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Introduction

The internet is operated by a huge number of independent institutions called
transit ISPs (Internet Service Providers). They operate in their own interest,
which often leads to great inefficiencies and instabilities in the global network.
For example, ISPs tend to pass packets on to a neighboring ISP as quickly as
possible, like a hot potato. This policy, called early-exit routing , is beneficial to
the ISP, since it minimizes the load on its own network. However, it can greatly
increase the total length of the path that a packet has to traverse to reach its
goal [17]. So the selfish actions of the ISPs are detrimental to the welfare of the
network as a whole.

In general, selfish users cause some measure of deviation from the theoret-
ically optimal solution to networking problems. This thesis asks the question:
how bad can this deviation get? Or more colourfully: what is the price of an-
archy? In particular, we review some of the answers that have been proposed
by mathematicians and computer scientist over the last decade or so. The an-
swers provide a mixed message about selfish networking. In some cases selfish
networking is guaranteed to deviate at most a small factor from the optimal
solution. In some other cases, unfortunately, the deviation from the optimum
caused by selfish users could be unbounded.

Game theory Before we rush to these answers, however, we must first make
mathematical sense of the vaguely put question above. This thesis considers a
game theoretic approach of research. A game is a purely mathematical object
that models a situation where a group of players is confronted with strategic
choices. If all players have chosen a strategy, then each player receives a pay-off
dependent on the choices of himself and his competitors (and/or allies). The
pay-off represents some value the players wish to maximize, such as profit, or
minimize, such as latency experienced due to congestion.

A game doesn’t tell us what strategies the players will choose. But this is
exactly what we need to know, since we want to compare the solution found
by selfish players to the optimal solution. Fortunately, in game theory there is
a widely used predictor for what course of action the players will take. It is
called the Nash equilibrium, which was first suggested by the mathematician
John Forbes Nash in 1950 [9].

Suppose all players have chosen their strategy. If some player could profit
by unilaterally changing his strategy and thereby getting a better pay-off, then
obviously the player has the incentive to do just that. We are, therefore, not
in a stable situation. If, on the other hand, no player can profit by unilaterally
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vi INTRODUCTION

changing his strategy, the players are said to be in a Nash equilibrium1.

The Price of Anarchy and Stability Once the players have settled on a
choice of strategies, we would like to quantify the impact on the system as a
whole. For this, we introduce a social utility function, which returns for each
choice of strategies some number. This number could respresent, for example,
the total profit gained by the players or the average latency each player expe-
riences. Once we have defined the social utility function, we can compare the
social utility of a Nash equilibrium with the value of optimal solutions. In this
context an optimal solution is a choice of strategies that yields the best value
for the social utility function.

The most popular metric for the impact of selfishness is called the Price of
Anarchy . It is the proportion between the worst possible social utility from a
Nash equilibrium and the optimal social utility, not necessarily from a Nash
equilibrium. Notice that for this definition to make sense, a game should allow
at least one Nash equilibrium. Not all games do, so for each game we need to
check what, if any, the Nash equilibria are.

Sometimes we’re also interested in the best-case scenario. We define the
Price of Stability as the proportion between the best possible social utility of
a Nash equilibrium and the optimal social utility. In other words, the Price of
Stability measures how far we are from truly optimal when we reach the best
possible solution that everyone can agree on.

Results In this thesis we find low constant bounds on the Price of Anarchy
for several games. For example, any instance of the routing game discussed
in Chapter 1 has a Price of Anarchy of at most 4/3, provided the latency
functions of the edges in the network of the instance are affine. We prove a
more general bound using elementary methods from continuous optimization.
Specifically, readers familiar with Karush-Kuhn-Tucker theory should find the
reasoning easy to follow.

Chapter 2 is dedicated to the analysis of network formation games. These
are games where players build some type of network together, but they only
want to maximize their own gain (or minimize their own cost). For example, in
the Local Connection Game, players want to be closely connected to all other
players, but want to build as few connections as possible, since each connection
costs resources to build. The Price of Stability of any Local Connection Game
is at most 4/3.

We prove that all games in Chapter 2, except the Local Connection Game,
are examples of a special class of games called potential games. These games
are studied in Chapter 3. Potential games allow a potential function, which is a
single function that tracks the changes in utility as players change their strate-
gies. The mere existence of such a function guarantees some powerful results.
For example, potential games always have a (deterministic) Nash equilibrium.
Also, best-response dynamics, where each turn one player changes to a strategy
that maximizes his utility given the current strategies of the other players, will
converge to a Nash equilibrium.

1Not all games have a Nash equilibrium. If players are allowed to have a ‘mixed’ strategy,
i.e. choose each strategy with a certain probability, then a Nash equilibrium is guaranteed
to exist, provided the amount of players and strategies are finite [9]. However, we will not
consider mixed strategies in this thesis.



vii

Algorithmic Game Theory and further research The study of the inef-
ficiency of Nash equilibria is a topic in the broader field of Algorithmic Game
Theory . This relatively young field aims to find constructive answers to ques-
tions that arise when one studies the internet. Some examples of topics studied
in Algorithmic Game theory are online auctions, peer-to-peer systems and net-
work design. For an overview of the field see [15]. The structure of this thesis is
based largely on Chapters 17, 18 and 19 from [10], the first book on Algorithmic
Game Theory. The book is freely available online.

This thesis only covers the fundamentals of the Price of Anarchy. We don’t
discuss such related topics as applications to network design, other equilibrium
concepts and the computional aspects of finding Nash equilibria. The book [10]
covers some of these topics. For a variation on the Price of Anarchy, see for
instance [1]. This article defines the strong equilibrium in the context of job
scheduling and network formation. The strong equilibrium is introduced to ac-
count for situations where players may form coalitions. It is a Nash equilibrium
that is also resilient to deviations by coalitions. Even though the lack of coor-
dination is resolved in a strong equilibrium, the (Strong) Price of Anarchy may
still be larger than 1.



viii INTRODUCTION



Chapter 1

Selfish routing

1.1 Introduction

This chapter focuses on Tim Roughgarden’s work on routing games [14, 16],
the ‘paradigmatic’ study in the area of Price of Anarchy [11]. The games are
based on older models from transportation theory. A routing game consists of a
network where players want to route traffic from a source to a destination. Each
player chooses a path through the network connecting his source and destination.
On each edge in his path, a player experiences latency dependent on the total
amount of players who route their traffic along the same edge. The precise
amount is determined by the cost function of the edge. The socially optimal
solution to the routing problem is attained when the total latency experienced
is minimal. Even in very simple networks the social optimum is not a ‘selfish
solution’, i.e. a Nash equilibrium, as we will see in Example 1.3.1.

Most of this section focuses on the situation that the traffic is formed by
a very large set of players, each of whom controls a negligible fraction of the
traffic. We call this nonatomic routing . In this situation, the problem of deter-
mining the Price of Anarchy in any routing game has essentially been solved by
Roughgarden. The Price of Anarchy of any given routing game depends only
on the type of cost functions used. So other factors, such as the topology of the
network or the distribution of sources and destinations, are irrelevant.

For any set of cost functions, there is a strict upper bound for the Price of
Anarchy (Definition 1.6.1). For certain sets of functions this upper bound can
be calculated explicitly. For example, if the cost functions are affine, then the
price of anarchy is at most 4/3. This means that the total latency in any Nash
equilibrium is at most 33% worse than in the optimal solution; a positive result
indeed. On the other hand, if the cost functions are polynomial, then the Price
of Anarchy becomes potentially unbounded.

In the closing section of this chapter, we will consider routing games with
only a finite amount of players, each controlling a non-negligible amount of
traffic, so called atomic routing . The analysis in this case is less ‘clean’ than
in the nonatomic case. For instance, not all atomic routing games have a Nash
equilibrium, in contrast with nonatomic routing. Still, we can deduce a positive
result. Just like in nonatomic routing, if the cost functions are affine, then the
Price of Anarchy is bounded by a small constant (∼ 2.618, see Theorem 1.7.3).

1



2 CHAPTER 1. SELFISH ROUTING

1.2 The model

We will use a generalized version of the Wardrop model of transportation net-
works from [19]. In the model a flow is routed across a directed graph. This
flow represents the traffic of a continuum of players, where each player controls
an infinitessimal amount of traffic. This model is called nonatomic routing1.

A network N is a directed finite graph G = (V,E) together with kN ∈ Z≥1
commodities {si, ti} where si ∈ V is called the source node of the commodity
and ti ∈ V is called thesink node of the commodity. Different commodities
can share the same source or destination.

A (nonatomic) instance is a triple (N, r, c), where N is a network, r is a
k-dimensional vector of traffic rates ri ∈ R>0 for each commodity {si, ti} in
N , and c is an #E-dimensional vector of cost functions ce : R≥0 → R≥0 for
each edge e in N . A cost function is sometimes also called a latency function
and measures the amount of latency per unit of traffic.

Let (N, r, c) be an instance. The set of {si, ti}-paths, where {si, ti} is a
commodity, is denoted by Pi. The set P of commodity paths in N is defined
by P = ∪iPi. A flow f on N is a vector in R#P

≥0 , where fP denotes the flow
over path P ∈ P. A flow f on N is feasible if

∑
P∈Pi fP = ri for each each

commodity {si, ti}. For each e the flow on e is given by

fe =
∑

P∈P:e∈P
fP .

We interpret the cost functions of an instance as measuring the cost or
latency of an edge experienced by a unit of traffic. Thus, the latency experienced
by the traffic fe on edge e is ce(fe)fe. The cost of a flow f on N is given by

C(f) =
∑
e∈E

ce(fe)fe.

A flow fopt on N is considered optimal for the instance if fopt is feasible and
C(fopt) is minimal, i.e.

(1.2.1) C(fopt) = min{C(f ′) : f ′ on N is feasible}.

1.2.1 Remark. An objective function such as the total cost function defined
above, where we sum the players’ costs, is called a utilitarian objective func-
tion. Another type of objective function is the egalitarian objective func-
tion, which is often used in scheduling problems. This function is determined
by the maximum of the players’ costs.

We define the cost of a path P ∈ P by

cP (f) =
∑
e∈P

ce(fe).

Using this definition, we can rewrite (1.2.1) to

C(f) =
∑
P∈P

cP (f)fP .

1Atomic routing is discussed in Section 1.7
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To model the behavior of players in a network, we assume the flow is in a
sort of Nash equilibrium. Informally, a flow is considered to be at an equilibrium
if no player can decrease his cost by unilaterally deciding to switch to another
path (i.e. changing strategy while no other player changes strategy). This idea
is captured in the following definition.

Let (N, r, c) be an instance and f a feasible flow on N . The flow f is a Nash
flow if for every commodity {si, ti} and every pair of paths P1, P2 ∈ Pi where
fP1 > 0 the following condition holds:

cP1(f) ≤ cP2(f).

We will see in Section 1.5 that all Nash flows have equal cost. Also, if
C(fopt) = 0, then fopt is a Nash flow, because cP (fopt) = 0 whenever (fopt)P >
0. These two facts justify the following definition of the Price of Anarchy. Let
fopt be an optimal flow and fNash a Nash flow for the instance (N, r, c). The
Price of Anarchy of (N, r, c), denoted by ρ(N, r, c) is defined by

ρ(N, r, c) =
C(fNash)

C(fopt)
,

where it is understood that 0/0 = 1. For a set I of instances, the Price of
Anarchy of I, denoted by ρ(I), is defined by

ρ(I) = sup
(N,r,c)∈I

ρ(N, r, c)

1.2.2 Remark. Note that a nonatomic instance is not modelled as a game, with
a set of players, strategies and pay-offs. It is possible to model routing games
in game theoretic terms equivalent to our model, but it is more convenient to
formulate the important results without the added complexity of game theory.

1.3 Examples

We focus our attention on a specific example called the Pigou network. This
seemingly innocuous example, with only two nodes and two edges connecting
them, tells us practically everything we need to know about nonatomic routing
games. We will prove in Section 1.6 that the Price of Anarchy of any nonatomic
instance is determined by the worst-possible Pigou-like example which can be
constructed with the cost functions of the instance.

1.3.1 Example (Pigou [13]). Consider the network N whith just two vertices
s and t, two edges labeled 1 and 2 from s to t and one commodity {s, t}. Let
Pig(r, c) denote the instance (N, r, c). In this first example we take r = 1
(slight abuse of notation), cost functions as shown in Figure 1.1 and denote this
instance with Pig.

• Optimal flow: Let f be a feasible flow for Pig. We must have f1+f2 = 1,
from which we derive CPig(f) = f21 − f1 + 1. Minimizing this function on
[0, 1] gives CPig(fopt) = 3/4 with fopt routing through each edge half of
the traffic.
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s t

c1(x) = x

c2(x) = 1

Optimal flow

Nash flow

s t

x = 0.5

x = 0.5

s t

x = 1

x = 0

Figure 1.1: Pigou’s example; a network with Price of Anarchy equal to 4/3.
The image on the left shows the setup of the network, with the cost functions
for the two edges. The variable x ∈ [0, 1] represents the amount of traffic routed
through the edge. The top right image shows the optimal flow, with a total cost
of 3/4(= 0.5 · 0.5 + 0.5 · 1). This is not a Nash flow, since the traffic at edge 2
experiences higher latency than the traffic at edge 1. The bottom right image
shows the only Nash flow for Pigou’s network, with a total cost of 1.

• Nash flow: Consider the flow fNash routing all traffic through 1 (i.e.
(fNash)1 = 1 and (fNash)2 = 0). Given the flow fNash, the two paths in
Pig have equal cost, namely 1. Therefore fNash is a Nash flow with cost 1.

• PoA: The Price of Anarchy of Pig is therefore ρ(Pig) = 4/3.

This nice result on the Price of Anarchy in Pigou’s network holds for any
affine cost function, i.e. a cost function of the form c(x) = ax + b, where
a,b ∈ R≥0. Before we prove this, we first examine a general version of the Pigou
network.

1.3.2 Example (Pigou (general)). In this more general version of the Pigou
example, we take the same network N as in Example 1.3.1, but we consider an
arbitrary traffic rate r ∈ R>0, an arbitrary cost function c(x) for edge 1 and set
c2(x) = c(r).

• Optimal flow: A feasible flow f for Pig(r, c) routes a certain amount of
traffic x through edge 1 and the remaining amount of traffic r−x through
edge 2. The cost of such a flow is given by xc(x) + (r − x)c(r). The cost
of an optimal flow, then, is given by

CPig(r,c)(fopt) = inf
x∈[0,r]

xc(x) + (r − x)c(r).

• Nash flow: Consider the flow fNash routing all traffic through 1 (i.e.
(fNash)1 = 1 and (fNash)2 = 0). Given the flow fNash, the two paths in
Pig have equal cost, namely c(r). Therefore fNash is a Nash flow with cost
r · c(r).
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• PoA: The Price of Anarchy of Pig(r, c) is therefore

(1.3.1) ρ(Pig(r, c)) = sup
x∈[0,r]

r · c(r)
xc(x) + (r − x)c(r)

.

For certain functions the expression on the right-hand side of (1.3.1) can be
rewritten to a somewhat nicer form. For example, a simple calculation for the
affine cost function c(x) = ax + b, where a,b ∈ R≥0, shows that the Price of
Anarchy is at worst the same as in Example 1.3.1:

ρ(Pig(r, c)) = sup
x∈[0,r]

r(ar + b)

x(ax+ b) + (r − x)(ar + b)

= sup
x∈[0,r]

r(ar + b)

ax2 − arx+ r(ar + b)

=
r(ar + b)

a(r/2)2 − ar(r/2) + r(ar + b)

=
r(ar + b)

(3/4)r(ar + b) + (r/4)b

≤ 4

3
.

The above result also holds for any concave cost function, since any concave
function c can be bounded from below by an affine cost function that agrees
with c on x = r, namely c′(x) = (c(r)/r)x. Note that from equation (1.3.1) it
follows that if c and c′ are cost functions with c(r) = c′(r) and c(x) ≥ c′(x) for
each x ∈ [0, r], then ρ(Pig(r, c)) ≤ ρ(Pig(r, c′)). Consequently, ρ(Pig(r, c)) ≤
ρ(Pig(r, c′)) ≤ 4/3.

The nice bound on the Price of Anarchy found in Example 1.3.1 evaporates
as soon as we introduce some form of nonlinearity. For example, if the cost
function c satisfies c(x) = xp, with p ∈ Z>0, then ρ(Pig(r, c)) grows to infinity
as p goes to infinity. Indeed, in this case the denominator of the right-hand side
of equation (1.3.1) is minimized at x = r(p + 1)−1/p. Therefore the Price of
Anarchy satisfies

ρ(Pig(r, c)) = sup
x∈[0,r]

rp+1

xp+1 + (r − x)rp

=
rp+1

rp+1
(
(p+ 1)−(p+1)/p + 1− (p+ 1)−1/p

)
=

1

1− p(p+ 1)−(p+1)/p
.

Since

lim
p→∞

p(p+ 1)−(p+1)/p = lim
p→∞

p

p+ 1
· lim
p→∞

1

(p+ 1)1/p
= 1 · 1 = 1,

the Price of Anarchy goes to infinity as p goes to infinity.
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1.4 Equivalence of optimal and Nash flows

Although the definitions of optimal and Nash flows are quite different—one
minimizing the total cost incurred by the players, the other requiring that all
paths with positive flow have equal cost—, a striking correspondence exists
between the two types of flow. In particular, the optimal flow in an instance
is a Nash flow in a closely related instance. From this correspondence we can
derive existence and (essential) uniqueness results for Nash flows in nonatomic
instances (Section 1.5).

We begin this section by finding characterizations of an optimal flow. One
of these characterizations looks suspiciously similar to the definition of a Nash
flow. This will inspire the equivalence between optimal and Nash flows which
we will derive at the end of the section.

Given a nonatomic instance (N, r, c) the problem of finding a feasible, opti-
mal flow f is the same as the convex program

min
∑
e∈E

he(fe)

subject to
∑
P∈Pi

fP = ri for all 1 ≤ i ≤ k

fe =
∑

P∈P:e∈P
fP for all e ∈ E(1.4.1)

fP ≥ 0 for all P ∈ P
f ∈ R#P ,

where
∑
e∈E he, the objective function of (1.4.1), is given by he(fe) = ce(fe)fe.

The set of all flows f which satisfy the constraints in (1.4.1) is called the fea-
sible region of (1.4.1). Note that since all constraints are linear, the feasible
region of (1.4.1) is convex. Let h′e denote the derivate d

dxhe(x) of he and h′P (f)
denote the sum

∑
e∈P h

′
e(fe).

1.4.1 Theorem (Characterization of optimal flows). Consider the nonlinear
program (1.4.1). Let f be a solution to this program. Suppose that every he is
continuously differentiable and convex. The following are equivalent:

(a) The flow f is optimal.

(b) For every 1 ≤ i ≤ k and every pair of paths P1, P2 ∈ Pi where fP1
> 0 the

following condition holds:

h′P1
(f) ≤ h′P2

(f).

Proof. Since the objective function is continuously differentiable and convex,
the flow f is optimal if and only if it satisfies the so-called Karush-Kuhn-Tucker
(KKT) conditions [12]*Corollary 3.20. Denote the objective function and con-
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straints of (1.4.1) as follows:

C(f) =
∑
e∈E

he(fe)

hi(f) =

(∑
P∈Pi

fP

)
− ri 1 ≤ i ≤ k

gP (f) = −fP

Then f is optimal if and only if there exist µP ∈ R, for each P ∈ P and λi ∈ R
for each 1 ≤ i ≤ k such that the KKT-conditions are satisfied:

∇C(f) +
∑
P∈P

µP∇gP (f) +

k∑
i=1

λi∇hi(f) = 0

gP (f) ≤ 0, for each P ∈ P
hi(f) = 0, for each 1 ≤ i ≤ k
µP ≥ 0, for each P ∈ P

µP gP (f) = 0, for each P ∈ P

Suppose f is optimal. Let µP , P ∈ P and λi, 1 ≤ i ≤ k be such that f
satisfies the KKT-conditions. For each P ∈ P we have

(∇C(f))P =
∑
e∈P

h′e(fe) = h′P (f)

(∇gP̃ (f))P =

{
−1 if P̃ = P

0 if P̃ 6= P

(∇hi(f))P =

{
1 if P ∈ Pi
0 if P /∈ Pi

.

So for P ∈ Pi we have

h′P (f)− µP + λi = 0

µP ≥ 0,−µP fP = 0

Consider P1,P2 ∈ Pi where fP1
> 0. Then µP1

= 0, so

h′P1
(f) = −λi

h′P2
(f) = −λi + µP2

.

Since µP2
≥ 0, it follows that h′P1

(f) ≤ h′P2
(f), which we wanted to prove.

Suppose that condition (b) from the statement of the theorem holds. Since
f is feasible, for each 1 ≤ i ≤ k, there is a path P ∈ Pi such that fP > 0.
Also, for each 1 ≤ i ≤ k, every pair of paths P1, P2 ∈ Pi with fP1

,fP2
> 0 must

satisfy h′P1
(f) = h′P2

(f). For each 1 ≤ i ≤ k and each P ∈ Pi, set:

λi = −hPi(f)

µP = h′P (f)− h′Pi(f),

where Pi ∈ Pi is such that fPi > 0. With these constants the KKT-conditions
are satisfied, as can be easily verified. It follows that f is optimal.
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Theorem 1.4.1 says that finding an optimal solution for an instance (N, r, c)
is the same as finding a Nash equilibrium in the same instance, but with different
cost functions. More precisely, given a cost function ce(fe), we call c∗e(fe) :=
(fe · ce(fe))′ the marginal cost function for the edge e. Then Theorem 1.4.1
immediatly implies the following corollary:

1.4.2 Corollary. Let (N, r, c) be an instance such that each function fe · ce(fe)
is continously differentiable and convex. Then f is an optimal flow for (N, r, c)
if and only if f is a Nash flow for (N, r, c∗).

Notice that Corollary 1.4.2 works the other way too. Indeed, suppose we
want to find a Nash flow f for (N, r, c). For each edge e define he(fe) =∫ fe
0
ce(x)dx. Since each ce is continuous and nondecreasing, each he is con-

tinuously differentiable and convex. Moreover, each he satisfies h′e(fe) = ce(fe).
So we can apply Theorem 1.4.1 by considering the nonlinear program with the
following objective function:

(1.4.2) Φ(f) =
∑
e∈E

∫ fe

0

ce(x)dx.

We call (1.4.2) the potential function of the nonatomic instance (N, r, c). This
yields the following corollary:

1.4.3 Corollary. Let (N, r, c) be a nonatomic instance. A feasible flow f for
(N, r, c) is a Nash flow precisely when it minimizes Φ on the set of feasible flows
for (N, r, c).

1.4.4 Remark. Changing the cost functions of an instance (N, r, c) does not
change the set of feasible flows. This allows us to apply Theorem 1.4.1 as in
Corollary 1.4.3.

We close this section by proving another characterization of Nash flows, the
variational inequality characterization, using Corollary 1.4.3. We use this tech-
nical result to find a strict upper bound on the Price of Anarchy of nonatomic
instances (Theorem 1.6.3).

1.4.5 Corollary. Let (N, r, c) be a nonatomic instance. A feasible flow f for
(N, r, c) is a Nash flow precisely when for every feasible flow f∗ for (N, r, c), the
following inequality holds:

(1.4.3)
∑
e∈E

ce(fe)fe ≤
∑
e∈E

ce(fe)f
∗
e .

Proof. We apply Corollary 1.4.3 for this proof. Let f and f∗ be feasible flows
for (N, r, c). For each e ∈ E the following inequality holds:

(1.4.4) ce(fe)(f
∗
e − fe) ≤

∫ f∗e

0

ce(x)dx−
∫ fe

0

ce(x)dx.

This is due to the cost functions being nondecreasing. So if (1.4.3) holds for
each feasible flow f∗, then f minimizes the potential function Φ of (N, r, c) and
is therefore optimal.
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For the reverse implication, let f∗ be a feasible flow for which (1.4.3) doesn’t
hold, i.e. ∑

e∈E
ce(fe)(f

∗
e − fe) < 0.

For each λ ∈ [0, 1] consider the flow fλ given by fλe = λf∗e + (1− λ)fe for each
e ∈ E. All these flows are feasible2 and don’t satisfy (1.4.3):∑

e∈E
ce(fe)(f

λ
e − fe) = λ

∑
e∈E

ce(fe)(f
∗
e − fe) < 0.

As λ approaches 0, the difference of integrals on the right-hand side of (1.4.4)
approaches ce(fe)(f

λ
e − fe) much faster than ce(fe)(f

λ
e − fe) approaches 0. In-

deed, using the first-order Taylor approximation we get

lim
λ→0

∫ fλe
0

ce(x)dx−
∫ fe
0
ce(x)dx

ce(fe)(fλe − fe)
=

1

ce(fe)

d

dy

∫ y

0

ce(x)dx

∣∣∣∣
y=fe

= 1.

So if we take λ close enough to 0, we get

∑
e∈E

∫ fλe

0

ce(x)dx−
∫ fe

0

ce(x)dx < 0.

By Corollary 1.4.3, f is not optimal.

1.5 Existence and uniqueness of flows

With the tools of Section 1.4 in our arsenal, it is a relatively straightforward
affair to prove that in each nonatomic instance, there exists an equilibrium flow
and it is (essentially) unique.

1.5.1 Theorem. Let (N, r, c) be a nonatomic instance. There exists a Nash
flow. If f and f∗ are Nash flows for (N, r, c), then ce(fe) = ce(f

∗
e ) for each edge

e ∈ E.

Proof. Recall that the set of feasible flows of (N, r, c) contains all flows f ∈ R#P

for which fP ≥ 0 for each P ∈ P and
∑
P∈Pi fP = ri for each commodity i. This

set is compact in R#P . Consequently, the (continuous) potential function (1.4.2)
of (N, r, c) attains a minimum at the set of feasible flows. By Corollary 1.4.3,
the feasible flow at which the potential function is minimized, is a Nash flow.

Suppose f and f∗ are Nash flows for (N, r, c). They both minimize the poten-
tial function Φ of (N, r, c). Since each he is convex, for each convex combination

2For each commodity {si, ti} we have∑
P∈Pi

fλP = λ
∑
P∈Pi

f∗P + (1− λ)
∑
P∈Pi

fP = λri + (1− λ)ri = ri



10 CHAPTER 1. SELFISH ROUTING

fλ = λf + (1− λ)f∗, where λ ∈ [0, 1], we have3

Φ(f) ≤ Φ(fλ) =
∑
e∈E

he(f
λ
e )

≤
∑
e∈E

λhe(fe) + (1− λ)he(f
∗
e )

= Φ(f).

For each he this yields

he(f
λ
e ) = λhe(fe) + (1− λ)he(f

∗
e ),

i.e. each he is linear between fe and f∗e . Consequently, each cost function ce is
constant between fe and f∗e .

1.6 The Price of Anarchy of Routing Games

We promised in Section 1.3 that the Pigou network, a simple network with just
one commodity, two edges and two vertices, would tell us basically everything
we needed to know about the Price of Anarchy in nonatomic instances. In
this section, we deliver on this promise. The central result of this section is
that, given (almost) any constraint on the set of allowable cost functions, the
worst Price of Anarchy of a Pigou network satisfying the constraint on the cost
functions is also the worst possible Price of Anarchy of any instance satisfying
the constraint.

Given a non-empty set C of cost functions, let ρ(C) denote the supremum
over all ρ(I), where I is a nonatomic instance with cost functions in C. We will
prove that if C contains all constant functions, ρ(C) is equal to the Pigou bound:

1.6.1 Definition. Let C be a non-empty set of cost functions. The Pigou
bound for C, denoted by α(C), is

α(C) = sup
c∈C

sup
r≥0

ρ(Pig(r, c))

= sup
c∈C

sup
x,r≥0

r · c(r)
xc(x) + (r − x)c(r)

,

where we let 0/0 take the value 1.

1.6.2 Remark. Taking the supremum over x ≥ 0 is the same as taking the
supremum over x ∈ [0, r], since all cost functions are increasing.

1.6.3 Theorem. Let C be a set of cost functions containing all the constant
functions. Then ρ(C) = α(C).

Proof. From the definition of α(C) it follows that for any η < α(C) there is some
instance Pig(r, c) with ρ(Pig(r, c)) > η. Consequently, ρ(C) ≥ α(C).

We prove the other inequality using the variational inequality characteriza-
tion of Nash flows, Corollary 1.4.5. Let (N, r, c) be a nonatomic instance with
cost function in C and let f∗ and f be optimal and Nash flows, respectively, for

3For each λ ∈ [0, 1], fλ is a feasible flow.
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this instance. First notice that for each edge e ∈ E, the following inequality
holds:

α(C) ≥ fe · ce(fe)
f∗e ce(f

∗
e ) + (fe − f∗e )ce(fe)

.

Applying this inequality and Corollary 1.4.5 to the Price of Anarchy of (N, r, c)
yields:

C(f∗) =
∑
e∈E

ce(f
∗
e )f∗e

=
∑
e∈E

ce(fe)fe ·
f∗e ce(f

∗
e ) + (fe − f∗e )ce(fe)

fe · ce(fe)
+ ce(fe)(f

∗
e − fe)

≥ 1

α(C)
∑
e∈E

ce(fe)fe +
∑
e∈E

ce(fe)(f
∗
e − fe)

≥ C(f)

α(C)
.

In conclusion ρ(C) ≤ α(C).

1.7 Atomic Routing

1.7.1 Introduction

Suppose only a finite amount of players route traffic across an instance (N, r, c).
Each player controls a finite, but non-negligible, amount of traffic. Then this
‘atomic’ instance deviates from the nonatomic one in a couple notable respects.
Firstly, different Nash flows may have different cost. Secondly, an atomic in-
stance does not necessarily have a Nash flow. Thirdly, the Price of Anarchy of
an atomic instance may be worse than in the nonatomic version of the instance.
However, if the cost functions are affine, then a Nash flow always exists and
there’s good news as in the nonatomic case. The Price of Anarchy of an atomic
instance with affine cost functions is at most a constant: (3 +

√
5)/2. We will

prove these facts in this section, but first we define the model.

1.7.2 The model

An atomic instance (N, r, c) is a finite strategic game based on the instance
(N, r, c) as defined in Section 1.2. The player set is A = {1, . . . , kN}, where
player i is associated with commodity {si, ti} and has traffic rate ri. If all ri
are equal, we call the instance unweighted. The strategy set of player i is
Pi. We denote S = ΠkN

i=1Pi. A flow f ∈ R#P
≥0 is called a feasible flow if there

is an s ∈ S such that, for each P ∈ P,

fP =
∑

i∈A:si=P

ri.

This means that if player i chooses path P , then it routes ri amount of traffic
through path P . Player i’s cost function, given a strategy s with corresponding
flow f , is

Costi(f) = ri · csi(f) = ri ·
∑
e∈si

ce(fe),
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The cost of a flow f is given by

Cost(f) =

kN∑
i=1

Costi(f) =
∑
e∈E

ce(fe)fe.

Each player wished to minimize his cost. This means the Nash equilibrium
in an atomic instance is defined as follows. A feasible flow f is called a Nash
flow if, for each player i and each pair of paths P ,P ′ ∈ Pi such that fP > 0,
the following inequality holds:

cP (f) ≤ cP ′(f ′),

where f ′ is the feasible flow equal to f , except f ′P = fP − ri and f ′P ′ = fP + ri.
(The traffic rate ri is on both sides of the inequality, so can be cancelled out.)

1.7.3 Results

1.7.1 Theorem (from [3]). Nash flows in an atomic instance do not always
have the same cost.

Proof. An example of an atomic instance proving this statement is called the
AAE example (named after its discoverers). It is shown in Figure 1.2.

1.7.2 Theorem (from [5]). There is an atomic instance for which no Nash flow
exists.

Proof. An example of such an instance is shown in Figure 1.3. For any strategy
pair (Pi, Pj), where Pi is the path chosen by player 1 and P2 the path chosen
by player 2, one of the players can improve his outcome by choosing another
path. Indeed, we have the following unique best responses (a strategy change
by one player that minimizes his cost) for each strategy pair:

(Pi, Pj)→ (P3, Pj), j ∈ {1, 2}
(Pi, Pj)→ (P1, Pj), j ∈ {3, 4}
(P3, Pj)→ (P3, P4)

(P1, Pj)→ (P1, P2).

All the best responses shown are strict improvements for the player who changes
his strategy. This shows that no strategy pair forms a Nash flow.

If an atomic instance is unweighted or all cost functions are affine, then the
instance admits a potential function. We encountered such a function earlier
in the nonatomic case (function (1.4.2)). A potential function ‘tracks’ the cost
increase experienced by a player when he unilaterally changes his strategy. The
existence of such a function guarantees the existence of a Nash equilibrium. In
Chapter 3 we study games that admit potential functions in detail.

1.7.3 Theorem. Let (N, r, c) be an atomic instance with affine cost functions.
Then

ρ(N, r, c) ≤ (3 +
√

5)

2
(' 2.618)
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Figure 1.2: AAE example; an atomic instance with two Nash flows that have
different costs. This situation cannot occur in nonatomic instances. Each player
has the same traffic rate, r = 1, and the Price of Anarchy is 5/2. If we set the
traffic rate for players 1 and 2 to 1

2 (1 +
√

5) (the golden ratio) and the traffic

rate for the other players to 1, then the Price of Anarchy is 1
2 (3 +

√
5), which

is the highest possible Price of Anarchy for atomic instances with affine cost
functions (Theorem 1.7.3).

Proof. Let f be a Nash flow and g an optimal flow for (N, r, c). We need to
prove that

Cost(f)

Cost(g)
≤ 3 +

√
5

2
.

For each edge e ∈ E, let ce(x) = aex+ be, ae,be ≥ 0 denote the cost function
for edge e. Let player i choose path Pi in f and P ′i in g. From the definition of
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Figure 1.3: An atomic instance without a Nash flow. There are two players
{1, 2}, each with commodity {s, t} and traffic rates r1 = 1 and r2 = 2. If this
example would have only affine cost functions or be unweighted (all traffic rates
the same), then a Nash flow would exist.

Nash flow it immediatly follows that∑
e∈Pi

aefe + be ≤
∑
e∈P ′i

ae(fe + ri) + be.

Therefore, we have the following inequality:

Cost(f) ≤
kN∑
i=1

ri
∑
e∈P ′i

ae(fe + ri) + be ≤
kN∑
i=1

ri
∑
e∈P ′i

ae(fe + ge) + be

=
∑

e∈E(N)

ge(ae(fe + ge) + be)

= Cost(g) +
∑

e∈E(N)

aefege.

To the sum in the last line above we apply the Cauchy-Schwartz inequality:∑
e∈E

aefege ≤
√∑
e∈E

aef2e ·
√∑
e∈E

aeg2e ≤
√

Cost(f) ·
√

Cost(g).
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We combine the two inequalities we have derived so far to yield the following:(
Cost(f)

Cost(g)
− 1

)2

≤ Cost(f)

Cost(g)
.

The solution to this quadratic inequality is given by

Cost(f)

Cost(g)
≤ 3 +

√
5

2
.
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Chapter 2

Network formation

2.1 Introduction

In Chapter 1, players are the users on an already existing network. In this
chapter, players need to build the network themselves. One can think of real-life
examples such as the physical creation of a network by ISPs or, more abstractly,
the establishing of connections between users in peer-to-peer networks.

The games in this chapter all have some financial aspect. For example,
in the Local Connection Game from Section 2.2, players have to pay for the
connections that they decide to build. In the Facility Location Game from
Section 2.4, players want to service customers in such a way that they earn the
highest total price.

The games are simple, but the analysis becomes quite complex in some cases.
Especially for the Local Connection Game we need to delve deep into graph
theoretical technicalities to prove a bound on the Price of Anarchy. Nevertheless,
the proofs require only little prior knowledge.

All games in this chapter, save for the Local Connection Game, are instances
of potential games, i.e. games that admit a potential function. We already en-
countered a potential function when we characterized Nash flows for nonatomic
routing games (Section 1.4). Potential games are described in detail in Chap-
ter 3.

2.2 Local Connection Game

2.2.1 Introduction

In the Local Connection Game, introduced by Alex Fabrikant et al. in [4], a
group of players seek to be connected to each other by building edges between
them. The edges could, for example, represent friendships between people or
landlines between servers. A player is connected to another player if there is a
path of edges from him to the other player. The players want these paths to be
as short as possible.

Of course, a player can easily minimize the lengths of the paths to other
players by constructing all possible edges between him and each other player.
However, the edges all have a fixed construction cost α. Perhaps it becomes

17
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profitable to depend on the edges built by other players, thereby saving in
building costs. However, any decrease in construction costs could result in an
increase in usage costs, i.e. an increase in distances to other players, where each
increase of one edge represents a usage cost increase of 1.

In this section we explore the interplay between the conflicting interests of
minimizing usage costs and constructing costs. We try to analyze how Nash
equilibria compare to a situation where the social cost is minimized, i.e. where
the sum total of the players’ construction and usage costs is minimized, disre-
garding individual players’ considerations.

In the best case scenario, when a Nash equilibrium results in a social cost as
close as possible to the minimal social cost, the selfishly chosen strategies are
indeed socially optimal for most values α. Only when α lies between 1 and 2
do the selfish users deviate from the socially optimal situation, but only by a
factor of at most 4/3 (Theorem 2.2.3).

In the worst case scenario—the Price of Anarchy—the specific value of α
has a lot of influence on what Nash equilibria look like. If α is very small,
specifically if α < 1, then the only Nash equilibrium is the complete graph.
This also happens to be the optimal solution, so the Price of Anarchy in this
case is 1. The proof of this result is only a few lines long. If α is very large, i.e.
when α > 273n, where n is the number of players, then all Nash equilibria are
trees. This is fortunate, since trees are guaranteed to have a Price of Anarchy
of less than 5. The proof of this result, however, is by far the longest, most
technical proof in this thesis.

2.2.2 The model

An instance LCG(n, α), where n ∈ Z>1 and α ∈ R>0, of the Local Connection
Game is a finite strategic game. The player set is A = {1, . . . , n}. The strategy
set for player i is Si = P(A \ {i}). A strategy vector s ∈ Πn

i=1Si generates an
undirected graph called a network N(s) = (V (s), E(s)) as follows. The set of
nodes is V (s) = A. An edge {i, j} is in E(s) if and only if i ∈ sj or j ∈ si. We
say that player i builds edge {i, j} if j ∈ si.

Let s be a strategy vector for LCG(n, α). Player i incurs a construction
cost ci(s) for the edges that he builds. The construction cost is given by

ci(s) = α|si|.

Player i also experiences a usage cost ui(s) dependent on his proximity to the
other players in the network N(s). It is given by

(2.2.1) ui(s) =

n∑
j=1

dist(i, j).

where dist(i, j) is the length of the shortest path (in terms of number of edges)
from i to j. If there is no path from i to j, dist(i, j) is set to infinity. The cost
function Costi(s) of player i is simply the sum of his construction and usage
costs:

Costi(s) = ci(s) + ui(s).
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The social cost function Cost(s) is the sum of the players’ costs:

Cost(s) =

n∑
i=1

Costi(s).

Nash equilibirum, optimal strategy and the Price of Anarchy and Stability
are defined as in Appendix B. Note that both optimal strategies and Nash
equilibria always form connected graphs. This is because disconnected graphs
have infinite cost, so there is at least one player that can improve his own cost
as well as the social cost by building all the edges connecting him to the other
players. It follows that networks of LCG(n, α) have at least n− 1 edges if they
are generated by an optimal strategy or a Nash equilibrium.

A strategy s where two players build the same edge (by including each
other in their strategy sets) is neither a Nash equilibrium nor optimal. We
will therefore henceforth assume at most one player builds the same edge. This
means that the social cost of s can be expressed as

Cost(s) = α|E(s)|+
n∑
i=1

n∑
j=1

dist(i, j).

So the social cost of s is only dependent on the structure of the generated
network N(s), not on which player builds what edge. This justifies the following
definition. The social cost of an undirected graph G, denoted by Cost(G), is
defined as

Cost(G) = Cost(s),

where s is a strategy vector for which N(s) = G.

2.2.3 Price of Stability of the Local Connection Game

Two types of graphs play a pivotal role in analyzing the Price of Stability: star
graphs and the complete graph. A star graph first minimizes the number of
built edges first to n − 1, and then, given this amount of edges, minimizes the
distances (at most 2). The complete graph finds the absolute minimum in usage
costs (2n), but the absolute maximum in construction costs (αn(n− 1)/2).

Not surprisingly, then, a strategy that forms a star graph is optimal for
large values of α, while a strategy resulting in the complete graph is optimal
for low values of α. The tipping point is α = 2. Intuitively, this is because for
α < 2, building an edge costs less than the minimal decrease in usage costs. For
α > 2, if the maximum distance between players is at most 2, then it is never
profitable to build an edge, since the total decrease in usage costs is at most 2.
This discussion is made precise in the following theorem:

2.2.1 Theorem. A strategy vector s for LCG(n, α) is optimal if and only if

• α > 2 and N(s) is a star graph, or
• α < 2 and N(s) is the complete graph, or
• α = 2 and N(s) has diameter of at most 2

Proof. We first find a lower bound on the cost of s. The total construction
cost is αm, where m := |E(s)|. There are precisely 2m ordered pairs of nodes
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Figure 2.1: An example of a network that is neither a star nor the complete
graph, but is still optimal if (and only if) α = 2.

with distance 1 from eachother; these contribute 2m to the total usage cost.
The other n(n − 1) − 2m pairs contribute at least 2 · (n(n − 1) − 2m) to the
usage cost, since they are at least 2 edges removed from each other. So Cost(s)
satisfies

(2.2.2) Cost(s) ≥ (α− 2)m+ 2n(n− 1),

and equality is satisfied if and only if the diameter of N(s) is at most 2.
For α > 2 it follows that only graphs that minimize m to n − 1 and have

diameter at most 2 are optimal. Any such graph must be a star for the following
reason. Consider two edges {u, v} and {v, w} in the graph. Any third edge must
connect v with some vertex other than u and w; otherwise the diameter of the
graph is at least 3, or m > n− 1. It follows that v is the center in a star.

If α < 2, the right side of (2.2.2) is minimized if m is as large as possible.
The complete graph is the only graph satisfying the lower bound in this case.

If α = 2, the right side of (2.2.2) reduces to 2n(n−1). A graph then satisfies
the lower bound only if its diameter is at most 2. (See Figure 2.1.)

Similarly to optimal strategies, when α is large, star graphs are generated by
a Nash equilibrium, while the complete graph is generated a Nash equilibrium
when α is small. The reasoning is about the same as in the case of optimal
strategies, but the tipping point now lies at α = 1. This reflects the fact that
in the social cost function distances are counted twice, while a player is only
interested in the distance to other players (and not from other players to him).

2.2.2 Theorem. If α ≥ 1, then all star graphs are generated by a Nash equi-
librium. If α ≤ 1, then the complete graph is generated by a Nash equilibrium.

Proof. Suppose α ≥ 1. Any strategy that gererates a star graph is a Nash
equilibrium. Indeed, no player has incentive to deviate by buying less edges,
for then his usage cost would increase to infinity. The center player doesn’t
have to buy more edges because he is already connected to everyone. If another
player buys k ∈ Z≥1 more edges, then his usage cost is reduced by k, but
his construction cost is increased by αk ≥ k: the player doesn’t profit by his
deviation.

Suppose α ≤ 1. Any strategy that results in the complete graph is a Nash
equilibrium. For if a player deviates by buying k less edges, he increases his
usage cost by k (or infinity if k = n− 1), while his construction cost decreases
by only αk ≤ k.
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Theorems 2.2.1 and 2.2.2 allow for an easy computation of the Price of
Stability of the Local Connection Game.

2.2.3 Theorem. The Price of Stability of LocalConnectionGame(n, α) is equal
to 1 if α /∈ (1, 2), and lower than 4/3 if α ∈ (1, 2). The bound of 4/3 for
α ∈ (1, 2) is strict.

Proof. Suppose α /∈ (1, 2). In this case, according to Theorems 2.2.1 and 2.2.2,
the structure of optimal solutions and networks from certain Nash equilibria
coincide. This means the Price of Stability is equal to 1.

Suppose α ∈ (1, 2). The complete graph is optimal in this case, while the
star graph is generated by a Nash equilibrium. We find a strict upper bound
for the Price of Stability by finding the worst ratio of costs between these two
graphs. The ratio of costs for an instance LCG(n, α) is:

(α− 2)(n− 1) + 2n(n− 1)

(α− 2)n(n−1)2 + 2n(n− 1)
.

This ratio increases as α decreases. The limit of the ratio as α approaches 1 is
equal to:

2n(n− 1)− (n− 1)

2n(n− 1)− n(n−1)
2

=
4

3
·
n2 − 3

2n+ 1
2

n2 − n
<

4

3
.

As n goes to infinity, the ratio approaches 4/3. It follows that the bound is
strict.

2.2.4 Price of Anarchy of the Local Connection Game

We prove a couple of powerful results for the analysis of the Price of Anarchy
of the Local Connection Game. In particular, the final result in this section,
by Matúš Mihalák et al. [6], shows that the Price of Anarchy is at most 5 for
‘most’ instances, i.e. whenever α > 273n. That’s because then the only Nash
equilibria are trees. We will prove that trees have a Price of Anarchy of less
than 5.

For very small α the analysis is finished quickly. The Price of Anarchy for
the Local Connection Game when α < 1 is simply calculated from the fact that
the complete graph turns out to be the unique structure of the Nash equilibrium
in this range of α.

2.2.4 Theorem. If α < 1, ρ(LCG(n, α)) = 1.

Proof. From Theorem 2.2.2 we know that the complete graph is generated by
a Nash equilibrium if α ≤ 1. If α < 1 the complete graph is in fact the only
Nash equilibrium. For in any other graph there is a pair of players who are not
connected to each other by an edge. Any one of those players can decrease his
cost by buying the edge connecting the players; this decreases his usage cost by
at least 1, while it costs him less than 1 to build the edge.

Since the complete graph also optimizes the social cost if α ≤ 2 (Theo-
rem 2.2.1), this concludes the proof.
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Figure 2.2: An example of a network where any associated Nash equilibrium
has worse than optimal social cost. Any strategy that generates this network is
a Nash equilibrium when 1 ≤ α ≤ 4. If on top of that α 6= 2, then the social
cost is worse than the optimal cost for LCG(n, α).

Finding bounds on the Price of Anarchy for larger values of α is more in-
volved. Once α ≥ 1, instances can be found where a Nash equilibrium has worse
than optimal social cost. For example, if α = 1, the complete graph with one
edge removed is a network for which any associated strategy vector is a Nash
equilibrium. The social cost is 1 more than the optimal cost. Figure 2.2 shows
an example for 1 ≤ α ≤ 4, α 6= 2. Hence, the Price of Anarchy is greater than
1 if α ≥ 1.

Since the cost of a network is usually not only dependent on α, but also on
the number of players n, it’s interesting to find out what influence n has on the
Price of Anarchy. One answer is that n can only have a very limited negative
effect, in the sense that for fixed α, the Price of Anarchy of any instance is at
most some fixed constant times

√
α. We prove this in the following theorem.

2.2.5 Theorem. ρ(LCG(n, α)) ∈ O(
√
α).1

The proof follows a two-step approach. First we find an upper bound on the
cost of a Nash equilibrium as a function of the diameter of its resulting network.
Then we find an upper bound on the diameter of said network. Together these
bounds provide an upper bound for the Price of Anarchy of LCG(n, α).

The proof of the first part hinges on the observation that α is bounded by
the diameter of the graph (times some constant), since it’s a Nash equilibrium
and no player can profit from deleting an edge.

2.2.6 Lemma. Let sNash be a Nash equilibrium and sopt be optimal for LCG(n, α).
If N(sNash) has diameter d, then

Cost(sNash)

Cost(sopt)
≤ 3d.

Proof. First we bound Cost(sopt) from below. From (2.2.2) and n > 1 it follows
that

Cost(sopt) ≥ α(n− 1) + n(n− 1).

To find an upper bound for Cost(sNash), we divide the total construction cost
in two parts: construction cost of cut edges2 and construction cost of non-cut

1Recall that the notation f(x) ∈ O(g(x)) means that there are constants c and M such
that f(x) ≤ c · g(x) for all x ≥M .

2A cut edge is an edge whose removal makes a graph disconnected
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edges. Every distance is at most d, so the total usage cost is at most dn(n− 1).
There are at most n − 1 cut edges, so their total cost is at most α(n − 1). We
will prove that the costs of non-cut edges is bounded from above by 2dn(n− 1).
That means Cost(sNash) is bounded from above by α(n−1) + 3dn(n−1). Since
that is at most 3d times the lower bound on the optimal cost, this proves the
theorem.

To find the bound for the costs of non-cut edges, pick a node u. We will
bound the number |pu| of non-cut edges paid for by u by associating with each
edge e ∈ pu the set Ve consisting of the nodes w where any shortest path between
u and w must run through e. We will prove that |Ve| ≥ α/2d. Since there are
only n − 1 nodes besides u and the Ve are pairwise disjoint, it follows that
|pu| · α/2d ≤ n− 1, so |pu| ≤ 2d(n− 1)/α. Consequently, the construction cost
for all non-cut edges is at most 2dn(n− 1).

We will bound the increase in usage cost for u if the edge e = {u, v} ∈ pu
is deleted. Let Ne denote the network N(sNash) with e deleted. The length of
the shortest path P between u and v in Ne is at most 2d. Indeed, let w be the
first node in P that is in Ve, and w′ be the node that precedes w in P . Since
the shortest path between u and w′ doesn’t run along e even if it isn’t deleted,
the part of path P running from u to w′ has length of at most d. The length
between w and v is at most d− 1, since the shortest path length between w and
u if e is still there, is at most d. We conclude that the increase in distance from
u to v is at most 2d− 1.

To reach any other x ∈ Ve from u in Ne, we can first follow the path P to
v and then find the shortest path to x. Any shortest path P ′ from v to x in
N(sNash) still exists in Ne. If the length of the shortest path from u to x in
N(sNash) is l, then the length of P ′ is l − 1. It follows that the length of the
shortest path from u to x in Ne is at most the length of the path 〈P, P ′〉, which
is at most 2d+ l − 1. We conclude that the increase in distance from u to x is
at most 2d− 1.

Consequently, deleting e would increase the usage costs of u by at most
2d|Ve|. If u would delete e, it would save him α in cost. Since sNash is a Nash
equilibrium, this should not be profitable. Therefore we must have α ≤ 2d|Ve|,
and consequently |Ve| ≥ α/2d.

2.2.7 Lemma. Let sNash be a Nash equilibrium for LCG(n, α). The diameter
of N(sNash) is at most 2

√
α.

Proof. We will prove by contraposition: if the diameter of a graph is more than
2
√
α, then it does not come from a Nash equilibrium. Let u and v be nodes for

which the distance k of the shortest path P between them is more than 2
√
α.

If u builds the edge {u, v}3, he would pay α. However, the distance between
u and v would decrease by k−1. The distance between u and the node preceding
v in P would decrease by k − 3. Continuing on like this, we find that the total
decrease in distance is at least

(k − 1) + (k − 3) + . . . ≥ k2

4
.

Since k > 2
√
α, this means u improves his cost by building the edge {u, v}.

Therefore, the graph isn’t the result of a Nash equilibrium.

3We assume α ≥ 1, so {u, v} doesn’t exist in the graph. Due to Theorem 2.2.4 we already
know the Price of Anarchy for α < 1.
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Theorem 2.2.5 follows directly from the previous two Lemmas.
For large n (compared to α) the Price of Anarchy of any Local Connection

Game-instance is actually only of the order of 1.

2.2.8 Theorem. ρ(LCG(n, α)) ∈ O(1+α/
√
n). In particular, ρ(LCG(n, α)) ∈

O(1) if α ∈ O(
√
n).

The proof follows the same two-step approach as Theorem 2.2.5, with the
exception that we use a bound different from the one found in Lemma 2.2.7.
The theorem follows from Lemmas 2.2.6 and 2.2.9.

2.2.9 Lemma. Let sNash be a Nash equilibrium for LCG(n, α). The diameter
of N(sNash) is at most 9 + 4α/

√
n.

Proof. Let d be the diameter of N(sNash) and u, v be nodes in N(sNash) with
dist(u, v) = d > 1. Let Bu be the set of nodes at most d′ edges away from u,
where d′ = b(d− 1)/4c. First we find the following upper bound on |Bu|:

(2.2.3) |Bu| ≤ α ·
2

d− 1
.

Next we find a lower bound on |Bu|:

(2.2.4)
n(d′ − 1)

2α
≤ |Bu|.

With these two inequalities we find

α2 ≥ α · (d− 1)n(d′ − 1)

4α
≥ n(d′ − 1)2.

Since d ≤ 4(d′ + 1) + 1, it follows that d ≤ 4α/
√
n + 9, which concludes the

proof of the lemma.
To find bound (2.2.3), suppose player v adds edge {u, v} to N(sNash). We

will calculate how much this saves in usage costs for v. Consider a node w ∈ Bu.
Before adding {u, v} we must have dist(v, w) ≥ d−d′, since dist(u, v) = d is the
shortest distance between u and v. After adding {u, v}, the distance decreases to
at most d′+1. It follows that v will save at least (d−2d′−1)|Bu| ≥ (d−1)|Bu|/2
in usage costs. Since sNash is a Nash equilibrium, v should not be able to profit
by adding any edge, so we must have (d− 1)|Bu|/2 ≤ α.

To find bound (2.2.4), suppose player u adds edge {u,w} to N(sNash), where
w is some node in Bu. We will calculate how much this saves in usage costs for
u. Let Aw be the set of nodes t for which there is a shortest path from u to t
that leaves the set Bu by passing through w. Note that if there is a shortest
path leaving set Bu through w, it follows that dist(u,w) = d′. So if |Aw| is
non-empty, player u saves at least |Aw|(d′ − 1) in usage costs by buying edge
{u,w}.

Let w ∈ Bu be such that |Aw| is above average. Since the union of all
Aw′ contains all nodes outside of Bu, for node w the inequality |Aw| ≥ (n −
|Bu|)/|Bu| holds. By choosing to connect with an edge to w, player u saves at
least (d′ − 1)(n− |Bu|)/|Bu| in usage costs. Since sNash is a Nash equilibrium,
the savings cannot exceed α, i.e. (d′ − 1)(n − |Bu|)/|Bu| ≤ α. Rearranging
yields the inequality

n(d′ − 1)

(d′ − 1) + α
≤ |Bu|.
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We must have α ≥ d > (d′ − 1), since otherwise u could profit by building edge
{u, v}. Replacing (d′−1) by α in the denominator of the above inequality gives
the desired inequality (2.2.4).

Where the previous two bounds were found by comparing the diameter of
equilibrium networks with optimal networks, the next bound will be found by
examining the structure of equilibrium networks. We will prove that, for suf-
ficiently large α, all equilibrium networks are trees (connected graphs without
cycles). That is a significant result, since trees are never far from optimal, as
the following Theorem shows.

The proof uses the concept of a subtree of a node z in a tree T , i.e.
a connected component in the subgraph of T generated by removing z and its
adjoining edges. Note that there is a unique subtree Tz(v) of z for each neighbor
v of z, and Tz(v) ∩ Tz(w) = ∅ for any two neighbors v,w of z.

2.2.10 Theorem. Let sNash be a Nash equilibrium and sopt an optimal strategy
for LCG(n, α). If N(sNash) is a tree, then Cost(sNash) < 5 · Cost(sopt).

Proof. We will first prove there is a center node z ∈ N(sNash), i.e. a node z for
which the size of its largest subtree is at most n/2. For each node v ∈ N(sNash),
let Tv(w) denote the subtree of v corresponding to its neighbor w. Pick a node
v0 ∈ N(sNash). Consider a sequence (vi)

∞
i=0 of nodes generated by picking for

each i > 0 a node vi+1 ∈ N(sNash) such that vi+1 is a neighbor of vi and
|Tvi(vi+1)| is maximal. We will prove by induction that some vk ∈ (vi)

∞
i=0 is a

center node.

Suppose vi is not a center node. Then |Tvi(vi+1)| > n/2. Note that each sub-
tree of vi+1 except for Tvi+1

(vi) is a strict subset of Tvi(vi+1), so has cardinality
at most |Tvi(vi+1)| − 1. The subtree Tvi+1

(vi) is the complement of Tvi(vi+1)
and therefore has cardinality at most n/2. This means that the cardinality of a
maximal subtree of vi+1 is at most max{|Tvi(vi+1)| − 1, n/2}. By induction it
follows that some vi in the sequence must be a center node.

Let z be a center node of N(sNash) and suppose that the tree N(sNash) with
z at its root has depth d ≥ 2. Let v be a node at depth d and let T be the subtree
of z for which v ∈ T . If v decides to buy the edge {v, z}, then it will decrease its
distance to all nodes in the complement of T , since paths from v to those nodes
must run through z. There are at least n/2− 1 nodes in T ’s complement, since
z is a center node, so |T | ≤ n/2. Consequently, v saves at least (d−1)(n/2−1).
By the equilibrium constraint, we must have (d− 1)(n/2− 1) ≤ α.

Since diam(N(sNash)) is at most 2d, by rearranging the above inequality
we get diam(N(sNash)) ≤ 4α

n−2 + 2. For the social cost of N(sNash) we note
that there are 2(n− 1) ordered pairs of nodes which are distance 1 apart from
each other. The remaining (n − 2)(n − 1) ordered pairs of nodes are at most
diam(N(sNash)) removed from each other. Since N(sNash) is a tree, it contains
precisely n− 1 edges. This leads to the following inequality:

Cost(sNash) ≤ α(n− 1) + 2(n− 1)+

(n− 2)(n− 1)

(
4α

n− 2
+ 2

)
= 5α(n− 1) + 2(n− 1)2.
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By equation (2.2.2) we get

Cost(sNash)

Cost(sopt)
≤ 5α(n− 1) + 2(n− 1)2

α(n− 1) + 2(n− 1)2
< 5.

Proving that for sufficiently large α any equilibrium network is a tree, is
done by looking in equilibrium networks at the average degree of a biconnected
components in the network. A biconnected component of a graph G is a
maximal subgraph H without any cut vertices. A cut vertex in a subgraph H
is a vertex whose removal would make H disconnected. The average degree
deg(H) of a subgraph is

deg(H) =

∑
v∈V (H) degH(v)

|V (H)|
,

where degH(v) denotes the degree of v ∈ V (H) in H.
On the one hand, the average degree of a biconnected component is at least

2+ 1
34 (Lemma 2.2.12). On the other hand, the average degree is at most 2+ 8n

α−n
(Lemma 2.2.13). This naturally leads to the conclusion that any equilibrium
network for LCG(n, α) with α > 273n cannot contain a biconnected component
and is therefore a tree.

2.2.11 Theorem. Let LCG(n, α) be an instance of the Local Connection Game.
If α > 273n, then ρ(LCG(n, α)) ≤ 5.

Proof. Let sNash be a Nash strategy for LCG(n, α). From Lemmas 2.2.12
and 2.2.13 we know that N(sNash) cannot contain a biconnected component.
Since all equilibrium networks are connected graphs, it follows that N(sNash)
is a tree. By Theorem 2.2.10, Cost(sNash) < 5 · Cost(sopt), where sopt is an
optimal strategy for LCG(n, α). We conclude that ρ(LCG(n, α)) ≤ 5.

For the lower bound of 2 + 1
34 , we will prove that for any node c in a bicon-

nected component H with degH(c) > 2, there are at most 11 · degH(c) other
nodes in H with degree 2. This means that deg(H) grows as the number of
nodes in H with degree higher than 2 grows. Together with the fact that any
biconnected component contains at least one node with degree higher than 2,
this leads to the lower bound on deg(H).

2.2.12 Lemma. Let sNash be a Nash equilibrium for LCG(n, α), where α > 19n.
If H is a biconnected component of N(sNash), then deg(H) ≥ 2 + 1

34 .

Proof. Let H be a biconnected component of N(sNash). First note that there
is at least one node v ∈ V (H) with degH(v) ≥ 3 (Lemma A.4). Let D be the
set containing these nodes. We can find a lower bound on deg(H) by finding
an upper bound on the number of v ∈ V (H) with degH(v) = 2. (There are no
nodes v in V (H) with degH(v) < 2, since then H would contain a cut vertex or
be disconnected.)

The desired upper bound is found with the help of Lemma A.4. For each
d ∈ D define V (d) = {v ∈ V (H) : dist(v, d) = mind′∈D dist(v, d′)}. To let the
V (d) form a partition of V (H), if a node v ∈ V (H) is closest to more than one
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d ∈ D, we put v in only one of the V (d). Since any v ∈ V (H) is at most 11
edges removed from a d ∈ D, we have the following bound on |V (d)|:

|V (d)| ≤ 1 + 11 degH(d).

The desired lower bound follows:

deg(H) =

∑
d∈D degH(d) + 2 · (|V (d)| − 1)

|V (H)|

=
2 ·
∑
d∈D |V (d)|
|V (H)|

+

∑
d∈D(degH(d)− 2)

|V (H)|

≥ 2 +

∑
d∈D(degH(d)− 2)

|D|+
∑
d∈D 11 degH(d)

≥ 2 +
|D|

|D|+ 33|D|

= 2 +
1

34
.

For the upper bound of 2 + 8n
α−n , instead of looking at the degree of nodes,

we will consider the number of edges in a biconnected component H. We will
find a particular spanning tree for H for which we can find a upper bound on
the number of edges in H that are not in the spanning tree. Since the number
of edges in the spanning tree is also bounded (by the number of nodes in H),
this leads to our desired upper bound.

2.2.13 Lemma. Let sNash be a Nash equilibrium for LCG(n, α), where α > n.
If H is a biconnected component of N(sNash), then deg(H) ≤ 2 + 8n

α−n .

Proof. Let v0 be a node (player) for which uv0(sNash)4 is minimal among the
nodes v ∈ V (N(sNash)). Let T be a BFS-tree5 of N(sNash) rooted at v0. The
graph T ′ = T ∩H is a spanning tree of H. Indeed, any pair of nodes u,v ∈ V (H)
is connected with a path through H and a path through T . Since H is maximal,
the path through T must also run completely through H. Consequently, T ′ is
connected and spans H. This yields the following upper bound:

deg(H) =
2|E(T ′)|+ 2|E(H) \ E(T ′)|

|V (T ′)|
≤ 2 +

2|E(H) \ E(T ′)|
|V (T ′)|

.

To bound |E(H) \E(T ′)|, we continue as follows. Let U be the set of nodes
v ∈ V (H) for which (sNash)v ∩ E(H) \ E(T ′) 6= ∅. We prove the following:

1. |U | = |E(H) \ E(T ′)|

2. For each u,v ∈ U : distT ′(u, v) ≥ α−n
2n ,

3. |U | ≤ 4n|V (T ′)|
α−n .

4Recall that uv0 (sNash) denotes the usage cost of player v0 given strategy vector sNash.
See equation (2.2.1).

5We specifically use a Breadth First Search-tree, since we need to use its property that the
path connecting the root v0 of T with another node v is also a shortest path from v0 to v in
the network.
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Part (2) implies part (3). This follows from a partition argument similar to the
one in the proof of Lemma 2.2.12. For each u ∈ U let V (u) = {v ∈ V (H) :
dist(v, u) = minu′∈U dist(v, u′)}. We stipulate that each v ∈ V (H) can only be
in one V (u) and break ties arbitrarily. This means the V (u) partition V (H)
and

|V (T ′)| = |V (H)| =
∑
u∈U
|V (u)| ≥ |U | · α− n

4n
.

Parts (1) and (3) imply the desired bound:

deg(H) ≤ 2 +
2|E(H) \ E(T ′)|
|V (T ′)|

= 2 +
2|U |
|V (T ′)|

≤ 2 +
8n

α− n
.

To prove part (1), assume player u ∈ U buys k ∈ Z>1 edges in E(H)\E(T ′)
and l ∈ Z≥0 other edges. Player u can improve its cost by not buying the edges
in E(H) \E(T ′) and buying an edge to v0 instead, constradicting that sNash is
a Nash equilibrium. Denote the new strategy vector by s. Then

Costu(s) ≤ uv0(sNash) + n+ l · α ≤ uu(sNash) + n+ l · α
< uu(sNash) + (k + l)α

= Costu(sNash),

where the second inequality holds because uv0(sNash) is minimal and the third
holds because α > n. It follows that each u ∈ U buys exactly one edge in
E(H) \ E(T ′), so |U | = |E(H) \ E(T ′)|.

To prove part (2), let u, v ∈ U , u 6= v, be such that distT ′(u, v) < α−n
2n . Let

P = {x1, . . . , xk} be the shortest path in T ′ connecting u and v (so x1 = u and
xk = v). Let u′, v′ ∈ V (H) be such that {u, u′}, {v, v′} ∈ E(H) \ E(T ′).

We first prove that v0,u′,v′ /∈ P . By Lemma A.1, both u′ and v′ are not
a descendant in T ′ of any xi ∈ P . Otherwise the u′-xi-path in T ′, the xi-u-
path in T ′ and {u, u′} (and similarly for v′) form a cycle in N(sNash) of length
at most6 2(dT ′(u, v) + 1) < α

n + 1. Consequently, u′ and v′ are not in P and
P ′ = {x0, . . . , xk+1}, where x0 = u′ and xk+1 = v′, is a path in H. Lemma A.1
also implies that dist(u, v0) > dist(u, v), so dist(u, v0) ≥ α−n

2n (and similarly for
v). Therefore v0 /∈ P .

Let xi ∈ P be such that xi buys both {xi, xi+1} and {xi, xi−1}. Such a
node exists, since x1 buys {u′, x1} and xk buys {xk, v′}. Let xi unilaterally
deviate from sNash as follows: xi no longer buys the two edges in P , but buys
{xi, v0} instead. Denote the new strategy vector by s. We show that Costxi(s) <
Costxi(sNash). This leads to a contradiction with sNash being a Nash equilibrium
and thereby proves the theorem.

In s, cxi(s) = cxi(sNash) − α. In the remaining we show that uxi(s) <
uxi(sNash) + α. This proves that Costxi(s) = cxi(s) + uxi(s) < Costxi(sNash).
Note that uxi(s) ≤ uv0(s) + n, since there are n nodes in N(sNash). It remains
for us to show that uv0(s) < uv0(sNash) + α− n.

The only nodes that might have increased distance to v0 in N(s) compared
with N(sNash), are the nodes in P and their descendants in T . Let w be such
a node. Let xj be the ancestor of w in T closest to w among the nodes in P .
Since T is a BFS-tree, we have

distN(sNash)(v0, w) = distT (v0, xj) + distT (xj , w).

6T ′ is a BFS-tree, so distT ′ (u
′, xi) ≤ distT ′ (u, xi) + 1.
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Suppose j = i. The path via T is still present in the new network N(s),
so distN(s)(v0, w) = distN(sNash)(v0, w). Suppose j < i. Since x0 is not a
descendant from any node in P and the path {x0, . . . , xj} remains intact in
N(s), we have

distN(s)(v0, w) ≤ distN(s)(v0, x0) + distN(s)(x0, xj) + distN(s)(xj , w)

= distT (v0, x0) + distP ′(x0, xj) + distT (xj , w).

So the increase in distance from v0 to w is

distN(s)(v0, w)− distN(sNash)(v0, w) ≤ distT (v0, x0) + distP ′(x0, xj)

− distT (v0, xj)

≤ 2 · distP ′(x0, xj)

≤ 2 · distT ′(u, v) <
α− n
n

.

A similar argument applies when j > i.
We conclude that the total increase in usage cost is less than n · α−nn , so

uv0(s) < uv0(sNash) + α− n, which we wanted to prove.

2.3 Global Connection Game

2.3.1 Introduction

In the Global Connection Game players want to build a path from a source to
a sink while keeping construction costs as low as possible. If multiple players
decide to build an edge, they share the costs equally. This type of cost allocation
called fair cost allocation is often used in network design. It follows from the
Shapley value, a solution concept in cooperative game theory [8].

Two examples in this section yield strict upper bounds on both the Price
of Anarchy and Stability. Most interesting properties of the Global Connection
Game follow from the fact that it is a potential game. See Chapter 3 for more
details.

The Global Connection Game was introduced by Elliot Anshelevich et al.
in [2], where it was called the Shapley-value cost sharing game. We call it the
Global Connection Game to contrast with the Local Connection Game from
Section 2.2. In the Local Connection Game, players have no influence on ‘dis-
tant’ parts of the network, i.e. on connections between pairs of users that don’t
include themselves. In the Global Connection Game, the users influence the
structure of a network across multiple nodes.

2.3.2 The model

Let G be a directed graph where each edge e ∈ E(G) has a fixed cost ce ∈
R≥0. An instance GCG(G) of the Global Connection Game is a finite strategic
game with player set A = {1, . . . , n}. Each player i is assigned a pair of nodes
{si, ti} ⊆ V (G) — his source node and sink node. The strategy set Pi of
player i is the set of paths from si to ti. A strategy vector s ∈ S = Πn

i=1Pi
generates a network N(s) with V (N(s)) = V (G) and E(N(s)) = ∪iPi.
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s t

ce = n

e

ce′ = 1
e′

Figure 2.3: A Global Connection Game with the worst possible Price of Anarchy,
n, and the best possible Price of Stability, 1. See Example 2.3.1.

The cost that a player incurs by including edge e in his chosen path depends
on how many other players chose e. In our model, the cost of building an edge
is divided evenly among the players, i.e. if k players chose e in their paths, the
cost per player is ce/k. We let Coste(s) denote the construction cost per player
of edge e, given a strategy vector s. The cost for a player i is the sum of his
edge costs:

Costi(s) =
∑
e∈si

Coste(s) =
∑
e∈si

ce
ne(s)

,

where ne(s) is the number of players with e in their chosen path. The social
cost of a strategy s is simply the cost of all edges built in the network N(s):

Cost(s) =
∑

e∈N(s)

ce =

n∑
i=1

Costi(s).

Other concepts such as the Price of Anarchy are defined as in Appendix B.

2.3.3 Price of Anarchy and Stability of the Global Con-
nection Game

Strict bounds on the Price of Anarchy and Stability for the Global Connection
Game are quickly found in two simple examples.

2.3.1 Example. Consider a graph with two nodes s and t and two edges e and
e′ from s to t with costs n and 1, respectively. For each player i, si = s and
ti = t. (See Figure 2.3.)

The social cost is 1, n or n+1, depending on which edges are built. The social
optimum is therefore equal to 1. Suppose k players buy edge e. If 0 < k < n,
any one of those players can decrease his cost by buying edge e′ instead, so this
is not a Nash equilibrium. If k = n, the cost for a player doesn’t decrease if he
buys edge e′ instead, and if k = 0, the cost for a player increases if he buys edge
e instead of e′.

These are the only two Nash equilibria. They have costs n and 1, respec-
tively, so the Price of Anarchy of this example is n while the Price of Stability
is 1.

2.3.2 Example. Consider a graph with nodes t, v, and si for each player i.
There is an edge from v to t with cost 1 + ε (0 < ε < n), for each i an edge from
si to v with zero cost, and for each i an edge from si to t with cost 1/i. The
sink node for each player is t. (See Figure 2.4.)
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Figure 2.4: A Global Connection Game with the worst possible Price of Stability,
Hn. See Example 2.3.2.

The optimal cost is 1 + ε, when all players choose the route via v. Any other
strategy will result in a cost strictly higher than 1 + ε. This is, however, not a
Nash equilibrium.

In fact, there is only one Nash equilibrium: the strategy where player i
chooses the edge from si to t, for each i. Its cost is Hn, the n-th harmonic
number. If k > 0 players choose the route via v, any one of those players i with
i ≥ k can reduce his cost from (1 + ε)/k to at most 1/k by choosing the route
directly to t instead.

In this example, therefore, both the Price of Stability and the Price of An-
archy are (roughly) equal to Hn.

Both these examples provide worst-case scenarios for the Price of Anarchy
and Stability: Example 2.3.1 for the Price of Anarchy and Example 2.3.2 for
the Price of Stability. Proving the upper bound for the Price of Anarchy is
straightforward.

2.3.3 Theorem. The Price of Anarchy of a Global Connection Game is never
higher than n, the number of players. This is a strict upper bound.

Proof. The fact that this is the smallest upper bound follows from Exam-
ple 2.3.1. Let s be a strategy with Cost(s) > n · Cost(sopt), where sopt is a
strategy with optimal social cost. We will prove that s is not a Nash equilib-
rium.

Since the social cost function is the sum of the players’ costs, there is a player
i with Costi(s) > Cost(sopt). However, the path (sopt)i satisfies Costi(s

′) ≤
Cost(sopt) for any strategy vector s′. This is because the social cost function is
also the sum of the maximum costs for each edge, and (sopt)i is a subset of the
edges in N(sopt). So if player i changes his strategy to (sopt)i, he decreases his
cost to at most Cost(sopt). Hence, s is not a Nash equilibrium.

The Price of Stability will never exceed Hn. The bound follows directly from
the properties of potential games, as the Global Connection Game turns out to
be a game of this type. The class of potential games is discussed in Chapter 3.
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2.4 Facility Location Game

2.4.1 Introduction

The games we have discussed so far all lack interaction with customers. For
example, the players in the Local Connection Game only strive to build a well
connected yet cheap network. Of course, the customer base is implied: once
the network is created, the Internet Service Providers can sell their services
on the network to the internet users. Nevertheless, we would like to see what
happens to the Price of Anarchy when we have a game with an explicit pricing
component.

The game we study in this section is the Facility Location Game, introduced
by Adrian Vetta in [18]. In this game, service providers compete over a set of
customers. The service providers each have a few possible locations where they
can establish their facility. Different locations have different costs for connecting
to the various customers. The profits of a provider come from the customers’
payments.

An aspect of the Facility Location Game that distinguishes the game from
the others in this thesis, is the social utility function. In the other games the
social utility was only dependent on the utility (cost) of each player. In the
Facility Location Game, in contrast, the utility that is created by connections is
also taken into account. Specifically, each customer has a certain value for each
service. The welfare created by a connection is this value minus the building
cost.

The Facility Location Game is an instance of a broader class of games called
Utility Games. In Section 2.5 we prove that the Facility Location Game is a
Basic, Monotone Utility Game. A consequence is that each instance of the
Facility Location Game has Price of Anarchy at most 2 and Price of Stability
equal to 1.

2.4.2 The model

Consider a complete bipartite graph G = (F ∪ C,E). A node f ∈ F is called a
facility location, a node c ∈ C is called a customer. An instance FLG(G) of
the Facility Location Game is a finite strategic game. The playersA = {1, . . . , n}
are called service providers. The strategy set of a service provider i is denoted
by Fi. The Fi are pairwise disjoint and ∪ni=1Fi = F . Each customer c ∈ C has
an associated number v(c) ∈ R≥0, which represents the value it puts on being
serviced. Each edge e = {f, c}, where f ∈ F , c ∈ C, has an associated number
c(e) = c(f, c) ∈ R≥0, which represents the cost to service customer c from
facility location f .

To define the utility functions, we need to describe how customers are as-
signed to facilities and how prices are set. Given a strategy vector s, each
customer c chooses the facility si that can service for the lowest cost c(si, c).
The price p(i, c) that service provider i charges customer c is the cost c(sk, c)
of the second cheapest service available to c, given the locations chosen by the
players (so p(i, c) = mink 6=i c(sk, c)). Intuitively, this is the highest possible
price that i can offer c without giving incentive to c to run to a competitor.

If customer c is serviced from location si by service provider i, then the net
value generated for customer c is v(c) − p(i, c). The net value generated for
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service provider i is p(i, c) − c(si, c). This leads to the following definitions of
utility in the instance FLG(G). The utility function Vi of player i is

(2.4.1) Vi(s) =
∑
{p(i, c)− c(si, c) : c(si, c) =

n
min
k=1

c(sk, c)},

where p(i, c) = mink 6=i c(sk, c). The social utility function V of G is

V (s) =
∑
c∈C

v(c)−
n

min
i=1

c(si, c),

which is simply the sum of the generated values for the customers and the
service providers. Note that the prices p(i, c) have no influence on the social
utility function.

We will make the natural assumption that a customer c only chooses to be
serviced by i if v(c) ≥ p(i, c), while service provider i only provides service to
c from si if p(i, c) ≥ c(si, c). Furthermore, we assume that v(c) ≥ c(i, c) for all
i ∈ F , c ∈ C. This requires no loss of generality, since if v(c) < c(i, c), we can
decrease c(i, c) to the same value as v(c) without changing the values generated
for c and i in any assignment. Indeed, if v(c) < c(i, c), then customer c will
not choose to be serviced from i, so no value is generated between i and c. If
v(c) = c(i, c), then c could be serviced from i, but this also generated no value
for both i and c.

Nash equilibrium, optimality, and the Price of Anarchy and Stability are
defined as in Appendix B.

2.4.3 Properties of the FLG

Every instance of the FLG has a Nash equilibrium and a Price of Stability equal
to 1. These are some of the consequences of the fact that the FLG is part of
a class of games known as potential games. This class of games is discussed in
Chapter 3. The FLG is also part of another class of games, the utility games.

2.5 Utility Games

2.5.1 Introduction

The class of Utility Games is a generalization of the Facility Location Game
from Section 2.4. In a Utility Game, players can choose one out of a set of
locations. The combined set of locations that the players choose produces a
certain amount of ‘social welfare’, determined by the social welfare function
associated with the game. The social welfare function is like a social utility
function. However, in contrast to the other games from this thesis, the social
welfare generated may be greater than just the sum of the profits of each player.

The social welfare function of a Utility Game must satisfy a few conditions.
These conditions are meant to make Utility Games an economically realistic
model. For instance, the required submodularity property means that the social
welfare has diminishing marginal utility , i.e. the benefit of adding a location
decreases (or at least does not increase) as the existing set of locations grows
larger.

A subclass of Utility Games called Basic Utility Games are potential games.
In Chapter 3 we prove this fact and several of its consequences.
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2.5.2 Model

Let G be a finite strategic game with player set A = {1, . . . , n}. An element
of the strategy set Ai of player i is called a location. Let A = ∪ni=1Ai and
S = Πn

i=1Ai. The utility function of player i is denoted by αi. We are given a
function V : P(A)→ R called the social welfare function. For s ∈ S we take
V (s) to mean V (∪ni=1{si}).

We call G a Utility Game if (1) the marginal benefit of adding a location
doesn’t increase as the number of existing locations gets larger, (2) the total
welfare of the players doesn’t exceed the social welfare and (3) each player’s
welfare is at least as large as his contribution to the social welfare. This is
formalized in the following definition.

2.5.1 Definition. A finite strategic game G with n players and social welfare
function V is called a Utility Game if it satisfies the following three properties:

1. V is submodular: for each pair of sets S, S′ with S ⊆ S′ ⊆ A and each
u ∈ A the following inequality holds:

V (S ∪ {u})− V (S) ≥ V (S′ ∪ {u})− V (S′).

2.
∑n
i=1 αi(s) ≤ V (s) for each strategy vector s.

3. αi(s) ≥ V (s)− V (s \ {si}) for each player i and strategy vector s.

If, furthermore, G satisfies

3′. αi(s) = V (s)− V (s \ {si}) for each player i and strategy vector s,

then G is called a Basic Utility Game. If a Utility Game satisfies

4. V (S) ≤ V (S′) for all S ⊆ S′ ⊆ A,

then G is called a Monotone Utility Game.

2.5.3 Facility Location Game as a Utility Game

The Facility Location Game satisfies the whole range of properties from Defini-
tion 2.5.1. Before we prove this, however, we must slightly change the definition
of the Facility Location Game, so that it can be incorporated in the context of
this section. We only need to extend the social utility function V of an instance
I = FLG(G) so that it is defined on any subset S ⊆ F . For this we take V to
be the function V : P(F )→ R defined by

V (S) =
∑
c∈C

v(c)−min
u∈S

c(u, c).

2.5.2 Theorem. Every instance FLG(G) of the Facility Location Game is a
Basic, Monotone Utility Game.

Proof. We check the properties in order of Definition 2.5.1.
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1. Let S, S′ be sets such that S ⊆ S′ ⊆ F . Suppose location u is added to S
or S′. We will examine the change in social welfare due to a customer c.
This customer will only change his location of his value will be improved.

If c doesn’t change to location u from its location in S′, then the change in
welfare from S′ to S′∪{u} due to c is 0. If c does change its connection to
u from its connection in S′, then it also changes to u from its connection in
S. This is because minu∈S c(u, c) ≥ minu∈S′ c(u, c). From this inequality
it also follows that the change in welfare due to c is bigger when starting
with S than with S′:

(2.5.1) c(u, c)−min
v∈S

c(v, c) ≥ c(u, c)− min
v∈S′

c(v, c).

It follows that if we sum for all c ∈ C, the desired inequality holds.

2. The social welfare function is the sum of the players’ welfare and the
clients’ welfare. Recall that we assume that each player’s and client’s
welfare is nonnegative, so this proves the desired inequality.

3′. Let s be a strategy vector. If facility si is removed from s, then the only
change in social welfare is due to the customers who were connected to si.
These will now be serviced by the cheapest facility in s \ {si}. Let c be
such a customer. The change in welfare due to c is

v(c)−
n

min
k=1

c(sk, c)− (v(c)−min
k 6=i

c(sk, c)) = min
k 6=i

c(sk, c)−
n

min
k=1

c(sk, c).

The sum of these values over all c connected to si is exactly player i’s
welfare (2.4.1).

4. Suppose S ⊆ S′ ⊆ F , then minu∈S c(u, c) ≥ minu∈S′ c(u, c) for each cus-
tomer c, so V (S) ≤ V (S′).

2.5.4 Price of Anarchy and Stability of Utility Games

The social welfare function V of a Basic Utility Game has the nice property that
−V is a ‘potential function’ (Theorem 3.3.2). Since the minimum of a potential
function is a Nash equilibrium (Theorem 3.4.1), a direct consequence is that
the Price of Stability of all Basic Utility Games is 1 (Theorem 3.5.3). For more
details, see Chapter 3.

For Monotone Utility Games we can deduce the following positive result for
their Price of Anarchy, provided a Nash equilibrium exists.

2.5.3 Theorem. Let G be a Monotone Utility Game. If there exists a Nash
equilibrium for G, then ρ(G) ≤ 2.

Proof. Let sNash be a Nash equilibrium and sopt be an optimal strategy vector
for G. We will prove that V (sopt) ≤ 2V (sNash) by finding a series of inequalities
that follow directly from the properties (1)–(4) in Definition 2.5.1. Here we use
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the notation siopt for the i-th coordinate of sopt and s≤iopt for the set ∪ik=1s
k
opt

(and s≤0opt := ∅).

V (sopt)− V (sNash)
(4)

≤ V (sNash ∪ sopt)− V (sNash)

=

n∑
i=1

V (sNash ∪ s≤iopt)− V (sNash ∪ (s≤i−1opt ))

(1)

≤
n∑
i=1

V (sNash + siopt − siNash)− V (sNash − siNash)(2.5.2)

(3)

≤
n∑
i=1

αi(sNash + siopt − siNash)

Nash
≤

n∑
i=0

αi(sNash)

(2)

≤ V (sNash).



Chapter 3

Potential Games

3.1 Introduction

This chapter studies games that admit a ‘potential function’—a single function
that tracks changes in utility as players change their strategy. The mere ex-
istence of a potential function has strong consequences for existence of Nash
equilibria, the Price of Stability and convergence to Nash equilibria, as we will
see in Section 3.4. Several games we have discussed in this thesis are potential
games. We will prove in Section 3.3 that every instance of the Global Connec-
tion Game (Global Connection Game) (see Section 2.3) and every Basic Utility
Game (see Section 2.5) is a potential game. Every instance of the Atomic Rount-
ing Game (see Chapter 1) is also a Potential Game, provided that each player
has the same traffic rate or each edge cost function is affine.

The first extensive study of potential games and its applications was done
in [7]. Most of the theorems on potential games in this chapter come from that
article. For Theorem 3.2.3 we give an alternative, constructive proof.

3.2 Definition and a characterization

3.2.1 Definition. Let G = (A,S, U) be a finite strategic game. A function
Φ : S → R is called an (exact) potential function on G if it satisfies the
following condition for each player i ∈ A:

(3.2.1) Φ(s)− Φ(s′) = ui(s
′)− ui(s)

for each pair of strategies s, s′ ∈ S that differ only on the i-th coordinate.
A game G for which a potential function exists is called a potential game.

A potential function tracks the savings a player incurs if he unilaterally
changes strategies. Any two potential functions on a game G differ by only a
constant, as a simple calculation shows. Indeed, if Φ, Ψ are potential functions
and s, s′ strategies on G, then Φ(s)−Ψ(s) = Φ(s′)−Ψ(s′).

Potential functions satisfy a kind of ‘law of conservation of utility’, by which
we mean the following. Suppose you sum the changes in utility experienced by
the players in each step of a strategy cycle C = 〈s1, . . . , sk〉, i.e. a sequence
of strategies where si and si+1 differ on only one coordinate for each 1 ≤ i < k

37
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and sk = s1, then the sum will add up to 0. In fact, this property characterizes
potential games, as we will now prove.

Let Ai denote the strategy set of player i. Identify the strategies in Ai with
the numbers in the set Ni = {1, . . . , |Ai|}. Consider the set N = Πn

i=1Ni. We
call N a Nash grid of G. In the remaining we view each element a ∈ N as a
strategy in SG. For each pair a,b ∈ N that differ on precisely one coordinate,
we let p(a, b) denote the player that changes his strategy between a and b and
define the utility change u(a, b) from a to b as

u(a, b) = up(a,b)(b)− up(a,b)(a).

Note that u(b, a) = −u(a, b). A strategy cycle in N is defined as above. A strat-
egy path is defined as a strategy cycle where the end points do not necessarily
have to meet. The utility change u(P ) of a strategy path P = 〈a1, . . . , ak〉 in N
is

u(P ) =

k−1∑
i=1

u(ai, ai+1).

Sometimes it is useful to consider the curve L(P ) that P follows through Rn.
The curve is defined as L(P ) = ∪k−1i=1 [ai, ai+1], where [ai, ai+1] is the closed
line segment in Rn joining ai and ai+1. Note that u(P ) = u(P ′) whenever
L(P ) = L(P ′) and P and P ′ have the same endpoints. We say that P and P ′

are equivalent. If the endpoints are flipped, u(P ) = −u(P ′).

3.2.2 Theorem. A finite game G is a potential game if and only if, for all
cycles C in a Nash grid N of G, u(C) = 0.

Proof. Suppose G is a potential game with potential funtion Φ. Let C =
〈a1, . . . , ak〉 be a strategy cycle in N . Then the following holds:

u(C) =

k−1∑
i=1

u(ai, ai+1) =

k−1∑
i=1

Φ(ai)− Φ(ai+1) = Φ(a1)− Φ(ak) = 0.

Suppose all strategy cycles in N have utility change 0. We construct a
potential function Φ for G as follows. Let e = (1, . . . , 1) and set Φ(e) = 0. For
each a ∈ N , set Φ(a) = −u(P ), where P is a strategy path from e to a. To
prove that this is well-defined, consider two paths P1, P2 from e to a. Let C be
the cycle C = 〈P1, P

−1
2 〉, where P−12 is the path P2 traversed in the opposite

direction (from a to e). By assumption, u(C) = 0. Since u(C) = u(P1)+u(P−12 )
and u(P−12 ) = −u(P2), it follows that u(P1) = u(P2).

The constructed function Φ is a potential function. Indeed, consider strate-
gies a,b ∈ N that differ on precisely one coordinate. Let P be a path from e to
a. Then P ′ = 〈P, b〉 is a path from e to b and

Φ(a)− Φ(b) = u(P ′)− u(P ) = u(a, b).

So the condition (3.2.1) holds for each pair a,b ∈ N that differ on only one
coordinate.

We can prove an even stronger characterization than Theorem 3.2.2. We call
a strategy cycle C = 〈a1, . . . , ak〉 in a Nash grid N elementary if k = 5. Note
that at most two players change strategies in an elementary strategy cycle.
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3.2.3 Theorem. A finite game G is a potential game if and only if, for all
elementary strategy cycles C in a Nash grid N of G, u(C) = 0.

Proof. If G is a potential game, Theorem 3.2.2 implies u(C) = 0 for each ele-
mentary strategy cycle. Conversely, suppose all elementary strategy cycles in N
have utility change 0. We will prove that any strategy cycle has utility change
0. By Theorem 3.2.2, this proves that G is a potential game.

Let C = 〈a1, . . . , ak〉 be a strategy cycle in N . Applying Lemma 3.2.4
recursively, we ‘collapse’ C to a strategy cycle C ′ for which u(C ′) = u(C) and
C ′ ⊆ {a ∈ N : ai = 1 for each 2 ≤ i ≤ n}. Since C ′ is a cycle that runs along
only one line in N , we must have u(C ′) = 0. This proves that u(C) = 0.

3.2.4 Lemma. Let N be a Nash grid of a finite game G, C a strategy cycle
in N and i ∈ {1, . . . , n}. Suppose all elementary strategy cycles in N have
utility change 0. There is a strategy cycle C ′ in N such that u(C ′) = u(C) and
C ′ ⊆ {a ∈ N : ai = 1}.

Proof. We prove the statement for i = n. The general case is proven similarly.
Let C = 〈a1, . . . , ak〉 be a strategy cycle in N . For each 1 ≤ j < k define
the vector bj = (aj1, . . . , a

j
n−1). Suppose aj is such that p(aj , aj+1) 6= n. The

assumption that elementary cycles have zero utility change implies that the path

〈aj = (bj , ajn), (bj , ajn − 1), (bj+1, ajn − 1), (bj+1, ajn) = aj+1〉

has the same utility change as the path 〈aj , aj+1〉. By induction

u
(
aj , aj+1

)
= u

(
〈aj , (bj , 1), (bj+1, 1), aj+1〉

)
.

We use this fact to replace C with another strategy cycle with equal utility
change. For each 1 ≤ j < k such that p(aj , aj+1) 6= n, replace the subpath
〈aj , aj+1〉 of C by the subpath

〈aj , (bj , 1), (bj+1, 1), aj+1〉,

and name the resulting strategy cycle C̃. This cycle satisfies u(C) = u(C̃).

However, C̃ may run along points a ∈ N with an 6= 1, because we only
collapsed the segments in C where p(aj , aj+1) 6= n. We will show that the
segments of C̃ that do run along such points, cancel each other out.

Let 1 ≤ j < k be such that p(aj , aj+1) 6= n and let al be the next point on
C for which p(al, al+1) 6= n (possibly l = j). In C̃, (bj+1, 1) is followed by aj+1.
All points on C̃ between aj+1 and al all differ on only the n-th coordinate. That
means they can be replaced by the subpath 〈aj+1, al〉 with equal utility change.
Moreover, aj+1 and al also differ on only the n-th coordinate. So (bj+1, 1) =
(bl, 1). We conclude that the subpath 〈aj+1, (bj+1, 1)〉 of C̃ is followed by a
subpath in the opposite direction, which has equal and opposite utility change.

If we remove all these subpaths that cancel each other out from C̃, we are
left with a cycle C ′ ⊆ {a ∈ N : an = 1}, as desired.
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3.3 Examples

Global Connection Game

3.3.1 Theorem. All instances of the Global Connection Game are potential
games.

Proof. Let GCG(G) be an instance of the Global Connection Game and N a
Nash grid for GCG(G). We will prove that every elementary strategy cycle has
utility change 0. Theorem 3.2.3 then implies that GCG(G) is a potential game.

Let C = 〈a1, a2, a3, a4, a5〉 be an elementary strategy cycle. The only non-
trivial case is where p(a1, a2) = p(a3, a4) = i and p(a2, a3) = p(a4, a5) = j, for
some i 6= j. Consider an edge e ∈ E(G). We have:

Coste(a
2)− Coste(a

1) = ce

(
1

ne(a1) + x
− 1

ne(a1)

)
Coste(a

3)− Coste(a
2) = ce

(
1

ne(a1) + x+ y
− 1

ne(a1) + x

)
Coste(a

4)− Coste(a
3) = ce

(
1

ne(a1) + y
− 1

ne(a1) + x+ y

)
Coste(a

5)− Coste(a
4) = ce

(
1

ne(a1)
− 1

ne(a1) + y

)
,

where x, y ∈ {−1, 0, 1}. We set any fraction where the denominator is 0 to 0.
The differences sum op to 0. It follows that

u(C) =
∑

e∈E(G)

4∑
k=1

(
Coste(a

k+1)− Coste(a
k)
)

= 0.

We conclude that all elementary strategy cycles have zero utility change.

Of course, we can also try to explicitly find a potential function for G to
prove that it is a potential game:

Proof (of Theorem 3.3.1). Let GCG(G) be an instance of the Global Connec-
tion Game. For each edge e ∈ E(G) define the function Ψe : P → R by

Ψe(s) = ce · Hne(s), 1

Define the function Ψ : P → R by

Ψ(s) =
∑

e∈E(G)

Ψe(s).

We will prove that Ψ is a potential function for GCG(G), which implies that
GCG(G) is a potential game.

Let s and s′ be two strategies that differ only on the i-th coordinate. Con-
sider an edge e ∈ E(H). We distinguish three situations:

• e appears in both or neither si and s′i. In this case ne(s) = ne(s
′), so

player i pays the same for e in both strategies and Ψe(s) = Ψe(s
′).

1Hn =
∑n

1 1/n
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• e is in si but not in s′i. If player i moves from strategy s to s′, he saves
Coste(s) = ce/ne(s) on edge e alone by doing so. This is precisely the
decrease for Ψe:

Ψe(s)−Ψe(s
′) = ce · Hne(s) − ce · Hne(s)−1 = ce/ne(s).

• e is in s′i but not in si. Changing from strategy s to s′ costs an additional
Coste(s

′) = ce/(ne(s) + 1) for player i. This is also the difference between
Ψe(s) and Ψe(s

′).

In conclusion, every Ψe equals the change cost for player i due to e as he goes
from s to s′. Since Ψ is simply the sum of the Ψe, and the utility for player i is
simply the negative of the sum of all edge costs, this proves the theorem.

Basic Utility Game

3.3.2 Theorem. Let G be a Basic Utility Game. The negative of its social
welfare function V is a potential function, so G is a potential game.

Proof. Let s ∈ S be a strategy vector for G and suppose player i changes his
strategy from si to s′i. Define s′ = (s−i, s′i).

2 We need to prove that

V (s′)− V (s) = αi(s
′)− αi(s).

This follows directly from property (3′) of Definition 2.5.1:

αi(s
′)− αi(s) = V (s′)− V (s−i)−

(
V (s)− V (s−i)

)
= V (s′)− V (s).

Atomic Routing Game In this paragraph we prove that an instance of the
Atomic Routing Game is a potential game if it satisfies one of two conditions:
the instance is unweighted or all edge cost functions are affine.

3.3.3 Theorem. Let (N, r, c) be an instance of the Atomic Routing Game,

where ri = R for each i and some R ∈ R>0. The function Φ : R#P
≥0 → R≥0

given by

Φ(f) =
∑
e∈E

fe∑
i=1

ce(i)

is a potential function for (N, r, c). Consequently, (N, r, c) is a potential game.

Proof. Consider a flow f on N . Suppose player i changes its strategy from path
Pi to P ′i , resulting in the new flow f ′. The change in Φ is equal to

(3.3.1) Φ(f ′)− Φ(f) =
∑

e∈P ′i\Pi

R∑
i=1

ce(fe + i)−
∑

e∈Pi\P ′i

R−1∑
i=0

ce(fe − i).

2See Appendix B for the definition of this notation.
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On the other hand, the change in cost for player i is equal to3

(3.3.2) cP ′i (f
′)− cPi(f) =

∑
e∈P ′i\Pi

ce(fe +R)−
∑

e∈Pi\P ′i

ce(fe).

We want to prove that (3.3.1) and (3.3.2) are the same expressions. To see
this, consider the situation where player i doesn’t transfer his flow from Pi
to P ′i all at once, but one unit of flow at a time. We get R flows f (0) =
f, f (1), . . . , f (R−1), f (R) = f ′ where in flow f (n) player i routes n units of flow
through path P ′i and R− n units through Pi.

In this situation the total change in cost for player i can be expressed as

(3.3.3) cP ′i (f
′)− cPi(f) =

R∑
n=1

cP ′i (f
(n))− cPi(f (n−1)).

Each element in the sum is equal to

cP ′i (f
(n))− cPi(f (n−1)) =

∑
e∈P ′i\Pi

ce(fe + n)−
∑

e∈Pi\P ′i

ce(fe − (n− 1)).

Plugging this result in the sum in expression (3.3.3) yields the expression (3.3.2).

Again, we can also use Theorem 3.2.2 to prove that unweighted instances
are potential games. In fact, we can use practically the same reasoning as for
the Global Connection Game (Theorem 3.3.1). This is because the only impor-
tant difference between these games, is that cost functions are non-decreasing
in atomic routing and decreasing in the global connection game. This fact,
however, is not relevant in the proof of Theorem 3.3.1.

With this is mind, we will prove another statement, namely that any atomic
instance with affine cost functions is a potential game.

3.3.4 Theorem. Let (N, r, c) be an instance of the Atomic Routing Game,
where each ce is affine. This instance is a potential game.

Proof. The proof runs along the same lines as the proof of Theorem 3.3.1. Let
C = 〈a1, a2, a3, a4, a5〉 be an elementary strategy cycle. Again, we consider only
the nontrivial case where p(a1, a2) = p(a3, a4) = i and p(a2, a3) = p(a4, a5) = j,
for some i 6= j.

Let f be the flow from a1. Each edge e ∈ E(N) satisfies the following
equations:

ri · ce(a2)− ri · ce(a1) = ri (ce(fe + x)− ce(fe)) = ri · ce(x)

rj · ce(a3)− rj · ce(a2) = rj (ce(fe + x+ y)− ce(fe + x)) = rj · ce(y)

ri · ce(a4)− ri · ce(a3) = ri (ce(fe + y)− ce(fe + x+ y)) = −ri · ce(x)

rj · ce(a5)− rj · ce(a4) = rj (ce(fe)− ce(fe + y)) = −rj · ce(y),

where x ∈ {−ri, 0, ri} and y ∈ {−rj , 0, rj}. These equation hold because ce
is affine. The rest of the proof follows the same reasoning as the proof of
Theorem 3.3.1.

3Since the instance is unweighted, we don’t have to multiply with player i’s traffic rate
here.
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3.4 Properties of potential games

A strong property of potential games is that they always have a Nash equilib-
rium. This follows quite easily from the definition.

3.4.1 Theorem. If G is a potential game with potential function Φ, then any
strategy that minimizes Φ is a Nash equilibrium.

Proof. Let s be a strategy vector that minimizes Φ. Consider the vector s′ =
(s−i, s′i) ∈ S, where s′i ∈ Si. The fact that s minimizes Φ implies the inequality
Φ(s′) ≥ Φ(s). From (3.2.1) it follows that ui(s

′) ≤ ui(s), i.e. player i’s deviation
from si to s′i is not profitable. Therefore, s is a Nash equilibrium.

3.4.2 Corollary. Every potential game has a Nash equilibrium.

Proof. A potential game is finite, so there are only a finite number of strategies.
Therefore the potential function of a potential game has a minimum. From
Theorem 3.4.1 it follows that a Nash equilibrium exists.

A slight change in the proof of Theorem 3.4.1 gives a nice result for conver-
gence to Nash equilibria. When players use best response dynamics, i.e. at each
step one player changes to a strategy that gives him the highest utility currently
possible, then this process will always converge to a Nash equilibrium.

3.4.3 Theorem. In every potential game, best response dynamics always con-
verge to a Nash equilibrium.

Proof. If a player changes to a strategy with higher utility, the game’s potential
function decreases. Since there are only a finite number of strategies, at some
point the players arrive at a strategy where no unilateral deviation can decrease
the value of the potential function. From (3.2.1) it follows that no player can
find a strategy that increases his utility. The current strategy, then, is a Nash
equilibrium.

The Price of Stability of a potential game can be easily bounded from above
if the potential function and social cost function behave ‘about the same’:

3.4.4 Theorem. Let G = (A,S, U) be a potential game with potential function
Φ. Suppose for each strategy vector s ∈ S the following inequalities hold for
some constants A, B > 0:

Cost(s)

A
≤ Φ(s) ≤ B · Cost(s).

Then the Price of Stability of G is at most AB.

Proof. Consider an s ∈ S that minimizes Φ. Let sopt ∈ S be an optimal strategy
vector. Due to Theorem 3.4.1, s is a Nash equilibrium. Moreover, the following
inequalities hold:

Cost(s)

A
≤ Φ(s) ≤ Φ(sopt) ≤ B · Cost(sopt).
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The first and last inequalites are true by the condition stated in this theorem,
while the middle inequality is true because s minimizes Φ. Rearranging yields

Cost(s)

Cost(sopt)
≤ AB.

Since s is a Nash equilibrium, it follows that σ(G) ≤ AB.

3.5 Applications to specific games

The Global Connection Game satisfies the condition in Theorem 3.4.4, yielding
the bound on the Price of Stability as mentioned in Section 2.3.3.

3.5.1 Lemma. Let G be an instance of the Global Connection Game and let
Ψ be its corresponding potential function, as defined in Theorem 3.3.1. The
following inequalities hold:

Cost(S) ≤ Ψ(S) ≤ HnCost(S).

Proof. Let S be a strategy vector for G. For any edge e that a path in S uses,
the inequalities 1 ≤ ne ≤ n hold, and consequently the following inequalities
hold as well:

ce ≤ Ψe(S) = ce · Hne ≤ ce · Hn.

If e is not used in S, both its contribution to the social cost and Ψe are zero.
Since the social cost is the sum of the ce used in S and Ψ is the sum of the Ψe,
the functions as mentioned in this lemma hold.

3.5.2 Theorem. The Price of Stability of any instance of the Global Connection
Game is at most Hn. This is a strict upper bound.

Proof. The strictness follows from Example 2.3.2. The upper bound itself fol-
lows immediatly from Theorem 3.4.4 and Lemma 3.5.1.

3.5.3 Theorem. Every Basic Utility Game G satisfies σ(G) = 1. Furthermore,
best response dynamics always converge to a Nash equilibrium.

Proof. Since the social welfare function of G is the negative of a potential func-
tion for G, any optimal strategy sopt for G is a Nash equilibrium (see The-
orems 3.3.2 and 3.4.1). The statement about best response dynamics follows
from Theorem 3.4.3.



Appendix A

Biconnected components

This appendix relates to Section 2.2.4 on the Price of Anarchy of the Local
Connection Game. Here we prove several technical lemmas which are used to
prove the bound on the Local Connection Game’s Price of Anarchy found at
the end of section 2.2.4.

The central fact used to prove the lower bound in Lemma 2.2.12 is that
nodes in a biconnected component H (maximal subgraph without a cut vertex1)
in equilibrium networks are never far from nodes with degree 3 in H. More
precisely, if α > 19n, then nodes in H are always at most 11 edges removed
from nodes with degree 3 in H (Lemma A.4). The proof of this result follows
three steps.

Firstly, we will prove that the cycles in H are at least 22 edges long when
α > 19n (Lemma A.1).

Secondly, we look at a cycle C in H and consider two nodes u and v on
C which are 11 edges apart from each other. For contradiction we assume all
nodes on C between u and v have degree 2 in H. We prove that this means
that, if x0, . . . , x9 are the nodes in C between u and v and x10 := v, the edge
{xi, xi+1} is bought by xi for each i = 1, . . . , 9 (Lemma A.2).

Finally, we prove that such a path can have length at most 8 (Lemma A.3),
leading to a contradiction. It follows that some node on C between u and v has
degree 3 in H.

A.1 Lemma. Let C be a cycle in N(sNash), where sNash is a Nash equilibrium
for LCG(n, α). Then length(C) ≥ α

n−2 + 2.

Proof. Consider an edge {u, v} ∈ C built by u. If u decides not to build {u, v},
his usage costs increase by at most (n− 2) · (length(C)− 2). This is because at
worst the distance to all nodes, except u and his neighbor in C besides v, will
increase to the length of the detour to v via C.

Player u cannot profit by removing {u, v}. This means the inequality (n −
2) · (length(C) − 2) ≥ α must be satisfied. Rearranging yields length(C) ≥
α
n−2 + 2.

For the next two lemmas, we introduce the following notation. For a node
x in a biconnected component H of a network N = (V,E), let DH(x) be the

1a cut vertex is a vertex whose removal makes the graph disconnected
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set of nodes v ∈ V for which a path P to x exists such that x is the only node
in H that is contained in P . This definition includes the single-node path, so
x ∈ DH(x). Note that DH(x) ∩ DH(y) = ∅ for each x,y ∈ V (H), since H is
maximal and therefore contains the nodes in all paths between x and y.

A.2 Lemma. Let sNash be a Nash equilibrium for LCG(n, α), H a biconnected
component in N(sNash) and u,v ∈ V (H) be such that dist(u, v) ≥ 3. Suppose
there is a shortest path P between u and v such that u buys {u, x} ∈ P and v
buys {y, v} ∈ P . Then degH(x) ≥ 3 or degH(y) ≥ 3.

Proof. Suppose degH(x) = degH(y) = 2. Assume |DH(x)| ≤ |DH(y)|. Suppose
u changes his strategy by removing {u, x} and building {u, z}, where z is the
other neighbor of x in H. By building {u, z}, the distance from u to v and all
nodes in DH(y) is decreased by 1, yielding |DH(y)|+ 1 in savings for u.

Removing {u, x}, on the other hand, increases the distance to all nodes in
DH(x) by 1, increasing u’s usage costs by |DH(x)|. No other distances are
increased. Since |DH(x)| < |DH(y)| + 1, u profits, so sNash is not a Nash
equilibrium.

A.3 Lemma. Let H be a biconnected component in an equilibrium network
N of LCG(n, α). Let 〈x0, . . . , xk〉 be a path in H that is not a cycle such
that degH(xi) = 2 for all i ∈ {0, . . . , k} and xi buys {xi, xi+1} for all i ∈
{0, . . . , k − 1}. Then k ≤ 8.

Proof. Consider a path 〈x0, . . . , xk〉 in H with properties as stated above of
maximal size, but assume for contradiction k ≥ 9. Let xk+1 ∈ V (H) be the
neighbor of xk in H besides xk−1. Let T be a BFS-tree of N rooted in xk−1
and let A be the set of nodes containing xk+1 and his descendants in T .

Firstly, we prove the following lower bound:

(A.0.1) |DH(x1)| ≥ 2dk/2e−2|A|.

If xk−1 buys edge {xk−1, xk+1} instead of {xk−1, xk}, his usage costs to all
nodes in DH(xk) will increase by 1, while his usage costs to all other nodes
will not increase. Moreover, his usage costs to the nodes in A will decrease
by 1. This is because, as T is a BFS-tree of N rooted in xk−1, dist(xk−1, u) =
dist(xk−1, xk+1)+dist(xk+1, u) for all u ∈ A. Since N is an equilibrium network,
we must have |DH(xk)| ≥ |A|.

For i ∈ {1, . . . , k − 1}, if xi−1 buys edge {xi−1, xi+1} instead of {xi−1, xi},
then xi−1’s usage costs to the nodes in DH(xi) will increase by 1, while usage
costs to other nodes will not increase. Usage costs to a node xj will definitely
decrease if there can be no alternative path from xi−1 to xj of length at most
j − i. Note that the smallest possible alternative path exists when x0 = xk+1.
The length of this path is k+ i− j. So for j ≤ dk/2e+ i− 1 the node xi−1 will
decrease his usage costs by |DH(xj)|. Again, since N is an equilibrium network,
we must have

|DH(xi)| ≥

∣∣∣∣∣∣
min{dk/2e+i−1,k}⋃

j=i+1

DH(xj)

∣∣∣∣∣∣
=

min{dk/2e+i−1,k}∑
j=i+1

|DH(xj)|,(A.0.2)
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where the last equality holds because the DH are pairwise disjoint. If we take
i = bk/2c+ 1 we get, by induction,

|DH(x1)| ≥ |DH(xbk/2c+1)| ≥ 2dk/2e−2|A|.

Secondly, we prove that degH(xk+1) ≥ 3. Since 〈x0, . . . , xk〉 is of maximal
size, precisely one of the following three cases holds. Either degH(xk+1) ≥ 3
or xk+1 buys {xk, xk+1} or xk+1 = x0 and xk buys {xk, xk+1}. In the first
case we are done. In the second case Lemma A.2 implies degH(xk−1) ≥ 3 or
degH(xk) ≥ 3, which is a contradiction. In the third case, consider what happens
when xk buys edge {xk, x1} instead of {xk, x0}. Then his usage costs to the
nodes in DH(x0) will increase by 1, his usage costs to the nodes in DH(x1) will
decrease by 1 and the distances to all other nodes will not increase. Observe that
DH(x0) ⊆ A, so |A| ≥ |DH(x0)|. As N is an equilibrium network, it follows that
|DH(x0)| ≥ |DH(x1)|. However, from (A.0.1) it follows that |DH(x1)| > |A|, so
this case also leads to a contradiction.

Thirdly, we prove that xk+1 buys the edges to all his children in T . Suppose
there is a node u ∈ V (N) that is a child of xk+1 in T and that buys {xk+1, u}.
Consider the situation where u buys {xk−5, u} instead of {xk+1, u}. (Note that
there is no edge {xk−5, u} in N since degH(xk−5) = 2 and u 6= xk−6,xk−4
because those nodes also have H-degree 2.)

The usage costs for u to all nodes in DH(xk−5), DH(xk−4) and DH(xk−3)
will decrease by at least 2, while the usage costs to all nodes in DH(xk−1)
and DH(xk) and possibly some nodes in A will increase by at most 6. The
distance from u to any other node v will not be increased. This is because if
dist(xk+1, v) < dist(xk−5, v), then the v will be a descendent of xk+1 in T , so
v ∈ A.

Because N is an equilibrium network, it follows that

2|DH(xk−5) ∪DH(xk−4) ∪DH(xk−3)| ≤ 6|DH(xk−1) ∪DH(xk) ∪A|.

From (A.0.2) we deduce that

2|DH(xk−5) ∪DH(xk−4) ∪DH(xk−3)| > 18|DH(xk−1)|,

while also from (A.0.2) we deduce that |A| ≤ |DH(xk)| ≤ |DH(xk−1)|, so

6|DH(xk−1) ∪DH(xk) ∪A| ≤ 18|DH(xk−1)|.

Putting these inequalities together yields a contradiction.
Finally, we derive a contradiction by changing xk+1’s strategy. Suppose xk+1

buys {x1, xk+1} and removes the edges to all his children in H. Let v ∈ V (H)
be a node for which dist(xk+1, v) increases by this change in strategy. Then we
must have dist(u, v) = dist(x1, v)− 1 for some child u of xk+1 in T . This means
v is a descendant of xk+1 in T , i.e. v ∈ A. So the distance to any vertex in
V (N) \A will not be increased.

Since xk+1 is not a cut vertex, it can still reach each vertex in A. The
distance to any such vertex will increase by at most 2 · diam(H). By deleting
edges, xk+1 will save at least α. It follows that we must have α ≤ 2·diam(H)·|A|.

Next, we prove that (rad(H) − 1)|DH(x1)| ≤ α.2 Suppose an edge with
distance rad(H) from x1 buys an edge to x1. This will cost α, but decrease his

2rad(G) = minu∈V maxv∈V dist(u, v). Here G = (V,E) is a connected graph.
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usage costs by at least (rad(H)−1)|DH(x1)|. The equilibrium constraint yields
the desired inequality.

By applying inequality (A.0.1), we get

(rad(H)− 1)2dk/2e−2|A| ≤ (rad(H)− 1)|DH(x1)|
≤ 2 · diam(H) · |A|
≤ 4 · rad(H) · |A|.

Consequently,

rad(H) ≤ 2dk/2e−4

2dk/2e−4 − 1
≤ 2.

However, since k ≥ 9 we have rad(H) > 2; contradiction.

A.4 Lemma. Let sNash be a Nash equilibrium for LCG(n, α), where α > 19n.
Let H be a biconnected component in N(sNash). For every u ∈ V (H) there is a
v ∈ V (H) with dist(u, v) ≤ 11 and degH(v) ≥ 3.

Proof. Let {u, u′} be an edge in H and C ⊆ H a cycle for which {u, u′} ∈ C.
Assume u buys the edge {u, u′}. We will prove that there is a v ∈ V (C) with
dist(u, v) = dist(u′, v) + 1 ≤ 11 and degH(v) ≥ 3, thereby proving the theorem.

Note that, by Lemma A.1, length(C) ≥ 22. It follows that for any v ∈ V (C)
we have distC(u, v) ≤ 11 and distC(u, v) = dist(u, v). This is because otherwise
H would contain a cycle C ′ with length(C ′) = distC(u, v) + dist(u, v) < 22, in
contradiction with Lemma A.1.

Given v ∈ V (C), we denote Puv for a shortest path between u and v con-
tained in C. Suppose there is a node v ∈ V (C) such that dist(u, v) ≥ 3,
{u, u′} ∈ Puv and v buys the edge {y, v} ∈ Puv. From Lemma A.2 it follows
that there is a w ∈ Puv such that degH(w) ≥ 3.

Suppose, on the other hand, that for any node v ∈ V (C) with dist(u, v) ≥ 3
and {u, u′} ∈ Puv, the edge {y, v} ∈ Puv is not bought by v. In that case,
there is a path P ⊆ C of length 9 running along nodes {x0, . . . , x9} such that
{u′, x0} ∈ C and each edge {xi, xi+1} is paid for by xi. By Lemma A.3, this is
not possible.
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Finite strategic games

A finite strategic game G is a triple G = (A,S = Πa∈ASa, U), where A is a
finite set of players, Sa is a finite set called the strategy set for player a and
U is a set of utility functions ua : S → R, one for each player a ∈ A. Given
a utility function ua, the cost function Costa : S → R of a player a ∈ A is
defined by Costa ≡ −ua.

A vector s ∈ S is called a strategy vector. For convenience we some-
times denote a strategy vector s ∈ S by s = (s−a, sa), where the vector
s−a ∈ Πb∈A\{a}Sb satisfies s−ab = sb for each b ∈ A \ {a}. A strategy vec-
tor sNash is called a Nash equilibrium if

∀a ∈ A∀s′a ∈ Sa : ua(sNash) ≥ ua(s−aNash, s
′
a),

i.e. no player can improve his utility by unilaterally changing his strategy.
To quantify the inefficiency of the Nash equilibria of G, we need to compare

the ‘social’ cost or utility of the Nash equilibria to an ‘optimal’ value. For this,
we define a social cost function CostG : S → R or, equivalently, a social
utility function uG : S → R. The social cost function is most often defined
as CostG ≡

∑
a∈A Costa. Usually we omit the subscript G, since it is clear

from the context which game we’re considering. A vector sopt ∈ S is called an
optimal strategy if

Cost(sopt) = min
s∈S

Cost(s).

The Price of Anarchy ρ(G) and the Price of Stability σ(G) of G are defined
as

ρ(G) = max
sNash∈S

Cost(sNash)

Cost(sopt)
,

σ(G) = min
sNash∈S

Cost(sNash)

Cost(sopt)
,

where each sNash is a Nash equilibrium, sopt ∈ S is an optimal strategy, 0/0 is
set to 1 and c/0 where c > 0 to +∞.
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