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1 Introduction

In option pricing, modelling the stock price behaviour is the key concept. In general, these
processes are assumed to be stochastic. The well known Black Scholes model uses geometric
Brownian motion to implement this feature:

dSt = rStdt+ σStdWt,

where S0 denotes the currently observed price of the stock, St denotes the price of a stock at
time t. Here Wt is a Wiener process. The price of this stock in the future is determined by two
factors:

• A drift term r.

• And a stochastic term denoted by σ.

The drift term r can be seen as the risk free interest rate, while the stochastic term σ can be
seen as the volatility of the stock. Figure 1.0a shows a generated price process of a single stock.
The Black-Scholes model assumes the volatility of the stock to be constant. With this important

1.0a B-S price process for a stock with σ = 0.02,
r = 0.03 and S0 = 108.2 over 360 days.

assumption, closed form solutions of the values of European call and put options are derived.
The volatility can be chosen in such a way that the model reproduces reasonable market prices.
This volatility is called the implied volatility. A major drawback of this procedure is that this
implied volatility depends on specifications in the contract of the options. This unrealistic feature
can be resolved using so called local volatility models or stochastic volatility. Local volatility
models assume the volatility to be a function of time and stock price, calibrated in such a
way that the model is consistent with market data, see [11]. In an article by Hagan, Kumar,
Lesniewski and Woodward [8] it is claimed that local volatility models do not correspond with
the dynamic behaviour of market data. Some well known examples of stochastic volatility models
are introduced by Heston [1], Hull and White [12] and Hagan et al [8]. These models assume
that also the volatility Vt follows a stochastic process, and have the following general form:

dSt = µS(St, Vt, t)dt+ σS(St, Vt, t)dW 1
t ,

dVt = µV (St, Vt, t)dt+ σV (St, Vt, t)dW 2
t ,

dW 1
t dW

2
t = ρdt.

(1.1)
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The last line denotes the correlation between the stock price St and its volatility Vt. The
functions µS , µV , σS and σV are determined by the model used. In the models mentioned above
there is more than one unknown parameter to be determined. Similar as the volatility in the
Black Scholes case, these parameters can be calibrated using market data. To this end the
SABR model is introduced. For some models, vanilla options can be priced in an analytic
way. However, for more exotic options an analytic formula is not available and other methods
need to be used to approximate the prices. To this end the Monte Carlo method is widely
used. This method samples many paths of a stock price process using the processes defined
in the model. By averaging over a large number of paths, a price is calculated. In the case of
stochastic volatility models, this method needs to create two processes and can therefore become
computationally expensive. Another method makes use of the fact that the price of an option in
a stochastic volatility model can be represented by a two dimensional convection diffusion partial
differential equation (PDE). In physics these PDEs are common and well studied. The finite
difference method (FDM) is a proven numerical procedure to obtain accurate approximations
to the relevant PDE. In this thesis this method is applied to the Heston model and the SABR
model. The options being priced are vanilla call- and put options and the more exotic up-and
out Barrier options.
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2 Derivation of a PDE from a stochastic process

Using Feynman-Kac [13] one can derive that the price of an option or derivative is the solution
of a PDE. The general stochastic volatility process (1.1) is used. Assuming µS = rSt, σS = σSt,
µV = 0 and σV = 0, the general model reduces to the Black Scholes model. It is assumed that
the price of an option or a derivative U with underlying asset S with volatility V is a function of
the price of this underlying asset, the volatility of this underlying asset and time, so in notation:
U = U(S, V, t). Using Itô’s formula the stochastic differential process for this price is given by:

dU =
∂U

∂t
dt+

∂U

∂S
dSt +

∂U

∂V
dVt

+
1
2
∂2U

∂S2
(dSt)2 +

∂2U

∂S∂V
dStdVt +

1
2
∂2U

∂V 2
(dVt)2, (2.1)

with Box algebra: 
dt dW 1

t dW 2
t

dt 0 0 0
dW 1

t 0 dt ρ(t)dt
dW 2

t 0 ρ(t)dt dt

 . (2.2)

Substituting equation (1.1) in (2.1) and using the box-algebra one derives

dU =
[

1
2
σ2
V

∂2U

∂V 2
+ σSσV ρ

∂2U

∂S∂V
+

1
2
σ2
S

∂2U

∂S2

+µV
∂U

∂V
+ µS

∂U

∂S
+
∂U

∂t

]
dt

+ σS
∂U

∂S
dW 1

t + σV
∂U

∂V
dW 2

t . (2.3)

For notational convenience, let L(·) define the differential operator in the square brackets:

dU = L(U)dt+ σS
∂U

∂S
dW 1

t + σV
∂U

∂V
dW 2

t . (2.4)

The dynamics of a self-financing portfolio Π consisting of one derivative U , −∆1 shares of the
underlying stock S and −∆2 units of another derivative U2, will be:

dΠ =dU −∆1dS −∆2dU2

=
[
L(U)dt+ σS

∂U

∂S
dW 1

t + σV
∂U

∂V
dW 2

t

]
−∆1

[
µSdt+ σSdW

1
t

]
−∆2

[
L(U2)dt+ σS

∂U2

∂S
dW 1

t + σV
∂U2

∂V
dW 2

t

]
. (2.5)

Rearranging terms results in:

dΠ = [L(U)−∆1µS −∆2L(U2)] dt

+
[
σS
∂U

∂S
−∆1σS −∆2σS

∂U2

∂S

]
dW 1

t

+
[
σV

∂U

∂V
−∆2σV

∂U2

∂V

]
dW 2

t . (2.6)
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For Π to be a risk free self-financing portfolio, ∆1 and ∆2 must satisfy the following system:

σS
∂U

∂S
−∆1σS −∆2σS

∂U2

∂S
= 0,

σV
∂U

∂V
−∆2σV

∂U2

∂V
= 0.

Solving this yields:

∆2 =
(
∂U

∂V

)
/

(
∂U2

∂V

)
, (2.7a)

∆1 =
∂U

∂S
− ∂U2

∂S

(
∂U

∂V

)
/

(
∂U2

∂V

)
. (2.7b)

To have absence of arbitrage the return of the constructed portfolio must be equal to the following
risk-free investment:

dΠ = rΠdt = r [U −∆1S −∆2U2] dt. (2.8)

Expressions (2.6) and (2.8) can be equated, and substituting ∆1 and ∆2 results in:

[L(U)− rU ] dt
∂U
∂V

=
[L(U2)− rU2] dt

∂U2
∂V

.

Because this equation must hold for all derivatives U and U2 independently, the right hand side
is said to be equal to some function λ(S, V, t). Choosing this function equal to zero, concludes
this derivation:

1
2
σ2
V

∂2U

∂V 2
+ σSσV ρ

∂2U

∂S∂V
+

1
2
σ2
S

∂2U

∂S2

+ µV
∂U

∂V
+ µS

∂U

∂S
+
∂U

∂t
− rU = 0.

For notational convenience the capitals and some subscripts can be dropped, resulting in a more
elegant form of the general PDE:

1
2
σ2
v

∂2u

∂v2
+ σsσvρ

∂2u

∂s∂v
+

1
2
σ2
s

∂2u

∂s2

+ µv
∂u

∂v
+ µs

∂u

∂s
+
∂u

∂t
− ru = 0. (2.9)

2.1 Initial conditions

In option pricing, at maturity the value of the stock and its price process are known. The
value of the derivative considered depends on this stock price (or process), and is thus known at
maturity. This is called the final condition and can be denoted as: u(s, v, T ) = φ(s, v). To sell or
buy the derivative, its value at time t = 0 is needed so the reversed price process is considered.
Therefore τ = T − t is introduced such that u(s, v, r, τ) = u(s, v, r, T − t), and ∂u

∂τ = −∂u
∂t and

the PDE becomes:

∂u

∂τ
=

1
2
σ2
v

∂2u

∂v2
+ σsσvρ

∂2u

∂s∂v
+

1
2
σ2
s

∂2u

∂s2

+µv
∂u

∂v
+ µs

∂u

∂s
− ru, (2.10)
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with initial condition u(s, v, 0) = φ(s, v). As mentioned before, this (now) initial condition for
the PDE is determined by the type of pay-off of the option. In this thesis two types of options
are considered. A European call option gives the holder the right to buy a given asset at a
prescribed maturity date T for a prescribed strike price K > 0. Using this fact the following
pay-off function is used:

φ(s, v) = max(0, s−K). (2.11)

An up-and-out call option gives the holder the right to buy a given asset (with price process Sτ )
at a prescribed maturity date T for a prescribed strike price K > 0, only then when the price
process Sτ does not exceed a prescribed barrier B. Using this fact the following pay-off function
is used:

φ(s, v) =
{

max(0, s−K), when s < B,
0 otherwise.

(2.12)

The restriction that the process can not hit the boundary B during time to maturity will be
incorporated in the boundary conditions, described in section 4.

2.2 Heston PDE

The Heston model was first introduced in 1993 by S.L. Heston [1], and is a popular extension of
the well known Black-Scholes formula. This model is an extension in the sense that the volatility
also follows a stochastic process:

dSt = rStdt+ St
√
VtdW

1
t ,

dVt = κ(η − Vt)dt+ σ
√
VtdW

2
t ,

dW 1
t dW

2
t = ρdt,

(2.13)

with the prescribed time zero (currently observed) values S0 and V0. Starting from (1.1) the
Heston model uses the following coefficients: µs(s, v, t) = rs, σs(s, v, t) =

√
vs, µv(s, v, t) =

κ(η − v) and σv(s, v, t) = σ
√
v such that the earlier derived general PDE (2.9) becomes:

1
2
σ2v

∂2u

∂v2
+ σsvρ

∂2u

∂s∂v
+

1
2
vs2∂

2u

∂s2

+ κ(η − v)
∂u

∂v
+ rs

∂u

∂s
+
∂u

∂t
− ru = 0. (2.14)

An important feature in the Heston model is the so-called Feller condition:

2κη
σ2

> 1. (2.15)

When this condition is fulfilled the stochastic process of the volatility is strictly positive. For
a detailed description, see [16]. From a computational point of view, when condition is not
satisfied the paths in Monte Carlo simulations can go below zero. In PDE sense, the condition
determines the behaviour close to the boundary at v = 0.

2.3 SABR PDE

The SABR model was introduced by Hagan et. al. in 2002 [8] and stands for: Stochastic Alpha
Beta and Rho-model. Following earlier literature the volatility is denoted as αt and the stock

10



price process is assumed to be described as: dft = αtf
β
t dW

1
t ,

dαt = σαtdW
2
t ,

dW 1
t dW

2
t = ρdt,

(2.16)

again with prescribed currently observed values f0 and α0. This model is defined on the forward
price of the stock. When one wants to look at the stochastic process for the spot price, this can
be derived using Itô calculus with the discounted price St = D(t, T )ft := e−r(T−t)ft: dSt = rStdt+D(1−β)αtS

β
t dW

1
t ,

dαt = σαtdW
2
t ,

dW 1
t dW

2
t = ρdt.

Similar as in the Heston model, the price of the option is denoted as u(s, α, t) and because now
µs(s, α, t) = rs, σs(s, α, t) = D(1−β)αsβ, µv(s, α, t) = 0 and σv(s, α, t) = σα the general partial
differential equation (2.9) becomes:

1
2
α2s2βD2(1−β)∂

2u

∂s2
+ ρσsβD(1−β)α2 ∂2u

∂s∂α
+

1
2
σ2α2 ∂

2u

∂α2

+
∂u

∂t
+ rs

∂u

∂s
− ru = 0. (2.17)
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3 Finite difference schemes

The finite difference method for partial differential equations is relatively straightforward. First
the region Ω ∈ Rn on which the partial differential equation is defined needs to be discretized.
This results in a finite grid, denoted as Ω ∈ Ω, that approximates the continuous space in discrete
grid points. With this discrete space, every continuous function u ∈ C(Ω) can be approximated
with function values of u on Ω, let this approximation of u be denoted as u. Essential to the
quality of this approximation is the number of grid points to be used. When more grid points
are used there are more points where the function value is approximated. The finite difference
method will approach u with the help of approximations of the partial derivatives of u. In this
thesis, first the discretization in space direction will be derived. When considering an asset price
process with stochastic volatility the space will consist of s and v. With this discretization a
finite number of ordinary differential equations are constructed. Subsequently, the discretization
in time will be discussed. With the help of these discretizations and with the initial solution of
a partial differential equation including boundary conditions, a solution can be constructed.

3.1 Space discretization

First an equidistant grid in both the price as the volatility direction is applied. Later on a
non-uniform grid will be used. The uniform case can easily be derived from the non-uniform
case. Let m1 denote the number of grid points to be used in s-direction and m2 the number
of grid points to be used in v-direction, such that 0 = s0 < s1, . . . , sm1 = Smax and 0 = v0 <
v1, . . . , vm2 = Vmax. Next, the differences ∆si and ∆vj can be defined as

∆si = si − si−1 and ∆vj = vj − vj−1. (3.1)

In the uniform case, the discrete grid points will be distributed equidistantly in s and v direction
such that

∆s =
Smax

m1
and ∆v =

Vmax

m2

will denote the mesh widths and grid point (si, vj) will equal (i∆s, j∆v). The spatial domain is
thus subdivided in the following grid points:

G = {(si, vj) : 0 ≤ i ≤ m1, 0 ≤ j ≤ m2}. (3.2)

The function value at grid point (si, vj) at time t is denoted as ui,j(t) (note that for notational
convenience less-relevant sub- or superscripts will be dropped). Let δs (or δv) denote the differ-
ential operator w.r.t. s (or v respectively). All finite difference schemes are derived using Taylor
expansions. These expansions are used to express the function value at, for example, (si+1, vj),
namely ui+1,j , in terms of function values at (si, vj) denoted as ui,j . In formula one has:

ui+1,j = ui,j + ∆si+1

(
∂u

∂s

)
i,j

+
∆s2

i+1

2!

(
∂2u

∂s2

)
i,j

+
∆s3

i+1

3!

(
∂3u

∂s3

)
i,j

+ . . . (3.3)

Because computers can only handle a finite number of terms, the Taylor series needs to be
truncated. This is done via the so called “big O” notation, defined as follows:

Definition 3.1. Let f(x) and g(x) be two functions defined on some subset of the real numbers.
Then

f(x) = O(g(x))
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if and only if there exists a positive real number M and a real number x0 such that

|f(x)| ≤Mg(x)| for all x > x0.

In practice this notation gives one the ability to truncate (3.3) to:

ui+1,j = ui,j + ∆si+1

(
∂u

∂s

)
i,j

+
∆s2

i+1

2!

(
∂2u

∂s2

)
i,j

+O(∆s3
i+1), (3.4)

because it holds that∣∣∣∣∣∆s3
i+1

3!

(
∂3u

∂s3

)
i,j

+
∆s4

i+1

4!

(
∂4u

∂s4

)
i,j

+ . . .

∣∣∣∣∣ ≤M ∣∣∆s3
i+1

∣∣ when ∆si+1 → 0.

In words one says that (3.4) approximates (3.3) up to third order accuracy. So, in general,
O(∆xp) assembles all terms that have leading term equal to or lower than ∆xp. When ∆x→ 0
this term will decrease to 0 faster for higher values of p. The finite difference scheme approximates
the derivative in every grid point (si, vj) using finite differences, e.g. the difference between
neighbouring points (si−1, vj), (si, vj) and (si+1, vj). First the symmetric central approach is
treated.

3.1.1 Central difference scheme

The central character of the scheme lies in the fact that the scheme uses two direct neighbours.
So, to approximate the value of the first derivative in point (si, vj) in s direction, the Taylor
expansions of ui+1,j , ui,j and ui−1,j are used:

β+1ui+1,j = β+1

(
ui,j + ∆si+1

(
∂u

∂s

)
i,j

+
∆si+1

2

2

(
∂2u

∂s2

)
i,j

+O(∆si+1
3)

)
,

β0ui,j = β0ui,j ,

β−1ui−1,j = β−1

(
ui,j −∆si

(
∂u

∂s

)
i,j

+
∆si2

2

(
∂2u

∂s2

)
i,j

+O(∆si3)

)
.

Now we can choose β+1, β0 and β−1 such that the leading term cancels, the second derivative
remains and the second order terms also cancel to get a second order approximation of the
derivative:

β+1 + β0 + β−1 = 0,
β+1∆si+1 + β−1∆si = 1,

β+1
∆s2i+1

2 + β−1
∆s2i

2 = 0.

⇒
β+1 = ∆si

∆si+1(∆si+∆si+1) ,

β0 = −∆si+∆si+1

∆si∆si+1
,

β−1 = −∆si+1

∆si(∆si+∆si+1) .

(3.5)

In the notationally more elegant uniform case ∆si = ∆sj = ∆s, ∀i, j, this simply becomes:

ui+1,j−ui−1,j = 2∆s
(
∂u

∂s

)
i,j

+O(∆s3) ⇐⇒ (3.6)(
∂u

∂s

)
i,j

=
ui+1,j − ui−1,j

2∆s
+O(∆s2). (3.7)
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The same can be done in v direction. For the second derivative w.r.t. s the function value at
ui,j is also used:

ui+1,j = ui,j + ∆s
(
∂u

∂s

)
i,j

+
∆s2

2

(
∂2u

∂s2

)
i,j

+
∆s3

3!

(
∂3u

∂s3

)
i,j

+O(∆s4),

−2 · ui,j = −2 · ui,j

ui−1,j = ui,j −∆s
(
∂u

∂s

)
i,j

+
∆s2

2

(
∂2u

∂s2

)
i,j

− ∆s3

3!

(
∂3u

∂s3

)
i,j

+O(∆s4)+

ui+1,j − 2ui,j+ui−1,j = ∆s2

(
∂2u

∂s2

)
i,j

+O(∆s4) ⇐⇒(
∂2u

∂s2

)
i,j

=
ui+1,j − 2ui,j + ui−1,j

∆s2
+O(∆s2).

In the uniform case, the following well known set of central finite difference approximations will
be used for internal mesh points:

δs [ui,j ] ≈
ui+1,j − ui−1,j

2∆s
, (3.8a)

δv [ui,j ] ≈
ui,j+1 − ui,j−1

2∆v
, (3.8b)

δ2
s [ui,j ] ≈

ui+1,j − 2ui,j + ui−1,j

∆s2
, (3.8c)

δ2
v [ui,j ] ≈

ui,j+1 − 2ui,j + ui,j−1

∆v2
. (3.8d)

In addition, by linearity of the operators, the cross derivative ∂2u
∂s∂v can be approximated by

subsequently applying (3.8a) and (3.8b):

δs,v [ui,j ] = δs [δv [ui,j ]] ≈ δs
[
ui,j+1 − ui,j−1

2∆v

]
=
δs[ui,j+1]− δs[ui,j−1]

2∆v
,

≈
ui+1,j+1−ui−1,j+1

2∆s − ui+1,j−1−ui−1,j−1

2∆s

2∆v
,

=
ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1

4∆v∆s
. (3.8e)

3.1.2 One sided schemes

Because the central scheme has some drawbacks which will be discussed later, and because the
scheme is not applicable to the entire domain, also one sided schemes are used. The earlier
defined space discretization implies that at the boundaries of this domain there are no two
direct neighbours to approximate the derivative at this point. This is why at a boundary,
central difference cannot be applied. All grid points ui,0 do not have two direct neighbours
in v-direction. For these boundary points, so called one-sided finite difference schemes can be
applied. For example at the v = 0 boundary, the first derivative can be approximated with the
help of the one-sided forward difference scheme. Again, this approximation is derived using the
Taylor expansions and to keep the second order behaviour, three solution values ui,0, ui,1 and
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ui,2 are used:

γ0ui,0 + γ1ui,1 + γ2ui,2 = ui,0γ0+γ1(ui,0 + ∆v
(
∂u

∂v

)
i,0

+
∆v2

2

(
∂2u

∂v2

)
i,0

+O(∆v3)),

+γ2(ui,0 + 2∆v
(
∂u

∂v

)
i,0

+
(2∆v)2

2

(
∂2u

∂v2

)
i,0

+O(∆v3)),

= ui,0(γ0+γ1 + γ2) +
(
∂u

∂v

)
i,0

(γ1∆v + 2γ2∆v)

+
(
∂2u

∂v2

)
i,0

(γ1
∆v2

2
+ 2γ2∆v2) +O(∆v3).

Now γ1, γ2 and γ3 can be chosen to obtain a second order approximation of
(
∂u
∂v

)
i,0

:

γ0 + γ1 + γ2 = 0,
γ1∆v + 2γ2∆v = 1,
γ1

∆v2

2 + 2γ2∆v2 = 0.

⇒ γ0 = −3
2∆v , γ1 = 4

2∆v and γ2 = −1
2∆v ,

copying the notation from above and adding an index to emphasize the forward character, this
operator is denoted as:

δ+
v [ui,0] ≈ −3ui,0 + 4ui,1 − ui,2

2∆v
. (3.9)

In general one sided scheme can also be applied to points that are not on the boundary. Because
of some drawbacks of the central scheme that will be discussed in section 7, a one sided alternative
is used to approximate derivatives at interior grid points. When the coefficients µs or µv become
negative, the backward difference scheme will be used for the first order derivatives. This is done
to alleviate spurious oscillations caused by the possible negative sign of these coefficients. For
example in the Heston case, one has µv = κ(η − v) which clearly becomes negative for v > η.
The disturbing effect of using a central scheme when the sign is negative will be shown later on.
The derivation is similar as in the forward situation:

δ−v [ui,j ] ≈
ui,j−2 − 4ui,j−1 + 3ui,j

2∆v
. (3.10)

Although it is not used in this thesis, the one sided second order accurate approximations of the
second derivative is given below:

δ2+
v [ui,j ] ≈

2ui,j − 5ui,j+1 + 4ui,j+2 − ui,j+3

∆v2
,

δ2−
v [ui,j ] ≈

−ui,j−3 + 4ui,j−2 − 5ui,j−1 + 2ui,j
∆v2

.

the non-uniform versions can be derived similar as in (3.5) using the appropriate Taylor series.
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3.1.3 Non-uniform difference schemes

The non-uniform difference schemes can be derived similar as done in (3.5). Following [4], one
has:

δ−s [ui,j ] =
(
∂u

∂s

)
i,j

≈ α−2ui−2,j + α−1ui−1,j + α0ui,j , (3.11a)

δs [ui,j ] =
(
∂u

∂s

)
i,j

≈ β−1ui−1,j + β0ui,j + β+1ui+1,j , (3.11b)

δ+
s [ui,j ] =

(
∂u

∂s

)
i,j

≈ γ0ui,j + γ+1ui+1,j + γ+2ui+2,j , (3.11c)

δ2
s [ui,j ] =

(
∂2u

∂s2

)
i,j

≈ δ−1ui−1,j + δ0ui,j + δ+1ui+1,j , (3.11d)

where

α−2 = ∆si
∆si−1(∆si−1+∆si)

α−1 = −∆si−1−∆si

∆si−1∆si
α0 = ∆si−1+2∆si

∆si(∆si−1+∆si)
,

β−1 = −∆si+1

∆si(∆si+∆si+1) β0 = −∆si+∆si+1

∆si∆si+1
β+1 = ∆si

∆si+1(∆si+∆si+1) ,

γ0 = −2∆si+1−∆si+2

∆si+1(∆si+1+∆si+2) γ+1 = ∆si+1+∆si+2

∆si+1∆si+2
γ+2 = −∆si+1

∆si+2(∆si+1+∆si+2) ,

δ−1 = 2
∆si(∆si+∆si+1) δ0 = −2

∆si∆si+1
δ+1 = 2

∆si+1(∆si+∆si+1) .

These schemes are similar in v-direction and again the mixed derivative can be approximated
by applying (3.11b) consecutive in v- and s-direction. Other than in the uniform case, the order
of accuracy depends on the differences that are used at the specific grid point. To be able to do
a similar accuracy study for non-uniform grids, these non-uniform grids must satisfy a certain
smoothness condition. A part of this condition is that for all i there is a ∆s and a positive real
constant C1 such that

∆si ≤ C1∆s.

Here ∆s stems from the construction of the non-uniform grid. This will be treated in more
detail in section 6. Having such a ∆s, similar as in the uniform case, one can state the accuracy
of these schemes. In this sense, these derived schemes are second order (O(∆s2)) accurate
approximations.

3.1.4 System of ODEs

Because all the spatial derivatives are expressed in terms of discrete function values, the partial
differential equation can be expressed in terms of ui,j and

(
∂u
∂t

)
i,j

. Together with the initial
value, this leads to an initial value problem for a system of ordinary differential equations
(ODEs). To simplify the notation let the solution vector (u1, u2, . . . , un)T be denoted by U(t),
its derivative w.r.t. t by U ′(t), the coefficient matrix by A and the vector that is determined by
the boundary conditions by R, then, together with the initial condition the following system of
ordinary differential equations is derived:

U ′(t) = AU(t) +R 0 ≤ t ≤ T, (3.12)
U(0) = f(x).

This procedure can be extended to more than one space dimension. In case of m1 +1 and m2 +1
grid points in s and v direction respectively A will be a square matrix of size (m1 +1)(m2 +1)×
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(m1 + 1)(m2 + 1) and R an (m1 + 1)(m2 + 1)× 1 vector determined by the boundary conditions.
In the higher dimensional case, the solution vector needs to be ordered in a convenient way. In
this thesis the following lexicographic ordering is used for the solution vector U :

U = (u0,0, · · · , u0,m2 , · · · , · · · , ui,0, · · · , ui,m2 , · · · , · · · , um1,0, · · · , um1,m2)T .

For coding reasons (index 0 does not exist in Matlab) we let the indices run from 1 to (m1 + 1)
and (m2 + 1) respectively, where uk1,1 = u(s1, v1, tk) = u(0, 0, tk). To get a better insight in the
procedure, the following one dimensional example is helpful.

Example 3.2. Define the following problem on [0, 1]:
∂u
∂t = ∂2u

∂x2 ,
u(t, 0) = b, t ∈ [0, T ]
∂u
∂x(t, 1) = c,

u(0, x) = f(x).

(3.13)

First, the spatial domain can be uniformly discretized in n intervals of length ∆x := 1
n as

follows: 0 = x1 < x2 < . . . < xn < xn+1 = 1. Notice that because of the Dirichlet boundary
at x = 0, the function value at x = 0 is already known, so instead of n + 1 unknown function
values, there are only n unknown function values: ui for i = 2, . . . , n+ 1, or in vector notation,
(u2, u3, . . . , un+1)T . Because of this Dirichlet boundary at x1(= 0), the second derivative at
x1(= 0) is not needed. For the points xi for i = 2, . . . , n the second order derivative w.r.t. x
can be approximated using the central scheme:

(ui)xx ≈
ui+1 − 2ui + ui−1

∆x2
, (3.14)

or in matrix notation:

(u2)xx
(u3)xx

...

...

...
(un+1)xx


≈ 1

∆x2



k l
1 −2 1
0 1 −2 1

. . . . . . . . .
1 −2 1

q r





u2

u3
...
...
...

un+1


. (3.15)

For the derivative at grid point x2 the central scheme uses function values u(t, x1), u(t, x2) and
u(t, x3) and because the function value at x = 0 equals b, it holds that:

(u2)xx ≈
u3 − 2u2 + u1

∆x2
=
u3 − 2u2

∆x2
+

1
∆x2

b,

such that k = −2 and l = 1 and the vector ( b
∆2

x
, 0, . . . , 0)T is added to approximation (3.15). At

the x = 1 boundary, the central scheme needs the function value of the non existing “ghost”-point
un+2. Using the information of the Neumann condition, this function value can be approximated.
This is done with the help of linear extrapolation. The continuous condition ux(t, 1) = c can
be translated into the discrete variant using the earlier discussed central scheme for the first
derivative: ux(t, 1) ≈ un+2−un

2∆x , this implies: un+2 ≈ 2∆xc + un. Using this to approximate the
second derivative at xn+1 = 1 yields:

(un+1)xx ≈
un − 2un+1 + un+2

∆x2
≈ 2un − 2un+1 + 2∆xc

∆x2
,
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So q = 2 and r = −2 and the 2∆xc
∆x2 -term is stored in the vector: ( b

∆x2 , 0, . . . , 0, 2c
∆x)T . Resulting

in the following second order approximation of uxx:

(u2)xx
(u3)xx

...

...

...
(un+1)xx


≈ 1

∆x2



−2 1
1 −2 1
0 1 −2 1

. . . . . . . . .
1 −2 1

2 −2





u2

u3
...
...
...
un


+



b
∆2

x

0
...
...
0
2c
∆x


. (3.16)

3.2 Time discretization

With the space discretization above and a starting vector, the solution at any time instance can
be calculated using a stepping procedure. This can be done for example using the θ-method
which is a combination of an implicit method and an explicit method. Similar as in the space
discretization the time dimension is discretized. In this thesis maturity time T is set to 1,
the number of discrete grid points in time direction is denoted as TN and the finite difference
in time direction is denoted as ∆t. The later derived ADI scheme uses a first order accurate
approximation for the time derivative. Again this is derived using Taylor series as follows:

uk+1 = uk +
∆t
1!

(
∂u

∂t

)k
+

∆t2

2!

(
∂2u

∂t2

)k
+O(∆t3),

⇒
(
∂u

∂t

)k
=
uk+1 − uk

∆t
+O(∆t). (3.17)

Let D∆s,∆v(uki,j) denote a finite difference operator in v and s. For example for the general PDE
(2.9), its defined as:

D∆s,∆v(uki,j) :=
1
2
σ2
vδ

2
v

[
uki,j

]
+ σsσvρδsv

[
uki,j

]
+

1
2
σ2
sδ

2
s

[
uki,j

]
+ µvδv

[
uki,j

]
+ µsδs

[
uki,j

]
− ruki,j . (3.18)

, then the Euler forward method uses the following time discretization:

uk+1
i,j − uki,j

∆t
= D∆s,∆v(uki,j),

which results in the following explicit expression:

uk+1
i,j = uki,j + ∆tD∆s,∆v(uki,j).

The Euler backward method discretizes the time derivative in a similar way, but the space
derivatives are taken at time level k + 1 instead of k:

uk+1
i,j − uki,j

∆t
= D∆s,∆v(uk+1

i,j ),

resulting in the following implicit formula:

uk+1
i,j −∆tD∆s,∆v(uk+1

i,j ) = uki,j .
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The implicit property of the backward scheme lies in the fact that the solution at the next time
level, uk+1

i,j is given as an unknown in an equation, while in the Euler forward case uk+1
i,j is given

explicitly. Now, starting with an initial solution and using the forward or backward scheme,
a linear equation can be constructed which calculates the value of u at any grid point at the
next time step. Let Uk denote the solution vector at t = k. Such that in matrix notation one
has U ′(t = k) ≈ Uk+1−Uk

∆t
in the forward case. Now equation (3.12) can be fully expressed in

Uk+1 and Uk such that in the forward case one has:

Uk+1 − Uk

∆t
= AUk +R,

U0 = f(x),

and in the backward case:

Uk+1 − Uk

∆t
= AUk+1 +R,

U0 = f(x).

In either cases, the solution at a next time level can be obtained by a matrix multiplication and
adding a vector:

Uk+1 = QUk +G,
U0 = f(x),

(3.19)

where Q is a matrix and G a vector both depending on the method used. The most important
difference between these methods is that the backward scheme requires a matrix inversion to
determine Q and G, while with the help of the forward scheme the solution at the next time level
can be obtained without a matrix inversion. In literature, these methods are mostly referred to as
implicit (Euler backward) or explicit methods (Euler forward). Both methods have advantages
and disadvantages. The implicit method is unconditionally stable, but the expensive matrix
inversion is needed. The explicit method is straightforward and no matrix inversion is needed,
but this method is not unconditionally stable. A combination of these two methods, so called
Implicit-Explicit methods (IMEX-methods), can be used.

3.3 θ-method

A widely applied IMEX-scheme is the θ-method. This method combines the forward and back-
ward scheme with the help of a scaling parameter θ ∈ [0, 1]:

uk+1
i,j − uki,j

∆t
= θD∆s,∆v(uk+1

i,j ) + (1− θ)D∆s,∆v(uki,j)

For θ = 1 the equation is fully implicit, for θ = 0 the equation is fully explicit. The ADI method,
to be introduced in the next section, uses both the implicit and the explicit method. In matrix
notation the θ-scheme becomes:

1
∆t

(
Uk+1 − Uk

)
= θ

(
AUk+1 +R

)
+ (1− θ)

(
AUk +R

)
⇔

Uk+1 = Uk + ∆t

[
θ
(
AUk+1 +R

)
+ (1− θ)

(
AUk +R

)]
. (3.20)

Together with the initial solution, any solution can be calculated using time stepping.
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3.4 The Greeks

In finance, the Greeks play an important role. Quoting Wikipedia:

Any trader worth his or her salt will know the Greeks and make a choice of which Greeks to
hedge to limit exposure.

Next to the price of an option, one wants to know how the value of this option changes when
the market conditions change (e.g. for hedging purposes). The Greeks measure the sensitivity
of the option price to a set of particular parameters. In practice, one is usually interested in
the sensitivities to the market parameters (e.g. implied volatility, spot, correlation). The model
parameters are derived from the market parameters during the calibration procedure. This is
why the sensitivities with respect to the model parameters and state variables are also of interest.
Luckily mathematics cover this concept in the form of partial derivatives. FDM has an important
advantage in computing these partial derivatives. Because the method produces option prices
for a whole range of stock prices and volatility values, the partial derivatives with respect to
these parameters can be computed by simply using the finite difference schemes derived in this
section. The most important is the sensitivity of the option price to a slight change of the
price of the underlying stock. This Greek is called ∆mp, where mp stands for model parameters
denoting the fact that it is computed with respect to these parameters. This is thus defined as
the first derivative with respect to s:

∆mp :=
∂u

∂s
(3.21a)

Next to ∆mp, in this thesis the following Greeks are computed:

Γmp :=
∂2u

∂s2
, (3.21b)

νmp :=
∂u

∂σ
(3.21c)

One keeps in mind that although the last Greek is actually the Greek letter nu, it is pronounced
as vega. Probably because the Greek letter ν looks like the first letter v from volatility and
the world of finance recognized a habit in translating the Western letters a, b and z in Latin as
alpha, beta and zeta. Because the finite difference method calculates option values for a range
of values of s and v, these derivatives can be computed using finite differences once again. For
example for ∆, one has:

∆mp(si, vj) :=
∂ui,j
∂s

=
ui−1,j − ui+1,j

2∆s
, (3.22)

for i = 2, . . . ,m1 − 1 and j = 1, . . . ,m2. At the boundaries the one sided alternatives from
section 3.1.2 can be applied.
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4 Boundary conditions

In theory the stock price s and the volatility v can reach a whole range of positive values
during the time to maturity. However it is assumed that these values cannot become negative.
Therefore there exists a boundary at s = 0 and v = 0 or α = 0 in the SABR case. Besides
this, some derivatives have no other conditions on the value of the stock or volatility during the
process, so in theory, an infinite domain should be considered. Unfortunately, to implement the
finite difference method on a computer, only a finite number of grid points can be considered.
To address this problem, artificial boundary conditions are imposed.

4.1 Boundary conditions for a European call option

In a European call option, the stock price and the volatility can attain every possible positive
value. This implies that two artificial boundaries are needed. Two types of boundary con-
ditions can be considered, the so called: Dirichlet- and Neumann-boundary conditions. The
Dirichlet-boundary condition assumes the value of the function at the boundary is known, while
the Neumann-boundary condition assumes the normal derivative value of the function at the
boundary to be known. These boundaries should be set far away from the region of interest
to minimize the effect on the solution. The spatial domain is restricted to the bounded set:
[0, Smax] × [0, Vmax] with fixed values Smax and Vmax chosen large enough (for example in [4]
Smax and Vmax are set at 14K and 10 respectively). In the case of a European call option the
following boundary conditions are imposed,

1 u(0, v, τ) = 0, (4.1a)

2 u(s, Vmax, τ) = s, (4.1b)

3
∂u

∂s
(Smax, v, τ) = 1. (4.1c)

Because the derived PDE has two second derivatives in two space directions, four boundary
conditions are needed. This comes from the fact that the two second order derivatives give rise
to two unknown integration constants. To meet this requirement, at the boundary v = 0 it is
considered inserting v = 0 into the PDE to complete the set of four boundary conditions:

4
∂u

∂τ
(s, 0, τ) = 1

2σ
2
v
∂2u
∂v2

+ σsσvρ
∂2u
∂s∂v + 1

2σ
2
s
∂2u
∂s2

+ µv
∂u
∂v + µs

∂u
∂s − ru . (4.1d)

The next picture gives a schematic overview:
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For the corners these boundary conditions yield:

A lim
v↑Vmax

u(0, v, τ) = lim
s↓0

u(s, Vmax, τ) = 0,

B from 2 one has u(s, Vmax, τ) = s which implies
∂u

∂s
(s, Vmax, τ) = 1,

so specifically, at s = Smax it holds that
∂u

∂s
(Smax, Vmax, τ) = 1,

C from 3 one has
∂u

∂s
(Smax, 0, τ) = 1, inserting this in 4 yields:

∂u

∂τ
(Smax, 0, τ) =

1
2
σ2
v

∂2u

∂v2
+ σsσvρ

∂2u

∂s∂v
+

1
2
σ2
s

∂2u

∂s2
+ µv

∂u

∂v
+ µs − ru,

D from 1 one has u(0, 0, τ) = 0 such that 4 becomes:

∂u

∂τ
(0, 0, τ) =

1
2
σ2
v

∂2u

∂v2
+ σsσvρ

∂2u

∂s∂v
+

1
2
σ2
s

∂2u

∂s2
+ µv

∂u

∂v
+ µs

∂u

∂s
.

The first Dirichlet boundary condition (4.1a) is obvious, when the stock price tends to zero
also the option value will tend to zero. For the second Neumann boundary condition (4.1c) one
reasons as follows. For large stock values the change of the option value in time will decrease. So
the value of the stock will be equal to the stock value minus the discounted strike price. Because
the limiting behaviour of an option is independent of the type of model that is considered, the
limiting behaviour can also be shown using the traditional Black-Scholes model:

u(S, τ) = N(d1)S −N(d2)Ke−r(T−τ),

d1,2 =
ln
(
S
K

)
+ (r ± σ2

2 )(T − τ)
σ
√
T − τ

,

where σ denotes the volatility. Clearly for S → ∞ we have that d1 → ∞ and d2 → ∞ and
because N(·) denotes the cumulative distribution function, N(d1,2) → 1, and so u(S, τ) →
(S −Ke−r(T−τ)). The reason we use a Neumann boundary condition instead of this Dirichlet
condition has to do with the volatility boundary. When we look at the behaviour of the option
value in the Black Scholes case for σ → ∞, we get: d1 → ∞ and d2 → −∞, resulting in
N(d1) → 1 and N(d2) → 0 such that u(S, τ) = S. To avoid discontinuity at the point where
the boundaries coincide, we choose to use the Neumann boundary condition at s = Smax. To
further substantiate these choices, a closed form solution of the Black Scholes formula is plotted
for large values of σ and s in figures 4.1a and 4.1b.

4.1.1 Boundary at v = 0

Note that the last condition isn’t really a boundary condition because it involves a time deriva-
tive. The Feller condition 2.15) determines the behaviour of the solution close to v = 0, and in
both cases the option value satisfies this boundary condition. This can be treated as a PDE by
itself. In the Heston and the SABR model the coefficients ensure that some terms vanish and
the special boundary condition at v = 0 (or α = 0 respectively) (4.1d) attains a more attractive
form. In the Heston case:

∂u

∂τ
(s, 0, τ) = κη

∂u

∂v
(s, 0, τ) + rs

∂u

∂s
(s, 0, τ)− ru(s, 0, τ), (4.2)
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4.1a B-S price for range of volatilities σ, clearly con-
vergent to S0. K = 100, S0 = 70 and r = 0.03

4.1b B-S price for range of stock prices S0, clearly
∂UBS

∂S
= 1 for large values of S0. K = 100, σ = 0.1

and r = 0.03

and in the SABR case, the condition simplifies to:

∂u

∂τ
(s, 0, τ) =rs

∂u

∂s
(s, 0, τ)− ru(s, 0, τ). (4.3)

Note that although the artificial boundary condition at v = 0 for the Heston model and even
more at α = 0 for the SABR model look easy, an exact solution is not available. When there is
an exact solution, one should apply this at the boundary. Another important observation is the
lack of a second derivative at these boundaries. This implies that no one-sided finite difference
approximation of the second derivative is needed.

4.2 Boundary conditions for an up-and-out call option

A more exotic option compared to the European call option studied above is the up-and-out call
option. An up-and-out call option introduces a new exercise rule. In the case of an up-and-out
barrier option, when the underlying stock price reaches a pre-set barrier price B the option
is extinguished. The boundary condition at that pre-set level is not artificial, but stems from
the product, so an up and out barrier option implies only one artificial boundary. Boundary
condition (4.1c) must be replaced by:

u(B, v, t) = 0. (4.4a)

To avoid conflict with other boundary conditions, also condition (4.1b) needs to be adjusted.
Following [4] this boundary can be set equal to:

∂u

∂v
(s, Vmax, t) = 0. (4.4b)

The model now only consists of homogeneous boundary conditions. Next to that the boundary
at s = B = Smax is part of the model and cannot be set far from the strike price K (e.g.
Smax = 14K) to lower the contribution of the error caused by this artificial boundary condition.
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5 ADI method

The popular standard θ method can be computationally very demanding. Increasing the number
of grid points in space direction will give a more detailed result, but at the same time the system
of equations that needs to be solved will increase as well. In the two dimensional case, increasing
the number of grid points by 10 in both directions will increase the number of equations by a
factor 102 = 100. Because the θ-method involves implicit steps, the matrix in (3.20) needs to
be inverted every time step, this can be very demanding depending on the structure of A. To
optimize the structure of this matrix, the ADI method is introduced. ADI stands for Alternating
Direction Implicit. From this name it is clear that the method treats one direction implicitly
per step. The ADI method splits the matrix A:

A = A0 +A1 +A2,

where A0 corresponds to the mixed derivatives, A1 to the derivatives in the s direction and A2

to the derivatives in the v direction, the rui,j-term is distributed over A1 and A2. Similarly the
vector R is split up:

R = R0 +R1 +R2

again corresponding with the same directions as the matrices. In the scheme one time step
is split up in sub steps. In every sub step one direction is treated implicitly and the other
directions explicitly, in the next sub step, the next direction is treated implicitly and the other
ones explicitly and so on. In every sub step only one direction matrix needs to be inverted, which
has small bandwidth. When one only treats the matrices A1 and A2 implicitly, the implicit steps
in this method can be done fast because these matrices are sparse and the non zero entries are
close to the diagonal. See figure 5.0a, where the time to invert the matrices A, A1 and A2 are
plotted against the number of grid points M . Note that one ADI time step consists of two sub
steps in which A1 and A2 are inverted, so for a fair comparison the inverting times of A1 and A2

should be added. In theory, it can be chosen to treat every direction implicitly, but to enhance

5.0a Matrix inversion of A, A1 and A2 in seconds.

computational time it is better to choose only directions that result in sparse matrices. The
mixed derivative matrix, is not sparse and is therefore not treated in an implicit fashion.
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N.B. The non zero entries of A0 are far from the diagonal and that is why in all ADI schemes
the A0 part is treated in an explicit fashion.

Several variations of ADI schemes have been introduced. The simplest ADI scheme is the
Douglas scheme, discussed next.

5.1 Douglas scheme

The ADI method treats all space directions in an implicit and an explicit fashion. Other than
in the θ-scheme, it creates intermediate solutions Yi for i = 1, . . . , n. To calculate these interme-
diate solutions, one direction is treated implicitly, and the others explicitly. Then to calculate
the next intermediate solution, the next space direction is treated implicitly while all others are
treated explicitly. This is proceeded until all directions have been treated implicitly once. For
example in the two dimensional case, the starting point of the ADI scheme is the following fully
explicit forward in time scheme:

Uk+1 − Uk

∆t
= AUk +R.

Splitting the matrix in sub matrices: A = A0 +A1 +A2 leads to:

Uk+1 − Uk

∆t
= (A0 +A1 +A2)Uk +R. (5.1)

When one chooses to treat one direction partly implicitly and partly explicitly, the following
formula is used:

Uk+1 − Uk

∆t
= (A0 + (1− θ)A1 +A2)Uk + θA1U

k+1 +R. (5.2)

When all k + 1 terms are assembled on the right hand side an all the k terms on the left hand
side, this leads to:

(I − θ∆tA1)Uk+1 = (I + ∆tA0 + (1− θ)∆tA1 + ∆tA2)Uk + ∆tR, (5.3a)

and treating the other direction partly implicitly leads to:

(I − θ∆tA2)Uk+1 = (I + ∆tA0 + ∆tA1 + (1− θ)∆tA2)Uk + ∆tR. (5.3b)

What the ADI scheme actually does, is one fully explicit step. Then it does a correction step
such that actually one direction is done implicitly and the rest still explicitly. In the next step
the other direction is corrected implicitly. Therefore the intermediate steps are often referred to
as correction steps. As stated the first step Y0 is a fully explicit step:

Y0 = (I + ∆tA0 + ∆tA1 + ∆tA2)Uk + ∆tR. (5.4)

Now, to correct the first direction implicitly, Y1 is defined as follows:

Y1 = Y0 − θ∆tA1U
k + θ∆tA1Y1 ⇒

(I − θ∆tA1)Y1 = Y0 − θ∆tA1U
k. (5.5a)

Inserting (5.4) in (5.5a) results in (5.3a). Hence, till now only one direction is corrected implicitly.
The next step will correct the other direction implicitly by repeating the above procedure:

Y2 = Y1 − θ∆tA2U
k + θ∆tA2Y2 ⇒

(I − θ∆tA2)Y2 = Y1 − θ∆tA2U
k. (5.5b)
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Now both directions are corrected implicitly and the above derived sub steps form the Douglas
method:

Y0 = Uk + ∆t
(
AUk +R

)
,

Y1 = Y0 + θ∆t
(
A1Y1 −A1U

k
)
, (5.6)

Y2 = Y1 + θ∆t
(
A2Y2 −A2U

k
)
,

Uk+1 = Y2.

The great advantage of doing these sub steps is the smaller bandwidth of the inverted matrices.
Also these expensive matrix inversions can be done in advance and do not have to be repeated
every time step. In the code belonging to this thesis, the method coded as follows:

Y0 = Uk + ∆t
(
AUk +R

)
,

Y1 = (I − θ∆tA1)−1
(
Y0 − θ∆tA1U

k
)
, (5.7)

Y2 = (I − θ∆tA2)−1
(
Y1 − θ∆tA2U

k
)
,

Uk+1 = Y2.

5.2 Convergence of the Douglas scheme

The ADI scheme actually is a partly implicit and explicit (IMEX) scheme . The main difference
between this method and the earlier discussed θ-method is the sub steps. In this sub section it
is shown that these sub steps approximate the normal single step θ-scheme up to O(∆t2). For
splitted matrices A = A0 +A1 +A2 the θ-method comes down to:

Uk+1 − Uk

∆t
= (A0 + (1− θ)A1 + (1− θ)A2)Uk + θA1U

k+1 + θA2U
k+1 +R⇒ (5.8)

Uk+1 = Uk + ∆tA0U
k + (1− θ)∆t(A1 +A2)Uk + θ∆t(A1 +A2)Uk+1 + ∆tR. (5.9)

Assembling all Uk+1 at the left hand side and all Uk on the right hand side, this comes down
to:

(I − θ∆tA1 − θ∆tA2)Uk+1 = (I + ∆tA0 + (1− θ)∆tA1 + (1− θ)∆tA2)Uk + ∆tR

The important observation is that the left hand side above almost equals the product (I −
θ∆tA1)(I − θ∆A2)Uk+1. The only difference is a θ2∆t2A1A2U

k+1 term of order ∆t2. Adding
this term on both sides yields:

(I − θ∆tA1)(I − θ∆tA2)Uk+1 =(I + ∆tA0 + (1− θ)∆tA1 + (1− θ)∆tA2)Uk

+ θ2∆t2A1A2U
k+1 + ∆tR

=(I + ∆tA0 + (1− θ)∆tA1 + (1− θ)∆tA2)Uk

+ ∆tR+O(∆t2). (5.10)

Taking a better look at the Douglas scheme (5.6), one realises that it only uses one sub step.
Written in a more compact form, by eliminating Y2 and Y0 the scheme is denoted as:

(I − θ∆tA1)Y1 = (I + ∆tA0 + (1− θ)∆tA1 + ∆tA2)Uk + ∆tR, (5.11a)

(I − θ∆tA2)Uk+1 = Y1 − θ∆tA2U
k. (5.11b)
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Now eliminating Y1 in equation (5.11), by substituting (5.11b) in (5.11a) this yields:

(I − θ∆tA1)
(

(I − θ∆tA2)Uk+1 + θ∆tA2U
k
)

=(I + ∆tA0 + (1− θ)∆tA1 + ∆tA2)Uk

+ ∆tR

Again, assembling all k + 1 terms to the left an all k terms to the right hand side, this is
equivalent to:

(I − θ∆tA1)(I − θ∆tA2)Uk+1 =(I + ∆tA0 + (1− θ)∆tA1 + ∆tA2)Uk

− (I − θ∆tA1)θ∆tA2U
k + ∆tR

=(I + ∆tA0 + (1− θ)∆tA1 + ∆tA2)Uk

− θ∆tA2U
k + ∆tR+O(∆t2)

=(I + ∆tA0 + (1− θ)∆tA1 + (1− θ)∆tA2)Uk

+ ∆tR+O(∆t2).

Concluding that this method indeed approximates the one step θ-scheme in (5.10). For θ = 1
2 ,

the θ-scheme is of second order, and known as the Crank-Nicolson method.

5.3 The Craig-Sneyd scheme

In a similar way the Craig Sneyd scheme applies 5 intermediate solutions. After the first set of
correction steps a new starting solution is used to apply the same procedure again:

Y0 = Uk + ∆t
(
AUk +R

)
,

Y1 = Y0 + θ∆t
(
A1Y1 −A1U

k
)
,

Y2 = Y1 + θ∆t
(
A2Y2 −A2U

k
)
,

Y3 = Y0 +
1
2

∆tA0

(
Y2 − Uk

)
, (5.12)

Y4 = Y3 + θ∆t
(
A1Y4 −A1U

k
)
,

Y5 = Y4 + θ∆t
(
A2Y5 −A2U

k
)
,

Uk+1 = Y5.
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In addition the modified Craig-Sneyd scheme even further improves the new starting solution
by adding an extra correction step:

Y0 = Uk + ∆t
(
AUk +R

)
,

Y1 = Y0 + θ∆tA1

(
Y1 − Uk

)
,

Y2 = Y1 + θ∆tA2

(
Y2 − Uk

)
,

Y3 = Y0 + θ∆tA0

(
Y2 − Uk

)
,

Y4 = Y3 + (
1
2
− θ)A∆t

(
Y2 − Uk

)
,

Y5 = Y4 + θ∆tA1

(
Y5 − Uk

)
,

Y6 = Y5 + θ∆tA2

(
Y6 − Uk

)
,

Uk+1 = Y6.

5.4 The Hunsdorfer-Verwer scheme

The last ADI scheme suggested in the in ‘t Hout paper is the Hunsdorfer-Verwer scheme:

(I − θ∆tA1)Y1 = (I + ∆tA0 + (1− θ)∆tA1 + ∆tA2)Uk + ∆tR,
(I − θ∆tA2)Y2 = Y1 − θ∆tA2U

k,

Y3 = (I − θ∆tA1)Y1 + θ∆tA1U
k

+
1
2

∆tA(Y2 − Uk),

(I − θ∆tA1)Y4 = Y3 − θ∆tA1Y2,

(I − θ∆tA2)Uk+1 = Y4 − θ∆tA2Y3.

In the paper by Haentjens and in ’t Hout [4] this scheme is concluded to give the best results in
terms of accuracy and order of convergence. This method is also applicable for a wide range of
θ values. This is why, in this thesis, this scheme is applied most often.
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5.5 Construction of the matrices

As mentioned before, in higher dimensions the solution vector needs to be ordered in a convenient
way. This ordering fully determines the structure of the matrices. The lexicographic ordering
results in matrices that are sparse and concentrated close to the diagonal. The space is discretized
as in (3.2). The PDE (2.9) stemming from a stochastic volatility model is two dimensional,
therefore the ADI scheme requires three matrices A0, A1 and A2. The A0-matrix stems from all
mixed derivative terms, the A1-matrix from derivative terms with respect to s and the A2-matrix
from derivative terms with respect to v. Next to that the −rU term is evenly distributed over
A1 and A2. All matrices have the following form (shown here for m1 = 3 and m2 = 2):


v0

v1

v2


v0

v1

v2


v0

v1

v2


v0

v1

v2

S3

S2

S1

S0

︷ ︸︸ ︷
v0 v1 v2

︷ ︸︸ ︷
v0 v1 v2

︷ ︸︸ ︷
v0 v1 v2

︷ ︸︸ ︷
v0 v1 v2

S0 S1 S2 S3

This PDE is a so-called two dimensional second order PDE, it consists of first and second
derivatives w.r.t. s and v. To increase the robustness of the method, it is convenient to construct
A1 and A2 from two distinct matrices corresponding to the first and second derivative:

A1 = As +Ass −
1
2
rI and A2 = Av +Avv −

1
2
rI,

where the subscript indicates the first or second derivative. In the following paragraphs the
construction of the specific matrices is treated in detail. Examples for a small number of grid
points m1 = m2 = 4 are given on a uniform grid, but can be applied on a non-uniform grid
in exactly the same way. For the clarity of the examples the coefficients are adopted from the
Heston PDE (2.14) where µs = rs, σs = s

√
v, µv = κ(η−v) and σv = σ

√
v, but these derivations

are applicable in more general cases.
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5.5.1 Constructing A0

In the Heston PDE the coefficient in front of the ∂2

∂s∂v -term (σsσvρ) equals σsvρ, so for s = 0
or for v = 0 the mixed derivative is not needed. Furthermore, from the boundary conditions
(4.1c) and (4.1b) one can conclude ∂2u

∂s∂v (Smax, v, t) = ∂2u
∂s∂v (s, Vmax, t) = 0 for any s, v and t. The

discrete approximation for the mixed derivative is:

σsvρ
ui+1,j+1 + ui−1,j−1 − ui−1,j+1 − ui+1,j−1

4∆v∆s
,

so for the evaluation in one point, four terms are used. All the terms are far off-diagonal. Because
of the lexicographic ordering the coefficient that belongs to ui−1,j−1 is m2 + 1 + 1 entries away
from the diagonal. Due to this inconvenient property, this matrix is treated in an explicit fashion
every iteration. Figure 5.5a displays the non-zero entries of the matrix A0 = Asv. The red dots
denote coefficients belonging to the derivative of u2,2.

5.5a A0 consisting of (m1 + 1) = 5 blocks of size
(m2 + 1) = 5

5.5.2 Constructing A1

As mentioned, A1 can be constructed from As and Ass. For the first and the second derivative
in s direction a central scheme is used. Because of our lexicographic ordering, the non-zero
diagonals in the As and Ass matrix will not be consecutive, but there will be exactly (m2 + 1)
zeros between them. Beginning with the first derivative, the interior points are discretized as:

rsi
ui+1,j − ui−1,j

2∆s
.

Because of the Dirichlet boundary conditions at s = 0, no derivative is needed there. In the
Heston call option case, at s = Smax the derivative is given by the Neumann boundary condition,
such that the matrix As has no inputs at its last rows, and the known value is stored in the
vector Rs. So the interior for As and Rs will be of the form:

As =


0 0 0 0 0
s1

2∆sI 0 −s1
2∆sI 0 0

0 s2
2∆sI 0 −s2

2∆sI 0
0 0 s3

2∆sI 0 −s3
2∆sI

0 0 0 0 0

 and Rs =


~0
~0
~0
~0
~I

 ,
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where I denotes the (m2 + 1) × (m2 + 1) identity matrix, 0 denote (m2 + 1) × (m2 + 1) zero
matrices, ~0 (m2 + 1) × 1 zero vectors and ~I an (m2 + 1) × 1 vector. See figure 5.5b for an
appealing graphic notation.

5.5b Matrix As and its corresponding vector Rs

For the second derivative with respect to s the structure will equal the matrix As. The interior
points are discretized as:

1
2

(σs)2
i,j

ui+1,j − 2ui,j + ui−1,j

∆s2
=

1
2
vjs

2
i

ui+1,j − 2ui,j + ui−1,j

∆s2
.

Again the block determined by the Dirichlet boundary condition at s = 0 can be taken equal
to zero. However, because of the Neumann boundary condition at s = Smax, (4.1c), ∂2u

∂s2
still

needs to be approximated. The first derivative is given and to use this information in the
approximation of the second derivative a so called “ghost”- point at sm1+2,j is introduced. The
function value um1+2,j at this point can be linearly extrapolated using the boundary condition:

∂u

∂s
=
um1+2,j − um1,j

2∆s
= 1⇔

um1+2,j = 2∆s+ um1,j . (5.14)

With the help of this obtained ghost point, the central scheme at sm1 can be used by substituting
(5.14) in (3.8c). Resulting in the following discretization:

1
2

(σs)2
m1+1,j

um1+2,j − 2um1+1,j + um1,j

∆s2
=

1
2
vjs

2
m1+1

2∆s− 2um1+1,j + 2um1,j

∆s2
.

The factor stemming from the linear extrapolation needs to be stored in the vector Rss. The
matrix thus looks like:

Ass =


0 0 0 0 0

s21
2∆s2

V −2s21
2∆s2

V s21
2∆s2

V 0 0

0 s22
2∆s2

V −2s22
2∆s2

V s22
2∆s2

V 0

0 0 s23
2∆s2

V −2s23
2∆s2

V s23
2∆s2

V

0 0 0 2s24
2∆s2

V −2s24
2∆s2

V

 and Rss =



~0
~0
~0
~0
~0

2∆s
2∆s2

~v


,
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where ~v denotes the vector with grid points v0 to vm2 as entries and V denotes a one diagonal
matrix with the vector ~v on its main diagonal. Figure 5.5c shows the non-zero entries of the
matrix Ass and vector Rss. The red dots denote the entries related to the boundary condition.

5.5c Matrix Ass and its corresponding vector Rss

Because A1 = As +Ass − 1
2rI and R1 = Rs +Rss eventually one has:

A1 =


0 0 0 0 0

s21
2∆s2

V + s1
2∆sI

−2s21
2∆s2

V − 1
2rI

s21
2∆s2

V − s1
2∆sI 0 0

0 s22
2∆s2

V + s2
2∆sI

−2s22
2∆s2

V − 1
2rI

s22
2∆s2

V − s2
2∆sI 0

0 0 s23
2∆s2

V + s3
2∆sI

−2s23
2∆s2

V − 1
2rI

s23
2∆s2

V − s3
2∆sI

0 0 0 2s24
2∆s2

V −2s24
2∆s2

V − 1
2rI

 ,

and R1 =



~0
~0
~0
~0
~0

2∆s
2∆s2

~v + ~I


.

5.5.3 Constructing A2

In the lexicographic ordering the v space is leading, so the matrices Av and Avv consist of m1 +1
blocks of matrices of size (m2 + 1) × (m2 + 1). First consider Av consisting of terms from the
first order v-derivatives. Unlike the previous examples the differences in v-direction use not only
the central scheme. The coefficient µv = κ(η − v) can become negative. When this is the case
the backward scheme is applied. Because also the forward scheme is needed at v = 0 a single
block matrix, for some fixed s-grid point i, uses the following three finite differences:

• the central finite difference:

κ(η − vj)
ui,j+1 − ui,j−1

2∆v
,
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• the forward finite difference at v = 0 boundary:

κ(η − vj)
−3ui,0 + 4ui,1 − ui,2

2∆v
,

• the backward finite difference at the v > η region

κ(η − vj)
ui,j−2 − 4ui,j−1 + 3ui,j

2∆v
.

The Dirichlet condition at s = 0 (4.1a) and v = Vmax (4.1b) are given such that no entries are
needed at the lines corresponding to s = s0 and v = Vmax. The non-homogeneous term in the
boundary condition at u(s, Vmax, τ) = s is stored in the vector Rv. So the interior for Av and
Rv will be of the form:

Av =


0 0 0 0 0
0 Bv 0 0 0
0 0 Bv 0 0
0 0 0 Bv 0
0 0 0 0 Bv

 and Rv =


~0
s1~e5

s2~e5

s3~e5

s4~e5

 ,

where ~e5 denotes an (m2 + 1) × 1 vector with a 1 at index 5 and Bv an (m2 + 1) × (m2 + 1)
matrix with the following structure:

Bv =


κ(η−v0)

2∆v
κ(η−v0)

2∆v
κ(η−v0)

2∆v 0 0
κ(η−v1)

2∆v 0 κ(η−v1)
2∆v 0 0

κ(η−v2)
2∆v

κ(η−v2)
2∆v

κ(η−v2)
2∆v 0 0

0 κ(η−v3)
2∆v

κ(η−v3)
2∆v

κ(η−v3)
2∆v 0

0 0 0 0 0

 and s1~e5 =


0
0
0
0
s1

 .

Figures 5.5d show the structure of Av and Rv in a more appealing way.

5.5d Av and Rv

The red dots denote the diagonal to emphasize the backward, forward or central scheme used
in the particular row. Because of the uniform scheme the central scheme only uses two points.
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In this example v ranges from 0 to 1 in 4 steps, so ∆v = 1
4 and vi = i

4 . Because η = 0.26, the
method uses the backward scheme from v3 on. To substantiate the reason for using the backward
scheme some numerical tests are shown in chapter 8. The second derivative with respect to v
at v = 0 is not needed in the PDE because the coefficient of ∂2u

∂v2
(σ2
v = 1

2σ
2v) equals zero at

v = 0. Next to that the second derivative at v = Vmax is assumed to be equal to zero. This
is reasonable because the price is assumed not to differ for extreme values of v. Because the
Dirichlet boundary condition at v = Vmax is already incorporated in Rs, the vector Rvv remains
zero. Similar as in the Av case, one has:

Avv =
σ2

2


0 0 0 0 0
0 Bvv 0 0 0
0 0 Bvv 0 0
0 0 0 Bvv 0
0 0 0 0 Bvv

 where Bvv =
1

∆v2


0 0 0 0 0
v1 −2v1 v1 0 0
0 v2 −2v2 v2 0
0 0 v3 −2v3 v3

0 0 0 0 0

 .

Concluding this subsection, figure 5.5e schematically shows the resulting non-zero entries of
A2 = Av +Avv − 1

2rI and R2.

5.5e A2 consisting of 5 non-zero diagonals and R2.

5.6 Boundary conditions for ADI

All ADI schemes use an intermediate solution. Logically the boundary conditions for the interme-
diate solution are closely related to the boundary conditions for the normal solution. Especially
when the boundary conditions are independent of time the boundary conditions are similar. The
PDEs studied in this thesis al have time independent boundary conditions. For this case one
thus can bluntly apply the same boundary conditions for the intermediate solution:

N.B. For a PDE with time independent boundary conditions, the intermediate solutions satisfy
the boundary conditions from the original PDE.

For completeness, this section shows what can be done when boundary conditions are time de-
pendent. To illustrate the procedure the Douglas scheme is considered (5.6). Assume the normal
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heat equation with Neumann, Dirichlet and a time dependent boundary condition:

∂u
∂t = ∂2u

∂x2 + ∂2u
∂y2

,

u(0, y, t) = 0, u(x, 0, t) = 0, u(x, y, 0) = f(x, y),
ux(1, y, t) = 1, u(x, 1, t) = h(t).

The ADI method makes use of two finite difference approximations δ2
x and δ2

y . As seen in
section 3, Neumann conditions are always set with the help of a vector, and no finite difference
approximations are needed there. These Neumann conditions are independent of time, so they
can be adopted by these intermediate solutions. In the case of the time dependent condition at
y = 1, more care is needed. In discrete notation at one grid point the Finite Difference scheme
looks as follows:

δt[uki,j ] = δ2
x[uki,j ] + δ2

y [u
k
i,j ],

and the Douglas scheme with intermediate solutions w0, w1 and w2 is represented as:

(w0)i,j = uk + ∆t
(
δ2
x[uki,j ] + δ2

y [u
k
i,j ]
)
,

(w1)i,j = (w0)i,j + θ∆t
(
δ2
x[(w1)i,j ]− δ

2
x[uki,j ]

)
, (5.15)

(w2)i,j = (w1)i,j + θ∆t
(
δ2
y [(w2)i,j ]− δ

2
y [u

k
i,j ]
)
,

uk+1
i,j = (w2)i,j .

In this case only one intermediate solution is of interest, because for the intermediate solution
(w0)i,j and (w2)i,j , the boundary conditions are directly adopted from uki,j or uk+1

i,j respectively.
Rewriting (5.15) in terms of uki,j , u

k+1
i,j and (w1)i,j , yields:

(
1− θ∆tδ2

x

)
(w1)i,j = uk + ∆t

(
(1− θ)δ2

x[uki,j ] + δ2
y [u

k
i,j ]
)
,(

1− θ∆tδ2
y

)
uk+1
i,j = (w1)i,j − θ∆tδ

2
y [u

k
i,j ].

From these equations all intermediate boundary conditions can be derived. By rewriting one
obtains:

θ∆tδ2
x (w1)i,j =

(
1− θ∆tδ2

y

)
uk+1
i,j − u

k
i,j −∆t

(
(1− θ)δ2

x[uki,j ] + (1− θ)δ2
y [u

k
i,j ]
)
.

The ADI scheme copies the Dirichlet boundary conditions as an average of the boundary condi-
tions at time level k and k+1. These boundary conditions are for example implied with the help
of a ghost point described in section 3. This procedure can be extended to more general cases
where the boundary conditions can be more sophisticated. For a detailed description see [9].
This method can be applied for more intermediate solutions.
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6 Extension of the FDM

An important improvement of FDM, is applying a non-uniform grid. A non-uniform grid can
be created to be more fine (or coarse) in a particular region. This section closely follows the
derivation done by Kluge [5]. To construct non-uniform grids, one usually uses a grid generating
function g, defined on the domain that needs to be adjusted. This function needs to be con-
tinuously differentiable, bijective and monotonically increasing. Let our domain be Ω = [0, 1]
and let 0 = x0 < x1 < . . . < xn = 1 be its uniform discretization. Using g : [0, 1] → [0, 1] the
non-uniform grid can be defined as:

yi := cg(xi) + d for i = 1, 2, . . . , n,

where c and d are scaling parameters. Below an example for g(xi) := x2
i is shown: Clearly

there are many more grid points in the neighbourhood of 0 in the non-uniform case then in the
uniform case. A more logical approach to develop a grid generating function is to first look at
the ratio between two adjacent points in the non-uniform grid and the uniform grid:

yi+1 − yi = cg(xi+1)− cg(xi) ≈ cg′(xi)∆x = cg′(g−1(yi))∆x.

Using this approximation, the distance ratio function is defined as:

r(y) := g′(g−1(y)) and so g′(x) = r(g(x)).

This ODE can simply be solved using the separation of variables technique:∫ x

0

g′(z)
r(g(z))

dz =
∫ x

0
dz,∫ g(x)

0

1
r(y)

dy = x. (6.1)

With the help of this distance ratio function the generating function can be calculated implicitly.
Also we derive the necessary condition:

∫ 1
0

1
r(y) = 1, because g(1) = 1.

6.1 European Call option grid for the Heston PDE

The Heston PDE consists of an s-grid referring to the stock price and a v-grid referring to the
volatility. Both these directions have particular characteristics which imply a grid refinement in
a particular region. In the following two paragraphs a motivation is given for a specific grid, in
s-direction and in v-direction.
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6.1.1 Grid refinement in s-direction

When a European call option is considered, an increase of density needs to be imposed at the
strike price K. A reasonable density function could be:

r(y) :=
√
c2 + p2(K − y)2.

At y = K the distance between to adjacent points is approximately c. Moving away from K the
distances increase. The function gets close to linear when y is getting large: r(y) ≈ |py|. The
scalar p is used to scale the function such that it satisfies

∫ 1
0

1
r(y) = 1. Substituting this distance

ratio function into the expression derived above yields:∫ g(x)

0

1√
c2 + p2(K − y)2

dy = x.

First one can substitute z = p(y −K), such that dz
dy = p⇒ dy = 1

pdz and the indefinite integral
becomes:

1
p

∫
1√

c2 + z2
dz.

Next substituting the hyperbolic function z = c sinh θ and dz
dθ = c cosh θ ⇒ dz = c cosh θdθ and,

using 1 = cosh2 θ − sinh2 θ, this yields:

1
p

∫
1√

c2 + z2
dz =

1
p

∫
1√

c2
(
1 + sinh2 θ

)c cosh θdθ

=
1
p

∫
1

c cosh θ
c cosh θdθ =

1
p

∫
1dθ =

1
p
θ

=
1
p

sinh−1 z

c

=
1
p

sinh−1 p(y −K)
c

.

In explicit form, from (6.1) one concludes:∫ g(x)

0

1√
c2 + p2(K − y)2

dy = x

⇒ 1
p

sinh−1

(
p(g(x)−K)

c

)
− 1
p

sinh−1

(
−pK
c

)
= x

⇒ g(x) = K +
c

p
sinh

(
px+ sinh−1

(
−pK
c

))
. (6.2)

The scalar p can be calculated with the help of the condition g(1) = 1. This can be done by
simply applying Newton-Raphson iteration to (6.2). Two examples for c = 0.1 and c = 0.2
(K = 1.2) are shown in figure 6.1a and 6.1b
The value of c behaves as a scaling parameter of the density of the non-uniform grid near K. Now
to apply the non-uniform grid, with generating function g(ξ) = K + c

p sinh ξ, first equidistant
points ξmin = ξ0 < ξ1 < . . . < ξm1 = ξmax are defined by:

ξi = sinh−1

(
−pK
c

)
+ i∆ξ, where

∆ξ =
1
m1

(
sinh−1

(
(Smax −K)

p

c

)
− sinh−1

(
−pK
c

))
.
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6.1a Non-uniform grid for c = 0.1, p = 8.4216 6.1b Non-uniform grid for c = 0.2, p = −1.718

By construction g(0) = 0 and g(ξmax) = Smax and the non-uniform grid 0 = s0 < s1 < . . . <
sm1 = Smax can be constructed via g:

si = g(ξi) = K +
c

p
sinh (ξi) .

The non-uniform grid in the paper of K.J. in ’t Hout and T. Haentjens [4], is somewhat adjusted.
Instead of an increased density at a point, an interval [Sleft, Sright] containing K is introduced
in which the intervals are uniform. Following the paper, one can choose:

Sleft = max{1
2
, e−rT }K and Sright = K.

Outside this interval the function follows the generating function described in the previous
example. Therefore the following parameters are introduced:

ξmin = ξ0 = sinh−1

(
−pSleft

c

)
,

ξint =
p(Sright − Sleft)

c
,

ξmax = ξm1 = ξint + sinh−1

(
p(Smax − Sright)

c

)
.

Clearly the following holds: ξmin < 0 < ξint < ξmax. Now the non-uniform grid 0 = s0 < s1 <
. . . < sm1 = Smax can be constructed again via a uniform grid of m1 + 1 points between ξmin

and ξmax: ξmin = ξ0 < ξ1 < . . . < ξm1 = ξmax and the function g:

g(ξi) =: si i = 0, . . . ,m1, where

g(ξi) =


Sleft + c

p sinh(ξi) if ξmin ≤ ξi < 0,
Sleft + c

pξi if 0 ≤ ξi ≤ ξint,

Sright + c
p sinh(ξi − ξint) if ξint < ξi ≤ ξmax.

Although p is a parameter depending on the choice of the scaling parameter c, in the end only
the ratio (d1 := c

p) enters the formula. Experiments show that one can use this ratio d1 as a
scaling parameter, where smaller values of d1 result in a higher density in [Sleft, Sright] . Figure
6.1d shows how s is divided over the grid choosing m1 = 40, K = 100 and d1 = K

20 = 5. In
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the European call option case the refinement around strike gives better results then when a
uniform grid is used. In the case of an up-and-out call option, the initial condition is not only
discontinuous at strike price K, but also at pre-set barrier level B := Smax, because the option
directly loses its value when it reaches this level. Because of this, one can expect that when
the stock price is between strike price K and barrier value B, the option price will reach its
maximum. Motivated by this, one can choose to extend the interval, in which the differences
are densely uniform, to include the entire interval [K,B]. For example

Sleft = max{3
4
, e−rT }K and Sright = B.

Similar as in the European case we construct the values ξmin and ξmax as:

ξmin = ξ0 = sinh−1

(
−pSleft

c

)
,

ξmax =
p(B − Sleft)

c
.

Again it holds that ξmin < 0 < ξmax and a uniform grid of m1 + 1 points between ξmin and ξmax

can be constructed. Using these grid points together with a function g results in:

g(ξi) =: si i = 0, . . . ,m1, where

g(ξi) =

{
Sleft + c

p sinh(ξi) if ξmin ≤ ξi < 0,
Sleft + c

pξi if 0 ≤ ξi ≤ ξmax.

6.1c Non-uniform grid for up-and-out Barriers in s
direction

6.1.2 Grid refinement in v-direction

For the v direction more points at the boundary v = 0 are desired and for larger values of v the
mesh can be less dense. The European and up-and-out pay-off do not make any difference. Let
m2 be the number of points to be considered and d2 a scaling parameter. Define equidistant
points η0 < η1 < . . . < ηm2 , given by ηj = j ·∆η, with ∆η = 1

m2
sinh−1

(
Vmax
d2

)
, for j = 0, . . . ,m2.

Now the mesh 0 = v0 < v1 < . . . < vm2 = Vmax is defined by: vj = d2 sinh(ηj) j = 0, . . . ,m2

and the resulting grid is shown in figure 6.1e. These two meshes are smooth in the sense that
there are real constants C0, C1 and C2 such that:

C0∆ξ ≤ ∆si ≤ C1∆ξ and |∆si+1 −∆si| ≤ C2(∆ξ)2.
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6.1d Non-uniform grid in s direction 6.1e Non-uniform grid in v direction

6.2 Grid shifting

A drawback when pricing options with FDM on a refined grid is that the specific option price for
a predefined combination of stock price and volatility (s0, v0) is not a grid point in the resulting
non-uniform grid. Especially when one wants to compare the FDM result with an obtained
result by Monte Carlo solution, only one option price for a specific stock price and volatility is
needed. A first solution is to bilinear interpolate the option price with the help of grid points
closest by (s0, v0). See appendix A.5 for the derivation. Because this operation is only first order
accurate, a loss of accuracy is expected. A better idea is to shift the obtained grid in such a
way that the set of grid points in the shifted non-uniform grid contains (s0, v0). This method is
known as grid shifting, and is treated in [14]. In the non-uniform grid in v-direction discussed
above, the value of Vmax can be increased with value yv such that the new grid contains v0. The
boundary condition at Vmax is artificial, so without any harm it can be set at Vmax + yv, with
yv > 0, instead. In this case Vmax holds as a lower limit for the value of the used boundary. For
the s-grid a similar procedure can be applied. In section 6.1.1 the s-grid is refined such that
it has an equidistant subinterval [Sleft, Sright] containing K. In this case, Sright can be adjusted
with scaling parameter ys. In this thesis, only grid shifting in v direction is applied.

6.3 Smoothing

Because the initial condition derived from the type of option considered is a discontinuous
function, high frequency errors are expected around these discontinuities (e.g. around strike K
and/or barrier B). The problems are most visible in the computation of the Greeks. For more
details see [14] and [4]. A popular solution to this phenomenon is Rannacher time stepping. This
method is introduced in combination with the Crank-Nicolson scheme (θ scheme for θ = 1

2), but
can applied in a more general sense. The method implies two fully implicit steps at τ = 0 before
the ADI scheme is applied for all other time steps. This first initial step has a damping effect.
Because of computational reasons, in this thesis, (similar as in [4]), it is chosen to apply Douglas
scheme for θ = 1 at τ = 0. From τ = ∆τ on the intended ADI scheme with chosen θ is applied.
So instead of two fully implicit steps, two fully implicit sub steps are taken. The damping effect
comes from the implicitness of the time steps, so it is similar when the implicit sub steps are
applied.
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7 Analysis of FDM

This section has as an objective to find necessary and sufficient conditions for a given finite
difference scheme to be a ”good” approximation to a PDE. To be defined as ”good”, three
criteria must be satisfied, namely: stability, convergence and consistency. Simply speaking,
stability requires that the finite difference solution does not exponentially grow per time step.
Convergence requires the solution to converge to a solution and consistency means that the
solution to which it converges actually is the desired solution. A finite difference scheme is called
consistent if the discretization considered actually approaches the solution. The most common
approach to convergence is via consistency and stability in combination with the Lax Theorem.
This theorem allows one to prove convergence of a scheme via stability and consistency, which
are usually easier to show. In the following subsections these three properties will be treated
individually. To this end, the spatial terms in a partial differential equation is viewed as an
operator L(·), such that (2.10) becomes:

∂u

∂τ
= L(u), (7.1)

u(0, s, v) = φ(s, v).

From section 3.2, the discrete approximation of (7.1) in a forward fashion states:

uk+1
i,j − uki,j

∆τ
= D∆s,∆v(uki,j), (7.2)

u0
i,j = φi,j .

7.1 Consistency

As mentioned consistency makes sure the FDM approximation actually approaches the desired
solution of the PDE. In a formal definition:

Definition 7.1. The finite difference scheme (7.2) is point wise consistent with the partial
differential equation (7.1) if for any function u(τ, s, v) the following relationship holds:(

∂

∂τ
− L

)
u(τk, si, vj)−

[
uk+1
i,j − uki,j

∆τ
−D∆τ

∆s,∆v(u
k
i,j)

]
→ 0 as ∆s,∆v,∆τ → 0. (7.3)

To show that a finite difference method is stable all comes down on the use of Taylor series
and its truncation errors. All earlier defined finite difference schemes from section 3 ((3.17) first
order in time and (3.11) all second order in space) are derived via Taylor series. This allows one
to derive the desired consistency by substituting the truncation errors in (7.3):(

∂

∂τ
− L

)
u(τk, si, vj)−

[
uk+1
i,j − uki,j

∆τ
−D∆τ

∆s,∆v(u
k
i,j)

]
= O(∆τ) +O(∆s2) +O(∆v2) = O(∆τ,∆s2,∆v2)→ 0 for ∆τ,∆s,∆v → 0.

7.2 Stability and oscillations

As seen in the previous subsection, discretizing space gives rise to a numerical round off error.
This local error is made at every time step and logically one would not want this error to increase
in every time step. Finite difference methods can be:
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1. Neutrally stable: error does not increase or decrease in doing one time step.

2. Stable: the error decreases in doing one time step.

3. Unstable: the error increases in doing one time step.

A way of checking the stability character of the method is given by Von Neumann analysis. As
seen in section 3, to approximate derivatives, one can choose between a one sided approach and
a central approach. The size and sign of the coefficients that belong to the derivative play an
important role. When one applies the central scheme everywhere instability can cause spurious
oscillations. These stem from the discretization of so-called unsteady convection-diffusion equa-
tions. These PDEs consist of first and second derivatives with respect to space and a derivative
with respect to time. Possible instabilities in these PDEs are caused by individual partial deriva-
tive terms in the PDE. In this section an example that is one dimensional in space is studied that
shows problems arising from these individual terms. The PDEs that are derived from stochastic
volatility models, as seen in section 2, have two dimensions in space. The stabillity problems in
this higher dimensional case directly stem from this more insightful one dimensional example.

Example 7.2. The next example stems from a popular physical phenomenon, namely a species
concentration that is passively transported (convected and diffused) by flowing water. This
species will be carried along by the flow of the water, and at the same time will diffuse. Mathe-
matically the concentration u of the species satisfies the following PDE:

∂u

∂t
= a

∂u

∂x
+ b

∂2u

∂x2
,

where a is the flow speed of the water and b the coefficient for the diffusion of the species in the
water. Discretizing this equation using a forward method in time and a central method in space
(FTCS) results in:

uk+1
j − ukj

∆t
= a

ukj+1 − ukj−1

2∆x
+ b

ukj+1 − 2ukj + ukj−1

∆x2
,

uk+1
j = ukj +

a∆t
2∆x

(ukj+1 − ukj−1) +
b∆t
∆x2

(ukj+1 − 2ukj + ukj−1),

uk+1
j = ukj−1(− a∆t

2∆x
+
b∆t
∆x2

) + ukj (1− 2
b∆t
∆x2

) + ukj+1(
a∆t
2∆x

+
b∆t
∆x2

). (7.4)

The stability of the scheme can be analysed by the Fourier transform. Let (. . . , u−1, u0, u1, . . .)T

be an infinite sequence of values. Then the discrete Fourier transform (given in [9]) is defined
as:

û(ξ) =
1√
2π

∞∑
j=−∞

e−ijξuj , for ξ ∈ [−π, π].

For notational convenience and following [9] and [10], let R = a∆t
∆x and r = b∆t

∆x2 . By a simple
change of variable one has:

1√
2π

∞∑
j=−∞

e−ijξuj±1 =
e±iξ

√
2π

∞∑
m=−∞

e−imξum = e±iξûk(ξ). (7.5)
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Substituting (7.5) in (7.4) and expressing the finite difference in discrete Fourier transform, gives
us:

ûk+1(ξ) = (r − R

2
)e−iξûk(ξ) + (1− 2r)e−iξûk(ξ) + (r +

R

2
)eiξûk(ξ),

= ((r − R

2
)e−iξ + (1− 2r) + (r +

R

2
)eiξ)ûk(ξ),

:= ρ(ξ)ûk(ξ).

This ρ(ξ) is called the symbol of the difference scheme. A direct intuition gives an interpretation
to this symbol as an amplification factor. To prevent the solution to blow up in time one would
want this factor to be smaller than or equal to one. This will give a stable result. This argument
is confirmed by [9] and [10], so |ρ(ξ)| ≤ 1 is required. By definition eiξ = cos ξ + i sin ξ, such
that a more convenient expression for ρ(ξ) can be derived:

ρ(ξ) = 2r cos ξ + iR sin ξ + 1− 2r.

To bound the magnitude of this complex function, |ρ(ξ)|2 is considered. To determine the
maximum and minimum, this function can be derived with respect to ξ and set equal to zero:

∂

∂ξ

(
(2r cos ξ + (1− 2r))2 +R2 sin2 ξ

)
=

∂

∂ξ

(
4r2 cos2 ξ + 4r(1− 2r) cos ξ + (1− 2r)2 +R2(1− cos2 ξ)

)
= −8r2 cos ξ sin ξ − 4r(1− 2r) sin ξ + 2R2 cos ξ sin ξ = 0.

⇒ ξ = 0, ξ = ±π and cos ξ =
2r(1− 2r)
R2 − 4r2

.

For ξ = 0 the modulus of ρ equals 1. This is why no restriction on R and r can be derived, for
ξ = ±π the modulus equals:

|ρ(±π)|2 = (−2r + (1− 2r))2 = (1− 4r)2.

So r ≤ 1
2 suffices to meet the bound of the magnitude. For the last potential maximum, there

are two cases.
Case 1 : R2 ≤ 4r2

Using the earlier derived inequality r ≤ 1
2 , the fraction can be bounded: 2r(1−2r)

R2−4r2
= 2r−4r2

R2−4r2
≥

1⇒ r > 1
2 which violates the assumption r ≤ 1

2 , so:

|ρ|2 = 4r2

(
2r(1− 2r)
R2 − 4r2

)2

+ 4r(1− 2r)
2r(1− 2r)
R2 − 4r2

+ (1− 2r)2 +R2

(
1−

(
2r(1− 2r)
R2 − 4r2

)2
)

≤ 4r2 + 4r(1− 2r) + (1− 2r)2 = 4r2 + 4r − 8r2 + 1− 4r + 4r2 = 1.

So no further restrictions are derived and the first stability condition equals |R|2 ≤ r ≤
1
2 .

Case 2 : 4r2 < R2

First, let 2r(1−2r)
R2−4r2

≥ 1. This inequality is equivalent to r ≥ R2

2 , so the final stability condition in

this case reads: R2

2 ≤ r ≤ |R|2 . Now let 2r(1−2r)
R2−4r2

< 1, parallel to the other case this inequality is
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equivalent to r < R2

2 . Substituting cos ξ = 2r(1−2r)
R2−4r2

into |ρ(ξ)|2 leads to:

|ρ(ξ)|2 = (1− 2r)2 +R2 + 4r(1− 2r)
(

2r(1− 2r)
R2 − 4r2

)
+ (4r2 −R2)

(
2r(1− 2r)
R2 − 4r2

)2

=
(1− 2r)2(R2 − 4r2 + 4r2) +R2(R2 − 4r2)

R2 − 4r2

=
R2(4r −R2 − 1)

4r2 −R2
.

Setting |ρ(ξ)|2 ≤ 1 is now equivalent to R2(4r − R2 − 1) ≥ R2 − 4r2, moving everything to the
right hand side, results in (R2 − 2r)2 ≤ 0, thus for r < R2

2 the scheme will be unstable. To
conclude, two conditions are derived, namely:

Case 1 : for R2 ≤ 4r2 one needs
|R|
2
≤ r ≤ 1

2
,

Case 2 : for R2 > 4r2 one needs
R2

2
≤ r ≤ |R|

2
.

Inserting the original coefficients leads to

Case 1 : for
(
a∆t
∆x

)2

≤ 4
(
b∆t
∆x2

)2

one needs
|a|∆t
2∆x

≤ b∆t
∆x2

≤ 1
2
,

Case 2 : for
(
a∆t
∆x

)2

> 4
(
b∆t
∆x2

)2

one needs
a2∆t2

2∆x2
≤ b∆t

∆x2
≤ |a|∆t

2∆x
.

Al tough the resulting inequalities in the two cases contradict, this method can still be stable.
Rewriting Case 1 and Case 2 leads to:

Case 1 : ∆x2 ≤ 4b2

a2
and Case 2 : ∆x2 >

4b2

a2

The reason why this scheme can still be stable is that, starting from the second case, as ∆x→ 0
eventually Case 1 will hold. Concluding that the most critical stability inequality is |R|2 ≤ r.
When the original coefficients are substituted this condition equals

|a|∆x
2b

≤ 1 (7.6)

and is known as the mesh Péclet number. In addition to stabillity, oscillations can occur when
the coefficients in the finite difference scheme have certain values. Let C1, C2 and C3 denote the
coefficients in (7.4):

uk+1
j = ukj−1(− a∆t

2∆x
+
b∆t
∆x2︸ ︷︷ ︸

C1

) + ukj (1− 2
b∆t
∆x2︸ ︷︷ ︸

C2

) + ukj+1(
a∆t
2∆x

+
b∆t
∆x2︸ ︷︷ ︸

C3

). (7.7)

The sign of these coefficients can effect the accuracy of the solution. A stable solution can have
spurious oscillations. To see this, consider a stationary solution to the pure convection problem
(b = 0 and ∂u

∂t = 0). When the central scheme is applied the interior solution points will satisfy:

ukj−1 = ukj+1 for j = 2, . . . , Nx − 1.
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The result of this is that the solution points are divided in two types: the even points and the
odd points. These form two independent sets of coupled points. The problem is that, for the
interior points, there is no direct connection between the odd and the even points. This feature
can cause unwanted solution growth and are caused by the the dominance of convection term a
over diffusion term b. In this case the mesh Péclet number (7.6) can be violated. PDEs for which
these problems occur are said to be convection-dominated. In the Heston model, the convection
coefficient κ(η− v), is non constant. Therefore, the convection term can become dominant from
a particular value of v on. This is why the central scheme can become unstable from a specific
value of v on and the spurious oscillations can occur. As discussed in for example Andersen and
Piterbarg [14], these occur when for some grid point j, either C1 < 0 or C3 < 0. From (7.7 ) it
is seen that requiring this coefficients to be strictly positive this is equivalent to:

−a∆t
2∆x

+
b∆t
∆x2

≥ 0 and
a∆t
2∆x

+
b∆t
∆x2

≥ 0

⇐⇒ |a∆x| ≤ 2b. (7.8)

To avoid this problem a one-sided, so called upwinding scheme can be applied. Instead of
discretizing the first derivative in a central way, a one sided discretization is used. Applying this
method correctly it will artificially increase the diffusion term, by which the dominance of the
convection is reduced. Assume b to be positive. First, when a is negative, a backward upwind
scheme is applied:

uk+1
j − ukj

∆t
= a

ukj − ukj−1

∆x
+ b

ukj+1 − 2ukj + ukj−1

∆x2

= a
ukj+1 − ukj−1

2∆x
− a∆x

2
ukj+1 − 2ukj + ukj−1

∆x2
+ b

ukj+1 − 2ukj + ukj−1

∆x2

= a
ukj+1 − ukj−1

2∆x
+
(
b− a∆x

2

)
ukj+1 − 2ukj + ukj−1

∆x2
.

Secondly, when a is positive the forward upwind scheme is applied:

uk+1
j − ukj

∆t
= a

ukj+1 − ukj
∆x

+ b
ukj+1 − 2ukj + ukj−1

∆x2

= a
ukj+1 − ukj−1

2∆x
+
a∆x

2
ukj+1 − 2ukj + ukj−1

∆x2
+ b

ukj+1 − 2ukj + ukj−1

∆x2

= a
ukj+1 − ukj−1

2∆x
+
(
b+

a∆x
2

)
ukj+1 − 2ukj + ukj−1

∆x2
.

Clearly when |a| gets larger the upwinding approach will increase the diffusion coefficient and
(7.8) is met. A negative consequence of using this upwinding scheme is the loss of accuracy.
This can be handled by using a second order one-sided difference scheme like (3.10) and (3.9).
Another idea is to use a mixture of the central and upwinding scheme:

uk+1
j − ukj

∆t
= λa

ukj+1 − ukj−1

2∆x
+ (1− λ)a

ukj − ukj−1

∆x
+ b

ukj+1 − 2ukj + ukj−1

∆x2
. (7.9)

This will be shown with the help of some tests in the results section.
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7.3 Convergence

As mentioned above, convergence is related to stability and consistency via the Lax Equivalence
Theorem. This theorem states as follows:

Theorem 7.3. (Lax Equivalence Theorem) A consistent, two level difference scheme for a well-
posed linear initial-value problem (of the form (3.19)) is convergent if and only if it is stable.

Thus, when a scheme is consistent, it is convergent when it is stable. This is a convenient property
because now one only needs to prove consistency (which can be done via Taylor expansions) and
stability (which can be done via Fourier techniques). A full proof of this important theorem can
be found in [15].
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8 Numerical experiments

8.1 Heston with European pay-off

To verify the above derived method, some parameter values are needed. The parameter values
introduced in case A, table 1 from [4] are used:

Smax = 200 κ = 3 θ = 0.8
Vmax = 1 η = 0.12 r = 0.03
T = 1 σ = 0.041
K = 100 ρ = 0.60

(8.1)

For the first results the Douglas-scheme is used. After that, results for the four different ADI
schemes introduced in chapter 5 are compared and from that a preferred scheme is chosen which
is used for pricing barrier options and pricing with the SABR model. The price surface is shown
below. Next to that, the relation between fluctuation in stock price and the option value is often
studied. This is done via the first derivative w.r.t s and is known as ∆ := ∂u

∂s . Having obtained
the solution u the derivative w.r.t s can be obtained by the central differences (3.8) used before
for the interior points and a one-sided approximation ((3.9) and (3.10)) for the boundary points.
The price surface and ∆ are shown in figure 8.1a and 8.1b:

8.1a Price surface using Douglas scheme and pa-
rameters (8.1)

8.1b ∆mp := ∂u
∂s

Next to ∆, the other important Greeks Γmp := ∂2u
∂s2

, and νmp := ∂u
∂v can be directly computed

using a finite difference scheme, see figure 8.1c and 8.1d:

8.1c νmp := ∂u
∂v

8.1d Γmp := ∂2u
∂s2
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8.1.1 Richardson extrapolation

In the end the most important property of the developed scheme is how accurately does it
approximate the real price of an option at t = 0? As mentioned in section 7, the order of
convergence of the scheme can be deduced from the used Taylor expansions. All the ADI schemes
use second order central, forward and backward schemes. Hence a second order behaviour is
expected in the space direction. Also, from literature, a second order behaviour in time for
the Hundsdorfer-Verwer scheme is expected. To test convergence, without computing the exact
solution, Richardson extrapolation can be used. In this method it is assumed that the solution
of the ADI scheme (U∆τ

h where h =
√

∆s∆v) and the exact solution (Uexact) at τ = T relate as
follows:

||U∆τ
h ||L∞ − ||Uexact||L∞ = Khp + L∆τ q, (8.2)

where K and L are constants and q and p are the convergence rates. The error is measured at
maturity τ = T in the L∞-norm, also called the maximum norm:

||U∆τ
h ||L∞ = max (|u0,0|, · · · , |u0,m2 |, · · · , · · · , |um1,0|, · · · , |um1,m2 |) . (8.3)

Assuming e∆τ := L∆τ q, equation (8.2) consists of 3 unknowns and the convergence rate p can
be calculated using 3 computations of the ADI scheme for h, h2 and h

4 , resulting in the following
set of equations:

||U∆τ
h ||L∞ − ||Uexact||L∞ = Khp + e∆τ , (8.4a)

||U∆τ
h
2

||L∞ − ||Uexact||L∞ = K

(
h

2

)p
+ e∆τ , (8.4b)

||U∆τ
h
4

||L∞ − ||Uexact||L∞ = K

(
h

4

)p
+ e∆τ . (8.4c)

Dividing 2p · ((8.4c)-(8.4b)) by ((8.4b)-(8.4a)) results in:

2p
||U∆τ

h
4

||L∞ − ||U∆τ
h
2

||L∞

||U∆τ
h
2

||L∞ − ||U∆τ
h ||L∞

= 1⇐⇒

p = log

 ||U∆τ
h
2

||L∞ − ||U∆τ
h ||L∞

||U∆τ
h
4

||L∞ − ||U∆τ
h
2

||L∞

 / log(2).

To calculate the convergence in time direction, similar calculations as above result in an expres-
sion for q. Next tables show the obtained results, and confirm expectations.

h U∆τ
h p√

180 104.6263√
70 · 1 96.9804√
35 · 0.5 95.3777 2.2542

∆τ U∆τ
h q

1.3 · 10−3 96.5052
6.25 · 10−4 96.5052
3.125 · 10−4 96.5052 1.944

The schemes should give similar results when we test it against an exact solution.
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8.1.2 Reference solution

To obtain an exact analytic solution the COS-method is used. The error is measured in the
maximum norm over a pre-defined region of interest. In this error calculation the number of
grid points in s direction and v direction are taken as m1 = 2M and m2 = M respectively where
M = 5, 10, 15, 20, . . . , 65. Note that in the case of M = 40 we already compute 41× 81 = 3321
grid points. To render the error introduced by the restriction of the spatial domain, the boundary
is set at Smax = 14K and Vmax = 10, and the error is calculated in the region of interest:
(1

2K,
3
2K) × (0, 1). Because of this smaller region of interest the vector (8.3) that needs to be

checked for maxima is smaller. Due to the large values of Smax and Vmax, ∆s and ∆v are still
relatively large. Possible negative effects of these large differences can be reduced using a non-
uniform grid. All the different ADI methods treat the space discretisation in the same way, this
is why the value p is expected to be similar. A plot confirms this presumption.

8.1e Spatial error for Hundsdorfer-Verwer scheme,
θ = 0.8

8.1f Temporal error for ADI θ = 0.8

Because the spatial error is still relatively large compared to the analytic solution the COS-
method gives us, the error in time direction will be dominated. This can give problems when
looking at the behaviour of the error when ∆τ decreases. By decreasing the step size in space
direction no more improvement is observed. To be able to show the temporal error behaviour
for the different methods, a reference solution is used by computing a solution for a very large
amount of steps, say TN = 20000 and fixed number of space grid points M = 50.. Then the
method is tested on this reference solution for TN = 40, 60, 200, 400, 1000, 2000. All the methods
are computed with θ = 0.8. Hence all results can be expected to be stable. The Douglas
and Craig-Sneyd scheme behave first order in time, while the Modified Craig-Sneyd and the
Hunsdorfer-Verwer scheme show a second order behaviour.
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8.1.3 Upwinding

The central approach to a convection diffusion problem can give unstable results when the
diffusion coefficient becomes negative. These instabilities occur in the form of oscillations.
As mentioned, this can be mitigated by using a combination of the central and upwinding
discretisation, this implies that in the region where the diffusion coefficient in v direction is
positive a central scheme is applied while when this coefficient becomes negative, the one-sided
alternative is used.

8.1g Price surface when only a central scheme is ap-
plied. Oscillations occur when convection coefficient
κ(η − v) becomes negative.

8.1h Oscillations for a fixed asset price S0 = 119.

Another option is to use a weighted combination of upwinding and the central scheme. The
error in space decreases when a combination is used. However, in the Heston case, one can
argue about the significance of this improvement. Figure 8.1i shows the error for a variety of
values of λ. The value λ = 0.8 seems to be most accurate.

8.1i Error plotted for various values of λ. Oscillations for λ = 1
(fully central scheme) give rise to a large error.
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8.1.4 Values of θ

Stability of the schemes is different for different values of θ. Varying the value of θ can enhance
stability. The first derived Douglas ADI scheme has unstable results for θ < 1

2 . As seen in the
next figure 8.1j the error explodes for small values of ∆τ when θ ≤ 0.4, while the Hundsdorfer-
Verwer scheme gives stable results for values of θ ≥ 0.4. Because the fully explicit scheme
has problems with discontinuities in the initial condition, this method is never stable. The

8.1j Douglas scheme for a number of values of θ.
Note that for θ < 0.4 the error is larger than 10 and
thus not visible on the plot.

8.1k H-V scheme for a number of values of θ. Note
that, again, for θ < 0.4 the error larger than 10 and
thus not visible on the plot.

Hundsdorfer-Verwer scheme does seem to be more stable, but for larger values of ∆τ the method
behaves better for larger values of θ. This can be explained by the fact that for larger values of
θ the scheme becomes more and more implicit.
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8.2 Non-uniform grid

As mentioned above, a non-uniform grid should improve accuracy when we use a similar amount
of grid points. Due to the local refinement of the grid less grid points need to be evaluated to
reach a level of density at critical regions as s = K and v = 0. The figure below shows the price
surface and the Greeks (∆ and ν) for the non-uniform case. A direct important observation is
that these Greeks do not precisely imply a similar grid refinement. Looking at the error in space,

8.2a Price surface 8.2b ∆mp := ∂u
∂s

8.2c νmp := ∂u
∂v

8.2d Spatial error for Hundsdorfer-Verwer scheme
on a uniform and non-uniform grid, θ = 0.8

the refined grid significantly improves accuracy over the non-uniform grid. Also the oscillations
disappear. Because the grid refinement does not affect the time discretisation, the error in time
behaves similarly for uniform and non-uniform space grids.
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8.3 Feller condition

As mentioned before the Feller condition can influence the solution. In a more general sense,
when this condition is not fulfilled, the stochastic process for the volatility is not strictly positive.
When doing Monte Carlo simulations this can result in paths that can become negative, resulting
in less accurate simulations. When applying (4.1d) at the boundary v = 0, the solution is claimed
to be trustworthy in cases where the Feller condition is satisfied and where it is not satisfied,
see [5], [16] and [4]. To test this claim, the following parameter set is used:

Smax = 200 κ = 2 θ = 0.8
Vmax = 1 η = 0.012 r = 0.03
T = 1 σ = 0.4
K = 100 ρ = 0.60

(8.5)

Here, one has 2κη
σ2 = 0.3 ≯ 1, so Feller is not satisfied. The COS-method is again applied as a

reference solution.

8.3a Price surface using FDM. Feller condi-
tion is not satisfied.

8.3b Error with respect to COS method.
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8.4 Up-and-out call option

In the case of European up-and-out call options the previous described grid refinement can
be used. Next to that the initial solution has an extra discontinuity at the barrier s = B.
Due to this discontinuity a so called boundary layer is introduced. The solution has a sharp
gradient because at s = B it equals zero. Following the theory, upwinding is applied in s
direction. In the results the forward scheme is implemented for the first derivative with respect
to s. Another enhancement to increase accuracy comes from [4], where it is suggested to use
a damping procedure at τ = 0. This damping procedure comes down to applying the Douglas
scheme for θ = 1 at τ = 0 and then use the Hundsdorfer-Verwer scheme. Using the parameters
from (8.6),

Smax = B = 150 κ = 3 θ = 0.8
Vmax = 10 η = 0.12 r = 0.03
T = 1 σ = 0.041
K = 100 ρ = 0.60

(8.6)

figures 8.4a, 8.4b, 8.4c and 8.4d show the price surface and the Greeks.

8.4a Price surface 8.4b ∆mp := ∂u
∂s

8.4c νmp := ∂u
∂v

8.4d Γmp := ∂2u
∂s2
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8.4.1 Reference solution

To test the method, it can be compared with solutions obtained by Monte Carlo simulations. In
appendix A.4 the used Monte Carlo method is derived. Because of the large computational time
of this method it is no longer reasonable to calculate derivative prices for all defined spot and
volatility values in the finite difference grid. Instead of this ”brute force” approach used before,
now the deviation is measured at one specific spot and volatility value. Because the non-uniform
grid discretizes the region with help of the tricky sinh function, specific values for the spot and
volatility cannot be claimed to on be a grid point beforehand. Bilinear interpolation or grid
shifting can be used to approach the function value at the desired grid point. See the appendix
A.5 for a derivation of bilinear interpolation. Below is a result for an up-and-out barrier option
where the finite difference method is compared to a Monte Carlo solution obtained with 106

paths and 103 time steps for s0 = 108.2 and v0 = 0.01, with the parameters from (8.6). Here
grid shifting in v direction is imposed, figure 8.4e and 8.4f show the results. Clearly the finite

8.4e Non-uniform finite difference solution com-
pared to Monte Carlo with 106 paths for barrier
option

8.4f Non-uniform finite difference solution com-
pared to Monte Carlo with 106 paths for barrier
option

difference solution approaches the Monte Carlo solution. Also the interpolation in s direction
causes that the FDM solution can be fluctuating. Keeping in mind that the Monte Carlo solution
might be accurate only up to 10−2 w.r.t the exact price, it can be concluded that the FDM is a
good approximation.
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8.5 SABR European call

To price European call options the PDE derived in (2.17) is used. This PDE contains a convec-
tion and diffusion term in s direction and only a convection term in α direction. At the α = 0
boundary there is also lack of convection in α direction. Therefore the discontinuity at s = K at
the α = 0 boundary will still be present at τ = T . This discontinuity will affect the computation
of the Greeks. The parameters used are equal as in the Heston case (8.1). In addition, the
discount factor is taken equal to D(t, T ) = e−r(T−t) and β = 0.7:

8.5a Price surface 8.5b ∆mp := ∂u
∂s

8.5c νmp := ∂u
∂v

8.5d Γmp := ∂2u
∂s2
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8.5.1 Reference solution

As a reference solution the proposed analytic solution in the paper of Hagan, Kumar, Lesniewski
and Woodward [8] can be used. Although it is an approximation, it is proven to be accurate for
small maturities. Maturities up to one year are assumed small in this sense. The method uses
the following derivative price for a European call option:

Vcall = e−r(T−t)(fN(d1)−KN(d2)),

with the d1 and d2 similar as in the Black Scholes case:

d1,2 =
log f

K ±
1
2σ

2T

σ
√
T

,

where the implied volatility is given by:

σ(f,K) =
α

(fK)(1−β)/2
[
1 + (1−β)2

24 log2 f
K + (1−β)4

1920 log4 f
K + ...

] z

χ(z)

·

[
1 +

[
(1− β)2

24
α2

(fK)(1−β)
+

1
4

ρβσα

(fK)(1−β)/2 + 2−3ρ2

24 σ2

]
T + ...

]
.

This analytic form can be used to approximate the error in the finite difference scheme:

8.5e Error of the FD solution w.r.t. analytic solu-
tion of Hagan et al
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8.6 SABR barrier up-and-out

Similar as in the Heston case, pricing an up-and-out barrier with finite differences acquires
adjustments in the vectors determined by the boundary conditions. Furthermore, a one sided
finite difference should be used in s -direction. The parameters are taken as follows:

Smax = B = 150 κ = 3 θ = 0.8
Vmax = 10 η = 0.12 r = 0.03
T = 1 σ = 0.17 β = 1
K = 100 ρ = 0.11 D(t, T ) = e−r(T−t)

(8.7)

Results for the price surface are shown below. The boundary conditions are similar to the Heston
case. Next to that the Greeks are plotted.

8.6a Price surface 8.6b ∆mp := ∂u
∂s

8.6c νmp := ∂u
∂v

8.6d Γmp := ∂2u
∂s2
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8.6.1 Reference solution

As a reference solution again a Monte Carlo method is used. The number of paths is chosen up
to 4 ∗ 104, to make sure that the solution is accurate. Because of this large number of paths the
solution is only calculated for one spot and one volatility value, namely s0 = 115.2 and α0 = 0.29.
Again the finite difference solution for these spot and volatility values are obtained using a
bilinear routine and using the grid shifting procedure from section 6.2. In figure 8.6e and 8.6f
the Monte Carlo solution uses 2∗104 time steps. Clearly the finite difference solution approaches

8.6e Non-uniform finite difference solution com-
pared to Monte Carlo with 106 paths for barrier
option

8.6f Nonuniform finite difference solution compared
to Monte Carlo with 4 ∗ 104 paths and 2 ∗ 104 time
steps for barrier option

the Monte Carlo solution. Also the L∞-norm of the deviation is plotted. We can see that the
finite difference method approaches the solution obtained by the Monte Carlo method up to the
order of 10−2. In this sense the finite difference method delivers a good approximation.
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9 Conclusion

In this thesis, the finite difference method is applied to the Heston model and the SABR model.
To benefit from the stable behaviour of implicit schemes, the ADI scheme is applied. This
mixture of an implicit explicit scheme, can be seen as “the best of both worlds” where it has
the stability characteristics from the implicit scheme, but also limits the computation time of
matrix inversion. This is done by splitting the matrix per direction.

First the Heston model with a European pay-off is extensively tested. Important delicate details
of the finite difference method are treated such as upwinding, boundary conditions and the use
of non-uniform grids.

Also the Greeks are computed, this can be done easily because the FDM produces option
values for a whole grid, which actually is a whole set of spot prices and volatility values of the
underlying.

As a reference solution the COS method is applied. The error with respect to the solution
obtained with the COS method agrees with the theory. Also in case the Feller condition is not
satisfied.

After that up- and out- call options are treated. The extra discontinuity of the initial pay-off
function at the barrier, introduces a boundary layer and this is why upwinding is applied in s
direction. Next to that, the described non-uniform grid is altered to fit this new discontinuity.

In this case the Monte Carlo method serves as a reference solution. Because this method
calculates only one option price for a predefined spot price and volatility, also only one option
price is needed from the FDM solution. To extract one option price belonging to a specific
combination of strike price and volatility, two methods are used:

• Bilinear interpolation

• and grid shifting.

In addition a damping procedure is used, by performing the first time step fully implicit.

At last all the obtained results are applied to the SABR model. Again European and up-and-out
call options are studied. In the European case the result is tested against the analytical solution
introduced by Hagan et al. For short maturities this solution is a good approximation. For
the up-and-out call options again the Monte Carlo method serves as a benchmark. It can be
concluded that modelling the SABR model with the help of finite differences can well be done.
A suggestion for further research would be to apply grid shifting in s-direction.
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A Appendix

A.1 Heston’s analytic solution

For some values an analytic solution of the Heston PDE can be derived. This solution will
be used to do error analysis for the ADI methods. First derivation in the original paper of
Heston [1] is studied. The PD derived in (2.14) states:
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Similar as in the, Black-Scholes formula, a solution of the form is guessed

C(s, v, τ) = sP1(s, v, τ)−KP (τ, T )P2(s, v, τ), (A.2)

where P (τ, T ) denotes the discount factor. The first term is correctly interpreted as the present
value, using the risk-free interest rate, of the expected stock price at expiration, given that the
stock price at expiration is above the exercise price. The second term reflects the probability
of the call option to be exercised, provided the stock drift is the risk-free rate, multiplied with
the discounted strike price. For convenience the logarithm of the stock price is evaluated, so
x = ln(s). Using standard change of variable techniques, one has ∂
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∂x
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s
∂
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(A.1) becomes:
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Because (A.2) consists of two sums, two equations for P1 and P2 can be derived. Substituting
sP1 in (A.3) and multiplying with e−x results in:
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Using the fact that P (τ, T ) = e−r(T−τ) and dividing by Ke−r(T−τ) yields the following equation
for P2:
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At expiry the option value is known, namely it must be equal to 0 when the stock value is lower
than the strike and equal to the positive difference between the strike and the stock value when
the stock value is higher than the strike. In conclusion the following terminal condition can be
deduced:

Pj(x, v, T ) =
{

1 if x ≥ lnK,
0 else,

for j = 1, 2. (A.6)
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The appendix in the Heston [1] article shows that the characteristic function fj(x, v, τ, ξ) for
j = 1, 2 also satisfy equation (A.4) and (A.5) respectively subject to the terminal condition:

fj(x, v, T, ξ) = eiξx. (A.7)

The solution to this characteristic function is

fj(x, v, τ, ξ) = eC(t,ξ)+D(t,ξ)v+iξx, (A.8)

where t = T − τ and:
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and
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Using the Gil-Palaezs inversion [7], the inverse of the characteristic function can be calculated
and with that, the probabilities from (A.2) are known:
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One problem of this method is that the existence of the Fourier-transform is not guaranteed to
exist.
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A.2 Carr-Madan inversion

To assure the Fourier-transform to exist, Carr-Madan [6] introduces a damped option value.
First, let k := lnK and define the damped option value as follows:

c(x, v, τ) = eαkC(x, v, τ), where α > 0. (A.11)

The condition α > 0 ensures the Fourier transform of the damped option value to exist. Deriving
the damped option price follows slightly different steps as above and relates to the paper from
Fang [2]:
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where Q denotes the risk neutral measure. Again the density function f(x) is obtained via the
characteristic function, which in his turn is obtained via the Fourier transform:
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Let c̃ denote the Fourier transform of the damped price, substituting (A.11) in (A.13) results
in:
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where φ (ξ − i(α+ 1)) is the characteristic function of the density function f(x). So the Fourier
transform of the damped option price is easily obtained via the characteristic function of the
density. Using the inverse of the Fourier transform (and damping factor) the option price is
known.
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A.3 COS-method

The recently developed COS-method makes use of the Fourier-cosine series expansion. For a
detailed description of this method it is wise to consult the paper by Fang [3] itself, because
what follows below is a far from complete summary. The risk neutral valuation formula plays
an important role:

u(x, t0) = e−r(T−t0)EQ [u(y, T |x)] = e−r(T−t0)

∫
R
u(y, T )f(y|x)dy, (A.14)

where u denotes the option value, T maturity date, t0 initial date and EQ is the expectation
p[erator under the risk neutral measure Q. Furthermore x and y are state variables at t0 and
T respectively, f(y|x) is the probability density of y given x, and r is the risk neutral interest
rate. Now, the density function is replaced by its cosine expansion:
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k=0

Ak(x) cos
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)
, (A.15)

where
∑′ denotes that the first term in the summation is weighted by a half. The coefficients

Ak(x) are given as:
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such that
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interchanging summation and integration and defining Vk as follows:
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yields:

u2(x, t0) =
1
2

(b− a)e−r(T−t0)

′∞∑
k=0

Ak(x)Vk. (A.19)

Now, the coefficients can be approximated using the truncated Fourier transform of the charac-
teristic function:
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where Re· denotes the real part of the argument. By substituting (A.21) in (A.19) the cos
formula is derived:

u(x, t0) ≈ u3(x, t0) = e−r(T−t0)
N−1′∑
k=0

Re{φ
(

kπ

b− a;x
e−ikπ

a
b−a

)
}Vk. (A.22)

In the case of a European call, Vk can be calculated analytically as follows:

Vk =
2

b− a

∫ b

0
K(ey − 1) cos

(
kπ
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)
. (A.23)

The coefficients a and b are so called cumulants and for more information one should study the
paper by Fang [3].
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A.4 Monte Carlo-method

The Monte Carlo method makes use of paths. These paths can be created with the help of
the stochastic process. Let St be a stochastic process (e.g. stock price) driven by the following
stochastic differential equation:

dSt = µ(St, t)dt+ σ(St, t)dWt, (A.24)

where Wt is a Wiener process. To create a path over a given time horizon [0, T ] this horizon is
uniformly discretized as 0 = t0 < t1 < · · · < tn = T with step size dt. Integrating (A.24) from t
to t+ dt results in the following stochastic integral equation:

St+dt = St +
∫ t+dt

t
µ(St, t)dt+

∫ t+dt

t
σ(St, t)dWt. (A.25)

To evaluate the two integrals a discretization is needed. A popular method is the Euler scheme,
where the following approximation is used:∫ t+dt

t
µ(St, t)dt ≈ µ(St, t)

∫ t+dt

t
dt

= µ(St, t)dt.

In the case of the second integral the Wiener process implies that the increments are normally
distributed: Wt+dt −Wt N(0, dt). Using this one can derive:∫ t+dt

t
σ(St, t)dWt ≈ σ(St, t)

∫ t+dt

t
dWt

= σ(St, t)(Wt+dt −Wt)

= σ(St, t)
√
dtZ,

where Z is a standard normal variable. Hence the Euler discretization states:

St+dt = St + µ(St, t)dt+ σ(St, t)
√
dtZ. (A.26)

In addition to a single stochastic process the Heston model contains two stochastic processes.
The Euler method can be applied on both the stochastic processes. Because the Wiener pro-
cesses are correlated with correlation ρ, the correlated normally distributed variables need to
be computed with the help of the Cholesky matrix. Let Z1 and Z2 be two standard normally
random variables, then:

ξ(1) = Z1,

ξ(2) = ρZ1 +
√

1− ρ2Z2.

The following pseudo code now generates paths for a up-and-out barrier option for the Heston
model:

• Start with S0 and V0.

• for i=1:Number of paths

• for j=1:Number of time steps
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• create ξ(1) and ξ(2) with the help of the Cholesky decomposition.
• create

St+dt = St + rStdt+
√
VtSt
√
dtξ(2) and

Vt+dt = Vt + κ ∗ (η − Vt)dt+ σ
√
Vt
√
dtξ(1).

• if Vt+dt < 0; set Vt+dt = 0.
• if St+dt >= B; set St+dt = 0 and exit for loop

• end time stepping

• Pay-off = max(0, SN −K); sum=sum+Pay-off;

• end Path loop

• Price= 1
N e
−rT sum
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A.5 Bilinear Interpolation

Comparing a price for an option obtained by FDM for a specific spot price s0 and volatility v0 is
not directly clear. If the stock value s0 and volatility v0 are determined beforehand the chance
is small that the (s0, v0) is a grid point in the solution obtained by FDM. An idea is to alter
the non-uniform grid in a way that it contains the specified grid point. This is left for further
research. Another way to handle this problem is to apply bilinear interpolation. The desired
grid point always lies in a certain square sl ≤ s0 ≤ sr and vd ≤ v0 ≤ vu:

A.5a Square containing (s0, v0)

Bilinear interpolation comes down to subsequently applying linear interpolation twice first in
horizontal way and then in vertical way as follows:

u(Hd) ≈ sr−s0
sr−sl

u(sl, vu) + s0−sl
sr−sl

u(sr, vu),
u(Hu) ≈ sr−s0

sr−sl
u(sl, vu) + s0−sl

sr−sl
u(sr, vu).

(A.27)

Now the vertical interpolation with the help of Hu and Hd gives the desired approximation:

u(s0, v0) ≈ vu − v0

vu − vd
u(Hd) +

v0 − vd
sr − sl

u(Hu), (A.28)

Substituting (A.27) in (A.28) one obtains the direct formula:

u(s0, v0) ≈ u(sr, vu)
(sr − sl)(vu − vd)

(sr − s0)(vu − v0)

+
u(s0 − sl)

(sr − sl)(vu − vd)
(s0 − sl)(vu − v0)

+
u(sl, vu)

(sr − sl)(vu − vd)
(sr − s0)(v0 − vd)

+
u(sr, vu)

(sr − sl)(vu − vd)
(s0 − sl)(v0 − vd)
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