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Introduction

The main problem of this thesis is the following.

For which universal elliptic curves with a point of universal order n does there exist an elementary
formula (in terms of q) for the number of Fq-rational points?

Loosely speaking, a universal elliptic curve with a point of universal order n assigns to every
field k in which n is invertible, the family of all elliptic curves E (given in Weierstrass form) over
k such that the point (0 : 0 : 1) is in E, and is of order n in E. (And the number of Fq-rational
points is then the sum of the number of Fq-rational points of each of the elliptic curves over Fq.)

We say that a function in terms of the prime power q = pi is an elementary formula if we
can express it as the sum of a polynomial in q (where Dirichlet characters may occur in the
coefficients) and an expression in the coefficients of a certain type of cusp forms of weight 3
and level n, called cusp forms with complex multiplication, or CM-forms. The idea behind this is
that the coefficients of this type of cusp form can be expressed in a somewhat simple manner,
and that cusp forms that are not linear combinations of CM-forms (‘non-CM-forms’) cannot be
expressed in a simple way.

The (conjectured) answer to this problem is that the universal elliptic curves that do admit
an elementary formula for the number of Fq-rational points, are exactly those corresponding to
n ≤ 8.

Summary. In Chapter 1, we give an explicit description of the multiplication-by-n for elliptic
curves over an arbitrary ring, and study its kernel. In Chapter 2, we use this description to
(correctly) define universal elliptic curves with a point of universal order n, for n ≥ 4, and give
some generalities about modular curves and modular forms. In Chapter 3, we give explicit for-
mulae for the number of Fq-rational points on universal elliptic curves with a point of universal
order n, for some small n ≥ 4. In Chapter 4, we then define Hecke characters, give some proper-
ties, and then define what it means for a universal elliptic curve with a point of universal order
n to be elementary. We also try to determine which universal elliptic curves are elementary.
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1 Elliptic curves over rings

The main goal in this chapter is to describe the multiplication-by-n map on elliptic curves
over rings in a fully explicit way. This has already been done for elliptic curves over fields, see
for example [7], but the description given there does not directly generalise to elliptic curves
over rings; as we will see later, the description given there will only work for a family of points
of elliptic curves over rings that in general will be far too restrictive. The description that we
will give is ’essentially the same’ one, except this description does generalise to elliptic curves
over more general rings.

1.1 Definitions

Rings, from now on, will always be associative, commutative and will always contain a mul-
tiplicative unit element.

Definition 1.1.1. Let S be a scheme. An elliptic curve E over S is a smooth projective morphism
E - S, of which the geometric fibres are connected curves of genus 1, together with a section
0 : S - E.

Remark 1.1.2. Let R be a ring, let E be an elliptic curve over R with an embedding into P2
R,

and let S be an R-algebra. Note that one can identify ER(S) with a subset of the set of isomor-
phism classes1 of 4-tuples (L, s0, s1, s2) of an invertible OS-module, and three global sections
generating it, by identifying P ∈ ER(S) with the (isomorphism class of the) 4-tuple(

P∗
(
OE (1)

)
, P∗x, P∗y, P∗z

)
.

If L = OS, then we will denote the 4-tuple (L, s0, s1, s2) by (s0 : s1 : s2).

Example 1.1.3. Let R be a ring, and let W ∈ R[x, y, z] be a Weierstrass equation, i.e. W is of the
form

y2z + a1xyz + a3yz2 − x3 − a2x2z− a4xz2 − a6z3, a1, a2, a3, a4, a6 ∈ R.

Define b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6 and

b8 = a2
1a6 − a1a3a4 + 4a2a6 + a2a2

3 − a2
4.

Then the discriminant ∆ ∈ R of W is −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6.

Let S = Spec R, and let E = Proj R[x, y, z]/(W). We embed E into P2
R as the closed subscheme

of P2
R given by the equation W. Then the natural morphism f : E - S is projective, and

smooth if and only if the discriminant ∆ is invertible in R. In that case, all geometric fibres of
f are connected curves of genus 1. Then E/S, together with the section 0 given by the point
(0 : 1 : 0) ∈ E(R), is an elliptic curve.

1An isomorphism of two such 4-tuples (L, s0, s1, s2) and (M, t0, t1, t2) is an isomorphism L - M sending si to
ti for all i ∈ {0, 1, 2}.
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Let us call elliptic curves of the above type Weierstrass curves. Then we can characterize
elliptic curves as S-schemes that are (Zariski-) locally Weierstrass on the base. Locally, the
corresponding Weierstrass equation (say over a ring R) is unique up to x 7→ α2x + az, y 7→
α3y + bx + cz, for α ∈ R×, and a, b, c ∈ R. See [9, Ch. 2] for details.

Furthermore, elliptic curves have a natural abelian scheme structure. Again, see [9, Ch. 2] for
details.

1.2 The multiplication-by-n map

LetR = Z[a1, a2, a3, a4, a6], let

W = y2z + a1xyz + a3yz2 − x3 − a2x2z− a4xz2 − a6z3 ∈ R[x, y, z],

and let ∆ ∈ R denote its discriminant. Then consider the elliptic curve E = ProjR∆[x, y, z]/(W)

over the ring R∆ = R[ 1
∆ ]. The elliptic curve E/R∆ is the universal Weierstrass curve, i.e. we

have the following.

Lemma 1.2.1. Let E be a Weierstrass curve over a ring R. Then there exists a unique morphism
f : Spec R - SpecR∆ such that E/R is the base change of E/R∆ by f , and such that this base
change is compatible with the embeddings E - P2

R and E - PR2
∆

.

Proof. Let R be a ring, and let E/R be a Weierstrass curve, with equation

W = y2z + a′1xyz + a′3yz2 − x3 − a′2x2z− a′4xz2 − a′6z3,

where for all i, a′i ∈ R. Then the ring morphism R∆ - R given by ai 7→ a′i for all i, is the
unique morphism making E/R the base change of E/R∆; the morphism R∆ - R makes
E/R the base change of E/R∆ if and only if the morphism R∆[x, y, z] - R[x, y, z] (see the
following diagram) induced by it mapsW to W.

E - E

P2
R

?
- P2

R∆

?

Spec R
?

- SpecR∆

?

�

In the situation in the proof above, we say that E is the Weierstrass curve corresponding to
the morphism R∆ - R, or simply corresponding to R if it is clear from the context what the
morphismR∆ - R is.

Let n be an integer. We want to analyse multiplication by n on theR∆-valued points of E. To
this end, let [n]E : E - E denote the multiplication-by-n morphism. We have the following.
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Proposition 1.2.2. For all n ∈ Z, [n]∗E
(
OE (1)

) ∼= OE (n2).

To prove this proposition, we use the following result on abelian schemes.

Theorem 1.2.3 (Theorem of the Cube, [10, Thm. IV.3.3]). Let S be a scheme, let A be an abelian
scheme over S, and let T be an S-scheme. Then for all a1, a2, a3 ∈ AS(T), and all invertible sheaves L
on A, the invertible sheaf

⊗
I⊆{1,2,3}(∑i∈I ai)

∗L(−1)#I
is trivial.

As a special case of this, we have the following.

Corollary 1.2.4. Let A/S be an abelian scheme, and let n1, n2, n3 ∈ Z. For all integers m ∈ Z, let
[m]A : A - A denote the multiplication-by-m map on A. Then for every invertible sheaf L on A, the
invertible sheaf

⊗
I⊆{1,2,3}[∑i∈I ni]

∗
AL(−1)#I

is trivial.

Proof of Proposition 1.2.2. We first prove that [−1]∗EOE (1) ∼= OE (1). To this end, let I denote the
ideal sheaf of the zero section. Since the zero section is given by the point (0 : 1 : 0), it follows
that the sequence of OE -modules

OE (−1)× OE (−1)
(·x,·z)- OE

0#
- 0∗OR∆

is exact, so I = xOE (−1) + zOE (−1).

Then note that

I3 = (y2 + a1xy + a3yz)zOE (−3) + x2zOE (−3) + xz2OE (−3) + z3OE (−3) ⊆ zOE (−1).

Note that every homogeneous polynomial inR∆[x, y, z] of degree at least 3 lies in theR∆[x, y, z]-
ideal generated by y2 + a1xy+ a3yz, x2, xz, z2, since every such polynomial can be written as the
sum of a multiple of the first generator, and a homogeneous polynomial that is linear in y, which
can be generated by x2, xz, z2 since we assumed its degree was at least 3. So locally on open
subsets, the inclusion above is an equality. Hence I3 = zOE (−1), so I3 ∼= I⊗3 is isomorphic to
OE (−1) as an OE -module. (It also follows that I is invertible.) We deduce that I⊗−3 ∼= OE (1).
Now note that since [−1]E fixes the zero section, it follows that [−1]∗E I = I, and hence also that
[−1]∗EOE (1) ∼= OE (1).

Hence it follows that [−n]∗EOE (1) = [n]∗E [−1]∗EOE (1) ∼= [n]∗EOE (1), so it suffices to prove our
claim for non-negative n. We do this by induction.

Since 0 = (0 : 1 : 0), we have [0]∗EOE (1) ∼= OE . Also note that [1]E is the identity on E , hence
given by the identity onR∆[x, y, z]/(W), so [1]∗EOE (1) = OE (1).

To see that [2]∗E
(
OE (1)

) ∼= OE (4), apply Corollary 1.2.4 with L = OE (1), n1 = n2 = 1,
n3 = −1. Then for n ≥ 3, our claim follows by induction by applying Corollary 1.2.4 with
L = OE (1), n1 = n− 2, n2 = n3 = 1. �

From now on, we fix, for every n ∈ Z, an isomorphism [n]∗E
(
OE (1)

)
- OE (n2), and

identify these two invertible OE -modules using this isomorphism.
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By Proposition 1.2.2, it follows that since x, y, z ∈ Γ(E ,OE (1)) =
(
R∆[x, y, z]/(W)

)
1 generate

OE (1), the global sections αn = [n]∗E x, βn = [n]∗Ey, γn = [n]∗E z generate [n]∗EOE (1) = OE (n2).
We view these global sections as homogeneous elements of degree n2 inR∆[x, y, z]/(W). Note
that, if we had chosen a different isomorphism [n]∗E

(
OE (1)

)
- OE (n2), the triple (α′n, β′n, γ′n)

obtained that way will be equal to (εαn, εβn, εγn) for some ε ∈ R×∆ .

Now we can express using Remark 1.1.2, for any R∆-algebra R, multiplication by n on R-
valued points of E as follows.

Proposition 1.2.5. Let n be an integer, and let R be anR∆-algebra. Let P = (L, s0, s1, s2) ∈ ER∆(R).
Then

nP =
(
L⊗n2

, αn(s0, s1, s2), βn(s0, s1, s2), γn(s0, s1, s2)
)

Proof. Let P = (L, s0, s1, s2) ∈ ER∆(R). Then we have nP = [n]EP, hence

(nP)∗
(
OE (1)

)
= P∗[n]∗E

(
OE (1)

)
= P∗

(
OE (n2)

)
= L⊗n2

,

(nP)∗x = P∗[n]∗E x = P∗αn = αn(s0, s1, s2),

(nP)∗y = P∗[n]∗Ey = P∗βn = βn(s0, s1, s2),

(nP)∗z = P∗[n]∗E z = P∗γn = γn(s0, s1, s2),

which is as desired. �

We can generalise this result as follows.

Corollary 1.2.6. Let R be a ring, and let E/R be a Weierstrass curve. Let n be an integer, and let S be
an R-algebra. Let P = (L, s0, s1, s2) ∈ ER(S). Then R is naturally anR∆-algebra, and

nP =
(
L⊗n2

, αn(s0, s1, s2), βn(s0, s1, s2), γn(s0, s1, s2)
)

Proof of Corollary 1.2.6. Note that by Lemma 1.2.1, every Weierstrass curve E over a ring R gives
R the structure of an R∆-algebra such that E becomes the Weierstrass curve corresponding to
R.

Let f denote the morphism E - E obtained by the base change of Lemma 1.2.1. Then note
that f commutes with multiplication by n; if [n]E : E - E denotes the multiplication-by-n
morphism on E, then f [n]E = [n]E f .

Now note that f ∗
(
OE (1)

)
= OE(1), and that f ∗x = x, f ∗y = y, f ∗z = z. Now it follows

from Proposition 1.2.2 that [n]∗E
(
OE(1)

)
= f ∗

(
OE (n2)

)
= OE(n2), and that [n]∗Ex = αn, [n]∗Ey =

βn, [n]∗Ez = γn. Hence by the same argument used in the proof of Proposition 1.2.5, it follows
that for all S-valued points P = (L, s0, s1, s2) ∈ ER(S),

nP =
(
L⊗n2

, αn(s0, s1, s2), βn(s0, s1, s2), γn(s0, s1, s2)
)
. �
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1.3 Division polynomials

In this section, we express, for all n ∈ Z, the elements αn, βn, γn ∈
(
R∆[x, y, z]/(W)

)
n2 in

terms of the so-called division polynomials (cf. [7, Ch. 3]). This is desirable, since one can give an
explicit description of the division polynomials in terms of a recurrence relation, see Proposition
1.3.1.

Let K be an algebraic closure of the fraction field ofR∆, and consider the elliptic curve E over
K defined byW . Let n be an integer, and denote the multiplication-by-n map on E by [n]E. By
Corollary 1.2.6, it follows that [n]E is given by

(a : b : c) 7→
(
αn(a, b, c) : βn(a, b, c) : γn(a, b, c)

)
.

Hence we have the following identities of rational functions on E.

αn

γn
= [n]∗E

x
z

,
βn

γn
= [n]∗E

y
z

.

Let X, Y denote the rational functions x
z , y

z , respectively. Then Γ(E−{0},OE) is generated by
X, Y, and in fact equal to K[X, Y]/(W), where

W = z−3W = Y2 + a1XY + a3Y− X3 − a2X2 − a4X− a6.

Also note that the function field K(E) of E consists of the fractions f1
f2

, where the elements f1, f2 ∈
K[x, y, z]/(W) are homogeneous of the same degree, and f2 6= 0.

For F ∈ K(E)−{0}, we define its leading coefficient ΛF as follows. Let ord0F denote the order
of F at 0. Then

( x
y
)−ord0FF is a rational function that has neither a pole nor a zero at 0, since x

y

has a simple zero at 0. Hence
( x

y
)−ord0FF has a well-defined non-zero value at 0. We define ΛF

to be this value.

Now define for all n ∈ Z− {0}, the division polynomial Ψn ∈ K[X, Y]/(W) as the rational
function with divisor ∑P∈E[n]−{0}〈P〉 − (n2 − 1)〈0〉 and leading coefficient n. (Such a rational
function exists, since ∑P∈E[n]−{0} P = 0, and since #E[n] = n2.) Additionally, we define Ψ0 = 0.
By comparing divisors, it follows that Ψn is the unique polynomial (with Y-degree at most 1)
with leading coefficient n satisfying

Ψ2
n =

{
n2 ∏P∈E[n]−{0}

(
X− X(P)

)
if n is odd,

1
4 n2(2Y + a1X + a3)

2 ∏P∈E[n]−E[2]
(
X− X(P)

)
if n is even.

We collect some properties of division polynomials in the following propositions. For their
proofs, see [7, Ch. 3] ([3, Ch. 1] for Proposition 1.3.2.d). (Note, [7] uses the notation gn =

αn/γn, hn = βn/γn.)

Proposition 1.3.1 ([7, Prop. 3.53]). Let b2, b4, b6, b8 be as in Example 1.1.3. Then the sequence
(Ψn)n∈Z is the unique sequence in K[X, Y]/(W) satisfying the following recurrence relation.

• Ψ1 = 1;
• Ψ2 = 2Y + a1X + a3;
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• Ψ3 = 3X4 + b2X3 + 3b4X2 + 3b6X + b8;
• Ψ4 = Ψ2

(
2X6 + b2X5 + 5b4X4 + 10b6X3 + 10b8X2 + (b2b8 − b4b6)X + (b4b8 − b2

6)
)
;

• For all m, n ∈ Z, Ψm+nΨm−n = Ψm+1Ψm−1Ψ2
n −Ψn+1Ψn−1Ψ2

m.

Now define for all n ∈ Z, Φn, Ωn ∈ K(E) as follows.

Φn = XΨ2
n −Ψn−1Ψn+1 Ωn =

{
1 if n = 0

1
2Ψn

(
Ψ2n −Ψ2

n(a1Φn + a3Ψ2
n)
)

otherwise

Proposition 1.3.2 ([7, Cor. 3.54, Prop. 3.55], [3, Lem. 1.7.11]). Let n ∈ Z.

(a) Ψn ∈ R∆[X, Y]/(W),
(b) Φn ∈ R∆[X, Y]/(W), ord0Φn = −2n2, ΛΦn = 1,
(c) Ωn ∈ R∆[X, Y]/(W), ord0Ωn = −3n2, ΛΩn = 1,
(d) Ψn, Φn generate the unit ideal inR∆[X, Y]/(W),

Proposition 1.3.3. Let n ∈ Z− {0}, and let d be a divisor of n. Then Ψn/Ψd, Ψd generate the unit
ideal inRn∆[X, Y]/(W).

The strategy will be the same as in [3, Lem. 1.7.11]; we note that both Ψ2
n/Ψ2

d, Ψ2
d are elements

of R∆[X], and determine what the irreducible divisors of Res(Ψ2
n/Ψ2

d, Ψ2
d) are, from which the

result will follow.

Lemma 1.3.4. Let π ∈ R∆ be irreducible, let n ∈ Z− {0}, and let d 6= n be a divisor of n. Then
π |Res(Ψ2

n/Ψ2
d, Ψ2

d) if and only if π | n.

Proof. Note that Ψ2
n/Ψ2

d, Ψ2
d do not have common factors in K[X], since by definition, Ψ2

n and
Ψ2

d have order 2 at every point of E(K)[n]− {0} and E(K)[d]− {0}, respectively. It follows that
r = Res

(
Ψ2

n/Ψ2
d, Ψ2

d
)
6= 0 inR∆.

Now let π be an irreducible divisor of r in R∆ not dividing n. Then there is an algebraically
closed field k in which n is invertible, and an elliptic curve E′ over k, such that π = 0 (so
consequently, r = 0). Let E be the corresponding elliptic curve. Then Ψ2

n/Ψ2
d, Ψ2

d have a common
factor in k[X]. But since n is invertible, we have ord0Ψn = n2 − 1, ord0Ψd = d2 − 1 over k. So
on one hand, we know that Ψn must have n2 − 1 zeroes in total (counted with multiplicities),
and on the other hand, Ψn(P) = 0 for all P ∈ E[n]− {0}. Hence it follows that all of the zeroes
of Ψn (and hence also all of those of Ψd) must be simple. This is a contradiction. �

Proof of Proposition 1.3.3. By a basic property of resultants, there exist s, t ∈ K[X] such that
sΨ2

n/Ψ2
d + tΨ2

d = Res(Ψ2
n/Ψ2

d, Ψ2
d). Since n is a unit in Rn∆, and by Lemma 1.3.4, it follows

that Ψ2
n/Ψ2

d, Ψ2
d generate the unit ideal in Rn∆[X, Y]/(W). Hence Ψn/Ψd, Ψd also generate the

unit ideal inRn∆[X, Y]/(W). �
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Proposition 1.3.5 ([7, Prop. 3.55]). If n 6= 0, then we have the following identities in the fraction field
ofR∆[X, Y]/(W).

αn

γn
=

Φn

Ψ2
n

βn

γn
=

Ωn

Ψ3
n

.

This motivates the following. Define An = ΦnΨn, Bn = Ωn, Cn = Ψ3
n. We would like to

conclude, using Proposition 1.3.5 that αn, βn, γn are the homogenisations of An, Bn, Cn. This
doesn’t work directly, as there isn’t even a unique way to homogenise An, Bn, Cn; these elements
inR∆[X, Y]/(W) are only defined up to a multiple of W. Moreover, the way these polynomials
were defined would make the degree of An, Bn, Cn too high, namely roughly 3

2 n2, instead of
n2. This problem is solved by choosing A′n, B′n, C′n ∈ R∆[X, Y] in the unique way such that their
X-degree is at most 2, and such that in R∆[X, Y]/(W), we have An = A′n, Bn = B′n, Cn = C′n.
This is possible since W is monic in X of degree 3.

Lemma 1.3.6. The total degrees of A′n, B′n, C′n are n2, n2, n2 − 1, respectively.

Proof. First, we note that the set
{

XiY j : i ∈ {0, 1, 2}, j ≥ 0
}

has the property that its orders are
pairwise distinct, and that these are by definition the only monomials occurring in A′n, B′n, C′n
with non-zero coefficient. Let XiY j be a monomial occurring in A′n with non-zero coefficient.
Then 2i + 3j ≤ −ord0 A′n = 3n2 − 1. Hence j < n2. If j = n2 − 1, then i ≤ 1. Hence it follows
that i + j ≤ n2. Since ord0 A′n = −3n2 + 1, it follows that XYn2−1 occurs in A′n with non-zero
coefficient. So the total degree of A′n is n2. The other results follow similarly. �

By Lemma 1.3.6, we now can define the elements α′n, β′n, γ′n ∈
(
R∆[x, y, z]/(W)

)
n2 as α′n =

zn2
A′n, β′n = zn2

B′n, γ′n = zn2
C′n. (Or equivalently, α′n, β′n are the homogenisations of A′n, B′n,

respectively, and γ′n is z times the homogenisation of C′n.)

Lemma 1.3.7. Let n ∈ Z− {0}. Then, in the fraction field of R∆[X, Y]/(W), we have the following
identities.

α′n
αn

=
β′n
βn

=
γ′n
γn

.

Proof. Note that since n 6= 0, the map [n]E is surjective. Hence none of the polynomials αn,
βn, γn can be equal to zero (since that would imply that the image of [n]E is finite). Hence the
desired identity follows from 1.3.2. �

Hence we can define for n ∈ Z, the rational function θn as the rational function β′n
βn

. Then
Proposition 1.2.5, Corollary 1.2.6, and Lemma 1.3.7 imply that, to prove that α′n, β′n, γ′n define
multiplication by n on any Weierstrass curve over any ring R, it suffices to prove the following
lemma.

Lemma 1.3.8. For all n ∈ Z, θn ∈ R×∆ = {±∆i : i ∈ Z}.
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Proof. For n = 0, there is nothing to prove. Hence suppose that n 6= 0.

We first show that θn is in the fraction field of R∆ and let by Lemma 1.3.7, f denote the
rational function α′n

αn
= β′n

βn
= γ′n

γn
. Note that for all P ∈ E(K), by Corollary 1.2.6, we have in K3,(

αn(P), βn(P), γn(P)
)
6= (0, 0, 0), so f cannot have poles. Hence f cannot have zeroes either,

from which it follows that f ∈ K×. Now note that since W is monic in X, R∆[X, Y]/(W) is a
free R∆-module. Since θn ∈ K×, θn arises as the ratio of coefficients of β′n and βn with respect
to a basis ofR∆[X, Y]/(W). Hence θn is in the fraction field ofR∆.

The next step is to prove that θn ∈ R∆. By the above (and because R∆ is a unique factorisa-
tion domain), we can write θn as a quotient f

g of f , g ∈ R∆, g 6= 0, in a minimal way. Then g
divides all of αn, βn, γn. Note that by Proposition 1.2.5, on the universal Weierstrass curve E ,
for P = (0 : 1 : 0) ∈ ER∆(R∆), we have

(
αn(P) : βn(P) : γn(P)

)
= (0 : 1 : 0). It follows that in

βn, the coefficient of yn2
is a unit. Since g divides βn, it follows that g is a unit, so θn ∈ R∆.

Finally, we show that θn ∈ R×∆ . Note that θn divides β′n by definition, and that the R∆-
module R∆[x, y, z]/(W) is free, since W is monic in x. We deduce that θn must divide every
coefficient of β′n. But 1 occurs as the coefficient of yn2

in β′n, since ΛΩn = 1. We deduce that
θn ∈ R×∆ , as desired. �

From this lemma, we deduce a fully explicit version of 1.2.6.

Theorem 1.3.9. Let R be a ring, and let E/R be a Weierstrass curve. Let n be an integer, and let S be
an R-algebra. Let P = (L, s0, s1, s2) ∈ ER(S). Then R is naturally anR∆-algebra, and

nP =
(
L⊗n2

, α′n(s0, s1, s2), β′n(s0, s1, s2), γ′n(s0, s1, s2)
)
.

Remark 1.3.10. Note that choosing homogenizations of different representatives of An, Bn, Cn

inR∆[x, y, z]/(W) will change the polynomials obtained by a (not necessarily common) power
of z. So in that case (for example if we homogenise An, Bn, Cn directly), the above corollary will
continue to hold for all P ∈ ER(S) of the form (a : b : 1). In other words, if P ∈ ER(S) is given
by (a : b : 1), then nP is given by

(
(ΦnΨn)(a, b) : Ωn(a, b) : Ψ3

n(a, b)
)
.

Example 1.3.11. Note that α′−1 = −x, β′−1 = y + a1x + a3z, γ′−1 = −z, which generalises the
fact that for elliptic curves over fields, P and −P have the same X-coordinate.

Because the general formulas for α′n, β′n, γ′n become very large very quickly (for n = 4, one
would need several pages already!), we give a special case as an additional example.

Example 1.3.12. Let R be any ring in which 6 is invertible, and consider the elliptic curve E
over R given by y2z = x3 + z3. Then for small n, the polynomials α′n, β′n, γ′n are given in Table 1.

One can see from these tables that if we take R = F5 for example, that for all P ∈ E(F5),
5P = −P, since for all a ∈ F5, a5 = a, and since the map a 7→ a3 on F5 is a bijection. (Though
obviously there are better ways to prove that E(F5) is annihilated by 6.)
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n α′n
−1 −x

0 0
1 x
2 2xy3 − 18xyz2

3 3xy8 − 288xy6z2 − 162xy4z4 + 1944xy2z6 − 729xz8

4 4xy15 − 2124xy13z2 − 19116xy11z4 + 415044xy9z6 − 761076xy7z8

+ 1023516xy5z10 − 1495908xy3z12 + 708588xyz14

5 5xy24 − 10080xy22z2 − 428490xy20z4 + 26292600xy18z6 − 70340481xy16z8

+ 631745568xy14z10 − 4527798588xy12z12 + 10098796176xy10z14

− 9589852845xy8z16 + 1836660096xy6z18 + 4390765542xy4z20

− 3099363912xy2z22 + 387420489xz24

n β′n
−1 y

0 1
1 y
2 y4 + 18y2z2 − 27z4

3 y9 + 216y7z2 − 2430y5z4 + 3888y3z6 − 2187yz8

4 y16 + 1224y14z2 − 67284y12z4 + 328536y10z6 − 1115370y8z8 + 367416y6z10

+ 1338444y4z12 − 1417176y2z14 + 531441z16

5 y25 + 4680y23z2 − 936090y21z4 + 10983600y19z6 − 151723125y17z8

− 508608720y15z10 + 3545695620y13z12 − 12131026560y11z14

+ 27834222375y9z16 − 37307158200y7z18 + 27119434230y5z20

− 10331213040y3z22 + 1937102445yz24

n γ′n
−1 −z

0 0
1 z
2 8y3z
3 27y8z + 216y6z3 + 486y4z5 − 729z9

4 64y15z + 3456y13z3 + 57024y11z5 + 186624y9z7 − 1539648y7z9

+ 2519424y5z11 − 1259712y3z13

5 125y24z + 27000y22z3 + 1842750y20z5 + 32076000y18z7 − 497487825y16z9

+ 1976173200y14z11 − 2206464300y12z13 − 2125764000y10z15

+ 3993779115y8z17 + 573956280y6z19 − 2152336050y4z21 + 387420489z25

TABLE 1. Values of α′n, β′n, γ′n for the elliptic curve given by y2z = x3 + z3.
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1.4 Torsion points

Throughout this section, R will denote a ring, and E will denote a Weierstrass curve over R.
Let S be an R-algebra. We would like to consider, for all n ∈ Z non-zero, the subgroup ER(S)[n].

Proposition 1.4.1. Let S be an R-algebra, and let n ∈ Z. Let P ∈ ER(S) be a point of the form
(a : b : 1). Then nP = 0 if and only if Ψn(P) = Ψn(a, b) = 0.

Proof. If Ψn(P) = 0, then Remark 1.3.10 immediately implies that nP = 0. So now suppose that
nP = 0. Then by Remark 1.3.10, Ψn(P)3 = 0 and Φn(P)Ψn(P) = 0. From the first equality, it
follows that Ψn(P) is nilpotent. Hence by 1.3.2.d, it follows that Φn(P) must be a unit. Now the
second equality implies that Ψn(P) = 0. �

Let S be an R-algebra, and let T be an S-algebra. Then we have a morphism ER(S) - ER(T)
of groups obtained by base change to T. Hence every point P ∈ ER(S) induces a point PT ∈
ER(T). If S and T are both fields, then it follows that this morphism is injective, so it preserves
orders of points. In general, this need not be the case.

Example 1.4.2. Consider the elliptic curve E over Z/125Z given by the Weierstrass equation
y2z = x3 + z3. Then we have a point (5 : 1 : 0) ∈ EZ/125Z(Z/125Z) of order 25 (by Table 1,
5(5 : 1 : 0) = (25 : 1 : 0) 6= 0, and 25(5 : 1 : 0) = 5(25 : 1 : 0) = 0), that is mapped to
0 ∈ EZ/125Z(F5) via the quotient map Z/125Z - F5.

We would like to know of which torsion points in ER(S) the order is preserved by the group
morphism ER(S) - ER(T) induced by S - T for all non-zero S-algebras T. For this, we
will use the following definition.

Definition 1.4.3. Let n be a non-zero integer. Let S be an R-algebra. A point P in ER(S) is of
universal order n if nP = 0, and P is of order n in all fibres of ES - Spec S.

Note that a point of universal order n has order n in ER(S), if S 6= 0. Also note that for
any non-zero S-algebra T, every fibre of ET - Spec T arises as the base change of a fibre
of ES - Spec S with Spec T - Spec S. Hence the map ER(S) - ER(T) induced by T
preserves orders of points of some universal order. Conversely, if P ∈ ER(S) is a point of order
n such that for all non-zero S-algebras T, the image of P under the map ER(S) - ER(T) is
also of order n, then it holds in particular for all fibres of ES - Spec S, so P is of universal
order n. Hence the points of some universal order are indeed exactly the torsion points in ER(S)
of which the order is preserved by the group morphism ER(S) - ER(T) induced by S - T
for all non-zero S-algebras T, justifying our terminology.

We describe the points P ∈ ER(S)[n] that are of universal order n more explicitly.

Lemma 1.4.4. Let n be a non-zero integer. Let L be a line bundle on Spec R, and let s ∈ Γ(Spec R,L).
Then s generates L if and only if for all fields k, and all morphisms f : Spec k - Spec R, we have
f ∗s 6= 0.
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Proof. If s generates L, then OR ∼= L (via multiplication by s). Under this isomorphism, for
every f : Spec k - Spec R, where k is a field, f ∗s = f ∗1 = 1.

Now suppose that s does not generate L, then there is a point P in Spec R such that s ∈ mPLP.

Then for the morphism Spec κ(P)
f- Spec R, we have f ∗s = 0. �

Lemma 1.4.5. Let S be an R-algebra, and let P ∈ ER(S). Let n ∈ Z− {0}. Then nP 6= 0 in every
fibre of ES - Spec S if and only if P is of the form (a : b : 1) and Ψn(P) ∈ S×.

Proof. First suppose that P = (L, s0, s1, s2) ∈ ER(S) is such that nP is non-zero in any fibre of
ES - Spec S. Then in particular, P 6= 0 in any fibre of ES - Spec S. By Lemma 1.4.4, this
implies that s2 generates L, hence L ∼= OS, and s2 ∈ S× under this isomorphism. We deduce
that P is of the form (a : b : 1).

Then by Proposition 1.4.1 and Lemma 1.4.4, it follows that since nP 6= 0 in any fibre of
ES - Spec S, we must have Ψn(P) ∈ S×.

For the converse, note that if P ∈ ER(S) is of the form (a : b : 1) and Ψn(P) ∈ S×, then by
Proposition 1.4.1 and Lemma 1.4.4, both P and nP are non-zero in all fibres of ES - Spec S.

�

Theorem 1.4.6. Let S be an R-algebra, and let P ∈ ER(S). Let n ∈ Z− {−1, 0, 1}. Then P is of
universal order n if and only if P is of the form (a : b : 1), Ψn(P) = 0, and Ψd(P) ∈ S× for all divisors
d < n of n.

Proof. Follows directly from Lemma 1.4.5. �

Now we define polynomials Fn ∈ R∆[X, Y]/(W) as follows.

F0 = Ψ0 = 0,

F1 = Ψ1 = 1,

Fn = Ψn ∏
d | n,d 6=n

F−1
d , for n ≥ 2.

The first values of Fn are given in Table 2, where b2, b4, b6, b8 are as in Example 1.1.3.

n Fn

0 0
1 1
2 2Y + a1X + a3

3 3X4 + b2X3 + 3b4X2 + 3b6X + b8

4 2X6 + b2X5 + 5b4X4 + 10b6X3 + 10b8X2 + (b2b8 − b4b6)X + (b4b8 − b2
6)

TABLE 2. The first values of Fn.

We have the following immediate consequence of Theorem 1.4.6.
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Corollary 1.4.7. Let S be an R-algebra, and let P ∈ ER(S). Let n ∈ Z>1. If P is of universal order n,
then P is of the form (a : b : 1), and Fn(P) = 0.

Example 1.4.8. The converse need not be true in general. Let R = Z/4Z, and let E be the
elliptic curve over R given by the Weierstrass equation y2z + xyz + yz2 − x3 + x2z + xz2. Then
b2 = −3, b4 = −1, b6 = 1, b8 = −1, and E has discriminant 17, which is invertible in R.

Consider the point P = (3 : 1 : 1) ∈ ER(R). Then F4(P) = 0, and 2P 6= 0, since−y− x− z 6= y
in Z/4Z. Hence P is of order 4 in ER(R). But its induced point PF2 ∈ ER(F2) is given by the
point PF2 = (1 : 1 : 1) ∈ ER(F2), which is of order 2. Hence P is not a point of any universal
order.

We do have the following partial converse.

Theorem 1.4.9. Let S be an R-algebra, and let P ∈ ER(S). Let n > 1 be an integer, and suppose that n
is invertible in R. Then P is of universal order n if and only if P is of the form (a : b : 1), and Fn(P) = 0.

Since Ψn/Ψd, Ψd are multiples of Fn, Ψd, respectively, we have the following consequence of
Proposition 1.3.3.

Corollary 1.4.10. Let n ∈ Z>0, and suppose that n is invertible in R. Then Fn and Ψd generate the
unit ideal in R[X, Y]/(W).

Proof of Theorem 1.4.9. If P ∈ ER(S) is of universal order n, then by Corollary 1.4.7, P is of the
form (a : b : 1), and Fn(P) = 0.

Suppose that P ∈ ER(S) is of the form (a : b : 1), and Fn(P) = 0. Then by Corollary 1.4.10,
it follows that for all positive d | n with d 6= n, Ψd(P) ∈ S×. Hence by Theorem 1.4.6, it follows
that P is a point of universal order n. �
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2 Algebraic models of the modular curve Y1(N)

2.1 Modular curves and modular forms

We give a definition of modular curves (in particular the modular curve Y1(N)) and modular
forms, cf. [5, Ch. 1].

Let L = {(τ1, τ2) ∈ C2 : τ1R + τ2R = C, im τ2
τ1

> 0}. Then the group SL2(Z) acts on L via(
a b
c d

)
(τ1, τ2) = (cτ2 + dτ1, aτ2 + bτ1). So the orbits of L are exactly the sets BΛ of all positively

oriented Z-bases of a lattice Λ ⊆ C.

Note that this group action commutes with scaling, so we get a group action on L modulo
scaling. Since every element of L can be scaled uniquely to one of the form (1, τ), with τ in the
complex upper half plane H, we get the SL2(Z)-action on H given by

(
a b
c d

)
τ = aτ+b

cτ+d .

Definition 2.1.1. The modular curve Y is the (topological) quotient space of H under the SL2(Z)-
action given by

(
a b
c d

)
τ = aτ+b

cτ+d .

From the way we defined the action on H, it is clear that Y corresponds bijectively to isomor-
phism classes of elliptic curves over C, where τ ∈ Y corresponds to the elliptic curve given by
the lattice Z + Zτ ⊆ C.

Definition 2.1.2. Let N be a positive integer. Then the principal congruence subgroup Γ(N) of level
N is the subgroup of SL2(Z) consisting of all matrices

(
a b
c d

)
with a, d ≡ 1 (mod N), b, c ≡ 0

(mod N). Any subgroup of SL2(Z) that contains a principal congruence subgroup is called a
congruence subgroup.

So in particular, Γ(1) = SL2(Z). We give some more examples of important congruence
subgroups.

Example 2.1.3. Let N be a positive integer. Then the subgroup Γ1(N) of SL2(Z) consisting of
all matrices

(
a b
c d

)
with a, d ≡ 1 (mod N) and c ≡ 0 (mod N) is a congruence subgroup, and

so is the subgroup Γ0(N) of SL2(Z) consisting of all matrices
(

a b
c d

)
with c ≡ 0 (mod N).

Definition 2.1.4. Let Γ be a congruence subgroup. Then the modular curve corresponding to Γ is
the (topological) quotient space of H under the Γ-action given by

(
a b
c d

)
τ = aτ+b

cτ+d . In the special
cases in which Γ = Γ0(N) or Γ = Γ1(N) for some positive integer N, we denote this modular
curve by Y0(N) and Y1(N), respectively.

We now define modular forms. Let M(H) denote the set of all meromorphic functions
H - C, and let k be an integer. Then for any element γ =

(
a b
c d

)
∈ SL2(Z) and f ∈ M(H),

define γ∗k f ∈ M(H) as the function τ 7→ (cτ + d)−k f (γτ). This gives for every integer k an
SL2(Z)-action on M(H), by the description of the SL2(Z)-action on L modulo scaling given
earlier.

Definition 2.1.5. Let k be an integer, and let Γ be a congruence subgroup. Then f ∈ M(H) is
called weakly modular of weight k with respect to Γ if f is invariant under the Γ-action correspond-
ing to k.
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Let k be an integer, let Γ be a congruence subgroup, and let f be a weakly modular of weight
k with respect to Γ. Since for some minimal positive integer h, we have

(
1 h
0 1

)
∈ Γ, it follows

that f is periodic with period h. Let D be the complex open unit disk, and let ε : H - D be
map given by τ 7→ e2πiτ/h. Then there exists a unique meromorphic g : D − {0} - C such
that f = gε. We say that f is holomorphic at ∞ if g is holomorphic at 0. If f is holomorphic and
holomorphic at ∞, then g is holomorphic as well. So in this case, via the Taylor expansion of g
at 0, f obtains a q-expansion ∑n≥0 an( f )qn, where q = e2πiτ/h.

Definition 2.1.6. Let k be an integer, and let Γ be a congruence subgroup. Then f ∈ M(H) is
a modular form of weight k with respect to Γ if f is holomorphic, and invariant under the Γ-action
corresponding to k, and if for every γ ∈ SL2(Z), γ∗k f is holomorphic at ∞.

Definition 2.1.7. Let k be an integer, and let Γ be a congruence subgroup. Then f ∈ M(H) is a
cusp form of weight k with respect to Γ if it is a modular form of weight k with respect to Γ, and for
all γ ∈ SL2(Z), we have a0(γ

∗
k f ) = 0 in the q-expansion of γ∗k f .

We denote the sets of modular forms and cusp forms of weight k with respect to Γ respec-
tively byMk(Γ) and Sk(Γ). Note thatMk(Γ) and Sk(Γ) have a natural structure of a C-vector
space.

We will be especially interested in the case where Γ = Γ1(N), for N ≥ 4, and where k = 3. In
this case, we have an explicit formula for the dimensions of the space Sk(Γ).

Proposition 2.1.8 ([5, Fig. 3.4]). Let N be a positive integer. Then dimS3
(
Γ1(N)

)
= 0 if N ≤ 4,

and otherwise,

dimS3
(
Γ1(N)

)
= 1

12 N2 ∏
p |N

(
1− 1

p2

)
− 1

4 ∑
d |N

φ(d)φ
(N

d
)
,

where p ranges over all the prime divisors of N, d ranges over all the positive divisors of N, and φ denotes
the Euler totient function.

For future reference, we list dimS3
(
Γ1(N)

)
for small values of N in Table 3.

N 1 2 3 4 5 6 7 8 9 10
dimS3

(
Γ1(N)

)
0 0 0 0 0 0 1 1 2 4

TABLE 3. Dimension of S3
(
Γ1(N)

)
for small values of N

2.2 The modular curve Y1(N)

The remainder of this chapter will be dedicated to give an algebraic description of Y1(N).
To do this, we give a bijective correspondence between Y1(N) and the set of all isomorphism
classes of pairs (E, P) of an elliptic curve E over C, and a point P ∈ E(C) of order N.

We study the Γ1(N)-orbits of L. Let (τ1, τ2) ∈ L, and let Λ = τ1Z + τ2Z. Then Γ1(N)(τ1, τ2)

is the set of positively oriented Z-bases (τ′1, τ′2) such that 1
N (τ1 − τ′1) ∈ Λ. Hence every Γ1(N)-

orbit of L corresponds bijectively with a lattice Λ in C, together with a point P ∈ C/Λ of
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order N, (where (τ1, τ2) corresponds to the lattice Λ = Zτ1 + Zτ2, together with the point
1
N τ1 ∈ C/Λ). Modulo scaling, this gives us the desired correspondence.

So to construct a model of Y1(N), one would like to parametrize the isomorphism classes of
pairs (E, P) of an elliptic curve E and a point P ∈ E(C) of order N. We have the following. (See
also [1]).

Proposition 2.2.1. For every pair (E, P) of an elliptic curve E over C with a point P on E such that
2P 6= 0 and 3P 6= 0, there are unique σ, τ ∈ C such that (E, P) is isomorphic to

(
Eσ,τ , (0 : 0 : 1)

)
,

where

Eσ,τ : y2z + σxyz + τyz2 = x3 + τx2z.

Moreover, the isomorphism (E, P) -
(
Eσ,τ , (0 : 0 : 1)

)
is unique.

Proof. Write E in some Weierstrass form.

E : y2z + a1xyz + a3yz2 = x3 + a2x2z + a4xz2 + a6z3

First note that any isomorphism between elliptic curves in Weierstrass form is of the form (x :
y : z) 7→ (α2x + az : α3y + bx + cz : z), with α ∈ C×, a, b, c ∈ C, hence can be written uniquely
as a composition of a translation, a map of the form (x : y : z) 7→ (x : y + bx : z), and a scaling.

Note that P is not the point at infinity, so there is a unique translation sending P to (0 : 0 : 1),
making a6 = 0. Since 2P 6= 0, the line given by x = 0 is not a tangent of E at P, so a3 6= 0. Hence
there is a unique map of the form (x : y : z) 7→ (x : y + bx : z) sending the tangent T of E at P to
the line given by y = 0, making a4 = 0. Finally, since 3P 6= 0, the line given by y+ a1x + a3z = 0
is not an inflexion, so a2 6= 0. Hence there is a unique scaling making a2 and a3 equal.

The result follows. �

Let ∆ = −t3(16t2 + (8s2 − 36s + 27)t + (s− 1)s3) ∈ Z[s, t]. Then for all σ, τ ∈ C, ∆(σ, τ) is
the discriminant of the cubic curve Eσ,τ .

We wish to find the set of (σ, τ) ∈ C2 such that ∆(σ, τ) 6= 0, and the point (0 : 0 : 1) in Eσ,τ is
of a given order N. Define ψn ∈ Z[s, t] as the value of the division polynomial Ψn (as defined
in Section 1.3) at (0, 0), with a1 = s, a2 = a3 = t, a4 = a6 = 0. So these ψn satisfy the recurrence
relation given in Proposition 1.3.1. By Proposition 1.4.1, ψn = 0 if and only if n(0 : 0 : 1) = 0.

Since ∆(σ, τ) is required to be non-zero, this property still holds if we replace ψn with ψ′n,
where ψ′n is obtained from ψn by removing all of its common factors with ∆. In fact, by [1, Thm.
3.4], ψ′n = t−bn

2/3cψn. Hence we can define polynomials Fn ∈ Z[s, t] recursively via the relation
∏d | n Fd = ψ′n, for all positive integers n. Note that these differ only by a power of t from the Fn

given in Section 1.4. By Theorem 1.4.9 these polynomials have the following property.

Theorem 2.2.2. Let N be a positive integer, and let σ, τ ∈ C with ∆(σ, τ) 6= 0. Then (0 : 0 : 1) ∈ Eσ,τ

is of order N if and only if FN(σ, τ) = 0.
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N g FN

1 0 1
2 0 1
3 0 1
4 0 s− 1
5 0 s− 1− t
6 0 s2 − 3s + 2 + t
7 0 (s− 1)3 − (s− 1)t + t2

8 0 (s− 1)2(t + 1)− 3(s− 1)t + 2t2

9 0 (s− 2)(s− 1)4 + (s− 1)3(t + 1)− 3(s− 1)2t + 3(s− 1)t2 − t3

10 0 (s− 1)5 + (s− 1)4t− 3(s− 1)3t + (s− 1)2(3t2 + t)− 2(s− 1)t2 + t3

11 1 (s− 1)7t− (s− 1)6(3t + 1) + 3(s− 1)5t(t + 2)− 9(s− 1)4t2

+ (s− 1)3t2(4t− 1) + 3(s− 1)2t3 − 3(s− 1)t4 + t5

TABLE 4. The first values of FN .

The first values of FN and the genera of Y1(N) are listed in Table 4, cf. [1, Tab. 1]. (Note that
[1] uses the notation f = t, g = s− 1.)

In this way, we obtain models Y1(N)Z = Spec Z[s, t, 1/∆]/(FN) of Y1(N) over Z, for all
N ≥ 4.

2.3 Universal elliptic curves

We now define, for all integers N, what a universal elliptic curve with a point of universal
order N is. Then we will show that it exists if N ≥ 4, by giving an explicit description.

Definition 2.3.1. For a positive integer N, a universal elliptic curve with a point of universal order
N (or simply universal elliptic curve if it is clear from the context what N is,) is an elliptic curve
E over a Z[1/N]-scheme S , together with a point P ∈ E(S) of universal order N, with the
property that any elliptic curve E/S with S a Z[1/N]-scheme, together with a point P ∈ E(S)
of universal order N, arises by a unique base change of E/S compatible with P and P .

Let X = Proj Z[x, y, z]×Spec Z Spec Z[s, t]. LetW = y2z + sxyz + tyz2 − x3 − tx2z. Consider,
for N ≥ 4, the closed subscheme EN of X defined by W and FN . Then we have a morphism
φ : EN - Y1(N)Z, of which all the fibres are elliptic curves, since the discriminant ∆ =

−t3(16t2 + (8s2 − 36s + 27)t + (s − 1)s3) is invertible. After base change to Spec Z[1/N], we
obtain a morphism EN - Y1(N)Z[1/N]. Let P = (0 : 0 : 1) ∈ EN

(
Y1(N)Z[1/N]

)
.

Proposition 2.3.2. For N ≥ 4, the pair
(
EN/Y1(N)Z[1/N],P

)
defined above is a universal elliptic

curve with a point of universal order N.

We first describe the pair
(
EN/Y1(N)Z[1/N],P

)
more explicitly. Note that Y1(N)Z[1/N] =

Spec Γ, where Γ = Z[s, t, 1/N, 1/∆]/(FN). Then we also have EN = Proj Γ[x, y, z]/(W). Then
we note that the point P = (0 : 0 : 1) is indeed of universal order N in EN , by Theorem 1.4.9.
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The following lemma allows us to view the problem locally on the base.

Lemma 2.3.3. Let E/S be an elliptic curve, and let {Wi} be an affine open cover of S that is a ba-
sis for the topology of S. Assume that for all i, f−1[Wi]/Wi arises from a unique base change of
EN/Y1(N)Z[1/N], compatible with P|Wi and P . Then E/S also arises from a unique base change of
EN/Y1(N)Z[1/N], compatible with P|Wi and P .

Proof. Let E/S and {Wi} be as in the proposition. Let V1, V2 ∈ {Wi} be two of these affine open
subsets of S, and let V0 ⊆ V1 ∩V2 be another affine open subset of S in {Wi}. For j = 0, 1, 2, let
Uj = f−1[Vj] and let gj denote the unique morphism Vj - Y1(N)Z[1/N] making Uj the fibred
product of EN and Vj over Y1(N)Z[1/N]. Consider the following diagram, where i1, j1 are open
immersions.

U0

U1 -

j1
-

EN

-

V0

?

V1

?

g1

-

i1
-

Y1(N)Z[1/N]

?

g0
-

We want to show that g0 = g1 ◦ i1. Note that the squares containing g0 or g1 are Cartesian
by assumption, and that the square containing i1 is Cartesian since i1 and j1 are open immer-
sions, and since U0 and U1 are inverse images of V0 and V1 under f . It follows that the square
containing g1 ◦ i1 is also Cartesian. By assumption, U0/V0 arises from a unique base change of
EN/Y1(N)Z[1/N]. Hence g0 = g1 ◦ i1. The same argument now also shows that g0 = g2 ◦ i2,
where i2 : U0 - U2 is the open immersion. From this, we deduce that g1 and g2 agree on V0.

Hence we can glue the morphisms Wi - Y1(N)Z[1/N] to a unique morphism from S to
Y1(N)Z[1/N], such that E = EN ×Y1(N)Z[1/N]

Y1(N)Z[1/N], which is compatible with P and P . �

Proof of Proposition 2.3.2. Let f : E - S be an arbitrary elliptic curve, where S is a Z[1/N]-
scheme, and let P ∈ E(S) be of universal order N. To show that E/S arises from a unique base
change of EN/Y1(N)Z[1/N] compatible with P and P , it suffices by Lemma 2.3.3 to show this
locally on affine open subsets of the base.

Now note that E/S is locally (on the base) Weierstrass, i.e. S admits an affine open cover {Wi}
such that f−1[Wi]/Wi is a Weierstrass curve. Since for all principal opens U of Wi, f−1[U]/U
is again a Weierstrass curve, we may also assume that {Wi} is a basis for the topology of S.
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So it suffices to show that for a ring R, and a Weierstrass equation W, the Weierstrass curve
E′ = Proj R[x, y, z]/(W) over S′ = Spec R, together with a point P ∈ E′(S′) of universal order
N, arises from a unique base change of EN/Y1(N)Z[1/N], compatible with P and P . So let
R, W, E′, S′, P be as above. Then by an argument similar to the one used to prove Proposition
2.2.1 (using Lemma 1.4.5 to guarantee that certain elements are invertible), there is a unique
Weierstrass equation W ′ of the form

y2z + s′xyz + t′yz2 − x3 − t′x2z, s′ ∈ R, t′ ∈ R×,

such that (E′, P) is uniquely isomorphic to E′′ = Proj R[x, y, z]/(W ′), together with the point
P′ = (0 : 0 : 1). This determines a morphism

Z[s, t, 1/N, 1/∆] - R, s 7→ s′, t 7→ t′.

Since (0 : 0 : 1) is of universal order N in E′′(R), by Theorem 1.4.9, it follows that FN(s′, t′) = 0.
Hence we get a morphism Γ - R, s 7→ s′, t 7→ t′, such that E′/R arises from base change by
this (by construction unique) morphism.

It follows that EN/Y1(N)Z[1/N], together with the pointP , is indeed a universal elliptic curve.
�
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3 Formulae for the number of Fq-rational points on EN

We give formulae for the number of Fq-rational points on EN for small N. Since these formu-
lae will tend to contain Kronecker symbols, we define them first, and list some basic properties
without proof. See for example [13] for more details.

3.1 The Kronecker symbol

Definition 3.1.1. Let p be an odd prime, and let a be an integer. Then the Legendre symbol
( a

p
)

is the integer in {−1, 0, 1} such that
( a

p
)
≡ a(p−1)/2 (mod p).

Or equivalently,
( a

p
)

is equal to 1 if a is a quadratic residue modulo p, to 0 if it is divisible by
p, and to -1 if it is a non-quadratic residue modulo p.

We can extend the Legendre symbol
( a

n
)

to all positive odd n in a multiplicative way, and
the result is called the Jacobi symbol. The Jacobi symbol has the following properties.

Proposition 3.1.2. Let a and b be two integers, and let m, n be coprime odd numbers. Then the
following holds.

(1)
( ab

n
)
=
( a

n
)( b

n
)
,

(2)
(−1

n
)
= (−1)(n−1)/2,

(3)
( 2

n
)
= (−1)(n

2−1)/8,
(4)

( n
m
)(m

n
)
= (−1)(n−1)(m−1)/4.

Finally, we can further extend the Jacobi symbol to all integers n, by defining for a ∈ Z,

( a
2
)
=

{
0 2 | a,( 2

a
)

2 6 | a,( a
−1
)
= sgn a,

and extending multiplicatively. The result is called the Kronecker symbol. This Kronecker symbol
has the following property.

Proposition 3.1.3. Let a, b ∈ Z be two integers, and let q be a prime power. Then the polynomial
x2 + ax + b splits into two distinct factors over Fq if and only if

(∆
q
)
= 1, where ∆ = a2 − 4b is the

discriminant of x2 + ax + b.

We now give formulae for #EN(Fq) for prime powers q coprime to N.

3.2 Formula for N = 4

Proposition 3.2.1. Let q be a power of an odd prime. Then #E4(Fq) = q2 − q− 1 +
(−1

q
)
.

Proof. Recall that F4 = s− 1, so E4 is given by the equation y2z + xyz + tyz2 = x3 + tx2z, under
the condition that ∆ = −t4(16t− 1) 6= 0. This holds if and only if t 6= 0 and t 6= 1

16 .



22

First, we calculate #E4(Fq), where E4 is the closed subscheme of Proj Z[x, y, z]× Spec Z[s, t]
defined by the equation y2z + xyz + tyz2 = x3 + tx2z; we will deal with the singular Fq-fibres
later.

We dehomogenize the equation for E4, to get the affine equation y2 + xy + ty = x3 + tx2. We
rewrite this as t(y− x2) = x3 − y2 − xy. We solve this linear equation in t for all (x, y) ∈ F2

q.
Let (x, y) ∈ F2

q. Then there is a unique solution for t if and only if y− x2 6= 0, q solutions for t
if and only if y− x2 = 0 and x3 − y2 − xy = 0, and no solutions otherwise. Note that there are
q2 − q pairs satisfying y− x2 6= 0. Now suppose that y− x2 = 0 and y2 + xy− x3 = 0. Then
xy− x3 = 0, implying that y2 = 0. We deduce that (0, 0) is the unique pair satisfying y− x2 = 0
and x3− y2− xy = 0. Hence the equation y2 + xy + ty = x3 + tx2 has q2− q + q = q2 solutions.
Adding the q points of infinity (one for every t ∈ Fq) yields #E4(Fq) = q2 + q.

Now note that the singular cubic curve y2z + xyz = x3 given by t = 0 has a double point
with rational tangents, hence its number of Fq-rational points is q. Consider the singular cubic
curve y2z + xyz + 1

16 yz2 = x3 + 1
16 x2z given by t = 1

16 . After translating the point (− 1
8 : 1

32 : 1)
to (0 : 0 : 1), its equation becomes (y2 + xy + 5

16 x2)z = x3. Note that the quadratic form in
the left hand side has discriminant − 1

4 , which is non-zero, and is a square if and only if −1
is a square in Fq. Hence the singular point is a double point, and has rational tangents if and
only if

(−1
q
)
= 1. It follows that the number of Fq-rational points of the singular cubic curve

y2z + xyz + 1
16 yz2 = x3 + 1

16 x2z is q + 1−
(−1

q
)
.

We deduce that #E4(Fq) = q2 − q− 1 +
(−1

q
)
. �

3.3 Formula for N = 5

Proposition 3.3.1. Let q be a prime power coprime to 5. Then

#E5(Fq) = q2 + 1−
(

1 +
( 5

q
))

q− ψ(q),

where ψ = ∑χ χ(−1)−1χ, where χ ranges over all the characters modulo 5. (So ψ(q) = 4 if and only if
q ≡ 4 (mod 5), and ψ(q) = 0 otherwise.)

Proof. Recall that F5 = s− t− 1. Hence E5 is given by the equation y2z + (t + 1)xyz + tyz2 =

x3 + tx2z, under the condition that ∆ = −t5(t2 + 11t− 1) 6= 0. This holds if and only if t 6= 0
and t2 + 11t− 1 6= 0.

First, we calculate #E5(Fq), where E5 is the closed subscheme of Proj Z[x, y, z]× Spec Z[s, t]
defined by the equation y2z + sxyz + tyz2 = x3 + tx2z and F5; we will deal with the singular
Fq-fibres later.

Dehomogenizing the equation for E5 gives us the affine equation y2 + (t + 1)xy + ty = x3 +

tx2. We rewrite this as (xy + y− x2)t = x3 − y2 − xy. We solve this linear equation in t for all
(x, y) ∈ F2

q. Let (x, y) ∈ F2
q. Then there is a unique solution for t if and only if xy + y− x2 6= 0,

q solutions for t if and only if xy + y− x2 = 0 and x3− y2− xy = 0, and no solutions otherwise.
Note that xy + y− x2 6= 0 if and only if x = −1 or y 6= x2

x+1 with x 6= −1. Hence q2− q + 1 pairs
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satisfy this condition. Now suppose that xy + y− x2 = 0 and x3 − y2 − xy = 0. Then x3 − xy =

x2y, so y(x2 − y) = 0. If y = 0, then also x = 0. If x2 − y = 0, then as in Proposition 3.2.1, it
follows that x = 0 and y = 0. Hence (0, 0) is the unique pair satisfying xy + y− x2 = 0 and
x3 − y2 − xy = 0. Hence the equation y2 + (t + 1)xy + ty = x3 + tx2 has q2 − q + 1 + q = q2 + 1
solutions. Adding the q points of infinity yields #E5(Fq) = q2 + q + 1.

Now note that the singular cubic curve y2z + xyz = x3 given by t = 0 has a double point
with rational tangents, hence its number of Fq-rational points is q. Hence if t2 + 11t− 1 = 0 has
no Fq-rational solutions, then #E5(Fq) = q2 + 1. This happens if and only if either q is an odd
power of 2, or 5 is not a square in Fq, i.e. if and only if

( 5
q
)
6= 1. (By quadratic reciprocity, this

holds if and only if q ≡ 2, 3 (mod 5).)

Now suppose that q ≡ 1, 4 (mod 5), let α ∈ Fq be a root of t2 + 11t− 1 = 0, and consider
the singular cubic curve Es : y2z + (α + 1)xyz + αyz2 = x3 + αx2z. Note that the singular point
is ( 3

5 α− 1
5 : 13

5 α− 1
5 : 1) 6= (0 : 0 : 1). Hence (0 : 0 : 1) ∈ Esm

s (Fq) is of order 5, so #Es(Fq) ≡ 1
(mod 5). We use this later on.

After translating the point ( 3
5 α− 1

5 : 13
5 α− 1

5 : 1) to (0 : 0 : 1), the equation becomes
(
y2 +

(α + 1)xy + (− 14
5 α + 3

5 )x2)z = x3. Since the discriminant of the quadratic form in the left hand
side is non-zero, it follows that the singular point is a double point. Hence #Es(Fq) ∈ {q, q + 2}.
Since we also know that #Es(Fq) ≡ 1 (mod 5), it follows that if q ≡ 1 (mod 5), then #Es(Fq) =

q, and if q ≡ 4 (mod 5), then #Es(Fq) = q + 2. So if we let ψ = ∑χ χ(−1)−1χ, where χ ranges
over all the characters modulo 5, then it follows that #Es(Fq) = q + 1

2 ψ(q).

Note that the argument above does not depend on the choice of α, so #E5(Fq) = q2 + 1−
2#Es(Fq) = q2 + 1− 2

(
q + 1

2 ψ(q)
)
, if q ≡ 1, 4 (mod 5). Together with the result for q ≡ 2, 3

(mod 5), the desired result follows. �

3.4 Formula for N = 6

Proposition 3.4.1. Let q be a prime power coprime to 6. Then #E6(Fq) = q2 − 2q + 2
(−3

q
)
− 1.

Proof. Recall that F6 = (s− 1)(s− 2) + t. Hence E6 is given by the equation

y2z + sxyz− (s− 1)(s− 2)yz2 = x3 − (s− 1)(s− 2)x2z

under the condition that ∆ = −(s− 1)6(s− 2)3(9s− 10) 6= 0. Equivalently, under the condition
that s 6= 1, s 6= 2 and s 6= 10

9 .

First, in the equation for E6, we scale x by a factor s− 1, and y by a factor (s− 1)2, to obtain
an equation

(s− 1)y2z + sxyz− (s− 2)yz2 = x3 − (s− 2)x2z.

Let X(Fq) ⊆ P2
Fq
×A1

Fq
denote the surface defined by this equation, and let X′(Fq) denote the

part of X(Fq) where s 6∈ {1, 2, 10
9 }. Note that #E6(Fq) = #X′(Fq).
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We now dehomogenize the equation for X′ to get the affine equation (s− 1)y2 + sxy− (s−
2)y = x3 − (s− 2)x2, which we can rewrite as

(y2 + xy− y + x2)s = x3 + 2x2 + y2 − 2y.(1)

First, we determine the number of pairs (x, y) ∈ F2
q with y2 + xy − y + x2 = 0 (*). Note

that if we fix x ∈ Fq, that then (*) has 2 solutions if and only if (x− 1)− 4x2 = (x + 1)(−3x +

1) ∈ F×2
q . Or equivalently, if and only if x 6= −1 and −3x+1

x+1 = 4
x+1 − 3 ∈ F×2

q . Since the
map f : Fq − {−1, 1

3} - Fq − {−3, 0} given by x 7→ 4
x+1 − 3 is a bijection, it follows that

f (x) ∈ F×2
q for 1

2
(
q− 2−

(−3
q
))

of the x in Fq. Also note that (*) has 1 solution for fixed x if and

only if x = −1 or x = 1
3 . Hence q−

(−3
q
)

pairs in F2
q satisfy (*).

Next, we determine the pairs (x, y) ∈ F2
q for which both (*) and x3 + 2x2 + y2 − 2y = 0 (**)

hold. Let (x, y) ∈ F2
q be such a pair. Then y2 + x2 = (−x + 1)y, implying that x3 + x2 − (x +

1)y = 0. Hence either x = −1, or y = x2. In the former case, it follows that y = 1. In the latter
case, (*) becomes x4 + x3 = 0, implying that either x = −1 or x = 0, the latter implying that
y = 0. Hence the only pairs (x, y) satisfying (*) and (**) are (0, 0) and (−1, 1).

Note that the curve Y : xyz + yz2 = x3 + x2z given by s = 1 has 1 point at infinity that is
Fq-rational, namely (0 : 1 : 0). Also note that the number of affine Fq-rational points is 2q− 1,
since xy + y = x3 + x2 if and only if x = −1 or y = x2. Hence #Y(Fq) = 2q. Also note that the
curve E′ : y2z + 2xyz = x3 given by s = 0 has a double point (0 : 0 : 1) with rational tangents,
hence #E′(Fq) = q. Finally, the curve E′′ : 1

9 y2z + 10
9 xyz + 8

9 yz2 = x3 + 8
9 x2z given by s = 10

9
has singular point (−4

3 : 8
3 : 1). Translating this point to (0 : 0 : 1), the equation for E′′ becomes

1
9 y2z + 10

9 xyz + 28
9 yz2 = x3. Hence (0 : 0 : 1) is a double point, which has Fq-rational tangents

if and only if −12
9 ∈ F×2

q . Hence #E′′(Fq) = q + 1−
(−3

q
)
.

Now the pairs (x, y) ∈ F2
q for which (*) does not hold, yield q2 − q +

(−3
q
)

solutions of (1),
and the ones for which both (*) and (**) hold, yield 2q solutions. Adding the q points of infinity,
it follows that #X(Fq) = q2 + 2q+

(−3
q
)
. Combining this with the results for Y, E′ and E′′ above,

it follows that

#E6(Fq) = #X′(Fq) = q2 − 2q + 2
(−3

q
)
− 1,

as desired. �

3.5 Discussion of formulae for higher N, empirically

The formulae for #EN(Fq) for N = 7, 8, 9 given below, are obtained empirically, using Sage
[12]; we will elaborate on what we mean exactly by ‘empirically’ later.
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First consider the case N = 7. For all p 6= 7 prime, and all n ≥ 0, define apn recursively as
follows.

a1 = 2,

ap =

{
α2 + α2 if p ≡ 1, 2, 4 (mod 7) and p = N(α) for some α ∈ Z

[ 1
2 + 1

2

√
−7
]
,

0 if p ≡ 3, 5, 6 (mod 7).

apn =

{
apapn−1 − p2apn−2 if p ≡ 1, 2, 4 (mod 7), n ≥ 2,
p2apn−2 if p ≡ 3, 5, 6 (mod 7), n ≥ 2.

Furthermore, let ψ = ∑χ χ(−1)−1χ, where χ ranges over all characters modulo 7, and let ψ′ be
the sum of all characters χ modulo 7 such that χ(−1) = 1. (So ψ(k) = 6 if k ≡ −1 (mod 7),
and ψ(k) = 0 otherwise, and ψ′(k) = 3 if k ≡ 1,−1 (mod 7), and ψ′(k) = 0 otherwise.) Then
the formula for #E7(Fq) is given by q2 + 1 + aq −

(
1 + ψ(q)

)
q− ψ′(q).

Now consider the case N = 8. Then for all p 6= 2 prime, and all n ≥ 0, define apn recursively
as follows.

a1 = 2,

ap =

{
α2 + α2 if p ≡ 1, 3 (mod 8) and p = N(α) for some α ∈ Z

[√
−2
]
,

0 if p ≡ 5, 7 (mod 8).

apn =

{
apapn−1 − p2apn−2 if p ≡ 1, 3 (mod 8), n ≥ 2,
p2apn−2 if p ≡ 5, 7 (mod 8), n ≥ 2.

Also let ψ = ∑χ χ(−1)−1χ, where χ ranges over all characters modulo 8, and let ψ′ be the sum
of all characters χ modulo 8 with χ(−1) = 1. (So ψ(k) = 4 if k ≡ −1 (mod 8), and ψ(k) = 0
otherwise, and ψ′(k) = 2 if k ≡ 1,−1 (mod 8), and ψ′(k) = 0 otherwise.) Then the formula for
#E8(Fq) is given by q2 − q +

(−1
q
)
+ aq −

(
1 + ψ(q)

)
q− ψ′(q).

Note that we have, for all primes p coprime with N, ap = ap( f ), where f is the unique
normalised cusp form in S3

(
Γ1(N)

)
.

For N = 9, let α be an algebraic integer satisfying α2 + 3α + 3. Then note that −α − 1 is
a primitive 6-th root of unity. Let ρ denote the character such that ρ(2) = −α − 1. Let f ∈
S3
(
Γ1(9)

)
be the cusp form with q-expansion f = q + αq2 + O(q3), and let f be its conjugate ( f

and f are the two newforms in S3
(
Γ1(9)

)
, see [5]). Define aq for q a prime power coprime to 3 by

the following recursion.

a1 = 2,

ap = ap( f ),

apn = apapn−1 − p2ρ(p)apn−2 . (n ≥ 2)
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Let ψ0 be the sum of all characters χ modulo 9 with χ(4) = 1, and let ψ1 be the sum of those
with χ(−1) = 1. In other words,

ψ0(k) =

{
2 if k ≡ 1 (mod 3),
0 otherwise

ψ1(k) =

{
3 if k ≡ 1,−1 (mod 9),
0 otherwise

Also let ψ′ = ∑χ χ(−1)−1χ, where χ ranges over all the characters modulo 9 (so ψ′(k) = 6 if
k ≡ −1 (mod 9), and ψ′(k) = 0 otherwise). Then the formula for N = 9 is given by q2 + 1 +

aq + aq−
(
1+ ψ0(q) + ψ1(q)

)
q−ψ′(q). Though, this expression still depends on the coefficients

of f , for which there is no ‘simple’ formula to compute these. In that sense, it is not a satisfactory
formula.

Looking at these formulae, the following question rises: what do cusp forms of weight 3
have to do with universal elliptic curves? We explain this without going into much detail (it’s
summarised in [6, Ch. 2], and one can find the details in [4], [11], [2]).

Via the Lefschetz trace formula, one can relate #EN(Fq) to the trace of the Frobenius map on the
cohomology groups Hi(EN , Fl) (which are Fl-vector spaces), for all primes l coprime to qN. Of
main interest are the groups H2(EN , Fl). (The rest will give a contribution which is polynomial
in q, with possibly Dirichlet characters occurring in the coefficients.) These turn out to be related
to the space S3

(
Γ1(N)

)
as a whole, and the Frobenius action on the H2(EN , Fl) turns out to

be related to the action of the diamond and Hecke operators on S3
(
Γ1(N)

)
, and hence to all the

normalised eigenforms of S3
(
Γ1(N)

)
. This gives reason to suspect that the formula for #EN(Fq)

involves the aq( f ) of all the normalised eigenforms in S3
(
Γ1(N)

)
. (Now we can also explain

what we meant by ‘empirically’ obtaining the formulae for N = 7, 8, 9; we calculated enough
values of #EN(Fq) to conclude that if the formula is of the suspected form, then it must be the
formula that we have given.

For N = 7, 8, all of the cusp forms that occur in the corresponding formulae are of a special
kind; they come from Hecke characters (which we will define in the next chapter) of imaginary
quadratic number fields, which allows for a simple description of the modular coefficients (un-
like the cusp form that occurs if N = 9; there is no ’elementary’ way to express its coefficients).
Hence we want to call S3

(
Γ1(N)

)
elementary if all cusp forms f ∈ S3

(
Γ1(N)

)
are linear combi-

nations of those coming from Hecke characters; in this case, as discussed above, the formula for
EN will be expected to be ‘elementary’ as well.
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4 Algebraic Hecke characters

We fix our notation: K will in this chapter always denote a number field, and:

• µK denotes the set of roots of unity in K;
• VK denotes the set of primes of K;
• V∞

K denotes the set of finite primes of K;
• ΣK denotes the set of embeddings K - C;
• OK denotes the ring of integers of K;
• for v ∈ VK, Kv (and Ov if v ∈ V∞

K ) denote(s) the completions of K (and OK) with respect
to v, respectively.

4.1 Adèles and Idèles

Definition 4.1.1. The ring of adèles AK of K is the restricted product ∏′v∈VK
Kv, i.e. AK is the

subset of (xv)v∈VK ∈ ∏v∈VK
Kv such that for all but finitely many v ∈ V∞

K , we have xv ∈ Ov.

We denote by A∞
K the factor ∏′v∈V∞

K
Kv of AK (the group of finite adèles of K) and by KR the

factor R⊗ K = ∏v∈VK−V∞
K

Kv of AK (the archimedean factor of AK).

Example 4.1.2. Let x ∈ K. Then we can write x = a
b , with a ∈ OK, b ∈ OK − {0}. Then b /∈ v

for all but finitely many v ∈ V∞
K , so x ∈ Ov for all but finitely many v ∈ V∞

K . Hence (x)v∈VK

defines an element of AK.

We can embed KR in ∏σ∈ΣK
C as follows. Let v ∈ VK − V∞

K . If Kv = R, then v corresponds
to one (real) embedding of K, and we take the usual embedding Kv - C. If Kv = C, then v
corresponds to two conjugate embeddings of K, and we take the embedding Kv - C2, x 7→
(x, x). Taking the product of these embeddings, we obtain an embedding KR

- ∏σ∈ΣK
C,

with image
{
(xσ)σ∈ΣK : ∀σ ∈ ΣK, xσ = xσ

}
. This embedding will be useful at times.

Note that by Example 4.1.2, it follows that we can view K as a subset of AK via the diagonal
embedding. Then AK has a natural Q-algebra structure, and we make it into a topological
Q-algebra by saying that a local basis of 0 ∈ AK is given by the natural local basis of 0 in
∏v∈VK

Ov × KR ⊆ AK, with the product topology. As a topological space, AK is Hausdorff and
locally compact, and as a subspace, K ⊆ AK is discrete and co-compact.

Definition 4.1.3. The group of idèles A×K is the multiplicative group of the ring of adèles of K.
The group of finite idèles A∞×

K of K is the multiplicative group of the group of finite adèles of K,
and the archimedean factor of A×K is the multiplicative group of the archimedean factor of AK.

We make A×K into a topological group by viewing it as the closed subset

{(x, y) ∈ AK ×AK : xy = 1}

of AK ×AK, and then giving A×K the induced topology. Hence a local basis of 1 in A×K is given
by the natural local basis of 1 in ∏v∈VK

O×v × K×R ⊆ A×K , with the product topology. Note that
this local basis, when restricted to A∞×

K , consists of compact open subgroups of A∞×
K . Also note

that we view K× as a subspace of A×K via the diagonal embedding, and that K× is discrete.
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4.2 Algebraic Hecke characters

Definition 4.2.1. Let n : ΣK - Z be a function. Then an algebraic Hecke character of K of type
n is a continuous character χ : A×K

- C× that is trivial on K×, and after restricting to the
connected component of the archimedean factor K×R of A×K , is given by

K×R - C× : (xσ)σ∈ΣK 7→ ∏
σ∈ΣK

xn(σ)
σ .

Note that the map ZΣK - Hom(K×R , C×) given by n 7→
(
x 7→ ∏σ∈ΣK

xn(σ)
σ

)
is injective, so

any algebraic Hecke character can only have one type.

Example 4.2.2. Let K be any number field, then the trivial character χ0 : A×K
- C× is an

algebraic Hecke character of type 0.

Let n : ΣK - Z be a function, and let χ be an algebraic Hecke character over K of type n.
Then for all primes v ∈ VK, define χv : K×v - C× as the composition of χ with the injection
to the factor K×v of A×K . So χv is continuous. We want to express χ in terms of the χv.

To do this, first we introduce for notational convenience, for all v ∈ V∞
K , subgroups Gv(n) of

O×v for n ≥ 0. Define Gv(0) = O×v , and for n ≥ 1, define Gv(n) = 1 + vn. Then we have the
following:

Lemma 4.2.3. Let n : ΣK - Z be a function, and let χ be an algebraic Hecke character over K
of type n. Then for all finite primes v ∈ V∞

K , there is a minimal non-negative integer fχ(v) such that
Gv
(

fχ(v)
)
⊆ ker χv, and fχ(v) = 0 for all but finitely many v ∈ V∞

K .

Proof. Let U ⊆ C× be the open disk with center 1 and radius 1. Let ψ be the restriction of χ

to A∞×
K . Then ψ−1[U] is open, so it contains (by our choice of local basis) an open subgroup

V = ∏v∈V∞
K

Gv(iv) of A∞×
K , where for all v, iv is a non-negative integer that is zero for all

but finitely many v. Since the only subgroup of C× that is contained in U, is the trivial one,
it follows that V ⊆ ker ψ. Hence there exist minimal non-negative integers fχ(v) such that
∏v∈V∞

K
Gv
(

fχ(v)
)
⊆ ker ψ, and such that fχ(v) = 0 for all but finitely many v. �

It follows that for any x ∈ A∞
K , the product ∏v∈VK

χv(xv) is well-defined. So now we can
express χ in terms of the χv.

Proposition 4.2.4. Let n : ΣK - Z be a function, and let χ be an algebraic Hecke character over K
of type n. Then for all x ∈ A×K , we have

χ(x) = ∏
v∈VK

χv(xv)
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Proof. Let x ∈ A×K . Let S be the (by the above finite) set of finite primes v such that χv(xv) 6= 1.
Then x = ∏v∈S xv, for some xv ∈ K×v (for all v ∈ S). Hence

χ(x) = ∏
v∈S

χ(xv)

= ∏
v∈VK

χv(xv),

which is as desired. �

By Lemma 4.2.3, the following is well-defined:

Definition 4.2.5. Let n : ΣK - Z be a function, and let χ be an algebraic Hecke character over
K of type n. Let for v ∈ V∞

K , fχ(v) be the minimal non-negative number such that Gv
(

fχ(v)
)
⊆

ker χv. Then the conductor fχ of χ is the OK-ideal ∏v∈V∞
K

v fχ(v).

Note that, as a partial converse of Proposition 4.2.4, if for each prime v, we have a continuous
character χv : K×v - C×, such that χv[O×v ] = 1 for all but finitely many finite v, then the map
χ : A×K

- C× sending x to ∏v∈VK
χv(xv) is a continuous character. This gives a convenient

way to describe algebraic Hecke characters.

Example 4.2.6. Let K be any number field, and consider, for all finite primes v, the continu-
ous map χv : Kv - C× : xv 7→ (N v)−ordvx, and, for all embeddings σ, the continuous map
χσ : xσ 7→ xσ. First note that χv[O×v ] = 1 for all finite v, so the map χ : A×K

- C× given by
χ(x) = ∏v∈VK

χv(xv) is continuous. Then by the product formula, χ is trivial on K×. Hence χ

is an algebraic Hecke character, the adelic norm on K, and its type n is given by n(σ) = 1 for all
σ ∈ ΣK.

Example 4.2.7. Let K = Q(
√
−7), then OK = Z[ 1

2 (1 +
√
−7)], its class group is trivial, and

µK = 〈−1〉. View K as a subfield of C× under a certain embedding σ, and note that ΣK =

{σ, σ}. Let for all v ∈ V∞
K , πv ∈ OK be a generator of v, and define the continuous map

χv : K×v - C× : xv 7→ π
−2ordv(xv)
v . Note that χv[O×v ] = 1. Also define χσ : xσ 7→ x2

σ, and
χσ : xσ 7→ 1. Then χ : A×K

- C× given by χ(x) = ∏v∈VK
χv(xv) is a continuous character.

Moreover, for all x ∈ K×, x2 can be uniquely written as ∏v∈VK
π2ev

v . So ordv(x2) = 2ev for all
v ∈ VK. Hence χ(x) = 1. So χ is indeed an algebraic Hecke character, and its conductor is OK.

The next result shows that certain types of algebraic Hecke characters cannot occur, if we
restrict the conductor.

Lemma 4.2.8. Let n : ΣK - Z be a function, and let χ be an algebraic Hecke character over K
of type n. Let m be such that µK = 〈ζm〉, let νχ be the least common multiple of all the exponents
of O×v /1 + v fχ(v), where v ranges over all the finite primes of K. Also let, for every embedding σ,
a(σ) ∈ (Z/mZ)× be such that σ(ζm) = e

2πi
m a(σ). Then m

gcd(m,νχ)
divides ∑σ∈ΣK

a(σ)n(σ) in Z/mZ.
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Proof. Consider z = ∏v∈V∞
K

χv(ζm). On one hand, z is an m-th root of unity in C×, since all χv

are characters, and on the other hand, the order of each χv(ζm) is a divisor of νχ, so z must be
a νχ-th root of unity in C× as well. Hence, if we write g = gcd(m, νχ), then z is a g-th root of
unity in C×. But now note that

z−1 = ∏
σ∈ΣK

σ(ζm)
n(σ) = e

2πi
m ∑σ∈ΣK

a(σ)n(σ),

so m
g divides ∑σ∈ΣK

a(σ)n(σ). �

Example 4.2.9. Let K = Q(ζ6). Then µK = 〈ζ6〉, and the two complex embeddings are given
by σ and σ. (Where σ(ζ6) = e

1
3 πi.) Let χ be an algebraic Hecke character of type n. Then

if fχ = (1 + ζ6), then νχ = 2. So 3 divides n(σ) − n(σ). Hence for example, there exist no
algebraic Hecke characters of type (2, 0) over K with conductor (1 + ζ6).

We now consider algebraic Hecke characters with conductorOK. These turn out to be related
to the class group of K.

Proposition 4.2.10. The groups A∞×
K /K×∏v∈V∞

K
O×v and Cl K are isomorphic.

Proof. Let I denote the set of fractional ideals of OK. Let for all v ∈ V∞
K , πv be a uniformiser

of Ov. Since for all (xv)v ∈ A∞×
K , we have for all but finitely many v ∈ V∞

K that ordv(xv) = 0.
Hence we can consider the group morphism

φ : A∞×
K

- I , (xv)v 7→ ∏
v∈V∞

K

vordv(xv).

Note that ker φ = ∏v∈V∞
K
O×v . Also, by definition (and by unique ideal factorisation), φ[K×]

is the set of principal fractional ideals of OK. Finally, by unique ideal factorisation, it fol-
lows that φ is surjective. Hence by the Isomorphism Theorem, this gives an isomorphism
A∞×

K /K×∏v∈V∞
K
O×v - Cl K. �

Remark 4.2.11. A direct consequence is that every algebraic Hecke character of K with conduc-
tor OK, gives rise to a unique group morphism Cl K - C×. Since # Hom(Cl K, C×) = # Cl K,
we obtain an upper bound for the number of algebraic Hecke characters of K with conductor
OK. In the case that K is an imaginary quadratic number field, every element of Cl K contains
an integral ideal of norm at most 4

π |∆K|1/2 (a result which can be found in most books on alge-
braic number theory, see e.g. [13, Prop. 5.4.7]). Note that in a imaginary quadratic number field,
there are at most 2 primes of OK lying over a rational prime p. Hence it follows that there are
at most d(n) distinct integral ideals of norm n, where d(n) denotes the number of divisors of n.
Since d(n) ≤ 1

2 n for n ≥ 4, we obtain, by summing over all the possible norms, an upper bound
4

π2 |∆K|1/2(|∆K|1/2 + 1
)
+ 2 for # Cl K, hence also for the number of algebraic Hecke characters

with conductor OK.
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4.3 The group of Hecke characters

Let χ, ψ be two algebraic Hecke characters of types nχ and nψ, respectively. Then χ · ψ,
χ−1 are again algebraic Hecke characters, of types nχ + nψ and −nχ, respectively. Hence the
set HK of all algebraic Hecke characters over K has a natural abelian group structure, and we
have a group homomorphism n− : HK - ZΣK sending an algebraic Hecke character to its
type. Now let HK(n) denote the set of all algebraic Hecke characters of type n. Then note that
HK(n) is a coset of the subgroup HK(0). Since HK(0) is the kernel of n−, it follows that we
have an injective group homomorphism HK/HK(0) - ZΣK , hence that HK/HK(0) is free.
We deduce that there is an isomorphismHK ∼= HK(0)×

(
HK/HK(0)

)
.

Now let K ⊆ L be a finite field extension. Then, for all finite primes v of K and all primes
w of L lying over v, we have a (continuous) norm map NLw/Kv : L×w - K×v , which maps O×w
into O×v . We also have a continuous map LR

- KR sending (xτ)τ∈ΣL to (xσ)σ∈ΣK , where
xσ = ∏τ xτ , τ ranging over the extensions of σ. This gives a continuous group homomorphism
NL/K : A×L

- A×K , that maps L× to K×.

Proposition 4.3.1. The map ΨL/K : HK - HL given by χ 7→ χ NL/K is a group homomorphism.

Proof. Let χ ∈ HK. Then χ NL/K is a continuous character, which is trivial on L×. So by the
observation above for the map LR

- KR, it follows that χ NL/K ∈ HL. Now it follows from
the multiplicativity of all the maps involved, that ΨL/K is indeed a group homomorphism. �

4.4 Hecke characters, cusp forms and elementary universal elliptic curves

Suppose that K is an imaginary quadratic number field, and let χ be an algebraic Hecke
character of K of type (2, 0), with conductor fχ. Then we can construct a q-series as follows. Let
v ∈ V∞

K be coprime to fχ, then χv is trivial onO×K . Let πv be a uniformiser ofOv. Then note that
χv(πv) is independent of the choice of the uniformiser. Then define sχ = ∑v χv(πv)qN v, where
v ranges over all finite primes coprime to f.

Theorem 4.4.1 (Hecke, [8]). Let χ be an algebraic Hecke character of an imaginary quadratic number
field K of type (2, 0). Then the q-series sχ defines a cusp form in S3

(
Γ1(|∆K|N fχ)

)
.

Cusp forms of the form sχ will be called cusp forms with complex multiplication, or CM-forms
for short. Let n be a positive integer. We now define the subspace SCM

3
(
Γ1(n)

)
⊆ S3

(
Γ1(n)

)
as

the subspace generated by the CM-forms.

We define S3
(
Γ1(n)

)
to be elementary if

SCM
3
(
Γ1(n)

)
= S3

(
Γ1(n)

)
;

by the discussion in Section 3.5, we suspect that S3
(
Γ1(n)

)
is elementary if and only if there

exists a ‘simple’ formula for #En(Fq).

Proposition 4.4.2. For all positive integers n ≤ 8, S3
(
Γ1(n)

)
is elementary.
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Proof. We use Table 3. For n ≤ 6, S3
(
Γ1(n)

)
is trivial, so S3

(
Γ1(n)

)
is automatically elementary.

If n = 7, then the result follows from Example 4.2.7, since the discriminant of Q
(√
−7
)

is −7.
The same construction works for Q

(√
−2
)
, which has discriminant −8 and class number 1, so

S3
(
Γ1(8)

)
is elementary as well. �

Conjecture 4.4.3. For all positive integers n ≥ 9, S3
(
Γ1(n)

)
is not elementary.

We at least show that for an infinite family of positive integers n, S3
(
Γ1(n)

)
is not elementary.

Note that S3
(
Γ1(9)

)
is not elementary. First, note that the only imaginary quadratic number

field of discriminant dividing 9 is K = Q
(
ζ6
)

of discriminant −3. By dimS3
(
Γ1(3)

)
= 0, it

follows that there doesn’t exist an algebraic Hecke character of K with conductor OK and type
(2, 0). By Example 4.2.9, it also follows that there doesn’t exist an algebraic Hecke character of
K with conductor (1 + ζ6) (nor does there exist one with conductor (1 + ζ−1

6 ), the conjugate
of (1 + ζ6)). Hence there is no algebraic Hecke character of K with conductor having norm
dividing 3; so S3

(
Γ1(9)

)
is not elementary, since dimS3

(
Γ1(9)

)
= 2 by Table 3.

Since there are no imaginary quadratic number fields of discriminant dividing 10, and since
we have dimS3

(
Γ1(10)

)
= 4 by Table 3 it follows that S3

(
Γ1(10)

)
is not elementary either.

Proposition 4.4.4. For all primes p ≥ 13 with p ≡ 1 (mod 4), S3
(
Γ1(p)

)
and S3

(
Γ1(2p)

)
are not

elementary.

Proof. First note that by Proposition 2.1.8, we have

dimS3
(
Γ1(p)

)
= 1

12 (p2 − 1)− 1
2 (p− 1),

= 1
12 (p− 1)(p− 5),

≥ 8,

dimS3
(
Γ1(2p)

)
= 1

4 (p2 − 1)− (p− 1),

= 1
4 (p− 1)(p− 3),

≥ 30.

Since p ≡ 1 (mod 4), there is no imaginary quadratic number field with discriminant (divid-
ing) 2p, so in that case, dimSCM

3
(
Γ1(p)

)
= dimSCM

3
(
Γ1(2p)

)
= 0, so S3

(
Γ1(p)

)
and S3

(
Γ1(2p)

)
are not elementary. �

Proposition 4.4.5. For all primes p ≥ 11 with p ≡ 3 (mod 4), S3
(
Γ1(p)

)
is not elementary.

Proof. Similarly as in the previous proposition, we have

dimS3
(
Γ1(p)

)
= 1

12 (p− 1)(p− 5).

In particular, dimS3
(
Γ1(11)

)
= 5. Note that all algebraic Hecke characters giving rise to a

cusp form in SCM
3
(
Γ1(11)

)
, must be algebraic Hecke characters of K = Q

(√
−11

)
with conduc-

tor OK. Since # Cl K = 1, it follows by Remark 4.2.11, that dimSCM
3
(
Γ1(11)

)
≤ 1. In fact, since
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µK = {±1}, the same construction as in Example 4.2.7 works, so actually dimSCM
3
(
Γ1(11)

)
= 1.

Hence S3
(
Γ1(11)

)
is not elementary.

Now suppose that p ≥ 19. Note that all algebraic Hecke characters giving rise to a cusp form
in SCM

3
(
Γ1(p)

)
, must be algebraic Hecke characters of K = Q

(√−p
)

with conductor OK. By
Remark 4.2.11, there are at most 4

π2
√

p
(√

p + 1
)
+ 2 of those, so dimSCM

3
(
Γ1(p)

)
≤ 4

π

√
p. Now

note that 1
12 (p− 1)(p− 5) > 4

π2
√

p
(√

p + 1
)
+ 2. (One way to see this, is by evaluating both

sides at p = 19, and then comparing the derivatives with respect to p of both sides, for p ≥ 19.)
Hence S3

(
Γ1(p)

)
is not elementary. �
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Mathematics. Springer-Verlag, 1970.
[11] A. J. Scholl. Motives for modular forms. Invent. Math., 100(2), 1990.
[12] W. A. Stein et al. Sage Mathematics Software (Version 4.7.2). The Sage Development Team, 2011. http://www.

sagemath.org.
[13] E. Weiss. Algebraic number theory. McGraw-Hill Book Co., Inc., 1963.


