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1 Introduction

From both a theoretical as a practical point of view, scheduling problems are interesting.
A project is an undertaking which has to be accomplished. A number of tasks have to be
executed, all of which require an amount of time and a number of resources to complete.
Moreover, one works towards a certain objective, e.g. minimization of the project duration.
In addition, tasks or activities or jobs depend on each other by given time lags: some tasks can
only be executed if others are finished. This influences the order in which activities have to be
scheduled. Some tasks can not be executed simultaneously due to the limited availability of
resources. Project scheduling then consists of fixing the start time of each activity, such that
all temporal and resource constraints are fulfilled and the objective function is optimized.

Projects arises in many practical situations, such as construction work, emergency planning,
production and the execution of turnarounds. For example, consider the situation in which
a restaurant has just one waiter, two chefs and there is one customer, which is immediately
served when he enters the restaurant. The time it takes the waiter to take the order is 1
minute. Assume the customer orders beef, with potatoes and vegetables. It takes a chef
12 minutes to prepare beef, 10 minutes for the potatoes and 6 minutes for the vegetables.
Moreover, the chefs can not work simultaneously one the same part of the meal. When the
beef is finished, it has to rest for 2 minutes before it can be put on the plate; for the potatoes
this time is 5 minutes. After that, one chef has to finish the plate, which takes 1 minute,
before the waiter can serve it, which takes 3 minutes. The owner of the restaurant wants to
minimize the waiting time of the customer.

Order

2 min

1 waiter

Vegetables

6 min

1 cook

Beef

12 min

1 cook

Potatoes

10 min

1 cook

Finish plate

1 min

1 cook

Serve

3 min

1 waiter

2

2

2

14

3

15

1

Figure 1.1: Project in restaurant

This is a project which can be represented by the network in Figure 1.1, in which the pro-
cessing times are given above the nodes, and the resource requirements below. The numbers
in the arcs represent the minimum time between the start of the activities. For example, the
chefs can start preparing the meal only after the waiter has taken the order, which is after
two minutes.

This problem can be easily solved: since there are only two cooks and three parts of the meal
have to be prepared, just two parts can be cooked simultaneously. It is recommended to start
with the potatoes and beef, since they have to wait an amount of time before the plate can
be finished. Thus, one cook should prepare the beef and the other the potatoes as soon as
possible, that is, when the order is taken. To minimize waiting time of the customer, the
cook who is first available, that is, the cook who prepared the potatoes, can begin with the
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vegetables at time 12. At time 18, all parts are ready and at time 19 the plate is finished.
The customer can start dinner after 22 minutes from the moment he entered the restaurant.

This example is a project in the form that will be considered in this thesis. In addition
to minimum time lags (the numbers in the arcs), maximum time lags will be introduced in
chapter 2. This chapter also provides two IP-formulations for the project scheduling problem.
In chapter 3, time windows, that is, earliest and latest starting times for the jobs, will be
determined by two different methods. In chapter 4, two simple algorithms for computing lower
bounds for the project duration are considered, and chapter 5 provides a more complex lower
bound, called the Lagrangian lower bound. This lower bound is computed by transforming the
project scheduling problem into a minimum cut problem. Chapter 6 serves as the ’backbone’
of this thesis, in which several methods for generating schedules are discussed. In chapter 7,
these heuristics are tested on benchmark instances.

2 Model Description

Theoretic scheduling problems can be denoted by a three-field notation α|β|γ, where α in-
dicates the resource environment, β the activity characteristics and γ the objective function.
For this problem, we use the three-field notation proposed in [5]: PS|temp|Cmax, which
represents the following:

PS Project Scheduling.
temp General temporal constraints given by minimum and maximum start-start

time lags between activities.
Cmax Minimize the total makespan, which is the finish-time of the last job.

Like in ordinary scheduling problems, we have a finite number n of activities or jobs that have
to be processed, indicated by a job set J . These jobs have fixed integral processing times:
p1, p2, . . . , pn. Besides, we introduce two dummy jobs 0 and n + 1, which are a start and a
finish activity. Job 0 has to be processed before and job n+ 1 after all other jobs. Obviously,
the processing times of these jobs are 0. The activity set is J = {0, 1, 2, . . . , n, n+ 1}.

In scheduling problems, we search for optimal schedules. Notice that a schedule is completely
characterized by fixing a starting time for every job. So the goal is to search for a starting time
for every activity, such that the acquired schedule is optimal with respect to the objective
function, in this case minimizing the makespan. Such a schedule is denoted by a list of starting
times S = {S0, S1, . . . , Sn+1}. Evidently, fix S0 = 0, which is the start time of the project.
Moreover, notice that Sn+1 = Cmax, since job n + 1 has to be processed after all other jobs
and pn+1 = 0.

2.1 Temporal Constraints

In this paragraph, we take a closer look at the temp characteristic. In our model, we have
general temporal constraints given by minimum and maximum start-start time lags between
jobs. Next, we introduce minimal and maximal time lags between the start of two different
jobs, as done in [19]. A minimal time lag dSSij ≥ 0 between the start of two jobs i and j

forces the following relation between the starting times of jobs i and j: Sj − Si ≥ dSSij . In

words: job j must start at least dSSij after the start of job i.
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Remark 2.1. 1. All time lags are integral.

2. One could also define finish-finish (FF), start-finish (SF) or finish-start (FS) time lags,
instead of start-start time lags. These are easily converted into start-start (SS) time
lags:

• dFSij + pi = dSSij

• dSFij − pj = dSSij

• dFFij + pi − pj = dSSij

By this observation, all time lags in the rest of this paper are intended to be start-start
time lags, so we drop the SS-index.

3. If two jobs i and j should start at the same point in time, we set both dij = 0 and
dji = 0.

4. For the finish job n+ 1, there is a minimum time lag di,n+1 = pi for all jobs i ∈ J , since
job n+ 1 is only allowed to start when all other jobs are finished.

5. Ordinary release dates bj can be represented by letting d0j := bj .

6. Ordinary precedence constraints can be represented by letting dij := pi if job i must
precede job j.

Maximum time lags can be modelled in the same way. Given are numbers dmaxji > 0 such
that Si − Sj ≤ dmaxji . This means that job i must start at most dmaxji time units after job j
has started. Then, job j must start at least dij := −dmaxji < 0 time units after job i. Hence,
a maximum time lag dmaxji > 0 can be converted into a minimum time lag dij < 0. In short,
job j must start at least dij time unts after the start of job i, independent of whether dij is
positive or not.

In such a way, time windows of the form Sj + dji ≤ Si ≤ Sj − dij between any two jobs j and
i can be modelled. Let L ⊆ J × J be the set of all given time lags. Define

T :=
∑
i∈J

max(pi, max
〈i,j〉∈L

dij), (2.1.1)

which represents an upper bound on the shortest project duration, if the given problem is
feasible, i.e., if Cmax <∞. As a corollary of this definition of T , we will see that the we have
a finite number of variables in the IP-formulation of this problem.

Time lags of an instance of PS|temp|Cmax can be represented in an weighted Activity-on-Node
network N . The nodes represent the jobs and if there is a time lag between the start of two
jobs i, j, an arc between nodes i and j is drawn, with weight dij . An example of such an
project network N is drawn in Example 2.1.
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2.2 Resource Constraints

We now take a further look at the resource constraints. Suppose there are m different types
of resources. These are denoted by a set R = {1, 2, . . . ,m}. Moreover, every type has its own
maximum capacity, which are given by numbers R1, R2, . . . , Rm.

In addition, each job has his own resource profile. This is summarized in a matrix r where
entry rjk indicates that rjk units of resource k are needed in order to process job j. These
resources are needed during the whole processing time of a job. Evidently, resources that
are used for processing a job are not available for other purposes until that job is completed.
After that, resources are available again.

Given a schedule S, let

A(S, t) := {i ∈ J |Si ≤ t < Si + pi}, t ≥ 0 (2.2.1)

be the set of jobs that are active in schedule S at time t, and

rk(S, t) :=
∑

i∈A(S,t)

rik, k ∈ R, t ≥ 0 (2.2.2)

the resource usage of resource k in schedule S on time t.

2.3 Two IP-formulations

Now we have introduced our problem, it can be modelled as an IP-problem using time-indexed
variables, as done in [17]:

xjt =

{
1 if job j starts at time t
0 otherwise

where j ∈ J and t = 0, 1, 2, . . . , T . Remember that T < ∞, thus there is a finite number of
decision variables.

Notice that the makespan of the project, the Cmax, is fully determined by the start time of
the dummy job n+1. Moreover, it is easily seen that Sn+1 =

∑
t txn+1,t. Hence, the following

objective function is obtained:

Minimize
∑
t

txn+1,t. (2.3.1)

As described above, there are different types of constraints. It should be ensured that each
activity has exactly one starting time. This can be modelled by introducing constraints

T∑
t=0

xjt = 1, j ∈ J . (2.3.2)

The first IP-form for the temporal constraints is derived as follows: Suppose ti is the starting
time of activity i and there is a time lag dij between jobs i and j. Then job j is not allowed
to start before time ti+dij . Hence, job j can not start on times 0, . . . , ti+dij−1. This yields
a constraint:
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xiti +

ti+dij−1∑
s=0

xjs ≤ 1.

Summing over all possible starting times of job i, the following formulation of the temporal
constraints is used:

T∑
s=t

xis +

t+dij−1∑
s=0

xjs ≤ 1, (i, j) ∈ L, t = 0, . . . , T. (2.3.3)

For the resource-constraints, notice that
∑t

s=t−pj+1 xjs = 1 indicates that job j is active at
time t. Multiplying this number by rjk gives the usage of resource k ∈ R by job j at time t,
i.e.,

rjk

t∑
s=t−pj+1

xjs =

{
0 if job j is not active at time t
rjk if job j is active at time t

Taking the sum over all jobs, the total resource usage of resource k on time t is computed. By
requiring that this number should be equal or less than the resource capacity, the following
resource constraints are obtained:

∑
j

rjk

( t∑
s=t−pj+1

xjs

)
≤ Rk, k ∈ R, t = 0, . . . , T. (2.3.4)

At last we have the binary constraint

xjt ∈ {0, 1}. (2.3.5)

The first IP-formulation is now given by (2.3.1), subject to (2.3.2), (2.3.3), (2.3.4) and (2.3.5).

Remark 2.2. In equation (2.3.3), the upper bound of the summation is t+ dij − 1, but it is
possible that this number exceeds T . A well-defined upper bound would be min(t+dij−1, T ).
Moreover, the lower bound of the summation in equation (2.3.4) is t− pj + 1, which could be
below 0, leading to a well-defined lower bound of max(t− pj + 1, 0). For simplicity, we omit
this by treating non-defined x-variables as 0.

One could also use the following IP-formulation, introduced in [20]:

Minimize Sn+1 (2.3.6)

subject to Sj − Si ≥ dij , (i, j) ∈ L (2.3.7)

rk(S, t) ≤ Rk, k ∈ R, 0 ≤ t ≤ T (2.3.8)

Sj ≥ 0, j ∈ J (2.3.9)

S0 = 0 (2.3.10)

This formulation is intuitively more clear than the first one. However, there are no binary
decision variables here. In chapters 3, 6 and 4 the second and in chapter 5 the first IP-
formulations will be used in the solution methods.
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2.4 Complexity

Relatively small problems already give a large number of decision variables and constraints.
To illustrate this phenomenon, consider example 2.1.

Example 2.1. The project presented in Figure 2.1 and Table 2.1 has 5 jobs, which are
represented as nodes. Since we have 1 type of resource, the resource profile rj1 is simply
denoted by rj . The capacity of the resource is 8. Notice that the arcs according to time lags
d02 = d04 = d06 = 0 and d36 = 4 are omitted for clearness in the picture. Moreover, these
time lags are redundant, since the longest paths do not cross these arcs. We will focus on
longest paths in the next chapter.

0 3

1

5

2

4 6

0

−3

0

8

1

6 4

2

−5

−1 −4

2

4

2

Figure 2.1: Project network N

Job pj rj

0 0 0
1 6 4
2 4 1
3 4 5
4 4 6
5 2 1
6 0 0

Table 2.1

We use (2.1.1) to obtain the initial upper bound T = 28.

For the first IP-formulation, this already results in 29 × 5 = 145 relevant decision variables
for such a small problem! In chapter 3, we will see that this number can be vigorously
reduced. Moreover, |L| = 14, so there are 14 × 29 = 406 temporal constraints, 1 × 29 = 29
resource constraints and 5 + 29 × 5 = 150 ’trivial’ constraints, leading to a total number of
556 constraints for an instance with only 5 jobs and 1 resource type.

For the second IP-formulation the relevant decision variables are S1, . . . , S5, so we only have
5 of them. Besides, the number of trivial (2.3.9), temporal (2.3.7) and resource constraints
(2.3.8) is 5× 29 = 145, 14 and 1× 29 = 29, which results in only 188 constraints.

As described in [16], (Binary) Integer Programming problems can be solved using LP-based
Branch & Bound. However, this is not a polynomial method since we have to check all
O(2T |J |) possible solutions in a systematic fashion. Even for the very small project in Ex-
ample 2.1, it took a 1.9GHz AMD Athlon PC approximately 1698 seconds to solve the Bi-
nary Integer formulation of this problem to optimality, using an implementation of LP-based
Branch & Bound in MATLAB2010a. It is known that (B)IP is NP-complete, since there is a
polynomial reduction from SAT, so question arises whether PS|temp|Cmax is NP-complete
as well. Consider the decision form of PS|temp|Cmax:

Given: A set of activities J with processing times pj and a set L of time lags dij between
jobs i and j; a set of resources R with capacities Rk and rjk, the amount of resources of type
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k used by activity j.
Question: Does there exist a feasible schedule?

Theorem 2.1. PS|temp|Cmax is NP-complete.

Proof. We first prove that PS|temp|Cmax is inNP: Consider a yes-instance of PS|temp|Cmax,
that is, a schedule S = (S0, S1, . . . , Sn+1). The feasibility of this schedule can be checked by
computing Sj − Si ∀(i, j) ∈ L for checking the temporal constraints and rk(S, t) ∀k ∈ R,
0 ≤ t < Sn+1 for the resource constraints. The other types of constraints are checked easily
as well. Hence, the verification of a yes-instance can be done in polynomial time.

The NP-hardness of PS|temp|Cmax is shown in [2] by transformation from the problem
PRECEDENCE CONSTRAINED SCHEDULING.

As a consequence of Theorem 2.1, there is no polynomial algorithm to solve PS|temp|Cmax,
unless P = NP. In the coming chapters, we will consider some heuristics to solve the problem.

3 Time Windows

In this chapter we will establish Time Windows for the activities. These time windows arise
as a consequence of the time lags between jobs. Let TW (j) denote the time window for job j.
That is, TW (j) = {ESj , ESj + 1, . . . , LSj − 1, LSj} with ESj and LSj the earliest and latest
starting times of job j respectively. Strong time windows result in fewer decision variables
in the first, and fewer possible values for the decision variables in the second IP-formulation,
thus decreasing computation time. A simple method to compute these time windows, using a
longest-path algorithm without taking care of resource constraints, is explained in paragraph
3.1, while in paragraph 3.2 we also consider resources.

3.1 Longest-path Approach

As mentioned in Example 2.1, time lags can be represented by an Activity-on-Node network.
Moreover, we introduce an arc (n+ 1, 0) with weight dn+1,0 = −T , indicating that the finish
job is not allowed to start more than T time units after the start of the project, where T is as
in (2.1.1). We denote this network by N . For the representation of N we use the adjacency
matrix, which we denote, with a slight abuse of notation, by N as well. We set N(i,i) = 0 for
all i ∈ V and if (i, j) 6∈ A, N(i,j) =∞.

By lij we denote the longest path length from node i to node j, where lij = 0 for i = j. Notice
that lij ≥ dij for all (i, j) ∈ A. Moreover, the triangle inequality is satisfied: lij ≥ lih + lhj ,
i, j, h ∈ V . Since lij ≥ dij , S does not just have to satisfy Sj − Si ≥ dij for (i, j) ∈ L, but
must meet Sj − Si ≥ lij as well. Otherwise, in the case that lij > dij , at least one temporal
constraint is not fulfilled. As a consequence, we replace temporal constraints (2.3.7) by

Sj − Si ≥ lij , i, j ∈ J . (3.1.1)

Example 3.1. Consider the network in Example 2.1. Notice that d02 = 0 (arc not drawn in
picture), while l02 = 1. Hence, it should be ensured that S2−S0 ≥ 1, since if S2−S0 = S0 = 0,
the time lag d12 = 1 can not be fulfilled.

7



The problem can be restricted by using (3.1.1) instead of (2.3.7), which results in a modified
problem, with a smaller set of time-feasible schedules. But this requires to compute longest
path lengths between all pair of nodes. Since we possibly have non-negative arc lengths, which
arise from maximum time lags, we can not do this by Dijkstra’s Shortest Path algorithm as
described in [9], so Bellman-Ford’s algorithm of [3] or Floyd-Warshall’s algorithm of [10]
for shortest paths should be used.

Remark 3.1. 1. The longest path pairs on a network can be computed by above men-
tioned algorithms, by multiplying all arc lengths (or equivalently: matrix elements) by
−1.

2. Due to maximum time lags N is possibly cyclic. For cycles of positive length, the
Longest Path problem is not well defined, since we can run through that cycle infinitely
often, which results in longest path lengths of∞. However, above algorithms can detect
such cycles. For cycles of negative length, there is no problem.

3. All nodes have at least one incoming and one outgoing arc: for nodes j ∈ {1, . . . , n}
this is clear since both d0j ≥ 0 and dj,n+1 ≥ 0. For nodes 0 and n + 1, this is ensured
by the introduction of the arc (n+ 1, 0) with weigth −T .

4. As a corollary, |lij | <∞ for all i, j ∈ V .

By NLP we denote the complete network where an arc (i, j) has weight lij . Equivalently, with
a slight abuse of notation, NLP is its adjacency matrix representation, where NLP

(i,j) = lij .

Remark 3.1(2) can be used as a check whether there does not exist a time-feasible schedule:
if lij + lji > 0 for i, j ∈ J , the problem is infeasible.

Example 3.2. Consider the network in Figure 3.1 (compare with Figure 2.1). We compute
NLP as in Table 3.1

0 3

1

5

2

4 6

0

−3

0

8

1

6 4

2

−5

−1 −4

2

4

2

−28

Figure 3.1: N with added backward arc



0 0 1 0 3 8 10
-22 0 1 -22 -19 -14 6
-24 -3 0 -24 -21 -16 4
-1 -1 0 0 2 7 9
-24 -24 -23 -4 0 3 5
-26 -26 -25 -9 -5 0 2
-28 -28 -27 -28 -25 -20 0


Table 3.1: Matrix of longest paths

The first row of NLP plays an important role, as it denotes the longest path length of node 0
to every other node. All these entries are non-negative, because node 0 only has outgoing arcs
with non-negative weight and l0j ≥ d0j . In terms of activities and time lags: NLP

(0,j) marks the
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earliest time job j may start, since it satisfies all temporal constraints. Hence, ESj = NLP
(0,j).

Besides, the first column denotes the longest path lengths of node i 6= 0 to node 0. Since node 0
does not have any incoming arcs with non-positive weight, all these numbers are non-positive.
As a consequence, these numbers correspond to maximum time lags: −NLP

(i,0) designates the

latest time job i may start: LSi = −NLP
(i,0). Hence, TW (j) = {NLP

(0,j), . . . ,−N
LP
(j,0)}.

Remark 3.2. 1. If there are no resources involved in the project scheduling problem,
computing the earliest starting times would solve the problem to optimality, because
Sopt = ES, the schedule in which each job is scheduled on its earliest starting time.
Moreover, the earliest starting time of job n+ 1, which is NLP

(0,n+1), is a lower bound for
the makespan of the problem.

2. One is not restricted to (2.1.1) for the upper bound of the makespan. Also a prescribed
deadline d could be used. In that case, the arc from node n + 1 to node 0 must have
weight −d. This will only influence the latest starting times. Introducing a prescribed
deadline which is not feasible however, e.g., d < NLP

(0,n+1), yields a cycle of positive
length.

Due to Remark 3.2(2), it can be easily tested wheter a prescribed deadline d is infeasible.
However, this says nothing about feasibility of the problem: a deadline d may be feasible, but
the problem inclusive resource-constraints may be not.

3.2 Forbidden Set Approach (FSP)

In this paragraph, we turn to a procedure that strengthens the time windows found by the
longest-path approach, also considering the resource constraints. For instance, if jobs i and
j have overlapping time windows, and rik + rjk > Rk for at least one resource type k ∈ R,
then these two jobs can not be processed simultaneously. (E.g., jobs 1 and 3 of Example 2.1).
This leads to the definition of a 2-fold forbidden set :

Definition 3.1. The 2-fold Forbidden Set F is the set

F := {(i, j) : i, j ∈ J ,∃k ∈ R : rik + rjk > Rk}.

If in a time-feasible schedule for an (i, j) ∈ F it holds that both lij < pi and lji < pj , then
jobs i and j may overlap. Notice that always one of both conditions is fulfilled, since either
lij ≤ 0 or lji ≤ 0, with equality only when lij = lji = 0. Without loss of generality, suppose
that lij > 0 and lji < 0. Then lji < pj is always satisfied. If this is the only one that holds,
then lij ≥ pi and there is no resource conflict at all, since job j is already forced to start after
the finish of job i. Hence, it suffices to consider just

F ′ := {(i, j) : (i, j) ∈ F , lij < pi, lji < pj}. (3.2.1)

Example 3.3. In Example 2.1, F = F ′ = {(1, 3), (1, 4), (3, 4)}. Since TW (1) = {0, . . . , 22}
and TW (3) = {0, 1} and jobs 1 and 3 can not be processed simultaneously, there is an
additional restriction on the earliest start of job 1, namely ES1 = 1. As a consequence a
constraint S1 ≥ S3 + 4 has to be introduced. Moreover, we have to make sure that either
S1 ≥ S4 + 4 or S4 ≥ S1 + 6. The forbidden set approach consists of introducing such time
lags.
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We denote the time lags introduced due to resolving a resource conflict by l∗ij . As a conse-
quence, dij ≤ lij ≤ l∗ij . This leads to the following theorem, as in [6], [8].

Theorem 3.1. Suppose that for (i, j) ∈ F ′ with lij < pi it holds that lij > −pj. Then
Sj ≥ Si + pi for any feasible schedule S with Sn+1 ≤ T .

Proof. Suppose that for (i, j) ∈ F ′ with lij < pi it holds that lij > −pj . This means that
Sj−Si ≥ lij > −pj , which reduces to Sj+pj > Si. We have two cases: lij ≥ 0 or 0 > lij > −pj .

In case I, job j starts possibly earlier than job i, with Si − pj + 1 as earliest starting time.
But then the earliest completion time of job j is Si − pj + 1 + pj = Si + 1, so i and j overlap
for sure if job j starts earlier than job i. This has to be resolved. Since lij ≥ 0, it is clear
that job i must precede job j in a feasible schedule. That is, Sj ≥ Si + pi is satisfied.

In case II, the earliest possible starting time of job j is Si + lij , yielding an earliest possible
completion time of Si + lij + pj > Si. Hence, jobs i and j overlap surely if job j starts earlier
than job i, which has to be resolved. A left-shift of job j or a right-shift of job i is not
possible, since Si + lij ≤ Sj is not necessarily fulfilled then. Thus the only thing possible is a
right-shift of job j or a left-shift of job i such that job i precedes job j in a feasible schedule:
Sj ≥ Si + pi is satisfied.

Corollary 3.2. If for (i, j) ∈ F ′ with lij < pi it holds that LSi < ESj + pj, then Sj ≥ Si + pi
for any feasible schedule S with Sn+1 ≤ T .

Proof. In terms of longest-path lengths, LSi < ESj + pj reads as −li0 < l0j + pj , in other
words: li0 + l0j > −pj . By the triangle inequality, lij > li0 + l0j . Hence, lij > −pj and
Theorem 3.1 can be applied.

If for (i, j) ∈ F ′ it holds that lji < pj but lji ≤ −pi, we can again apply Theorem 3.1, but
now with the roles of i and j interchanged. Hence, Si ≥ Sj + pj in any feasible schedule S
with Sn+1 ≤ T . Notice that the conditions lij < pi and lji < pj are always fulfilled since
(i, j) ∈ F ′.

But if neither the additional condition of Theorem 3.1, i.e., lij ≤ −pj , nor the additional
condition of this ’reversed’ theorem, i.e., lij ≥ pi, holds, then it is not clear which job has
to be scheduled first. However, we know that either job i must precede job j or vice versa.
Consider two jobs h, k ∈ J , as done in [20], for which we will introduce a time lag as follows,
using a 2-fold forbidden set (i, j) with lij < pi. Let Sh be the (fixed) starting time of job h.

Consider the situation where job i precedes job j. By Remark 3.1(4), both |lhi| < ∞ and
|ljk| < ∞ hold. That is, longest paths h ↔ i and j ↔ k exist and are finite, yielding a
temporal constraint of type (3.1.1). Hence, the earliest possible starting time of job i is
Sh + lhi and the earliest possible completion time of job i is Sh + lhi + pi. Moreover, it is the
earliest possible starting time of activity j, yielding an earliest possible starting time of job k
of Sh + lhi + pi + ljk.

In the second case, where activity j precedes activity i, a similar analysis can be done, which
results in a earliest possible starting time of job k of Sh + lhj + pj + lik.
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Beforehand we do not know in which situation we are, but one of the two is valid, so it suffices
to consider the minimum of both earliest possible starting times of job k. In other words,
Sk ≥ Sh + min(lhi + pi + ljk, lhj + pj + lik). Since Sk ≥ Sh + lhk must be fulfilled as well, we
define for (i, j) ∈ F ′:

l∗hk(i, j) := max(lhk,min(lhi + pi + ljk, lhj + pj + lik)). (3.2.2)

Hence, l∗hk(i, j) ≥ lhk. For all forbidden pairs (i, j) of F ′ such an modified time lag can be
computed. Of all these modified time lags l∗hk(i, j), the maximum is taken to ensure that all
induced time lags l∗hk(i, j) are satisfied:

l∗hk := max
(i,j)∈F ′

l∗hk(i, j). (3.2.3)

Then, the new temporal constraint

Sk − Sh ≥ l∗hk, h, k ∈ J (3.2.4)

is introduced. Using (3.2.4) instead of (3.1.1) results (again) in a modified problem, in which
the set of time-feasible schedules further reduces, since dij ≤ lij ≤ l∗ij for i, j ∈ J . This leads

to a new complete activity-on-node network, denoted by NFS , with corresponding adjacency
matrix NFS

(i,j). At the end we once again have to perform a longest-path computation on NFS .

In pseudo-code, this procedure is as follows, as proposed in [20].
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Algorithm 3.1 Forbidden Set Procedure (FSP)

Input: Instance of PS|temp|Cmax and an upper bound (or deadline) UB of the makespan.
Output: F ′, distances l∗ij such that l∗ij ≥ lij ≥ dij , (i, j) ∈ J × J , infeasibility (if cycle of

length > 0).

1: Compute the longest path lengths lij in network N with dn+1,0 = −UB, (i, j) ∈ J × J
2: Determine F ′ := {(i, j) : (i, j) ∈ F , lij < pi, lji < pj}
3: stop := 0
4: while F ′ 6= ∅ and stop = 0 do
5: stop := 1
6: for all (i, j) ∈ F ′ do
7: for all h, k ∈ J do
8: if lij > min(lhi + pi + ljk, lhj + pj + lik) then
9: l∗hk(i, j) := lhk

10: else
11: if lij ≤ −pj and lij ≥ pi then
12: l∗hk(i, j) := min(lhi + pi + ljk, lhj + pj + lik)
13: else
14: if lij > −pj then
15: l∗hk(i, j) := lhi + pi + ljk
16: else
17: l∗hk(i, j) := lhj + pj + lik
18: end if
19: end if
20: end if
21: l∗hk := max

(i,j)∈F ′
l∗hk(i, j)

22: if h = k and l∗hk(i, j) > 0 then return cycle of positive length!
23: end if
24: end for
25: if l∗ij(i, j) ≥ pi then
26: stop := 0, F ′ := F ′\{(i, j)}
27: end if
28: end for
29: end while
30: Correct the distances l∗hk(i, j) in network NFS , (h, k) ∈ J × J , (i, j) ∈ F ′

Line 1: Can be done as described in paragraph 3.1. This results in network NLP , with
longest path lengths lij .

Line 8+9: Then, in equation (3.2.2), the maximum is attained for lhk.

Line 10: The maximum in (3.2.2) is attained for min(lhi + pi + ljk, lhj + pj + lik).

Line 11+12: Here the condition for Theorem 3.1 is not met for (i, j) ∈ F ′. So here it is not
known whether job i precedes job j or vice versa.

Line 13: lij > −pj or lji > −pi
Line 14+15: Precisely as the condition in Theorem 3.1. Hence, job i has to precede job j:

the order of the jobs must be h, i, j, k.
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Line 16+17: The roles of i and j are interchanged: ’reversed’ Theorem 3.1 holds, leading
to an order of h, j, i, k.

Line 21: The problem is not feasible, since there is a cycle of positive length.

Line 24+25: If this is the case, job i and job j can not be processed simultaneously anymore.
Hence, we can delete (i, j) from F ′.

Line 29: Can be done in the same way as before. The corrected distances are called l∗hk(i, j)
as well.

Example 3.4. Consider once again the project of Figure 2.1 and Table 2.1. Now we give
this project a prescribed deadline of d = UB = 15. This yields the adjacency matrix N :

N =



0 0 −∞ 0 −∞ 8 −∞
−∞ 0 1 −∞ −∞ −∞ 6
−∞ −3 0 −∞ −∞ −∞ 4
−1 −∞ −∞ 0 2 2 −∞
−∞ −∞ −∞ −4 0 −∞ 4
−∞ −∞ −∞ −∞ −5 0 2
−15 −∞ −∞ −∞ −∞ −∞ 0


Computing the longest-path-matrix, we find:

NLP =



0 0 1 0 3 8 10
-9 0 1 -9 -6 -1 6
-11 -3 0 -11 -8 -3 4
-1 -1 0 0 2 7 9
-5 -5 -4 -4 0 3 5
-10 -10 -9 -9 -5 0 2
-15 -15 -14 -15 -12 -7 0


Moreover, F ′ = {(1, 3), (1, 4), (3, 4)}.

For (i, j) = (1, 3) the following distance matrix with distances l∗hk, h, k ∈ J , is obtained.
For the uncolored numbers (h, k) it holds that l∗hk = lhk, while the colored ones are strictly
increased: l∗hk > lhk, i.e., in equation (3.2.2) the second term was attained as maximum.

0 4 5 0 3 8 10
-9 0 1 -9 -6 -1 6
-11 -3 0 -11 -8 -3 4
-1 4 5 0 2 7 10
-5 0 1 -4 0 3 6
-10 -5 -4 -9 -5 0 2
-15 -11 -10 -15 -12 -7 0


It is seen that l∗13 = −9 6≥ p3 = 4, so (1, 3) is not deleted from F ′. After considering
(i, j) = (1, 4), we find the following distances:
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

0 7 8 0 3 8 13
-9 0 1 -9 -6 -1 6
-11 -3 0 -11 -8 -3 4
-1 6 7 0 2 7 12
-5 4 5 -4 0 3 10
-10 -1 0 -9 -5 0 5
-15 -8 -7 -15 -12 -7 0


Now, l∗14 = −6 6≥ p4 = 4, so (1, 3) is neither deleted from F ′. We now consider the last
element of F ′ : (3, 4). 

0 8 9 0 4 8 14
-9 0 1 -9 -5 -1 6
-11 -3 0 -11 -7 -3 4
-1 8 9 0 4 7 14
-5 4 5 -4 0 3 10
-10 -1 0 -9 -5 0 5
-15 -7 -6 -15 -11 -7 0


Moreover, l∗34 = 4 ≥ p4 = 4. Hence, it is ensured that jobs 3 and 4 do not overlap, since job
4 is restricted to start at/after the finish time of job 3. Thus we can delete (3, 4) from F ′,
and stop = 0 again. Now, we repeat the algorithm, since F ′ 6= ∅ and stop = 0. However,
no difference occurs for considering (1, 3) and (1, 4), so stop = 1. Besides, it turns out that
the distances l∗ij , i, j ∈ J all satisfy the triangle-inequality, so the algorithm terminates: the

above matrix is NFS , with distances l∗ij . Again, time windows can be obtained by TW (j) =

{NFS
(0,j), . . . ,−N

FS
(j,0)}. Notice that NFS

(0,6) = 14 is a lower bound for the makespan of the project,
which is larger than the lower bound of the makespan found by the longest-path approach,
which was 10.

It should be noticed that in considering (1, 3) the columns corresponding to jobs 1,2 and 6 are
increased. This is due to the fact that jobs 1 and 3 can not be processed simultaneously and
since job 3 can only start on time 0 or 1, the earliest starting time of job 1 should be later.
Since job 2 and 6 depend on job 1, the earliest starting times of job 2 and 6 are increased
as well. Moreover, the starting time of job 4 is also very restricted and related to job 3, so a
similar argument holds for considering (1, 4) and (3, 4).

Remark 3.3. Algorithm 3.1 can test whether a given deadline is feasible: if it is not, the
algorithm terminates since there is a cycle of positive length. Hence, lower bounds on the
makespan of a project can be computed by iteratively performing the Forbidden Set Proce-
dure. This will be the subject of paragraph 4.1.

4 Simple Lower Bounds

Lower bounds on the makespan of a project are important for pratical purposes. For instance,
think of a construction project, in which the contractor has to make an estimate of the dura-
tion of the project. But also for theoretical reasons, lower bounds are important: if by some
heuristics a coinciding lower and upper bound are found, then the schedule corresponding to
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the lower (or upper) bound is an optimal one. In paragraph 4.1 we will consider so-called
destructive lower bounds, which can be computed using the Forbidden Set Procedure (algo-
rithm 3.1) of paragraph 3.2. An alternative lower bound, the workload based lower bound, is
the subject of paragraph 4.2, as in [20]. A more complex lower bound, the Lagrangian lower
bound introduced in [17], will be discussed in chapter 5.

It should be noticed that we already found a valid lower bound for the makespan of an instance
of PS|temp|Cmax: it is ESn+1, the earliest starting time of finish-job n + 1, which can be
computed by the longest-path approach of paragraph 3.1. For simplicity, we will denote this
lower bound by TLB. This is the lower bound if we relax the problem by omitting the
resource constraints.

Instead of ignoring the resource constraints, the temporal constraints can be discarted to
obtain an alternative lower bound, which we will call RLB. In this relaxation, we split a
job j with resource requirement rjk in jobs jk1, . . . , jkrjk for each k ∈ R. So we split job

j ∈ {1, . . . , n} in
∑
k∈R

rjk jobs. For k, i ∈ R and l ∈ {1, . . . , rjk} the resource requirement of

job jkl is as follows:

rjkli =

{
1 if i = k
0 otherwise

So each job now requires exactly one resource, except the artificial start and finish job. In
addition, pjkl = pj : all obtained jobs have processing time which is equal to the original
processing time. Moreover, we allow preemption of jobs. We define

wk :=
∑
j∈J

rjkpj (4.0.5)

to be the workload of resource k ∈ R. In addition:

Wk :=

⌈
wk

Rk

⌉
(4.0.6)

which represents the amount of time which is needed to process all jobs jkl which require
resource k ∈ R, l ∈ {1, . . . , rjk}. Since resources can simultaneously work on jobs, it is easily
seen that in order to process all

∑
j∈J

∑
k∈R rjk + 2 jobs, we have to take the maximum.

This will be a valid lower bound of the makespan of a project:

RLB := max
k∈R

(Wk) (4.0.7)

We want a lower bound which is as tight as possible. Thus, our initial lower bound LBinit,
which will be improved in the upon chapters, is defined as LBinit := max(TLB,RLB).

Example 4.1. Consider the PS|temp|Cmax-instance in Figure 4.1 and Table 4.1, for which
we already know that TLB = 10, as computed in Example 3.2. However, we now have 3
types of resources, with capacities R1 = 8, R2 = 7 and R3 = 10.

Notice that we have, once the splitting is done, there are 51 ’real’ jobs, plus an artificial
start and finish one. Workloads of resources can be computed by (4.0.5), which results in
W1 = d9.25e = 10, W2 = d10.286e = 11, W3 = d5.6e = 6. Hence, by (4.0.7), RLB = 11.
Consequently, LBinit = max(10, 11) = 11.
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Figure 4.1: Project network N

Job pj rj1 rj2 rj3

0 0 0 0 0
1 6 4 2 4
2 4 1 1 2
3 4 5 7 0
4 4 6 5 3
5 2 1 4 6
6 0 0 0 0

Table 4.1

4.1 Destructive Lower Bound (DLB)

As the name suggests, a lower bound will not be derived in a constructive way, but the
procedure consists of testing and proving whether a prescribed upper bound is infeasible. If
it is infeasible, this upper bound is destructed and has to be increased. In the same way
as was done in paragraph 3.1, TLB can be increased using the Forbidden Set Procedure of
Algorithm 3.1 in addition to the longest-path approach. In order to perform this procedure,
we need an upper bound UBinit, which can be taken equal either to T of equation (2.1.1) or
to a prescribed deadline d. If LBinit > UBinit, it is clear that there is no feasible schedule.

The Destructive Lower Bound approach consist of generating monotonically increasing and
decreasing sequences LBi and UBi respectively of lower and upper bounds in iteration i ∈ N,
as done in [20]. Here upper bounds are no upper bounds on the makespan of the problem, but
just an estimate of an upper bound for the lower bound. We know that the best lower bound
is in the integral interval [max

i
(LBi),min

i
(UBi)]. So we try some values gi as upper bound in

this interval in a systematic fashion by performing the Forbidden Set Procedure. That is, we
give weight −gi to the arc from n+ 1 tot 0 in network N . We have two possibilities:

• If in iteration i the Forbidden Set Procedure finds a cycle of positive length, we know
that the best lower bound of the problem is in the integral interval [gi + 1, UBi], since
gi can not be attained as makespan. That is: the lower bound LBi is rejected. So in
the next iteration i+ 1 we take LBi+1 = gi + 1, UBi+1 = UBi.

• If in iteration i the Forbidden Set Procedure terminates, then it is possibly proba-
ble to do the project within gi time units. Hence, UBi is a valid upper bound on
LBi, so it suffices to investigate the integral interval [LBi, gi − 1]. Because the For-
bidden Set Procedure terminated, a value NFS

(0,n+1) is found, which is also a lower
bound on the project makespan, since it is the earliest starting time of the finish
job n + 1. The strongest one of these is taken. Thus, in iteration i + 1 we take
LBi+1 = max(LBi, N

FS
(0,n+1)), UBi+1 = gi − 1.

We choose gi as the rounded mean of LBi and UBi in iteration i. The algorithm succesfully
terminates if LBi > UBi: the lower bound can not be decreased any further. However, if
UBinit already yielded a cycle of positive length in algorithm 3.1, then there is no feasible
schedule. The Destructive Lower Bound algorithm is summarized as follows:
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Algorithm 4.1 Destructive Lower Bound Algorithm (DLB)

Input: Instance of PS|temp|Cmax, bounds LBinit, UBinit on the project makespan.
Output: Destructive Lower Bound DLB.

1: LB1 := LBinit, UB1 := UBinit
2: i := 1
3: while LBi ≤ UBi do
4: gi := dLBi+UBi2 e
5: Perform the Forbidden Set Procedure with upper bound gi.
6: if FSP finds cycle of positive length then
7: if gi = UB1 then
8: There is no feasible schedule!
9: else

10: LBi+1 := gi + 1
11: UBi+1 := UBi
12: end if
13: else
14: UBi+1 := gi − 1
15: LBi+1 := max(NFS

0,n+1, LBi)
16: end if
17: i := i+ 1
18: end while
19: DLB := LBi

Example 4.2. For the problem of Example 4.1, starting with LBinit = 11, UBinit = T = 28,
the algorithm produces the following outcomes:

i = 1: LB1 = 11, UB1 = 28: FSP accepts g1 = 20 and NFS
0,n+1 = 14.

i = 2: LB2 = max(11, 14) = 14, UB2 = 19: FSP accepts g2 = 17 and NFS
0,n+1 = 14.

i = 3: LB3 = 14, UB3 = 16: FSP accepts g3 = 15 and NFS
0,n+1 = 14.

i = 4: LB4 = 14, UB4 = 14: FSP accepts g4 = 14 and NFS
0,n+1 = 14.

i = 5: LB5 = 14, UB5 = 13: Algorithm terminates with DLB = LB5 = 14.

In this example, each gi is accepted, but in general that is certainly not the case.

4.2 Workload based Lower Bound (WLB)

The more activities or resources an instance of PS|temp|Cmax has, the more computation
time it takes to perform the Forbidden Set Procedure, since the 2-fold forbidden set F is
larger. Hence, the Destructive Lower Bound procedure is less effective. Then, an alternative
lower bound can be used which will be called the workload based lower bound, as in [20]. The
idea of this lower bound is similar to that of RLB. We define:

pj(t) := (min(pj , ESj + pj − t))+, (4.2.1)
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where j ∈ J , t ∈ Z≥0 and ESj is the earliest starting time of job j. This number clearly
represents a lower bound on the processing time of job j and can be interpreted as the amount
of time job j still has to be processed in the real interval [t,∞]. Hence,

wk(t) :=
∑
j∈J

rjkpj(t) (4.2.2)

represents a lower bound on the workload wk of resource k ∈ R at time t. Similar by equation
(4.0.6),

Wk(t) :=

⌈
wk(t)

Rk

⌉
(4.2.3)

can be defined, which is a lower bound on the time resource k ∈ R is needed for processing
the remainder of all jobs. Moreover, ESj + max

k∈R
(Wk(ESj)) represents the earliest finish time

of job j. To obtain the workload-based lower bound on the makespan of the project, we have
to consider the maximum of all earliest finish times. Hence,

WLB := max
j∈J

(ESj + max
k∈R

Wk(ESj)) (4.2.4)

Remark 4.1. The workload-based lower bound is a stronger bound than the simple lower
bounds TLB and RLB: for the artificial start job j = 0, we have ES0 = 0 and Wk(ES0) =
Wk. Hence, by equation (4.0.7), WLB ≥ RLB. For the artificial finish job j = n + 1 with
ESn+1 it holds that Wk(ESn+1) = 0. Thus, WLB ≥ ESn+1 = TLB.

Example 4.3. Consider the problem of Example 4.1. The earliest starting times can be
obtained by the longest-path approach in paragraph 3.1. Equations (4.2.1)-(4.2.3) are used
to obtain the Wk-values. These are listed in Table 4.2. By equation (4.2.4): WLB =

Job ESj k = 1 k = 2 k = 3

0 0 10 11 6

1 0 10 11 6

2 1 9 9 6

3 0 10 11 6

4 3 6 7 4

5 8 1 2 2

6 10 0 0 0

Table 4.2: Wk-table

max(0 + 11, 0 + 11, 1 + 9, 0 + 11, 3 + 7, 8 + 2, 10 + 0) = 11. Here it turns out that WLB equals
RLB and is less tight than DLB, but, as mentioned before, for instances with more jobs and
resources this could be different.

5 Lagrangian Lower Bound (LLB)

In this chapter a more complex lower bound will be derived, the Lagrangian Lower Bound. In
addition to the simple lower bounds derived in chapter 4, also a, possibly resource-infeasible,
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schedule attaining this lower bound will be generated. However if the generated schedule is
infeasible, not that many resource constraints are expected to be harmed. In this chapter,
the first IP-formulation will be used, defined by constraints (2.3.1), (2.3.2), (2.3.3), (2.3.4)
and (2.3.5).

5.1 Lagrange Relaxation

In [7], it is proposed to relax the resource constraints (2.3.4)

∑
j∈J

rjk

( t∑
s=t−pj+1

xjs

)
≤ Rk, k ∈ R, t = 0, . . . , T.

by introducing non-negative Lagrangian multipliers λtk, t = 0, . . . , T , k ∈ R. As argued in
[17], by relaxing the resource-constraints, the polytope described by the remaining constraints
(2.3.2), (2.3.3) and (2.3.5) is integral. This results in a contribution to the objective function
of equation (2.3.1) by

T∑
t=0

∑
k∈R

λtk

(∑
j∈J

rjk

( t∑
s=t+pj−1

xjs

)
−Rk

)
. (5.1.1)

This can be further simplified and the following Lagrangian subproblem (LS) is obtained,
where the non-defined λ-values are considered to be 0, as in Remark 2.2:

Minimize

T∑
t=0

txn+1,t +
∑
j∈J

T∑
t=0

(∑
k∈R

rjk

t+pj−1∑
s=t

λsk

)
xjt −

T∑
t=0

∑
k∈R

λtkRk (5.1.2)

subject to constraints (2.3.2), (2.3.3) and (2.3.5). To simplify the LS-problem, numbers wjt
are introduced as follows:

wjt :=


∑
k∈R

rjk

t+pj−1∑
s=t

λsk if j 6= n+ 1

t if j = n+ 1.

(5.1.3)

Equation (5.1.2) then simplifies to

wλ(x) := min
∑
j∈J

T∑
t=0

wjtxjt −
T∑
t=0

∑
k∈R

λtkRk. (5.1.4)

This form of the Lagrange subproblem will be used in paragraph 5.3 to compute wλ(x), which
is a lower bound for this PS|temp|Cmax-instance, since resource-constraints were relaxed. As
mentioned before, there are n × (T + 1) decision variables. However, this number can be
reduced by performing the Forbidden Set Procedure. Once ESj and LSj are computed for job
j ∈ J , it suffices to consider only the decision variables xjt with ESj ≤ t ≤ LSj , leading to a
new Lagrangian subproblem with less decision variables, and thus less Lagrangian multipliers,
but with the same set of feasible solutions. This new Lagrangian subproblem, which we from
now on will just call Lagrangian subproblem, will become useful in the next paragraph.
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5.2 Minimum Cut Approach

As in [17], the Lagrangian subproblem (5.1.4) subject to constraints (2.3.2), (2.3.3) and
(2.3.5), can be transformed to a minimum cut problem. The −

∑T
t=0

∑
k∈R λtkRk term of

equation (5.1.4) will be omitted in this paragraph, since there are no decision variables xjt in
it. As a consequence, this term is constant. Hence, the objective function for this paragraph
is:

Minimize
∑
j∈J

T∑
t=0

wjtxjt. (5.2.1)

A network D = (V,A) is constructed as follows: for time t for which ESj ≤ t ≤ LSj + 1
for j ∈ J holds, a node vjt is introduced. Moreover, two nodes a and b are added, which
represent the source and sink of V :

V :=
{
vjt : j ∈ J , t ∈ {ESj , . . . , LSj , LSj + 1}

}
∪ {a, b}. (5.2.2)

The arc set A consists of three types of arcs.

Assignment arcs. For each job j ∈ J , assignment arcs are introduced between all nodes
vjt and vj,t+1, where ESj ≤ t ≤ LSj . The capacity of each assignment arc (vjt, vj,t+1)
is given by wjt as defined in equation (5.1.3).

Temporal arcs are corresponding to the temporal constraints. If there is a time lag dij
between jobs i and j (minimal or maximal), then there is a temporal arc between all
pairs of starting times, due to this time lag. That is: an arc (viti , vjtj ) exists between all
pairs ESi ≤ ti ≤ LSi + 1, ESj ≤ tj ≤ LSj + 1, where tj = ti +dij . The capacity of each
temporal arc is infinite. This is a slight modification of the approach of [17]. There,
temporal arcs between all pairs satisfying ESi + 1 ≤ ti ≤ LSi, ESj + 1 ≤ tj ≤ LSj are
introduced. We think our approach is more intuitive, but it does not matter for the
minimum cut, due the auxiliary arcs which will be defined next.

Auxiliary arcs are added to connect the source a and sink b with the remaining network.
Arcs (a, vj,ESj ) and (vj,LSj+1, b) are introduced for each j ∈ J , all with infinite capacity.

Example 5.1. Consider the project in Figure 5.1 with one resource type and R = 4. The
processing times and resource requirements are listed in Table 5.1, as well as the earliest and
latest starting times, as computed by the Forbidden Set Approach of Algorithm 3.1. We use
the prescribed upper bound d := 5. Instead of using NFS , the original network N will be

0 1 2 3

456

0
−1

−2 −1

1

1

−2
2

Figure 5.1: Project network N

Job pj rj ESj LSj

0 0 0 0 0
1 2 2 0 1
2 1 2 0 2
3 1 2 0 1
4 1 1 1 2
5 2 3 2 3
6 0 0 4 5

Table 5.1

used in this example for the construction of network D. Otherwise D would become very
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messy, since FSP adds an arc between all pair of nodes. Notice that due to the construction
of this instance, job 5 always determines the makespan of the project, so in D the time lags
dj6 := pj are omitted, for j 6= 5. Moreover, for simplicity the time lags d0j := 0 for j 6= 1
are neglected. Assume λjt := 1 is chosen as Lagrange multiplier for all j ∈ J and 0 ≤ t ≤ 5.
Then wjt := rjpj for j 6= 6, 0 ≤ t ≤ 5 and w6t := t, 0 ≤ t ≤ 5. This results in the network in
Figure 5.2. In this picture, the capacities of the arcs are written in the arcs, while the arcs
with a white arrowhead have infinite capacity.

t

j

0 1 2 3 4 5 6

0

1

2

3

4
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a b

0

4 4

2 2 2

2 2

1 1

6 6

4 5

Figure 5.2: Transformation to network D

A cut is an ordered pair (C,C) of disjoint sets C,C ⊂ V with C ∪ C = V and a ∈ C, b ∈ C.
The capacity is the sum of the weights of the arcs with tail in C and head in C. A minimum
cut is a cut with minimal capacity. In the remainder, only cuts with exactly one assignment
arc for each job j ∈ J are important, but that is not covered by our definition of a cut. This
drawback for minimum cuts is cured by Lemma 5.1.

Lemma 5.1. A minimum cut (C,C) can be transformed into a cut (C∗, C∗) with the same
capacity, but with exactly one assignment arc for each job j ∈ J .

Proof. Let (C,C) be a minimum cut of D. Suppose its capacity is finite. Otherwise, the
claim is trivial. The auxiliary arcs have infinite capacity, so for each job j ∈ J , there is at
least one assignment arc (vjt, vj,t+1) in (C,C).

Now, suppose that there is more than one assignment arc (vjt, vj,t+1) in (C,C) for some jobs
j ∈ J . A cut (C∗, C∗) with the same capacity can be constructed as follows:

• For j ∈ J , let tj be the smallest time index for which vj,tj ∈ C, vj,tj+1 ∈ C: the ’earliest’
assignment arc.

• Define C∗ :=
⋃
j∈J {vjt : t ≤ tj} ∪ {a}.
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• Define C∗ := V \C∗.

It is easily seen that C∗ ⊂ C and the set of assignment arcs of (C∗, C∗) is included in the set
of assignment arcs of (C,C). Because (C,C) is a minimum cut, the capacity of (C∗, C∗) is
as least as big. Hence, to prove that the capacity of (C∗, C∗) equals the capacity of (C,C),
it suffices to prove that (C∗, C∗) does not contain any of the temporal arcs. Remember that
all arc weights wjt are nonnegative.

To show this, suppose that there exists such a temporal arc in (C∗, C∗), say (vis, vjt) with
s ≤ ti, t > tj . We are going to deduce a contradiction. Let k be the number of assignment
arcs between t and tj + 1. Formally, k := t− (tj + 1). It is easily seen that k ≥ 0, since t > tj .
Rearranging some terms, we find that t− k = tj + 1. Moreover, all times tj , tj + 1, . . . , t− 1
are feasible starting times for job j. Thus, ESj + 1 ≤ t− k ≤ LSj .

Because s − k ≤ s ≤ ti ≤ LSi, we find that s − k ≤ LSi. Assume that in addition s − k <
ESi + 1. Then t − k = s − k + (t − s) < ESi + 1 + (t − s). Moreover, since there is a time
lag between jobs i and j of t − s time units, we find ESi + (t − s) ≤ ESj . Combining the
last two inequalities, we find t − k < ESj + 1. This is a contradiction with t − k = tj + 1,
since tj ≥ ESj . So s− k ≥ ESi + 1. That is, we have vi,s−k ∈ C∗ ⊂ C, since vi,s ∈ C∗ ⊂ C,
vj,t−k = vj,tj+1 ∈ C and a temporal arc (vi,s−k, vj,t−k) is contained in (C,C). Hence, the

minimum cut (C,C) contains a temporal arc. Since temporal arcs have infinite capacity, this
is a contradiction to the fact that (C,C) is a minimum cut. Hence, (C∗, C∗) does not contain
any temporal arc.

Lemma 5.2. For each feasible solution x of the relaxed problem described by equations (5.2.1),
(2.3.2), (2.3.3) and (2.3.5), there exists a finite capacity cut (C,C) of D such that x corre-
sponds to (C,C) via the transformation

xjt :=

{
1 if arc (vjt, vj,t+1) is in the cut,

0 otherwise.
(5.2.3)

Proof. Let x be a feasible solution of the relaxed problem described by equations (5.2.1),
(2.3.2), (2.3.3) and (2.3.5). For each job j ∈ J , there is exactly one xj,tj = 1, 0 ≤ tj ≤ T by

constraint (2.3.2). The others are 0. Define a cut (C,C) by setting
C :=

⋃
j∈J {vjt : t ≤ tj} ∪ {a} and C := V \C. Due to the construction of D, all arcs

(vj,tj , vj,tj+1), j ∈ J are arcs in the cut (C,C). Thus, x is transformed into (C,C) under the

transformation of (5.2.3). Finite capacity of (C,C) is ensured by the (temporal) feasibility of
x.

Corollary 5.3. If a minimum cut has infinite capacity, then there is no feasible solution to
the relaxed problem described by (5.2.1), (2.3.2), (2.3.3) and (2.3.5).

Lemma 5.4. If a solution x of the relaxed problem described by (5.2.1), (2.3.2), (2.3.3) and
(2.3.5) is infeasible, the cut (C,C) corresponding to x via (5.2.3) has infinite capacity.

Proof. If x is as in the statement, then it harms at least one temporal constraint, say dij . As
a consequence, a temporal arc corresponding to dij is in (C,C). Since this arc has infinite
capacity, the cut has infinite capacity.
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Lemma 5.5. For each finite capacity cut (C,C) of D with the property that there is exactly
one assignment arc per job, there exists a feasible solution x to the relaxed problem described
by equations (5.2.1), (2.3.2), (2.3.3) and (2.3.5) such that (C,C) corresponds to x under the
reversed transformation of (5.2.3).

Proof. Let (C,C) be a cut of finite capacity of D. By assumption, this cut contains exactly
one assignment arc for each job j ∈ J . Therefore, the corresponding solution under the
transformation of (5.2.3) satisfies constraint (2.3.2). Since (C,C) has finite capacity, none
of the temporal arcs are in the cut, and thus the temporal constraints (2.3.3) are fulfilled.
Hence, x is a feasible solution of the relaxed problem described by equations (5.2.1), (2.3.2),
(2.3.3) and (2.3.5).

Now, we are ready to state the main Theorem about why the Minimum Cut Approach works:

Theorem 5.6. There is a one-to-one correspondence between finite capacity cuts (C,C) of
D with the property that there is exactly one assignment arc per job and feasible solutions
x of the relaxed problem described by equations (5.2.1), (2.3.2), (2.3.3) and (2.3.5), via the
transformation (5.2.3). Moreover, the capacity of (C,C) equals the value of the objective
function

∑
j∈J

∑T
t=0wjtxjt, under constraints (2.3.2), (2.3.3) and (2.3.5).

Proof. The first statement is covered by lemmas 5.2 and 5.5. The second statement is fulfilled
by the construction of D.

By Theorem 5.6, job j starts at time t if and only if vjt ∈ C, vj,t+1 ∈ C. As a consequence
of Theorem 5.6, the capacity of a minimum cut (Cmin, Cmin) equals the value of the ob-
jective function of equation (5.2.1), under the same constraints as above. We can solve the
Minimum-Cut problem for the constructed network D, e.g. by performing the Ford-Fulkerson
algorithm for maximum flows (cf. [11]) and applying the well-known MaxFlow MinCut theo-
rem, proposed in [22]. This method always finds a cut which satisfies the property that there
is exactly one assignment for each job, unless the problem is infeasible. Other methods to
find a minimum cut may not have this property, but then Lemma 5.1 can be applied.

Example 5.2. Consider Example 5.1 again. It is easily seen that a minimum cut is pre-
scribed by Cmin := {a, v00, v10, v20, v30, v41, v52, v64}, Cmin = V \C. The capacity of this
cut is 19. This yields the following schedule, in the notation of the second IP-formulation:
S0 = S1 = S2 = S3 := 0, S4 := 1, S5 := 2, Cmax = S6 := 4. This schedule is time-feasible,
by construction, but not resource-feasible, since the total resource-usage at time 0 is 6, while
there is only 4 available. Notice that none of the schedules corresponding to a minimum cut
yield a resource-feasible schedule.

There is a cut which yields a resource-feasible schedule, but it is not a minimum one, since we
have to cross the arc (v65, v66) which contributes 5. By modifying λt for some 0 ≤ t ≤ T , the
capacities wjt change. For instance, if λ0 = λ1 = λ2 := 1, λ3 = λ4 = λ5 = λ6 := 0, then w53

is changed to 0. Then, a minimum cut crosses arc (v65, v66). The capacity of this minimum
cut is 14.
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5.3 Subgradient Optimization

Due to the Minimum Cut Approach, a time-feasible schedule with presumably least violation
of the resource constraints is obtained, minimizing the makespan. By modification of the
Lagrangian multipliers, the capacities wjt can be changed to ensure that some schedules that
lead to a large violation of resource constraints, are excluded. A very simple modification is
done in Example 5.2. In this paragraph, a subgradient optimization method as described in
[4], will be used to compute near-optimal values of Lagrange multipliers (cf. [17]). Equation
(5.1.4) is used as the objective function for the Lagrangian Subproblem. Since this is a
relaxation, wλ is a lower bound for the minimal makespan of the original problem. The aim
is to maximize this lower bound.

Example 5.3. Consider Example 5.2. For all Lagrange multipliers equal to 1, wλ = 19 −
4 × 7 = −9 is computed, which trivially is a lower bound on the makespan. However, since
it is negative, it is rather useless. For λ0 = λ1 = λ2 := 1, λ3 = λ4 = λ5 = λ6 := 0 we
derive wλ = 14− 4× 3 = 2, which is already much larger than the lower bound found before.
However, it is still trivial, since the largest processing time equals 2. But it can be further
increased, using subgradient optimization.

The problem of maximizing wλ over λ = (λ)tk, 0 ≤ t ≤ T , k ∈ R is known as the Lagrangian
Dual, with value LD := maxλwλ. It is clear that LS ≤ LD ≤ C∗max, where C∗max denotes the
optimal (minimal) makespan. As a consequence of the fact that the polytope described by
constraints (2.3.2), (2.3.3) and (2.3.5) has integral vertices, the optimal solution of the Linear
Programming relaxation of problem (2.3.1) subject to constraints (2.3.2), (2.3.3), (2.3.4) and
(2.3.5) equals the optimal solution of the Lagrangian Dual. Although there are efficient meth-
ods for solving LP-problems, it is not recommended to do this, since the computation time is
very large and probably no integral schedules are obtained. Hence, subgradient optimization
is used here.

By an iterative procedure, which is subgradient optimization, the Lagrangian multipliers are
updated. As in [17], the following update formula for the matrix λi of Lagrangian multipliers
in iteration i is used:

λi+1 := [λi + δigi]+, (5.3.1)

where gi = (gi)kt, 0 ≤ t ≤ T , k ∈ R is the subgradient at λi defined as the the contribution
of the Lagrange relaxation of the resource constraints (2.3.4) to the objective function for an
optimal solution xi to the Lagrangian subproblem of equation (5.1.2):

gikt :=
∑
j∈J

rjk(
t∑

s=t−pj+1

xijs)−Rk. (5.3.2)

Moreover, δi denotes the step size of the subgradient method, and determines the convergence
speed of the subgradient optimization method. If δi is large, the difference between the new
and old Lagrangian multipliers is large as well, while if δi is small, the Lagrangian multipliers
are modified slightly. The step size is updated as follows:

δi :=
δ
(
w∗ − wλi(xi)

)
‖gi‖2

. (5.3.3)
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Here, ‖ · ‖2 is the Euclidean 2-norm and w∗ is an upper bound on the optimal value of the
Lagrangian Dual: w∗ ≥ maxλwλ. For instance, w∗ := T , since T is an upper bound on the
project makespan, thus for the lower bound of the project makespan as well, although it is
quite rough. One could also take the makespan of a feasible schedule as w∗, but then such a
schedule have to be computed first. The parameter δ is a scalar which is updated according
to the improvement of the lower bound. For instance, if no improvement of the lower bound
has been found within I1 iterations, I1 ∈ N≥1, then we reduce δ by a fraction of 0 < q < 1.
Moreover, if no improvement is found within I2 iterations, I2 ∈ {n ∈ N≥1 : n > I1}, the
algorithm terminates. It turns out that δ = 2 is a good starting point, as in [4].

Summarizing, in order to start the subgradient optimization machinery, the parameters
δ, I1, I2 and q have to be specified, as indicated above. Moreover, an initial λ0 has to be
chosen. There is no recipe for computing such an initial λ0, so we will use λ0

kt := 1, for every
0 ≤ t ≤ T and every k ∈ R. The algorithm to find a Lagrangian lower bound using the
Minimum Cut Approach and subgradient optimization, is listed in Algorithm 5.1.
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Algorithm 5.1 Lagrangian lower bound (LLB)

Input: PS|temp|Cmax-instance, I1, I2 ∈ N, q ∈ (0, 1), δ, λ0

Output: Lagrangian lower boud LLB

1: Compute T by equation (2.1.1)
2: Perform FSP to obtain NFS , thus ESj , LSj for j ∈ J
3: Construct network D as done in paragraph 5.2
4: terminate := 0, i := 0, c1 = c2 := 0, LLB := 0

5: while terminate = 0 do
6: i := i+ 1
7: Compute wjt as in equation (5.1.3)
8: Solve Minimum Cut problem on D with weights wjt to obtain solution xi

9: Compute wλi(x
i) by equation (5.1.4)

10: if wλi(x
i) > LLB then

11: c1 := 0, c2 := 0
12: else
13: c1 := c1 + 1, c2 := c2 + 1
14: end if
15: if c2 = I2 then
16: terminate := 1
17: else
18: if c1 = I1 then
19: δ := q × δ
20: end if
21: Compute gi using equation (5.3.2)
22: Compute δi by equation (5.3.3)
23: Compute λi+1 using equation (5.3.1)
24: end if
25: LLB := max

i
wλi(x

i)

26: end while

Remark 5.1. Line 10+11: If an improvement is found, the counters are set equal to 0
again.

Line 15+16: If c2 reaches its upper bound I2, then no improvement was found in the last
I2 iterations, so the algorithm terminates.

Line 18+19: If no improvement was found in the last I1 iteraions, the search space is re-
stricted by reducing δ by a fraction q.

Line 25: LLB takes the value of the largest lower bound ever found. It is non-decreasing by
construction.

In addition to the Lagrangian lower bound, the solution x corresponding to this lower bound
can be determined as well. This schedule is time-feasible, but it is highely unlikely to be
resource-feasible. This solution can be written as schedule S, as in the second IP-formulation,
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by setting

Sj :=

{
t if xjt = 1

0 otherwise.
(5.3.4)

However, presumably only few resource constraints are violated, so it is almost resource-
feasible. We can use this schedule as a priority-list, which is the subject of the next chapter.

6 Priority-rule methods

In this chapter we will turn to solution methods to find optimal schedules, by means of the
tools developed in the previous chapters. Remember that PS|temp|Cmax is NP-complete,
so we have to use heuristics: to obtain an order to schedule the jobs, we will consider some
priority rules, which will be the subject of paragraph 6.1. In paragraphs 6.2 and 6.3 the
basic versions of the serial and parallel generation scheme will be considered, which are the
basis of priority-rule methods. They will be used in paragraphs 6.6 and 6.7 for the direct,
decomposition and regret biased sampling methods discussed there.

6.1 Priority-lists

In priority-rule methods, jobs are scheduled one by one, by fixing their starting times, which
are denoted by S0, . . . , Sn+1. We denote the set of scheduled jobs by C, where J \C is the set
of jobs that still have to be scheduled, as in [20]. Initially, we start with the artificial job 0
so we state S0 := 0 and C := {0}. At each moment in time, not each job is allowed to start,
due to minimal time lags. Only taking the temporal constraints into account, the set of jobs
which are allowed to start at time t is denoted by Et, the eligible set:

Et := {j ∈ J \C : ∀i ∈ C : t ≥ Si + l∗ij}. (6.1.1)

Notice that the temporal constraints resulting from the Forbidden Set Procedure of paragraph
3.2 are used. Thus, algorithm 3.1 has to be executed first. Moreover, this definition induces
that job j ∈ Et only if t ≥ ESj , since ESj = l∗0,j and S0 = 0.

The big question in using priority-rule methods is: at time t, if there is more than one candi-
date, which job j ∈ Et has to be picked? For this purpose, priority-lists π = (π(0), . . . , π(n+1))
are used, where π(j) ∈ N is the priority of job j. At time t, the next job j∗ to be scheduled
is the activity of Et with highest priority. That is,

j∗ = {j ∈ Et : π(j) = min
i∈Et

π(i)}. (6.1.2)

If there is again a tie, i.e., π(h) = π(k) for some h, k ∈ Et, we random pick a job with
highest priority, all with equal probability. Another method is to consider a second priority-
list for such cases. When a job j∗ ∈ Et is selected, it is scheduled as early as possible, taking
the resource constraints into account. Optimality of this procedure will be considered in
paragraph 6.9.

Let Π be the set of different priority-lists π, with π(0) ≤ minj∈J π(j) and π(n + 1) ≥
maxj∈J π(j). It is known that the cardinality of this set is countable. We call two priority-
lists π1, π2 equivalent if they yield the same order of jobs. That is: π1 ∼ π2 if and only if
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for all job pairs i, j ∈ J with π1(i) ≤ π1(j) it holds that π2(i) ≤ π2(j). It can easily be
checked that this definition really yields an equivalence relation. Thus, O := Π/ ∼ is the set
of different orders on J . It is easily seen that |O| = (|J | − 2)!, which already for the very
small example of 5 jobs leads to 120 different orders. Hence, it is not recommended to check
each order whether it yields a schedule in which the makespan is minimized. We can however
reduce the cardinality of O, taking the temporal constraints into account. Obviously, if the
temporal constraint Sj ≥ Si + l∗ij holds, then it should be ensured that π(i) ≤ π(j) for a
representant π of order o ∈ O. This can be done by the following algorithm:

Algorithm 6.1 Priority-list with respect to Temporal Constraints

Input: Instance of PS|temp|Cmax, initial priority-list πinit, distance matrix NFS .
Output: Priority-list π with priorities respecting the Temporal Constraints.

1: for all i, j ∈ J do
2: if NFS

(i,j) > 0 then

3: if πinit(i) > πinit(j) then
4: π(i) := πinit(j)
5: π(j) := πinit(i)
6: end if
7: end if
8: end for

A selection of well known priority-rules is Shortest/Longest Processing Time First, Random
Priority-lists and Earliest/Latest Starting Time First. More priority rules are considered in
[1], [12], [14] and [21]. In addition, also priority-lists arising from solutions of the, possibly
relaxed, problem can be considered, such as the schedule corresponding to the Lagrangian
relaxation. This is the case in paragraph 6.7 and chapter 5.

It turns out (cf. [20]) that the priority-rule Latest Starting Time First, which we will call
LST, provides ’good’ schedules. However, we can distinguish between a static version and
a dynamic version of LST. In the static version, the latest starting times arising from the
time windows found by FSP, is a global priority-list: the latest starting times are not changed
during the generation of the schedules. In the dynamic version, this is not the case. Suppose
there is a (modified) maximum time lag l∗ji < 0 between job i and j and job i is picked for
scheduling, i.e., Si is fixed. Then

LSj := min(LSj , Si − l∗ji) (6.1.3)

possibly changes. Moreover, the earliest starting time may increase due to (modified) mini-
mum time lags l∗ij > 0 between job i and job j. Then

ESj := max(ESj , Si + l∗ij). (6.1.4)

In the dynamic version, which will be denoted by LSTd, every time a job is scheduled, the
earliest and latest starting times are updated, which is the priority-list for the new iteration.

In the upcoming paragraphs two generation schemes will be considered: the serial and paral-
lel generation scheme. The main difference between these two is that in the serial generation
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scheme an activity-incrementation, while in the parallel one a time-incrementation is per-
formed, as in [15]. As a consequence, in the serial generation scheme only one job will be
scheduled, while in the parallel generation scheme multiple jobs can be scheduled during each
iteration.

6.2 Serial Scheduling

Recall that C is defined to be the set of already scheduled jobs. In addition, we define SC to
be the corresponding partial schedule. We want to schedule a chosen job j∗ ∈ Et as early as
possible. That is, at the earliest time where it is both temporal- and resource-feasible, which
we will call t∗. The temporal-feasibility is always ensured due to the definition of Et. So we
need to know the resource usage for each resource k ∈ R of partial schedule SC at time t: the
amount of resources of type k which is being used by the already processed jobs C at time t.
In order to determine the resource usage, we need to know which jobs of partial schedule SC

are active at time t. This active set will be called A(SC , t), as in [20]. Then

A(SC , t) := {j ∈ SC : SCj ≤ t < SCj + pj}. (6.2.1)

Moreover, we define by rk(S
C , t) the resource usage of resource k ∈ R at time t in partial

schedule SC . That is:
rk(S

C , t) :=
∑

j∈A(SC ,t)

rjk (6.2.2)

Such a partial schedule can be represented by m = |R| Gantt charts in which at a glance the
active set and resource usage of resource k ∈ R can be determined. As usual, the horizontal
axis represents time, while the vertical axis is the resource usage of type k. The jobs are
represented by blocks of size pj × rjk, for j ∈ J and k ∈ R. By ’fitting’ a block in the Gantt
chart, t∗ can easily be determined, as shown in the next example.

Example 6.1. Consider once again the instance of Figure 4.1 and Table 4.1, with R1 = 8,
R2 = 7, but without the third resource. The optimal schedule is represented in Figure 6.1,
one chart for each resource-type. Moreover, partial schedules can be represented like this.
The active set and the resource usage is easily seen, e.g., A(SC , 11) = {1, 2}, r1(SC , 11) = 5
and r2(SC , 11) = 3. Considering the Gantt charts, t∗ can easily be determined. For instance,
the block which represents job 4 can not be scheduled simultaneously with job 3, since placing
this block at time 2 would result in a crossing of the line of the resource-capacity for both
resource 1 and 2. Hence, for scheduling job j∗ = 4, we see that t∗ = 4.

Notice that R1 = 6 would yield the same schedule, since the maximum resource usage of type
1 is 6. Moreover, job 2 can also be scheduled at time 10. Optimality is proven by the fact
that F ′ = {(1, 3), (3, 4), (1, 4), (4, 5)}. Hence, max(p1 +p3 +p4, p4 +p5) = 14 is a lower bound
for this instance. Besides, DLB = 14, so the upper bound coincides with the lower bound
and the schedule is optimal.

Now, the procedure of ’fitting’ block j∗ ∈ Et into partial schedule SC and thus determining
the earliest starting time t∗ of job j∗ which is both resource- en temporal-feasible, is done
using the following formula:

t∗ = min(s ≥ t : rk(S
C , τ) + rj∗k ≤ Rk for s ≤ τ < s+ pj∗ and all k ∈ R, j∗ ∈ Et). (6.2.3)
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Figure 6.1: Gantt-charts of schedule S for both resource types

That is, during the whole time needed to process j∗, the resource constraints should not be
harmed. It is guaranteed for job j∗ that t∗ ≥ ESj∗ , but in addition it should be ensured that
t∗ ≤ LSj∗ : job j∗ can not start later than its latest starting time, due to maximum time lags.
If this is not the case, we perform a so-called unscheduling step, which will be discussed in
paragraph 6.4.

After fixing the starting time t∗ = Sj∗ , the new t has to be computed. This is done by
searching through all times on which jobs of which all predecessors are scheduled, and take
its maximum:

t := max(Si + l∗ij : j ∈ J \C such that ∀dij ≥ 0 : i ∈ C). (6.2.4)

Moreover, the earliest and latest starting times of all not yet scheduled jobs have to be
determined, since there are possibly time lags between the start of job j∗ and jobs j ∈
(J \C) ∪ {j∗}. The serial generation scheme can now be stated as follows:
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Algorithm 6.2 Serial Generation Scheme

Input: Instance of PS|temp|Cmax, dynamic priority-list πd, distance matrix NFS .
Output: Temporal- and resource-feasible schedule S = (S0, S1, . . . , Sn+1).

1: C := {0}, S0 := 0, t := 0
2: while J \C 6= ∅ do
3: Determine Et by equation (6.1.1)
4: Compute j∗ by equation (6.1.2)
5: Compute t∗ by equation (6.2.3)
6: if t∗ > LSj∗ then
7: Perform procedure ’Unscheduling’ (discussed in paragraph 6.4)
8: else (Schedule j∗ at time t∗)
9: Sj∗ := t∗, C := C ∪ {j∗}

10: Compute t by equation (6.2.4)
11: for all j ∈ J \C do
12: Update ESj by equation (6.1.4)
13: Update LSj by equation (6.1.3)
14: end for
15: end if
16: Update πd
17: end while

Remark 6.1. Input: The distance matrix NFS includes the earliest and latest starting
times.

Line 2: As long as not all jobs are scheduled.

Line 10: The updating formula for t. It is the latest temporal-feasible starting time of the
not yet scheduled jobs of which all predecessors have been scheduled.

Line 16: Instead of dynamic priority-rule πd, a static rule πs could be used. Then, the
updating is not needed.

Example 6.2. Consider the PS|temp|Cmax-instance in Figure 6.2 and Table 6.1. There is
one resource with capacity R = 10. It is easily computed that our initial upper bound T = 23.
Moreover, it turns out that DLB = 10, computed with algorithm 4.1. The Forbidden Set
Procedure of algorithm 3.1 computes earliest and latest starting times as listed in the table,
setting d60 = −23.

Now this preparation has been done, we can start scheduling. We use the static priority-rule
Shortest Processing Time First : πSPT = {0, 5, 7, 2, 1, 6, 0}. Ties are broken on increasing
activity numbers. The results of the execution of the serial generation scheme are listed in
Table 6.2 below.

The Gantt chart for the generated schedule is as in Figure 6.3.

The final schedule is S = (0, 0, 0, 2, 4, 7, 13). It is not a priori seen whether this schedule is
optimal, since it does not match with the lower bound of 10.
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Figure 6.2: Project network N

Job pj rj ESj LSj

0 0 0 0 0
1 5 3 0 13
2 7 4 0 14
3 2 6 0 14
4 1 3 2 15
5 6 4 4 17
6 0 0 10 23

Table 6.1

It. C Et j∗ t∗ Update

1 {0} {1, 2} 2 0 t := 0
2 {0, 2} {1, 3} 3 0 t := 0
3 {0, 2, 3} {1} 1 2 t := 2, ES4 := 4, ES5 := 6, ES6 := 12, LS4 := 6
4 {0, 1, 2, 3} {4} 4 4 t := 6
5 {0, . . . , 4} {5} 5 7 t := 13, ES6 := 13
6 {0, . . . , 5} {6} 6 13

Table 6.2: Serial generation scheme with SPT-rule

6.3 Parallel Scheduling

Instead of the activity-incrementation performed in the serial generation scheme, the parallel
generation scheme uses time-incrementation. As a consequence, more than one job can be
scheduled during each iteration. The same terminology as in the previous paragraph is used.
The parallel generation scheme first determines the minimal earliest starting time t+ of all
jobs in Et, i.e., among the eligible jobs at time t:

t+ := min
j∈Et

(ESj). (6.3.1)

All jobs with earliest starting time t+ are put in a new eligible set Et+ :

Et+ := {j ∈ Et : ESj = t+} (6.3.2)

Only jobs belonging to this set can be picked for scheduling. Selection of job j∗ and time t∗

is done in the same way as in the serial generation scheme, that is, using equations (6.1.2)
and (6.2.3). Once a job j∗ is picked, it is removed from Et+ . There are three possibilities:

I t∗ > LSj∗ : Then the unscheduling step is performed, which will be the subject of the
next paragraph.

II t∗ > t+: Job j∗ can not be scheduled at time t+. Hence, its earliest starting time can be
increased towards t∗. Moreover, there are possibly not yet scheduled jobs that depend
on job j∗, due to minimum time lags. Since ESj∗ is increased to t∗, the starting times of
these jobs possibly increase as well, with an amount of l∗j∗j time units. So for all j ∈ J \C
we do ESj := max(ESj , t

∗ + l∗j∗j). For j = j∗ this reads ESj∗ := max(ESj∗ , t
∗) = t∗,
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Figure 6.3: Gantt chart for generated schedule

since t∗ > ESj∗ = t+. Because we have removed j∗ from Et+ , it will not be considered
anymore during this iteration.

III t∗ = t+: Job j∗ is scheduled at time t∗ and the earliest and latest starting times of the
not yet scheduled jobs and t are updated as in the serial generation scheme.

The basic version of the parallel generation scheme is now as follows (cf. [20]).
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Algorithm 6.3 Parallel Generation Scheme

Input: Instance of PS|temp|Cmax, dynamic priority-list πd, distance matrix NFS .
Output: Temporal- and resource-feasible schedule S = (S0, S1, . . . , Sn+1).

1: C := {0}, S0 := 0, t := 0
2: while J \C 6= ∅ do
3: Determine Et by equation (6.1.1)
4: Compute t+ by equation (6.3.1)
5: Determine Et+ by equation (6.3.2)
6: while Et+ 6= ∅ do
7: Compute j∗ by equation (6.1.2)
8: Et+ := Et+\{j∗}
9: Compute t∗ by equation (6.2.3)

10: if t∗ > LSj∗ then
11: Perform procedure ’Unscheduling’ (discussed in paragraph 6.4)
12: else
13: if t∗ > t+ then
14: for all j ∈ J \C do
15: ESj := max(ESj , t

∗ + l∗j∗j)
16: end for
17: else
18: Sj∗ := t∗, C := C ∪ {j∗}
19: t := max(Si + dij : j ∈ J \C such that ∀l∗ij ≥ 0 : i ∈ C)
20: for all j ∈ J \C do
21: Update ESj by equation (6.1.4)
22: Update LSj by equation (6.1.3)
23: end for
24: end if
25: end if
26: end while
27: Update πd
28: end while

Remark 6.2. Input: The distance matrix NFS includes the earliest and latest starting
times.

Line 2: As long as not all jobs are scheduled.

Line 10: Case I

Line 13: Case II

Line 17: Case III

Line 19: The updating formula for t. It is the latest temporal-feasible starting time of the
not yet scheduled jobs of which all predecessors have been scheduled.

Line 24: Instead of dynamic priority-rule πd, a static rule πs could be used. Then, the
updating is not needed.

Example 6.3. Consider once again the instance of Figure 6.2 and Table 6.1 in Example
6.2, with T = 23 and DLB = 10. The results of the execution of the parallel gener-
ation scheme, using the dynamic priority-rule LSTd, starting with priority-list πLSTd =
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{13, 13, 14, 14, 15, 17, 23} and ties broken on increasing activity numbers, are listed in Ta-
ble 6.3.

It. C Et t+ Et+ j∗ t∗ Update Case

1a {0} {1, 2} 0 {1, 2} 1 0 t := 2, LS4 := 4 III
1b {0, 1} {2} 0 {2} 2 0 t := 2, π4 := 4 III

2a {0, 1, 2} {3, 4} 0 {3} 3 5 ES3 := 5, ES5 := 8 II
2b {0, 1, 2} {3, 4} 2 {4} 4 2 t := 3, ES6 := 14 III
2c {0, 1, 2, 4} {3} 5 {3} 3 5 t := 8 III

3 {0, . . . , 4} {5} 8 {5} 5 8 t := 14 III

4 {0, . . . , 5} {6} 14 {6} 6 14 III

Table 6.3: Parallel generation scheme with LSTd-rule

Thus, schedule S = (0, 0, 0, 5, 2, 8, 14) is obtained, resulting in the Gantt chart in Figure 6.4.

t

r(SC , t)

1 2 3 4 5 6 7 8 9 1011121314

1
2
3
4
5
6
7
8
9

10

1

2

4

3

5

Figure 6.4: Gantt chart for generated schedule

Since in Example 6.2 a lower makespan was found, it is clear that for this instance the serial
generation scheme in combination with SPT gives a better schedule than the parallel one with
LSTd.

6.4 The Unscheduling Step

Maximum time lags, which include the prescribed project deadline d or upper bound T ,
give rise to latest starting times LSj for jobs j ∈ J . However, once in the serial or parallel
generation scheme it occurs that the earliest both resource and temporal feasible starting time
t∗ of selected job j∗ exceeds the latest starting time LSj∗ , at least one maximum time lag is
harmed. Then, to obtain a feasible schedule, j∗ has to be scheduled at an earlier moment.
Hence, some jobs j ∈ C have to be unscheduled and scheduled again at an earlier or later
moment, which is done by changing the time windows.

A first step in the Unscheduling Procedure is to determine the set U of jobs j ∈ C which
determine the latest starting time of job j∗. That is, job i ∈ U if there is a maximal (modified)
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time lag l∗j∗i < 0 such that LSj∗ = Si− l∗j∗i. Remember that l∗j∗i < 0 indicates that job j∗ has
to start at most −l∗j∗i after the start of job i:

U := {i ∈ C : LSj∗ = Si − l∗j∗i}. (6.4.1)

Since LSj∗ should increase, the set U consist of jobs which have to be scheduled later to
satisfy the maximum time lags between the start of job i ∈ U and job j∗. However, if it
occurs that the artificial start-job 0 is in this set, no feasible schedule can be found, since the
start-job is forced to start at time 0. In that case a different priority-rule and/or generation
scheme has to be used.

It suffices forcing jobs i ∈ U to start at least t∗−LSj∗ time units later, which can be done by
unscheduling all jobs i ∈ U and increasing the earliest starting times ESi by t∗ − LSj∗ time
units:

ESi := Si + t∗ − LSj∗ . (6.4.2)

As a consequence (’new’ corresponds to values used in the next iteration),

Snewi ≥ ESi = Si + t∗ − LSj∗ = Si + t∗ − (Si − l∗j∗i) = t∗ + l∗j∗i

and
LSnewj∗ := Snewi − l∗j∗i ≥ t∗ + l∗j∗i − l∗j∗i = t∗.

Now, LSnewj∗ ≥ t∗, so in the next iteration of the serial or parallel generation scheme this case
can be fixed, unless t∗new ≥ LSnewj∗ . But if that is the case the Unscheduling Procedure can be
applied again. There is still one drawback, namely the case that the changed earliest starting
time, due to the Unscheduling Procedure, of a job i ∈ U exceeds its latest starting time:

ESi > −l∗i0 =: LSi. (6.4.3)

Then, no feasible schedule can be found and a different priority-rule and/or generation scheme
has to be used.

Since all jobs i ∈ U are forced to start later than they did before, resources become available
at moments they were scheduled. That is, the integral interval determined by the minimal
starting time and maximal finish time of jobs i ∈ U : {mini∈U Si, . . . ,maxi∈U (Si + pi)}. Other
already scheduled jobs can possibly start in this interval to obtain a better schedule. We
define

H := {i ∈ C : Sh > min
i∈U

Si}. (6.4.4)

Thus, all jobs h ∈ H are unscheduled as well.

For the not yet scheduled jobs j ∈ J \C the earliest and latest starting times ESj and LSj
have to be updated, or computed again if a job was unscheduled. For computing ESj for
j ∈ J \C there are three possible earliest starting times, of which the maximum has to be
taken:

I The earliest starting time of job j equals the value that it had in the initial time window,
i.e. ESj = l∗0j .
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II For a job i ∈ U there is a minimal time lag l∗ij between the start of job i and j. Since the
earliest starting times of all jobs i ∈ U are increased, this have to happen to the ESj as
well: ESj = maxi∈U (ESi + l∗ij).

III For i ∈ C there is a minimal time lag l∗ij between the start of job i and j. Then ESj
needs to be updated according to equation (6.1.4), in which the maximum value of for
all jobs i ∈ C have to be taken.

Hence,
ESj := max(l∗0j ,max

i∈U
(ESi + l∗ij),max

i∈C
(Si + l∗ij)). (6.4.5)

A similar analysis holds for the latest starting times. However, the increase of earliest starting
times of jobs i ∈ U in case II are of no influence for the latest starting times, so only cases
similar to I and III make sense. The updating formula for LSj , j ∈ J \C is thus as follows
(cf. equation (6.1.3)):

LSj := min(−l∗j0,min
i∈C

(Si − l∗ji)) (6.4.6)

In theory, the serial or parallel generation scheme can run infinitely long, as unscheduling can
cycle among two or more jobs which lead to the Unscheduling Procedure. To fix that, the
number u of unscheduling steps is counted. Moreover, a maximum number u of unscheduling
steps is prescribed, e.g. u = |J | as done in [20]. If u > u, the algorithm is terminated and no
feasible schedule is found. A different priority-rule and/or generation scheme has to be used.
Summarizing, the Unscheduling Procedure is described in the following algorithm.

Algorithm 6.4 Unscheduling Procedure

1: u := u+ 1
2: Compute U as in equation (6.4.1)
3: if 0 ∈ U or u > u then
4: Terminate: no feasible schedule can be found
5: else
6: for i ∈ U do
7: Compute ESi by equation (6.4.2)
8: C := C\{i}
9: if ESi > −l∗i0 (equation (6.4.3) holds) then

10: Terminate: no feasible schedule can be found
11: end if
12: end for
13: end if
14: Compute H by equation (6.4.4)
15: C := C\H
16: for all j ∈ J \C do
17: Compute ESj and LSj by (6.4.5) and (6.4.6)
18: end for

Example 6.4. In addition to the PS|temp|Cmax-instance of Examples 6.2 and 6.3, an addi-
tional maximum time lag d52 = −3 is introduced, as drawn in Figure 6.5. Again, R = 10 and
the initial upper bound T is set to 23. The Forbidden Set Approach computes earliest and
latest starting times as listed in Table 6.4. Moreover, DLB = 10.
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Figure 6.5: Project network N

Job pj rj ESj LSj

0 0 0 0 0
1 5 3 0 13
2 7 4 1 14
3 2 6 1 14
4 1 3 2 15
5 6 4 4 17
6 0 0 10 23

Table 6.4

For generating a schedule, we use the priority-rule LSTd, together with the serial generation
scheme of algorithm 6.2. Results are listed in Tables 6.5, 6.6, 6.7.

It. C Et j∗ t∗ Update

1 {0} {1} 1 0 t := 2, π(4) = LS4 := 4
2 {0, 1} {2, 4} 4 2 t := 4
3 {0, 1, 4} {2} 2 1 π(3) = LS3 := 1, π(5) = LS5 := 4

Table 6.5: First three iterations

Now, the Gantt chart for the partial schedule S{0,1,2,4} is as in Figure 6.6. Naturally, the
eligible set E4 := {3}, so job j∗ := 3 will be picked for scheduling. However, t∗ = 5, as the
Gantt-chart makes clear, and LS3 = 1. The unscheduling step thus needs to be done. It is
easily computed that U = {2}. So ES2 has to be increased by t∗ − LS3 = 5− 1 = 4. Hence,
ES2 := 1 + 4 = 5, and C := {0, 1, 4}.

Notice that 4 ∈ H, since S4 = 2 > S2 = 1. Thus, job 4 is unscheduled since it possibly can
start earlier than time 2. (In this example, that is not the case, since ES4 = 2 already, but
the algorithm do not notice that and in the updating of the earliest starting times, it will
remain 2). Hence, C = {0, 1}. The earliest and latest starting times of jobs j ∈ J \C are
updated as listed in Table 6.6:

j 2 3 4 5 6

ESj 5 5 2 8 14
LSj 14 14 4 17 23

Table 6.6: Modified earliest and latest starting times

Moreover, the priority-list π is updated, according to the latest starting times. Now iteration
4 (which was the unscheduling iteration) is done and we can resume scheduling.

The obtained schedule is S = (0, 0, 5, 5, 2, 8, 14), as in Figure 6.7.
The parallel generation scheme with LSTd produces the same outcome.
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It. C Et j∗ t∗ Update

5 {0, 1} {2, 4} 4 2 t := 4
6 {0, 1, 4} {2} 2 5 t := 7, π3 = LS3 := 5, π5 = LS5 := 8
7 {0, 1, 2, 4} {3} 3 5 t := 8
8 {0, . . . , 4} {5} 5 8 t := 14
9 {0, . . . , 5} {6} 6 14

Table 6.7: Unscheduling in serial generation scheme with LSTd
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Figure 6.6: Partial schedule S{0,1,2,4}
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Figure 6.7: Final schedule S

6.5 Direct Method

In this paragraph the direct method is discussed. This method is discussed in more detail in
[13]. The main idea in this method is to partition the set of jobs in smaller parts. Jobs within
such a part strongly depend on each other, as a consequence of minimum and maximum time-
lags. Intuitively, these jobs have to be scheduled a short amount of time after each other.
The direct method is a modification of the approach of paragraphs 6.2 and 6.3 and it also
makes use of the serial or parallel generation scheme. In the next paragraph, modifications
of the direct method will be discussed, which are the decomposition methods.

A first step is the partitioning of J into smaller sets, in which the jobs strongly depend on
each other. If there is a minimum and maximum time lag between two jobs i, j ∈ J in the
project network N , say dij ≥ 0 and −∞ < dji < 0, then Si influences ESj and LSj very
much. If the cycle length is even zero, that is, dij = −dji, then Si completely determines
ESj = LSj = Sj . This can be generalized to more than two jobs, by determing the strongly
connected components of N .

Definition 6.1. A Strongly Connected Component (SCC) is a subset Σ = {i1, . . . , ik} of J
such that there is a path in N from ih to il for each h, l ∈ {1, . . . , k}. Alternatively: lihil <∞
for each h, l ∈ {1, . . . , k}. The Set of Strongly Connected Components SSCC is a partition of
J such that each Σ ∈ SSCC is an SCC.

In addition, the K := |SSCC| SCC’s Σ are numbered Σ1, . . . ,ΣK . For Σκ with |Σκ| > 1,
κ ∈ {1, . . . ,K} scheduling of some job i ∈ Σκ determines ESj and LSj for all j ∈ Σκ, j 6= i.
Since these possible starting times become restricted, it is intuitively reasonable to schedule
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these jobs as soon as possible. Thus, scheduling all j ∈ Σκ should be done first before selecting
activities of different SCC’s. This is done in the direct method.

At first, SSCC needs to be computed. This can be done by several different methods, e.g.
by Tarjan’s algorithm described in [25]. Then, we can use (2.1.1) to obtain an initial upper
bound T and apply the Forbidden Set Procedure to determine NFS , thus l∗ij for i, j ∈ J . For
scheduling the activities, the direct method uses a slight modification of the serial or parallel
generation scheme: Since all j ∈ Σκ have to be scheduled directly after each other, we need
to know whether all jobs of the current Σκ are scheduled, i.e., Σκ ⊆ C. Therefore, a boolean
variable q is introduced such that q = 1 if for all j ∈ Σκ it holds that j ∈ C; q = 0 holds
if at least one but not all j ∈ Σκ are scheduled. In the latter case, we are not yet finished
scheduling the current SCC Σκ. Then the eligible set Et is updated as follows:

Et := {j ∈ Σκ : ∀i ∈ J : t ≥ Si + l∗ij , j ∈ J \C}. (6.5.1)

If q = 1, we need to choose a new SCC Σι to schedule next. As a requirement, all predecessors
of all jobs j ∈ Σι have to be scheduled. Remember that t denotes the earliest time on which
all eligible jobs can start, since their predecessors have been scheduled. This is covered by
the condition t ≥ max

i∈C,j∈Σι
(Si + dij). Thus, in the case q = 1,

Et :=
⋃

1≤ι≤K
{Σι ⊆ J\C : t ≥ max

i∈C,j∈Σι
(Si + dij)} (6.5.2)

is used for computing the eligible set. The direct method can now be summarized as follows:

Algorithm 6.5 Direct Method

Input: Instance of PS|temp|Cmax, dynamic priority-list πd, distance matrix NFS .
Output: Schedule S.

1: Determine SSCC of N
2: Compute T using (2.1.1) (or use prescribed deadline d)
3: Perform the Forbidden Set Procedure of Algorithm 3.1
4: Choose a proper priority-rule
5: Generate schedule S by using the serial/parallel generation scheme with q, equations

(6.5.1) and (6.5.2) and the chosen priority-rule

Example 6.5. Consider Example 6.4. Notice that SSCC = {{0}, {1, 4}, {2, 3, 5}, {6}}. If the
direct method in combination with the serial generation scheme and any respecting temporal
constraints priority-rule is applied, exactly the same results are obtained, since the order of
scheduling the SCC’s is: {0}, {1, 4}, {2, 3, 5}, {6}, as in Example 6.4. Because job 4 is a
predecessor of job 5, this is the only possible order of scheduling the SCC’s.

6.6 Decomposition Methods

As in the direct method, the decomposition methods, which we will discuss, use the partition
SSCC proposed in the previous paragraph. In the direct method, we scheduled an SCC within

40



the main generation scheme. In decomposition methods, this will be not the case: each SCC
Σκ, 1 ≤ κ ≤ K is viewed as a separate PS|temp|Cmax-instance. The main idea is to obtain
feasible schedules for these sub-instances first, and then ’fitting’ them together in a clever
way (cf. [13], [20]).

Consider an SCC Σκ = {κ1, . . . , κσ} with 1 < σ < n+1. To formulate this SCC as a separate
PS|temp|Cmax-instance, two artificial jobs α and ω need to be introduced, as was done in
chapter 2. These are the start- and finish-job respectively. Besides, we set pα = pω := 0 and
rαk = rωk := 0 for each k ∈ R. Furthermore, time lags (arcs) have to be introduced for these
artificial jobs. A time lag dακi := 0 is introduced if job κi has no predecessors in Σκ, i.e.,
there is no minimal time lag lκjκi ≥ 0 for any job κj ∈ Σκ, κj 6= κi. That is, if the condition:

max
κj∈Σκ\{κi}

lκjκi < 0 (6.6.1)

is satisfied. For the artificial finish job ω, a time lag dκiω := pκi is introduced if the termination
of activity κi possibly can determine the completion time of the subproject. That is, there is
no job κj ∈ Σκ, κj 6= κi for which there is a minimal time lag 0 ≤ lκiκj < pi, thus if

max
κj∈Σκ\{κi}

lκiκj < pκi (6.6.2)

is met. We can construct the subproject network now. The node set is Vκ := Σk ∪ {α, ω},
with σ + 2 nodes. The induced arcs from N carry over to this subproject network and arcs
from and towards the artificial jobs are introduced as above. What is still left is an upper

bound on the duration, that is, an arc (ω, α) with weight dω,α := −dVκ .

For each pair κi, κj ∈ Vκ with 1 ≤ i, j ≤ σ it is known that |lκiκj | < ∞, since both are
nodes in an SCC and thus reachable by each other in N . If lκjκi < 0, as in Remark 2.1(1),
−lκjκi + pκj is the maximum time lag between the start of job κi and the completion of job
κj . We set:

d
Vκ

:= max
κi∈Vκ

max
κj∈Vκ

(−lji + pj), (6.6.3)

which represents the maximum duration of the subproject corresponding to Vκ. This duration
cannot be exceeded without violation of at least one maximum time lag in Vκ: the maximum
time lag between the pair of jobs for which this maximum was attained, and possibly other

maximum time lags within Vκ. We add arc (ω, α) with weight dω,α := −dVκ to the subproject
network. The obtained subproject network is denoted by NVκ , and, with a slight abuse of
notation, its adjacency matrix is denoted by NVκ as well.

In network NVκ , we can do anything we did before on network N : longest path lengths l can be
computed by the Longest Path Approach. Even the Forbidden Set Approach can be applied
to obtain stricter time lags l∗. Hence, earliest and latest starting times can be computed,
as well as lower bounds. Moreover, feasible subschedules SVκ can be computed using the
serial/parallel generation scheme and a proper priority-rule πVκ , as illustrated in Example
6.6. If for some SCC no feasible subschedule can be computed, the method terminates.

Once for each Σκ, 1 ≤ κ ≤ K, a feasible subschedule SVκ has been computed, these have to
be ’plugged in’ in the final schedule S. At first, the jobs of Σκ are ordered according to non-
decreasing starting times. That is, 0 = Sκl1 ≤ Sκl2 ≤ . . . ≤ Sκlσ . For every two successive
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jobs κli and κli+1
a time lag dnewκliκli+1

:= Sκli+1
− Sκli is introduced. By the non-decreasing

order, dnewκliκli+1
≥ 0. As a consequence, the minimal amount of time between the start of

job κli and κli+1
carries over from the subschedule SVκ . By adding the arcs according to the

introduced minimal time lags and deleting the ’old’ arcs between jobs κi, κj ∈ Σκ with weight
dκi,κj ≥ 0, a new project network Nnew

1 is constructed. On this network, FSP can be applied
to obtain time-windows, as well as a Serial or Parallel Generation Scheme.

This procedure is the first decomposition method. The second one is a slight extension to
this method. Not only minimal time lags as above are introduced, the following maximum
time lag is added as well: dnewκlσκl1

:= −Sκlσ , while the ’old’ arcs within Σκ corresponding to
maximum time lags are removed. Consequently, a cycle of length 0 arises in Nnew

2 . Hence,
Σκ will precisely be scheduled in the final schedule S as it was in the subschedule SVκ , up to
translation.

Doing as above for all SCC’s, a modified project network Nnew is obtained. It is immediately
clear that dnewij ≥ dij for all jobs i, j ∈ J , since these new time lags arise from schedules that
respect the old time lags. Hence, succesfully applying the Forbidden Set Approach and the
serial/parallel generation scheme to Nnew yields a feasible schedule, as illustrated in Example
6.6. The decomposition methods can be summarized as in Algorithm 6.6.

Algorithm 6.6 Decomposition method 1 and 2

Input: Instance of PS|temp|Cmax.
Output: Schedule S.

1: Determine SSCC of N
2: for each Σκ ∈ SSCC do
3: Construct subnetwork NVκ as described
4: Determine the maximal duration d

Vκ

5: Add arc (ω, α) with dωα := −dVκ to NVκ

6: Perform Forbidden Set Approach on NVκ

7: Choose proper priority-rule
8: Generate feasible subschedule SVκ by applying the serial/parallel generation scheme
9: Sort SVκ according to non-decreasing starting times

10: Add and delete arcs as above to the new project network Nnew

11: end for
12: Compute T using (2.1.1) (or use prescribed deadline d)
13: Perform the Forbidden Set Procedure on Nnew

14: Choose a proper priority-rule
15: Generate schedule S by applying the serial/parallel generation scheme

Example 6.6. Consider the project in Figure 6.8. The processing times, resource require-
ments and earliest/latest starting times are listed in Table 6.8. Furthermore, R = 10 and
T = 22. It is easily seen that SSCC = {{0}, {1, 4}, {2, 3, 5}, {6}}. It is of no use to con-
struct the subproject networks for Σ1 := {0} and Σ4 := {6}, since both only contain one job.
Moreover, for Σ2 := {1, 4} it can be done, but it is immediately seen that the subschedule
SV21 = 0, SV24 = 2 is always obtained, since for j∗ = 4, t∗ = 2 is feasible in the serial/parallel
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Figure 6.8: Project network N

Job pj rj ESj LSj

0 0 0 0 0
1 5 3 0 12
2 7 4 0 13
3 2 6 2 15
4 1 3 2 14
5 6 4 4 16
6 0 0 10 22

Table 6.8

generation scheme. Thus the construction of NV2 is omitted here. Consider Σ3 := {2, 3, 5}.
We can expand this SCC to the subproject network NV3 by the procedure above. That is,
we introduce nodes α and ω and arcs with weights dα2 := 0, d2ω := 7, d3ω := 2, d5ω := 6.

Furthermore, it is computed by equation (6.6.3) that d
V3

:= 11. Hence, an arc (ω, α) with
dωα = −11 is introduced. The obtained subnetwork NV3 is drawn in Figure 6.9. The added
arcs are dashed. The computed earliest and latest starting times, done by FSP, are listed in
Table 6.9.
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Figure 6.9: Subproject network NV3

Job ESV3 LSV3

α 0 2
2 0 2
3 2 4
5 3 5
ω 9 11

Table 6.9

A feasible subschedule can be computed by the serial/parallel generation scheme. Notice that
each priority-list produces the same subschedule here, as there is no choice in the order of
scheduling the jobs, which is always α, 2, 3, 5, ω. Thus, the computed subschedule, which is
SV3 = (0, 0, 2, 4, 10), is optimal. However, this is not the case in general.

A new project network Nnew is constructed as above by adding arcs dnew23 := 2, dnew35 := 2 and
dnew53 := −4 only in the second decomposition method. Moreover, dnew14 := 2 and dnew41 := −2,
the latter only in the second decomposition method. The resulting networks for decomposition
method 1 and 2 are drawn in Figure 6.10 and Figure 6.11 respectively.

If Nnew
1 is used as input for the basic toolkit of generating schedules, using any priority-rule,

the schedule S1 := (0, 0, 2, 5, 2, 7, 13) is obtained. If this is done with Nnew
2 , this results in

S2 := (0, 0, 3, 5, 2, 7, 13). It can easily be verified that both schedules Si, i = 1, 2, are feasible
with respect to Nnew

i and the original project network N . Notice that S1 is not feasible with
respect to Nnew

2 . The subschedule SV3 has suffered a translation of +3 time units in S2,
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Figure 6.10: Nnew
1 for method 1
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Figure 6.11: Nnew
2 for method 2

while in S1 only the subschedule is slightly modified. For both modified network, DLB = 10,
which is not equal to the found upper bound, so nothing can be said about optimality of these
schedules.

6.7 Regret Biased Random Sampling (RBRS)

Until now, we only considered deterministic priority-rules in which we selected the job j∗ to be
scheduled next deterministically. If there was a tie, we picked a job according to increasing
activity number, or via a second priority-rule. Since it is highely unlikely that a chosen
priority-rule is the optimal one, it can be useful to search through the ’neighborhood’ of a
priority-rule, with the purpose of leaving a local optimum. Suppose that in an iteration of
the serial generation scheme of paragraph 6.2, the eligible set Et defined in equation (6.1.1),
consists of more than one candidate. Equation (6.1.2) can be applied to deterministically
select the job j∗ to schedule next. For the parallel generation scheme, the same holds for
Et+ . To avoide making this remark a couple of times, only the serial generation scheme will
be considered. One could also choose j∗ at random. In the latter, no priority-rule is needed.
In this paragraph, these two selection procedures will be mixed, using Regret Biased Random
Sampling, as introduced in [23]. This method will be expanded to the so-called Iterative
Scheduling Method proposed in paragraph 6.8.

Let µj := P{j∗ = j}. That is, the probability of job j ∈ Et to be selected for scheduling next.
For each pair of eligible jobs (i, j), i, j ∈ Et, if πi < πj , then it should hold that µi > µj . In
the concept of regrets, the regret of a job j ∈ J , which will be denoted by qj , is a measure
for the consequence of not selecting the job with highest priority.

W := max
j∈Et

πj . (6.7.1)

In other words, W is the value of the eligible job with lowest priority: the worst choice the
algorithm can make by randomly selecting a job. Remember that we assumed that the job j
with the lowest πj has the highest priority, which may seem quite counter-intuitive. Now the
regret qj of job j ∈ Et can be defined:

qj := W − πj . (6.7.2)
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As a consequence, qj = 0 for the job with lowest and qj = maxi∈Et qi for the job with highest
priority. Hence for any pair (i, j), i, j ∈ Et, it should be ensured that qi < qj ⇒ µi < µj . This
is satisfied by the following definition of µ:

µj :=
(1 + qj)

β∑
i∈Et

(1 + qi)
β
, (6.7.3)

where β ∈ R≥0. Notice that the probabilities µj are well-defined, since µj ≥ 0 for each j ∈ Et
and

∑
j∈Et µj = 1. It is necessary to add the 1+ term as in equation (6.7.3), because if

all jobs would have the same priority, the denominator would become 0. For β := 0, this
method behaves like pure random sampling, as all jobs have the same probability. Moreover,
for β →∞, this methods acts as a deterministic priority-rule method. Hence, β is a measure
for the variability of Regret Biased Random Sampling.

Once the probabilities µj are computed, one can construct real intervals [aj , bj) ∈ [0, 1] for
job j, with bj − aj = µj . That is, if Et := {j1, . . . , jEt}, where Et := |Et|, then define

[aj1 , bj1) = [0, µj1)

[aji , bji) = [bji−1, µji) i 6= 1, i 6= Et

[ajEt , bjEt ] = [bjEt−1 , 1]

This yields a partition of the interval [0, 1]. A random number c ∈ [0, 1] can be generated,
using a pseudo-random number generator. It is checked in which sub-interval this c is. If
c ∈ [aji , bji), then j∗ := ji.

Example 6.7. Assume that in a certain stage of the serial generation scheme, possibly within
the direct or a decomposition method, Et := {3, 5, 8, 14, 21} at a certain time 0 ≤ t ≤ T .
Besides, π := (π3, π5, π8, π14, π21) = (2, 0, 0, 3, 1). It is easily seen that W := 3. The computed
probabilities µ are as in Table 6.10, for several β-values.

β = 0.1 1 2 5 10 50

Job πj qj µj
3 2 1 0.1954 0.1429 0.0870 0.0138 0.0005 0
5 0 3 0.2094 0.2857 0.3478 0.4406 0.4861 0.5
8 0 3 0.2094 0.2857 0.3478 0.4406 0.4861 0.5
14 3 0 0.1823 0.0714 0.0217 0.0004 0 0
21 1 2 0.2035 0.2143 0.1957 0.1046 0 0

Table 6.10: Probabilities for several β-values

Consider the case β = 1. The constructed partition of [0, 1] is:

[a3, b3) = [0, 0.1429)

[a5, b5) = [0.1429, 0.4286)

[a8, b8) = [0.4286, 0.7143)

[a14, b14) = [0.7143, 0.7857)

[a21, b21) = [0.7857, 1]
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If for example random number c := 0.7592 is generated, then j∗ := 14, although it has lowest
priority.

6.8 Iterative Scheduling (IS)

In this paragraph, we propose an alternative method that we have called Iterative Scheduling
(IS). Until now only methods that generate just one schedule S were considered, such as the
serial or parallel generation scheme, possibly within the direct or a decomposition method, or
in combination with Regret Biased Random Sampling. In the remainder, this methods will
be called simple generation methods. Because of the randomness of Regret Biased Random
Sampling, it is recommended to perform a simple generation method a number of times and
select the best schedule. However, if always the same priority-rule and the same β are used,
the set of possible outcomes is rather restricted, especially for large β-values. To overcome
this problem, we can choose a different priority-rule and/or β and apply a simple generation
method again. This is the main idea of Iterative Scheduling, discussed in this paragraph. An
iteration of Iterative Scheduling is the execution of a simple generation scheme once, resulting
in a feasible or infeasible schedule.

Notice that a generated feasible schedule can serve as a priority-list. The priority-rule be-
longing to this priority-list will be called Earliest Scheduled Starting Time first or ESST, not
to be confused with EST : earliest starting time first. The priority-rule ESST is not meant to
be used in simple generation methods, only in Iterative Scheduling. To distinguish between
priority-lists in simple generation schemes and in Iterative Scheduling, π is used for the first,
and ν for the latter:

νESST := Slast, (6.8.1)

where the superscript last denotes the last obtained feasible schedule. Other priority-rules
that arise from actual schedules are e.g. Earliest Scheduled Completion Time first or Earliest
α-Completion Time first (cf. [17]). All these rules are static within the iteration of Iterative
Scheduling, but dynamic between iterations. It is clear that νESST respects the temporal
constraints, as it actually represents a both time- and resource-feasible schedule. Moreover,
deterministically applying the serial/parallel generation scheme to priority-list S yields the
same schedule.

Little changes to this priority-list can be achieved by applying Regret Biased Random Sam-
pling, which possibly result in minor changes in a schedule. We do this in a simulated anneal-
ing like fashion: At first, we begin with small β, such that the set of possible outcomes is very
large. As the algorithm evolves in time, β is increased to decrease variability. In contrast to
simulated annealing, we do not move to actual solutions (that is, feasible schemes), but to
priority-lists, i.e., we do not use νESST := Slast, but only if a schedule is found that equals or
has value less than the best makespan found up to now, this is adapted as priority-list:

νESST := Sbest, (6.8.2)

where the superscript best denotes the last schedule with minimal makespan found until now.
If a priority-list yields a worse schedule, then we ’stay’, in terms of simulated annealing. That
is, we keep using this priority-list until we found an equally good or better schedule.
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To start up the above procedure, an initial priority-list is needed. For this purpose, we can de-
terministically generate a schedule by a simple generation method and a proper priority-rule,
such as LSTd, which is known to provide ’good’ schedules. This deterministic schedule can
be taken as initial priority-list for Iterative Scheduling. Summarizing, the Iterative Schedul-
ing procedure for priority-rule ESST is as in Algorithm 6.7. Iterative Scheduling with other
priority-rules is similar.

Algorithm 6.7 Iterative Scheduling (IS) for priority-rule ESST

Input: PS|temp|Cmax-instance, π, βinit, K distinct simple generation schemes, numbered
1, . . . ,K.

Output: Feasible schedule S

1: Compute initial upper bound T , or use prescribed deadline d.
2: Perform Forbidden Set Approach to check temporal feasibility and to obtain NFS

3: for k = 1 : K do
4: Sk is output of deterministic simple generation scheme k with π
5: if Sk is infeasible then
6: Skn+1 :=∞
7: end if
8: end for
9: Sinit := {Sk : Skn+1 ≤ Sln+1, 1 ≤ k, l ≤ K}

10: νinitESST := Sinit ∈ Sinit

11: β := βinit, Sbest := Sinit, νESST := νinitESST

12: repeat
13: for k = 1 : K do
14: Sk is output of RBRS(β) simple generation scheme k with νESST
15: if Sk is infeasible then
16: Skn+1 :=∞
17: else
18: if Skn+1 ≤ Sbestn+1 then
19: Sbest := Sk

20: end if
21: end if
22: end for
23: νESST := Sbest

24: Update β
25: until stop-criterion
26: S := Sbest

Remark 6.3. Input: Notice that 8 simple generation methods are considered, so K ≤ 8.
One can choose between serial or parallel generation scheme within direct method or
decomposition method 1 or 2, or without a covering method. This yields 2 × 4 = 8
different simple generation schemes.

Lines 1-10: An initial schedule and priority-list is computed. The set Sinit represents the
set of obtained schedules with minimal makespan. An initial priority-list ν is chosen

47



according to a schedule Sinit ∈ Sinit.
Lines 13-23: The selected simple generation schemes are used, in combination with Regret

Biased Random Sampling, for the generation of new schedules. When an equally good
or better schedule is found, that is, a schedule with the same or lower makespan than
found before, this schedule is stored as Sbest. This Sbest is adapted as priority-list ν for
the next iteration.

Line 24: The update of β can happen in different ways. For instance, one can increase β
by a certain constant in each iteration, or increase β only when an improvement is
found. Moreover, the number by which β is increased, can depend on the measure of
improvement as well. One could also prescribe a list of β-values and for each β-value a
number of iterations that have to be performed, using that β.

Line 25: Several stop-criterions can be used. For instance, one could stop if there was
no improvement during the x last iterations, or when a certain β-value or prescribed
number of iterations is reached.

6.9 Asymptotic Optimality of Iterative Scheduling

It is well known that in Simulated Annealing a worse solution can be accepted that moves
away from a local optimum. Moreover, if SA runs an infinite amount of time, the global
optimum will be found. The question arises whether this also is the case for the Iterative
Scheduling algorithm of the last paragraph. This is indeed the case, as argued in [18]. In
this article, a formal definition of different classes of schedules and types of shifts is given.
Here, only the classes and shifts that are important are explained:

Definition 6.2. A left-shift is a transformation of a schedule S := (S0, . . . , Sn+1) into a
schedule S′ := (S′0, . . . , S

′
n+1) such that S′i ≤ Si for all 0 ≤ i ≤ n+ 1 and S′i < Si for at least

one i.

Definition 6.3. A global left-shift is a left-shift that transforms a feasible schedule S to a
feasible schedule S′. A feasible schedule S is called active if there is no global left-shift from
S. The set of all active schedules is denoted by AS.

Definition 6.4. An order-preserving left-shift is a global left-shift with the requirement that
if Si < Sj , then it should also be ensured that S′i < S′j , for 0 ≤ i, j ≤ n + 1. A feasible
schedule S is called quasiactive if there is no order-preserving left-shift from S. The set of all
quasiactive schedules is denoted by QAS.

Example 6.8. Consider the project in Figure 6.12 and Table 6.11. The initial deadline
d := 13, the resource availability R := 2 and the earliest and latest starting times are listed
in Table 6.11 as well.

One should notice that the starting times of jobs 2, 3 and 5 are already fixed, since there is
a cycle of length 0. In Figure 6.13 a quasiactive schedule S1 is drawn. This schedule can not
be left-shifted into a schedule S′ with the same order of activities, since the starting times of
jobs 2, 3 and 5 are tied, and both S2 < S1 and S2 < S4 hold. So this should be respected in
S′ as well. Hence, neither job 1 nor job 4 can be left-shifted, and thus S1 ∈ QAS.
Schedule S1 is transformed in schedule S2 in Figure 6.14 by a global left-shift. It is clear that
for S2 there is no global left-shift possible, and thus neither an order-preserving one. Hence,
both S2 ∈ AS and S2 ∈ QAS hold. Moreover, it is clear that this schedule is optimal, since
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Figure 6.12: Project Network N

Job pj rj ESj LSj

0 0 0 0 0
1 2 1 0 11
2 1 1 9 9
3 1 1 0 0
4 2 1 0 11
5 1 1 4 4
6 0 0 10 13

Table 6.11
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Figure 6.13: Quasiactive schedule

t

r(S2, t)

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3 5 24

1

Figure 6.14: Active schedule

its makespan equals the lower bound obtained by the Longest Path approach.

Since an order-preserving left-shift is a global left-shift, it is immediately clear that S ∈ AS ⇒
S ∈ QAS and thus AS ⊆ QAS. In [18] it is argued that constructive schemes provide
quasiactive schedules for regular objective functions, of which minimizing the makespan is
a special case. All methods considered in this chapter are constructive methods. Moreover,
in [18] it is proven that regular objective functions are minimized by active schedules. If
Iterative Scheduling runs an infinite amount of time, each quasiactive schedule will be found
at least once with probability 1. Since AS ⊆ QAS, this holds for all active schedules as well.
The optimal schedule is in AS, so with probability 1 the optimal schedule will be obtained if
Iterative Scheduling runs infinitely long.

7 Computational Study

The heuristics developed in the previous chapters were tested on a large amount of benchmark
instances, all from [24] and [26]. For these instances, the destructive, workload based and
Lagrangian lower bounds were computed. The best lower bound LB is then determined by
LB := max(DLB,WLB,LLB). The performance of these algorithms is determined by three
criteria, as in [20]. These criteria are:

• The accuracy of the method. This is measured by the average relative difference with
the best found lower bound. Let I be the test set, and IH ⊆ I the set of instances for
which heuristic H found a feasible schedule. If I ∈ IH , then the makespan computed
by heuristic H is denoted by CHmax(I). Moreover, let LB(I) the best found lower bound
for instance I. Then, the average relative error, that is the average relative deviation
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of the makespan computed by heuristic H from the best found lower bound is

∆H :=
1

|IH |
∑
I∈IH

CHmax(I)− LB(I)

LB(I)
(7.0.1)

If for two heuristics H1, H2 it holds that ∆H1 < ∆H2 , then H1 provides better schedules
on average than H2. The accuracy will be measured in percentages, which are denoted
by devLB.

• Let ILB the set of instances for which a lower bound could be computed. That is,
instances that have a time-feasible solution, have a resource-feasible solution as well, and
thus a feasible schedule. This is because of the Destructive Lower bound of Algorithm
4.1 verified that there was no cycle of positive length. The question is whether a feasible
solution could be computed by heuristic H. This percentage will be denoted by pfeas.
It is clear that the higher this percentage, the ’better’ the method.

• Moreover, the time needed to perform the execution of heuristic H is important as
well. Instances were tested on a 1.9GHz AMD Athlon, using an implementation of the
heuristics in MATLAB2010a. The average computation time will be denoted by tcpu,
and measured in seconds.

7.1 Instances with 10 jobs

The performance of the methods are listed in the following tables, for different sizes of in-
stances. First, five LSTd-methods are tested on the 270 instances with 10 jobs of [26]. These
methods are: the Serial and Parallel Generation scheme, Direct Method, and the two Decom-
position Methods. The Direct Method and Decomposition Methods are all in combination
with the Serial Generation scheme. Results are listed in Table 7.1.

SerLSTd ParLSTd DirectLSTd Decomp1LSTd Decomp2LSTd

devLB 26.62% 25.41% 27.64% 28.10% 27.07%
pfeas 93.19% 79.06% 93.72% 93.19% 93.19%
tcpu 0.0460 0.0296 0.0623 0.0723 0.0697

Table 7.1: Comparison of LSTd-methods for 10 jobs

It can be seen that the Parallel Generation scheme provides the best schedules in the fastest
way, but it is less likely that this method finds a feasible schedule. Moreover, for this set of
very small instances, it can be seen that the Direct Method and Decomposition Methods are
outperformed by the Serial Generation scheme, especially in computation time.

In addition, the priority-list arising from the Lagrangian relaxation of chapter 5 can be used in
combination with the above methods. It was computationally hard to compute the Lagrangian
lower bound by subgradient optimization. For the 270 instances with 10 jobs of [26], it took
8.3883 seconds on average, where I1 = 3 and I2 = 10 where chosen in Algorithm 5.1. However,
this could be sped up by chosing lower I1 and I2. This priority-list was used in combination
with the Serial and Parallel Generation scheme, and the Direct Method. The Decomposition
Methods did not give any improvement in comparison with these three, and are therefore not
listed in table 7.2. The computation time in this table includes the 8.3883 seconds.
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SerLLB ParLLB DirectLLB

devLB 1.65% 0.72% 1.98%
pfeas 73.33% 58.89% 66.67%
tcpu 8.4421 8.4107 8.4467

Table 7.2: Comparison of generation schemes with the Lagrangian lower bound for 10 jobs

The same trend can be seen as in the methods with LSTd: the Parallel generation scheme
provides the best schedules and is faster compared to the others, but the feasibility is a draw-
back. More interesting is the fact that the priority-list arising from the Lagrange relaxation
indeed provides far better schedules than LSTd. However, with this priority-list it is less
likely to find a feasible schedule. But when a feasible schedule can be found, its makespan
almost every time equals the lower bound.

Our Iterative Scheduling method of Algorithm 6.7 has been tested as well. We choose K := 1,
and the only chosen simply generation scheme is the Serial one. Moreover, as π the priority-
list arising from LSTd is selected, and βinit is set equal to 1. The update of β is done as
follows: if for a particular value of β the algorithm finds a better or equally good schedule,
than β is increased by a prescribed ∆β: β := β + ∆β. Besides, if in 10 executions of the
Serial Generation scheme with the same β no improvement was found, β is also increased by
∆β. As stop criterion, the algorithm terminates if in the last five iterations (that is, in the
last five values for β) no improvement or equally good schedules were found. In addition, if
β = 120, that is, the method is very deterministic, the algorithm terminates. This method is
tested for different values of ∆β. Results for the 270 instances with 10 jobs of [26] are listed
in Table 7.3.

∆β = 0.01 ∆β = 0.1 ∆β = 0.5 ∆β = 1 ∆β = 2

devLB 4.88% 5.26% 6.18% 6.47% 6.95%
pfeas 95.29% 95.29% 95.29% 95.29% 95.29%
tcpu 12.1455 3.1684 1.3586 1.3527 0.5833

Table 7.3: Comparison of different ∆β-values for Iterative Scheduling with 10 jobs

As expected, ∆β = 0.01 provides the best schedules, but has also the largest computation
time. For every value of ∆β, this method finds the same pfeas. One would expect that this
should be 100%, since that many schedules are generated, such that at least one feasible
schedule should have been found. However, it is not trivial whether a resource-feasible sched-
ule exists if a time-feasible exists or not. Hence, for the few instances for which no feasible
schedule could be found in the 1190

∆β + 1 tries, it is believed that no feasible schedule exists.

7.2 Instances with 20 jobs

The methods above are tested in exactly the same way on the 270 instances of [26] with 20
jobs. The results are listed in Tables 7.4, 7.5 and 7.6.
Here the same trend as for the instances with 10 jobs. In addition, the first decomposition
method performs worse with respect to all three criteria in comparison with the second, which
performs slightly worse than the Direct Method. Moreover, for the devLB-criterion, the Serial
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SerLSTd ParLSTd DirectLSTd Decomp1LSTd Decomp2LSTd

devLB 23.02% 23.37% 25.17% 27.57% 25.82%
pfeas 90.27% 68.65% 92.97% 88.65% 92.43%
tcpu 0.3770 0.2378 0.4314 0.5026 0.4469

Table 7.4: Comparison of LSTd-methods for 20 jobs

Generation scheme is now slightly better than the Parallel one, which still has a bad feasibility
percentage. Overall, compared with 10 jobs, less instances could be solved to feasibility, but
the difference with the lower bound is smaller.

SerLLB ParLLB DirectLLB

devLB 1.74% 1.09% 2.90%
pfeas 44.07% 28.25% 43.50%
tcpu 95.7715 95.3195 95.5884

Table 7.5: Comparison of generation schemes with the Lagrangian lower bound for 20 jobs

Again, the deviation from the lower bound is very small, although larger than for 10 jobs.
But the feasibility is even worse compared to the instances with 10 jobs. Moreover, it took
95.2039 seconds to compute the Lagrangian lower bound, but this could be quickened by
modifying I1 and I2.

∆β = 0.01 ∆β = 0.1 ∆β = 0.5 ∆β = 1 ∆β = 2

devLB 7.96% 8.03% 9.03% 9.90% 10.25%
pfeas 97.85% 97.85% 97.85% 97.85% 97.85%
tcpu 646.0719 147.5234 49.0817 25.7933 20.5853

Table 7.6: Comparison of different ∆β-values for Iterative Scheduling with 20 jobs

Results are as expected: for ∆β = 0.01, the computation time is long, while the devation
from the lower bound is small compared to the others. However, the difference in devLB
between ∆β = 0.01 and ∆β = 0.1 is only 0.07%, while the computation time is much longer
for ∆β = 0.01. In all cases, the algorithm found a feasible solutions for 97.85% of all time-
feasible instances. As in the case of 10 jobs, it is believed that no feasible schedule exists for
the remaining 2.15% of all time-feasible instances.

7.3 More than 20 jobs

The non-iterative scheduling methods are tested on the 90 instances with 50 and 100 jobs
of [24] as well. The Direct Method and Decomposition Methods are still in combination
with the Serial Generation scheme only, due to the small feasibilty percentage of the Parallel
Generation scheme. Results are listed in tables 7.7 and 7.8 respectively.
The Parallel Generation scheme for the computation time criterion is very beneficial for larger
instances. However, its feasibilty percentage is worse compared to the other methods, as in
the case with 10 or 20 jobs. One should notice that the more jobs, the smaller the feasibilty
percentage for all methods. For one instance with 50 jobs of [24] (instance 4) an improvement
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SerLSTd ParLSTd DirectLSTd Decomp1LSTd Decomp2LSTd

devLB 17.76% 24.89% 20.67% 24.10% 21.60%
pfeas 79.45% 58.90% 80.82% 73.97% 83.56%
tcpu 13.2950 4.7400 14.8832 19.8389 13.0551

Table 7.7: Comparison of LSTd-methods for 50 jobs

SerLSTd ParLSTd DirectLSTd Decomp1LSTd Decomp2LSTd

devLB 15.45% 14.46% 15.88% 21.50% 20.48%
pfeas 61.54% 41.03% 61.54% 53.85% 62.82%
tcpu 293.0817 56.6238 312.7150 325.5442 282.3569

Table 7.8: Comparison of LSTd-methods for 100 jobs

was found using the Parallel Generation scheme in combination with LSTd. The best known
schedule up to now had a makespan of 253, while we found one with makespan 228.

It took too much computation time and memory to compute the Lagrangian Lower Bound
for instances with 50 jobs, let alone for instances with 100 jobs. Thus unfortunately, there are
no results available. Moreover, this holds for the Iterative Scheduling method in combination
with instances with 100 jobs. For instances with 50 jobs, the Iterative Scheduling method
could be tested, but with different parameter-values compared to instances with 10 or 20 jobs
to speed up convergence. However, due to the randomization, this gave very much variation
in different runs. Results are therefore not listed.

7.4 Concluding Remarks

The Iterative Scheduling method proposed in this thesis works well for instances with a small
number of jobs. However, for large instances, it takes very long to compute a schedule that is
near optimal, although optimality is ensured if this method runs infinitely long with suitable
parameter values. Another conclusion is that the Parallel generation scheme is the quickest
one for instances of different sizes. However, its percentage of feasibility is a drawback.
Schedules obtained from the Lagrangian priority-list have the least deviation from their lower
bounds, but it takes long, even for small instances, to compute these Lagrangian Lower
Bounds. Finally, Decomposition Method 2 outperforms Decomposition Method 1 in all three
criteria for different sizes of instances.
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Appendices

A Abbreviations

Algorithms

FSP: Forbidden Set Procedure (paragraph 3.1)
IS: Iterative Scheduling (paragraph 6.8)
RBRS: Regret Biased Random Sampling (paragraph 6.7)

Bounds

DLB: Destructive Lower Bound (paragraph 4.1)
LLB: Lagrangian Lower Bound (chapter 5)
RLB: Resource Lower Bound (chapter 4)
TLB: Temporal Lower Bound (chapter 4)
WLB: Workload based Lower Bound (paragraph 4.2)

Miscellaneous

LD: Lagrangian Dual (paragraph 5.3)
LP: Longest Path (paragraph 3.1)
LS: Lagrangian Subproblem (paragraph 5.1)
SCC: Strongly Connected Component (paragraph 6.5)

Priority-rules

ESST: Earliest Scheduled Starting Time first (paragraph 6.8)
EST: Earliest Starting Time first (paragraph 6.1)
LST: Latest Starting Time first (static; paragraph 6.1)
LSTd: Latest Starting Time first (dynamic; paragraph 6.1)

B List of Algorithms

List of Algorithms

3.1 Forbidden Set Procedure (FSP) . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1 Destructive Lower Bound Algorithm (DLB) . . . . . . . . . . . . . . . . . . . 17
5.1 Lagrangian lower bound (LLB) . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1 Priority-list with respect to Temporal Constraints . . . . . . . . . . . . . . . 28
6.2 Serial Generation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.3 Parallel Generation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4 Unscheduling Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.5 Direct Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.6 Decomposition method 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.7 Iterative Scheduling (IS) for priority-rule ESST . . . . . . . . . . . . . . . . 47
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[17] R. Möhring, A. S. Schulz, F. Stork, and M. Uetz. Solving project scheduling problems
by minimum cut computations. Management Science, 3:330–350, 2003.
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