
Non-linear structured population models: An approach with
semigroups on measures and Euler’s method
Hoogwater, R.

Citation
Hoogwater, R. (2013). Non-linear structured population models: An approach with
semigroups on measures and Euler’s method.
 
Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in
the Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3597315
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3597315


Ron Hoogwater

Non-linear structured population

models: an approach with semigroups

on measures and Euler’s method

Master thesis, 27 February 2013

Thesis advisor: Dr. S.C. Hille

Specialisation: Applied Mathematics

Mathematisch Instituut, Universiteit Leiden





Abstract

In this thesis we study a measure-valued structured population model.
We present a functional analytic framework in which we think the type
of equations in this model are studied best and we formulate a technique
to use the corresponding linear model to get solutions for the non-linear
model.

A key in creating a convenient framework is embedding the space of
Borel measures in a Banach space that is a subspace of the dual of the
bounded Lipschitz functions. We give an existence result for positive mild
solutions with values in a Banach space, based on a contraction argument,
which yields positive measure-valued solutions to the (semi-) linear model.

To get approximations for the non-linear model, we freeze the coeffi-
cients in the equation on an equidistant grid in time and use the solutions
of the linear model. These approximations are similar to those obtained
by applying the Forward Euler Scheme for ordinary differential equations.
We prove that the approximations form a Cauchy sequence that con-
verges and we find a rate of convergence. We present a generalization
of this technique that can be applied to a problem formulated in terms
of a parametrised non-linear semigroup on a Banach space, where the
parameter is determined by a feedback function.
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1 Introduction

Measure valued evolution equations have become a study of interest the past
few years. They find applications in population dynamics and crowd-dynamics,
but also in stochastic differential equations. We will focus on the study of time
evolution of physiologically structured populations.

There is need for a better functional analytic framework to study measure
valued evolution equations [6, 19]. This thesis is an attempt to present such a
framework and to argue that the framework we present is natural to study these
equations. The main goal was to understand the work of Piotr Gwiazda et al.
in [10] from a functional analytic point of view. Whereas [10] focusses on the
dependence of the solution to the model ingredients, we will focus on creating a
convenient framework and notation to make the theory of non-linear measure-
valued models more readily understandable. The tools we provide can be used
to obtain the same results, but can also be applied in different situations.

An interesting idea in [10] is the method of solving the non-linear equation
in their model. The coefficients in the non-linear equation are frozen on a
equidistant grid on a time-interval and then the solutions of the linear equation
can be used on each grid-mesh. By letting the grid size vanish they find a
weak solution. This procedure is similar to Euler’s method for solving ordinary
differential equations. They use the framework of ‘mutational equations’, which
in our view makes this method less transparent than necessary. We present
a theory, based on these ideas, that fits nicely in our framework for measure-
valued models, that avoids the use of the mutational equations and that can
also be used to solve similar non-linear models in function spaces.

We found that Hrvoje Šikić had published some interesting work in [18] that
turned out to be useful in developing this functional analytic framework. We
used an existence theorem for positive mild solutions and a result that showed
the equivalence of two different variation of constants formulas without having
to do calculations with generators of semigroups. These theorems were written
down in a very general setting, and we reformulated these theorems in our
setting. Although avoiding the use of generators was not needed in this thesis,
it was interesting to study in its own right and these results can be useful when
studying perturbations of semigroups that do not have a generator, or where the
generator is difficult to compute, for example with Markov semigroups, which
need not be strongly continuous. These results are discussed and presented in
Section 2.

Section 3 explains how we can apply this theory to get results for the (linear)
measure valued equations from [10]. In Section 4 we deal with the non-linear
equations, by applying a method similar to Euler’s method for ordinary differ-
ential equations.

1.1 Measure-valued models

Equations describing a structured population are usually formulated in terms
of densities on the state space of an individual. Integrating this density over
a set in the individual’s state space yields the expected number of individuals
in the population with state in that set on a particular time. In this case, the
models are formulated in L1 spaces. In some cases it is however more natural
to formulate such models in terms of measures instead of densities. We will
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address some of the arguments for using measure-valued models here.
The approach with measures can have some technical advantages. In some

cases, it is not clear what function space would be natural to work in when
working with density functions. For example, the equations may not be regular
enough to ensure that an initial condition that is in L1 would stay in L1. We
will argue that for measures, there is a natural space to work with.

From a more philosophical perspective, one could also argue that individuals
with are modelled best with Dirac measures on the state space. It would be
interesting to study when the density models approximate the models with Dirac
measures well. A model with Dirac measures is in fact a particle description of
the system, which is often used in simulations, especially in crowd-dynamics.

In [4] the study of models with measures is motivated by the fact that in the
selection-mutation equations that they study, some solutions tend to stationary
states that are measures. These steady states are for example a Dirac mass at
the evolutionary stable strategy value.

Another argument would be that a framework with measures could be useful
when studying stochastic equations.

An important advantage of the measure-valued approach, mentioned in [10],
is the ability to deal with a difficulty of the classical approach: the L1 norm does
not behave well with empirical data. When comparing the model with discrete
data from experiments, the L1 norm can give inconsistent information.

Suppose that we have a real population that has a distribution over some
state variable (age, length, etc.) in R+ that is absolutely continuous with re-
spect to the Lebesque measure. Data from experiments typically consists of the
number of individuals that have a state in some interval in the state space for
individuals, for different intervals. So this data only approximates the integrals
of the density over these intervals, not the density itself. It would be natural
that if the intervals are smaller (and thus the experiment is more accurate) then
the densities that would fit are close in norm. This is however not the case with
the L1 norm.

For example, suppose that we have the empirical data {an}∞n=1, where an
is the number of individuals that have a state in the interval [nh, (n+ 1)h). A
density f that would fit would satisfy an =

∫
[nh,(n+1)h)

f(x) dx for all n ∈ N.

However two densities that have the same integral over some interval do not
have to be close in L1 norm: for example the L1 distance between two peaks
that do not overlap is the sum of the L1 norms of these peaks, even if they are
close. To be precise, consider the set

A =

{
µ ∈M+(R+) : an =

∫
[nh,(n+1)h)

dµ, for all n ∈ N

}
.

Denote with A∩L1 the set of densities of the measures that are absolutely con-
tinuous w.r.t. the Lebesque measure, then A∩L1 has diameter 2

∑∞
n=1 an with

respect to L1 norm. This does not depend on h, so more accurate experimental
data would give no more information on which density to use. In the bounded
Lipschitz norm (defined below), the diameter would be h

∑∞
n=1 an. Hence, the

L1 norm may not be the most natural norm to use in equations describing a
process when comparing with empirical data.
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1.2 From densities to measures: an example

The structured population model that we introduce in this section will be the
leading example in this thesis, as it is also studied in [10]. All results were first
derived for this specific model and then were generalized as much as possible.
In this way it is possible to compare with [10] and check if results are consistent
with the existing theory.

The classical version of this structured population model is derived and
studied in [19]. A solution u(·, t) ∈ L1(R+) is found that satisfies

∂tu(x, t) + ∂x
(
F2

(
u(·, t), x, t

)
u(x, t)

)
= F3

(
u(·, t), x, t

)
u(x, t),

F2

(
u(·, t), 0, t

)
u(0, t) =

∫
R+ F1

(
u(·, t), x, t

)
u(x, t) dx

u(x, 0) = u0(x).

(1.1)

Here R+ is the state space for individuals and u(x, t) is the density for the
number of individuals that have a state x ∈ R+ at time t ∈ [0, T ]. At zero,
mass is inserted or removed and F1 describes how this depends on the current
density and time. When F1 ≥ 0, then F1 can be interpreted as a birth law. F2

describes a velocity field on the state space which results in a flow of mass on
R+; it tells how the state of an individual changes (e.g. growth or ageing). F3

is the rate of change of the population mass changes on all states and can be
interpreted as death or growth.

To obtain a measure valued version of this model, one could start with
substituting u(·, t) with measure valued solutions µt ∈ M(R+). A first step
would be to give meaning to the term ∂x(F2(µt, t)µt), for example to interpret
this in the sense of distributions. This would suggest to look for weak solutions.
We take another approach from the perspective of semigroup theory, explained
in Section 3.1 and Section 4.1. We stress that in either approach, the expression
∂x(F2(µt, t)µt) is a formal expression and one should be careful how to interpret
this.

In [10], the measure valued version of the second line in (1.1) is formulated
as

F2(µt, t)(0)µt(0) =

∫
R+

F1(µt, t)(x) dµt(x) (1.2)

Yet this expression is erroneous. In general the evaluation of a measure on a set
is not continuous. So if one interprets µt(0) as an evaluation on the set {0}, then
(1.2) equates the continuous function on the right hand side to a function on
the left that is not always continuous. Moreover, if the measure µt is absolutely
continuous with the Lebesque measure on R+ such that it has density u(·, t),
then µt({0}) = 0 while the expression on the right hand side is non-zero in a
non-trivial case. Hence, (1.2) can only be viewed as representing the type of
boundary condition that is envisioned: adding new mass at state 0 and start
with velocity F2(u(·, t), 0, t).

A more natural approach to add mass in zero is to add a Dirac delta measure,
which results in the following formal expression of the non-linear model we will
investigate in this thesis,{

∂tµt + ∂x
(
F2(µt, t)µt

)
= F3(µt, t)µt +

(∫
R+ F1(µt, t) dµt

)
δ0

µ0 = ν0 ∈M+(R+).
(1.3)
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That is, we search for a solution µt ∈ M(R+) that satisfies (1.3) for t ∈ [0, T ]
and F1, F2, F3 : M(R+) × [0, T ] → BL(R+). Note that we take ν0 to be a
positive measure, because it counts the individuals of a certain state in R+.
Furthermore, we could replace the state space R+ with some other space with
a differentiable structure, but for now we stick to R+ as to compare with [10].

In [4,10] the interpretation of the formal expression (1.3) is done by defining
a weak solution. A drawback of this approach is that it is not immediate where
this expression comes from and what a weak solution looks like. Furthermore,
the approach in [10] seems to involve a lot of tedious computations and they do
not establish uniqueness of weak solutions, if it holds at all.

In this thesis, a different approach is investigated: we will study mild solu-
tions. A key in this approach is choosing a suitable Banach space wherein the
space of measures M(R+) can be embedded. This results in what we find an
elegant and readable theory, where we are able to benefit from powerful tools
from functional analysis and theory of linear evolution semigroups in e.g. [9,13].

Before we will study the full non-linear problem, we will turn to the linear
version of (1.3). In Section 2 theory is developed for general Banach spaces
and applied to this linear version in Section 3.2 to find global mild solutions.
In Section 3.3, it is shown that the weak solution that is found in [10] equals
the mild solution that is found in this thesis. Besides being more natural and
readable, mild solutions of the linear model are unique.

In [10], weak solutions for the non-linear problem in (1.3) are found by
using the framework of mutational equations, where existence follows from a
compactness argument. We have found a constructive proof that yields a unique
solution and a convergence rate for the approximations. In the non-linear case,
it is not clear how a mild solution should be defined. We propose a definition,
and we prove that our mild solution equals the weak solution in [10] at least for
F1 ≡ F3 ≡ 0 in Section 4.1.

1.3 Notation

Here we briefly introduce and discuss some notation and conventions that are
used throughout this thesis.

Let (S, d) be a separable complete metric space (a Polish space). We shall
write BL(S) to denote the vector space of bounded Lipschitz functions from S
to R. For f ∈ BL(S) we define

‖f‖BL = ‖f‖∞ + |f |Lip.

Here |f |Lip denotes the Lipschitz constant of f ,

|f |Lip = sup

{
|f(x)− f(y)|

d(x, y)
: x, y ∈ S, x 6= y

}
,

we will also use the shorter notation |f |L for this. Note that the Sobolev space
W 1,∞(Rd) is isometrically isomorphic with BL(Rd), where Rd is equipped with
the usual Euclidean norm. For the dual norm on BL(S)∗ we will write ‖·‖∗BL.

With M(S) we denote the space of signed finite Borel measures on S, and
with M+(S) we denote the positive cone. With C(X,Y ) we denote the space
of continuous functions from X to Y , with X,Y topological spaces.
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With a bounded map we mean a map that is bounded on bounded sets. We
call a map f : S → R uniformly bounded if it has a uniform bound M > 0 such
that f(x) ≤ M for all s ∈ S. Of course, when S is bounded these definitions
coincide. There are two cases where this terminology may lead to confusion, so
we explain these cases here. With a bounded Lipschitz function f ∈ BL(S) we
mean a Lipschitz function that is uniformly bounded. With the space C1

b (S) we
mean the space of continuously differentiable real-valued functions on S that
are uniformly bounded and have a derivative that is uniformly bounded.

In Section 2 we mainly deal with semigroups of linear operators, but we also
encounter non-linear semigroups of operators. The semigroups we that denote
with Roman letters are linear; for the non-linear semigroups we will use the
letter Φ or φ.

1.4 Embedding of measures in a Banach space

We want to investigate mild solutions in the space M(S), where S is a Polish
space. As mentioned earlier, it is convenient to work with a Banach space to
apply results from [9, 13] and Section 2. In [4, Remark 2.6] it is stated that
one cannot work in the dual space [W 1,∞(Rd)]∗, but it turns out that this is
almost the space that will do if S = Rd. In this section we will investigate the
embedding of measures into BL(S)∗, using the results of [12].

A measure µ ∈M(S) defines a linear functional on BL(S): Iµ(f) =
∫
S
f dµ.

The linear map µ 7→ Iµ :M(S)→ BL(S)∗ is injective [8, Lemma 6], so we can
embedM(S) into BL(S)∗. If we viewM(S) as a subspace of BL(S)∗ than norm-
convergence corresponds to narrow convergence. Furthermore, we can use the
bounded Lipschitz norm ‖·‖∗BL on measures; this corresponds to the flat metric
used in [10]. Note that this norm is natural when studying transport equations,
in contrast to the total variation norm. That is, for the total variation norm,
denoted in this thesis by ‖·‖TV, it holds that ‖δx− δy‖TV = 2 for x, y ∈ S, even
if d(x, y) is small.

Let

D := span {δx : x ∈ S} =

{
n∑
k=1

αkδxk : n ∈ N, αk ∈ R, xk ∈ S

}
.

We define SBL to be the closure of D in BL(S)∗ with respect to ‖ · ‖∗BL. When
we use the notation SBL we will always mean that it is a normed with ‖ · ‖∗BL.
Sometimes we will write SBL(S) to emphasis the use of the state space S. By [12,
Corollary 3.10], M(S) is a ‖ · ‖∗BL-dense subspace of SBL.

A remarkable property of the space SBL is that its dual S∗BL is isometrically
isomorphic to BL(S) [12, Theorem 3.7], and the way a ϕ ∈ BL(S) works on a
measure µ ∈M(S) ⊂ BL(S)∗ is natural:

〈µ, ϕ〉 = Iµ(ϕ) =

∫
S

ϕdµ. (1.4)

We can define an ordering on SBL by defining

D+ =

{
n∑
i=1

αiδxi : n ∈ N, αi ∈ R+, xi ∈ S

}
, (1.5)
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and then define S+
BL to be the closure of D+ with respect to ‖ · ‖∗BL. Now it

holds that M+(S) = S+
BL because S is complete [12, Theorem 3.9].

Hence SBL is a convenient Banach space to work with. First, it is endowed
with the bounded Lipschitz norm, which is a natural norm in this context. And
second, if we want to ensure that mild solutions in SBL are measure-valued,
we only have to require that they are positive, a requirement we had to make
anyway in the population model.
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2 The Perturbed Abstract Cauchy Problem

Let X be a Banach space and let (T̂t)t≥0 be a strongly continuous semigroup
(a C0 semigroup) of bounded linear operators on X with generator (A,D(A)).
Let F : X → X be globally Lipschitz. In this section we consider the Perturbed
Abstract Cauchy Problem,{

∂tu(t) = Au(t) + F
(
u(t)

)
u(0) = x0 ∈ X

. (2.1)

This is the abstract formulation of the system in (1.3) if F1, F2 and F3 do not
depend on time and F2 is linear. In Section 3 we will set X = SBL and use
the general theory in this section to obtain solutions for the measure-valued
population model.

As explained in the introduction, we will investigate mild solutions.

Definition 2.1. Let T > 0. A mild solution of (2.1) on [0, T ] is a function
u ∈ C([0, T ],X ) that satisfies

u(t) = T̂tx0 +

∫ t

0

T̂t−sF
(
u(s)

)
ds. (2.2)

A global mild solution is a mild solution defined on R+.

The formula in (2.2) is called the variation of constants formula, or voc.
We take the integral in (2.2) to be a Bochner integral, as we are working in an
abstract Banach space. A short overview of the theory of Bochner integration
can be found in Appendix A. In Section 2.2 we will prove that the integral in
(2.2) is well-defined.

In Section 2.1 we will prove an existence theorem for the system in (2.1).
In Section 2.3 we will take for X an ordered vector space and investigate when
solutions are positive.

2.1 Solutions to the Cauchy Problem

This section is concerned with proving the following theorem.

Theorem 2.2. Under the assumptions that F is globally Lipschitz and (T̂t)t≥0

is strongly continuous, there exists a unique mild solution u(t) to (2.1). This
solution has a Lipschitz dependence on the initial solution x0 and exists globally
for all time t ≥ 0.

This theorem is a special case of [13, Theorem 6.1.2]. We will give a more
detailed proof for our case here. Different ingredients for the proof are formu-
lated in separate lemmas. This is done to make the proof more readable and
because these lemmas will be used to prove two variations on this theorem in
Section 2.3 and Section C.

We often use the following property, which holds for all C0 semigroups [13,
theorem 1.2.2]:

‖T̂t‖L(X ) ≤Meωt for some M ≥ 1 and ω ∈ R. (2.3)

for all t ≥ 0.
First, let us prove that any mild solution of (2.1) will be unique.
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Proposition 2.3 (Uniqueness). Under the assumption that F is globally Lip-
schitz and (T̂t)t≥0 is strongly continuous, every two mild solutions u : I → X
and v : J → X of (2.1) satisfy u(t) = v(t) for all t ∈ I ∩ J .

Proof. Let u : I → X and v : J → X be two functions that satisfy (2.2), where
I, J ⊂ R+. Let t ∈ I ∩ J . By Theorem A.7 and (2.3) it holds that,

‖u(t)− v(t)‖ =

∥∥∥∥∫ t

0

T̂t−s
[
F
(
u(s)

)
− F

(
v(s)

)]
ds

∥∥∥∥
≤
∫ t

0

Meω(t−s) ∥∥F (u(s)
)
− F

(
v(s)

)∥∥ ds

for some ω ∈ R and M ≥ 1. Use that F is Lipschitz with |F |L ≤ L to get

‖u(t)− v(t)‖ ≤ML

∫ t

0

eω(t−s) ‖u(s)− v(s)‖ ds (2.4)

Apply Gronwall’s Inequality in Lemma B.1 with r(t) = ‖u(t)−v(t)‖ and a(t) =
0. Then it follows that

‖u(t)− v(t)‖ ≤ 0,

so u(t) = v(t).

Local existence of solutions is obtained by using Banach’s Fixed Point The-
orem. Let T > 0 and define the (non-linear) operator Q on C([0, T ],X ) by

Q(u)(t) = T̂tx0 +

∫ t

0

T̂t−sF
(
u(s)

)
ds. (2.5)

Note that a fixed point of Q will be a mild solution by definition. The fact that
Q(u) is continuous is not immediate, it depends on the fact that T̂t is strongly
continuous.

Lemma 2.4. Under the assumptions of Theorem 2.2, the operator Q defined
in (2.5) is a well-defined operator from C([0, T ],X ) to C([0, T ],X ).

Proof. Let u ∈ C([0, T ],X ). We only have to prove that Q(u) is continuous.
Let ε > 0. Take t, s ∈ [0, T ] with t > s and |t − s| < δ, where δ > 0 is to be
determined. Compute∥∥Qu(t)−Qu(s)

∥∥ ≤ ‖T̂tx0 − T̂sx0‖

+

∥∥∥∥∫ t

0

T̂t−rF
(
u(r)

)
dr −

∫ s

0

T̂s−rF
(
u(r)

)
dr

∥∥∥∥ . (2.6)

Because (T̂t)t≥0 is strongly continuous, the map t 7→ T̂tx is continuous for every

x ∈ X . So we can take δ0 > 0 such that ‖T̂tx0 − T̂sx0‖ < 1
3ε, if |t− s| < δ0.

Rewrite the remaining part of (2.6) as∥∥∥∥∫ t

0

T̂t−rF
(
u(r)

)
dr −

∫ s

0

T̂s−rF
(
u(r)

)
dr

∥∥∥∥
≤
∥∥∥∥∫ t−s

0

T̂t−rF
(
u(r)

)
dr

∥∥∥∥+

∥∥∥∥∫ s

0

T̂s−r
[
F
(
u(r−s+t)

)
− F

(
u(r)

)]
dr

∥∥∥∥ . (2.7)
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Using Theorem A.7 and (2.3), the norm of first integral can be estimated as∥∥∥∥∫ t−s

0

T̂t−rF
(
u(r)

)
dr

∥∥∥∥ ≤ ∫ t−s

0

Meω(t−r) ∥∥F (u(r)
)∥∥ dr,

for some M ≥ 1 and ω ∈ R. Because u is continuous, B = {u(r) : r ∈ [0, T ]} is
a bounded set. Since F is Lipschitz, F [B] is bounded in norm, say with C > 0.
So we can proceed by writing∥∥∥∥∫ t−s

0

T̂t−rF
(
u(r)

)
dr

∥∥∥∥ ≤ CM ∫ t−s

0

eω(t−r) dr

≤ CM max(1, eωT )(t− s). (2.8)

Let L > 0 be the Lipschitz constant of F . The last integral of (2.7) can be
estimated as∥∥∥∥∫ s

0

T̂s−r
[
F
(
u(r−t+s)

)
− F

(
u(r)

)]
dr

∥∥∥∥
≤ML

∫ s

0

eω(s−r) ∥∥u(r − (t−s)
)
− u(r)

∥∥ dr. (2.9)

Because u is continuous, we can take δ1 > 0 such that
∥∥u(r − (t−s)

)
− u(r)

∥∥ <
1
3ε1 if |t− s| < δ1. Here we choose ε1 = (MLT max(1, eωT ))−1ε.

Now we can see that we have to choose δ > 0 such that

δ < min

(
δ0, δ1,

ε

3CM max(1, eωT )

)
.

Going back to (2.6) and filling in the estimates in (2.8) and (2.9) gives us

‖Qu(t)−Qu(s)‖ < 1
3ε+ CM max(1, eωT ) δ +MLT max(1, eωT ) 1

3ε1 < ε.

So Q(u) is continuous.

In fact, Q maps the space Z of bounded measurable maps u : [0, T ]→ X to
itself. To prove this statement, the requirement of strong continuity of (T̂t)t≥0

can be weakened. Accordingly the approach in the proof of the next lemma and
of Theorem 2.2 can also be used to get a fixed point of Q in Z. We then obtain
a mild solution that is only bounded and measurable. This is formulated and
proved in Section C.

Similarly, Q maps the space BL([0, T ],X ) of bounded Lipschitz functions to
itself if one requires T̂tx to be Lipschitz in time for all x ∈ X . This can readily
be seen from the proof of Lemma 2.4. Then we obtain a mild solution that is
Lipschitz in time.

Now let’s return to the proof of Theorem 2.2. The goal is to apply the
Banach Fixed Point Theorem to Q. That is, we want Q to be a contraction on
a Banach space. The space C([0, T ],X ) is indeed a Banach space if we endow it
with the norm

‖u‖∞ = sup
t∈[0,T ]

‖u(t)‖.

The proof of the completeness of the space C([0, T ],X ) is exactly the same as
for the space of real-valued bounded continuous functions Cb([0, T ]). See for
example [5, page 65].

Now Q is almost a contraction on the Banach space C([0, T ],X ).
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Lemma 2.5. Under the assumption that F is Lipschitz continuous and (T̂t)t≥0

is strongly continuous, the operator Q is a contraction on C([0, T ′],X ) for some
T ′ ≤ T .

Proof. Let u, v ∈ C([0, T ],X ). Let L > 0 be the Lipschitz constant of F . Using
Bochner’s Theorem, the Lipschitz continuity of F and the bound in (2.3) we
can write

‖Q(u)(t)−Q(v)(t)‖ =

∥∥∥∥∫ t

0

T̂t−s
[
F
(
u(s)

)
− F

(
v(s)

)]
ds

∥∥∥∥
≤ LM

∫ t

0

eω(t−s) ‖u(s)− v(s)‖ ds

≤ LM max
(
1, eωt

)
t ‖u− v‖∞. (2.10)

There exists a T ′ > 0 such that LM max (1, eωt) t < 1 for all t ∈ [0, T ′]. Then
Q is a contraction on C([0, T ′],X ).

Now we are in a position to prove Theorem 2.2.

Proof of Theorem 2.2. Let T ′ > 0 as in Lemma 2.5 and define the operator
Q : C([0, T ′],X )→ C([0, T ′],X ) as before by

Q(u)(t) = T̂tx0 +

∫ t

0

T̂t−sF
(
u(s)

)
ds.

Now Q is well-defined by Lemma 2.4 and from Lemma 2.5 it follows that Q is
a contraction on the Banach space (C([0, T ′],X ), ‖ · ‖∞).

By Banach’s Fixed Point Theorem, there exists a unique fixed point of Q.
By definition, this fixed point is a (local) mild solution of (2.1) with initial
condition x0.

Now we will prove that u(t) is defined for all t ≥ 0 (a more constructive
argument will be given in the proof of Theorem 2.12). Let U be the set of all
local mild solutions with initial condition x0. For u ∈ U we denote by Iu the
domain of u. Note that if u, û ∈ U are such that Iû ⊂ Iu, then it follows from the
uniqueness of mild solutions, Proposition 2.3, that û is the restriction of u to the
domain Iû. Let Imax =

⋃
u∈U Iu. It is now possible to define u(·, x0) : Imax → X

by
u(t;x0) = u(t) with u ∈ U such that t ∈ Iu. (2.11)

Indeed, if u, û ∈ U both are such that t ∈ Iu resp. t ∈ Iû, then Proposition 2.3
guarantees that u(t) = û(t) and thus the function u(·, x0) is well-defined. Note
that we at least have [0, T ′] ⊂ Imax.

Let Tmax = sup Imax. If we assume that Tmax < ∞, then we would be able
to construct a mild solution û : [0, Tmax+ 1

2T
′]→ X by defining

û(t) =

{
u(t, x0) if t ∈ [0, Tmax)

u
(
t− Tmax, u(Tmax− 1

2T
′, x0)

)
if t ∈ [Tmax, Tmax+ 1

2T
′].

So by definition of Imax, we have [0, Tmax+1
2T
′] ⊂ Imax, which contradicts with

Tmax = sup Imax. Hence it holds that Tmax = ∞ and thus u(t, x0) is a global
solution for t ∈ R+.
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It remains to show the Lipschitz dependence of u(·, x0) on x0. Let x, y ∈ X
be two initial conditions. Then

‖u(t, x)− u(t, y)‖ ≤ ‖T̂tx− T̂ty‖+

∥∥∥∥∫ t

0

T̂t−s
[
F
(
u(s, x)

)
− F

(
u(s, y)

)]
ds

∥∥∥∥
≤Meωt‖x− y‖+

∫ t

0

Meω(t−s) ∥∥F (u(s, x)
)
− F

(
u(s, y)

)∥∥ ds,

for some M ≥ 1 and ω ∈ R. Use that F is Lipschitz with Lipschitz constant
|F |L ≤ L to get

‖u(t, x)− u(t, y)‖︸ ︷︷ ︸
r(t)

≤ M max(1, eωt)‖x− y‖︸ ︷︷ ︸
a(t)

+

∫ t

0

Meω(t−s)L︸ ︷︷ ︸
b(s)

‖u(s, x)− u(s, y)‖ ds.

Now apply Gronwall’s lemma with the indicated variables. Equation (B.2) gives

r(t) ≤ a(t)

[
1 +ML

∫ t

0

eω(t−s) ds · exp

(
ML

∫ t

0

eω(t−s) ds

)]
. (2.12)

Denote the part between brackets with 1 + C(t). We now have

‖u(t, x)− u(t, y)‖ ≤M max(1, eωt)‖x− y‖
(
1 + C(t)

)
.

So x 7→ u(t, x) is Lipschitz continuous.

2.2 The Variations of Constants Formula

Recall the variation of constants formula as introduced in the introduction of
Section 2,

u(t) = T̂tx+

∫ t

0

T̂t−sF
(
u(s)

)
ds.

Here X is a Banach space, x ∈ X , u ∈ C([0, T ],X ), F : X → X is Lipschitz and
(T̂t)t≥0 is a C0 semigroup of bounded linear operators on X . If u(·, x) is the
unique solution to this equation, then we can write u(t) = Vtx, where (Vt)t≥0 is
a strongly continuous semigroup on X . Indeed, the semigroup property follows
from the uniqueness and the strong continuity follows from the fact that u(·, x)
is continuous for each x ∈ X . So then we could also write

Vtx = T̂tx+

∫ t

0

T̂t−s
[
F (Vsx)

]
ds.

Be aware that if F is not linear, then the operators Vt are not linear for all t.

Definition 2.6. The semigroup (Vt)t≥0 constructed above will be called the
semigroup of solutions associated to the mild solution u or to the model in
(2.1).
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Later, in Section 2.4, we will see that Vs and Tt−s can be interchanged in
this expression if F is linear. This will become important when we will compare
our results with [10] in Section 3.3.

Now we will turn our attention to the fact whether the voc formula is well-
defined. For this we will take a bit technical detour in Bochner measurability
and integrability. The integral has to be well-defined and therefore it is natural
to look closer at the concept of an integrable semigroup.

Definition 2.7. A semigroup (Tt)t≥0 of operators on a Banach space X is an
integrable semigroup if t 7→ Ttx is Bochner-measurable on [0,∞) for all x ∈ X
and there exist M ≥ 1 and ω ≥ 0 such that

‖T (t)‖ ≤Meωt for all t ≥ 0. (2.13)

Let (T (t))t≥0 be an integrable semigroup and x : R+ → X a bounded mea-
surable map. The requirements in Definition 2.7 guarantee that Ts[x(s)] is
(Bochner) integrable on bounded intervals: by Lemma A.8 the function s 7→
Ts[x(s)] is measurable and if I ⊂ R+ is a bounded interval, then ‖x(t)‖ ≤ MI

for some MI > 0 and it holds that∫
I

‖Ts[x(s)]‖ds ≤
∫
I

DeωtMI ds <∞, (2.14)

so by Bochner’s Theorem, Ts[x(s)] is integrable.
We can now prove that the voc formula is well-defined if the semigroup used

is integrable. The map u : R+ → X is continuous, so by Proposition A.9 it is
measurable. If F : X → X is Lipschitz, then s 7→ F (u(s)) is a bounded map and
it is measurable by Lemma A.10. Set x(s) = F (u(s)) in the argument before
and it follows that Ts[F (u(s))] is integrable.

The following proposition guarantees that the mild solution (2.2) in Section
2.1 is well-defined.

Proposition 2.8. A strongly continuous semigroup on a Banach space X is an
integrable semigroup.

Proof. Let (T̂t)t≥0 be a strongly continuous semigroup on a Banach space X .

For every z ∈ X the map t 7→ T̂tz from R+ to L(X ) is continuous, so by
Proposition A.9 it is measurable. The bound in (2.13) holds for all strongly
continuous semigroups [13, theorem 1.2.2].

In fact, an integrable semigroup is almost a C0 semigroup. Theorem 10.2.3
in [11] states that if t 7→ T̂tx is measurable for all x ∈ X , then T̂t is strongly
continuous for t > 0. So one could say that an integrable semigroup is strongly
continuous but in 0.

Therefore it is not surprising that all theorems in Section 2.1 and Section
2.3 can be reformulated in terms of integrable semigroups without having to do
major modifications to the proofs. An example can be found in Section C.

2.3 Positivity of solutions

Let B be an ordered Banach space over F, and denote with B+ the cone of
positive elements of B. This section will be concerned with establishing the
right conditions under which mild solutions of (2.1) will be positive.
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Definition 2.9. A semigroup (T (t))t≥0 of operators on an ordered Banach
space B is a positive semigroup if T (t)x ∈ B+ for all t ≥ 0 and x ∈ B+.

Let (Tt)t≥0 be a positive C0 semigroup of bounded linear operators on B
with generator (A,D(A)). Let F : B+ → B be a Lipschitz map and consider{

∂tu(t) = Au(t) + F
(
u(t)

)
u(0) = x ∈ B+.

(2.15)

A mild solution u of (2.15) is positive if u(t) ∈ B+ for all t ≥ 0. In other words:
a mild solution is positive if its corresponding semigroup is positive.

We will formulate a natural condition on F that ensures that there exists a
unique mild solution that is positive. The approach we will use was published
by Šikić in [18] for a very general setting. The framework that Šikić uses is so
general that it is difficult to grasp the main idea of the approach. One of the
goals of this section is to present the ideas of Šikić in our setting to show that
these ideas are in fact quite powerful and useful. The connection between our
framework and that of Šikić is explained later in this section.

To see the main idea in the approach of Šikić in [18], rewrite (2.15) as{
∂tu(t) = (A−B)u(t) + (F +B)u(t)

u(0) = x ∈ B+,
(2.16)

where B is an operator on B. Note that for all a ∈ F the operator (A − a I) is
the generator the positive semigroup e−atTt. So if can we choose a such that
(F + a I) is a positive operator on B and take B such that B(x) = ax then any
classical solution of (2.16), and thus of (2.15), is positive.

So what about the mild solutions of (2.16)? Is a mild solution of (2.16)
also a mild solution of (2.15) and can we then prove the positivity of this mild
solution? Suppose that (St)t≥0 is the semigroup with generator A−B. A mild
solution of (2.16) is

u(t) = S(t)x+

∫ t

0

S(t− s)
[
(F +B)

(
u(s)

)]
ds. (2.17)

Now apply the same trick as before by setting St = e−atTt. Corollary 2.11 states
that in this case u is a mild solution of (2.15). Positivity is proved in Theorem
2.12. The right hand side will turn out to be a positive function of u(s), and
with an induction argument the existence and positivity of u are established
using this idea.

The point is in defining St. We could obtain St by using the Bounded
Perturbation Theorem in [9, III 1.3], which states that A−B indeed generates
a strongly continuous semigroup if B is bounded and linear. Then Corollary
2.11 would indeed follow straight away. But then we heavily rely on the fact
that Tt has a generator A.

Now Šikić uses a lemma that is independent of generators and therefore
can be applied to cases where Tt is not strongly continuous. Here the idea
is to let St be the semigroup of mild solutions for (2.1), but then with the
bounded linear perturbation −B instead of F . Then it is proved that (2.17)
holds. See [18, Lemma 3.1] or our reformulation, Lemma 2.10 below.
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But wait, a closer look on the definition of St preceding [18, Lemma 3.1] and
in Lemma 2.10 reveals that a different version of the voc-formula is used. This
may seem as a concession to make the proof work, but it is in fact the main
ingredient of a very nice and useful result: for bounded linear perturbations this
different version of the voc formula is equivalent to the normal one without
using generators (see Section 2.4). Especially in this light the results needed
to prove existence of a positive solution is only a special case of the lemma
(formulated in Corollary 2.11).

Yet what makes this lemma elegant mostly is that it solves our problems on
the level of mild solutions, without using generators and using only elementary
or natural steps in the proof. Of course, here also lies its power, as it can be
extended to situations where the semigroups do not have generators.

Returning once to the explanation of the main idea, using equation (2.16),
Šikić says that this lemma shows that the mild solution u ‘behaves nicely with
respect to further linear perturbation’. Maybe a better way to put it is that
u behaves nicely with respect to an other linear perturbation, and keep the
formulation with generators in equation (2.16) in mind.

In [4, lemma 3.2], exactly the same approach is taken to prove that the solu-
tions of a specific model is positive, and the same explanation with generators
is given. They however prove the positivity of solutions first for functions in
L1(Rd), and then use a density argument to get positivity of their measure-
valued solution. So their proof for positivity of solutions has to be done for
every different model, although they skip the proof for other models because
there ‘analogous arguments are applicable’. Apparently this works for the mod-
els they present, but it does not give insight in what are precisely the require-
ments to ensure that the solution of a model will be positive. Our approach will
be in a general ordered Banach space and we will formulate a general positivity
requirement. The results can be applied to measures by setting B = SBL and
noting that the positive elements of SBL are precisely the positive measures.
This method also works for measures on a Polish space S, where there is no
natural candidate for a measure µ such that L1(S, µ) is dense inM(S) with the
‖·‖∗BL-topology.

The following lemma is a reformulation of Lemma 3.1 in [18]. The operator
F can also be taken measurable instead of continuous. Important to note is that
equation (2.18) is not the same as the regular variation of constants formula.
For the purpose of this section this does not give any problems, as can be seen
in the proof of Corollary 2.11. In fact, it is the key to Corollary 2.13 in Section
2.2.

Lemma 2.10. Let X be a Banach space and Y ⊂ X be a subset. Let (Tt)t≥0 be
a C0 semigroup of bounded linear operators on X . Let (St)t≥0 be a C0 semigroup
such that for all x ∈ X

Stx = Ttx+

∫ t

0

Ss [B Tt−sx] ds, (2.18)

where B : X → X is a bounded linear operator. Let F : Y → X be a bounded
continuous map. If u ∈ C(R+,Y) is a continuous map with u(0) = x that
satisfies the regular variation of constants formula,

u(t) = Ttx+

∫ t

0

Tt−s
[
F
(
u(s)

)]
ds, (2.19)
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with x ∈ Y, then for every x ∈ Y and t ≥ 0,

u(t) = Stx+

∫ t

0

St−s
[
(F −B)

(
u(s)

)]
ds.

Proof. Let x ∈ Y. Consider the following integral, where the equality follows
from substituting S with the expression in (2.18),∫ t

0

Ss
[
F
(
u(t− s)

)]
ds

=

∫ t

0

Ts
[
F
(
u(t− s)

)]
ds+

∫ t

0

∫ s

0

Sr
[
B
[
Ts−r

[
F
(
u(t− s)

)]]]
dr ds. (2.20)

If we replace s with t− s in the integral in (2.19), then we get∫ t

0

Ts
[
F
(
u(t− s)

)]
ds = u(t)− Ttx, (2.21)

which yields an expression for the first part of (2.20). The rest of this proof is
concerned with rewriting the double integral in (2.20).

First we apply Theorem A.11, the Fubini Theorem for Bochner integrals.
The map s 7→ u(t− s) is measurable by Proposition 2.8 and since F is con-
tinuous, we can apply Lemma A.10 to get that s 7→ F (u(t − s)) is mea-
surable. Clearly (s, r) 7→ s − r is measurable so the composition (s, r) 7→
Ts−r [F (u(t− s))] is measurable by applying Lemma A.8 two times. By as-
sumption B is continuous and (Sr)r≥0 is an integrable semigroup, so we can
respectively apply Lemma A.10 and Lemma A.8 again to get that the integrand
is measurable with respect to the product measure. So the double integral can
be written as ∫ t

0

∫ t

r

Sr
[
B
[
Ts−r

[
F
(
u(t− s)

)]]]
dsdr. (2.22)

Notice that Sr ◦B is a bounded linear operator, so (2.22) can be rewritten as∫ t

0

(Sr ◦B)

∫ t

r

Ts−r
[
F
(
u(t− s)

)]
dsdr

=

∫ t

0

(Sr ◦B)

∫ t−r

0

Tw
[
F
(
u(t− r − w)

)]
dw dr change (s− r)→ w

=

∫ t

0

(Sr ◦B) [u(t− r)− Tt−rx] dr by (2.21)

=

∫ t

0

(Sr ◦B)u(t− r) dr −
∫ t

0

(Sr ◦B)Tt−rxdr by linearity of Sr ◦B

=

∫ t

0

Sr [Bu(t− r)] dr − (Stx− Ttx) by (2.18).

Turning back to equation (2.20), we now have∫ t

0

Ss
[
F
(
u(t− s)

)]
ds = u(t)−Ttx+

∫ t

0

Sr [Bu(t− r)] dr−Stx+Ttx, (2.23)

which, since Ss is linear, finishes the proof.
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We could also write Vtx instead of u(t) in equation (2.19), where (Vt)t≥0

would be a family of (non-linear) operators. Then the statement in Lemma
2.10 would be more symmetric, like in [18]. But here we stick to the notation
u(t) to stress the non-linearity and to avoid the suggestion that Vt would be a
semigroup of linear operators (which it is not).

Now set Bx = ax in Lemma 2.10 for some a > 0 to prove that any mild
solution of (2.15) is a mild solution of (2.16) and vice versa.

Corollary 2.11. Let X be a Banach space and Y ⊂ X be a subset. Let a > 0
and let G : Y → X be a continuous map. Let (T̂t)t≥0 be a C0 semigroup of
bounded linear operators on X and let u ∈ C(R+,Y) be a continuous function
with u(0) = x. Then u is a solution of

u(t) = T̂tx+

∫ t

0

T̂t−s
[
G
(
u(s)

)]
ds (2.24)

for all x ∈ Y, if and only if it satisfies for all x ∈ Y

u(t) = e−atT̂tx+

∫ t

0

e−a(t−s)T̂t−s
[
(G+ a)

(
u(s)

)]
ds. (2.25)

Proof. The forward implication is a direct application of Lemma 2.10. Suppose
that u(t) satisfies (2.24), let Tt = T̂t and define St = eatTt. The operator B
given by B(x) = ax is bounded and linear and we can write∫ t

0

Ss[B(Tt−sx)] ds =

∫ t

0

aeasTtx ds =

(∫ t

0

aeas ds

)
Ttx

=
(
eat − 1

)
Ttx = Stx− Ttx, (2.26)

so equation (2.18) is satisfied. Now equation (2.25) follows from Lemma 2.10
by replacing a with −a and setting F = G.

For the other implication suppose that u(t) satisfies (2.25). Let Tt = e−atT̂t
and define St = eatTt = T̂t. Again let the operator B now be given by B(x) =
ax. Now equation (2.26) again holds, something that is seen best if one forgets
about T̂t. So equation (2.18) is satisfied.

Define the operator F as F (x) = (G+B)(x) = (G+a)(x). Now by assump-
tion equation (2.19) is satisfied. So by Lemma 2.10 u now satisfies

u(t) = Stx+

∫ t

0

St−s [(F −B)[u(s)]] ds.

Substituting St by T̂t and F by G+B gives the desired result.

The next theorem is a variation on two theorems of Šikić: [18, Theorem 3.1]
and [18, Corollary 4.1]. However, Šikić requires that G should satisfy some
boundedness condition and that B is a Banach lattice. In return the condition
on G is (2.27) is weakened.

Furthermore, in [18] a generalized version of integrable semigroups is used
instead of strongly continuous semigroups. Let us now explain the connection
between this other definition and the definitions in this thesis. A positive in-
tegrable semigroup is the analogue of [18, Definition 1.3]. In [18] the notions
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of measurability and integration are more general than here and the integra-
bility of Ts[x(s)] is required a priori in the definition of a positive integrable
semigroup. The proof that in our setting the integrability of Ts[x(s)] follows
from the requirements we make in Definition 2.7 can be found in [18, Example
1]. An alternative proof is given in Lemma A.8. In the example of Šikić, the
results in [3, Lemma 6.4.6] and [11, Theorem 10.2.3] are used implicitly, whereas
Lemma A.8 only uses Pettis’ Measurability Theorem.

In Lemma 2.10 and Corollary 2.11 the strong continuity can be replaced by
integrability without modifying the proof. In that case, Theorem 2.12 can also
be proven for the integrable case.

Theorem 2.12. Let B be an ordered Banach space such that the cone of positive
elements B+ is closed and let (Tt)t≥0 be a positive strongly continuous semigroup
of bounded linear operators on B. If G : B+ → B is a Lipschitz map such that
there exists an a > 0 for which

G(x) + ax ∈ B+ whenever x ∈ B+, (2.27)

then there exists a unique mild solution u(t) ∈ C(R+,B),

u(t) = Ttx0 +

∫ t

0

Tt−sG
(
u(s)

)
ds, (2.28)

such that u(t) ∈ B+ for all t ≥ 0 and x0 ∈ B+.

Proof. Let K > 0 and a > 0 such that the assumption in (2.27) holds. Let T > 0
and x0 ∈ B+ be arbitrary. Define the (non-linear) operator Q on C([0, T ],B) as

Q(u)(t) = e−atTtx0 +

∫ t

0

e−a(t−s)Tt−s [(G+ a)u(t)] ds. (2.29)

By Lemma 2.4, Q is well-defined and by Lemma 2.5 there exists a T ′ > 0
such that Q is a contraction on C([0, T ′],B) with respect to ‖·‖∞. Define u0 ≡ 0
and uk+1 = Suk for k ∈ N. By the proof of Banach’s Fixed Point Theorem
u = limk→∞ uk exists and is a fixed point of Q. By Corollary 2.11, u satisfies
(2.28) for t ∈ [0, T ′].

It remains to prove that u(t) is positive and that it is defined for all t ≥ 0.
We will prove that uk(t) ∈ B+ for all t ≥ 0 and k ∈ N by induction over k.
Clearly the claim holds for u0. Suppose that the claim holds for k ≤ n. For all
t ∈ [0, T ′] it holds that

un+1(t) = e−atTtx0 +

∫ t

0

e−a(t−s)Tt−s [(G+ a)un(t)] ds. (2.30)

First note that Ttx0 ∈ B+ because (Tt)t≥0 is assumed to be positive. Since
e−at ≥ 0 the first term of (2.30) is positive. By assumption un(t) ∈ B+, so from
(2.27), the fact that Tt is positive and e−a(t−s) ≥ 0 it follows that the integrand
in (2.30) is positive.

The fact that the integral in (2.30) is positive follows from a version of the
mean value theorem for Bochner integrals: in [7, Corollary II 2.8] it is stated that
for every Bochner-measurable function f : [0, T ]→ B and 0 ≤ t ≤ T the integral
1
t

∫ t
0
f(s) ds is contained in the closed convex hull of f([0, t]). If f is positive,
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so that f([0, t]) ⊂ B+, then the closed convex hull of f([0, t]) is contained B+

because B+ is closed and convex. So 1
t

∫ t
0
f(s) ds ∈ B+ and thus the integral∫ t

0
f(s) ds is positive.
From the previous, it follows that the integral in (2.30) is positive. Hence

un+1(t) ∈ B+ for all t ∈ [0, T ′] and by induction the claim holds for all k ∈ N.
Since B+ was assumed to be closed we now have that u(t) ∈ B+ for all t ∈ [0, T ′].

Because T ′ does not depend on the initial condition, we can extend u(t) to
a solution on R+: the full solution u(t) equals on [nT ′, (n + 1)T ′] the positive
solution to (2.28) with positive initial condition x0 = u(nT ′) for all n ∈ N.
Hence u(t) is a positive global mild solution.

2.4 The Variations of Constants Formula: the linear case

As already mentioned in the previous sections, the voc formula can be written
in a different way if the perturbation is linear. We will need this result in Section
3.3 when comparing our results with [10].

From [9, Corollary III 1.1.7] it already follows that the two voc formulas
are equivalent, but the advantage of the approach taken here is that it is avoids
computations involving generators, and therefore the results can easily be gen-
eralized to semigroups which are not strongly continuous. We note that that
this is not important for the application in Section 3.3, but it was a remarkable
result from Lemma 2.10 that was worth investigating on its own right.

To prove Corollary 2.13, it would be natural to take B = F in Lemma
2.10. If we prove that there exists an integrable semigroup St that satisfies the
different variation of constants formula in (2.18), then Lemma 2.10 gives that
Stx0 = u(t) and we are done. The proof of the existence of St is straightforward
however long, whereas the proof below is much shorter. Therefore, this ‘natural’
approach is deferred to the appendix, in Section C. The proof below only shows
that the integrals in the normal and the new voc-formulas are the same by
smartly rewriting formulas and then applying Lemma 2.10. It uses the same
reasoning as in [18, Section 4].

Corollary 2.13. Let X be a Banach space and G : X → X a bounded linear
operator. Let (Pt)t≥0 and (Ut)t≥0 be C0 semigroups. Then Ut satisfies

Utx = Ptx+

∫ t

0

Pt−s
[
G(Usx)

]
ds (2.31)

for all x ∈ X if and only if Ut also satisfies for all x ∈ X

Utx = Ptx+

∫ t

0

Us
[
G(Pt−sx)

]
ds (2.32)

Proof. The backward implication immediately follows from Lemma 2.10 by set-
ting B = G.

So suppose that Ut is the (unique) solution of (2.31). Rewrite (2.31), using
the linearity the operators involved, to get

Ptx = Utx+

∫ t

0

Pt−s[−G(Usx)] ds. (2.33)
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Set St = Pt and Tt = Ut and B = −G in Lemma 2.10 and note that equation
(2.18) is satisfied by doing a change of variables in (2.33).

Apply Theorem 2.2 with T̂t = Ut and F = −G to get a mild solution u(t).
Now u(t) satisfies (2.19) with F = −G. That is,

u(t) = Utx+

∫ t

0

Ut−s[−G(u(s))] ds (2.34)

Since F −B = −G− (−G) = 0, Lemma 2.10 states that u(t) = Ptx. So we
can equate (2.33) and (2.34) and subsequently substitute u(s) with Psx to get∫ t

0

Pt−s[G(Usx)] ds =

∫ t

0

Ut−s[G(Psx)] ds.

After substituting s with t− s on the right hand side this yields that equations
(2.31) and (2.32) are the same.
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3 The linear population model

Before we turn to the non-linear model in (1.3) we will study a linear version:{
∂tµt + ∂x(bµt) = cµt + 〈a, µt〉δ0
µ0 = ν0 ∈M+(R+).

(3.1)

Here a, b, c : R+ → R are bounded Lipschitz functions. We will find solutions to
(3.1) as follows. We look at the semi-linear model{

∂tµt + ∂x(bµt) = F (µt)

µ0 = ν0 ∈M+(R+),
(3.2)

where F : SBL(R+) → SBL(R+) is a Lipschitz map. First we will study this
equation for F ≡ 0 in Section 3.1. We will define a semigroup (Pt)t≥0 on
SBL(R+) that is induced by the flow on the state space that corresponds to this
transport equation. Then we apply the perturbation results from Section 2 to
obtain a mild solution, and we take this as the definition of a mild solution of
(3.2).

Definition 3.1. A mild solution of (3.2) is a function µ ∈ C(R+,SBL(R+)) that
satisfies

µt = Ptν0 +

∫ t

0

Pt−sF (µs) ds,

where (Pt)t≥0 is the semigroup corresponding to the model in (3.3).

If in addition we require that F satisfies the positivity requirement in The-
orem 2.12, then these mild solutions have range in S+

BL(R+), which equals
M+(R+). Thus, we find positive measure-valued mild solutions of (3.2). Then
we set F (µt) = cµt+〈a, µt〉δ0 and we will find conditions on a, b and c such that
F satisfies the conditions mentioned in Section 3.2. Hence, we find a positive
mild solution to (3.1).

In (3.1) we use the state space R+ as to give meaning to birth in the point
zero (the term with δ0), to give meaning to the x-derivative and to compare
with [10]. When considering only a flow on the state space then we can also
find a semigroup induced by this flow and apply the perturbation results, so we
could as well have chosen a general Polish space S and try to find solutions in
M+(S). In this case it is however not clear how to formulate the model as in
(3.2).

In Section 3.3 we will compare these results to the results on the linear model
from [10]. It will turn out that the mild solutions we find are the same as the
solutions that are found in [10].

3.1 Construction of a semigroup on measures induced by
a flow on the state space

The goal of this section is to define a semigroup on SBL(R+) that corresponds
to the linear transport model{

∂tµt + ∂x(bµt) = 0

µ0 = ν0

(3.3)
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where ν0 ∈M(R+) is given initial data and b is a function on R+. We will formu-
late appropriate conditions on b to ensure that the semigroup we are searching
will be strongly continuous and positive.

If we view µt as a density, the system (3.3) is just the classical transport
equation, where mass is transported in a way that is determined by b. The idea
that densities change due to transportation of mass caused by an underlying
flow on the state space R+, is used here to get a semigroup on measures. This
will be done by implying sufficient conditions on b such that the underlying
flow will be a Lipschitz semigroup and then use the concepts treated in [12] to
define a strongly continuous semigroup on a well-suited space of measures that
is induced by the flow.

Consider the ordinary differential equation for this underlying flow,{
∂tx(t) = b

(
x(t)

)
x(0) = x0,

(3.4)

where b : R+ → R is a bounded Lipschitz continuous function with Lipschitz
constant |b|Lip, such that R+ is positively invariant under b and where x0 ∈ R+.
Now we can apply Theorem 2.12 with Tt = I for all t ≥ 0, B = R and F = b.
It reduces to the well-known existence result for ordinary differential equations.
Thus we get a unique (mild) solution x(t;x0) such that x(t;x0) ∈ R+ for all
t ≥ 0 and x0 ∈ R+. Note that from (2.27) it follows that we must require that
b(0) ≥ 0.

Because the solutions are unique and exist globally in time, we can associate
a dynamical system φt to (3.4) by means of

φt(x0) = x(t, x0).

The function x 7→ φt(x) is Lipschitz continuous (by for example Theorem 2.2
or Lemma 3.3 below). So φt is a Lipschitz map on R+ and thus (φt)t≥0 is a
Lipschitz semigroup according to [12, Def. 5.2].

Now the construction of a semigroup as explained in [12] can be applied
here. Define Sφ(t) by

Sφ(t)f := f ◦ φt (3.5)

for f ∈ BL(R+) and t ≥ 0. Sφ is a semigroup of bounded linear operators on
BL(R+) and thus the dual operators S∗φ form a semigroup of bounded linear

operators on BL(R+)∗. We now can define a semigroup (Pt)t≥0 of bounded
linear operators on SBL by restricting S∗φ to SBL.

In fact, (Pt)t≥0 is a strongly continuous semigroup on SBL because the con-
ditions of [12, Theorem 5.5] are satisfied: (φt)t≥0 is strongly continuous and by
Lemma 3.3 (i) below,

lim sup
t↓0

|φt|Lip ≤ lim
t→0

(
1 + |b|Lte|b|Lt

)
= 1 <∞. (3.6)

By [12, Corollary 5.7], Pt leaves M+(R+) invariant, so Pt is a strongly contin-
uous semigroup on M+(R+).

Definition 3.2. The semigroup (Pt)t≥0 constructed above is called the semi-
group induced by (the flow) φt, or the semigroup corresponding to the model
in (3.3).
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An important property of Pt is that it satisfies the following identity:

〈Ptµ, f〉 = 〈µ, f ◦ φt〉 , (3.7)

for all f ∈ BL(S) ∼= S∗BL and µ ∈ SBL. This identity can be obtained by using
the dual semigroup Sφ(t) of Pt and equation (3.5). Alternatively, one can view
Ptµ as the pushforward of µ under φt:

Ptµ = µ ◦ φ−1
t = φt#µ (3.8)

Note that from a more general perspective we could also have started with a
dynamical system φt on some Polish space S satisfying some conditions, instead
of using the flow in (3.4) on R+. However in this case it is difficult to give
meaning to the term ∂x(bµt) in (3.3).

The following lemma shows some estimates of φt and Pt. We will use this
later in Section 4.

Lemma 3.3. Let b ∈ BL(R+) and let (φt)t≥0 be the semigroup of solutions of
the associated flow in (3.4). Let (Pt)t≥0 be the induced semigroup on SBL(R+).
Then the following assertions hold.

(i) |φt(x)− φt(y)| ≤
(
1 + t|b|Le|b|Lt

)
|x− y| for all x, y ∈ R+ and t ≥ 0.

(ii) ‖Ptµ− Ptν‖∗BL ≤
(
1 + t|b|Le|b|Lt

)
‖µ− ν‖∗BL for all µ, ν ∈ SBL(R+), t ≥ 0.

(iii) ‖Ptµ− Psµ‖∗BL ≤ ‖µ‖TV‖b‖∞|t− s| for all µ ∈ SBL(R+) and t, s ≥ 0.

Proof. (i) This follows directly from the proof of Theorem 2.2 on page 13 by
setting M = 1 and ω = 0 in equation (2.12), but it is also straightforward to
prove directly. Using the variation of constants formula for φt(x) and φt(y) we
can write

|φt(x)− φt(y)| ≤ |x− y|+
∫ t

0

∣∣b(φr(x)
)
− b
(
φr(y)

)∣∣ dr

≤ |x− y|+ |b|L
∫ t

0

|φr(x)− φr(y)|dr.

An application of Gronwall’s Lemma gives the desired result.
(ii) For all f ∈ BL(R+) it holds that

| 〈Ptµ− Ptν, f〉 | = |〈µ− ν, f ◦ φt〉| ≤ ‖µ− ν‖∗BL‖f ◦ φt‖BL.

We have |f ◦ φt|L ≤ |f |L|φt|L and ‖f ◦ φt‖∞ ≤ ‖f‖∞, so

‖f ◦ φt‖BL ≤ max(1, |φt|L)‖f‖BL.

From (i) we know that |φt|L ≤ 1 + te|b|Lt, so

| 〈Ptµ− Ptν, f〉 | ≤
(

1 + te|b|Lt
)
‖f‖BL‖µ− ν‖∗BL,

which yields (ii) by definition of ‖ · ‖∗BL.
(iii) Using the variation of constants formula for φt and φs we can write

|φt(x)− φs(x)| ≤
∫ t

s

∣∣b(φr(x)
)∣∣ dr ≤ ‖b‖∞|t− s|.
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so, using only the definition of Pt and 〈·, ·〉, we see that for all f ∈ BL(R+) it
holds that

|〈(Pt − Ps)µ, f〉| ≤
∫
R+

|f |L|φt(x)− φs(x)|d|µ|(x)

≤ ‖µ‖TV|f |L‖b‖∞|t− s|,

which proves (iii).

3.2 Perturbation of the constructed semigroup

Let (A,D(A)) be the generator of the strongly continuous semigroup (Pt)t≥0

found in Section 3.1. To get a mild solution of (3.1), we want to apply Theorem
2.12 to find a mild solution of{

∂tµt = −Aµt + cµt + 〈a, µt〉δ0
µ0 = ν0 ∈M+(R+)

(3.9)

Therefore, we use the Banach space SBL(R+) with positive cone M+(R+) and
G = cµt + 〈a, µt〉δ0. Recall from Section 1.4 that the positive cone of SBL(R+)
indeed is equal to M+(R+), so the positive mild solution found is measure-
valued. If we apply Theorem 2.2 then we get a mild solution with range in
SBL(R+), so solutions would not necessarily be measures-valued. Furthermore,
since this is a population model only positive measures make sense.

In this section we will check which conditions we have to put on a and c
such that we can apply Theorem 2.12. With the results of this section, we can
prove the following theorem.

Theorem 3.4. Let a, b, c : R+ → R be bounded Lipschitz functions such that
b(0) ≥ 0. If a is a non-negative function then the model in (3.1) has a unique
positive (measure-valued) mild solution.

Proof. Let (Pt)t≥0 be the semigroup corresponding to the model in (3.3). Note
that this is possible because we required b(0) ≥ 0. Since Pt leaves M+(R+)
invariant, it is a positive semigroup on SBL(R+).

Define G = cµt + 〈a, µt〉δ0. By the results in this section, G is Lipschitz
continuous. The requirement a ≥ 0 ensures that G satisfies the positivity re-
quirement (2.27) in Theorem 2.12. Now all conditions of Theorem 2.12 are met,
so there exists a unique positive mild solution of (3.1). That is, there exists a
function µ : R+ → SBL(R+) such that µt ∈M+(R+) for all t ≥ 0.

3.2.1 Conditions on the death operator

Let (S, d) be a metric space. Let c : S → R be a (uniformly) bounded, real-
valued Borel-measurable function on S and define the operator

F : M(S) −→M(S)

µ 7−→ c(·)µ, (3.10)

where c(·)µ denotes the measure that has density c with respect to µ. For F to
be well-defined we need conditions on c such that c(·)µ is a finite Borel measure.
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By definition of c(·)µ, it is finite only if c ∈ L1(µ) [2, Def. 17.1]. So we have
to require that c ∈ L1(γ) for all finite measures γ ∈ M(S). For this to hold, it
suffices to require that c is uniformly bounded.

Lemma 3.5. Let c : S → R be a uniformly bounded function. The function F
defined in (3.10) is Lipschitz continuous with respect to ‖·‖∗BL if and only if c
Lipschitz. In that case, |c|L ≤ |F |L ≤ ‖c‖BL.

Proof. Suppose that c is a bounded Lipschitz function. Let µ, ν ∈ M(S). By
definition it holds that

‖F (µ)− F (ν)‖∗BL = ‖c(·)µ− c(·)ν‖∗BL

= sup {|〈f , c(·)µ− c(·)ν〉| : f ∈ BL(S), ‖f‖BL ≤ 1}

By [2, Theorem 17.3] it holds that 〈f, c(·)γ〉 = 〈cf, γ〉 for all f ∈ BL(S) and
γ ∈M(S), so

‖F (µ)− F (ν)‖∗BL = sup {|〈fc , µ− ν〉| : f ∈ BL(S), ‖f‖BL ≤ 1} (3.11)

Next observe that BL(S) is a Banach algebra, so we have ‖fc‖BL ≤ ‖f‖BL‖c‖BL.
Now we can make the estimate

|〈fc , µ− ν〉| ≤ ‖µ− ν‖∗BL‖fc‖BL ≤ ‖µ− ν‖∗BL‖f‖BL‖c‖BL

Hence

‖F (µ)− F (ν)‖∗BL ≤ ‖µ− ν‖∗BL‖c‖BL.

So F is Lipschitz continuous with Lipschitz constant ‖c‖BL.
Now suppose that F is Lipschitz continuous with Lipschitz constant L. That

is, for all µ, ν ∈M(S) it holds that

‖F (µ)− F (ν)‖∗BL ≤ L‖µ− ν‖BL.

Let x, y ∈ S arbitrary. It holds that

|c(x)− c(y)| = |〈c, δx − δy〉|
≤ sup {|〈cf, δx − δy〉 : f ∈ BL(S), ‖f‖BL ≤ 1}
= ‖F (δx)− F (δy)‖∗BL by (3.11)

≤ L‖δx − δy‖∗BL.

By [12, lemma 3.5] this is well-defined because δx, δy are in BL(S)∗ and further-
more

‖δx − δy‖∗BL ≤ min
(
2, d(x, y)

)
≤ d(x, y).

So it follows that
|c(x)− c(y)| ≤ Ld(x, y).

Hence c is Lipschitz continuous. Since we required c to be bounded beforehand,
we can conclude that c ∈ BL(S).

It is straightforward to see that F defined by 3.10 satisfies the positivity
requirement (2.27) in Theorem 2.12. Simply note that c(x) + ‖c‖∞ ∈ R+ for all
x ∈ S to get that for each µ ∈M+(S)

F (µ) + ‖c‖∞µ = (c+ ‖c‖∞)µ ∈M+(S). (3.12)
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3.2.2 Lipschitz conditions for the birth operator

Recall from Section 1.4 that BL(R+) ∼= SBL(R+)∗. So if we let a ∈ BL(R+),
then we can define

F : M(R+) −→M(R+)

µ 7−→ 〈a, µ〉δ0. (3.13)

Here we work with the state space R+ to give meaning to birth in the point 0
in the state space.

First note that F is Lipschitz with respect to ‖·‖∗BL. Let µ, ν ∈ M(R+).
Since ‖δ0‖∗BL = 1 we have

‖F (µ)− F (ν)‖∗BL = |〈a, µ− ν〉| ≤ ‖a‖BL‖µ− ν‖∗BL, (3.14)

So F is Lipschitz with Lipschitz constant less than or equal to ‖a‖BL.
The positivity requirement (2.27) in Theorem 2.12 states that there has to

be a d > 0 such that for all µ ∈M+(R+) it holds that

F (µ) + dµ = 〈a, µ〉δ0 + dµ ∈M+(R+). (3.15)

Here one can see that we have to require that 〈a, µ〉 ≥ 0 for all µ ∈ M+(R+),
in other words, that a is a positive functional. Hence the requirement in (2.27)
is satisfied if we take for a a non-negative function in BL(R+).

3.3 Comparison with other approaches

In this section we will compare our results with [10]. To be precise, we will
prove that the mild solution of (3.1) we found in Theorem 3.4 are the same as
the solutions that are found in [10]. The solutions that are found in [10] will be
called solutions obtained via the dual problem. Indeed, in [10] a dual problem
is posed, solutions are found for this dual problem and they turn out to define
the solutions of the original problem. It is however unclear at first sight how
this dual problem relates to the original problem and what the solutions of the
dual problem mean. It will turn out that the solutions of the dual problem are
related to the dual semigroup of solutions, by reversing the time.

Indeed the expressions used in both approaches are closely related. However
it took some time to understand the connection thoroughly find the and right
proofs to show this.

To improve readability, we will first set c ≡ 0 as to see the model with
only the birth operator and then set a ≡ 0 to study the model with only the
death operator. Proposition 3.9 and Proposition 3.11 are the key in comparing
the solutions for the problem with only birth and the problem with only death
respectively. In Proposition 3.9, the definition of a mild solution is written
down and then it follows that the definition of a solution obtained via the dual
problem holds. In Proposition 3.11, it is done the other way around: it is proved
that a solution obtained via the dual problem satisfies the variation of constants
formula.

Again we will stick to the notation that is introduced in Section 3.1. So
throughout this section (φt)t≥0 is the Lipschitz semigroup of solutions of (3.4)
and Pt is the semigroup induced by (φt)t≥0 as defined in Section 3.1.
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3.3.1 The linear population model with birth

Consider the linear structured population model with birth{
∂tµt + ∂x(bµt) = 〈a, µt〉δ0
µ0 = ν0,

(3.16)

where a, b : R+ → R are bounded Lipschitz functions with b(0) > 0 and ν0 ∈
M(R+) is given initial data. By definition µ : [0, T ]→ SBL(R+), t 7→ µt is called
a mild solution to (3.16) if it is continuous and satisfies

µt = Ptν0 +

∫ t

0

Pt−s [〈a, µs〉δ0] ds. (3.17)

By Theorem 3.4, there exists a unique mild solution because µt 7→ 〈a, µt〉δ0 is
Lipschitz continuous on SBL(R+), with respect to ‖·‖∗BL.

In [10, Definition 3.1] the concept of a weak solution of (3.16) is defined.
First let us write down the definition of a weak solution in our notation.

Definition 3.6. µ : [0, T ]→ SBL(R+), t 7→ µt is called a weak solution to (3.16)
if it is continuous and for all ϕ ∈ C1

b (R+ × [0, T ]),

〈ϕ(·, T ), µT 〉 − 〈ϕ(·, 0), ν0〉 =

∫ T

0

〈
∂ϕ
∂t (·, t) + ∂ϕ

∂x (·, t)b(·) + ϕ(0, t)a(·) , µt
〉

dt

In [10], a weak solution is found, but since that weak solution is not neces-
sarily unique, it is not necessarily the same as our mild solution. However it is
not difficult to prove that the mild solution in (3.17) is a weak solution.

Proposition 3.7. A mild solution of (3.16) is a weak solution of (3.16).

Indeed the following proof of Proposition 3.7 is not a deep proof, it is just
a bit long and consists of elementary steps and long expressions. It will turn
out later that Proposition 3.7 is also a result of the stronger statements in
Proposition 3.9. Still, this proof gives an idea of how the weak solution should
be interpreted from the perspective of mild solutions and shows how one can
use the flexible notation of our approach.

Proof. Let µ be a mild solution of (3.16). We have to check if the expression in
Definition 3.6 holds. So let us calculate

〈ϕ(·, T ), µT 〉 − 〈ϕ(·, 0), ν0〉 −
∫ T

0

〈
∂ϕ
∂t (·, t) + ∂ϕ

∂x (·, t)b(·) , µt
〉

dt

−
∫ T

0

〈
ϕ(0, t)a(·) , µt

〉
dt (3.18)

and hope that the result will be 0. Substitute the expression for the mild solution
(3.17) into the terms of the expression above. The first term becomes

〈ϕ(·, T ), µT 〉 = 〈ϕ(·, T ), PT ν0〉+

∫ T

0

〈
ϕ(·, T ), PT−s [〈a, µs〉δ0]

〉
ds. (3.19a)
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Take the first integral in (3.18) and calculate∫ T

0

〈
∂ϕ
∂t (·, t) + ∂ϕ

∂x (·, t)b(·) , µt
〉

dt =

∫ T

0

〈
∂ϕ
∂t (·, t) + ∂ϕ

∂x (·, t)b(·) , Ptν0

〉
dt

+

∫ T

0

∫ t

0

〈
∂ϕ
∂t (·, t) + ∂ϕ

∂x (·, t)b(·) , Pt−s [〈a, µs〉δ0]
〉

dsdt. (3.19b)

Now note that by the Fundamental Theorem of Calculus and Fubini’s theorem
[2, Thm. 23.7],

〈
ϕ
(
φT (·), T

)
, ν0

〉
−
〈
ϕ
(
φ0(·), 0

)
, ν0

〉
=

∫ T

0

〈
∂t
[
ϕ
(
φt(·), t

)]
(r) , ν0

〉
dr.

Hence, using the chain rule, the fact that φt is a solution to (3.4) and the
definition of Pt, it follows that

〈ϕ(·, T ), PT ν0〉 − 〈ϕ(·, 0), ν0〉 −
∫ T

0

〈
∂ϕ
∂t (·, t) + ∂ϕ

∂x (·, t)b(·) , Ptν0

〉
dt = 0.

So after substituting (3.19a) and (3.19b) in (3.18) these terms cancel. Note that
this already proves that Ptν0 is a weak solution for the problem if a ≡ 0. We
are left with∫ T

0

〈
ϕ(·, T ), PT−s [〈a, µs〉δ0]

〉
ds −

∫ T

0

〈ϕ(0, t)a(·) , µt〉 dt

−
∫ T

0

∫ t

0

〈
∂ϕ
∂t (·, t) + ∂ϕ

∂x (·, t)b(·) , Pt−s [〈a, µs〉δ0]
〉

dsdt,

which can be rewritten as∫ T

0

〈a, µs〉
〈
ϕ
(
φT−s(·), T

)
, δ0
〉
− 〈a, µs〉 〈ϕ(·, s), δ0〉 ds

−
∫ T

0

∫ t

0

〈a, µs〉
〈
∂ϕ
∂t

(
φt−s(·), t

)
+ ∂ϕ

∂x

(
φt−s(·), t

)
b
(
φt−s(·)

)
, δ0

〉
dsdt. (3.20)

We see again something that hints for the use of the Fundamental Theorem of
Calculus. Indeed, just like before,

∂tϕ
(
φt−s(·), t

)
= ∂ϕ

∂t

(
φt−s(·), t

)
+ ∂ϕ

∂x

(
φt−s(·), t

)
b
(
φt−s(·)

)
.

Substitute this in (3.20) and change the order of integration of the double inte-
gral using Fubini’s Theorem to get∫ T

0

〈a, µs〉
〈
ϕ
(
φT−s(·), T

)
, δ0
〉
− 〈a, µs〉 〈ϕ(·, s), δ0〉 ds

−
∫ T

0

∫ T

s

〈a, µs〉
〈
∂tϕ
(
φt−s(·), t

)
, δ0
〉

dtds. (3.21)

Now rearrange the terms to get∫ T

0

〈a, µs〉

〈
ϕ
(
φT−s(·), T

)
− ϕ(·, s)−

∫ T

s

∂tϕ
(
φt−s(·), t

)
dt , δ0

〉
ds. (3.22)
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By the Fundamental Theorem of Calculus it follows that

ϕ
(
φT−s(·), T

)
− ϕ

(
φ0(·), s

)
=

∫ T

s

∂tϕ
(
φt−s(·), t

)
dt,

so the expression in (3.22) is 0. Hence the expression in (3.18) is 0, as was
required.

In Definition 3.8 we will write down the solution that is found in [10, Lemma
3.5], but with c ≡ 0, and then we will prove that this solution is the same as
the mild solution we found.

Definition 3.8. Define the function ϕt,ψ : C1(R+ × [0, t]) by

ϕt,ψ(x, τ) = ψ
(
φt−τ (x)

)
+

∫ t

τ

a
(
φs−τ (x)

)
ϕt,ψ(0, s) ds (3.23)

with ψ ∈ BL(R+) and t ∈ [0, T ]. This is the solution of the dual problem in [10].
We will call µ : [0, T ] →M(R+) a solution obtained via the dual problem if for
all ψ ∈ BL(R+) it satisfies

〈ψ, µt〉 = 〈ϕt,ψ(·, 0), ν0〉. (3.24)

The definition of ϕt,ψ seems a bit arbitrary here as it results from the theory
in [10, Lemma 3.5], but the Proposition 3.9 below tells us how to interpret these
results in the framework we have developed.

Proposition 3.9. Let (Vt)t≥0 be the semigroup associated to the mild solution
µt of the linear model with birth in (3.16). Let Ut be the dual semigroup of Vt.
The solution of the dual problem, defined in (3.23), satisfies

ϕt,ψ(·, s) = Ut−sψ(·) (3.25)

for all ϕ ∈ BL(R+). It follows that any solution obtained via the dual problem
is a mild solution of (3.16) (in the sense of Definition 3.1) and vice versa.

Proof. First let’s prove the last statement. Let µt be a mild solution of (3.16)
and let µ̄t be a solution obtained via the dual problem. If (3.25) holds, then for
each ψ ∈ BL(R+) we can write

〈ψ, µ̄t〉 = 〈ϕt,ψ(·, 0), ν0〉 = 〈Utψ(·), ν0〉 = 〈ψ, Vtν0〉 = 〈ψ, µt〉.

It remains to prove equation (3.25). Let ψ ∈ BL(R+) and ν0 ∈ M(R+). We
will calculate

〈Ut−τψ, ν0〉 = 〈ψ, Vt−τν0〉.

Now we invoke Corollary 2.13: replace Vt−τ with the variant of the variation of
constants formula in (2.32) to get

〈Ut−τψ, ν0〉 = 〈ψ, Pt−τν0〉+

∫ t−τ

0

〈
ψ, Vs [〈a, Pt−τ−sν0〉δ0]

〉
ds.
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By definition of Ut we have
〈
ψ, Vs [〈a, Pt−τ−sν0〉δ0]

〉
= 〈a, Pt−τ−sν0〉〈Usψ, δ0〉.

So, using the definition of Pt, it follows that

〈Ut−τψ, ν0〉 =
〈
ψ
(
φt−τ (·)

)
, ν0

〉
+

∫ t−τ

0

〈
a
(
φt−τ−s(·)

)
, ν0

〉
Usψ(0) ds.

When changing variables in the integral, from s to t − s, we see the definition
of ϕt,ψ(·, τ) appearing:

〈Ut−τψ, ν0〉 =

〈
ψ
(
φt−τ (·)

)
+

∫ t

τ

a
(
φs−τ (·)

)
Ut−sψ(0) ds , ν0

〉
.

So 〈Ut−τψ, ν0〉 = 〈ϕt,ψ(·, τ), ν0〉 for all ν0 ∈ M(R+). In particular, if we set
ν0 = δx then we have Ut−sψ(x) = ϕt,ψ(x, s) for all x ∈ R+ and hence equation
(3.25) is satisfied.

A solution obtained via the dual problem is a weak solution in the sense
of Definition 3.6, according to [10, Lemma 3.6]. So Proposition 3.9 actually
implies that a mild solution is a weak solution, so Proposition 3.7 also follows
from Proposition 3.9 and [10, Lemma 3.6].

3.3.2 The linear population model with death

Consider the linear structured population model with death,{
∂tµt + ∂x(bµt) = cµt

µ0 = ν0,
(3.26)

where b, c : R+ → R are bounded Lipschitz functions with b(0) > 0 and ν0 ∈
M(R+) is given initial data. We will prove that the mild solution is the same
as a solution that is found in [10]. The solution that is found in [10] is defined
in Definition 3.10. Recall that a mild solution µ : [0, T ] → M(R+), t 7→ µt to
(3.26) satisfies

µt = Ptν0 +

∫ t

0

Pt−s [c(·)µs] ds. (3.27)

As before we use use the following notation that is in line with [10, Lemma 3.5]
and where now we have set a ≡ 0.

Definition 3.10. Define the function ϕt,ψ : C1(R+ × [0, t]) as

ϕt,ψ(x, τ) = ψ
(
φt−τ (x)

)
e
∫ t
τ
c(φr−τ (x)) dr, (3.28)

with ψ ∈ BL(R+) and t ∈ [0, T ]. This is the solution of the dual problem in [10].
We will call µ : [0, T ] →M(R+) a solution obtained via the dual problem if for
all ψ ∈ BL(R+) it satisfies

〈ψ, µt〉 = 〈ϕt,ψ(·, 0), ν0〉. (3.29)

Proposition 3.11. For the linear model with death, in (3.26), a solution ob-
tained via the dual problem is a mild solution.
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Proof. Let ψ ∈ BL(R+) be arbitrary. Let µ : t 7→ µt be a solution obtained via
the dual problem. We will compute〈

ψ , Ptν0 +

∫ t

0

Pt−s [c(·)µs] ds

〉
(3.30)

and hope we will arrive at 〈ψ, µt〉, since then equation (3.27) is satisfied and µ
will be a mild solution. First note that (3.30) is equal to

〈ψ, Ptν0〉+

∫ t

0

〈
ψ
(
φt−s(·)

)
c(·) , µs

〉
ds. (3.31a)

Now use the definition of µs. In (3.29) replace ψ with A(·) = ψ
(
φt−s(·)

)
c(·) to

get an expression for the integrant in (3.31a). So we have to know ϕs,A(·, 0),
which we obtain using (3.28):

ϕs,A(·, 0) = ψ
(
φt−s ◦ φs(·)

)
c
(
φs(·)

)
e
∫ s
0
c(φr(·)) dr.

Hence (3.31a) is equal to

〈ψ, Ptν0〉+

∫ t

0

〈
ψ
(
φt(·)

)
c
(
φs(·)

)
e
∫ s
0
c(φr(·)) dr , ν0

〉
ds (3.31b)

Move the integral inside, as the rest does not depend on s,

〈ψ, Ptν0〉+

〈
ψ
(
φt(·)

) ∫ t

0

c
(
φs(·)

)
e
∫ s
0
c(φr(·)) dr ds , ν0

〉
. (3.31c)

Now note that
∂
∂se

∫ s
0
c(φr(·)) dr = c(φs(·)) e

∫ s
0
c(φr(·)) dr,

so by the Fundamental Theorem of Calculus, (3.31c) is equal to

〈ψ, Ptν0〉+
〈
ψ
(
φt(·)

) [
e
∫ t
0
c(φr(·)) dr − 1

]
, ν0

〉
, (3.31d)

which in turn is equal to

〈ψ, Ptν0〉+
〈
ψ
(
φt(·)

)
e
∫ t
0
c(φr(·)) dr , ν0

〉
− 〈ψ

(
φt(·)

)
, ν0〉. (3.31e)

Here 〈ψ, Ptν0〉 and the last term cancel and we are left with equation (3.29):〈
ψ
(
φt(·)

)
e
∫ t
0
c(φr(·)) dr , ν0

〉
=
〈
φt,ψ(·, 0) , ν0

〉
= 〈ψ, µt〉 (3.31f)

Summarizing, we have calculated that for every ψ ∈ BL(R+) it holds that〈
ψ , Ptν0 +

∫ t

0

Pt−s [c(·)µs] ds

〉
= 〈ψ, µt〉. (3.32)

So µ, a solution obtained via the dual problem, satisfies (3.27) and hence is a
mild solution.

Again we write down an equation like in (3.23) to understand what this
function ϕt,ψ means in the case a ≡ 0. A remarkable result is that we now have
an explicit expression for the dual semigroup of the semigroup of solutions for
the problem with death.
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Corollary 3.12. Let Tt be the semigroup of solutions associated to the mild
solution of the linear model with death in (3.26). Let Zt be the dual semigroup
of Tt. The solution of the dual problem, defined in (3.28), satisfies

ϕt,ψ(·, s) = Zt−sψ(·) (3.33)

for all ϕ ∈ BL(R+).

Proof. Essential to this proof is the observation that

ϕt−s,φ(x, 0) = ϕt,φ(x, s). (3.34)

Indeed, by setting τ = 0 and replacing t with t − s in the definition of ϕ in
equation (3.28) we get

ϕt−s,φ(x, 0) = ψ
(
φt−s(x)

)
e
∫ t−s
0

c(φr(x)) dr.

When changing variables in the integral, from r to r − s, we arrive at the
definition of ϕt,φ(x, s).

Let µt be a solution obtained via the dual problem as in Definition 3.10, with
initial condition µ0 = δx for x ∈ R+ arbitrary. By Proposition 3.11, µt is a mild
solution, so it holds that

Zt−sψ(x) = 〈ψ, Tt−sδ0〉 = 〈ψ, µt−s〉.

By Definition 3.10 and equation (3.34) we get

〈ψ, µt−s〉 = 〈ϕt−s,ψ(·, 0), δx〉 = 〈ϕt,ψ(·, s), δx〉

for all x ∈ R+, which finishes the proof.

3.3.3 The linear model with birth and death

Finally consider the linear model as studied in [10],{
∂tµt + ∂x(bµt) = cµt + 〈a, µt〉δ0
µ0 = ν0,

(3.35)

where a, b, c : R+ → R are bounded Lipschitz functions with b(0) > 0 and ν0 ∈
M(R+) is given initial data. We are now in a position to formulate and prove
a theorem that explains the results for the problem in (3.35) in [10] in the
framework we developed in Section 3.1 and Section 3.2. The proof of this
theorem is analogue to the proof of Proposition 3.9 and uses Corollary 3.12.

In [10, Lemma 3.5] it is proved that the solution to the ‘dual problem’ is
given by the function ϕt,ψ ∈ C1(R+ × [0, t]) that satisfies

ϕt,ψ(x, τ) = ψ
(
φt−τ (x)

)
e
∫ t
τ
c(φr−τ (x)) dr

+

∫ t

τ

a
(
φs−τ (x)

)
ϕt,ψ(0, s)e

∫ t
τ
c(φr−τ (x)) dr ds

(3.36)

with ψ ∈ BL(R+) and t ∈ [0, T ]. This is the solution of the dual problem.
In [10, Lemma 3.6] it is proved that the function µ : [0, T ] → M(R+) that
satisfies

〈ψ, µt〉 = 〈ϕt,ψ(·, 0), ν0〉 (3.37)

is a weak solution to the problem in (3.35).
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Theorem 3.13. A solution as defined in [10, Lemma 3.6] is a mild solution
as defined in Definition 3.1. Moreover, the solution of the dual problem ϕt,φ
in [10, Lemma 3.5] can be written as

ϕt,ψ(·, s) = Ut−sψ(·), (3.38)

where Ut is the dual semigroup of the semigroup corresponding to the mild so-
lution of (3.35).

Proof. Let St be the semigroup corresponding to the mild solution of the linear
problem in (3.35) and let Ut its dual semigroup. We can interpret this solution
as a result of the perturbation of the mild solution of the linear model with
death, in (3.26). So if Tt is the semigroup corresponding to solution of the
linear model with death, then, using the variant voc-formula of Corollary 2.13
in (2.32),

Stν0 = Ttν0 +

∫ t

0

Ss [〈a, Tt−sν0〉δ0] ds. (3.39)

Let ψ ∈ BL(R+) and ν0 ∈ M(R+). As in the proof of Proposition 3.9, we will
calculate

〈Ut−τψ, ν0〉 = 〈ψ, St−τν0〉.

Replace St−τ with the formula in (3.39) just found to get

〈Ut−τψ, ν0〉 = 〈ψ, Tt−τν0〉+

∫ t−τ

0

〈
ψ, Ss [〈a, Tt−τ−sν0〉δ0]

〉
ds.

Do a change of variables in the integral, from s to t− s, to get

〈Ut−τψ, ν0〉 = 〈ψ, Tt−τν0〉+

∫ t

τ

〈
ψ, St−s [〈a, Ts−τν0〉δ0]

〉
ds. (3.40)

By definition of Ut we have
〈
ψ, St−s [〈a, Ts−τν0〉δ0]

〉
= 〈a, Ts−τν0〉〈Ut−sψ, δ0〉.

Corollary 3.12 implies

〈a, Ts−τν0〉 = 〈Zs−τa, ν0〉 =
〈
a
(
φs−τ (·)

)
e
∫ s
τ
c(φr−τ (·)) dr, ν0

〉
.

So we can rewrite equation (3.40) to

〈Ut−τψ, ν0〉 =
〈
a
(
φt−τ (·)

)
e
∫ t
τ
c(φr−τ (·)) dr, ν0

〉
+

∫ t

τ

〈
a
(
φs−τ (·)

)
e
∫ s
τ
c(φr−τ (·)) dr, ν0

〉
Ut−sψ(0) ds.

If we set ν0 = δx for some x ∈ R+ then we see the definition of the solution of
the dual problem from [10, Lemma 3.5], stated in equation (3.37), appearing:

Ut−τψ(x) = a
(
φt−τ (x)

)
e
∫ t
τ
c(φr−τ (x)) dr

+

∫ t

τ

a
(
φs−τ (x)

)
e
∫ s
τ
c(φr−τ (x)) drUt−sψ(0) ds.

Hence equation (3.38) is satisfied.
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The solution µ from [10, Lemma 3.6] is given by equation (3.37). The proof
that this solution is exactly the same as in Proposition 3.9: for all ψ ∈ BL(R+)
it holds that

〈ψ, µt〉 = 〈ϕt,ψ(·, 0), ν0〉 = 〈Utψ(·), ν0〉 = 〈ψ, Stν0〉,

so µt = Stν0 for all t ≥ 0.
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4 Non-linear models

Now we turn our attention to the non-linear problem from the introduction,{
∂tµt + ∂x

(
F2(µt, t)µt

)
= F3(µt, t)µt +

(∫
R+ F1(µt, t) dµt

)
δ0

µ0 = ν0 ∈M+(R+)
(4.1)

with F1, F2, F3 : M(R+)× [0, T ]→ BL(R+). Later we will formulate necessary
conditions on F1, F2.

First problem is that it is not clear how to define a mild solution. We will
come to that later. We followed the path that was set out by Gwiazda et al.
in [10]. To find a weak solution, their approach was to successively freeze the
coefficients on an equidistant grid of [0, T ]. The resulting approximations turn
out to converge if the grid size vanishes. This procedure is analogous to the
Euler method for solving ordinary differential equations.

The approach taken is however very complicated and more general than
needed, employing the theory of so-called ‘mutational equations’. In [10], a
‘transition’ would simply correspond to the semigroup of solutions. The use of
the framework of mutational equations makes it difficult to see what is the line
of reasoning, where the important steps are taken and which requirements are
actually made. Our goal was to present a self-contained theory such that one
can avoid these mutational equations by applying the procedure analogue to
Euler’s method directly to the model.

This resulted in a general abstract theorem, presented in Section 4.2. Where
in [10] a weak solution is found by using the theorem of Arzela-Ascoli, we have
found a more constructive proof for the existence of a unique (mild) solution
that also yields a rate of convergence of the approximations.

A point of discussion could be that we take as a definition of a mild solu-
tion the limit of the approximations. However it is possible to prove that a
mild solution of (4.1) is weak solutions, and we will do so for a special case.
Furthermore, one could take a more philosophical perspective by arguing that
the approximations really model the process that was studied, and the limit is
indeed what we are looking for.

The main theorem presented in Section 4.2 is not related to a specific model
as in (4.1), but can be applied to any (non-linear) semigroup on any Banach
space. It would be interesting to check if this theorem can be useful when using
function spaces instead of spaces of measures. Therefore it is convenient to first
introduce the concepts and ideas using a concrete model. This is done in Section
4.1. The result is that some proofs in Section 4.1 and 4.2 are very alike.

Still the reader should be warned that there are a lot of long computations
in the sections below. Especially Lemma 4.4, which is the key lemma of the
approach may look difficult to read, but it is worth reading for its powerful
result relies on nothing but smartly chosen elementary calculations. To relieve
the effort reading a lot of symbols, we will often write ‖·‖ instead of ‖·‖∗BL.

In Section 4.3 we will apply the main theorem stated in Section 4.2 to obtain
solutions for the model in (4.1) and for an other general model.
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4.1 Transport with a density-dependent velocity field

Consider the non-linear model{
∂tµt + ∂x

(
F (µt, t)µt

)
= 0

µ0 = ν0 ∈M+(R+),
(4.2)

with F : M(R+) × [0, T ] → {b ∈ BL(R+) : b(0) ≥ 0}. In Section 3.1 we found
that we have to require that ranF ⊂ {b ∈ BL(R+) : b(0) ≥ 0}. The space Λ =
ranF will be referred to as the parameter space. The reason for this will become
more clear in Section 4.2, where the results of this section will be generalized.

Let (φbt)t≥0 be the semigroup of solutions of the associated flow in (3.4) with
parameter b ∈ BL+(R+). Let (P bt )t≥0 be the induced semigroup on SBL(R+)
(see Section 3.1). For each n ∈ N, set

hn =
T

2n
, tjn = jhn for j = 0, . . . , 2n−1

and define the sequence (xn)n in M+(R+) as

xn(0) = ν0, x0(·) = ν0,

xn(t) = P
bjn
t−tjn

xn(tjn) for t ∈
(
tjn, t

j+1
n

]
, with bjn = F

(
tjn, xn(tjn)

)
(4.3)

Note that since Λ ⊂ {b ∈ BL(R+) : b(0) ≥ 0}, we have that bjn(0) ≥ 0 for all

n ∈ N and valid j, so P b
j
n is well-defined (see Section 3.1). Furthermore, because

P bt is a positive semigroup and ν0 ∈M+(R+), we have xn(t) ∈M+(R+) for all
n ∈ N and t ∈ [0, T ].

Intuitively, if we would have something that we could call a solution of (4.2),
then this sequence (xn) would approximate this solution. This is the intuition
will turn out to make sense and motivates the following definition.

Definition 4.1. A limit of a subsequence of (xn) in the space C([0, T ],X ) will
be called a mild solution to (4.2).

The goal of this subsection is to find such a convergent subsequence of (xn)
in the space C([0, T ],X ). In [10], a variation of the Arzela-Ascoli Theorem is
used to prove this. In our setting, the theorem from [1, Lemma 2.1] would seem
suitable. However, it is possible to take a completely different approach. That is,
we show by tedious estimates that the sequence of functions (xn) defined in (4.3)
is a Cauchy sequence in C([0, T ],M+(R+). It follows that (xn) is convergent
and thus we get a unique solution, as well as a rate of convergence for the
approximations.

In an attempt to find a mild solution of (4.2), we tried to estimate how close
xn(t) and xn−1(t) are for all n ∈ N and t ∈ [0, T ]. This result is formulated
in what will be the key lemma of this section, Lemma 4.4. This approach is
very technical but turns out to be flexible and it is elegant in the sense that
the proofs mainly use elementary and natural ideas. Let’s start with an outline
that will make clear why we will need all the technical lemmas that will follow,
in order to prove Lemma 4.4.

Fix τ ∈ [0, T ]. By definition of xn, we can write∥∥xn−1(τ)− xn(τ)
∥∥∗

BL
=
∥∥P bjn−1

t xn−1(tjn−1)− P b
2j
n
t xn(t2jn )

∥∥∗
BL
,
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where j is such that τ ∈ (t2jn , t
2j+1
n ] and t = τ − t2jn . As you see, the notation

becomes cumbersome already. Let us write ‖·‖ instead of ‖·‖∗BL from now on
and put

τ0 = t2jn = tjn−1 and λ1 = b2jn , λ3 = bjn−1.

This is consistent with the notation we will introduce later in this section that
will make the proofs more readable. Key to the approach in this section is
applying the triangle inequality such that we get∥∥xn−1(τ)− xn(τ)

∥∥ ≤ ∥∥Pλ3
t xn−1(τ0)− Pλ3

t xn(τ0)
∥∥− ∥∥Pλ3

t xn(τ0)− Pλ1
t xn(τ0)

∥∥.
First we will derive estimates that help us to estimate expressions like above.
For example, we can use Lemma 3.3 (ii) to estimate the first term. For the
second term, where only the parameter λ of the semigroup Pλ is changed, we
need the following lemma.

Lemma 4.2. Let (φbt)t≥0 be the semigroup of solutions of the associated flow
in (3.4) with parameter b ∈ BL(R+). Let (P bt )t≥0 be the induced semigroup on
SBL(R+). Then for all t ≥ 0, µ ∈ SBL(R+) and b, b′ ∈ BL(R+) it holds that

‖P bt µ− P b
′

t µ‖∗BL ≤ ‖b− b′‖∞‖µ‖TV t
(
1 + LteLt

)
, (4.4)

where L = min
(
|b|L, |b′|L

)
.

Proof. Let f ∈ BL(R+) arbitrary. It holds that∣∣∣〈P bt µ− P b′t µ, f〉∣∣∣ =
∣∣∣〈µ, f ◦ φbt − f ◦ φb′t 〉∣∣∣ ≤ ‖µ‖TV|f |L‖φbt − φb

′

t ‖∞. (4.5)

Using the variation of constants formula for φbt and φb
′

t we can calculate that
for all x ∈ R+

∣∣φbt(x)− φb
′

t (x)
∣∣ ≤ ∫ t

0

∣∣b(φbr(x)
)
− b′

(
φb
′

r (x)
)∣∣dr

Adding and subtracting b(φb
′

r (x)) in the integrand and using the triangle in-
equality results in

∣∣φbt(x)− φb
′

t (x)
∣∣ ≤ |b|L ∫ t

0

∣∣φbr(x)− φb
′

r (x)
∣∣ dr + ‖b− b′‖∞ t

Applying Gronwall’s lemma gives the inequality∣∣φbt(x)− φb
′

t (x)
∣∣ ≤ ‖b− b′‖∞t(1 + |b|Lte|b|Lt

)
for all x ∈ R+. Applying this to equation (4.5) gives

‖P bt µ− P b
′

t µ‖∗BL ≤ ‖b− b′‖∞‖µ‖TVt
(

1 + |b|Lte|b|Lt
)

Equation (4.4) follows from the fact that we can interchange b and b′ in the last
equation.
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Note that the estimate (4.4) in Lemma 4.2 depends on the total variation
norm of µ. Therefore, we need that there exists an R > 0 such that ‖xn(t)‖TV <
R for all t ∈ [0, T ] and n ∈ N. This will be the content of Lemma 4.3.

Also note that in the estimates in Lemma 3.3 and Lemma 4.2 depend on
‖b‖∞ and ‖b − b′‖∞, where b, b′ ∈ Λ. To keep these terms under control, we
need two conditions on F . Hence we make the following assumptions for F :

(F1) supt∈[0,T ] supµ∈M(R+) ‖F (t, µ)‖BL = supλ∈Λ ‖λ‖BL <∞,

(F2) for any R > 0 there exist constants LR > 0 and ωR > 0 such that

‖F (µ, s)− F (ν, t)‖∞ ≤ LR‖µ− ν‖∗BL + ωR|t− s|

for all µ, ν ∈M+(R+) with ‖µ‖∗BL, ‖ν‖∗BL ≤ R.

Lemma 4.3 and Lemma 4.4 rely on these assumptions.

Lemma 4.3. Under assumption (F1) and ν0 ∈M+(R+), the set

A = {xn(t) : n ∈ N, t ∈ [0, T ]}

is bounded with respect to the norms ‖·‖∗BL and ‖·‖TV.

Proof. As mentioned before, (P bt )t≥0 is a positive semigroup by construction, so
we have A ⊂ M+(R+). The total variation-norm coindices with the bounded
Lipschitz norm onM+(R+) [12, Lemma 3.1], so the two norms ‖·‖∗BL and ‖·‖TV

coincide on A and we will just write ‖·‖.
By Lemma 3.3 (ii) and assumption (F1) there exists a K > 0 such that

‖P bt µ‖ ≤ (1 + tK)‖µ‖

for all t ∈ [0, T ], b ∈ Λ and µ ∈ A. Note that this argument depends on the fact
that P bt is linear.

Let n ∈ N be arbitrary. By definition of xn for each t ∈ (0, hn] and j ∈
{0, 1, . . . , 2n − 1} we can write

xn(tjn + t) = P
bjn
t xn(tjn),

so it follows that

sup
t∈(0,hn]

‖xn(tjn + t)‖ ≤ (1 + hnK)‖xn−1(tjn)‖.

Applying this equation inductively over j we obtain that for all t ∈ [0, T ]

‖xn(t)‖ ≤
(
1 + TK2−n

)2n ‖ν0‖∗BL.

It holds that limn→∞(1 + TK2−n)2n = eTK , which is the limit definition for
the exponential function, first given by Euler. It also follows from the proof of
Lemma 4.5 later in this section.

Now we have a bound for ‖xn(t)‖ that does not depend on n nor on t.
Therefore A is bounded for both norms.
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Let us simplify the two estimates from Lemma 3.3 and 4.2 that we will use.
Assumption (F1) implies that there exists a K > 0 such that

|λ|Le|λ|Lt ≤ K

for all λ ∈ Λ and t ∈ [0, T ]. This is the same K as used in the proof of Lemma
4.3. Define A as in Lemma 4.3. From Lemma 4.3 it follows that there exists
a R > 0 such that ‖µ‖TV ≤ R for all µ ∈ A. Set C = (1 + TK)R. Now the
estimates from Lemma 3.3 and Lemma 4.2 that we will use can be written as∥∥Pλt µ− Pλt ν∥∥ ≤ (1 + tK)‖µ− ν‖ (4.6a)∥∥Pλt µ− Pλ′t µ∥∥ ≤ tC‖λ− λ′‖∞. (4.6b)

for µ, ν ∈ A and λ ∈ Λ. Note that K and C do not depend on λ or t.
Now we are finally able to prove an estimate like we wanted. It turns out to

be a rather strong estimate. The next lemma is the key lemma of this section,
where the ideas proposed at the beginning of this section will be worked out in
detail. In fact, the proof can be used to prove a more general existence theorem
than in this section, this will be done in Section 4.2.

Lemma 4.4. Let F : R+ ×M+(R+)→M+(R+) be such that it satisfies (F1)
and (F2). Let xn : [0, T ]→M+(R+) be the map as defined in (4.3). Then there
exists a constants M > 0 such that for all n ∈ N

sup
τ∈[0,T ]

∥∥xn−1(τ)− xn(τ)
∥∥∗

BL
≤ 2−nM. (4.7)

Proof. Fix n ∈ N. First we will derive (4.7) for τ in a fixed time interval. That
is, first we fix j ∈ {0, 1, . . . , 2n−1}. To improve readability we use the following
notation. See Figure 1 for a sketch of the situation and to see how this notation
is used. Set

τ0 = tjn−1 = t2jn τ1 = t2j+1
n τ2 = tj+1

n−1 = t2j+2
n

and write λ3 = F
(
xn−1(τ0), τ0

)
so that xn−1(τ0 + t) = Pλ3

t xn−1(τ0) for t ∈
[0, hn]. Furthermore, set λ1 = F

(
xn(τ0), τ0

)
and λ2 = F

(
xn(τ1), τ1

)
.

Let t ∈ [0, hn] be arbitrary. First we will estimate∥∥xn−1(τ0 + t)− xn(τ0 + t)
∥∥ =

∥∥Pλ3
t xn−1(τ0)− Pλ1

t xn(τ0)
∥∥ (4.8)

by using the triangle inequality and applying (4.6a) and (4.6b):∥∥xn−1(τ0 + t)− xn(τ0 + t)
∥∥

≤
∥∥Pλ3

t xn−1(τ0)− Pλ3
t xn(τ0)

∥∥+
∥∥Pλ3

t xn(τ0)− Pλ1
t xn(τ0)

∥∥
≤ (1 + tK)

∥∥xn−1(τ0)− xn(τ0)
∥∥+ tC‖λ3 − λ1‖∞.

From the definition of λ1 and λ3 and the requirement (F2) we obtain

‖λ3 − λ1‖∞ =
∥∥F (xn−1(τ0), τ0

)
− F

(
xn(τ0), τ0

)∥∥
≤ LR

∥∥xn−1(τ0)− xn(τ0)
∥∥.
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Figure 1: Sketch of the idea and notation in the proof of Lemma 4.4. The
red and the blue line visualize the idea of applying the triangle inequality to
equation (4.8) for t = hn, the green line corresponds to the estimate in (4.10).

Thus for all t ∈ [0, hn],∥∥xn−1(τ0+t)− xn(τ0+t)
∥∥ ≤ (1 + hn(K + CLR)

)∥∥xn−1(τ0)− xn(τ0)
∥∥. (4.9)

Next, consider the same expression as in (4.8), starting at time τ1 = τ0 +hn
instead of τ0. Again let t ∈ [0, hn] be arbitrary and write∥∥xn−1(τ1 + t)− xn(τ1 + t)

∥∥ =
∥∥Pλ3

t xn−1(τ1)− Pλ2
t xn(τ1)

∥∥.
Working through the same steps as before,∥∥xn−1(τ1 + t)− xn(τ1 + t)

∥∥
≤
∥∥Pλ3

t xn−1(τ1)− Pλ3
t xn(τ1)

∥∥+
∥∥Pλ3

t xn(τ1)− Pλ2
t xn(τ1)

∥∥
≤ (1 + tK)

∥∥xn−1(τ1)− xn(τ1)
∥∥ + tC‖λ3 − λ2‖∞.

So for all t ∈ [0, hn] it holds that∥∥xn−1(τ1 + t)− xn(τ1 + t)
∥∥

≤ (1 + hnK)
∥∥xn−1(τ1)− xn(τ1)

∥∥ + hnC‖λ3 − λ2‖∞. (4.10)

As before, by the definitions of λ3 and λ2 and the requirements on F we have

‖λ3 − λ2‖∞ =
∥∥F (xn−1(τ0), τ0

)
− F

(
xn(τ1), τ1

)∥∥
≤ ωRhn + LR

∥∥xn−1(τ0)− xn(τ1)
∥∥.
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By using the triangle inequality and Lemma 3.3 (iii) we can rewrite this to

‖λ3 − λ2‖∞ ≤ ωRhn + LR
∥∥xn−1(τ0)− xn(τ0)

∥∥+ LR
∥∥xn(τ0)− xn(τ1)‖

≤ ωRhn + LR
∥∥xn−1(τ0)− xn(τ0)

∥∥+ LRR|λ1|Lhn.

Substitute this into equation (4.10) to get∥∥xn−1(τ1 + t)− xn(τ1 + t)
∥∥

≤ (1 + hnK)
∥∥xn−1(τ1)− xn(τ1)

∥∥+ h2
nĈ + hnCLR

∥∥xn−1(τ0)− xn(τ0)
∥∥,

where Ĉ = C(ωR +LRR supλ∈Λ|λ|L). Note that it is trivial that we can replace
‖xn−1(τ1)− xn(τ1)‖ by supτ∈[τ0,τ1]

∥∥xn−1(τ)− xn(τ)
∥∥. Then it follows that

sup
τ∈[τ0,τ2]

∥∥xn−1(τ)−xn(τ)
∥∥ ≤ (1+hn(K+CL)

)
sup

τ∈[τ0,τ1]

∥∥xn−1(τ)−xn(τ)
∥∥+h2

nĈ.

Use equation (4.9) to get

sup
τ∈[τ0,τ2]

∥∥xn−1(τ)− xn(τ)
∥∥ ≤ (1 + hnK̂)

∥∥xn−1(τ0)− xn(τ0)
∥∥+ h2

nĈ, (4.11)

where K̂ > 0 is such that (1 + hn(K +CL))2 ≤ 1 + hnK̂ for all n ∈ N. Here we
used that hn ≤ 1 for all n ∈ N.

Summarizing, we have found an estimate for ‖xn−1(τ)− xn(τ)‖ for the case
τ ∈ [τ0, τ1] in (4.9), for the case τ ∈ [τ1, τ2], and then finally for τ ∈ [τ0, τ2] in
equation (4.11). Eventually we want an estimate for τ ∈ [0, T ].

At this point, remember that we had set τ0 = tjn−1. If j > 0, then we

can set τ−2 = tj−1
n−1 = t2j−2

n and replace ‖xn−1(τ0)− xn(τ0)‖ in (4.11) with
supτ∈[τ−2,τ0] ‖xn−1(τ)− xn(τ)‖, turning (4.11) into a kind of recurrence relation.
Setting j = 0 in (4.11) gives us an initial condition,

sup
τ∈[0,t1n−1]

∥∥xn−1(τ)− xn(τ)
∥∥ ≤ h2

nĈ.

Replace hn with 2−nT . By induction it follows that

sup
τ∈[0,T ]

∥∥xn−1(τ)− xn(τ)
∥∥ ≤ 2−2nT 2Ĉ

2n−1∑
i=0

[
1 + 2−nK̂T

]i
. (4.12)

Now we claim that [
1 + 2−nK̂

]i ≤ eK̂T
for all i ≤ 2n. The proof is deferred to Lemma 4.5 below. By this claim we can

replace the sum in (4.12) by 2neK̂T . We finally arrive at the desired estimate,

sup
τ∈[0,T ]

∥∥xn−1(τ)− xn(τ)
∥∥ ≤ 2−nT 2ĈeK̂T .

It remains to prove a lemma that is actually the last technical part of the
proof of the key lemma, Lemma 4.4 above. It turned out that this kind of
calculation was needed more often than only in the proof above.
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Lemma 4.5. Let m ∈ N and let 0 < t1 < · · · < tm−1 < T be a partition
of the interval [0, T ]. Let X be a normed vector space and let x : [0, T ] → X
be a function such that there exist A,B > 0 for which x satisfies the following
recurrence relation:

sup
t∈(tj ,tj+1]

‖x(t)‖ ≤
(
1 +m−1A

)
sup

t∈(tj−1,tj ]

‖x(t)‖ + B, (4.13)

for all j ∈ {1, . . . ,m−1} and supt∈[0,t1]‖x(t)‖ ≤ C. Then

sup
t∈[0,T ]

‖x(t)‖ ≤ meA max(B,C).

Proof. By solving the recurrence relation in (4.13), or applying induction over
j, we obtain the following estimate:

sup
t∈(tj−1,tj ]

‖x(t)‖ ≤ Âj−1C +B

j−2∑
i=0

Âi,

where Â = (1 +m−1A). It follows that

sup
t∈[0,T ]

‖x(t)‖ ≤ max(B,C)

m−1∑
i=0

[
1 +m−1A

]i
.

The claim now follows from the fact that
[
1 +m−1A

]i ≤ eA for all 0 ≤ i ≤ m.
To prove this, use the Binomium of Newton to write

[
1 +m−1A

]i
=

i∑
k=1

(
i

k

)[
m−1A

]k
. (4.14a)

Now use the definition of the Binomium coefficient to get(
i

k

)
=

1

k!

k−1∏
l=0

(i− l) ≤ 1

k!

k−1∏
l=0

(m− l) ≤ 1

k!
mk, (4.14b)

so it follows that [
1 +m−1A

]i ≤ i∑
k=1

1

k!
Ak ≤ eA, (4.14c)

as was required.

Now we are in a position to formulate and prove an existence theorem for
the mild solutions of the model in (4.2). With Lemma 4.4 in the pocket, the
proof is straightforward.

Theorem 4.6. Let F : M(R+)× [0, T ]→ BL+(R+) be such that

(F1) supt∈[0,T ] supµ∈M(R+) ‖F (t, µ)‖BL = supλ∈Λ ‖λ‖BL <∞,

(F2) for any R > 0 there exist constants LR > 0 and ωR > 0 such that

‖F (µ, s)− F (ν, t)‖∞ ≤ LR‖µ− ν‖∗BL + ωR|t− s|

for all µ, ν ∈M+(R+) with ‖µ‖∗BL, ‖ν‖∗BL ≤ R.
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Then there exists a unique solution of (4.2) in the sense of Definition 4.1.

Proof. Denote with ‖·‖∞ the supremum norm on C([0, T ],SBL). By Lemma 4.4,
the series

∞∑
n=1

‖xn − xn−1‖∞

is convergent. Since C([0, T ],SBL) is a Banach space with the norm ‖·‖∞, the
limit

lim
n→∞

xn = x0 +

∞∑
n=1

(xn − xn−1)

exists [16, Theorem 2.30].

The estimates made in the proof of Lemma 4.4 also show that the mild
solution that was found has a Lipschitz dependence on the initial values. Indeed,
the proof of this dependence is a special case of the situation in the proof of
Lemma 4.4. Therefore, we formulate the Lipschitz dependence as a Corollary.

Corollary 4.7. Assume that (F1) and (F2) hold. The mild solution of (4.2)
from Theorem 4.6 depends on its initial condition in a locally Lipschitz way.
That is, for R > 0 and µ0, ν0 ∈ M+(R+) with ‖µ0‖, ‖ν0‖ ≤ R there exists a
constant LR such that

sup
t∈[0,T ]

‖x(t)− y(t)‖∗BL ≤ LR‖µ0 − ν0‖∗BL,

where x(t) and y(t) are two such mild solutions of (4.2) with initial values
x(0) = µ0 and y(0) = ν0,

Proof. Let R̂ > 0 and µ0, ν0 ∈ M+(R+) with ‖µ0‖, ‖ν0‖ ≤ R̂. By Theorem
4.6 there exists approximating sequences (xn) and (yn) as defined in (4.3), with
xn(0) = µ0 and yn(0) = ν0. Define

B = {xn(t) : n ∈ N, t ∈ [0, T ]} ∪ {yn(t) : n ∈ N, t ∈ [0, T ]} .

Lemma 4.3 ensures that there exists an R > 0 such that ‖µ‖ ≤ R for all µ ∈ B.
So the estimates (4.6a) and (4.6b) again hold, for µ, ν ∈ B.

Similarly to what is done in Lemma 4.4, fix j ∈ {0, 1, . . . , 2n − 1}, set

τ0 = tjn τ1 = tj+1
n .

and write λ3 = F
(
τ0, yn(τ0)

)
so that yn(τ) = Pλ3

τ−τ0yn(τ0) for τ ∈ (τ0, τ2].

Consequently, set λ1 = F
(
τ0, xn(τ0)

)
. See Figure 2 for a sketch of the situation.

We want to estimate∥∥yn(τ0 + t)− xn(τ0 + t)
∥∥ =

∥∥Pλ3
t yn(τ0)− Pλ1

t xn(τ0)
∥∥.

Note that this is exactly the same equation as (4.8), but with xn−1 replaced by
yn. Indeed, we are in the same situation as in Lemma 4.4, but with different
notation (compare Figure 1 and Figure 2). So doing the same calculations, we
arrive at (4.9), with again xn−1 replaced by yn:∥∥yn(τ0+t)− xn(τ0+t)

∥∥ ≤ (1 + hn(K + CLR)
)∥∥yn(τ0)− xn(τ0)

∥∥.
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Figure 2: Sketch of the idea and notation in the proof of Lemma 4.7.

In contrast to Lemma 4.4 the situation on time hn later is the same because
we compare xn and yn on the same n-level. So we can skip these difficulties and
see immediately (or also by induction, if you like) that

sup
τ∈[0,T ]

‖yn(t)− xn(t)‖ ≤
[
1 + hnK̂

]2n
‖yn(0)− xn(0)‖,

where K̂ = K + CLR. From equation (4.14c) it follows that

‖yn(t)− xn(t)‖ ≤ eK̂T ‖µ0 − ν0‖,

for all t ∈ [0, T ].

Now we come back to the question how the definition of a mild solution as
in Definition 4.1 relates to other solution concepts, in particular that of a weak
solution, as used in [10]. The mild solution exists and is a result of a natural
construction. But the name suggests that a solution as defined in Definition 4.1
should be a weak solution. In this particular case, this is true.

Definition 4.8. A weak solution of the model in (4.2) is a continuous function
µ : [0, T ]→ SBL(R+), t 7→ µt such that for all ϕ ∈ C1

b (R+ × [0, T ])

〈ϕ(·, T ), µT 〉 − 〈ϕ(·, 0), ν0〉 =

∫ T

0

〈
∂ϕ
∂t (·, t) + ∂ϕ

∂x (·, t)F (µt, t) , µt

〉
dt

Proposition 4.9. Assume (F1) holds. A mild solution of (4.2) as defined in
Definition 4.1 is a weak solution in the sense of Definition 4.8.

Proof. Let x : [0, T ]→M+(R+) be a mild solution to (4.2) with x(0) = ν0. Let
(xn) be a sequence as defined in (4.3).

Note that for each j ∈ {0, 1, . . . , 2n − 1}, the function xjn : [tjn, t
j+1
n ] →

M+(R+) is a mild solution to the linear problem in (3.16) with a ≡ 0 and
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b = bjn = F (xn(tjn), tjn), so by Proposition 3.7 the function xjn is a weak solution
to the linear problem (see Definition 3.6):〈

ϕ(·, tj+1
n ), xn(tj+1

n )
〉
−
〈
ϕ(·, tjn), xn(tjn)

〉
=

∫ tj+1
n

tjn

〈
∂ϕ
∂t (·, t) + ∂ϕ

∂x (·, t)bjn(·) , xn(t)
〉

dt.

Taking the sum over all j results in a telescoping sum on the left hand side and
we get〈

ϕ(·, T ), xn(T )
〉
−
〈
ϕ(·, 0), xn(0)

〉
=

2n−1∑
j=0

∫ tj+1
n

tjn

〈
∂ϕ
∂t (·, t) + ∂ϕ

∂x (·, t)bjn(·) , xn(t)
〉

dt.

Denote by bn : [0, T ] → BL(R+) the simple function defined by bn(t) = bjn if
t ∈ (tjn, t

j+1
n ]. Then we can write

〈
ϕ(·, T ), xn(T )

〉
−
〈
ϕ(·, 0), xn(0)

〉
=

∫ T

0

〈
∂ϕ
∂t (·, t) + ∂ϕ

∂x (·, t)bn(t)(·) , xn(t)
〉

dt.

Now take the limit of n→∞ and apply the Lebesque Dominated Convergence
Theorem (e.g. [3, Theorem 2.8.1]). By Lemma 4.3, ‖xn(t)‖TV ≤ R for all
t ∈ [0, T ] and n ∈ N, so∣∣∣〈∂ϕ∂t (·, t) + ∂ϕ

∂x (·, t)bn(t)(·), xn(t)
〉∣∣∣ ≤ (∥∥∂ϕ∂t (·, t)

∥∥
∞+

∥∥∂ϕ
∂x (·, t)

∥∥
∞‖bn(t)‖∞

)
R.

The partial derivatives are uniformly bounded because φ ∈ C1
b , and assumption

(F1) implies that there exists an M > 0 such that bn(t) ≤M for all n ∈ N and
t ∈ [0, T ]. Now we can move the limit inside the integral and we get

〈
ϕ(·, T ), x(T )

〉
−
〈
ϕ(·, 0), x(0)

〉
=

∫ T

0

〈
∂ϕ
∂t (·, t) + ∂ϕ

∂x (·, t)F
(
x(t), t

)
(·) , x(t)

〉
dt,

because limn→∞ xn(t) = x(t) and limn→∞ bn(t) = F (x(t), t) for all t ∈ [0, T ].
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4.2 Parametrised semigroups with feedback functions

In Section 4.1 we used a specific non-linear model as a leading example. By
freezing the coefficients in (4.2) we got a model for which we already had so-
lutions: this was the linear model from Section 3.1. That is, for a coefficient
b ∈ BL(R+) we used the semigroup of solutions (P bt )t≥0. We can view (P bt )t≥0

as a family of semigroups, parametrised by b, where we take take b to be in
some parameter space, say Λ. If we now forget about the underlying model, we
could as well have started with a family of semigroups and a parameter space.

First we will formulate a definition for the sequence xn as in (4.3) from this
more general perspective. In Section 4.1 we proved that this sequence converges
for that specific example. In this section we will investigate which properties of
the model were used, as to find sufficient assumptions in the more general case
for this sequence xn to converge. Of course, we do not restrict ourself to measure
valued problems, but we use a general Banach space (X , ‖·‖) throughout this
section.

The sequence (xn) defined below is similar to the sequence of approximations
to a system of ordinary differential equations obtained by applying the Forward
Euler scheme. Therefore, we will will call this sequence xn an Euler sequence.

Definition 4.10. Let (Λ,d) be a metric space: the parameter space. Let
(Φλt )t≥0 be a family of (possibly non-linear) semigroups on X , parametrised
by λ ∈ Λ. Let T > 0 and let F : X × [0, T ] → Λ be a function, the feedback
function. For each n ∈ N, set

hn =
T

2n
, tjn = jhn for j = 0, . . . , 2n.

A sequence (xn)n in X will be called an Euler sequence associated to the semi-
group (Φλt )t≥0 and feedback function F (and initial condition ν0), or shorthand
an (Φλ, F )-Euler sequence, if

xn(0) = ν0, x0(·) = ν0,

xn(t) = Φ
λjn
t−tjn

(
xn(tjn)

)
for t ∈

(
tjn, t

j+1
n

]
, with λjn = F

(
xn(tjn), tjn

)
From a modeller’s perspective, each xn is a switched system where the

switching is controlled by feedback that could depend on the time, the param-
eter used at that time and the trajectory that xn has covered in the past. Here
the feedback is modelled by F and it only depends on point of the trajectory of
xn at the last grid point. It does not depend on the parameter used somewhere
else, as F does not have Λ in its domain. The feedback is held constant between
the grid points tjn and changed at the grid points.

In Section 4.1 we investigated the convergence of the Euler sequence asso-
ciated to the semigroup (P bt )t≥0 on the Banach space SBL(R+) and feedback
function F from (4.2), with parameter space Λ = ranF ⊂ BL(R+). Theorem 4.6
tells us when this Euler sequence converges. In Theorem 4.11 we will formulate
the conditions under which a general (Φλt , F )-Euler sequence xn will converge.

The proof Theorem 4.6 mainly relies on only five assumptions: the estimates
(4.6a) and (4.6b), the estimate in Lemma 3.3 (iii), assumption (F2) and the
boundedness of the set {xn(t) : n ∈ N, t ∈ [0, T ]}.

The estimates in (4.6a), (4.6b) and Lemma 3.3 (iii) follow from the prop-
erties of P bt and we will take them as conditions on Φλt here. In Theorem
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4.11, this is formulated in (C1), (C2) and (C3) respectively. The assumption
(F2) is also taken as condition in the theorem. As for the boundedness of
{xn(t) : n ∈ N, t ∈ [0, T ]}, we need some bound on ‖Φλt ‖ that is independent of
λ. In Section 4.1 it just follows from (4.6a) that ‖Pλt µ‖∗BL ≤ (1 + tK)‖µ‖∗BL

for all λ ∈ Λ, t ∈ [0, T ] and µ ∈ M+(R+). However, if we would require that
‖Φλt (x)‖ ≤ (1 + tK)‖x‖ then this would imply that x = 0 is a fixed point of
Φλt . This strong requirement is unnecessary: instead we use a milder condition,
stated in (C4).

If we make the requirements on Φλt and F as mentioned, then the proof is
mainly the same as the approach in Section 4.1, but with different notation.
First, boundedness of {xn(t) : n ∈ N, t ∈ [0, T ]} is proved analogue to the proof
of Lemma 4.3. Here however we need the same approximation that was used
at the end of Lemma 4.4 and is stated in Lemma 4.5. Secondly, observe that
Lemma 4.4 still holds. For reasons of clarity, the proof of Lemma 4.4 is just
copied here with the right notation and references to the assumptions of this
section. Then, when we have got an estimate like in Lemma 4.4, we can finish
the proof like in the proof of Theorem 4.6.

We will apply the theorem to a non-linear semigroup on the Banach space
SBL, but in the end we would like to study measure-valued Euler sequences.
Therefore, we will study the convergence of the Euler sequence in a closed
subset of X .

Theorem 4.11. Let Y ⊂ X be a closed subset of X . Let (Φλt )t≥0 be a family
of (possibly non-linear) semigroups on X , parametrised by λ ∈ Λ, for some
parameter space (Λ,d), and such that it leaves Y invariant. Impose the following
conditions on Φλt :

(C1) Every Φλt is locally lipschitz for ‖·‖ and for every R > 0 there exists an
KR > 0 such that for all λ ∈ Λ, t ∈ [0, T ] and x, y ∈ ballR(X ) ∩ Y

‖Φλt (x)− Φλt (y)‖ ≤ (1 + tKR)‖x− y‖.

(C2) For every R > 0 there exists an CR > 0 such that for all λ, λ′ ∈ Λ,
t ∈ [0, T ], R > 0 and x ∈ ballR(X ) ∩ Y

‖Φλt (x)− Φλ
′

t (x)‖ ≤ tCR d(λ, λ′).

(C3) The semigroups (Φλt ) are locally Lipschitz in time and for every R > 0
there exists an NR > 0 such that for all λ ∈ Λ, t, s ∈ [0, T ] and x ∈
ballR(X ) ∩ Y

‖Φλt (x)− Φλs (x)‖ ≤ NR|t− s|.

(C4) There exists an M > 0 such that for all λ ∈ Λ, t ∈ [0, T ] and x ∈ Y,

‖Φλt (x)‖ ≤ ‖x‖+ tM‖x‖+ tM.

Let F : Y× [0, T ]→ Λ be a locally Lipschitz feedback function. That is, for every
R > 0 there exist constants LR, ωR > 0 such that

d
(
F (x, s), F (y, t)

)
≤ LR‖x− y‖+ ωR|t− s| (4.15)

for any x, y ∈ ballR(X ) ∩ Y and t, s ∈ [0, T ].
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Then the Euler sequence (xn), associated to the semigroup (Φλt ) and feedback
function F , converges in C([0, T ],X ) for the supremum norm. If the initial
condition of (xn) is in Y, then the limit has range in Y.

Proof. Let (xn) be the (Φλ, F )-Euler sequence with initial condition ν0 ∈ Y.
First we will show that the set {xn(t) : n ∈ N, t ∈ [0, T ]} is bounded in Y. It

follows from assumption (C4) that for all n, j ∈ N with j ≤ 2n − 1,

supt∈(0,hn] ‖xn(tjn + t)‖ ≤ hnM + (1 + hnM)‖xn−1(tjn)‖.

By inserting hn = T2−n and using Lemma 4.5 we get that for every t ∈ [0, T ],

‖xn(t)‖ ≤ TMeTM‖ν0‖.

So there exists an R > 0 such that ‖xn(t)‖ < R for all n ∈ N and t ∈ [0, T ].
As we will apply the estimates in (C1), (C2), (C3) and (4.15) only to x and

y of the form xn(t), we drop the subscript R in the constants KR, CR, NR, ωR
and LR from now on.

Now we proceed exactly as in the proof of Lemma 4.4 and Theorem 4.6.
Again, the main effort in this proof is to show that there exists an Z > 0 such
that for all n ∈ N the estimate

sup
τ∈[0,T )

∥∥xn−1(τ)− xn(τ)
∥∥ ≤ 2−nZ

holds. Fix n ∈ N and j ∈ {0, 1, . . . , 2n − 1}. To improve readability, we use the
following notation. See Figure 1 for a sketch of the situation and to see how
this notation is used. Set

τ0 = tjn−1 = t2jn τ1 = t2j+1
n τ2 = tj+1

n−1 = t2j+2
n ,

and write λ3 = F
(
xn−1(τ0), τ0

)
so that

xn−1(τ0 + t) = Φλ3
t

(
xn−1(τ0)

)
for t ∈ (0, hn].

Consequently, set λ1 = F
(
xn(τ0), τ0

)
and λ2 = F

(
xn(τ1), τ1

)
.

Let t ∈ [0, hn] be arbitrary. First we will estimate∥∥xn−1(τ0 + t)− xn(τ0 + t)
∥∥ =

∥∥Φλ3
t

(
xn−1(τ0)

)
− Φλ1

t

(
xn(τ0)

)∥∥ (4.16)

by using the triangle inequality and applying (C1) and (C2):∥∥xn−1(τ0 + t)− xn(τ0 + t)
∥∥

≤
∥∥Φλ3

t

(
xn−1(τ0)

)
− Φλ3

t

(
xn(τ0)

)∥∥+
∥∥Φλ3

t

(
xn(τ0)

)
− Φλ1

t

(
xn(τ0)

)∥∥
≤ (1 + tK)

∥∥xn−1(τ0)− xn(τ0)
∥∥+ tC d(λ3, λ1).

From the definition of λ1 and λ3 and the requirement on F we obtain

d(λ3, λ1) = d
(
F
(
xn−1(τ0), τ0

)
, F
(
xn(τ0), τ0

))
≤ L

∥∥xn−1(τ0)− xn(τ0)
∥∥.

Thus for all t ∈ [0, hn],∥∥xn−1(τ0 + t)− xn(τ0 + t)
∥∥ ≤ (1 + hn(K + CL)

)∥∥xn−1(τ0)− xn(τ0)
∥∥. (4.17)
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Next, consider the same expression as in (4.16), starting on time τ1 = τ0+hn
instead of τ0. Again let t ∈ [0, hn] be arbitrary and write∥∥xn−1(τ1 + t)− xn(τ1 + t)

∥∥ =
∥∥Φλ3

t

(
xn−1(τ1)

)
− Φλ2

t

(
xn(τ1)

)∥∥.
Working through the same steps as before,∥∥xn−1(τ1 + t)− xn(τ1 + t)

∥∥
≤
∥∥Φλ3

t

(
xn−1(τ1)

)
− Φλ3

t

(
xn(τ1)

)∥∥+
∥∥Φλ3

t

(
xn(τ1)

)
− Φλ2

t

(
xn(τ1)

)∥∥
≤ (1 + tK)

∥∥xn−1(τ1)− xn(τ1)
∥∥ + tC d(λ3, λ2).

As before, by the definitions of λ3 and λ2 and the requirement on F we have

d(λ3, λ2) = d
(
F
(
xn−1(τ0), τ0

)
, F
(
xn(τ1), τ1

))
≤ ωhn + L

∥∥xn−1(τ0)− xn(τ1)
∥∥.

By using the triangle inequality and assumption (C3) we can rewrite this into

d(λ3, λ2) ≤ ωhn + L
∥∥xn−1(τ0)− xn(τ0)

∥∥+ L
∥∥xn(τ0)− xn(τ1)‖

≤ ωhn + L
∥∥xn−1(τ0)− xn(τ0)

∥∥+ LNhn.

So for all t ∈ [0, hn] it holds that∥∥xn−1(τ1 + t)− xn(τ1 + t)
∥∥

≤ (1 + hnK)
∥∥xn−1(τ1)− xn(τ1)

∥∥+ h2
nĈ + hnCL

∥∥xn−1(τ0)− xn(τ0)
∥∥,

where we write Ĉ = C(ω+LN). Note that we can replace ‖xn−1(τ1)− xn(τ1)‖
by supτ∈[τ0,τ1]

∥∥xn−1(τ)− xn(τ)
∥∥ in this estimate. Then it follows that

sup
τ∈[τ0,τ2]

∥∥xn−1(τ)−xn(τ)
∥∥ ≤ (1+hn(K+CL)

)
sup

τ∈[τ0,τ1]

∥∥xn−1(τ)−xn(τ)
∥∥+h2

nĈ.

Use equation (4.17) to get

sup
τ∈[τ0,τ2]

∥∥xn−1(τ)− xn(τ)
∥∥ ≤ (1 + hnK̂)

∥∥xn−1(τ0)− xn(τ0)
∥∥+ h2

nĈ, (4.18)

where K̂ > 0 is such that (1 + hn(K + CL))2 ≤ 1 + hnK̂ for all n ∈ N.
Summarizing, we have found an estimate for ‖xn−1(τ)− xn(τ)‖ for the case

τ ∈ [τ0, τ1] in (4.17), for the case τ ∈ [τ1, τ2], and then finally for τ ∈ [τ0, τ2] in
equation (4.18). Eventually we want an estimate for τ ∈ [0, T ].

At this point, remember that we had set τ0 = tjn−1. If j > 0, then we

can set τ−2 = tj−1
n−1 = t2j−2

n and replace ‖xn−1(τ0)− xn(τ0)‖ in (4.18) with
supτ∈[τ−2,τ0] ‖xn−1(τ)− xn(τ)‖, turning (4.18) into the kind of recurrence rela-
tion in Lemma 4.5. If j = 0 then it follows from (4.18) that

sup
τ∈[0,t1n−1]

∥∥xn−1(τ)− xn(τ)
∥∥ ≤ h2

nĈ.

Apply Lemma 4.5 with m = 2n, A = TK̂ and B = (2−nT )2Ĉ. We finally arrive
at the desired estimate,

sup
τ∈[0,T ]

∥∥xn−1(τ)− xn(τ)
∥∥ ≤ 2−nT 2Ĉ eTK̂ . (4.19)
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This estimate almost immediately gives the desired convergence of (xn).
Denote with ‖·‖∞ the supremum norm on C([0, T ],X ). By (4.19), the series

∞∑
n=1

‖xn − xn−1‖∞

is convergent. Since C([0, T ],X ) is a Banach space with the norm ‖·‖∞, the
limit

lim
n→∞

xn = x0 +

∞∑
n=1

(xn − xn−1)

exists [16, Theorem 2.30]. Hence (xn) converges uniformely.
Since Φλt leaves Y invariant and xn(0) ∈ Y for all n ∈ N, we have that

xn(t) ∈ Y for all n ∈ N and t ∈ [0, T ]. Because Y is closed, each pointwise limit
limn→∞ xn(t) ∈ Y, so the limit of (xn) has range in Y.
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4.3 Non-linear perturbed models

In this section we will apply Theorem 4.11 to two measure-valued models. The
first example shows how Theorem 4.11 can be applied to a non-linear semigroup.
We treat a model that is similar to the one studied in [4]. The second example
shows how we can apply the theorem when we use a more complicated parameter
space and solves the problem from Gwiazda et al. in [10].

4.3.1 An application of the theorem

Consider the non-linear model{
∂tµt +∇

(
F (µt, t)µt

)
= G(µt)

µ0 = ν0 ∈M+(S).
(4.20)

with S ⊂ Rd a subset, a map G : M+(S)→M(S) and a map

F : M(S)× [0, T ] −→
{
b ∈ BL(S,Rd) : b · ~n (x) ≤ 0 for x ∈ ∂S

}
,

where ~n is the outward pointing normal field of the boundary ∂S of S. This
model differs from the one studied in [4]: here, F depends on µt and G does
not depend on t. Section 4.3.2 shows how to apply our results such that a
dependence on t can be included.

Let (P bt )t≥0 be the semigroup induced by the flow on S given by{
∂tx(t) = b

(
x(t)

)
x(0) = x0 ∈ S,

where b : S → Rd is a velocity field that is Lipschitz continuous (w.r.t. the
Euclidean metric) and satisfies b · ~n (x) ≤ 0 for x ∈ ∂S to ensure that the flow
leaves S invariant. See also Definition 3.2 in Section 3.1. Note that if we take
S = R+ we arrive at the condition b(0) ≥ 0, which is the same as in the other
examples in this thesis.

We take as the parameter space Λ = ranF with the metric induced by ‖·‖∞.
We assume that G satisfies the positivity requirement in Theorem 2.12. So we
assume that there exists an a > 0 for which

G(µ) + aµ ∈M+(S) whenever µ ∈M+(S).

Let (Φbt)t≥0 be the (non-linear) semigroup of solutions to the semi-linear model{
∂tµt +∇(bµt) = G(µt)

µ0 = ν0 ∈M+(S),
(4.21)

again with b ∈ BL(S,Rd) such that b · ~n (x) ≤ 0 for x ∈ ∂S. In Definition 3.1
it is explained what we mean by a solution to (4.21). By Theorem 2.12, such a
semigroup of solutions exists.

Definition 4.12. Let (xn) be a (Φbt , F )-Euler sequence. A limit of a subse-
quence of (xn) in the space C([0, T ],M+(S)) will be called a mild solution to
(4.20).
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The following two lemmas show that the requirements (C1)-(C4) in Theorem
4.11 are satisfied. The calculations are long, but the idea is the same for every
estimate: use the variation of constants formula for Φbt and apply Gronwall’s
lemma.

Lemma 4.13. Assume that supb∈Λ ‖b‖BL < ∞. Then for all b ∈ Λ, t ∈ [0, T ]
and µ ∈M+(S)

‖Φbt(µ)‖ ≤ ‖µ‖+ tM‖µ‖+ tM.

Proof. Let b ∈ Λ, t ∈ [0, T ] and µ ∈ M+(S) be arbitrary. Using the variation
of constants formula and Theorem A.7 we get

‖Φbt(µ)‖ ≤ ‖P bt (µ)‖+

∫ t

0

∥∥P bt−rG(Φbr(µ)
)∥∥ dr.

By Lemma 3.3 (ii) and the assumption supb∈Λ ‖b‖BL <∞ there exists a K̂ > 0
such that for all µ ∈M+(S) and t ∈ [0, T ]:

‖P bt µ‖ ≤ (1 + tK̂)‖µ‖.

So it follows that

‖Φbt(µ)‖ ≤ (1 + tK̂)‖µ‖+ (1 + tK̂)

∫ t

0

∥∥G(Φbr(µ)
)∥∥ dr.

Rewrite using the triangle inequality such that we get

‖Φbt(µ)‖ ≤ (1 + tK̂)‖µ‖+ (1 + tK̂)‖G(0)‖+ L

∫ t

0

‖Φbr(µ)‖ dr,

where L = (1 + TK̂)|G|L. By Gronwall’s lemma it holds that

‖Φbt(µ)‖ ≤ (1 + K̂)(‖µ‖+ t‖G(0)‖)
(
1 + tLetL

)
, (4.22)

and with this we can find an M as desired.

Lemma 4.14. Assume that supb∈Λ ‖b‖BL <∞. Then there exists K > 0 such
that for all µ, ν ∈M+(S), t ∈ [0, T ] and b ∈ Λ,∥∥Φbt(µ)− Φbt(ν)

∥∥ ≤ (1 + tK)‖µ− ν‖. (4.23a)

If we let R > 0 and µ ∈ ballR(M+(S)) then there exist CR, NR > 0 such that
for all b, b′ ∈ Λ and t, s ∈ [0, T ],∥∥Φbt(µ)− Φb

′

t (µ)
∥∥ ≤ tCR‖b− b′‖∞, (4.23b)∥∥Φbt(µ)− Φbs(µ)
∥∥ ≤ NR|t− s| (4.23c)

Proof. Let µ, ν ∈M+(S) be arbitrary. Using the variation of constants formula
we can write∥∥Φbt(µ)− Φbt(ν)

∥∥ ≤ ∥∥P bt µ− P bt ν∥∥+

∫ t

0

∥∥P bt−rG(Φbr(µ)
)
− P bt−rG

(
Φbr(ν)

)∥∥ dr.

54



As with equation (4.6a), Lemma 3.3 (ii) and supb∈Λ‖b‖BL <∞ imply that there

exists a constant K̂ > 0, such that for all b ∈ Λ it holds that∥∥P bt µ− P bt ν∥∥ ≤ (1 + tK̂)‖µ− ν‖. (4.24)

It follows that for all b ∈ Λ∥∥Φbt(µ)− Φbt(ν)
∥∥ ≤ (1 + tK̂)‖µ− ν‖+ L

∫ t

0

∥∥Φbr(µ)− Φbr(ν)
∥∥ dr,

where L = (1 + TK̂)|G|L. Using Gronwall’s lemma we get∥∥Φbt(µ)− Φbt(ν)
∥∥ ≤ ‖µ− ν‖(1 + tK̂)

(
1 + tLetL

)
.

for all b ∈ Λ, so equation (4.23a) holds.
The estimate in (4.23b) is obtained in a similar way. Now let R > 0 and let

µ ∈ ballR(M+(S)). Using the variation of constants formula we can write∥∥Φbt(µ)− Φb
′

t (µ)
∥∥ ≤ ‖P bt µ− P b′t µ‖+

∫ t

0

∥∥∥P bt−rG(Φbr(µ)
)
− P b

′

t−rG
(
Φb
′

r (µ)
)∥∥∥ dr.

Similarly to what we did to get equation (4.6b), set Ĉ = (1+TK̂). Then Lemma
4.2 and supb∈Λ‖b‖BL <∞ imply that∥∥P bt ν − P b′t ν∥∥ ≤ tĈ‖ν‖‖b− b′‖∞, (4.25)

for all b ∈ Λ and ν ∈M+(S).
Now we have to do some more work to estimate the integrant: use equations

(4.24) and (4.25) to get∥∥P bt−rG(Φbr(µ)
)
− P b

′

t−rG
(
Φb
′

r (µ)
)∥∥

≤ tĈ
∥∥G(Φbr(µ)

)∥∥ ‖b− b′‖∞ + (1 + tK̂)|G|L
∥∥Φbr(µ)− Φb

′

r (µ)
∥∥.

By Lemma 4.13 there exists an MR > 0 such that ‖Φbr(ν)‖ ≤MR for all b ∈ Λ,
r ∈ [0, T ] and ν ∈ ballR(M+(S)). Note that G is bounded since G is Lipschitz.
So there exists a constant M̂R > 0 such that ‖G(Φbr(µ))‖ ≤ M̂R for all b ∈ Λ
and r ∈ [0, T ], and M̂R does not depend on µ because ‖µ‖ < R. It follows that∥∥Φbt(µ)− Φb

′

t (µ)
∥∥ ≤ ‖b− b′‖∞(tĈR+ 1

2 t
2ĈM̂R

)
+ L

∫ t

0

∥∥Φbr(µ)− Φb
′

r (µ)
∥∥dr,

where L = (1 + TK̂)|G|L. Using Gronwall’s lemma we arrive at the estimate∥∥Φbtµ− Φb
′

t µ
∥∥ ≤ t‖b− b′‖∞(ĈR+ 1

2 tĈM̂R

) (
1 + tLetL

)
.

Equation (4.23b) follows by setting CR = (ĈR+ 1
2TĈM̂R)(1 + TLeTL).

It remains to prove equation (4.23c). The proof uses the same estimates as
made in Lemma 2.4. Again let R > 0, µ ∈ ballR(M+(S)) and let t, s ∈ [0, T ].
Assume that t > s. We can write∥∥Φbt(µ)−Φbs(µ)

∥∥ ≤ ‖P bt µ−P bsµ‖+∫ t

0

∥∥P bt−r [G(Φbr−s+t(x)
)
−G

(
Φbr(µ)

)]∥∥ dr

+

∫ t−s

0

∥∥P bt−rG(Φbr(µ)
)∥∥ dr. (4.26)
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By Lemma 3.3 (iii) and supb∈Λ‖b‖BL <∞ there exists an N̂R > 0 such that

‖P bt ν − P bs ν‖ ≤ N̂R|t− s|

for all b ∈ Λ and ν ∈ ballR(M+(S)), which gives an estimate for the first term.
From equation (4.24) it follows that ‖P bt ν‖ ≤ (1 + tK̂)‖ν‖ = Ĉ‖ν‖, and as
before, we have ‖G(Φbr(µ))‖ ≤ M̂R for all b ∈ Λ and r ∈ [0, T ]. Thus∫ t−s

0

∥∥P bt−rG(Φbr(x)
)∥∥ dr ≤ ĈM̂R|t− s|.

Using again equation (4.24) for the integral left, equation (4.26) now reads

∥∥Φbt(µ)− Φbs(µ)
∥∥ ≤ |t− s|(N̂R + ĈM̂R

)
+ L

∫ t

0

∥∥Φbr−s+t(µ)− Φbr(µ)
∥∥dr,

where L = (1 + TK̂)|G|L. Gronwall’s lemma implies that∥∥Φbt(µ)− Φbs(µ)
∥∥ ≤ |t− s|(N̂R + ĈM̂R

) (
1 + tLetL

)
.

By setting NR = (N̂R + ĈM̂R)(1 + TLeTL) we arrive at equation (4.23c).

By Theorem 4.11 and the preceding two lemmas the following existence
theorem holds.

Theorem 4.15. Let S ⊂ Rd. Let F : M(S)× [0, T ]→ BL(S,Rd) be such that

(F1) supt∈[0,T ] supµ∈M(S) ‖F (t, µ)‖BL = supλ∈Λ ‖λ‖BL <∞,

(F2) for any R > 0 there exist constants LR > 0 and ωR > 0 such that

‖F (µ, s)− F (ν, t)‖∞ ≤ LR‖µ− ν‖∗BL + ωR|t− s|

for all µ, ν ∈M+(S) with ‖µ‖∗BL, ‖ν‖∗BL ≤ R.

(F3) ranF ⊂
{
b ∈ BL(S,Rd) : b · ~n (x) ≤ 0 for x ∈ ∂S

}
.

Let G : M+(S)→M+(S) be such that there exists an a > 0 for which

G(µ) + aµ ∈M+(S) whenever µ ∈M+(S).

Then there exists a unique mild solution of (4.20) in the sense of Definition
4.12.

4.3.2 Solutions to the non-linear population model

At last we are able to prove an existence theorem for the example in (4.1). For
convenience, we state the model here again:{

∂tµt + ∂x
(
F2(µt, t)µt

)
= F3(µt, t)µt + 〈F1(µt, t), µt〉 δ0

µ0 = ν0 ∈M+(R+),

where F1, F2, F3 : M(R+) × [0, T ] → BL(R+) are such that F1 is positive and
ranF2 ⊂ {b ∈ BL(R+) : b(0) ≥ 0}.
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We will use the feedback function F : M(R+)× [0, T ]→ (BL(R+))3 defined
by F = (F1, F2, F3). The parameter space will be the three dimensional space
Λ = ranF ⊂

{
(a, b, c) ∈ (BL(R+))3 : b(0) ≥ 0, a ≥ 0

}
.

We can define two norms on Λ as follows. Let λ = (a, b, c) ∈ Λ and define

‖λ‖∞ = ‖a‖∞ + ‖b‖∞ + ‖c‖∞
‖λ‖BL = ‖a‖BL + ‖b‖BL + ‖c‖BL.

It is easy and natural to take the for metric on Λ the metric induced by ‖·‖BL.
Note that the requirement (F2’) in Theorem 4.17 is different than the require-
ment (F2) in the previous sections. With this notation, we can formulate almost
exactly the same theorem as in Section 4.1, but now for the perturbed model.

Definition 4.16. Let F be defined as above and let Λ = ranF . Let Φλt be the
semigroup of solutions of the linear model in (3.1), where λ = (a, b, c) ∈ Λ. Let
(xn) be a (Φλt , F )-Euler sequence. A limit of a subsequence of (xn) in the space
C([0, T ],M+(R+)) will be called a mild solution to (4.1).

Theorem 4.17. Let F : M(R+)× [0, T ]→ (BL(R+))3 be such that

(F1) supt∈[0,T ] supµ∈M(R+) ‖F (t, µ)‖BL = supλ∈Λ ‖λ‖BL <∞,

(F2’) for any R > 0 there exist constants LR > 0 and ωR > 0 such that

‖F (µ, s)− F (ν, t)‖BL ≤ LR‖µ− ν‖∗BL + ωR|t− s|

for all µ, ν ∈M+(R+) with ‖µ‖∗BL, ‖ν‖∗BL ≤ R,

(F3) F1(µ) ≥ 0 for all µ ≥ 0 and ranF2 ⊂ {b ∈ BL(R+) : b(0) ≥ 0} .

Then there exists a unique mild solution of (4.1).

Proof. Let Φλt be the semigroup of solutions of the linear model in (3.1), where
λ = (a, b, c) ∈ Λ. By definition of Λ, it holds that a ≥ 0 and b(0) ≥ 0, so by
Theorem 3.4 such a semigroup exists and is positive.

Let (xn) be a (Φλt , F )-Euler sequence. We will check the conditions of The-
orem 4.11 to prove that xn converges.

Define Gλµ = cµ + 〈a, µ〉 δ0, for λ = (a, b, c) ∈ Λ and µ ∈ M+(R+). By
Lemma 3.5 and Section 3.2.2 it holds that |Gλ|L ≤ ‖a‖BL + ‖c‖BL. We required
that supλ∈Λ‖λ‖BL <∞, so there exists a D > 0 such that |Gλ|L ≤ ‖λ‖BL < D
for all λ ∈ Λ. With this fact, we can use the calculations from the previous
example in Section 4.3.1.

First let us compare Lemma 4.13 with our situation. When replacing b with
λ and G with Gλ in the proof, all calculations still hold. Note that ‖Gλ(0)‖ = 0
because Gλ is linear and replace |Gλ|L with D in the last step, and it follows
from equation (4.22) that for all λ ∈ Λ, t ∈ [0, T ] and µ ∈M+(R+)

‖Φλt (µ)‖ ≤ (1 + tK̂)‖µ‖
(
1 + tLetL

)
,

where L = (1 + TK̂)D and K̂ is as defined in the proof of Lemma 4.13. Hence
condition (C4) is satisfied.
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Now we compare with Lemma 4.14. In the same manner, it follows from
the proof of equation (4.23a) that there exist K > 0 such that for all µ, ν ∈
M+(R+), t ∈ [0, T ] and λ ∈ Λ∥∥Φλt (µ)− Φλt (ν)

∥∥ ≤ (1 + tK)‖µ− ν‖,

so condition (C1) is satisfied.
The proof of equation (4.23b) needs to be adjusted a little bit more. Let

R > 0 and let µ ∈ ballR(M+(R+)). Using the variation of constants formula
we can write∥∥Φλt (µ)−Φλ

′

t (µ)
∥∥ ≤ ‖Pλt µ−Pλ′t µ‖+∫ t

0

∥∥∥Pλt−rGλ[Φλr (µ)
]
− Pλ

′

t−rG
λ′
[
Φλ
′

r (µ)
]∥∥∥ dr.

Equations (4.25) and (4.24) still hold and like before, we have to do some work
to estimate the integrant. Use equations (4.25) and (4.24) to get∥∥Pλt−rGλ[Φλr (µ)

]
− Pλ

′

t−rG
λ′
[
Φλ
′

r (µ)
]∥∥

≤ tĈ
∥∥Gλ[Φλr (µ)

]∥∥ ‖b− b′‖∞ + (1 + tK̂)
∥∥Gλ[Φλr (µ)]−Gλ

′
[Φλ

′

r (µ)]
∥∥.

Here K̂ is as in Lemma 4.14 and consequently Ĉ = 1 + TK̂. Since Gλ is linear,
we have ‖Gλ[ν]‖ ≤ |Gλ|L‖ν‖ < D‖ν‖ for all ν ∈ M+(R+) and λ ∈ Λ. So we
can rewrite the last equation to∥∥Pλt−rGλ[Φλr (µ)

]
− Pλ

′

t−rG
λ′
[
Φλ
′

r (µ)
]∥∥

≤ tĈD
∥∥Φλr (µ)

∥∥‖b− b′‖∞ + Ĉ
∥∥Gλ[Φλr (µ)]−Gλ

′
[Φλ

′

r (µ)]
∥∥.

We go on with estimating∥∥Gλ[Φλr (µ)]−Gλ
′
[Φλ

′

r (µ)]
∥∥

≤
∥∥Gλ[Φλr (µ)]−Gλ

′
[Φλr (µ)]

∥∥+ |Gλ
′
|L
∥∥Φλr (µ)− Φλ

′

r (µ)
∥∥.

By definition of Gλ it holds that Gλ −Gλ′ = Gλ−λ
′
. It follows that∥∥Gλ[Φλr (µ)]−Gλ

′
[Φλr (µ)]

∥∥ ≤ (‖a− a′‖BL + ‖c− c′‖BL) ‖Φλr (µ)‖.

Putting the last three equations together, we get∥∥P bt−rGλ[Φλr (µ)]− P b
′

t−rG
λ′ [Φλ

′

r (µ)]
∥∥

≤ Ĉ‖Φλr (µ)‖
(
tD‖b− b′‖∞ + ‖a− a′‖BL + ‖c− c′‖BL

)
+ Ĉ|Gλ

′
|L
∥∥Φλr (µ)− Φλ

′

r (µ)
∥∥,

which we can rewrite to∥∥P bt−rGλ[Φλr (µ)]− P b
′

t−rG
λ′ [Φλ

′

r (µ)]
∥∥

≤ ĈMRTD‖λ− λ′‖BL + ĈD
∥∥Φλr (µ)− Φλ

′

r (µ)
∥∥.

Now Gronwall’s lemma ensures that there exists a CR > 0 such that

‖Φλt (µ)− Φλ
′

t (µ)‖ ≤ CR‖λ− λ′‖BL.
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for all λ, λ′ ∈ Λ, so condition (C2) is satisfied.
The proof of equation (4.23c) can be used to show that condition (C3 holds,

by applying the same modifications as before. The condition in equation (4.15)
follows directly from assumption (F2′).

Hence, Theorem 4.11 can be applied and thus the (Φλt , F )-Euler sequence
converges. By definition, this limit is the unique mild solution.
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A Bochner integration

In this section we will introduce the definitions and theorems we use concerning
Bochner measurability and integrability. Unfortunately, the technical definitions
used in the theory of Bochner integrals differ among common books used on this
topic, like [7, 11, 15], which can be quite confusing. Therefore, these definitions
are stated again in Section A.1. Theorems that are not proved are from [11,
Section 3.5, 3.7]. In Section A.2 some technical results are proved which are
used in Section 2.2 and Section 2.3.

Throughout this thesis, measurability and integrability are with respect to
the Lebesque measure. In this section however, we work with a general σ-finite
measure space.

A.1 General notions

Let (Ω,Σ, µ) be a σ-finite measure space. Let X be a Banach space. A function
x : Ω→ X is called simple if there exist x1, . . . , xn ∈ X and E1, . . . , En ∈ Σ such
that x(ω) = xi if ω ∈ Ei and x(ω) = 0 otherwise. We will write x =

∑n
i=1 xiχEi ,

where χEi is the characteristic function of Ei.

Definition A.1. A function x : Ω→ X is measurable if there exists a sequence
of simple functions (xn) that converges almost everywhere to x.

In most works, this form of measurability is called strong measurability,
Bochner measurability or µ-measurability. This definition coincides with the
regular definition for measurable numerical functions, see for example [2, Theo-
rem 11.6] or [3, Lemma 2.18]. Yet important to realize is that in the numerical
case the definition of measurability essentially only depends on the σ-algebra,
and therefore is not connected with the measure, whereas in the vector-valued
case measurability really depends on the measure.

As with numerical measurable functions, the vector-valued measurable func-
tions respect the basic operations in the following proposition. The proof is
almost immediate from the definitions.

Proposition A.2. Let x : Ω→ X and y : Ω→ X be measurable functions. Let
f : Ω → R be a numerically valued measurable function. Then the sum x + y
and the product fx are measurable.

Proof. Let (xn) and (yn) be sequences of simple functions converging a.e. to
x and y respectively. It is immediate from the definition that the functions
zn = xn + yn are simple and converge a.e. to x+ y, so x+ y is measurable.

To prove the second statement, let (fn) be a sequence of simple functions
converging a.e. to f and note that fnxn are simple functions. It remains to
prove that they converge a.e. to fx. Let A and B be sets of measure zero such
that f(ω) = limn→∞ fn(ω) for all ω ∈ Ω \ A and x(ω) = limn→∞ xn(ω) for all
ω ∈ Ω \B. Then for all ω ∈ Ω \ (A ∪B) it holds that

‖f(ω)x(ω)− fn(ω)xn(ω)‖ ≤ |f(ω)|‖x(ω)− xn(ω)‖+ |f(ω)− fn(ω)|‖xn(ω)‖.

By the convergence of fn to f and xn to x, this goes to zero as n→∞ pointwise
almost everywhere.
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A useful characterisation of measurability in terms of weak measurability is
given by Pettis’ Measurability Theorem. A function x : Ω→ X is called weakly
measurable if for all φ ∈ X ∗ the numerical function φ ◦ x is measurable. The
concept that connects measurability to weak measurability is separability. A
function is almost everywhere separably valued if there exists a set A ∈ Σ of
measure zero such that f(Ω \A) is separable in X .

Theorem A.3 (Pettis’ Measurability Theorem, 3.5.2 in [11]). A map x : Ω →
X is measurable if and only if it is weakly measurable and almost everywhere
separably valued.

Let us look closer at Definition A.1 to show how differences in definitions
can be confusing. In [11, Definition 3.4.5] Hille and Phillips define a function to
be (strongly) measurable if it is the (a.e.) limit of countably valued functions.
It is noted that it is ‘easy to see’ that this definition is the same as Definition
A.1 if the measure space is finite. In the book of Diestel and Uhl [7] and in
the original article of Pettis’ Measurability Theorem [14], a finite measure space
is used and the remark of Hille and Phillips in [11] is indeed a Corollary of
Pettis’ Measurability Theorem. Although this remark may suggest otherwise,
these definitions for measurability coincide also for σ-finite spaces. To see this,
compare (the proofs of) the two versions of Pettis’ Measurability Theorem in [11,
Theorem 3.5.2] and [15, Proposition 2.15]1.

Hence since our measure µ is σ-finite, a function is the limit of simple func-
tions if and only if it is the limit of countably valued functions. And thus in our
case this definition of measurability is compatible with the definition in [11].

The next proposition shows an easy application of Pettis’ Measurability The-
orem.

Proposition A.4. The pointwise limit of a sequence of measurable functions
is measurable.

Proof. Let (xn) be sequence of measurable functions from Ω to X with pointwise
limit x. Each function xn takes its values in a separable subspace of X . The
function x takes its values in the closed linear span of these subspaces, which is
again separable.

For each φ ∈ X ∗ the numerical function φ ◦ x is measurable because it is
the pointwise limit of the measurable numerical functions φ ◦ xn [3, Theorem
2.15]. So x is weakly measurable and by Pettis’ Measurability Theorem, x is
measurable.

Simple functions can be integrated in an obvious way. Let x : Ω → X be
a simple function and write x =

∑n
i=1 xiχEi as before. Then for A ⊂ X it is

natural to define
∫
A
xdµ =

∑n
i=1 µ(Ei)xi.

Definition A.5. A function x : Ω → X is (Bochner) integrable if there exists
a sequence of simple functions xn such that

lim
n→∞

∫
Ω

‖xn − x‖ dµ = 0.

1Be aware of a small leap in the argument in the proof of [15, Proposition 2.15]. Ryan
claims that the inverse image of every weakly open set is measurable, which is not true. What
is really needed for the proof to work is that pre-images of closed balls are measurable, which
indeed is true.
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Then by definition
∫
A
xdµ is defined for each A ⊂ X as∫

A

xdµ = lim
n→∞

∫
A

xn dµ

Bochner’s theorem gives a simple check determining for when a function is
Bochner integrable.

Theorem A.6 (Bochner’s Theorem, 3.7.4 in [11]). A function x : Ω → X is
Bochner integrable (with respect to µ) if and only if x is measurable and∫

Ω

‖x(ω)‖dµ <∞.

In this thesis, any X -valued function which is Bochner integrable will be
referred to as being integrable. A straightforward application of Bochner’s the-
orem leads to an estimate for the norm of the integral which we often use.

Theorem A.7 (Theorem 3.7.6 in [11]). If x : Ω→ X is an integrable function,
then ∥∥∥∥∫

Ω

x(ω) dµ

∥∥∥∥ ≤ ∫
Ω

‖x(ω)‖dµ

A.2 Results needed for this thesis

In the variation of constants formula, we integrate over Tω[x(ω)] for some in-
tegrable semigroup (Tω)ω∈Ω and a measurable function x : Ω → X . In Section
2.3, Bochner’s Theorem is used to show the integrability of Tω[x(ω)]. The fol-
lowing lemma states the requirements to meet one of the two requirements for
this theorem: the measurability of Tω[x(ω)].

Lemma A.8. Let (Tω)ω∈Ω be a family of bounded linear operators on X such
that ω 7→ Tωz is measurable for every z ∈ X . Let x : Ω → X be a measurable
function. Then ω 7→ Tω[x(ω)] is measurable.

Proof. Let (xn)n be a sequence of simple functions that converges almost every-

where to x. Write xn(ω) =
∑Nn
i=1 αn,iχAn,i(ω), where Nn ∈ N, the coefficients

αn,i are in X and the sets An,i are measurable. Now note that

Tω[xn(ω)] =

Nn∑
i=1

Tω[αn,i]χAn,i(ω).

By assumption the map ω 7→ Tω[αn,i] is measurable for each coefficient αn,i.
By Proposition A.2, the map ω 7→ Tω[xn(ω)] is measurable for each n ∈ N.
So (Tω[xn(ω)])n is a sequence of measurable functions, that for ω fixed almost
always converges to Tω[x(ω)] by the continuity of Tω. By Proposition A.4, this
limit is measurable.

For proving that a strongly continuous semigroup (Tω)ω∈Ω is an integrable
semigroup, we need that the continuous functions ω 7→ Tω are measurable.

Proposition A.9. If Ω is separable and the function x : Ω→ X is continuous,
then x is measurable.
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Proof. For each φ ∈ X ∗, the numerical function φ ◦ x is continuous and thus
Borel measurable. The continuous image of a separable space is separable, so
x(Ω) is separable. By Pettis’ Measurability Theorem, x is measurable.

To prove that the variation of constants formula is well-defined, we need the
following lemma.

Lemma A.10. Let F be a continuous operator on X and let x : Ω → X be a
measurable function. Then F ◦ x : Ω→ X is measurable.

Proof. Let (xn) be simple functions converging a.e. to x. The functions F ◦ xn
are simple functions and by the continuity of F they converge to F ◦ x. So by
definition F ◦ x is measurable.

Essential to Lemma 2.10 is Fubini’s Theorem for Bochner integrals.

Theorem A.11 (Theorem 3.7.13 in [11]). Let (A,A , µ) and (B,B, ν) be σ-
finite measure spaces. If the function f : A × B → X is Bochner integrable
with respect to µ ⊗ ν, then the functions g(a) =

∫
B
f(a, b) dν(b) and h(b) =∫

A
f(a, b) dµ(a) are defined almost everywhere in A resp. B and it holds that∫

A×B
f(a, b) d(µ⊗ ν) =

∫
A

g(a) dµ =

∫
B

h(b) dν (A.1)

Here A ⊗B is the product σ-algebra, which is generated by the rectangles
E × F , where E ∈ A and F ∈ B. The product measure is denoted by µ ⊗ ν.
See for example [2, §23].

Theorem A.11 tells us that we can switch the order of integration of a dou-
ble integral if the integrand is (Bochner) integrable with respect to the product
measure. Lemma A.8 and A.10 are needed in Lemma 2.10 to prove this inte-
grability.

B Gronwall’s Lemma

We use the following version of Gronwall’s Lemma, which can be found for
example in [17].

Lemma B.1 (Gronwall’s Lemma). Let r,K and a be functions from R+ to
R+ that are integrable over any interval [α, β] ⊂ R+ and let b : R+ → R+ be a
bounded continuous map. Suppose that

r(t) ≤ a(t) +K(t)

∫ t

0

b(s)r(s) ds

for almost all t ≥ 0 (with respect to the Lebesque measure). Then for almost all
t ≥ 0

r(t) ≤ a(t) +K(t)

∫ t

0

a(s)b(s) ds · exp

(∫ t

0

K(s)b(s) ds

)
. (B.1)

In particular, if K and a are non-decreasing, then

r(t) ≤ a(t) ·
[
1 +K(t)

∫ t

0

b(s) ds · exp

(
K(t)

∫ t

0

b(s) ds

)]
. (B.2)
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C Some variations on the theorems derived

While developing the theory in Section 2, a small variation of Theorem 2.2 was
found, as well as an alternative proof of Corollary 2.13. They are presented in
this section, but they are not used in this thesis.

We start with the variation on Theorem 2.2. Here strong continuity is re-
placed by integrability and we obtain a mild solution that is bounded and mea-
surable.

Proposition C.1. Let X be a Banach space. Let F : X → X be globally Lip-
schitz and (T̂t)t≥0 an integrable semigroup on X . Then there exists a unique
bounded measurable map u : R+ → X that satisfies (2.2). That is,

u(t) = T̂tx0 +

∫ t

0

T̂t−sF
(
u(s)

)
ds

for all x0 ∈ X .

Proof. The proof is analogue to the proof of Theorem 2.2. Let T > 0 and denote
by Z([0, T ],X ) the space of bounded measurable maps from [0, T ] to X . Define
the operator Q on Z([0, T ],X ) as in (2.5), that is, for u ∈ Z([0, T ],X ) we have

Q(u)(t) = T̂tx0 +

∫ t

0

T̂t−sF
(
u(s)

)
ds. (C.1)

It is not immediate that Q(u) is bounded and measurable.
The set B = {u(s) : s ∈ [0, T ]} is bounded because u is bounded and thus

F [B] is bounded because F is Lipschitz. So there exists a C > 0 such that
‖F (u(s))‖ ≤ C for all s ∈ [0, T ]. Since (T̂t)t≥0 is integrable there exists an
M > 0 such that ‖Tt‖ ≤ M for all t ∈ [0, T ]. So boundedness of Q(u) follows
from

‖Q(u)(t)‖ ≤ ‖Tt‖‖x0‖+

∫ t

0

‖Tt‖
∥∥F (u(s)

)∥∥ ds ≤M‖x0‖+ tCM. (C.2)

For obtaining measurability note that the integral in (C.1) is measurable with
respect to t. Indeed, by Definition A.5 it is a limit of integrals of simple functions
and it is straightforward to see that these are measurable. Furthermore, T̂tx0 is
measurable by definition and the sum of two measurable functions is measurable
by Proposition A.2, so Q(u) is measurable.

Lemma 2.5 still holds if we replace C by Z in the lemma and its proof. So
Q is a contraction on (Z([0, T ′],X ), ‖ · ‖∞) for some T ′ > 0.

By Banachs Fixed Point Theorem, there exists a unique fixed point u of Q
in Z([0, T ′],X ). As desired, u satisfies (2.2).

Proposition 2.3 still holds if we use an integrable semigroup instead of a C0

semigroup, so every u ∈ Z([0, T ′],X ) that satisfies (2.2) for some x0 ∈ X and
T ′ > 0 is unique. Using the same reasoning as in the proof of Theorem 2.2
on page 13, we can find a solution u that is defined on [0,∞). The prove that
u(t, x0) is defined for all t ∈ R+ also is exactly the same as in the proof of
Theorem 2.2.

With this proposition, we are able to give an alternative proof of Corollary
2.13. For this approach we need however that the Banach space is reflexive.
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Theorem C.2. Let X be a reflexive Banach space and F : X → X a bounded
linear operator. Let (Tt)t≥0 be a C0-semigroup. Let (Vt)t≥0 be a C0-semigroup
that satisfies

Vtx = Ttx+

∫ t

0

Tt−sF (Vsx) ds (C.3)

for all x ∈ X . Then Vt also satisfies for all x ∈ X

Vtx = Ttx+

∫ t

0

VsF
(
Tt−sx

)
ds (C.4)

Proof. Take B = F in Lemma 2.10. If we prove that that there exists an
integrable semigroup St satisfies the different variation of constants formula in
(2.18), then Lemma 2.10 yields St = Vt and we are done.

Let (T ∗t )t≥0 be the dual semigroup of (Tt)t≥0, and let F ∗ be the dual operator

of F . We are interested in mild solutions of (2.1) with T̂t = Tt and F ∗ instead
of F , as will become clear later in this proof. Generally (T ∗t )t≥0 is not strongly
continuous, but it is possible to prove that it is integrable. So here we need
Proposition C.1. Let us check the requirements.

Because (Tt)t≥0 is integrable we have that the function t 7→ Ttx is measurable
for all x ∈ X , so

〈T ∗t ψ, x〉 = 〈ψ, Ttx〉 (C.5)

is measurable for all ψ ∈ X ∗ and x ∈ X . Using Pettis’ Measureability Theorem
and the reflexivity of X , we see that t 7→ T ∗t ψ is measurable for all ψ ∈ X ∗.
Since ‖Tt‖ = ‖T ∗t ‖ the bound in (2.13) holds for T ∗t , so (T ∗t )t≥0 is integrable.

Since F is bounded and linear, F ∗ is bounded and linear and ‖F ∗‖ = ‖F‖.
In particular, F ∗ is Lipschitz continuous.

The conditions of Proposition C.1 are satisfied, so there exists an integrable
semigroup (Ut)t≥0 on X ∗ that satisfies

Utψ = T ∗t x+

∫ t

0

T ∗t−s
[
F ∗
(
Usψ

)]
ds

for all ψ ∈ X ∗. So for all ψ ∈ X ∗ and x ∈ X it holds that

〈Utψ, x〉 = 〈T ∗t ψ, x〉+

∫ t

0

〈
T ∗t−s

[
F ∗
(
Usψ

)]
, x
〉

ds

= 〈ψ, Ttx〉+

∫ t

0

〈
Usψ, F

(
Tt−sx

)〉
ds. (C.6)

Let St be the restriction of U∗t to X ∼= X ∗∗. From (C.6) it follows that for all
ψ ∈ X ∗ and x ∈ X it holds that

〈ψ, Stx〉 =

〈
ψ, Ttx+

∫ t

0

F
(
Tt−sx

)
ds

〉
,

so St satisfies (2.18).
Since F = B is bounded and linear and Vt satisfies (2.19) by assumption, the

conditions of Lemma 2.10 are satisfied. It follows that Vt = St, so Vt satisfies
the equation in (C.4).
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