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Abstract
The effect of a drug is directly related to drug concentration in

blood. Therefore, predicting and describing the time course of drug
concentration in the body, i.e. the study of pharmacokinetics, is crucial
in establishing and optimizing drug therapy.

The immunosuppressant mycophenolate mofetil (with active ingre-
dient mycophenolic acid), is extensively used in renal transplantation
in order to prevent acute allograft rejection. Large inter-subject and
inter-occasion variability in the exposure of mycophenolic acid in com-
bination with one standard dosing regimen for all renal transplant re-
cipients makes it uncertain if the therapeutic window is reached in
every patient. With the pharmacokinetic data of six historical studies,
it is tried to find the underlying causes responsible for the inter-subject
variability in order to optimize the mycophenolic acid exposure in ev-
ery patient using Bayesian statistics. As the statistical methods are
essential in answering such a research question and these data is al-
ready analysed using using traditional, maximum likelihood, methods
by Van Hest et al., emphasis is also put on the comparison of our and
their results.

The data were described with nonlinear mixed effects models us-
ing WinBUGS and its interface PKBUGS. Analysing the data of the
individual studies resulted in identifiability problems, i.e. the data
of most studies were insufficient in estimating all model parameters
with non-informative priors. However, advantages of Bayesian meth-
ods emerged, as prior information was increased to obtain accurate
posterior summary measures.

Combining the data of all studies, i.e. the individual participant
data meta-analyses, improved the quality of the data, the analyses and
the reliability of the results. Subsequently, the identifiability problems
diminished and using close to non-informative prior information re-
sulted in reliable, precise posterior summary measures on almost all
model parameters and some covariates were found to explain the inter-
subject variability.

Comparing our results with the results obtained from the analysis
with non-Bayesian methods turned out to be hard. More precise and
very different estimates of the model parameters were obtained with
Bayesian methods. Probably caused by differences between the used
models, e.g. in contrast to the model used for non-Bayesian methods,
we did not consider covariates with missing values and time-dependent
covariates but did correct for inter-study variability. Nevertheless, the
contribution of prior information is a major advantage in the analysis
of pharmacokinetic data, especially because pharmacokinetic data is
hard to collect and highly reliable historical pharmacokinetic studies
are available for each drug on the market.
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1 Introduction

Pharmacokinetics (PK) finds its roots in the multi-disciplinary process of
drug research. Drug research involves the development of novel therapeutic
agents in areas of medical need and can be divided into two stages: the dis-
covery and design stage vs. the development stage. The discovery and design
stage includes, among other things, the screening of new lead molecules and
the research of new targets for a drug to interact with (most often receptors
or enzymes). The development stage starts with a new drug molecule and
focuses on its safety and efficacy. This is a very long and expensive stage.
On average, it takes 12-15 years for a new drug to reach the patient and
costs about US$ 500-2000 million [1]. The study of pharmacokinetics be-
longs, to a large extent, to the development stage of drug research and goes
hand in hand with the study of pharmacodynamics (PD). A very intuitive
and famous definition of PK/PD is given by Benet [2]:

”Pharmacokinetics may be simply defined as what the body
does to the drug, as opposed to pharmacodynamics which may
be defined as what the drug does to the body.”

Pharmacokinetics is the study of predicting and describing the time course of
drug concentration in the body, while pharmacodynamics is the study of the
time course and the intensity of the drug effect on the organs/physiology.
Both disciplines are often combined resulting in PK/PD modeling. This
thesis focuses only on pharmacokinetic modeling. [3]

The pharmacokinetics of a drug is characterized by four important pro-
cesses: the absorption, distribution, metabolism and excretion (ADME) of a
drug. These processes can be illustrated based on the plasma drug concen-
trations over time (Figure 1): After oral administration of a drug, the plasma
drug concentration increases due to the absorption of the drug by the body.
At the same time, the already absorbed amount of the drug gets distributed
through the body and some of it gets eliminated from the body, whereby
the elimination process can be divided in the metabolism and excretion of
a drug. When the elimination process exceeds the absorption process, the
plasma drug concentration decreases until all drug is eliminated. The drug
concentration reaches its peak when the rate of drug absorption is equal to
the rate of elimination and when distribution equilibrium has established.
These processes result in a characteristic plasma drug concentration time
profile. All of the above mentioned processes have their own parameters to
describe the characteristics of the drug.

A basic assumption in the study of pharmacokinetics involves the corre-
lation between the drug effect (PD) and the drug concentration at the site of
action. The site of action often involves receptors which are located within
or at the surface of cells and are widely distributed throughout the body,
which makes them inaccessible to observations. To avoid this problem, drug
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Figure 1: General drug concentration time profile of an oral administered drug.

concentration is most frequently measured in the blood, plasma or urine (for
convenient reasons, we will refer to the plasma as the site of measurement
throughout this thesis, however, all concepts can be applied to all sites of
measurements mentioned before). The drug concentration in these, easy
to sample, fluids is proportional to the drug concentration in other tissues,
including the site of action. [4, 5]

The ultimate goal of drug therapy is the achievement of efficacy without
toxicity. To accomplish this, the plasma drug concentration should be high
enough to cause the wanted effect but low enough to avoid toxicity. This
range is called the therapeutic window, and it depends on the pharmacoki-
netic properties of a drug. The plasma drug concentration should remain
within the therapeutic window of the drug until the desired therapeutic ef-
fect is reached, which can be after a single dose of the drug (to relieve a
headache) or it can take a life time (in the treatment of diabetes). The
characteristics of the pharmacokinetic processes of a drug are important in
the correct use of that drug in therapy, and help answering the most im-
portant questions in drug therapy: How much? How often? and How long?
These questions are highly correlated to each other, and reach the surface in,
for instance, the choice of the route of drug administration. The preferred
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route is oral administration (because it is easy and cheap), however, some
drugs are poorly absorbed by the body resulting in a low plasma drug con-
centration. The absorption process can be avoided when using intravenous
(IV) administration, in which the drug is immediately in the blood of the
patient. A good example of such a drug is the analgesic morphine, which is
widely used to relieve severe pain; when administered orally, only 40-50% of
the dose reaches the site of action. It depends on the needs of the patient
which route is more effective. If a patient needs to be treated chronically
with high doses of morphine (in cases of severe chronic disease), the therapy
will probably involve IV infusion at constant rate. While another patient
suffers from severe pain attacks, it is probably advised to use a oral dose
of morphine when necessary. Another example of the correct use of a drug
in therapy which is based on the pharmacokinetic characteristics of that
drug is the choice of the best dosing regimen. Some drugs are completely
eliminated from the body in two hours, while other drugs need twelve hours
to be completely eliminated from the body. A drug with such a long elim-
ination time should be taken less often by a patient than a drug with a
very short elimination time. In general and for convenient reasons, the fre-
quency of drug administration should be kept to a minimum. Two extremes
include the benzodiazepines (psychoactive drugs which have sedative, hyp-
notic, anti-anxiety and muscle-relaxant properties) diazepam, better known
as Valium, and triazolam. Fifty percent of diazepam is eliminated from the
body in 20-100 hours while the same amound of triazolam takes only 1.5-5.5
hours to be eliminated. Suppose both drugs have the exact same therapeu-
tic effect, it will again depend on the patient’s needs (for instance chronic
anxiety disorders or acute panick attacks) which drug would be chosen for
therapy and would depend on the elimination characteristics of the drug. [5]

The main goal of this thesis is to describe the analysis of complex phar-
macokinetic data sets using Bayesian methods. In order to reach this goal,
the subsequent sections aim to introduce the reader in all elements needed
to achieve this objective. We start with Section 2, which introduces the used
data sets and describes the clinical and statistical research questions of this
thesis. The subsequent section elaborates on the study of pharmacokinetics.
In Section 4, the popular estimation techniques in analysing pharmacoki-
netic data are discussed with a focus on the techniques and software used in
this thesis. The actual analysis are described in Sections 5 and 6. We start
with the analysis per study and then describe the analysis of all studies to-
gether, i.e. the meta-analysis. Finally, all results, pitfalls and achievements
are summarized in the conclusion, Section 7.





2 The Data Sets and the Research Questions

2.1 Introduction

Pharmacokinetic data consist of repeated observations on the same subject
over a short period of time. More specifically, the patient receives a fixed
amount of a drug, and the concentration of that drug is measured in the
patient’s blood, plasma or urine over time. The drug of interest in this the-
sis is mycophenolate mofetil (MMF). MMF is an immunosuppressive drug
that is widely used in solid organ transplantations to prevent acute allograft
rejection [6]. Six different studies provide the data in this thesis and are
discussed in Section 2.2. In these studies, all patients underwent a renal
transplantation and received different doses of MMF. MMF is a prodrug,
which means that MMF itself is biologically inactive, but after metabolism
it produces its active substance mycophenolic acid (MPA). The data consist
a total of 1894 MPA concentration time profiles obtained from 468 renal
transplant recipients who participated in one of the six studies. The admin-
istered MMF dose varies within and between the studies and the plasma
MPA concentrations were measured at different time points, varying also
within and between the studies. Apart from measuring the MPA concen-
tration, lots of other biological relevant characteristics of the patients were
measured. Table 1 shows per study the number of participants, the number
of occasions, the number of measurements per occasion, the dosing regimens
and summary statistics of the covariates.

When multiple patients receive the same amount of a drug, there is of-
ten a high variability between their drug concentration time profiles, the
inter-subject variability (ISV). Additionally, when drug concentration time
profiles of the same patient are obtained on different occasions, there is of-
ten a high variability between the profiles on different occasions, the inter-
occasion variability (IOV ; also referred to as intra-subject variability). MMF
experiences this high ISV and IOV in patients, see Figure 2, and because the
recommended dosing regimen of MMF in clinical practice is 1 g twice daily
it is uncertain if the therapeutic window is reached in every patient [7–10].
In order to optimize the MPA exposure in every patient and to reduce the
number of acute allograft rejections, individualization of the MMF dose may
be necessary. This can be achieved if the underlying causes responsible for
the fluctuation in drug exposure between and within patients, are found.
When their impact is revealed and quantified, physicians may be capable of
predicting the MMF exposure in individual patients, and adjust the dosing
regimen.
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Figure 2: Plasma MPA concentration time profiles. (a) Profiles of three different individ-
uals from study 6 showing inter-subject variability. (b) Profiles of four different occasions
of the same individual from study 4 showing inter-occasion variability.

2.2 The Studies

A total of 18 renal transplant recipients participated in the first, unpublished
study. The study started one day after the renal transplantation and ended
twenty days later. The patients’ plasma MPA concentrations were measured
on seven time points at baseline and at the end date, see Figures 3(a) and
(b) for the ISV and IOV in study 1. Besides MMF, the patients received
prednisone (anti-inflammatory) and cyclosporine (immunosuppressant) as
co-medication.

The second study is a randomized double-blind multicenter study, with
as main goal the evaluation of safety and efficacy of MMF during the first
six months after renal transplantation. Three treatment groups were com-
pared based on the incidence of acute rejection, two groups received different
dosing regimens of MMF and one group received a recommended dose of aza-
thioprine (immunosuppressant). A total of 499 patients participated in this
study and their plasma MPA concentrations were measured on seven time
points at the first and the fifth day after transplantation and on the day of
hospital discharge (ranging from 6 to 21 days), see Figures 3(c) and (d). The
patients also received prednisone and cyclosporine as co-medication. [11,12]

The third study is a randomized double-blind multicenter study. The
aim was to investigate the relationship between MPA exposure and acute
rejection within the first six months post-transplantation. A total of 154
renal transplantation recipients were randomly allocated to receive one of
the three MMF dosing regimens (Table 1). MPA concentration time profiles
were obtained at nine fixed occasions (ranging from 3 days to 20 weeks post-
transplantation) on eight (the first three occasions) or five time points per
day, see Figures 3(e) and (f). Again, all patients were co-medicated with
prednisone and cyclosporine. [13,14]
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A total of 536 renal transplant recipients enrolled in the fourth study,
which was an open-label, multicenter, prospective study with as main clin-
ical goal the improvement of the long term renal function. All patients
received the same dose of MMF, but the co-medication varied across the
three treatment groups. In two groups, the patients received daclizumab
(immunosuppressant) with corticosteroids (anti-inflammatory and immuno-
suppressant) and cyclosporine, with varying doses of cyclosporine (standard
recommendation or a low dose). Patients in the third group received corti-
costeroids with a standard recommendation of cyclosporine. The MPA ex-
posure was measured at five fixed occasions (ranging from 4 days to 6 months
post-transplantation) on ten time points, see Figures 3(g) and 2(b). [15]

In the fifth, unpublished study, 118 renal transplant recipients partici-
pated. The MPA exposure was measured on ten time points at four fixed
occasions (ranging from 7 days to 12 months), see Figures 3(h) and (i). As
co-medication, the patients received either prednisone and cyclosporine or
sirolimus (immunosuppressant) and daclizumab.

The sixth study has an open-label, multicenter, parallel group design and
aimed to find a correlation between MPA exposure and ethnicity, especially
between African-Americans and Caucasians. In total 84 renal transplant
recipients participated and the MPA exposure was measured at one occasion
(ranging from 6 months to 10 years) on ten time points, see Figure 2(a). The
patients received prednisone and cyclosporine as co-medication. [16]

2.3 The Aims of this Thesis

The main clinical goal of this thesis is to explore whether any of the co-
variates summarized in Table 1 explain the inter-subject variability of MPA
exposure. This clinical goal is already stated, investigated and published by
Van Hest et al. using the same data as the data in this thesis [17]. However,
the statistical methods used in this thesis differ from previous research. Here
we look at Bayesian methods, while Van Hest et al. used maximum likelihood
techniques to estimate the parameters. Combining the clinical research ques-
tion and the Bayesian methods gives rise to the following statistical research
question: What is the probability that any of the covariates summarized in
Table 1 explain the inter-subject and the inter-occasion variability of the
estimated PK parameters given the observed data? And consequently: Do
Bayesian methods and inferences have advantages or disadvantages over the
classical statistical methods used by Van Hest et al. in analysing this data?
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Figure 3: Plasma MPA concentration time profiles showing (a) ISV in study 1, (b) IOV
in study 1, (c) ISV in study 2, (d) IOV in study 2, (e) ISV in study 3, (f) IOV in study
3, (g) ISV in study 4, (h) ISV in study 5 and (i) IOV in study 5.
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3 Pharmacokinetics

This section aims to introduce the reader to the principles of pharmacoki-
netics. In this section, we describe the time course of drug concentration
within the body and how that is modeled mathematically. As stated before,
the time course of the drug concentration is characterized by four processes:
the absorption, distribution, metabolism and excretion of the drug. The
speed at which these processes occurs is essential in the description of the
overall time course of the drug concentration and is represented by a se-
ries of rate processes. Therefore, Section 3.1 introduces the most important
rate processes in pharmacokinetics and Section 3.2 discusses the underlying
pharmacokinetic processes and their parameters. Section 3.3 elaborates on
popular pharmacokinetic models that combine all the underlying processes
in order to describe them mathematically. In this respect, we focus on the
compartment model which is used in this thesis.

3.1 Rate Processes in Pharmacokinetics

The drug concentration fluctuates over time due to the speed of the underly-
ing pharmacokinetic processes. The speed at which these processes occurs,
can be described by multiple rate processes. In general, a drug responds
either linearly or exponentially with time, resulting in two different rate
processes.

The pharmacokinetic rate processes are mathematically described by or-
dinary differential equations (ODE). An ODE is an equation that contains
an ordinary derivative of unknown functions, which are often involved in
the mathematical modeling of real-life phenomena [18]. Essentially, two
rate processes are of main importance and occur most often in the phar-
macokinetics of a drug: the zero-order and the first-order rate process. A
zero-order rate process, like for instance in the absorption of a drug, means
that a drug is absorbed at a constant rate, resulting in:

dX1(t)

dt
= −k0, (3.1)

where k0 is a (zero-order rate) constant and X1(t) is the amount of the drug
remaining to be transferred to the body at time t, the solution is described
in Section 3.3.1. In zero-order kinetics, the drug concentration decreases or
increases linearly with time. Each rate process has its corresponding half-
life (T1/2), which is defined as the time needed for half of the drug to be
depleted (absorbed, distributed or eliminated). The half-life of a zero-order
rate process is specified as:

T1/2 =
X0

2k0
, (3.2)

where X0 is the amount (of a drug) at time = 0.
In first-order kinetics, the rate of reaction is proportional to the amount
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remaining to be transfered, resulting in:

dX1(t)

dt
= −k1X1(t), (3.3)

with k1 a (first-order rate) constant (for the solution, see Section 3.3.1). In
first-order kinetics, the drug concentration decreases or increases exponen-
tially with time. The corresponding half-life is then given by the expression:

T1/2 =
ln(2)

k1
. (3.4)

The majority of drugs follow either zero-order or first-order kinetics. Oc-
casionally, the pharmacokinetics of a drug is described by second-order or
even nth-order (n>2) kinetics. Because these rate processes are exceptional
in pharmacokinetics, they will not be further discussed in this thesis.

3.2 ADME

3.2.1 Absorption

The absorption process is defined as the process by which a drug proceeds
from its site of administration into the blood stream. Apparently, after
an intravenous injection, the drug is administered directly into the blood
stream, resulting in the lack of an absorption process. In all other routes
of administration, the drug has to cross biological membranes in order to
reach the blood stream. For instance, when administered orally, it has to
cross the membranes of the gastro-intestinal tract (GIT). The speed at which
this process occurs depends on the molecular properties of the drug and the
dosage form (a normal tablet will be absorbed more rapidly than a slow
release formulation). [19]

The previous section described the two main parameters involved in the
absorption process: the absorption rate constant (ka) and corresponding
half-life (Ta,1/2). As seen above, ka is a characteristic of the absorption rate
and follows either zero-order or first-order kinetics, described by (3.1) or
(3.3) while X1(t) is the amount remaining to be absorbed at time t with a
half-life defined by expression (3.2) or (3.4). Another important parameter
in the absorption process is the bioavailability (F ), which is the propor-
tion of chemically unchanged drug that reaches the systemic blood stream.
The term ’chemically unchanged’ refers to the early breakdown of a drug,
which happens most often with drugs administered orally. There are mul-
tiple mechanisms that may cause the breakdown of the active substance of
the drug in the GIT (before it reaches the blood stream). For instance,
some molecules cannot withstand extreme acidity (when the stomach has
a very low pH), or enzymes in the GIT may be responsible for digestion
of the molecule (which happens with insulin if it were taken orally). The
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final parameter involving the absorption is the absorption lag time (Tlag),
defined as the time delay prior to the start of absorption. The absorption
lag time may be influenced by factors such as the stomach emptying process
or intestinal motility.

3.2.2 Distribution

Distribution is the process of reversible transfer of a drug to and from the
blood stream. When drugs enter the blood circulation, they are distributed
throughout the entire body, entering and leaving tissues. The extent of
distribution depends on the drug, some drugs remain almost completely in
the blood stream, while others remain to a large extent in other tissues.
For example, lipid-soluble drugs tend to accumulate in fatty tissues. These
fatty tissues slowly release small fractions of the drug back into the blood
stream, a process that may continue for days after a single dose of the
drug. This process is described by the distribution rate constant (kd) and
its corresponding half-life (Td,1/2), defined in Sections 3.1 and 3.2.1. The
volume of distribution (V ) is the parameter that describes the tendency of a
drug to distribute out of the blood into the tissues. V relates the obtained
plasma drug concentration to the total amount of drug in the body:

V olume of distribution (l) =
Amount in body (mg)

Plasma drug concentration (mg/l)
. (3.5)

It represents the volume of plasma necessary to account for all the drug
in the body. When most of the drug remains in tissues, the plasma drug
concentration is relatively low compared to the administered dose, in such
a case, V tends to be extremely large. For instance, the drug chloroquine
(prevents malaria) accumulates in the kidney, liver, lung and spleen, and
is strongly bound to melanin containing cells (the eyes and skin), its V is
15.000 l. Suppose 500 mg of chloroquine is administered to a patient, then
using expression (3.5), the plasma concentration will probably be near 0.03
mg/l. Then, how much plasma, given that 1 l plasma contains 0.03 mg, is
necessary to account for the total drug in the body (500 mg)? The answer to
this question is V, i.e. 15.000 l. It represents a hypothetical volume, which
provides an intuitive measure of the relationship between drug in plasma
and tissue. Note that V can only be determined after the establishment of
distribution equilibrium between drug in tissue and that in plasma. [5, 19]

3.2.3 Elimination = Metabolism and Excretion

The elimination process is defined as the irreversible removal of drugs from
the body. The speed of this process is characterized by the elimination rate
constant (kel) and corresponding half-life (Tel,1/2), defined in Sections 3.1
and 3.2.1. Elimination occurs by excretion and metabolism. Excretion is the
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irreversible removal of chemically unchanged drug from the body, which oc-
curs predominantly via the kidneys. Occasionally, drugs are excreted via the
bile or in the breath (volatile substances). The major mechanism responsible
for elimination of drugs from the body is metabolism, i.e. the conversion of
one chemical compound into another. The most common chemical reactions
of drug metabolism include oxidation, reduction, hydrolysis and conjuga-
tion. In general, the liver is the primary site of drug metabolism, however,
occasionally, drugs are metabolized in the kidneys, skin, lungs, blood or
gastro-intestinal wall. The elimination mechanism is best described by its
parameter clearance (CL). CL is a proportionality factor that relates the
plasma drug concentration to the rate of elimination:

Clearance (l/h) =
Rate of elimination (mg/h)

Plasma drug concentration (mg/l)
. (3.6)

Clearance is the theoretical volume of blood, which is effectively cleared of
drug per unit of time. For example, suppose a drug has a CL of 2 l/h, this
means that 2 liters of blood are cleared of the drug per hour. When the
plasma drug concentration is 10 mg/l, then 20 mg of the drug is cleared per
hour. Each elimination process can be described by its own CL, for instance
the renal clearance (CLr) or hepatic clearance (CLh). The total Clearance
(CLtotal) is the sum of all individual processes. [5]

3.3 Compartment Models

The previous sections covered the underlying pharmacokinetic processes in
the time course of plasma drug concentration. These processes need to be
combined in order to describe the overall time course of drug concentration
within the body. To achieve this, three modeling approaches have been
suggested: the physiological model, the compartment model and the non-
compartment approach.

In physiology modeling (also known as blood flow or perfusion models),
the body is divided into compartments based on anatomical regions (such as
the blood, heart and liver). The time course of drug levels in the compart-
ments is calculated using blood flow rates through each compartment in the
model. On the other hand, in compartment modeling, the body is divided
into compartments but these compartments do not represent realistic, physi-
ological parts of the body but they represent a tissue or group of tissues that
have similar blood flow rates and drug affinity. The non-compartment ap-
proach does not assume a number of compartments and thereby reduces the
number of assumptions necessary to model drug concentration time data.
The most common PK parameters are estimated purely based on the plasma
concentration levels using area under the curve (AUC) and area under the
first moment curve (AUMC) calculations.
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This section elaborates on the modeling approach used in this thesis, i.e.
compartment modeling. [20]

(a)

C

(b)

C P

(c)

C P2P1

Figure 4: Illustration of (a) one- (b) two- and (c) three-compartment models. With the
central compartments (C, blue) and the peripheral compartments (P, pink).

A distinction can be made between one-, two- and three-compartment
models, see Figure 4. Within each compartment, the drug is assumed to be
uniformly distributed, the compartments are considered to be ’well stirred’
and mixing of the drug is assumed to be rapid. This results in a dynamic
movement of drugs in and out of the compartments, with an equal proba-
bility for each drug molecule to leave or enter a compartment. In a one-
compartment model, the body can be seen as one (central) compartment in
which the drug is administered into and eliminated from (the body as one
giant bucket). It assumes an immediate distribution of the drug throughout
the body, resulting in a mono-phasic drug concentration time profile (mono-
exponential; see Figure 5(a)). In a two-compartment model, the drug is
assumed to distribute between two compartments, a central compartment
and a peripheral compartment. Although the compartments do not repre-
sent physiological parts of the body, a physiological distinction is assumed
to hold. The central compartment is assumed to consist of tissues that are
highly perfused (such as the heart, lungs, and kidneys) and the peripheral
compartment is assumed to consist less well-perfused tissues (such as the
muscles, fat and skin). This results in a bi-phasic drug concentration time
profile (bi-exponential, see Figure 5(b)). Finally, in a three-compartment
model, the drug is assumed to distribute between three compartments, re-
sulting in a tri-phasic drug concentration time profile (not shown). [5,20,21]

Above assumptions make it possible to incorporate the rate processes (de-
scribed in Section 3.1) into the structure of the compartment model. By
combining the ordinary differential equations that represent the rate pro-
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cesses (one for each arrow in the compartment model), each compartment
can be described mathematically, which is illustrated in Section 3.3.1.
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Figure 5: General plasma drug concentration time profiles of (a) one- and (b) two-
compartment models with an IV bolus dosing regimen.

3.3.1 Building the Model

Suppose we have pharmacokinetic data of a drug that follows first-order ki-
netics and was administered with an intravenous bolus dose. We want to
describe the drug concentration over time of the central compartment using
a two-compartment model. The arrows in the two-compartment model of
Figure 4 describe the underlying pharmacokinetic processes. The central
compartment of the two-compartment model has three underlying pharma-
cokinetic processes (the absorption process is omitted because the drug was
administered with an intravenous bolus dose): the distribution from the cen-
tral into the peripheral compartment, the distribution from the peripheral
into the central compartment and the elimination from the central com-
partment. Combining the rates of these processes, results in the following
ODE:

dX1(t)

dt
= −kelX1(t)− k12X1(t) + k21X2(t), (3.7)

where kel is the elimination rate constant, k12 is the distribution rate con-
stant representing the rate at which the drug leaves the central compart-
ment, k21 is the distribution rate constant representing the rate at which
the drug enters the central compartment, X1(t) is the amount of the drug
in the central compartment at time t and X2(t) is the amount of the drug
in the peripheral compartment at time t. Expression (3.7) represents the
rate of change of drug concentration versus time. To obtain the expression
that describes the drug concentration versus time, we should integrate ex-
pression (3.7), which can be done using Laplace transforms [22] resulting in
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the following expression:

Cp(t) = Ae−αt +Be−βt, (3.8)

where Cp(t) represents the drug concentration at time t and with A and B
defined as:

A =
Dose(α− k21)
V (α− β)

B =
Dose(k21 − β)

V (α− β)
, (3.9)

where V represents the volume of distribution of the central compartment,
Dose represents the administered dose and α and β are defined as:

α, β =
(α+ β)±

√
(α+ β)2 − 4αβ

2
. (3.10)

The A,B, α and β terms were derived from the micro-constants k12, k21, kel
and V during the integration process. Using the substitutions for the sum
and product of α and β (α + β = kel + k12 + k21, α β = kel k21) in
expression (3.8) results in expression (3.10). Note that in the numerator of
expression (3.10) α is calculated when ’+’ is used and β is calculated when
’-’ is used. Thus α is greater than β. All other pharmacokinetic parameters
can be expressed in terms of Dose and the micro-constants.





4 Model Estimation Techniques

Before the 1970s, the method for studying pharmacokinetics involved a two-
stage approach and is often referred to as the traditional approach. In the
first stage, each of the individual PK parameters is estimated separately
through nonlinear regression using the individual’s plasma concentration
time profile. These estimates are used in the second stage for the calcula-
tion of descriptive summary statistics, i.e. mean, variance and covariance,
and for establishing a correlation with the patient’s characteristics. Several
limitations arise from the traditional PK method. For example, in order to
obtain reliable PK parameter estimates in the first stage, many appropri-
ately timed blood samples are required (at least three times the number of
model parameters), which is often impossible to do in patients from the tar-
get population (e.g. AIDS/cancer patients or neonates cannot handle blood
loss well). Therefore, traditional PK studies involve often healthy volunteers
or a small number of highly selected patients from the target population.
Another major limitation of the method is that the subject-specific effects,
estimated in the second stage, are likely to be overestimated in absolute
value [23–25]. Because of these limitations, the two-stage method does not
provide a solid ground for obtaining pharmacokinetic information in order to
optimize drug therapy. A turning-point in analysing pharmacokinetic data
came when Sheiner et al. laid the foundations for population pharmacoki-
netic (PPK) modeling in the 1970s [26, 27]. PPK models involve nonlinear
mixed effects models and can be divided into two parts: the structural and
the stochastic part. The structural part estimates individual pharmacoki-
netic parameters using drug concentration time data (all individuals are
processed simultaneously), while the stochastic part describes how the esti-
mates of the PK parameters differ between individuals. A clear definition
of PPK is provided by the US Food and Drug Administration (FDA) [28]:

”Population pharmacokinetics is the study of the sources and
correlates of variability in drug concentrations among individuals
who are the target patient population receiving clinically relevant
doses of a drug of interest.”

Major advantages of PPK are that it can handle relatively sparse data, data
with unbalanced designs and data obtained during the evaluation of the
relationships between dose and efficacy. The nomenclature of this approach
is rather deceptive, implying the loss of individual pharmacokinetics, but
it does emphasize that interest is focused on the (target) population rather
than the individual. [29,30]

In order to make the analysis of PPK models accessible for a wide range
of people studying pharmacokinetics, Sheiner et al. developed a software
package which contains the algorithms to estimate parameters in nonlinear
mixed effects models, i.e. NONMEM [31]. Nowadays, NONMEM is by
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far the most popular statistical software for PPK analysis. It uses a joint
hierarchical model. A simple form of the first stage of the model is specified
as:

p(yij) = f(xij ,φφφi) + εij εij ∼ N(0, σ2), (4.1)

where yij is the jth observation in individual i. The structural PK model
is given by f(, ), which is a function of the dosing history xij and φφφi, the
individual-specific PK parameter vector and εij is the residual variance which
is assumed to be normally distributed, i.e. εij ∼ N(0, σ2).
A simple form of the second stage of the model is specified as:

p(φφφi) = g(zi,θ) + ηi ηi ∼ N(0,Ω), (4.2)

where g(, ) is the function of the covariate model, zi is the vector of covari-
ates for the ith subject, θ is the population PK parameter vector and ηi is
the vector of the individual random effects, with ηi ∼ N(0,Ω).
NONMEM uses maximum likelihood to estimate the model parameters. In
order to obtain estimates of the individual PK parameters φφφi, the marginal
likelihood, obtained by integrating out the random effects ηi, needs to
be maximized. However, the resulting integral is very difficult to solve
and in order to overcome these intensive numerical integrations, NON-
MEM uses different approximation techniques, i.e. first-order approxima-
tion (FO) [23–25], first-order conditional approximation (FOCE) [32] and
Laplacian approximation [33].

The estimation techniques used for the analysis in this thesis involve Bayesian
methods, which have the advantage to overcome the integration process in-
volved in estimating the model parameters. Therefore, Bayesian methods
can provide exact estimates of the model parameters instead of approximat-
ing them. Section 4.1 introduces the reader to Bayesian statistics. In Section
4.2 we describe the interface to the widely used WinBUGS software known
as PKBUGS, which was used to determine the PK model parameters in
this thesis. In Section 4.3 we describe the implemented Bayesian population
pharmacokinetic models.

4.1 Bayesian Methods

In Bayesian statistics, parameters are viewed as random variables. Each
parameter involved in a Bayesian model has a distribution attached to it
in order to express the uncertainty about its true value. The distribution
is known as the prior distribution. Prior distributions represent the prior
knowledge about the parameter of interest, which is often obtained from
historical data (data-based priors). Prior distributions are incorporated in
Bayesian analysis using Bayes’ Rule. Expression (4.3) gives Bayes’ Rule for
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continuous parameters:

p(θ|y) =
L(θ|y)p(θ)

p(y)
=

L(θ|y)p(θ)∫
L(θ|y)p(θ)dθ

, (4.3)

where L(θ|y) is the likelihood of the observed data, p(θ) is the distribu-
tion of the prior knowledge about the parameter θ, p(y) is the averaged
(marginal) likelihood and p(θ|y) is the resulted posterior distribution from
which inference is drawn. The relationship between the prior distribution,
averaged likelihood and corresponding posterior distribution is illustrated in
Figure 6.
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Figure 6: Triplot of a prior (gamma) distribution, (gamma) likelihood of the data and
the corresponding (gamma) posterior distribution.

The averaged likelihood is necessary in order for the posterior to be a distri-
bution. By definition, the calculation of the averaged likelihood (and because
of that the posterior distribution) involves integration. This integration can
become exorbitant, especially when the parameter of interest is high di-
mensional. For years, the popularity of Bayesian statistics suffered from the
impracticable numerical integrations necessary to obtain the posterior distri-
bution. This changed after the introduction of Markov Chain Monte Carlo
(MCMC) techniques, which resulted in a rise in popularity of Bayesian statis-
tics because it provides a tool to get round the integration process. The most
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important and famous MCMC methods include the Gibbs sampler [34, 35]
and the Metropolis-Hasting algorithm (MH-algorithm) [36, 37]. The Gibbs
sampler is based on the characteristic that the multivariate distribution is
uniquely determined by its conditional distributions. For a two dimensional
case, this means that p(θ1, θ2|y) is uniquely determined by p(θ1|θ2,y) and
p(θ2|θ1,y). The Gibbs sampler has the following sampling scheme:

• Sample θ
(k+1)
1 from p(θ1|θk2 ,y),

• Sample θ
(k+1)
2 from p(θ2|θ(k+1)

1 ,y).

The obtained chain has Markov properties meaning that given θk, θ(k+1)

is independent of θ(k−1), θ(k−2), etc. It can be proven that sampling from
the posterior distribution is achieved following the Gibbs sampling scheme.
However, it may take a while for the algorithm to converge and sample
from the posterior distribution, therefore an initial part of the chain should
be discarded (the burn-in part). The MH-algorithm differs from the Gibbs
sampler because it does not need the full conditionals but rather uses an
instrumental distribution to sample from. The sampled value is then either
accepted or rejected. The MH-algorithm samples as follows:

1. Sample a candidate θ̃ from the proposal density q(θ̃|θ), with θ = θk.

2. The next value θ(k+1) will be equal to:

• θ̃ with probability α(θk, θ̃) (accept proposal),

• θk otherwise (reject proposal),

with

α(θk, θ̃) = min

(
r =

p(θ̃|y)q(θk|θ̃)

p(θk|y)q(θ̃|θk)
1

)
. (4.4)

The obtained chain has again Markov properties and it can be proven that
the MH-algorithm provides ultimately samples from the posterior distribu-
tion. [38]

Multiple Bayesian tools were used in the analysis of this thesis, e.g. to assess
and improve convergence, summarize posterior model parameter estimates
and check the fit of the model. Below, we discuss these different Bayesian
tools, to which we refer later in this thesis.

Over-Relaxation
Numerous techniques have been suggested to improve and accelerate conver-
gence of a Markov chain. Over-relaxation is such a technique and is helpful
in situations were the elements of the Markov chain are highly positively
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correlated. The sampling scheme is adjusted and at step (k + 1) M values
θk+1,1, θk+1,2,. . . , θk+1,M are sampled and the current value θk is inserted.
The value θk+1 is chosen in such a way that it is highly negatively correlated
to the current value θk, i.e. the (M + 1) values are sorted and given ranks
0, 1, 2, . . . ,M and θk+1 is taken the value with rank M −m if m is the rank
of θk. [38, 39]

Assessing Convergence
Reliable and precise posterior summary measures can only be obtained from
a converged Markov chain. Therefore, it is important that convergence is as-
sessed before drawing any conclusions from the posterior summary measures.
Assessing convergence of a Markov chain involves checking the stationarity
of the chain and the accuracy of the posterior summary measures. Mul-
tiple techniques have been developed to asses both aspects of the Markov
chain, these include graphical and statistical (formal) convergence diagnos-
tics. Graphical diagnostics include, among others, the inspection of the trace
plots, which gives an informative impression of the stationarity and mixing
rate of the chain for each parameter and the autocorrelation plots, which
also show the mixing rate of the chain and the dependency of the chain with
its starting position. A short description of the formal diagnostic tests used
in this thesis is given below.

Heidelberger and Welch (HW) diagnostic: the HW diagnostic pro-
vides tests for the stationarity of the chain and the accuracy of the posterior
summary measures. It also provides an estimate of the number of samples
that should be discarded as a burn-in sequence. The null hypothesis of
convergence uses the Cramer-von-Mises test statistic. If convergence is not
rejected, a half-width test is performed by computing the mean and asso-
ciated (1-α)100% confidence interval. This test is passed if the half-width
of the confidence interval is less than the specified level of accuracy (0.1 as
default). [38,40]

Brooks, Gelman and Ruben (BGR) diagnostic: The above diag-
nostic is based on single chains, the BGR diagnostic uses multiple chains
to test convergence. The test is based on the assumptions that when con-
vergence is reached, the between-chain variability will be relatively small
compared to the within-chain variability. The test (the corrected scale re-
duction factor, CSRF) involves a ratio between the two and is supposed to
be passed when the CSRF is smaller than 1.2. [38,41,42]

Another tool in the assessment of convergence is the Effective Sample
Size (ESS), which estimates the number of independent iterations of the
Markov chain. When the elements of a chain experience high autocorre-
lation, less information is revealed about the posterior distribution of that
parameter compared to a chain with independent elements. The ESS mea-
sures this amount of information and provides an estimates of the number
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of independent Markov samples necessary to give the same precision as the
obtained chain.

Posterior Summary Measures
The posterior summary measures reported in this thesis include the mean,
standard deviation (sd), 95% credible interval (CI) and the MC error. The
95% CI is the Bayesian analogue of the 95% confidence interval in conven-
tional statistics. In a 95% CI, there’s a 95% probability that the mean value
of the parameter lies within this interval, while in 95% confidence intervals
this probability is either 0 or 1. The MC error is an important tool to assesses
the accuracy of the Markov chain. It provides an estimate of the compu-
tational error of the mean and is helpful in the assessment of convergence,
i.e. establish the MC error (accuracy of the Markov chain) that you wish to
attain before considering graphic and formal convergence diagnostics.

Deviance Information Criterion
Another Bayesian tool used in this thesis is the deviance information cri-
terion (DIC), which serves as a model selection criterion. The DIC is a
generalization of the Akaike information criterion (AIC). As is the case with
AIC, smaller values of DIC indicate a better fitting model. As a rule of
thumb, differences of more than 10 definitely favor the model with the low-
est DIC, differences between 5 and 10 are substantially favoring the model
with the lowest DIC and differences less than 5 indicate that both models
have similar fits. For a more extensive background on DIC, the reader is
referred to Spiegelhalter et al. [43].

The most popular and versatile Bayesian program is WinBUGS. It is the
Windows version of the program Bayesian inference Using Gibbs Sampling
(BUGS), which is developed in 1989 [44]. The package handles complex
Bayesian analyses using Gibbs sampling. We used WinBUGS version 1.3 and
1.4.3 in this thesis. Because the structural part of the population pharma-
cokinetic model is complex and not straightforward to implement in general
statistical software packages (including WinBUGS), an interface was devel-
oped for PK/PD modeling within WinBUGS, called PKBUGS. [45] Section
4.2 discusses the basic properties of PKBUGS and appendix A provides a
detailed description of analysing PK data using PKBUGS.

4.2 PKBUGS

PKBUGS is an interface for the Bayesian statistical software program Win-
BUGS that was developed for the analysis of only pharmacokinetic data.
The main purpose of PKBUGS is to simplify the specification of PK model-
ing, which can be done using dialog boxes and menu commands. Currently,
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there are two versions of PKBUGS: version 1.1 and 2.0. PKBUGS 1.1 runs
on WinBUGS 1.3 and PKBUGS 2.0 on WinBUG 1.4.3. Only PKBUGS 1.1
can be used for the specification of the PK model using menu commands.
However, PKBUGS 1.1 generates an equivalent WinBUGS model code which
can be runned in WinBUGS 1.4.3 when PKBUGS 2.0 is installed.

As stated before, population pharmacokinetic models can be divided into
two parts: the structural part and the stochastic part. PKBUGS 1.1 han-
dles both parts of the population pharmacokinetic model. The first step in
specifying the model is data entry, PKBUGS 1.1 recognizes the NONMEM
data format and a number of standard data items (like the patient’s id,
time and the response). Data items that are not recognized by PKBUGS,
so called non-standard data items, are assumed to be covariates. Using
dialog boxes, the user can regress the covariates against the desired PK
parameters. For the specification of the structural part, twenty-eight PK
compartment models are implemented, from which the user needs to choose
via menu commands. The twenty-eight models comprise one- two- and three-
compartment models with the following input characteristics: intravenous
(bolus or infusion), zero-order, first-order, zero-order with initial lag time
and first-order with initial lag time. This part is called the PK model com-
ponent, in which the corresponding ordinary differential equations are im-
plemented in PKBUGS and WinBUGS. Besides the specification of the PK
model component, the user only needs to specify the priors and a general
PK model is generated. The model comprises a general structure of the
stochastic part: a three-stage hierarchical model (described in Section 4.3).
At this point, the user can either start with the analysis in WinBUGS 1.3 or
generate the model code for WinBUGS 1.4.3. The model code is relatively
straightforward to modify and incorporate PD components or other exten-
sions. Because the generated model only comprises ISV, in this thesis, the
described model is extended with two other levels in its hierarchy, which ac-
count for the IOV (described in Section 4.3.1) and the inter-study variability
(described in Section 4.3.2). The implemented estimation techniques are the
Gibbs sampler and the MH-algorithm. The pharmacokinetic parameters in
the PK component are estimated using the MH-algorithm within a Gibbs
sampling scheme while all other parameters are estimated using the Gibbs
sampler. The use of PKBUGS is further illustrated in Appendix A. [45–48]

4.3 Bayesian Population Pharmacokinetic Models

The general Bayesian population pharmacokinetic model produced by PK-
BUGS 1.1 and used for the analyses of study 6 (see Section 5.7) includes
three hierarchical stages:

Suppose that ni plasma drug concentrations have been observed for individ-
ual i (i = 1, . . . , K). Denote the kth observed concentration for individual
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i by yij and corresponding time by tij . Further, denote the p × 1 vector of
pharmacokinetic parameters for individual i by θi. At the first stage of the
hierarchical model, the form of the probability distribution of each yij given
θi and τ , the inverse of the residual error variance, is specified as:

p(yij |θi, τ) = N
(
fij , τ

−1vij
)
, for i = 1, . . . ,K, j = 1, . . . , ni, (4.5)

where yij ∼ N(fij , τ
−1vij) given θi and τ , fij is the pharmacokinetic model

evaluated at time tij with the individual PK parameters equal to θi, i.e.
f(θij , tij), and vij is the residual error structure. Note that other distribu-
tions may be chosen instead of a normal distribution, like a lognormal or a
student’s t-distribution.

At the second stage of the hierarchical model, the following distributional
assumptions are made:

p(θi|µ,Ω−1) = Np (µ,Φ) for i = 1, . . . ,K, (4.6)

where Np(, ) denotes the multivariate normal distribution, µ (p × 1) repre-
sents the population pharmacokinetic behavior and Ω (p × p) is the corre-
sponding variance-covariance matrix representing the ISV.

The third stage of the hierarchical model can be defined by assigning prior
densities to the parameters τ , µ and Ω:

p(τ) = G (α, β) , (4.7a)

p(µ) = Np (η,C) , (4.7b)

p(Ω−1) = Wp

(
R−1, ρ

)
, (4.7c)

where G(α, β) represents a gamma distribution with parameters α and β, η
(p×1) represent the prior estimates of µ with variance-covariance matrix C
and Wp denotes a p-dimensional Wishart distribution with mean R−1(p×p)
and degrees of freedom ρ.

4.3.1 Modeling the Inter-Occasion Variability

For simultaneously modeling the ISV and IOV, which was done for the anal-
ysis of studies 1 to 5 (see Sections 5.2 to 5.6), another hierarchy is brought
into the model:

Suppose that nij plasma drug concentrations have been observed for individ-
ual i on occasion j (j = 1, . . . , mi). Denote the kth observed concentration
for individual i on occasion j by yijk and corresponding time by tijk and
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the p × 1 vector of pharmacokinetic parameters for individual i on the jth
occasion by λij . The first stage of the model is specified as:

p(yijk|λij , τ) = N
(
fijk, τ

−1vijk
)
,

for i = 1, . . . ,K, j = 1, . . . ,mi, k = 1, . . . , nij , (4.8)

where yijk ∼ N(fijk, τ
−1vijk) given λij and τ , fijk is the pharmacokinetic

model evaluated at time tijk with the individual PK parameters equal to
λij , i.e. f(λij , tijk), and vijk is the residual error structure.

The second stage is specified as:

p(λij |θi,Φ−1) = Np (θi,Φ) for i = 1, . . . ,K, j = 1, . . . ,mi, (4.9)

where θi (p × 1)represents the mean kinetic behavior of the ith individual
and Φ (p× p) is corresponding variance-covariance matrix representing the
IOV.

The third stage of the hierarchical model can be defined by making the
following distributional assumptions:

p(θi|µ,Ω−1) = Np (µ,Ω) for i = 1, . . . ,K, (4.10)

where µ (p×1) is the mean value of the individual mean parameter vector θi
and Ω (p× p) is the corresponding variance-covariance matrix representing
the ISV.

The definition of the hierarchical model is completed by the specification
of the fourth stage, in which prior densities are assigned to the parameters
τ , Φ, µ and Ω−1:

p(τ) = G (α, β) , (4.11a)

p(Φ−1) = Wp

(
G−1, γ

)
, (4.11b)

p(µ) = Np (η,C) , (4.11c)

p(Ω−1) = Wp

(
R−1, ρ

)
. (4.11d)

4.3.2 Modeling the Inter-Study Variability

For the meta-analysis, another hierarchy was brought into the model, cor-
recting for the inter-study variability (IStV):

Suppose that nijk plasma drug concentrations have been observed in study
i (i = 1, . . . , K) for individual j (j = 1, . . . , si) on occasion k (k = 1,
. . . , mij). Denote the lth observed concentration in study i for individual
j on occasion k by yijkl, corresponding time by tijkl and the p × 1 vector
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of pharmacokinetic parameters of study i for individual j on occasion k by
λijk. The first stage of the model is specified as:

p(yijkl|λijk, τ) = N
(
fijkl, τ

−1vijkl
)
, for i = 1, . . . ,K,

j = 1, . . . , si, k = 1, . . . ,mij , l = 1, . . . , pijk (4.12)

where yijkl ∼ N(fijkl, τ
−1vijkl) given λijk and τ , fijkl is the pharmacokinetic

model evaluated at time tijkl with the individual PK parameters equal to
λijk, i.e. f(λijk, tijkl), and vijkl is the residual error structure.

The second stage is specified as:

p(λijk|θij ,Φ−1) = Np

(
θ(ij),Φ

)
for i = 1, . . . ,K,

j = 1, . . . , si, k = 1, . . . ,mij , (4.13)

where θij (p×1) represents the mean kinetic behavior in study i of individual
j and Φ (p×p) is the corresponding variance-covariance matrix representing
the IOV.

The third stage of the hierarchical model can be defined by making the
following distributional assumptions:

p(θij |µi,Ω−1) = Np (Zijµi,Ω) for i = 1, . . . ,K, j = 1, . . . , si, (4.14)

where µi (p ×K) is the mean of the individual mean parameter vector θij
per study, Ω (p× p) is the corresponding variance-covariance matrix repre-
senting the ISV and Zij is a covariate-effect design matrix for individual j
in study i. When no regression analyses is performed, Zij can simply be
left out the model.

The fourth stage of the hierarchical model is defined by making the fol-
lowing distributional assumptions:

p(µi|κ,Υ−1) = Np (κ,Υ) , (4.15)

where κ (p×K) represents the population mean pharmacokinetic behavior
and Υ (p × p) is the corresponding variance-covariance matrix representing
the IStV.

The definition of the hierarchical model for the meta-analysis is completed
by the specification of the fifth stage, were prior densities are assigned to
the parameters τ , Φ, Ω, κ and Υ:

p(Ω−1) = Wp

(
R−1, ρ

)
, (4.16a)

p(Φ−1) = Wp

(
G−1, γ

)
, (4.16b)
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p(τ) = G (α, β) , (4.16c)

p(κ) = Np (η,C) , (4.16d)

p(Υ−1) = Wp

(
A−1, ν

)
, (4.16e)

where η is the prior estimate of κ with variance-covariance matrix C and
Υ−1 ∼Wp(A

−1, ν).





5 Analysis of the Individual Studies

5.1 Introduction

This section describes the results of the pharmacokinetic analysis of each
individual study. The goal of these analyses is to explore whether the data
of each study is sufficient to provide unique posterior estimates of the model
parameters, i.e. the identifiability of the likelihood. When the model is
overspecified and the likelihood is non-identifiable, strong prior information
is indispensable in order to obtain reasonably precise posterior estimates of
the model parameters and (some of) these will highly depend on the choice
of the priors. Therefore, models with non-informative, fully-informative and
minimally-informative priors are fit to the data of each study in order to gain
knowledge about the identifiability of the likelihood. The strategies used to
obtain non-, fully- and minimally-informative priors and corresponding prior
estimates are discussed in Appendix B. In the analysis, emphasis is put on
the estimation of the population pharmacokinetic parameters rather than
explaining the observed variability by covariates. Subsequently, no regres-
sion is performed and the estimates of µ play a large role in the discussion
of the results.

Section 5.1.1 describes the model for estimating the PK parameters per
study and the (data-based) priors. The results of the analyses per study are
described in Sections 5.2 to 5.7.

5.1.1 The Model

The model that almost always best describes the kinetics of MPA is used to
obtain more knowledge about the studies; a two-compartment model with
first-order kinetics, lag-time and log MPA concentrations. This model was
also used by Van Hest et al.. Six pharmacokinetic parameters are estimated
using this model: the clearance from the central compartment CL, the inter-
compartment clearance Q, the volume of distribution of the central compart-
ment V1, the volume of distribution of the peripheral compartment V2, the
lag-time Tlag and the absorption rate constant ka. The two-compartment
model is incorporated in the four-stage hierarchical model described in Sec-
tion 4.3.1.

Informative priors were obtained from three pharmacokinetic MPA stud-
ies [49–51]. In these studies, MPA exposure was measured in renal trans-
plant recipients after different doses of MMF on multiple occasions post-
transplantation. Pharmacokinetic parameters were estimated based on a
two-compartment model and the statistical analysis was performed using
NONMEM. Because the study characteristics correspond to the ones in this
study, they are assumed to be suitable as prior knowledge. The studies re-
port estimates of the population pharmacokinetic parameters η, their vari-
ances C, variances for the inter-subject variability R and variances for the



Analysis of the Individual Studies 32

Table 2: Weighted means of η, C , R, G and 1/
√
τ based on three pharmacokinetic

MPA studies [49–51]. For the ISV and IOV, the estimates represent their variances.

Parameter Weighted mean (var) ISV IOV

log(CL (l/h)) 2.98 (0.6E-2) 0.11 0.02
log(Q (l/h)) 3.43 (0.4E-2) 0.61 1.60
log(V1 (l)) 4.12 (0.01) 0.75 0.42
log(V2 (l)) 5.71 (0.01) 14.08 1.00
log(Tlag (h)) -1.44 (0.3E-3) 0.008 1.00
log(ka (1/h)) 1.39 (0.8E-2) 2.11 1.36
Residual error 0.43 (0.9E-4) - -

inter-occasion variability G. Weighted means of the relevant parameters
were calculated based on the number of participants per study (ranging
from 140 to 241 participants). Because WinBUGS estimates the logarithm
of the PK parameters, weighted means of the prior variances were obtained
using the delta method [52]. Unfortunately, no prior estimates of the inter-
occasion variability of Q, V2 and Tlag were found in literature. These prior
variances were chosen to be relatively high (coefficients of variation of 100%),
in order to reduce the prior influence on these parameters. Table 2 shows
the weighted means of the prior estimates.

5.2 Study 1

5.2.1 Model with Non-Informative Prior Information

Based on two chains with over-relaxation, 40,000 iterations leaving out
10,000 burn-in iterations and using non-informative priors, almost no model
parameter converged. Note that over-relaxation does not necessarily im-
prove convergence, but it reduces the positive auto-correlation within the
Markov chain which was observed for multiple model parameters. The num-
ber of iterations was increased to 500,000 but the results were similar. How-
ever, it is possible that the model parameters converge after an exorbitant
number of iterations, which was not tried due to computational time and
memory. Therefore, the below described results are based on 40,000 itera-
tions. Graphical exploration of the posterior distribution in the direction of
µ shows stationary chains with rapid mixing for CL and V1, see Figure 8
(Appendix C). Trace plots for the other population PK parameter appear
’snake-like’, indicating sampling in a dependent matter, which is confirmed
by the high autocorrelations for these parameters, the autocorrelations of
lag 1 and 50 are 0.44-0.09, 0.88-0.85, 0.75-0.55, 0.98-0.88, 0.81-0.89 and
0.98-0.97 for CL, Q, V1, V2, Tlag and ka respectively. BGR convergence
diagnostics were consulted and provided evidence for non-convergence for
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Tlag and ka since the CSRF is higher than 1.2 for these parameters, and no
evidence for CL, Q, V1 and V2 with CSRF scores of 1.02, 1.07, 1.02 and
1.06 respectively. Because the MC error of Q and V2 is high and graphical
exploration shows evidence for non-convergence, it is assumed that they did
not converge. The same trend is observed in the posterior distribution of
the individual PK parameters θ, where convergence is only attained for CL,
and V1. High cross-correlation between the model parameters is associated
with slow convergence, however, no high cross-correlation is observed be-
tween any of the model parameters. Table 3 shows the posterior summary
measures of the model parameters that converged. A higher number of it-
erations or stronger prior information is necessary for these data to obtain
reliable posterior summary measures, the model is probably overspecified
and the likelihood is non-identifiable.

5.2.2 Model with Fully-Informative Prior Information

A model with fully-informative priors is fit to these data, see Appendix B.1.
All model parameters converged based on both graphical and formal con-
vergence diagnostics. Posterior summary measures are based on two chains
with over-relaxation, 15,000 iterations leaving out 2,500 burn-in iterations,
see Table 3, and trace plots of µ are shown in Figure 9 (Appendix C). With
these, strong informative priors, reasonably precise posterior population PK
parameter estimates are obtained, but they depend almost completely on
the priors. The estimated posterior means of the logarithm of µ are 2.96,
3.43, 4.15, 5.70, -1.45 and 1.39 for CL, Q, V1, V2, Tlag and ka respectively
with prior point estimates of 2.98, 3.43, 4.12, 5.71, -1.44 and 1.39. With
this strong prior information, the posterior PK parameter estimates have
been minimally updated by the observed data, this again indicates that the
likelihood in the µ subspace is non-identifiable.

5.2.3 Model with Minimally-Informative Prior Information

Finally, a model whereby the least informative prior was specified for each
parameter is fit to these data, see Appendix B.1. The resulting minimally-
informative priors were still highly informative and the obtained posterior
summary measures based on 20,000 iterations leaving out 5,000 burn-in it-
erations with over-relaxation are shown in Table 3 and trace plots of µ are
shown in Figure 10 (Appendix C). Some of the posterior population PK pa-
rameters estimates (2.52, 3.44, 4.22, 5.69, -1.47 and 1.37 respectively) have
been highly updated by the observed data, however, the prior influence is
still very large. The posterior estimates of the IOV and ISV also depend
highly on the choice of the priors, which differ a lot between the model with
fully-informative and minimally-informative priors. Additionally, the poste-
rior standard deviation of the ISV and IOV is extremely high. Therefore,
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no reliable posterior estimates are obtained for the ISV and IOV. It can be
concluded that the used model is overspecified for the data of study 1. Only
with strong prior information, precise posterior PK parameter estimates are
obtained but these depend almost fully on the priors. Therefore, the data
are not sufficient to obtain reliable posterior summary measures of all model
parameters and the likelihood is non-identifiable. The identifiability problem
probably arises because these data contain on average only two occasions
per individual and six measurements per occasions, which seems insufficient
for estimating the relatively high amount of parameters in this model.

5.3 Study 2

Models with non- fully- and minimally-informative priors were fit to the data
of study 2, the posterior summary measures are reported in Table 4 and the
trace plots of µ are shown in Figures 11, 12 and 13 (Appendix C). With
non-informative priors almost no model parameter converged. Although the
number of iterations was increased multiple times with similar results, it
could be that the model still needs a higher number of iterations to reach
convergence on all model parameters. With fully and minimally-informative
priors, all parameters of µ and θ converged based on both graphical and
formal diagnostics. However, some parameters of the ISV and IOV did
not convergence. Convergence was only attained for these parameters when
the degrees of freedom of the corresponding Wishart distributions were in-
creased. When increasing the degrees of freedom of the Wishart distribution,
the distribution becomes more informative which resulted in an even higher
dependency of all model parameters on the prior information. Therefore,
it was chosen to keep the Wishart distribution minimally-informative, see
Appendix C. Using minimally-informative priors, the posterior means of µ
are 3.11, 3.42, 4.24, 5.71, -1.45 and 1.34 for the logarithm of CL, Q, V1,
V2, Tlag and ka respectively. Most of them depend highly on the prior es-
timates of 2.98, 3.43, 4.12, 5.71, -1.44 and 1.39 respectively. Because the
data of study 2 needs highly informative prior information to obtain precise
posterior estimates of the model parameters, and these estimates depend
highly on the chosen priors, the model is overspecified and the likelihood
is therefore non-identifiable. The data of study 2 contain on average two
occasions per individual and 7 measurements per occasion, this is probably
not sufficient for estimating the relatively high amount of parameters in this
model.

5.4 Study 3

The data of study 3 is the most abundant of all studies, with on average 7
measurements at 9 occasions and a total of 141 individuals. Subsequently,
with non-informative priors, almost all model parameters converged. For
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the estimation of the individual and population PK parameters V2 and ka
more information is necessary in order to obtain reliable, precise posterior
estimates. This resulted in the final, minimally-informative model, where
prior information was non-informative for all parameters except for V2 and
ka. Trace plots of µ for models with non- fully- and minimally-informative
priors are shown in Figures 14, 15 and 16 (Appendix C) and the posterior
summary measures of the parameters that converged are reported in Table
5. Because the data of study 3 is abundant, the model is probably not
overspecified and the likelihood is expected to be identifiable. However, the
estimation of the absorption rate constant ka is hard, because only a few
measurements are taken which make up the absorption process, i.e. mea-
surements before the peak concentration. The volume of distribution of the
second compartment V2 is estimated from the last part of the concentration
time curve (when the declining curve changes its rate, see Figure 5b). Al-
though enough measurements make up this part of the curve (on average
4), the variability (ISV and IOV) on these time points is very high resulting
in hard to model patterns, see Figures 3e and 3f. This could explain the
need for more information in estimating the individual and population PK
parameters V2 and ka.

5.5 Study 4

Trace plots of µ for models with non- fully- and minimally-informative priors
are shown in Figures 17, 18 and 19 (Appendix C) and the posterior summary
measures of the parameters that converged are reported in Table 6. In the
analyses with non-informative priors, the uncertainty on all parameters of
the model except CL and Tlag is huge and these cannot be estimated with
non-informative priors, which is probably due to identifiability problems. In
the final model, with minimally-informative priors, the posterior means of
µ are 4.19, 3.43, 5.53, 6.00, -2.12 and 0.70 for the logarithm of CL, Q, V1,
V2, Tlag and ka respectively. When comparing these with the prior point
estimates (2.98, 3.43, 4.12, 5.71, -1.44 and 1.39 respectively), it is obvious
that they have been highly updated by the observed data, except for Q
which is the same as its prior estimate. Although strong prior information
is necessary, the posterior summary measures do not depend that much
on the prior. Therefore, the problems in estimating the model parameters
with non-informative priors are probably not a result of a non-identifiable
likelihood. Other possible reasons are explained in Section 5.8.

5.6 Study 5

Trace plots of µ for models with non- fully- and minimally-informative pri-
ors are shown in Figures 20, 21 and 22 (Appendix C) and the posterior
summary measures of the parameters that converged are reported in Table
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7. The data of study 5 is not sufficient to obtain accurate posterior sum-
mary measures with non-informative priors. Again this model is probably
overspecified and in order to obtain accurate posterior summary measures,
strong prior information is necessary. With minimally-informative priors,
precise posterior summary statistics on all model parameters were obtained.
The posterior means of the logarithm of µ are 4.28, 3.28, 5.30, 5.80, -2.11
and 0.09 for CL, Q, V1, V2, Tlag and ka respectively. All estimates have
been highly updated by the observed data despite of the strong informative
priors. Additionally, the data of study 5 contain high numbers of measure-
ments (mean of 11) on 118 individuals with on average three occasions per
individual, therefore, the likelihood is probably identifiable. Other reasons
that could lead to the problems in the model with non-informative priors
are explained in Section 5.8.

5.7 Study 6

The data of study 6 does not contain measurements of individuals on differ-
ent occasions, therefore the models for study 6 exclude Φ, see Section 4.3.
Trace plots of µ of models with non- fully- and minimally-informative priors
are shown in Figures 23, 24 and 25 (Appendix C) and the posterior sum-
mary measures are reported in Table 8. The data of study 6 need strong
prior information in order to obtain precise posterior summary measures.
With strong prior influence, most of the model parameters depend highly
on the prior information. Therefore, it can be concluded that these models
are probably overspecified and the likelihood is non-identifiable.
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5.8 Conclusion

In the analyses of almost every study, identifiability problems arose when
using non-informative priors. These identifiability problems are evident in
convergence issues of multiple model parameters. In general, it is hard
to investigate the identifiability of the likelihood. Although it was tried
to improve convergence by increasing the number of iterations and using
over-relaxation, it is unknown if convergence is attained when the number
of iterations were increased tremendously. This was not tried due to the
impracticability of using such numbers of iterations, i.e. the computational
time and memory becomes exorbitant. However, real-life pharmacokinetic
data is almost always hard to model. Especially these data, which came
from studies which initially did not intent to model the pharmacokinetics
of MPA, see Section 2.2. Additionally, the majority of the six studies were
multicenter studies (this is unknown for the unpublished studies 1 and 5),
and the used models did not correct for this extra variability. In the analysis,
individual and population PK parameters V2 and ka were particularly hard
to converge. For the absorption rate constant ka this could be explained
by the relatively low available observations which make up the absorption
process. In general only one measurement was taken between 0 and 12
hours after MMF administration, while the peak concentration appeared
around 12 hours. The volume of distribution of the second compartment V2
is estimated from the last part of the concentration time curve, when the
declining curve changes rate. In this last part of the curve, particularly high
variability is observed resulting in hard to model patterns, see Figures 2 and
3.

Bayesian methods seem a logical choice for this type of data because prior
information can be used to obtain precise estimates of the model parameters
despite the identifiability problems. Especially because lots of information
about the pharmacokinetics of MPA in renal transplant recipients is avail-
able, i.e. historical studies which could serve as prior. Therefore, prior
information was increased and estimates of all model parameters were ob-
tained.

As stated before, the used studies had initially other purposes with the
data and no publications were found where the pharmacokinetics of MPA
were estimated with these data. Therefore, it is unknown if other meth-
ods were capable of estimating all model parameters. However, with non-
Bayesian software, convergence issues are also common but are harder to
notice and easier to look-over.





6 The Individual Participant Data Meta-Analysis

This section describes the analysis of the data of all studies combined, i.e.
the meta-analyses. In traditional meta-analysis, only summary data of dif-
ferent studies are combined and analysed, which are often obtained from
publications, e.g. modeling the differences in a specific treatment effect of
several clinical trials. In this meta-analysis, the complete datasets of the
different studies were pooled into one dataset and analyzed simultaneously
while correcting for the variability between the studies, resulting in an in-
dividual participant data (IPD) meta-analysis. The IPD approach improves
the quality of the data, the analyses and subsequently the reliability of the
results. When combining all data, inference is based on 467 individuals with
a median of 8.8 measurements at 3 occasions (Table 1). The used model
(Section 4.3.2) corrects for three types of variability, i.e. the inter-subject,
inter-occasion and inter-study variability. The inter-study variability (IStV )
models the heterogeneity between the different studies which arises due to
(small) differences in study-design, e.g. different sampling schemes and at
different moments after transplantation. In this section we explore whether
any of the measured covariates (Table 1) explain the inter-subject variability
of MPA exposure. In order to select covariates which may explain this vari-
ability, initially, the population and individual pharmacokinetic parameters
are estimated based on all data, see Section 6.1. Subsequently, the individ-
ual estimates of CL, Q, V1, V2, Tlag and ka are plotted against the different
covariates. When a trend is observed in these graphs, that covariate is in-
troduced in the model and regressed against the PK parameter for which
a trend is observed, see Section 6.2. Additionally, this section elaborates
about the differences between the used Bayesian methods and the tradi-
tional methods, i.e. NONMEM, used by Van Hest et al. to analyse these
data. In Section 6.3, all results, pitfalls and achievements are summarized
and discussed.

6.1 Estimating the Pharmacokinetic Parameters

The model that best describes the pharmacokinetics of MPA and the data
is a two-compartment model with first-order kinetics, lag-time and log-MPA
concentrations, see Section 5.1.1. This model was incorporated in the five-
stage hierarchical model described in Section 4.3.2. The used prior infor-
mation was based on three historical studies, see Section 5.1.1 and Table
2 [49–51]. Section 6.1.1 further discusses the used prior information and Sec-
tion 6.1.2 describes the obtained results from the IPD meta-analyses without
regressing the individual PK parameter estimates against the covariates.
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6.1.1 Prior Information

All prior information was kept close to non-informative, following the guide-
lines of Lunn et al. for obtaining non-informative prior information, see Ap-
pendix B. Where Lunn et al. [45,46] advices to multiply the prior estimates
of the diagonals of R and G by the number of diagonals (here 6), in order
to obtain non-informative priors. However, multiplying these estimates by 6
resulted in several convergence issues with µi and κ. This may indicate that
these priors are not completely non-informative or that these priors give too
dispersed sampled values which cause the convergence issues. Nevertheless,
these priors were optimized in order to attain convergence after a relatively
low number of iterations (due to the incredible high computational time with
these models), resulting in diagonals of R−1 of [1.46, 2.74, 2.23, 11.83, 19.97,
7.9] and G−1 of [10.83, 12.53, 23.69, 10.00, 1.00, 3.23]. Sampling from these
distributions results in relatively high 95% quantiles for the variances of the
ISV and IOV indicating that these prior estimates are not non-informative,
e.g. the 95% quantiles of the (prior) ISV of CL are [1.77, 21.12]. Because
the posterior estimates of the model parameters were not influenced by the
changes in the numbers of the diagonals and using non-informative prior in-
formation for the ISV and IOV resulted in convergence issues, it was chosen
to use these prior estimates.

6.1.2 The Results

Posterior summary measures were obtained based on two chains with 25,000
iterations, leaving out 17,500 burn-in iterations. Based on these iterations,
the ESS and MC error were reasonable for all parameters except for ka, e.g.
population PK parameter estimate ka has a ESS of 20.03 and MC error of
1.50E-2. Increasing the number of iterations or decreasing the burn-in part
did not substantially increase the accuracy of ka. Possible reasons for the
issues with respect to parameter ka are explained below.

Convergence was assessed using graphical and formal (BGR and HW)
diagnostics. All individual PK parameters θ attained convergence (based
on BGR and HW), all trace plots appear as a horizontal strip with both
chains exhibit rapid mixing, Figure 26 (Appendix D) shows trace plots of
each PK parameter from a randomly selected individual. Convergence was
attained for almost all study PK parameter estimates µ, trace plots of each
PK parameter from a randomly selected study is shown in Figure 27 (Ap-
pendix D). Trace plots of ka (for all studies) appear ’snake-like’, indicating
sampling in a dependent matter, however, based on BGR and HW, con-
vergence was attained for all studies except for study 4. Trace plots for
the other PK parameters appear as a horizontal strip and all chains exhibit
rapid mixing. This was also the case for population PK parameters κ, see
Figure 28 (Appendix D). No reliable and precise posterior summary mea-
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sures were obtained for the ISV and IOV of ka, and for the IStV of V2 and
ka. Further increasing prior information for the ISV and IOV, i.e. increasing
the degrees of freedom of corresponding Wishart distributions, may result
in convergence for these parameters. However, this would also influence the
variances of the other PK parameters from which reliable estimates were ob-
tained. Therefore, it was chosen not to increase prior information in order
to maintain the results which are more based on the observed data. Note
that the prior information for the IStV could not be increased as no prior
information is available for this parameter.

As explained before, the estimation of ka is hard because only a few
measurements make up for the absorption process, i.e. the measurements
before the peak concentration. Although the data is very abundant, it is
not surprisingly that no reliable estimates were obtained on some of the
model parameters. As with non-Bayesian methods, e.g. the results of Van
Hest et al., also no reliable results were obtained on some of the model
parameters (the ISV and IOV of V2 and Tlag), see Section 6.2. Subsequently,
the estimate of ka in the analysis of Van Hest et al. is not precise, as the
standard deviation is higher than the mean (Section 6.2).

Posterior summary measures of κ, Ω, Φ, Υ and µ are reported in Table
9. The population mean of the MPA clearance from the central compartment
CL is 19.49 l/h, with a wide 95% credible interval of [16.28, 23.10] l/h,
reflecting high uncertainty about the population mean. This is also the case
for the other population PK parameters, i.e. mean of 27.39 l/h with CI
[18.73, 40.04] l/h for the inter-compartmental clearance of MPA Q, 35.16 l
with CI [29.67, 41.68] l for the central volume of distribution V1, 441.42 l with
CI [270.43, 780.55] l for the peripheral volume of distribution V2, 0.34 h with
CI [0.22, 0.53] h for the absorption lag time Tlag and 0.44 l/h with CI [0.27,
0.68] l/h for the absorption rate constant ka. This uncertainty arises due
to the high variabilities between and within the studies. Reasonable precise
posterior summary estimates of the ISV and IOV were obtained (based on
the sd and the, not reported, MC error), but their CIs are wide (also not
reported). The estimates of the IStV appear neither precise nor reliable, as
both the sd and MC error (not reported) are high. The bottom of Table 9
reports the PK parameter estimates of µ, were it becomes evident that high
variability is observed between the studies, as the PK parameter estimates
vary widely between the studies.

In the next section, it is tried to find covariates responsible for the inter-
subject variability. With some of the observed variability explained, more
precise estimates of the model parameters may be obtained.
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6.2 The Regression Analyses

6.2.1 The Covariates

Although the complete dataset covered 24 covariates, only 12 covariates were
considered for the regression analysis. These 12 include all the covariates
without missing values on the first measurement. When including covari-
ates with missing values, multivariate imputations should be included in the
model, which is outside the scope of this thesis. Additionally, only the first
(baseline) measurement was included in the model instead of time-varying
measurements, again because this is outside the scope of this thesis. The
12 covariates that were considered for the regression include race, gender,
age, weight, height, hemoglobin, creatinine clearance, use of antacids, use
of proton pump inhibitors, use of anti-viral agents, MMF dose and dia-
betes mellitus. As the relevance for the covariates race, gender, age, weight,
height and MMF dose are evident, the biological relevance of the others are
discussed below.

Hemoglobin: a protein that contains iron and transports oxygen in red
blood cells. Anemia, i.e. a decrease in the number of red blood cells or less
than the normal quantity of hemoglobin in the blood, is common after renal
transplantation [53].

Creatinine clearance: the volume of blood plasma that is cleared of
creatinine (by the kidneys) per unit time. It is a measure of the state of the
kidney.

Antacids: neutralizes stomach acidity, treats gastrointestinal complica-
tions which are common in renal transplant recipients, e.g. gastrointestinal
bleeding or gastroduodenal ulcerations [54].

Proton pump inhibitors (PPI): reduces gastric acid production,
treats gastrointestinal complications.

Anti-viral agents: the immune system of renal transplant recipients is
highly suppressed to decrease the risk of rejection and viral infections are a
significant cause of mortality [55].

Diabetes Mellitus: is a major complication after renal transplanta-
tion [56].

Above described covariates were plotted against the individual PK param-
eter estimates obtained from the analysis described in Section 6.1, see Ap-
pendix D. The covariates in graphs with a red asterisk in the right corner
were introduced in the first, full regression model.

6.2.2 Prior Information

The same prior information as for the analysis in Section 6.1 was used for
κ, Ω, Φ, Υ and τ . The regression coefficients were assigned independent
normal priors with mean 0 and variance 10.
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6.2.3 Model Selection

After inspection of the covariate regression graphs in Appendix D, 20 co-
variates were selected and introduced in the first, full model (the ones with
a red asterisk in the right corner of the graphs). As most of these showed
no effect, i.e. 0 appeared in the CI, the model was gradually reduced by
eliminating these covariates from the model. Additionally, the DIC for each
model was consulted and decreased each time with at least 5. In this way, the
final model was obtained with the covariates creatinine clearance regressed
against Q, creatinine clearance and the use of PPI against V1 and the use of
antacids against Tlag. Where the DIC of the final model was 17,040, the full
model 17,308 and the model without regression (Section 6.1) 17,331. Based
on the DIC, the final model provided the best fit.

6.2.4 The Results

Posterior summary measures of the final regression model were obtained
based on two chains with 50,000 iterations, leaving out 32,500 burn-in iter-
ations. With this number of iterations, the ESS and MC error is reasonable
for all model parameters, but again except ka, e.g. population PK parame-
ter estimate of ka has an ESS of 24.99 and MC error of 1.68E-2. Increasing
the number of iterations or decreasing the burn-in part resulted in several
computer memory issues, which is probably due to the high amount of pa-
rameters in the model.

This model took into account the effect of creatinine clearance on Q (coef
1), creatinine clearance (coef 2) and the use of proton pump inhibitors (coef
3) on V1 and the use of antacids (coef 4) on Tlag. Convergence was assessed
using graphical and formal (BGR and HW) diagnostics. All individual PK
parameters θ reached convergence as well as the three regression coefficients.
Convergence issues arose for the study PK parameter estimates µ, where
the estimates of ka from study 1, 2 and 4 did not attain convergence, trace
plots are shown in Figure 29. The population PK parameters κ all reached
convergence, trace plots shown in Figure 30. But, the ISV for ka and the
IStV for V2 and ka did not attain convergence. Posterior summary measures
of κ, Ω, Φ, Υ, µ and the regression coefficients (coef 1, 2, 3 and 4) are
reported in Table 10.

The values of the coefficients reflect the effect of the covariate on the
logarithm of the PK parameter, therefore, the effect of creatinine clearance
on Q and V1 seem small. However, both estimates are very precise and it
appears that if the creatinine clearance (ml/min) increases with 1 ml/min,
it results in a mean decrease of Q with 1,00 l/h and of V1 with 1,00 l with
CI’s of [-1.00, -1.00] l/h and [-1.01, -1.00] l respectively. Using proton pump
inhibitors results in a mean increase of V1 by 1.45 l with CI [1.11, 1.92] l.
The use of antacids results in a mean decrease of Tlag by 1.67 h with CI
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[-2.44, -1.13] h.
Compared to the analysis in Section 6.1, the mean population and study

PK parameters have changed, especially Q, V1 and Tlag. However, although
more variability is explained in this model, the CI of the estimates are still
wide. A lot of variability remains unexplained. The estimates of the ISV,
IOV and IStV are similar to estimates obtained by the analysis in Section
6.1. Although this model provided a better fit than the model without
the regression (with DIC of 17,040 and 17,330.5 respectively), this is not
reflected in the accuracy of the posterior estimates of the model parameters.

Table 11 reports, again, the posterior estimates of κ, Ω and Φ together
with the estimates obtained by van Hest et al.. As stated before, these
models differ a lot as we did not include covariates with missing values
or time-depending covariates but did account for inter-study variability in
contrast to van Hest et al.. Therefore, we both found different covariates
which explain some of the observed variability, see Table 11. Subsequently,
the estimates reported in Table 11 differ a lot, even V2 and ka which were not
regressed against any covariates in both models. These differences reflect the
high uncertainty about the true values of the parameters. With Bayesian
analysis, more precise estimates are obtained, i.e. the sd is lower for all
parameters. However, it would be wrong to conclude that this is a results of
the used Bayesian methods because of the differences in both models. The
estimates of the IStV are very high, and accounting for this variability may
result in more precise estimates with non-Bayesian methods. Additionally,
except for V1 and ka, the estimates of Van Hest et al. all lie within the CI of
our estimates. Therefore, it is meaningless to conclude anything about the
differences in the results of these models.

6.3 Conclusion

The IPD meta-analysis improved the quality of the analysis and the relia-
bility of the results. The obtained results were almost completely based on
the observed data, i.e. close to non-informative prior information was used.
Some convergence issues arose with the estimation of model parameter ka,
which is a direct result of the observed data, where only a few measurements
make up the absorption process. Convergence issues in the variance param-
eters (ISV, IOV and IStV ) is probably a result of the very high and hard
to model observed variances.

Only 3 of the 12 covariates explained some of the inter-subject variability.
However,the regression performed in Section 6.2 has some limitation as no
covariates with missing values or time-dependent covariates were considered.
Subsequently, it is hard to compare these results with the results obtained
by Van Hest et al. as they did use both types of covariates in their model.
Therefore, we both found different covariates which explain some of the
observed variability. Another striking difference between our models is that
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we account for inter-study variability in contrast to Van Hest et al.. This
is probably the reason that our estimates of the population PK parameters
are more precise as more variability is explained in our model. Although
the five different studies have similar study designs, the quiet large observed
heterogeneity between the studies (estimates of IStV ) are probably due
to the different sampling schemes and different time measurements after
transplantation.

The Bayesian population PK parameter estimates κ, differ a lot from
the estimates obtained by Van Hest et al., which is probably due to the
above described differences between our models. However, despite these
differences, it does reveal a high uncertainty about their true values and
questions the reliability of both results.

Section 7 summarizes all results, achievements and pitfalls of this the-
sis and further elaborates on the results of the IPD meta-analysis and the
difference between Bayesian and non-Bayesian methods.



7 Conclusion

In general, nonlinear data are hard to model, which is due to the difficult
mathematical relationship between the parameters and because most often,
a closed form expression for the best-fitting parameter does not exist (in
contrast to linear models). The nonlinear models in this thesis include ran-
dom effects and a high number of model parameters to estimate, two more
aspects that are in general hard to model and estimate. Therefore, it is not
surprising that many issues and problems arose during the analysis.

Starting with the analysis of the individual studies, where it became
evident that most of the studies involved data which were insufficient for
estimating all model parameters. This manifested itself in convergence issues
and only when strong prior information was used, precise posterior summary
measures were obtained. In other words: the models were overspecified
and the likelihood was non-identifiable. Not surprising, because all studies
initially did not intent to model the pharmacokinetics of MPA. Subsequently,
no literature was found on these data where the pharmacokinetics of MPA
were estimated. Another limitation was that the studies were multicenter
studies and the used models did not correct for this type of variability.
However, as Bayesian methods were used, prior information was increased in
order to reduce the uncertainty about the true value of the model parameters
and precise posterior summary measures were obtained. This is definitely
not the most elegant way to overcome identifiability problems. However,
emphasis was not put on tackling these identifiability problems but rather
on gaining more knowledge about the data of each individual study and
providing evidence for performing a meta-analyses.

With all data from the studies combined, i.e. the IPD meta-analysis
(with and without regression), the identifiability problems diminished. Sub-
sequently, reliable and sometimes precise posterior summary measures were
obtained using close to non-informative prior information. However, con-
vergence issues still arose, especially with the estimation of the absorption
rate constant ka. The data contained too few measurements to make up
the absorption process and subsequently, to provide reliable estimates of ka.
Nevertheless, when combining all data, reliable posterior estimates on the
mean PK parameters per study were obtained in contrast to the analysis of
the individual studies, pointing out the advantages of a meta-analysis.

For the regression, no covariates with missing values and time-depending
covariates were considered. These limitations resulted in differences between
our found covariates which explain some of the observed variability and the
ones found by Van Hest et al.. Because of these limitations, it is meaning-
less to conclude anything about these, found differences. Another difference
between our models is that we account for inter-study variability in contrast
to Van Hest et al.. This source of variability was quite high and therefore
necessary to correct for. This was probably the reason that our estimates
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of the population PK parameters were more precise than the obtained es-
timates by Van Hest et al.. As a result of all these differences between
our models, the population PK parameter estimates differed a lot, revealing
a high uncertainty about their true values. In order to make more state-
ments about these differences, it would be necessary to include multivariate
imputations in the model to introduce the covariates with missing values
and to explain the IOV, i.e. include time-dependent covariates. Addition-
ally, another source of variability could be included which corrects for the
multicenters in each individual study and the dataset could be expanded
with more studies on MPA in order to obtain more reliable estimates on the
population PK parameters.

Pharmacokinetic data is in general hard to collect because a relatively
high number of blood samples within a short time span are required to de-
scribe the overall time course of drug concentration within the body. Espe-
cially when a drug experiences high IOV and ISV and when its pharmacoki-
netics are best described by a two- (or higher) compartment model, lots of
measurements on different individuals and occasions are necessary to obtain
reliable estimates on the model parameters. However, because the phar-
macokinetics of each drug on the market has been thoroughly investigated
during its clinical trials, there is already highly reliable information available
on its pharmacokinetics. Therefore, the contribution of prior information,
i.e. the use of Bayesian methods, is a huge advantage in the analysis of phar-
macokinetic data and may even be crucial for obtaining reliable estimates
from smaller studies.

As WinBugs is the most popular Bayesian program, it is an obvious
choice for performing Bayesian population pharmacokinetic analysis. How-
ever, as these models can be complex and much less straightforward to
implement, it would be inaccessible to perform these models in WinBUGS
without the existence of PKBUGS. Extensive knowledge of pharmacoki-
netics, Bayesian statistics and the BUGS language is required in order to
implement PK models in WinBUGS. Although it is straightforward to spec-
ify and analyse a relatively simple PK model (the one described in Section
4.3 and the example in Appendix A) in PKBUGS, when the model be-
comes more difficult, e.g. with the introduction of IOV and/or IStV , it
becomes less straightforward. In these cases, the model needs to be printed
by PKBUGS and the user should adjust the structural and stochastic part
of the model code. Additionally, PKBUGS rearranges the data in specific
formats and these should be adjusted as well. In order to make these ad-
justments, knowledge of the BUGS language and a good understanding of
the generated model by PKBUGS is a prerequisite. Another limitation of
PKBUGS is that the structural part of the PK model is ’hidden’ within
the PK model component (see Section 4.2), consequently, the ODE’s that
describe the time course of drug concentration within the body (from which
the PK parameters are estimated) are not accessible to the user. This limits
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the freedom to make adjustments in this part of the model (for instance to fix
the value of a parameter within the ODE’s or assign a distribution to it). Al-
though in PKBUGS 2.0 it is possible to implement the ODE’s manually, this
requires extensive knowledge of the Pascal programming language. Despite
of these limitations, PKBUGS makes the analysis of Bayesian population
pharmacokinetic models accessible to a wide range of people and under the
right circumstances it provides a good alternative to other pharmacokinetic
programs.





A PKBUGS Analyses

This section describes a basic Bayesian PPK analysis using PKBUGS. It
aims to make the reader more familiar with PKBUGS. For a more extensive
use of PKBUGS, the reader is advised to read Sections 3, 4 and 5 of the
PKBUGS User Manual [45].

A.1 The Data

Pharmacokinetic data of the anti-asthmatic drug theophylline is used in
this analysis. The data originates from a study by Dr. Robert Upton [57–
59]. Twelve subjects were given one oral dose of theophylline and serum
concentrations were measured at 11 time points over the next 25 hours. The
data can be obtained via R (library datasets):

> data(Theoph)

> head(Theoph)

Subject Wt Dose Time conc

1 1 79.6 4.02 0.00 0.74

2 1 79.6 4.02 0.25 2.84

3 1 79.6 4.02 0.57 6.57

4 1 79.6 4.02 1.12 10.50

5 1 79.6 4.02 2.02 9.66

6 1 79.6 4.02 3.82 8.58

Where Subject is the id of the subjects (1 to 12), Wt is the weight (kg), Dose
is the administered dose (mg/kg), Time is the time of the measurements (h)
and conc is the measured theophylline concentration (mg/l).
The data should be adapted in order for PKBUGS to recognize it:

> head(Theoph)

id Wt amt time dv evid

1 1 79.6 4.02 0.00 0.74 1

2 1 79.6 4.02 0.25 2.84 0

3 1 79.6 4.02 0.57 6.57 0

4 1 79.6 4.02 1.12 10.50 0

5 1 79.6 4.02 2.02 9.66 0

6 1 79.6 4.02 3.82 8.58 0

Note that some of the column names are changed (into the names of the
data items PKBUGS recognizes) and an extra variable is created called evid.
Evid stands for event identification and summarizes what type of event each
observation belongs to. In this study we only have observations (evid = 0)
and dose events (evid = 1).
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A.2 Model Specifications

When the data is copied to WinBUGS (version 1.3 with PKBUGS 1.1), it
is important that the data and the data items (column names) are saved in
separate documents. To load the data items in PKBUGS, make sure that the
data item document is the top window and select Load item names from
the PKBugs menu. In the status bar, the message ’items names loaded’
appears. The same procedure can be followed for loading the data, by
selecting Load data and the message ’data loaded ’ appears. The next step
is to define the model, which can be done by selecting Define model from
the PKBugs menu. For this example, we select a one-compartment model
with normal residuals, then click on Check model. In the status bar the
message ’model ok’ appears. The priors can be specified by clicking Priors
in the PKBugs menu. In this example we choose as priors, the estimated PK
parameters from a PK study on theophylline by Hussain et al. (with weight
= 70 kg and age = 40 yrs) [60]; CL: 2.44 l/h with an ISV of 38.7%, V : 39.9 l
with an ISV of 40%. The box covariates shows the covariates in this data set
(weight and log weight), which can be selected for each PK parameter. In
this example we will not select any, and just estimate the PK parameters.
When the priors are specified, click on Done. Then the message ’priors
ok ’ appears. A new window automatically opens with the above specified
priors. These can be loaded in PKBUGS by choosing Load priors from
the PKBugs menu and the message ’priors loaded ’ appears in the status
bar. Again, a new window opens with the intitial values for the population
parameters which PKBUGS automatically generates. Click on Load inits
(pop) in the PKBugs menu to load these initial values into PKBUGS. Then
the message ’initial values for population parameters loaded ’ appears. A new
window has opened showing the initial values for theta and these can be
loaded in PKBUGS by clicking on Load inits (theta) from the PKBugs
menu, the status bar shows the message ’initial values for theta loaded ’. Now
we can choose between two options, Export model or Compile both in the
PKBugs menu. If we export the model, PKBUGS generates an equivalent
WinBUGS code for the specified model, which runs in WinBUGS version
1.4.3 with PKBUGS 2.0. This option can be used when it is necessary to
modify the standard three-stage hierarchical model. This is not necessary
for the analysis in this example and we choose to compile the model.

A.3 The Analysis

The actual analysis does not differ from any other analysis in WinBUGS.
PKBUGS automatically opens the trace plots for the most important pa-
rameters. Where mu[1] is the logarithm of CL, mu[2] is the logarithm of V ,
Omega[1, 1] is the inter-subject variability of CL, Omega[2, 2] is the inter-
subject variability of V and sigma is the standard deviation of the residual
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error. Other nodes that may be of interest can be specified in the Sample
Monitor Tool, we choose model, which represents the pharmacokinetic
model evaluated at time t and theta, which represent the individual PK pa-
rameter estimates. Since the individual PK parameters are estimated using
the MH-algorithm, we would also like to monitor it’s acceptance rates by
choosing Metropolis monitor in the PKBugs menu. When all nodes are
specified we can start sampling, we run 100,000 iterations.

A.4 The results

The autocorrelation function (ACF) shown in Figure 7 tells us that most
of the sampled values are basically uncorrelated. The initial sampled val-
ues for CL, show some correlation, therefore, 5,000 iterations are discarded.
The density plots shown in Figure 7 tell us that all of the sampled values
are generated from an unimodal distribution. Based on these plots and the
trace plots (not shown), convergence seems to be attained. Nevertheless,
these plots are not a proof that the posterior is sampled appropriately and
convergence diagnostics are needed. Using the BOA package in R, con-
vergence diagnostics were consulted. Heidelberger & Welch confirmed that
convergence is attained (output not shown). The Bayesian summary mea-
sures shown in Figure 7 show that the posterior mean of CL is 0.02 l/h
with 95% credible interval [0.01, 0.03], V is 0.70 l [0.58,0.85], ISV of CL
0.15 [0.03, 0.47], ISV of V 0.09 [0.03, 0.22] and sigma (standard deviation
of residual error) 2.10 [1.84, 2.42]. Sigma appears to be large, perhaps a
two-compartment model provides a better fit for this data.
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Figure 7: Theophilline PPK analysis: diagnostic and output screens obtained from
Winbugs. Top: ACF after 100000 iterations. Middle: smooth density plot after 95000
iterations (5000 burn-in). Bottom: Bayesian summary measures based on 95000 iterations
(5000 burn-in)



B Priors per Study

This section describes the prior estimates of the models per study (Section
5). Strategies for obtaining non-, fully- and minimally-informative priors
are described below.

Non-informative priors were chosen following the guidelines of Lunn
et al. [45,46] and were the same for all studies. Where the population phar-
macokinetic parameters η were set to the prior point estimates reported in
Table 2, their variances, the diagonals of C, were set to 10,000, the prior
point estimates of the variances for the inter-occasion and inter-subject vari-
ability, the diagonals of R and G, were multiplied by 6 (the number of PK
parameters in the model) with degrees of freedom, ρ and γ, equals 6 and the
prior mean of the precision (τ) was set to 1 with a prior variance of 1000.

The starting position for obtaining fully-informative priors includes the
specification of the prior estimates reported in Table 2 (for η, the diagonals
of C, R and G). With these informative priors, the data of the studies
still need more information for estimating all model parameters, i.e. con-
vergence is not attained for all model paramters and the likelihood is non-
identifiable. In order to make the model identifiable, the precisions of the
model parameters that did not convergence were increased by multiplying
it by a scalar until convergence was attained (for C, R or G). Whereby
the degrees of freedom of the Wishart distributions for the ISV and IOV, ρ
and γ, were kept at 6 or increased to 7 (when convergence was not reached).
A minimally-informative Wishart distribution is obtained by choosing the
degrees of freedom in this way, i.e. Ω−1 ∼ Wp(R

−1, ρ), where R is a p × p
positive definite matrix and ρ is chosen as p or p+ 1 [38]. Prior information
on the ISV and IOV highly influenced the individual and subsequently pop-
ulation PK parameter estimates. For instance, when the degrees of freedom
of the Wishart distribution were further increased (making the distribution
highly informative by setting them equal to the number of individuals who
participated in the prior studies), the estimates of θ and µ became almost
identical to the prior estimates. In order to gain as much information as pos-
sible from the data of the studies, convergence could not always be reached
for the parameters Ω and Φ and emphasis was put on the convergence of µ
and θ.

With fully-informative priors, prior information is at least equal to the
prior estimates reported in Table 2. However, some parameters may not
need such informative priors. Therefore, minimally-informative priors were
obtained by further optimizing the prior estimates of the variances. This was
done in such a way that convergence was attained for previous mentioned
parameters with the least informative priors, i.e. it was tried to reduce the
prior information on each parameter while remaining convergence.

The resulting multiplication factors for C, R and G for fully- and
minimally-informative priors per study are reported in Sections B.1 to B.6.
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B.1 Study 1

Fully-informative priors: the prior point estimates of the diagonals of C
were multiplied by 1, R were multiplied by [1, 1, 1, 0.03, 0.003, 0.03] for Q,
V1, V2, Tlag and ka respectively, with ρ equals 7, G were multiplied by [1,
0.03, 0.3, 0.1, 0.015, 0.05] with γ equals 7 and the mean of τ was set to the
prior point estimate with variance 0.3.
Minimally-informative priors: the prior point estimates of the diagonals
of C were multiplied by [1000000, 5, 5, 5, 50, 5], R were multiplied by [3,
3, 3, 0.03, 5, 0.068] and ρ was set to 7, G were multiplied by [3, 0.03, 0.3,
0.3, 0.015, 0.5], γ was set to 7 and the posterior mean of τ was set to 1 with
variance 1000.

B.2 Study 2

Fully-informative priors: the prior point estimates of the diagonals of C
were multiplied by 1, R were multiplied by [1, 1, 1, 0.5, 1, 1], with ρ equals
7, G were multiplied by [1, 0.1, 1, 0.5, 0.0167, 1] with γ equals 7 and the
mean of τ was set to the prior point estimate with variance 0.3.
Minimally-informative priors: the prior point estimates of the diagonals
of C were multiplied by [2000000, 1, 1, 1, 5, 1], R were multiplied by [3, 1,
1, 0.5, 1, 11] and ρ was set to 7, G were multiplied by [3, 1, 1, 0.5, 0.02, 2],
γ was set to 7 and the posterior mean of τ was set to 1 with variance 1000.

B.3 Study 3

Fully-informative priors: the prior point estimates of the diagonals of C
were multiplied by [1, 1, 1, 1, 1, 1], R were multiplied by [1, 1, 1, 1, 1, 1],
with ρ equals 7, G were multiplied by [1, 1, 1, 0.05, 1, 0.007] with γ equals
7 and the mean of τ was set to the prior point estimate with variance 0.3.
Minimally-informative priors: the prior point estimates of the diagonals
of C were multiplied by [1.61E6, 2.42E6, 6.99E5, 3.79, 3.17E7, 2.49], R were
multiplied by [6, 6, 6, 6, 6, 0.6] and ρ was set to 7, G were multiplied by [6,
6, 6, 0.01, 6, 0.007], γ was set to 7 and the posterior mean of τ was set to 1
with variance 1000.

B.4 Study 4

Fully-informative priors: the prior point estimates of the diagonals of C
were multiplied by [1, 1, 1, 1, 1, 1], R were multiplied by [1, 1, 1, 0.047,
1, 0.322], with ρ equals 7, G were multiplied by [1, 0.1, 0.737, 0.04, 0.0154,
0.0118] with γ equals 7 and the mean of τ was set to the prior point estimate
with variance 0.3.
Minimally-informative priors: the prior point estimates of the diagonals
of C were multiplied by [10, 1, 10, 10, 1000, 10], R were multiplied by [10,
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10, 10, 0.047, 10, 1] and ρ was set to 7, G were multiplied by [10, 0.1, 1,
0.05, 0.0199, 0.0124], γ was set to 7 and the posterior mean of τ was set to
1 with variance 1000.

B.5 Study 5

Fully-informative priors: the prior point estimates of the diagonals of C
were multiplied by [100, 10, 10, 1, 1000, 10], R were multiplied by [1, 0.1,
0.1, 0.01, 10, 0.02], with ρ equals 7, G were multiplied by [10, 0.01, 0.01,
0.025, 0.003, 0.005] with γ equals 7 and the mean of τ was set to the prior
point estimate with variance 0.3.
Minimally-informative priors: the prior point estimates of the diagonals
of C were multiplied by [100000, 10, 10, 1, 1000, 10], R were multiplied by
[1, 1, 1, 0.01, 10, 0.02] and ρ was set to 7, G were multiplied by [10, 0.01,
0.01, 0.05, 0.003, 0.005], γ was set to 7 and the posterior mean of τ was set
to 1 with variance 1000.

B.6 Study 6

Fully-informative priors: the prior point estimates of the diagonals of
C were multiplied by [1, 1, 1, 0.5, 1, 0.5], R were multiplied by [1, 1, 0.5,
0.05, 1, 0.08], with ρ equals 7 and the mean of τ was set to the prior point
estimate with variance 0.3.
Minimally-informative priors: the prior point estimates of the diagonals
of C were multiplied by [1614435, 10, 1000, 0.5, 31738623, 0.5], R were
multiplied by [100, 10, 10, 0.05, 10, 0.08], ρ was set to 7 and the posterior
mean of τ was set to 1 with variance 1000.
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Figure 8: Study 1: trace plots of the population PK parameters obtained from WinBUGS
based on two overdispersed starting positions using non-informative priors.
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Figure 9: Study 1: trace plots of the population PK parameters obtained from WinBUGS
based on two overdispersed starting positions using fully-informative priors.
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Figure 10: Study 1: trace plots of the population PK parameters obtained from Win-
BUGS based on two overdispersed starting positions using minimally-informative priors.
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Figure 11: Study 2: trace plots of the population PK parameters obtained from Win-
BUGS based on two overdispersed starting positions using non-informative priors.
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Figure 12: Study 2: trace plots of the population PK parameters obtained from Win-
BUGS based on two overdispersed starting positions using fully-informative priors.
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Figure 13: Study 2: trace plots of the population PK parameters obtained from Win-
BUGS based on two overdispersed starting positions using minimally-informative priors.
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Figure 14: Study 3: trace plots of the population PK parameters obtained from Win-
BUGS based on two overdispersed starting positions using non-informative priors.
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Figure 15: Study 3: trace plots of the population PK parameters obtained from Win-
BUGS based on two overdispersed starting positions using fully-informative priors.
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Figure 16: Study 3: trace plots of the population PK parameters obtained from Win-
BUGS based on two overdispersed starting positions using minimally-informative priors.
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Figure 17: Study 4: trace plots of the population PK parameters obtained from Win-
BUGS based on two overdispersed starting positions using non-informative priors.
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Figure 18: Study 4: trace plots of the population PK parameters obtained from Win-
BUGS based on two overdispersed starting positions using fully-informative priors.
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Figure 19: Study 4: trace plots of the population PK parameters obtained from Win-
BUGS based on two overdispersed starting positions using minimally-informative priors.
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Figure 20: Study 5: trace plots of the population PK parameters obtained from Win-
BUGS based on two overdispersed starting positions using non-informative priors.
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Figure 21: Study 5: trace plots of the population PK parameters obtained from Win-
BUGS based on two overdispersed starting positions using fully-informative priors.
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Figure 22: Study 5: trace plots of the population PK parameters obtained from Win-
BUGS based on two overdispersed starting positions using minimally-informative priors.
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Figure 23: Study 6: trace plots of the population PK parameters obtained from Win-
BUGS based on two overdispersed starting positions using non-informative priors.
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Figure 24: Study 6: trace plots of the population PK parameters obtained from Win-
BUGS based on two overdispersed starting positions using fully-informative priors.
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Figure 25: Study 6: trace plots of the population PK parameters obtained from Win-
BUGS based on two overdispersed starting positions using minimally-informative priors.
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Figure 26: Trace plots of the individual PK parameters obtained from WinBUGS based
on two overdispersed starting positions using non-informative priors. Individuals were
randomly selected
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Figure 27: Trace plots of the study PK parameters obtained from WinBUGS based
on two overdispersed starting positions using non-informative priors. The studies were
randomly selected
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Figure 28: Trace plots of the population PK parameters obtained from WinBUGS based
on two overdispersed starting positions using non-informative priors.
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Figure 29: Regression analyses: trace plots of the study PK parameters obtained from
WinBUGS based on two overdispersed starting positions using non-informative priors.
The studies were randomly selected
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Figure 30: Regression analyses: trace plots of the population PK parameters obtained
from WinBUGS based on two overdispersed starting positions using non-informative pri-
ors.
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Figure 31: Individual effect of gender on the pharmacokinetic parameters (a) clearance,
(b) inter-compartmental clearance, (c) volume of distribution of the central compartment,
(d) volume of distribution of the peripheral compartment, (e) absorption lag-time and (f)
absorption rate constant.
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Figure 32: Individual effect of race on the pharmacokinetic parameters (a) clearance,
(b) inter-compartmental clearance, (c) volume of distribution of the central compartment,
(d) volume of distribution of the peripheral compartment, (e) absorption lag-time and (f)
absorption rate constant.
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E.3 Weight
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Figure 33: Individual effect of weight on the pharmacokinetic parameters (a) clearance,
(b) inter-compartmental clearance, (c) volume of distribution of the central compartment,
(d) volume of distribution of the peripheral compartment, (e) absorption lag-time and (f)
absorption rate constant. * Introduced in the full regression model.
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Figure 34: Individual effect of height on the pharmacokinetic parameters (a) clearance,
(b) inter-compartmental clearance, (c) volume of distribution of the central compartment,
(d) volume of distribution of the peripheral compartment, (e) absorption lag-time and (f)
absorption rate constant.
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Figure 35: Individual effect of age on the pharmacokinetic parameters (a) clearance,
(b) inter-compartmental clearance, (c) volume of distribution of the central compartment,
(d) volume of distribution of the peripheral compartment, (e) absorption lag-time and (f)
absorption rate constant.
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Figure 36: Individual effect of the MMF dose on the pharmacokinetic parameters (a)
clearance, (b) inter-compartmental clearance, (c) volume of distribution of the central
compartment, (d) volume of distribution of the peripheral compartment, (e) absorption
lag-time and (f) absorption rate constant. * Introduced in the full regression model.
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Figure 37: Individual effect of Diabetes Mellitus on the pharmacokinetic parameters
(a) clearance, (b) inter-compartmental clearance, (c) volume of distribution of the central
compartment, (d) volume of distribution of the peripheral compartment, (e) absorption
lag-time and (f) absorption rate constant.
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E.8 Creatinine Clearance using Cockroft & Gault
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Figure 38: Individual effect of creatinine clearance on the pharmacokinetic parameters
(a) clearance, (b) inter-compartmental clearance, (c) volume of distribution of the central
compartment, (d) volume of distribution of the peripheral compartment, (e) absorption
lag-time and (f) absorption rate constant. * Introduced in the full regression model.
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Figure 39: Individual effect of Hemoglobin on the pharmacokinetic parameters (a) clear-
ance, (b) inter-compartmental clearance, (c) volume of distribution of the central compart-
ment, (d) volume of distribution of the peripheral compartment, (e) absorption lag-time
and (f) absorption rate constant. * Introduced in the full regression model.
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E.10 The use of Antacids
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Figure 40: Individual effect of the use of antacids on the pharmacokinetic parameters
(a) clearance, (b) inter-compartmental clearance, (c) volume of distribution of the central
compartment, (d) volume of distribution of the peripheral compartment, (e) absorption
lag-time and (f) absorption rate constant. * Introduced in the full regression model.
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E.11 The use of Proton Pump Inhibitors
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Figure 41: Individual effect of the use of proton pump inhibitors on the pharmacokinetic
parameters (a) clearance, (b) inter-compartmental clearance, (c) volume of distribution of
the central compartment, (d) volume of distribution of the peripheral compartment, (e)
absorption lag-time and (f) absorption rate constant. * Introduced in the full regression
model.
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E.12 The use of Anti-Viral Agents
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Figure 42: Individual effect of the use of anti-viral agents on the pharmacokinetic pa-
rameters (a) clearance, (b) inter-compartmental clearance, (c) volume of distribution of
the central compartment, (d) volume of distribution of the peripheral compartment, (e)
absorption lag-time and (f) absorption rate constant. * Introduced in the full regression
model.
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