) 36 (3 5 2 4 1) 41 (5 3 1 4 2) 34
(2 3 1 4 5) 172 (3 5 4 1 2) 61 (5 3 2 1 4) 22
(2 3 1 5 4) 186 (3 5 4 2 1) 71 (5 3 2 4 1) 22
(2 3 4 1 5) 52 (4 1 2 3 5) 16 (5 3 4 1 2) 49
(2 3 4 5 1) 53 (4 1 2 5 3) 22 (5 3 4 2 1) 57
(2 3 5 1 4) 52 (4 1 3 2 5) 23 (5 4 1 2 3) 28
(2 3 5 4 1) 45 (4 1 3 5 2) 31 (5 4 1 3 2) 43
(2 4 1 3 5) 96 (4 1 5 2 3) 45 (5 4 2 1 3) 24
(2 4 1 5 3) 162 (4 1 5 3 2) 50 (5 4 2 3 1) 37
(2 4 3 1 5) 28 (4 2 1 3 5) 40 (5 4 3 1 2) 67
(2 4 3 5 1) 44 (4 2 1 5 3) 52 (5 4 3 2 1) 29
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Table 29: Observed rankings and frequencies of the ‘Sports’ data set.

Ranking Frequency Ranking Frequency Ranking Frequency

a b c d e f g a b c d e f g a b c d e f g

(1 2 3 4 5 6 7) 1 (3 1 2 5 6 7 4) 1 (5 6 3 7 1 4 2) 1
(1 2 3 4 5 7 6) 1 (3 1 2 7 4 6 5) 1 (5 6 4 2 3 1 7) 1
(1 2 3 4 6 5 7) 1 (3 1 2 7 5 4 6) 1 (5 6 4 3 1 2 7) 1
(1 2 3 5 4 7 6) 1 (3 2 1 4 5 6 7) 1 (5 6 4 3 2 1 7) 1
(1 2 5 6 3 4 7) 1 (3 2 1 4 6 5 7) 1 (5 7 3 4 2 1 6) 1
(1 2 7 5 3 4 6) 1 (3 2 1 4 7 5 6) 1 (5 7 4 1 2 6 3) 1
(1 3 2 5 4 7 6) 2 (3 2 4 1 5 6 7) 1 (5 7 6 1 4 2 3) 1
(1 3 2 5 6 4 7) 1 (3 4 5 7 6 2 1) 1 (5 7 6 4 1 3 2) 1
(1 3 2 5 7 6 4) 1 (3 4 6 7 2 5 1) 1 (6 1 2 5 3 4 7) 1
(1 3 2 6 5 7 4) 1 (3 5 2 1 7 6 4) 1 (6 1 5 3 4 2 7) 1
(1 3 4 5 6 2 7) 1 (3 6 5 4 1 2 7) 1 (6 2 4 5 1 3 7) 1
(1 3 4 6 2 5 7) 1 (3 7 2 4 6 1 5) 1 (6 2 4 7 3 1 5) 1
(1 3 4 7 5 6 2) 1 (3 7 4 5 2 1 6) 1 (6 3 1 5 4 2 7) 1
(1 3 7 2 4 5 6) 1 (3 7 4 6 2 1 5) 1 (6 3 1 5 7 4 2) 1
(1 4 3 2 5 7 6) 1 (3 7 5 4 2 6 1) 1 (6 3 4 7 2 1 5) 1
(1 4 5 6 7 3 2) 1 (3 7 6 5 4 2 1) 1 (6 4 5 2 1 3 7) 1
(1 4 7 3 2 5 6) 1 (4 1 2 3 5 6 7) 1 (6 7 2 4 1 3 5) 1
(1 5 2 7 3 6 4) 1 (4 1 3 2 6 5 7) 1 (6 7 3 1 2 4 5) 1
(1 5 3 2 4 6 7) 1 (4 1 3 5 2 7 6) 1 (6 7 4 1 2 5 3) 1
(1 5 4 3 2 6 7) 1 (4 1 6 2 5 3 7) 1 (6 7 4 1 3 2 5) 1
(1 5 4 6 2 3 7) 1 (4 1 7 2 6 5 3) 1 (6 7 4 3 1 2 5) 1
(1 6 2 3 4 7 5) 1 (4 2 1 3 5 6 7) 1 (6 7 4 3 2 1 5) 1
(1 7 4 3 5 2 6) 1 (4 3 5 7 2 1 6) 1 (6 7 5 3 2 1 4) 1
(1 7 6 5 3 2 4) 1 (4 5 3 1 6 7 2) 1 (6 7 5 3 4 1 2) 1
(2 1 3 5 6 7 4) 1 (4 5 7 1 3 6 2) 1 (6 7 5 4 1 2 3) 1
(2 1 3 7 5 6 4) 1 (4 5 7 6 2 1 3) 1 (6 7 5 4 2 3 1) 3
(2 1 4 3 6 7 5) 1 (4 6 1 5 3 2 7) 1 (7 1 3 2 5 4 6) 1
(2 1 5 6 3 4 7) 1 (4 6 1 7 3 2 5) 1 (7 2 5 3 6 1 4) 1
(2 1 6 7 3 5 4) 1 (4 6 3 5 2 7 1) 1 (7 4 1 3 5 2 6) 1
(2 3 1 4 6 5 7) 1 (4 6 5 3 1 2 7) 1 (7 4 5 6 1 3 2) 1
(2 3 1 5 6 4 7) 1 (4 6 5 3 2 1 7) 1 (7 4 6 3 5 1 2) 1
(2 3 1 7 6 5 4) 1 (4 6 7 1 3 2 5) 1 (7 5 1 6 3 4 2) 1
(2 3 4 1 5 6 7) 1 (4 6 7 2 5 3 1) 1 (7 5 3 1 4 2 6) 1
(2 3 4 1 6 5 7) 1 (4 6 7 5 1 2 3) 1 (7 5 3 4 1 2 6) 1
(2 4 3 7 1 5 6) 1 (4 7 2 3 5 1 6) 1 (7 5 6 1 2 3 4) 1
(2 4 5 1 6 3 7) 1 (4 7 3 1 5 6 2) 1 (7 6 1 4 2 3 5) 1
(2 5 1 3 6 4 7) 1 (4 7 3 5 1 2 6) 1 (7 6 2 1 5 4 3) 1
(2 5 3 1 4 6 7) 2 (4 7 6 2 3 1 5) 1 (7 6 3 2 1 4 5) 1
(2 7 4 5 1 3 6) 1 (5 1 2 4 3 6 7) 1 (7 6 4 3 1 2 5) 1
(2 7 6 4 5 1 3) 1 (5 1 2 6 4 3 7) 1 (7 6 4 5 3 2 1) 1
(3 1 2 4 5 7 6) 1 (5 4 7 1 2 3 6) 1 (7 6 5 1 2 4 3) 1
(3 1 2 5 6 4 7) 1 (5 4 7 6 2 1 3) 1 (7 6 5 1 3 2 4) 1
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