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Introduction

Imagine the following situation: in front of you there is a table with two rows
of n locked boxes. Each box contains a piece of paper with a number written
on it.

Box 1
?

Box 2
?

Box 3
?

Box 4
?

Box 1
?

Box 2
?

Box 3
?

Box 4
?

I want to convince you that the boxes of the first row hide the same num-
bers that are in the boxes of the second row, even if in a different order.

Box 1
5

Box 2
7

Box 3
3

Box 4
3

Box 1
3

Box 2
5

Box 3
7

Box 4
3

Moreover I want to convince you that I know how to shuffle the first row to
have also the number in the same order.
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Box 3
3

Box 1
5

Box 2
7

Box 4
3

Box 1
3

Box 2
5

Box 3
7

Box 4
3

This can look like a trivial problem but I add two requirements:

1. I do not want to open any boxes

2. I do not want to reveal you the shuffle

Now my task seems to be impossible. However, if we describe the same prob-
lem in mathematical terms, several solutions are possible.

The first paper that presents the idea of shuffling (or mixing), is [7] by Chaum.
In this paper we also find some applications of this problem in voting and
anonymous email. The question of how to verify it without revealing any
other information was introduced by Sako and Kilian, in a paper about voting
[8].
From those starting points, lots of protocols for verifiable mixers have been
published along with many applications. For example we find the need to
verify the permutation of a vector in:

• Integer comparison protocols.

• Protocols, such as Mix&Match [9] that involve mixing of truth tables
of Boolean gates.

• In secure multiparty computation.

• In the contest of electronic voting.

• In anonymous communication.
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In this thesis we will provide some solutions to this problem. The first uses
a well know construction and it is what we want to improve. The second is a
new protocol that uses permutation matrices. The third and the fourth are
the most important ones. Starting from an idea of de Hoogh, Schoenmakers,
S̆korić and Villegas in their article about verifiable rotations [6] we general-
ize it for more groups of permutations, finding two protocols that are more
efficient of the firsts two in terms of communication cost required.

The thesis is organized as following:

In the first chapter of this thesis we will describe the mathematical tools to
create the locked boxes. This is the notion of commitment schemes. We start
giving the reader some useful definitions from probability theory. Then we
will define a commitment scheme and the fundamental security properties.
Later we will describe how two players use a commitment scheme and how
this reflects on the security properties. Finally we will give three examples
based on the RSA assumption, on the Discrete Logarithm assumption and
on the existence of one-way functions.

The second chapter is dedicated to describe how it is possible to prove a
statement without revealing anything beyond its validity. This is the notion
of zero-knowledge protocol. At the beginning we will define the very general
proof system, a variant of it called proof of knowledge and the zero-knowlege
property of such protocols. Then we specialize the proofs of knowledge to
⌃-protocols. Finally we will describe a general construction, know as Cut
and Choose, that can be used to build ⌃ protocols in the case that we want
to prove an equivalence relation.

The third chapter is completely dedicated to describe ⌃-protocols that verify
relations between committed values. The basic stone will be the multipli-
cation protocol and from this we will have a inner product protocol and a
matrix multiplication protocol. Then we will also describe the OR protocol
and its generalization. Finally we will prove a generalized version of the La-
grange interpolation theorem and we will use it to generalize commitment
schemes and protocols over extensions of the base field on which they are
defined.

The fourth chapter is the core of this thesis. Given some notion on permuta-
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tions, group actions and permutation matrices, we provide a first solution to
the initial problem, using the Cut and Choose construction. Then we imme-
diately give a better solution, using permutation matrices in terms of cheating
probability. Next we describe the idea provided by de Hoogh, Schoenmakers,
S̆korić and Villegas [6] to solve the problem restricted to rotations. Such
idea consists in changing the problem from proving permutation to proving
multiplication of committed values. Since protocols for this already exists
(one is presented in chapter 3), the solution comes for free. The changing of
domain is obtained via the Discrete Fourier Transform but we provide some
notions to see it in terms of group algebra and Wedderburn decomposition.
This allows us to change the group (that is, a cyclic group in case of rota-
tions) to other groups of permutations. In our first protocol, the cardinality
of such group is not modified, hence our protocol cannot be used with any
permutations but just with the ones in the group of permutations set at the
beginning of the protocol. At the end of the chapter, we will provide condi-
tion on such group that allows us to use bigger groups and we will describe
the new protocol to do it.

In the last chapter we give some indication on the road that can be followed
to improve the protocols that we described in the previous chapter through
some group theory.



Chapter 1

Commitment Schemes

Introduction
In this chapter we will introduce commitment schemes, which are the digital
equivalent of non-transparent locked boxes.
As motivation for the construction on commitment schemes we tell a story
as it appeared in the first article talking about commitment schemes.

Alice and Bob want to flip a coin by telephone. (They have just
divorced, live in different cities, want to decide who gets the car.)
Bob would not like to tell Alice HEADS and hear Alice (at the
other end of the line) say “Here goes... I’m flipping the coin...
You lost!” (Manuel Blum 1981, “Coin flipping by telephone, a
protocol for solving impossible problems”)

Making a commitment means that a player, that we will call the prover P ,
chooses an element in some finite set and commits to his choice towards
another player, the verifier V, while keeping it secret. In a later stage the
commitment is opened and it is guaranteed that the opening can yield only
a single value.

A commitment scheme is a two-phase protocol between two players.

Commit phase: During this phase, P commits to the value chosen This
will be the equivalent of putting a piece of paper in a non transparent
box, locking the box with a combination padlock and giving the box to
V .
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Reveal phase: During this phase, P reveals his choice. This will be the
equivalent of revealing the combination of the padlock to V .

A commitment scheme must satisfies the following properties:

Hiding property: At the end of the first phase, the verifier does not gain
any knowledge of the prover’s value. This has to hold even if the verifier
tries to cheat.

Binding property: There exists at most one value that the verifier can
accept in the second phase as legal “opening” of the commitment. This
has to hold even if the prover tries to cheat.

In a commitment scheme it is sometimes necessary to run also a set-up phase.
This is the equivalent of choosing the proper box. This phase may not be
repeated every time that the protocol is run, but can be done once and for
all. The reason for that and the description of this phase will be clear later
in this chapter.

1.1 Some probability definitions
In order to give definitions of hiding and binding properties and in general of
commitment schemes, we have to formalized some concepts that come from
probability theory. For a close view of this topic we suggest the reading of
the sixth chapter of Shoup’s book. [11]

We recall that a probabilistic algorithm P is an algorithm that takes the
regular input x and an extra value r selected at random from a finite set and
independent from x. The output y depends on both x and r. In particular
given x, the output y = P(x) is a random variable and

Prob[P(x) = y] = Prob[r 2 R
x,y

]

where R
x,y

= {r|P
D

(x, r) = y} and P
D

(x, r) is the deterministic algorithm
that has the same output of P on input x and random choice r.

Definition 1.1.1 (Probability distributions). A finite probability distribution
U = (U ,P) is a finite non-empty set U together with a function P that maps
u 2 U to P(u) 2 [0, 1] ⇢ R such that

X

u2U

P(u) = 1.
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The set U is called the sample space and the function P is called the proba-
bility function.

In this thesis we shall use the phrase “probability distribution” to mean “finite
probability distribution”.

Definition 1.1.2 (Family of probability distribution). A family of probability
distributions V = (X , {V

x

}
x2X ) consists of a set X called index set and a

corresponding set {V
x

}
x2X of probability distributions defined over the same

sample space.

Definition 1.1.3 (Negligible Function). A function " : N ! R+ is called
negligible in ` if 8c 2 N there exists an integer `

c

such that 8` � `
c

"(`)  `�c

The previous definition is motived by the following: if an event occurs with
negligible probability "(l) then we expect that such event happens after 1

"(l)

repetitions. Hence this event happens so seldom that we may assume that
probabilistic polynomial time algorithms will never produce it.

Definition 1.1.4 (Infeasible). A computational task is infeasible in ` if, for
every probabilistic polynomial time algorithm, the probability of completing
the computation is negligible in `.

The next concept that we will introduce will be the one of statistical distance.
This will allow us to compare two different probability distributions.

Definition 1.1.5. Given two probability distributions P = (Y ,P) and Q =

(Y ,Q), we define the statistical distance between them as

SD(P ,Q) =

X

y2Y

|P(y)�Q(y)|

Definition 1.1.6 (Perfectly Indistinguishable). Given two families of proba-
bility distribution U = (X , {U

x

}
x2X ) and V = (X , {V

x

}
x2X ), we define them

as perfectly indistinguishable if U
x

= V
x

for all x 2 X . We will write it as
U ⇠p V
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Definition 1.1.7 (Statistically Indistinguishable). Given two families of
probability distribution U = (X , {U

x

}
x2X ) and V = (X , {V

x

}
x2X ), we de-

fine them as statistically indistinguishable if for any x 2 X , SD(U
x

, V
x

) is
negligible in the binary length of x. We will write it as U ⇠s V

We require that the statistical indistinguishability holds for all the possible
indexes, however it is also possible to give a weaker definition in which the
requirement has to hold for all but a negligible fraction of the indexes.

In order to define a computational flavor of indistinguishability, we need to
introduce a party that tries to distinguish between the probability distribu-
tions. Suppose that we do the following experiment.

Given two probabilistic family U = (X , {U
x

}
x2X ) and V = (X , {V

x

}
x2X ) and

a probabilistic polynomial time algorithm G that on input 1` output an index
x 2 X of binary length `, we choose one of the two probability distributions
corresponding to x (U

x

or V
x

) and we call it y. Then we give x and y to a
third party, called distinguisher, and we ask him to guess if y = U

x

or y = V
x

.
We call the advantage of a distinguisher the absolute value of the difference
between the probability of a distinguisher of correctly guessing the family
(over the random choice of G) and 1

2

.

Definition 1.1.8 (Computational Indistinguishable). Given two families of
probability distribution U = (X , {U

x

}
x2X ) and V = (X , {V

x

}
x2X ), we define

them as computational indistinguishable if, given any probabilistic polynomial
time distinguisher D, the advantage of D over the random choice of G is a
negligible function in `. We will write it as U ⇠c V

1.2 Definition of commitment schemes
Definition 1.2.1 (Family of functions). A family of functions F = (I, {f

i

}
i2I)

is a set I ⇢ {0, 1}⇤, called index set and a corresponding set {f
i

}
i2I of finite

functions. That is, for each i 2 I, the domain of the function f
i

, denoted D
i

,
is a finite set.

We are now ready to define a commitment scheme.

Definition 1.2.2 (Commitment scheme). A commitment scheme is a prob-
abilistic polynomial time algorithm, denoted by G and called a key generator,
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together with two families of functions commit = (PK, {commit
pk

}
pk2PK) and

verify(PK, {verify
pk

}
pk2PK) that are efficiently computable. They have to

satisfy the following:

Key generator: The key generator G takes as input a security parameter
1

` an output and element pk 2 PK. We will refer to this element as to
the public key.

Functions: Given two values `
r

and `
b

polynomially bounded in ` (they can
also depend on pk) we have:

commit

pk

: {0, 1}`r ⇥ {0, 1}`b ! {0, 1}`

verify

pk

: {0, 1}`r ⇥ {0, 1}`b ⇥ {0, 1}` ! {0, 1}

Even if the definition allows to choose families of functions that are not biding
or not hiding, such commitment would not be interesting. Hence we always
require that a commitment scheme satisfies:

Hiding: Given pk  G(1`), 8b
0

, b
1

2 {0, 1}`b , the probability distributions
commit

pk

(r, b
0

) and commit

pk

(s, b
1

) are indistinguishable for random
independent r, s in {0, 1}`r .

Binding Given pk  G(1`), compute C, r, b, r0, b0 with b 6= b0 such that

verify

pk

(r, b, C) = verify

pk

(r0, b0, C) = 1

is infeasible in `.

In section 1.1 we described different flavors of indistinguishability. This re-
flects in different flavors of the hiding and binding properties. In particular
we have:

Definition 1.2.3 (Unconditionally Binding). A commitment scheme is un-
conditionally binding if given pk = G(1`), for every C, if there exists two pair
(r, b) and (r0, b0) such that

verify

pk

(r, b, C) = 1 = verify

pk

(r0, b0, C) = 1 = .

Then we have b = b0.
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Definition 1.2.4 (Unconditionally Hiding). A commitment scheme is un-
conditionally hiding if for all possible pk  G(1`), 8 b

0

, b
1

2 {0, 1}`b

commit

pk

(r, b
0

) ⇠s

commit

pk

(s, b
1

)

with random independent r, s.

Definition 1.2.5 (Computationally Binding). A commitment scheme is com-
putationally binding if, taking any probabilistic polynomial time algorithm P ⇤

on input pk, the probability "(l) (over the random choice of P ⇤ and G) that
P ⇤ outputs C, b, r, b0, r0 such that b 6= b0 and

verify

pk

(r, b, C) = 1 = verify

pk

(r0, b0, C)

is negligible in `.

Definition 1.2.6 (Computationally Hiding). A commitment scheme is com-
putationally hiding if 8b

0

, b
1

2 {0, 1}`b

(pk, commit
pk

(r, b
0

)) ⇠c

(pk, commit
pk

(s, b
1

))

with random independent r, s and pk  G(1`).
Now we would like to have unconditionally binding and unconditionally hid-
ing commitment schemes. However this is impossible. In fact suppose that
we have such a scheme. Now consider the probability distributions

U
b0 = commit(r, b

0

) and U
b1 = commit(s, b

1

)

for random independent r, s and b
0

6= b
1

. By the binding property we have
that for all possible event C,

|Prob[U
b0 = C]� Prob[U

b1 = C]| = 1,

that means that one of the two probabilities is 1 and the other 0. Indeed
suppose that exists a C such that the two probabilities are positive, this
means that

commit(r, b
0

) = commit(s, b
1

) = C

and hence
verify(r, b

0

, C) = verify(s, b
1

, C) = 1
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which is a contradiction.
Now from |U

b0(C)�U
b1(C)| = 1 it is clear that the statistical distance is not

negligible in ` and we have again a contradiction.
So we have just two main types of commitment schemes: unconditionally
hiding and computationally binding or unconditionally binding and compu-
tationally hiding.

Observation 1.2.7. In the definition 1.2.2 we do not speak at all about
players and interactions. To understand the reason think at the following:
the definition of commitment scheme is the same as the description of a non-
trasparent locked box. Now all the properties come from the quality of the
box, not from how you use it. The same happens with commitment scheme.
The properties of hiding and binding are satisfied by the families of functions
commit and verify. However we will here describe how a prover P and a
verifier V can use the key generator and the families of functions and from
now on we will intend that a commitment schemes is always used in the
following way:

Set-up phase: The set-up phase is performed by running G(1`). This can
be done by one of the two players (and this reflects on the flavor of
hiding and binding properties) or by a trusted third party. In any
case both the player must be convinced that the public key is correctly
generated, namely that pk 2 PK.

Commit phase: To commit a value b 2 {0, 1}`b P chooses at random r 2
{0, 1}`r and computes C = commit

pk

(r, b)

Verify phase: To verify a legal opening V checks that verify
pk

(r, b, C)

?

= 1

In general in the commitment schemes presented in this thesis, it can always
be checked explicitly that pk 2 PK but in other cases some zero-knowledge
protocols (see chapter 2) must be used. Moreover we observe that, to have
an unconditionally binding scheme, the generator must be run by P while to
have an unconditionally hiding scheme, it must be run by V . Finally when
the public key is clear from the context we will use the notation Com(r, b)
instead of commit

pk

(r, b).

A final remark on the communication is the following: when dealing with
those interactions, we always assume that no mistake can happen during the
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communication between the players. If the assumption of “perfect” communi-
cation (communication without errors) is substituted with different assump-
tions, such as the presence of a noisy channel or of a network in which a
bounded number of parties have been corrupted, a lot of different scenarios
are possible. The commitment schemes must be defined in a different way
and very different results hold, for example there are scenarios in which is
possible to have commitment schemes both unconditionally hiding and un-
conditionally binding even if with an higher cost in terms of communication
cost. However this goes very far from the purpose of this thesis. For a deeper
treatment of the topic see [15], [16] and [17]:

1.3 Examples
Now we will give some example of commitment schemes based on functions
that are “hard” to invert. We refer to [10] for an exhaustive and formal
treatment of the one-way functions.
Definition 1.3.1 (One-way function). We say that a function f : {0, 1}⇤ !
{0, 1}⇤ is a one-way function if the following holds:
Easy to compute: There exists a polynomial time algorithm A which on input

x, outputs f(x)

Hard to invert: For every probabilistic polynomial time algorithm A⇤ on in-
puts 1` and f(U

`

) where U
`

is a random variable with uniform distribu-
tion over {0, 1}`, the probability that the output of A⇤ is in f�1

(f(U
`

))

is negligible in `.
Definition 1.3.2 (Family of one-way functions). A family of functions F =

(I, f
i

: D
i

! {0, 1}⇤) is called one way if there exist three probabilistic poly-
nomial time algorithm ¯I, ¯D,F such that:
Easy to compute: ¯I takes as input 1

` and outputs an index of the set I \
{0, 1}`; we will denote with I

`

the random variable describing his output.
¯D takes as input i 2 I \ {0, 1}` and output a random element x 2 D

i

;
we will denote with X

`

the random variable describing his output.
F takes as inputs i 2 I \ {0, 1}` and x 2 D

i

and always outputs f
i

(x).

Hard to invert: For every probabilistic polynomial time algorithm A⇤ on in-
puts 1

` and f
I

`(X
`

), the probability over the outputs of ¯I and ¯D that
the output of A⇤ is in f�1

I`
(f

I`
(X

`

)) is negligible in `.
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We recall that no family of functions has been proved to be one-way, however
some of them are believed to be so. In the cryptography context some family
functions are assumed to be one-way and the security of several cryptographic
primitives, including commitment schemes, depends on this assumptions.

1.3.1 RSA-based example

The commitment scheme that we are going to describe was firstly presented
as an identification scheme based on the RSA cryptosystem ([19]).

Definition 1.3.3. An RSA-generator is a probabilistic polynomial time al-
gorithm H that, on input 1`, outputs n, e 2 N such that:

• n = p · q with p and q prime independently chosen at random such that
the binary length of n is `.

• e chosen at random such that 1 < e < '(n) and gcd = (e,'(n)) = 1

Assumption 1.3.4 (RSA assumption). Given the RSA-generator H as in
definition 1.3.3 on input 1

`, the family of functions f = (I, {f
i

}
i2I) where

I = {(n, e)|(n, e) H} and, for i = (n, e)

f
i

: Z⇤
n

! Z⇤
n

x ! xe

mod n

is a one-way family of functions.

Lemma 1.3.5. Given an output (n, e) of the RSA generator H as in defini-
tion 1.3.3 on input 1` and r, y, c 2 Z⇤

n

with 0 < c < e such that:

re = yc (mod n)

it is possible to compute the unique x 2 Z⇤
n

such that xe

= y (mod n) in
polynomial time in `.

Proof. In this proof (and in general in this section) we will use the symbol
⌘ to mean the equality in Z⇤

n

i.e. the equality mod n.
If c and e are coprime, we can find s and t such that sc = 1 + te with the
Bezout identity (that is computable in polynomial time using the Euclidian
algorithm), and

yc ⌘ (r)e ) ysc ⌘ (rs)e ) y1+te ⌘ (rs)e ) y ⌘ (rsy�t

)

e



1.3 Examples 16

Which implies x ⌘ rsy�t since e is coprime with '(n) and hence the e-roots
are unique.
If gcd(c, e) = m with m > 1, we can divide e and c by m obtaining e0 and c0

and a new equation:
yc

0 ⌘ re
0

since m is coprime with '(n).
Now we can apply the same procedure as before to compute x (Observe that
e0 is still coprime with '(n)).

Commitment Scheme 1.3.6 (RSA based commitment scheme).

Key generator: The key generator G is the RSA-generator H as in defini-
tion 1.3.3 that takes as input 1`, extended by making it choosing x 2 Z⇤

n

at random and computing y = xe

mod n. The output is pk = (n, e, y)

Commit functions: The functions of the family commit are defined as:

commit

pk

: Z⇤
n

⇥ {0, 1}`b ! Z⇤
n

(r, b) ! ybre mod n

Verify functions: The verify functions of the family verify are defined as:

verify

pk

: Z⇤
n

⇥ {0, 1}`b ⇥ Z⇤
n

! {0, 1}

(r, b, C) !
(
1 if ybre ⌘ C

0 if ybre 6⌘ C

Proposition 1.3.7. The commitment scheme 1.3.6 is unconditionally hiding
and computationally binding assuming 1.3.4.

Proof.

Unconditionally Hiding: For every pk  G(1`), the distribution of the com-
mitment is independent of b. This is due to the fact that r is chosen
uniformly at random so re has also the uniform distribution. Thus for
all b, ybre has uniform distribution over Z⇤

n

since yb is a constant (we
are considering ybre as a function of r).
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Computationally Binding: The biding property is computational satisfied.
Indeed suppose by contradiction that we have a probabilistic polyno-
mial time algorithm A that on input n, q, y, c = Com(r, b) outputs with
a non negligible probability r

0

, r
1

, b, b0 such that b 6= b0 and

ybre
0

⌘ Com(r
0

, b) ⌘ c ⌘ Com(r
1

, b0) ⌘ yb
0
re
1

Then we have that

(r
0

r�1

1

)

e ⌘ re
0

r�e

1

⌘ y�bcyb
0
c�1 ⌘ yb

0�b

hence by lemma 1.3.5 (recalling that b and b0 are smaller than e) we
can find x in polynomial time with non negligible probability which is
against the RSA assumption.

Finally if we use this commitment scheme as described in observation 1.2.7,
then V has to run G and he sends the n, e, y to P . P has to check that

y ⌘ ae for some a 2 Z⇤
n

.

This can be done in polynomial time checking that gcd(y, n) = 1 with the
Euclidian algorithm. The fact that n and e are correctly generated cannot
be checked so easily, however this is not necessary. In fact the hardness of
inverting the commit function is a guarantee of the binding property, hence
V has all the interest in generate n and e “as hard as possible” and hence
correctly (according to definition 1.3.3).

1.3.2 Discrete logarithm based example

The commitment scheme that we are going to describe is based on the Dis-
crete Logarithm problem. It takes the name of Pedersen commitment by the
first author that describe it ([18]).

Definition 1.3.8. We define as DLP-generator a probabilistic polynomial
time algorithm H that, on input 1`, outputs q 2 N, g, lab such that:

• q is a prime such that 2`�1 < q < 2

`.

• lab is a label to “a group G of order q” (it will be clarified later).
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• g is random generator of G.

Moreover we require that the binary representation of an element of G is
always unique and that the binary representation of any elements of the group
G is in {0, 1}MG(`) for M

G

(`) depending on G and polynomially bounded in
`.

The reason for requesting G to output a label instead of the group is that we
want to keep the group implicit, i.e. we do not want to give a mathematical
description of such a group. However we want to be able to run algorithms
that take as input such a group and we will do it giving them the label that
points to the group.
To be able to efficiently compute the function commit and verify we have to
assume the existence of two algorithms that take as common inputs a prime
q and a label lab of a group G of order q.

• The algorithm mult that on inputs, q, lab, h, g computes in polynomial
time g · h in the group G pointed by the label lab

• The algorithm isin that on inputs, q, lab, h outputs in polynomial
time, 1 if h 2 G and 0 if h /2 G

Those algorithms allows us not only to compute the function commit and
verify but to do all the operation in G, knowing just lab. In fact from the
multiplication algorithm it is possible to compute efficiently gx for anyx 2 Z

p

by computing g2, g4 = g2 · g2, g8 = g4 · g4... until g2` , considering the binary
representation of x = (x

0

, · · · , x
`

) and computing

gx =

2

`Y

i=0

gix
`�i

Assumption 1.3.9 (DLP assumption). Given the DLP-generator H as in
definition 1.3.8 on input 1

` the family of functions f = (I, {f
i

}
i2I) where

I = {(q, g, lab)|(q, g, lab) H} and, for i = (q, g, lab)

f
i

: Z
q

! G

x ! gx

is a one-way family of functions.
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Commitment Scheme 1.3.10 (Pedersen commitment).

Key generator: The key generator G is the generator H as in definition
1.3.8 that takes as input 1

` extended as follow: it also chooses x at
random in G and computes h = gx. The output is pk = (q, g, h, lab).

Commit functions: The functions of the family commit are defined as:

commit

pk

: Z
q

⇥ Z
q

! G

(r, b) ! hbgr

Verify functions: The verify functions of the family verify are defined as:

verify

pk

: Z
q

⇥ Z
q

⇥G ! {0, 1}

(r, b, C) !
(
1 if hbgr = C

0 if hbgr 6= C

Proposition 1.3.11. The commitment scheme 1.3.10 is unconditionally hid-
ing and computationally binding assuming 1.3.9.

Proof.

Unconditionally Hiding: For every pk  G(1`), the distribution of the com-
mitment is independent of b. This is due to the fact that r is chosen
uniformly at random so gr has also the uniform distribution over G,
Thus for all b, hbgr has uniform distribution over G since hb is a con-
stant (we are considering hbgr as a function of r).

Computationally Binding: Suppose by contradiction that we have a proba-
bilistic polynomial time algorithm A that on input lab, q, g, h, c, where
c = Com(r, b), outputs with a non negligible probability r

0

, r
1

, b, b0 such
that b 6= b0 and (in the group G)

hbgr0 = Com(r
0

, b) = c = Com(r
1

, b0) = hb

0
gr1

Then we have that

hbgr0 = hb

0
gr1 ) gr0�r1

= hb

0�b

that implies
r
0

� r
1

= x(b� b0) (mod q)
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hence, since q is prime, we can invert (b�b0) and compute x = log

g

h in
polynomial time (because we are using the algorithm mult) with non
negligible probability which is against the DLP assumption.

Finally if we use this commitment scheme as described in observation 1.2.7,
then V has to run G and he sends q, g, h, lab to P . P has to check that q is
a prime and that g and h are in G. This can be done with a polynomial time
primality test and with the algorithm isin. The fact that g is a generator
of G and that G is a group for which extract the discrete logarithm is hard
cannot be checked easily, however this is not necessary. In fact V has all
the interest in choosing G “as hard as possible” and hence correctly (thus
according to definition 1.3.8).

1.3.3 General one-way function based approach

In general if we assume the existence of a family of 1-1 one-way functions,
one can define from it a commitment scheme with unconditionally binding
and computationally hiding. We report here such construction but we give
reference to [10] for the proofs of the properties:

Definition 1.3.12 (One-Way function based commitment scheme). Given a
family of 1-1 one-way functions F = (I, f

i

) that is f
i

is injective for all i 2 I,
with domain D

i

= {0, 1}ni we can define a commitment scheme as follows:

Key generator: The key generator G on input 1` outputs pk = (i) such that
i 2 I and D

i

= F`i
2

where `
i

is polynomially bounded in `

Commit function: The functions of the family commit are defined as:

commit

pk

: F`i
2

⇥ F`i
2

⇥ F
2

! F`i
2

⇥ F`i
2

⇥ F
2

((r, x), b) ! ((r, f(x)), (x · r)� b)

where · is the inner product mod 2 and � the component-wise sum
mod 2
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Verify function: The verify functions of the family verify = are defined as:

verify

pk

: F`i
2

⇥ F`i
2

⇥ F
2

⇥ F`i
2

⇥ F`i
2

⇥ F
2

! F
2

((r, x), b, C,D,E)!

8
>>><

>>>:

1 if r = C

f(x) = D

(f(x) · r)� b = E

0 else

Such commitment scheme is a computationally hiding and unconditionally
binding. A proof can be found in [10] (Construction 4.4.2 and Proposition
4.4.3) observing that x · r is an hard-core predicate of g(x, r) = (f(x), r)
(again [10], Definition 2.5.1 and Theorem 2.5.2).
Moreover it can be easily generalized to a commitment scheme bit-strings in
the following way:
Suppose that b 2 {0, 1}n` , then we can obtain a random committed value
s 2 {0, 1}n` computing (x · r), for the first bit of s, (f(x) · r) for the second
and so on until fn`�1

(x) · r for the last. Then the commit function would be:

commit

pk

: F`i
2

⇥ F`i
2

⇥ Fn`
2

! F`i
2

⇥ Fn``i
2

⇥ Fn`
2

((r, x), b) ! (r, f(x), . . . , fn`
(x), s� b)

Another general approach, more similar to the Pedersen commitment can be
found in [4], and it is based on one-way group homomorphism.

1.4 Homomorphic commitment schemes
In order to use the commitment schemes as parts of more general proto-
cols is often useful to require some algebraic structures on the domain and
codomain of the commit functions. We do not define here what an homo-
morphic commitment is, but we proof some useful properties of the Pedersen
commitment (example 1.3.10). In general in the thesis we will assume to be
using Pedersen commitment even if other commitment schemes with similar
properties do exist.

Proposition 1.4.1. Suppose we have the Pedersen commitment scheme (ex-
ample 1.3.10). Suppose also that, given a public key pk,

verify

pk

(r
a

, a, A) = 1 and verify

pk

(r
b

, b, B) = 1
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with r
a

, a, r
b

, b 2 Z
q

and A,B 2 G. Then

verify

pk

(r
a

+ r
b

, a+ b, A · B) = 1

verify

pk

(�r
a

,�a,A�

) = 1

Proof. We have in G:

A·B = Com(r
a

, a)·Com(r
b

, b) = graha·grbhb

= gra+rbha+b

= Com(r
a

+r
b

, a+b)

hence verify

pk

(r
a

+ r
b

, a+ b, A · B) = 1

Moreover
A�

= (graha

)

�

= g�rah�a

= Com(�r
a

,�a)

hence verify

pk

(�r
a

,�a,A�

) = 1



Chapter 2

Zero Knowledge Protocols

Introduction
“Is it possible to prove a statement without revealing anything beyond this
fact?”.

Consider the following motivational example:

Example 1. There are two rooms. Every room has its own entrance and
there is a door connecting them. This door can be opened inserting the right
secret code. Peggy claims that she knows this code and wants to sell it to
Victor. Clearly Peggy doesn’t want to reveal the code before receiving the
money from Victor but Victor doesn’t want to pay Peggy before being sure
that the code is correct. Hence they need a way (a protocol) to verify that
the code is correct, without forcing Peggy to reveal it.

This example give rise to a first and very informal definition of zero-knowledge:
a protocol is zero-knowledge if it communicates exactly the knowledge that was
intended and no (zero) extra knowledge.

For a discussion of what a “proof” is and all the possible interpretations of the
phrase “without revealing anything beyond this fact” we refer to [10]. In this
chapter we will introduce a formal definition of proof systems, the notion of
zero-knowledge as an additional property of them and finally we will describe
a particular class, the ⌃-protocols, that we will use in this thesis.
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2.1 Proof systems
A proof system is a protocol between two entities, the prover and the verifier,
which aim is to verify the truth of a statement. To check the validity of this
verification procedure we request a proof system to fulfill two properties:

Completeness: If the statement is true, the verifier will accept it with
“high” probability.

Soundness: The probability that a verifier will accept a false statement is
“low”.

2.1.1 Preliminaries

Turing machines

In order to give a formal definition of proof system, and in general of a
protocol, we will model the prover and the verifier with two probabilistic,
interactive Turing machines (PITMs). We will now give an informal descrip-
tion of it. For a formal definition see [10].
Turing machines can be seen as an abstraction of computers. To perform
a computational task, the machine is provided with an sufficient number of
instructions (algorithm) that are chosen from a set of eligible instructions.
The machine has also a knowledge tape that is a part of the memory and
that contains any possible input.
To write and read intermediate results the machine is furnished with an
auxiliary tape.
When the computation (as dictated by the algorithm) has been complete,
the machine write the outcome on the output tape.
A probabilistic machine is also provided with a random tape which is a part
of the memory allocated for the storage of random bits. The machine is
allowed to read from this random tape and to use the random bits in any of
its computations.
To enable the interaction between two probabilistic Turing machines we pro-
vide a communication tape that connects them. They can communicate by
writing on and reading from this tape. If they have a common input then
this is written on both the knowledge tapes.
A Turing machine is efficient (or polynomial time) if the total number of read
and write operations is polynomially bounded in the length of the input.
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Notation

Let P and V be a pair of PITMs linked together with common input x. We
will indicate with (P, V )(x) the random variable representing the output of
V on common input x. We will recall that the output of V is interpreted as
the decision on whether to accept or reject the protocol. It outputs 1 if the
protocol is accepted and 0 if is rejected

Language

Every proof system is defined for a language L. A language L is a subset of
the set {0, 1}⇤. L is the set of true statement and the input x is the statement
that we want to prove. Thus if x 2 L then we want (P, V )(x) = 1 with “high”
probability (completeness), while if x /2 L we want (P, V )(x) = 1 with “low”
probability (soundness).

2.1.2 Definition

Definition 2.1.1 (Interactive Proof System). The pair of probabilistic inter-
active Turing machines (P, V ) is an interactive proof system for a language L
if machine V is polynomial time and the following two condition are satisfied:

Completeness: For every x 2 L then

Prob[(P, V )(x) = 0]

is negligible in the binary length of x

Soundness: For every x /2 L and every interactive machine P ⇤

Prob[(P ⇤, V )(x) = 1]

is negligible in the binary length of x

We want to remark that, while we require that the verifier is an efficient
machine, no request has been made on the computational power of P . This
means that the soundness condition is rather strong since it has to holds for
all the possible interactive machine (regardless to their efficiency).
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2.2 Zero-Knowledge
Loosely speaking we say that an interactive proof system (P, V ) for a lan-
guage L is zero-knowledge if whatever can be efficiently computed after inter-
acting with P on input x 2 L could be efficiently computed from x without
any interaction. This is verified by requesting that the conversation between
P and any possible verifier V ⇤ can be simulated without interacting with P .
The fact that this request is made for every verifier means that we can think
to the zero-knowledge as a property of P only. Thus a property that every
PITM A can have and it reflects the hardness of extracting information while
interacting with A.

Again, as in the commitment schemes, the different flavors of indistinguisha-
bility reflects on different flavors of zero knowledge. In particular we have:

Definition 2.2.1 (Zero-Knowledge). Let (P, V ) be an interactive proof sys-
tems for some language L. We say that (P, V ) is computational (statistical,
perfect) zero-knowledge if, for every probabilistic polynomial time interactive
machine V ⇤, there exists a probabilistic expected polynomial time algorithm
M⇤ (called simulator) such that the two families of probability distributions:

• (P, V ⇤
) = (L, (P, V ⇤

)(x))

• M⇤
= (L,M⇤

(x))

are computational (statistical, perfect) indistinguishable.

The implementation of the simulator may be very difficult, since it has to
hold for every verifier. However there exists a much weaker definition of
zero-knowledge that asks for the existence of a simulator for V only. This
is called the honest verifier zero-knowledge property (HVZK). Clearly the
“honest verifier” part of the name comes from the fact that we require the
simulation just for V , hence just for a verifier that follows the protocol (and
thus honest in an human context). Even in this case still make sense requiring
that no information is revealed. In fact we can have an “honest but curious”
verifier, that is a machine that follows the protocol (just as the machine V
of the definition) but that tries to extract all the possible information from
the interaction with P .

Definition 2.2.2 (Honest Verifier Zero-Knowledge). Let (P, V ) be an in-
teractive proof systems for some language L. We say that (P, V ) is honest
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verifier zero-knowledge if there exists a probabilistic expected polynomial time
algorithm M such that the two families of probability distributions:

• (P, V ) = (L, (P, V )(x))

• M = (L,M(x))

are computationally indistinguishable.

2.3 ⌃-protocols
This type of protocol were firstly presented in [5] by Ronald Cramer.

2.3.1 Preliminares

Relation and Witness

We will define a ⌃-protocol for relation R.

Definition 2.3.1. We said that R is a binary relation if R is a subset of
{0, 1}⇤ ⇥ {0, 1}⇤ where the only restriction is that if (x, w) 2 R then the
binary length of w is at most polynomial in the binary length of x.

Notation 2.3.2. For any string x we denote by:

• RW (x) the set {w 2 {0, 1}⇤|(x, w) 2 R},
• RX the set {x 2 {0, 1}⇤|RW (x) 6= ;}

Given a relation R and (x, w) 2 R in a ⌃-protocol the element x is the
common input to P and V while the element w, that we will call witness, is
a private input of P only.

Proof Systems and Proofs of Knowledge

There is a variant of proof systems, known as proofs of knowledge. The
⌃-protocols that we are going to describe belong to such variant. However
we will give an informal description of this and we refer to [2] for a formal
definition.
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While a proof system is defined for a language L and the (computationally
unbounded) prover claims that the common input x is in the language, a proof
of knowledge is defined for a relation R and the (computationally bounded)
prover claims to know a certain piece of information. In particular if x is the
common input, the prover claims to know w such that (x, w) 2 R.

Prover and Verifier

Both the prover P and the verifier V are modeled by probabilistic polynomial
time interactive Turing machines. This is a great difference with the generic
definition of proof systems. The prover is here forced to be polynomial time.
This explain why we have to provide P with the witness w. In fact without
any advantage on V the interaction with P would be meaningless, since V
would be able to accomplish any tasks of P .

Knowledge extractor

As it happens with the proof system, the notion of knowledge is strictly
related, in this context, to the computational power. More precisely, we
say that a protocol is a proof of knowledge if there exists a probabilistic
expected polynomial time K, called knowledge extractor, that, on input x
and “rewindable black-box” access to the prover, can efficiently compute w
such that (x, w) 2 R.
When we say that K has rewindable black-box access to the prover we mean
the following:

Black-box: K cannot see the memory or the random tape of P . It can only
interact with P as a verifier could do.

Rewindable: Differently from the verifier, K can rewind P , that is, K can
at any step of the interaction, come back to a previous step, without
starting again from the beginning.

This notion is not so intuitive, however we will discuss again the knowledge
extractor after the definition of ⌃-protocol. Indeed a knowledge extractor
for ⌃-protocol is very easy to build and it can be done in general for any
⌃-protocol.
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Notation

In order to make the text more readable we will use the notation s 2
R

S to
denote a uniform and random selection of an element s from S. Moreover
we will denote R

P

and R
V

the random tape of P and V and as (P, V ) the
protocol that P and V will execute.

Algorithms

The protocol (P, V ) consist of four polynomial time algorithms

• A takes as inputs x, w and possibly random bits r
a

from R
P

and outputs
the initial message a

• C takes as only input random bits r
c

from the random tape R
V

and
outputs a challenge c.

• Z takes as inputs x, w, a, c, r
a

and possibly random bits r
z

from R
P

and
outputs the reply z.

• � takes as input (x, a, c, z) and outputs 0 or 1 (“rejected” or “accepted”)

Moreover we will call an accepting conversation the string (x, a, c, z) such
that

�((x, a, c, z)) = 1

and a collision a pair of accepting conversations ((x, a, c, z), (x, a, c0, z0)) such
that

c 6= c0 and z 6= z0

Requirement

As in the case of the proof systems we want to put some requirements on
the three main properties of those protocols: completeness, soundness and
zero-knowledge. The first two are stronger than in a proof system while the
third (that in a proof system is not even requested) is a stronger version of
the honest verifier zero-knowledge. The formal description will be included
directly in the definition of ⌃-protocols.
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2.3.2 Definition

We are now ready to give a complete definition of ⌃ protocols.

Definition 2.3.3 (⌃ protocol). A pair of probabilistic polynomial time in-
teractive machines (P, V ) is a ⌃-protocol for relation R if they follow the
interaction steps:

1. P runs A(x, w, r
a

) and sends the output a to V through the communi-
cation tape

2. V runs C(r
c

) and sends the output c to P through the communication
tape (from now on we will say the V takes c 2

R

{0, 1}⇤)
3. P runs Z(x, w, c, r

a

, r
z

) and sends the output z to V through the com-
munication tape

4. V runs �((x, a, c, z)) and outputs 0 or 1.

and the following conditions hold:

Completeness: If (x, w) 2 R then the protocol always accepts it.

Special Soundness: If x 2 RX: given a collision for x there exists a prob-
abilistic polynomial time machine (depending on (P, V ) and R) that
computes w such that (x, w) 2 R.
If x /2 RX: there does not exist a collision for x

Special Honest Verifier Zero-Knowledge: For all x 2 RX there exists a prob-
abilistic polynomial time algorithm M which on input x and random
challenge c outputs an accepting conversation with the same probability
distribution as conversations between P and V .

Knowledge Extractor for ⌃-protocols.

Thanks to the special soundness of the ⌃-protocols, a knowledge extractor
for w can be easily built as follow: consider an algorithm K on input x and
rewindable black-box access to P that follows this steps:

1. K receives a from P

2. K selects a challenge c using the algorithm C and sends it to P
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3. K receives the reply z from P

4. K rewinds P to step 2, selects a different challenge c0 and sends it to
P

5. K receives the (new) reply z0

6. K computes w from the collision ((x, a, c, z), (x, a, c0, z0)) using the
probabilistic polynomial time algorithm whose existence is guaranteed
by the special soundness property.

This is a polynomial time algorithm that computes a witness for the relation
R, hence it is a knowledge extractor.

2.3.3 A relaxed definition

The conditions in the definition of a ⌃-protocols are rather strong. In this
thesis we will need, for some protocols, a slightly more flexible definition
in order to keep the efficiency (jumping ahead the communication cost) of
the protocol low enough for our purpose. This definition is different in two
aspects:

• We want that the verifier can select an element t at random from a
given set, and can send t to P before receiving anything from it.

• We want a relaxed condition of special soundness in the case that, given
a relation R and a common input x, x is not in RX, i.e. does not exist
a w such that (x, w) 2 R

To obtain the first aspect we have to introduce a new algorithm T that takes
as input a number m of bits from the random tape R

V

(call it r
t

) and outputs
t. Moreover we modify all the algorithms A,C, Z,� in order to let them have
also such t as input and we modify the notion of collision: we will say that a
collision is a pair of accepting conversation ((x, t, a, c, z), (x, t, a, c0, z0)) such
that

c 6= c0 and z 6= z0

The formal definition is the following:

Definition 2.3.4 (Public Coin Relaxed ⌃-protocol). A pair of probabilis-
tic polynomial time interactive machines (P, V ) is a public-coin relaxed ⌃-
protocol for relation R if they follow the interaction steps:
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1. V runs T (r
t

) and sends the output t to P through the communication
tape

2. P runs A(x, w, r
a

, t) and sends the output a to V through the commu-
nication tape

3. V runs C(r
c

, t) and sends the output c to P through the communication
tape (from now on we will say the V takes c 2

R

{0, 1}⇤)
4. P runs Z(x, w, c, r

a

, r
z

, t) and sends the output z to V through the com-
munication tape

5. V runs �((x, t, a, c, z)) and outputs 0 or 1.

and the following conditions hold:

Completeness: If (x, w) 2 R then the protocol always accept it.

Relaxed Special Soundness: If x 2 RX: given a collision for x there exists
a probabilistic polynomial time machine (depending on (P, V ) and R)
that computes w such that (x, w) 2 R.
If x /2 RX: the probability that a collision exists is negligible in the
length of x.

Special Honest Verifier Zero-Knowledge: For all x 2 RX there exists a prob-
abilistic polynomial time algorithm M which on input x and random
challenge c outputs an accepting conversation with the same probability
distribution as conversations between P and V .

2.4 Cut and Choose
In this section we want to show a general construction to build ⌃-protocols
for a particular class of relations. This construction, known as “Cut and
Choose”, also fits our initial problem (as we will show in chapter 4) and it is
the starting point for the improvement that we will show.
To explain informally the idea we recall the example at the beginning of this
chapter and we add a possible solution:

Example 2.4.1. There are two rooms (A and B). Every room has its own
entrance and there is a door connecting them. This door can be opened
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inserting the right secret code. Peggy claims that she knows this code and
wants to sell it to Victor. Clearly Peggy doesn’t want to reveal the code before
receiving the money from Victor but Victor doesn’t want to pay Peggy before
being sure that the code is correct.
They can proceed as follow:

1. Peggy secretly chooses room A or room B and enters in it.

2. Victor chooses room A or B and asks Peggy to exit from it

3. Peggy exits from the door chosen by Victor (if needed opening the door
between the rooms with the secret code)

4. They repeat the protocol for a sufficient number of times, until Victor
is convinced that Peggy knows the code.

It should be clear that if Peggy really knows the secret code, she can always
exit from the room requested by Victor (Completeness). Moreover if Peggy
knows how to exit from both rooms, then she can open the door (or at least
go from a room to the other which is equivalent to knowing the secret code)
(Special Soundness). Finally the behavior of Peggy can be simulated by just
choosing the room first, then entering and exiting from that room. (SHZK)

Bringing this construction to mathematical terms we have the following:

Relation

Consider any equivalence relation that cannot be checked trivially (such as
graph isomorphism, or permutation of encrypted vector) and consider the
relation R such that (x, w) 2 R if x is a pair (A

0

, A
1

) of representatives of
the same class of the equivalence relation, and w is the equivalence ' between
these two representatives.

Definition

Protocol 2.4.2 (Cut and Choose). Consider the relation R as defined before,
a pair of PITM (P, V ) and the following protocol:

1. P chooses r 2
R

{0, 1} and a new equivalence � at random in the set of
all possible equivalences
P computes B = �(A

r

) and sends it to V
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2. V chooses c 2
R

{0, 1} and sends it to P

3. P replies z = � (in case of r = c) or z = �'�1 in case of r 6= c.

4. V checks that z(A
c

) = B

Theorem 2.4.3. The protocol 2.4.2 is a ⌃-protocol

Proof. Cleary the protocol 2.4.2 respects the form of a ⌃- protocol. We have
to check that it respects the three properties:

Completeness: Suppose that ((A
0

, A
1

),') 2 R, then by construction z(A
c

) =

B and hence V will accept the protocol with probability 1.

Special Soundness: Suppose that ((A
0

, A
1

),') 2 R then for ((B, 0, ⇢), (B, 1, ⇢0))
one can computes ' = ⇢0�1⇢. Indeed ⇢(A

0

) = B = ⇢0(A
1

), hence
⇢0�1⇢(A

0

) = A
1

.
Suppose that ((A

0

, A
1

),') /2 R. Then there do not exist two equiva-
lences � and  such that B = �(A

c

) and B =  (A
1�c

), hence a collision
does not exist.

SHVZK: Supposing that the verifier is honest we can build a simulator
M(A

0

, A
1

) performing:

• M selects c0 2
R

{0, 1}.
• M selects  at random in the set of all possible equivalences.
• M computes B0

=  (A
c

).
• M outputs (B0, c0, )

Now the verifier will always accept this conversation since B0
=  (A

c

) by
construction. Now we have to prove that (B0, c0, ) has the same probability
distribution of (B, c, z). Clearly c and c0 have the same probability distribu-
tion since they are chosen independently and uniformly at random in{0, 1}.
The selection of  is independent of c0 and uniform in the set of equivalences.
Conditioned to c, also the distribution of z is uniformly at random, since, if
r = c then z = � and � is selected uniformly at random while if r 6= c then
'�1 is fixed and hence �'�1 still has the uniform distribution. Finally also
B0 and B have the same distribution (conditioned to (c0, ) and (c, z)) since
they are built in the same way: B0

=  (A
c

0
) and B = z(A

c

), and (c0, ),(c, z)
have the same independent uniform distribution.



Chapter 3

Auxiliary protocols

Introduction
In this chapter we explicitly describe some protocols that will be useful in
dealing with our initial problem.

Type of protocols

The protocols that we are going to describe are built up to verify relations
between committed values. They rely on the homomorphic properties of
those schemes and we will implicitly assume the use of Pedersen commitment,
even if they work with any homomorphic commitment schemes. Most of the
protocols will be ⌃-protocol, but this will not always be the case. In general
they are all public coin relaxed ⌃-protocols (definition 2.3.4).

Zero-knowledge and Commitment Schemes

When using commitment schemes as parts of a zero-knowledge protocol, one
must take into account the dependency between the flavor of the commitment
schemes properties and the flavor of zero-knowledge. Intuitively if a commit-
ment is computationally hiding there is no hope that a protocol that use it,
is perfect zero-knowledge since a super-polynomial adversary can open the
commitment and hence he definitely gains knowledge. On the other hand, in
the very general definition of proof system, the prover doesn’t have bounds
on the computational power which means that he can be able to change the
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commitment, if the schemes is computationally binding.

In this chapter (and in the following) we will assume that our commitment
scheme is unconditionally hiding and computationally binding and that the
prover has polynomially bounded computational power. Hence our protocols
can “reach” the perfect zero-knowledge and no prover is able to “force” the
binding property.

Zero-knowledge (ZK) and SHVZK

In general proving that a protocol is ZK is much more difficult than proving
that it is HVZK or SHVZK. The problem of converting a HVZK protocol in a
ZK protocol has been studied extensively. It was first studied under the DLP
assumption by Bellare, Micali and Ostrovsky in [12] while a generalization to
one-way assumption was given by Ostrovsky, Venkatesan and Yung in [13].
In this and the following chapter, we will only prove the SHVZK property.
Since standard techniques of converting into ZK have been published this is
strong enough for our purposes.

Generator

When dealing with a relation R we have to analyze how the common input x
is generated. In fact, if finding a witness w for a given x is computationally
easy, then the verifier itself can compute it, and hence the protocol proves a
trivial fact.
In all the protocols of this chapter, the relations will involve commitment
schemes. Hence the public input will be composed of a public key and at
least one committed value.
Such public key can be generated using the generator of the commitment
scheme. Thus we will always assume that the key is correctly generated,
where correctly means with respect to the properties of the commitment
scheme. Moreover we also assume that the binary length of the security
parameter ` is greater than the binary length of the common input x of the
protocol.
In general, also the generation of the committed values must be analyzed but
in this thesis we will use only public coin relaxed ⌃-protocols (⌃-protocols
can be seen as a subclass). All the properties of this class (SHVZK, special
soundness and completeness) and the unconditionally hiding property of the
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commitment scheme do not depend on the distributions of the committed
values. Hence we will not specify how these values are generated.

Algorithms

In chapter 2 P and V were modeled as machines and they accomplish any
tasks via proper algorithms, however in this chapter we will describe the pro-
tocols as if P and V were human that can compute, send or select values.
This type of description, even if less rigorous, helps the reader in the under-
standing of the protocol’s steps without affecting any properties or proofs.

Composition of protocols

All the protocols that we build in this chapter will be used as subprotocols
for other protocols. Even if the subprotocols will be described separately,
whenever we will say that two protocols are run in parallel we will mean
that, instead of running the first protocol and then the second (this would be
serial composition) we run the first steps of both protocols, then the second
and so on. We also underline that if two protocols are run in parallel, the
random choices made by V in every step are always the same for both the
subprotocols.

Communication cost

In this chapter we will also analyze the communication cost of the protocols.
We will use the O-notation in order to have an asymptotic definition. We
will compute such cost choosing as measure unit M

G

(`) where M
G

(`) is as
in the definition 1.3.8. Even if our measure unit depends on the output of
generator of the commitment scheme, the analysis still makes sense. In fact
the set-up phase of the commitment scheme can be done once and for all and
must not be repeated every time. Hence, we can compare the efficiency of
different protocols, assuming that they use the same output of the generator
of the commitment scheme.
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3.1 Openable Commitment Protocol
This protocol is implicitly contained in the multiplication protocol describe
in [4].

Aim

The first property that we want to be able to verify is that the prover can
open a commitment. This protocol will be essential in almost all the other
protocols described in this thesis. We assume to be using Pedersen commit-
ment.

Relation

Our public input will be a public key pk 2 PK together with the commitment
of a value C 2 G while the witness will be such value b 2 Z

q

and the random
element r

b

2 Z
q

that hides it. More precisely we say that (x, w) 2 R if
x = (pk, C) and w = (r

b

, b) such that C = commit

pk

(r
b

, b). Clearly if we
want to generate an element in this relation we run the generator of the
commitment scheme to select a public key pk = (q, g, h, lab), then we select
b and r

b

at random in Z
q

and we compute C = commit

pk

(r
b

, b).

Protocol

Protocol 3.1.1 (Openable commitment protocol).
Consider the relation R as defined before, a pair of PITM (P, V ) and the
following protocol:

Public Input: (pk, C)

Private Input: (r
b

, b)

Interaction:
1. P selects u, r

u

2
R

Z
q

P computes
a = Com(r

u

, u),

P sends a to V .
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2. V selects e 2
R

Z
q

V sends e to P .
3. P computes

µ = u+ eb,

⇢ = r
u

+ er
b

,

P sends µ, ⇢ to V

4. V checks

Com(⇢, µ)
?

= a · Ce,

Theorem 3.1.2. The pair (P, V ) as described in protocol 3.1.1 is a ⌃-
protocol for relation R.

Proof. Cleary the protocol 3.1.1 respects the form of a ⌃- protocol. We have
to check that it respects the three properties:

Completeness: Suppose that ((pk, C), (b, r
b

)) 2 R

Com(⇢, µ) = Com(r
u

+ er
b

, u+ eb) =

= Com(r
u

, u) · Com(er
b

, eb) =

= a · Com(r
b

, b)e = a · Ce

hence V will accept the protocol with probability 1.

Special Soundness: Suppose that (pk, C) 2 RX (i.e that exists a w such that
((pk, C), w) 2 R.
Then suppose that we have a collision (((pk, C), a, e, (⇢, µ))), ((pk, C), a, e0, (⇢0, µ0

))).
Observing that (e� e0) is invertible in Z

q

, we can compute:

(µ� µ0
)(e� e0)�1

= b

and
(⇢� ⇢0)(e� e0)�1

= r
b

such that Com(r
b

, b) = C and hence we computed a witness (r
b

, b) for
C.
Suppose that (pk, C) /2 RX. Then, if a collision exists, proceeding as
before we can compute a witness for (pk, C). But this is a contradiction
since no witness for (pk, C) exists.
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SHVZK: Supposing that the verifier is honest we can build a simulator
M((pk, C)) performing:

• M selects e0 2
R

Z
q

.
• M selects µ0, ⇢0 2

R

Z
q

• M computes a0 = Com(⇢0, µ0
) · C�e

0

• M outputs ((a0, e0, (⇢0, µ0
))

Now the verifier will always accept this conversation since:

a0 · Ce

0
= Com(⇢0, µ0

) · C�e

0 · Ce

0
= Com(⇢0, µ0

)

by construction. Clearly e (in the real protocol) and e0 (in the simulation)
are selected independently and uniformly at random. Moreover by the un-
conditionally hiding of the commitment scheme the authentication message
a in the real protocol has uniform distribution over G and this distribution is
independent from e. Com(⇢0, µ0

) has uniform distribution over G for the same
reason and, multiplying it by C�e

0 , this distribution remains uniform over G.
Thus a0 has uniform distribution over G and such distribution is independent
from e0. Finally (⇢, µ) has the uniform distribution over Z2

q

since u and r
u

are selected uniformly at random and the additions of eb and er
b

are one to
one maps. Moreover (⇢0, µ0

) has the same distributions since both the com-
ponents are selected independently and uniformly at random in Z

q

. Hence
the distribution of ((a0, e0, (⇢0, µ0

)) is the same as in a real conversation.

Proposition 3.1.3. The protocol 3.1.1 has a communication cost of O(1)

Proof. (P, V ) has to communicate a, e, µ, ⇢, hence the communication cost is
constant in M

G

(`). Thus the communication cost is O(1).

3.2 Multiplication protocol
This protocol is described for the first time in an article of Cramer and
Damgård on zero-knowledge proofs for arithmetic circuits over finite prime
fields ([4]).
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Aim

The aim of the multiplication protocol is to verify, given two commitments
B and C, that a third commitment D hides the product of the values hidden
by B and C.

Relation

Our public input will be a public key pk 2 PK and the commitments of three
values B,C,D 2 G while the witness will be two of this values b, c 2 Z

q

and
the random elements r

b

, r
c

, r
d

2 Z
q

that hides those values and their product.
More precisely we say that (x, w) 2 R if

x = (pk,B,C,D) and w = (b, r
b

, c, r
c

, r
d

)

such that

B = commit

pk

(r
b

, b), C = commit

pk

(r
c

, c), D = commit

pk

(r
d

, bc).

Clearly if we want to generate an element in this relation we run the generator
of the commitment scheme to select a public key pk = (q, g, h, lab), then we
select b, c, r

b

, r
c

, r
d

at random in Z
q

and we compute B,C,D.

Protocol

Protocol 3.2.1 (Multiplication protocol).
Consider the relation R as defined before, a pair of PITM (P, V ) and the
following three protocols run in parallel with the same challenge e 2

R

Z
q

:

Public input: (pk,B,C,D)

Private input: (b, r
b

, c, r
c

, r
d

)

Interaction:
1. (P, V ) runs the protocol 3.1.1 to check that the prover can open B

2. (P, V ) runs the protocol 3.1.1 to check that the prover can open C

3. (P, V ) runs the following protocol to check that D has the right
form
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(a) P selects ⌫ 2
R

Z
q

P takes the u selected in 1.
P computes
a = Cu · Com(⌫, 0)

P sends a to V .
(b) V takes e selected in 1.

V sends e to P .
(c) P computes

µ = u+ eb,

v = ⌫ + e(r
d

� r
c

b)

P sends µ, v to V

(d) V checks
Cµ · Com(v, 0)

?

= a ·De

Theorem 3.2.2. The pair (P, V ) as described in protocol 3.2.1 is a ⌃-
protocol for relation R.

Proof. We will not prove again that the first two subprotocols respects the
property of the ⌃ protocol. Clearly the third subprotocol of 3.2.1 respects the
form of a ⌃- protocol. We have to check that it respects the three properties:

Completeness: Suppose that ((pk,B,C,D), (b, r
b

, c, r
c

, r
d

)) 2 R. Then

Cµ · Com(v, 0) =

= Com(r
c

, c)u · Com(br
c

, bc)e · Com(⌫, 0) · Com(r
d

� r
c

b, 0)e =

= a · Com(br
c

+ r
d

� br
c

, bc)e =

= aCom(r
d

, bc)e = a ·De

Hence V will accept the protocol with probability 1.

Special Soundness: Suppose that (pk,B,C,D) 2 RX (i.e that exists a w
such that ((pk,B,C,D), w) 2 R.)
Then suppose that we have a collision

(((pk,B,C,D), a, e, (v, µ))), ((pk,B,C,D), a, e0, (v0, µ0
))).

Observing that (e � e0) is invertible in Z
q

and that from the special
soundness of the protocol 3.1.1 we can obtain b, r

b

, c, r
c

, we can com-
pute:

(v � v0)(e� e0)�1

+ r
c

b = r
d

� r
c

b+ r
c

b = r
d
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and hence a witness (b, r
b

, c, r
c

, r
d

). Suppose that (pk,B,C,D) /2 RX.
Then, if a collision exists, proceeding as before we can compute a wit-
ness for (pk,B,C,D). But this is a contradiction since such witness
does not exist.

SHVZK: Supposing that the verifier is honest and that we have the simu-
lator for the protocol 3.1.1 we can build a simulator M((pk,B,C,D))

performing:

• M include the simulator for 3.1.1 and run it twice with selection
e0 2

R

Z
q

,
• M selects v0 2

R

Z
q

and takes µ0 and e0 as selected in the previous
step.

• M computes a0 = Cµ

0 · Com(v0, 0) ·D�e

0

• M outputs ((a0, e0, (v0, µ0
))

Now the verifier will always accept this conversation since:

a ·De

= Cµ · Com(v, 0) ·D�e ·De

= Cµ · Com(v, 0)

by construction. Obviously the first two steps are correctly simulated by
the proof of protocol 3.1.1. Now consider the subprotocol in the third step:
clearly e (in the real protocol) and e0 (in the simulation) are selected inde-
pendently and uniformly at random. Moreover by the unconditionally hiding
of the commitment scheme the authentication message a in the third step
of the real protocol has uniform distribution over G and this distribution is
independent from e. Com(v0, 0) has uniform distribution over G for the same
reason and, multiplying it by Cµ

0 and D�e

0 , this distribution remains uni-
form over G. Thus a0 has uniform distribution over G and such distribution
is independent from e0. Finally (v, µ) has the uniform distribution over Z

q

since u and ⌫ are selected uniformly at random and the additions of eb and
e(r

d

� r
c

b) are one to one maps. Moreover (v0, µ0
) has the same distributions

since both the components are selected independently and uniformly at ran-
dom in Z

q

. Hence the distribution of ((a0, e0, (v0, µ0
)) is the same as in a real

conversation.

Proposition 3.2.3. The protocol 3.2.1 has a communication cost of O(1)
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Proof. (P, V ) uses twice a protocol of cost O(1) for the first two subprotocols,
for the third (P, V ) has to communicate (a, e, µ, v), hence the communication
cost of the subprotocol is constant in M

G

(`). Hence the total communication
cost is still O(1).

3.3 Inner Product Protocol

Aim

This protocol is a generalization of the previous one. Instead of verifying
that a commitment hides the product of two committed values we want to
verify that given two vectors of commitments B = (B

1

, . . . , B
n

) and C =

(C
1

, . . . , C
n

), a commitment D hides the inner product of the vector b =

(b
1

, . . . , b
n

) and c = (c
1

, . . . , c
n

) which components are the values hidden by
the corresponding components of B and C.

Relation

Our public input will be a public key pk 2 PK, two n-vector of commitment
B,C 2 G ⇥ . . . ⇥ G and a single commitment D 2 G while the witness will
be the two vectors of values b, c 2 Zn

q

, the n-vectors of random elements
r
b

, r
c

2 Zn

q

that hide those values and the random element r
d

2 Z
q

that hides
their inner product. More precisely we say that (x, w) 2 R if

x = (pk,B,C,D) and w = (b, r
b

, c, r
c

, r
d

)

such that for all i 2 {1, . . . , n}

B
i

= commit

pk

(r
bi , bi), C

i

= commit

pk

(r
ci , ci), D = commit

pk

(r
d

,
nX

i=1

b
i

c
i

).

Clearly if we want to generate an element in this relation we run the generator
of the commitment scheme to select a public key pk = (q, g, h, lab), then we
select for all i 2 {1, . . . , n} b

i

, c
i

, r
bi , rci , rd at random in Z

q

and we compute
B,C,D.

Protocol

Protocol 3.3.1 (Inner Product Protocol).
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Consider the relation R as defined before, a pair of PITM (P, V ) and the
following protocols run in parallel with the same challenge e 2

R

Z
q

:

Public input: (pk,B,C,D)

Private input: (b, r
b

, c, r
c

, r
d

)

Interaction:
1. For all i 2 {1, . . . , n} (P, V ) runs the protocol 3.1.1 to check that

the prover can open B
i

.
2. For all i 2 {1, . . . , n} (P, V ) runs the protocol 3.1.1 to check that

the prover can open C
i

with challenge e as selected in 1.
3. (P, V ) runs the following protocol to check that D has the right

form
(a) P selects ⌫ 2

R

Z
q

P takes, for all i, the u
i

selected in the ith iteration in step 1.
P computes
a =

Q
n

i=1

Cui
i

· Com(⌫, 0)

P sends a to V .
(b) V takes e selected in 1.

V sends e to P .
(c) P computes

For all i, µ
i

= u
i

+ eb
i

,

v = ⌫ + e(r
d

�Pn

i=1

r
cibi)

P sends for all i, µ
i

, v to V

(d) V checks
Q

n

i=1

Cµi
i

· Com(v, 0)
?

= a ·De

Theorem 3.3.2. The pair (P, V ) as described in protocol 3.3.1 is a ⌃-
protocol for relation R.
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Proof. Completeness: Suppose that ((pk,B,C,D), (b, r
b

, c, r
c

, r
d

)) 2 R. Then
Y

i

Cµi
i

· Com(v, 0) =

=

Y

i

(Com(r
ci , ci)

ui · Com(b
i

r
ci , bici)

e

) · Com(⌫, 0)·

· Com(r
d

�
X

i

r
cibi, 0)

e

=

= a · Com(

X

i

b
i

r
ci + r

d

�
X

i

b
i

r
ci ,
X

i

b
i

c
i

)

e

=

= a · Com(r
d

,
X

i

b
i

c
i

)

e

= a ·De

Hence V will accept the protocol with probability 1.

Special Soundness: Suppose that (pk,B,C,D) 2 RX (i.e that exists a w
such that ((pk,B,C,D), w) 2 R.)
Then suppose that we have a collision

(((pk,B,C,D), a, e, (v, µ
1

, . . . , µ
n

))), ((pk,B,C,D), a, e0, (v0, µ0
1

, . . . , µ
n

))).

Observing that (e � e0) is invertible in Z
q

and that from the special
soundness of the protocol 3.1.1 we can obtain b, r

b

, c, r
c

, we can com-
pute:

(v � v0)(e� e0)�1

+

X

i

r
cibi = r

d

�
X

i

r
cibi + r

cibi = r
d

and hence a witness (b, r
b

, c, r
c

, r
d

). Suppose that (pk,B,C,D) /2 RX.
Then, if a collision exists, proceeding as before we can compute a wit-
ness for (pk,B,C,D). But this is a contradiction since such witness
does not exist.

SHVZK: Supposing that the verifier is honest and that we have the simu-
lator for the protocol 3.1.1 we can build a simulator M((pk,B,C,D))

performing:

• M include the simulator for 3.1.1 and run it 2n times with selection
e0 2

R

Z
q

,
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• M selects v0 2
R

Z
q

and takes for all i, µ0
i

and e0 as selected in the
previous step in the ith iteration.

• M computes a0 =
Q

i

C
µ

0
i

i

· Com(0, v0) ·D�e

0

• M outputs ((a0, e0, (v0, µ0
1

, . . . , µ0
n

))

Now the verifier will always accept this conversation since:

a ·De

=

Y

i

Cµi
i

· Com(v, 0) ·D�e ·De

=

Y

i

Cµi
i

· Com(v, 0)

by construction. Obviously the first 2n steps are correctly simulated by the
proof of protocol 3.1.1. Now consider the subprotocol in the third step:
clearly e (in the real protocol) and e0 (in the simulation) are selected in-
dependently and uniformly at random. Moreover by the unconditionally
hiding property of the commitment scheme the authentication message a in
the third step of the real protocol has uniform distribution over G and this
distribution is independent from e. Com(v0, 0) has uniform distribution over
G for the same reason and, multiplying it by

Q
i

Cµ

0
i and D�e

0 , this distri-
bution remains uniform over G. Thus a0 has uniform distribution over G
and such distribution is independent from e0. Finally (v, µ

1

, . . . , µ
n

) has the
uniform distribution over Zn+1

q

since for all i, u
i

and ⌫ are selected uniformly
at random and the additions of eb

i

and e(r
d

�P r
cibi) are one to one maps.

Moreover (v0, µ0
1

, . . . , µ0
n

) has the same distributions since all the components
are selected independently and uniformly at random in Z

q

. Hence the distri-
bution of ((a0, e0, (v0, µ0

1

, . . . , µ0
n

)) is the same as in a real conversation.

Proposition 3.3.3. The protocol 3.3.1 has a communication cost of O(n)

Proof. (P, V ) uses 2n times a protocol of cost O(1). The last subprotocol
has a communication cost of O(1) just as in the previous protocol. Hence
the total communication cost is O(2n+ 1) = O(n).

3.4 Matrix Multiplication Protocol

Aim

The protocol 3.3.1 can be used to prove that the product of two n ⇥ n
matrices B and C of committed values, hides the same values as a third
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matrix D. This can be done just using the protocol 3.3.1 n2 times, one for
every inner product between a row of B and a column of C. However this
would have a communication cost of O(n3

). In this section we will describe a
different protocol with communication cost of O(n2

). This improvement will
be possible using the definition of public coin relaxed ⌃-protocol (definition
2.3.4). The trick is to check that BCx = Dx where x is a vector of length n
uniformly selected over Zn

q

instead of BC = D.

Relation

Our public input will be a public key pk 2 PK, two n ⇥ n matrices of
commitment B,C 2M(n,G) and a third n⇥ n matrix of commitment D 2
M(n,G) while the witness will be the two matrices of values b, c 2M(n,Z

q

),
the matrices of random elements r

b

, r
c

2M(n,Z
q

) that hide those values and
the matrix of random elements r

d

2 M(n,Z
q

) that hides the product of b
and c. More precisely we say that (x, w) 2 R if

x = (pk,B,C,D) and w = (b, r
b

, c, r
c

, r
d

)

such that for all i 2 {1, . . . , n} and for all j 2 {1, . . . , n}
B

ij

= commit

pk

(r
bij , bij), C

ij

= commit

pk

(r
cij , cij),

D
ij

= commit

pk

(r
dij ,

nX

k=1

b
ik

c
kj

).

Clearly if we want to generate an element in this relation we run the generator
of the commitment scheme to select a public key pk = (q, g, h, lab), then we
select for all i, j 2 {1, . . . , n}b

ij

, c
ij

, r
bij , rcij , rdij at random in Z

q

and we
compute B,C,D.

Protocol

Protocol 3.4.1 (Matrix Multiplication Protocol).
Consider the relation R as defined before, a pair of PITM (P, V ) and the
following protocols run in parallel with the same challenge e 2

R

Z
q

:

Public input: (pk,B,C,D)

Private input: (b, r
b

, c, r
c

, r
d

)
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Interaction:
1. For all i, j 2 {1, . . . , n} (P, V ) runs the protocol 3.1.1 to check

that the prover can open B
ij

2. For all i, j 2 {1, . . . , n} (P, V ) runs the protocol 3.1.1 to check
that the prover can open C

ij

3. For all i, j 2 {1, . . . , n} (P, V ) runs the protocol 3.1.1 to check
that the prover can open D

ij

4. V selects x 2
R

Zn

q

V sends x to P
V computes for all i
ȳ
i

=

Q
n

j=1

C
xj

ij

z̄
i

=

Q
n

j=1

D
xj

ij

P computes for all i
y
i

=

P
n

j=1

c
ij

· x
j

r
yi =

P
n

j=1

r
cij · xj

z
i

=

P
n

j=1

((

P
n

k=1

b
ik

c
kj

) · x
j

)

r
zi =

P
n

j=1

r
dij · xj

5. For all i 2 {1, . . . , n} (P, V ) runs the protocol 3.3.1 on common
input (B

i

, ȳ, z̄
i

) and private input (b
i

, r
bi , yi, ryi , rzi), where B

i

and
b
i

denotes the ith row respectively of B and b.

Theorem 3.4.2. The pair (P, V ) as described in protocol 3.4.1 is a public-
coin relaxed ⌃-protocol for relation R.

Proof.

Completeness: Suppose that ((pk,B,C,D), (b, r
b

, c, r
c

, r
d

)) 2 R. Then by
the completeness of protocol 3.1.1 we have that the steps 1 and 2 are
accepted. Moreover by the completeness of protocol 3.3.1 we have that
step 4 is always accepted since

BC = D ) BCx = Dx

for all x 2 Zn

q

.
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Relaxed Special Soundness: Suppose that (pk,B,C,D) 2 RX (i.e that ex-
ists a w such that ((pk,B,C,D), w) 2 R.)
Then suppose we have a collision. From the special soundness of pro-
tocol 3.1.1 we can compute b, r

b

, c, r
c

, r
d

such that

((pk,B,C,D), (b, r
b

, c, r
c

, r
d

)) 2 R.

Now suppose that (pk,B,C,D) /2 RX. Define d 2 M(n,Z
q

) as the
matrix of values committed in D. Then a collision exists if and only if
x 2 ker(bc� d). Indeed consider the reply of the protocol. It contains
the 3n2 replies of the first 3n2 subprotocols and the n replies of the last
n subprotocols. The firsts cannot be different by the special soundness
of protocol 3.1.1. If x /2 ker(bc � d) then also the seconds cannot
change and a collision does not exists. However if x 2 ker(bc � d) we
can have two different accepted conversation since the common input
of the subprotocol are in its relation.
The probability over a uniform random choose of x that x 2 ker(bc�d)
is 1/q. Indeed we have at most dimZq ker(bc�d) = n�1 and hence the
firsts n� 1 components of x can assume any value and the the last has
to be a particular value in Z

q

. Clearly the probability of having such
value is 1/q. Hence we have that the probability to have a collision is
negligible in the length of ` (we recall that ` is the security parameter
of the commitment scheme) and hence also in (pk,B,C,D).

SHVZK: The first two steps can be simulated using the simulator of the
protocol 3.1.1, the third can be simulated just selecting a random vector
in the same way x is selected in the real protocol and the last step can
be simulated using the simulator of the protocol 3.3.1.

Proposition 3.4.3. The protocol 3.4.1 has a communication cost of O(n2

)

Proof. (P, V ) uses 2n2 times the protocol 3.1.1 which communication cost
is O(1), then it sends x 2 Zn

q

(with cost O(n)) and finally it repeats n
times the protocol 3.3.1 which communication cost is O(n). Thus the total
communication cost is O(n2

).
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3.5 Basic 0/1 Protocol
This protocol were firstly described as a general construction that could be
applied to any relation R to prove that either (x

0

, w) 2 R or (x
1

, w) 2 R,
without revealing which is the case. ([20]). Here we describe the protocol in
a specific case.

Aim

The aim of this protocol is to verify that, given two commitment c
0

and c
1

ones hides a 1 and the other a 0. Clearly we do not want that the prover
must reveal which hides the 1 (otherwise he can just open the commitments).

Relation

The public input will be the public key pk 2 PK of the commitment scheme,
together with two committed value c

0

, c
1

2 Z
q

. The witness will be the
position b 2 {0, 1} of the 1 and the two random elements r

0

, r
1

2 Z
q

that
hide 1 and 0. More precisely we say that (x, w) 2 R if x = (pk, c

0

, c
1

)

and w = (b, r
0

, r
1

) such that c
b

= commit

pk

(r
b

, 1) and, define ¯b = 1 � b,
c
¯

b

= commit

pk

(r
¯

b

, 0)

Protocol

Protocol 3.5.1 (0/1 protocol). Consider the relation R as defined before, a
pair of PITM (P, V ) and the following protocol:

Public Input: (pk, c
0

, c
1

)

Private Input: (b, r
0

, r
1

)

Interaction:
1. P selects t

0

, t
1

, e
¯

b

, z
¯

b0

, z
¯

b1

2
R

Z
q

P computes
a
b0

= Com(t
0

, 0)

a
b1

= Com(t
1

, 0)

a
¯

b

¯

b

= Com(z
¯

b

¯

b

, e
¯

b

)c
�eb̄
¯

b

a
¯

bb

= Com(z
¯

bb

, 0)c
�eb̄
b
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P sends (a
00

, a
11

, a
01

, a
10

) to V

2. V selects e 2 Z
p

V sends e to P

3. P computes
e
b

= e� e
¯

b

z
b0

= t
0

+ e
b

r
0

z
b1

= t
1

+ e
b

r
1

P sends (e
0

, e
1

, z
00

, z
01

, z
10

, z
11

) to V

4. V checks if

Com(z
00

, e
0

)

?

= a
00

ce0
0

Com(z
01

, 0)
?

= a
01

ce0
1

Com(z
10

, 0)
?

= a
10

ce1
0

Com(z
11

, e
1

)

?

= a
11

ce1
1

Theorem 3.5.2. The pair (P, V ) as described in protocol 3.5.1 is a ⌃-
protocol for relation R.

Proof.

Completeness: Suppose that ((pk, c
0

, c
1

), (b, r
0

, r
1

)) 2 R. Then the complete-
ness come from the fact that a

¯

b

¯

b

and a
¯

bb

are build to pass the checks
while:

Com(z
bb

, e
b

) = Com(t
b

+ e
b

r
b

, e
b

) =

= Com(t
b

, 0) · Com(r
b

, 1)eb = a
bb

ceb
b

and

Com(z
b

¯

b

, 0) = Com(t
¯

b

+ e
b

r
¯

b

, 0) =

= Com(t
¯

b

, 0) · Com(r
¯

b

, 0)eb = a
b

¯

b

ceb
¯

b

hence V will always accept the protocol.

Special Soundness: Let (pk, c
0

, c
1

) 2 RX and let

(((a
00

, a
11

, a
01

, a
10

), e, (e
0

, e
1

, z
00

, z
01

, z
10

, z
11

)),

((a
00

, a
11

, a
01

, a
10

), e0, (e0
0

, e0
1

, z0
00

, z0
01

, z0
10

, z0
11

)))
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be a collision. Then there is an i 2 {0, 1} such that e
i

6= e0
i

. Hence

Com((z
ii

� z0
ii

)(e
i

� e0
i

)

�1, 1) = Com(z
ii

� z0
ii

, e
i

� e0
i

)

(ei�e

0
i)

�1
=

=

⇣
Com(zii,ei)

Com(z

0
ii,e

0
i)

⌘
(ei�e

0
i)

�1

=

=

✓
aiic

ei
i

aiic
e0i
i

◆
(ei�e

0
i)

�1

=

= c
(ei�e

0
i)(ei�e

0
i)

�1

i

= c
i

and

Com((z
i

¯

i

� z0
i

¯

i

)(e
i

� e0
i

)

�1, 0) = Com(z
i

¯

i

� z0
i

¯

i

, 0)(ei�e

0
i)

�1
=

=

⇣
Com(zīi,0)

Com(z

0
īi
,0)

⌘
(ei�e

0
i)

�1

=

=

✓
aīic

ei
ī

aīic
e0i
ī

◆
(ei�e

0
i)

�1

=

= c
(ei�e

0
i)(ei�e

0
i)

�1

¯

i

= c
¯

i

Thus b = i, r
b

= (z
ii

� z0
ii

)(e
i

� e0
i

)

�1 and r
¯

b

= (z
i

¯

i

� z0
i

¯

i

)(e
i

� e0
i

)

�1

SHVZK: Supposing that the verifier is honest we can build a simulator
M((pk, c

0

, c
1

)) performing:

• M selects e0 2
R

Z
q

• M selects e0
0

, z0
00

, z0
01

, z0
10

, z0
11

2
R

Z
q

• M computes
e0
1

= e0 � e0
0

a0
00

= Com(z0
00

, e0
0

)c
�e

0
0

0

a0
01

= Com(z0
01

, 0)c
�e

0
0

1

a0
10

= Com(z0
10

, 0)c
�e

0
1

0

a0
11

= Com(z0
11

, e0
1

)c
�e

0
1

1

• M outputs ((a0
00

, a0
01

, a0
10

, a0
11

), e0, (e0
0

, e0
1

, z0
00

, z0
01

, z0
10

, z0
11

))

Such conversation would always be accepted since (a0
00

, a0
01

, a0
10

, a0
11

) are
built to pass the checks. Moreover a0

¯

b

¯

b

, a0
¯

bb

, e0, z0
¯

b

¯

b

, z0
¯

bb

are chosen uni-
formly at random, just as a

¯

b

¯

b

, a
¯

bb

, e, z
¯

b

¯

b

, z
¯

bb

in the real protocol, so this
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part of the simulation has the same distribution of a real conversation.
Now consider (a

b

¯

b

, a
bb

, z
b

¯

b

, z
bb

) and (a0
b

¯

b

, a0
bb

, z0
b

¯

b

, z0
bb

). z0
bb

and z0
b

¯

b

have the
uniform distribution over Z

q

. Also z
bb

and z
b

¯

b

have the uniform distri-
bution over Z

q

since t
0

and t
1

are selected uniformly at random and the
additions of er

0

and er
1

are one to one maps. a
bb

and a
b

¯

b

have the uni-
form distribution (and are independent) by the unconditionally hiding
of the commitment scheme. The same for Com(z0

bb

, e0
b

) and Com(z0
b

¯

b

, 0),
and since the multiplication by c

�e

0
b

¯

b

and c
�e

0
b

b

are one to one maps, also
a0
bb

and a0
b

¯

b

have the uniform distribution. Hence the output of M has
the same probability distribution of a real accepting conversation.

Proposition 3.5.3. The protocol 3.5.1 has a communication cost of O(1)

Proof. (P, V ) has to communicate

(a
00

, a
11

, a
01

, a
10

, e, e
0

, e
1

, z
00

, z
01

, z
10

, z
11

)

hence the communication cost is constant in M
G

(`). Thus the communication
cost is O(1).

3.6 Generalized 0/1 Protocol

Aim

From the previous protocol we want a generalization of it that allows to
prove that, given a vector of commitment c = (c

1

, . . . , c
n

), one of the values
committed is 1 and all the others are 0. The main idea is to compute for all
i 2 {1, . . . , n} the pairs (c

i

,
Q

j 6=i

c
j

) and use n times in parallel the basic 0/1
protocol. Indeed if c

j

hides a value different from 0 or 1, the 0/1 protocol
fails in the round j. If the vector is all of 0, the 0/1 protocol fails in every
rounds. If there is a 1 in c

i

and in c
j

with i 6= j, then the 0/1 protocol fails
in the round i and in the round j. We will assume that n is smaller than
the cardinality of the group G choosen by the generator of the commitment
scheme. This implies that more than p components equal to 1 can not be
hidden in the vector c.
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Relation

The public input will be the public key pk 2 PK of the commitment scheme
and a vector c 2 Zn

q

of committed value. The witness will be the position
k 2 {1, . . . n} of the 1 and the vector of random elements r 2 Zn

q

that hides the
1 and the 0s. More precisely we said that (x, w) 2 R if x = (pk, c) and w =

(k, r) such that c
k

= commit

pk

(r
k

, 1) and for all i 6= k, c
i

= commit

pk

(r
i

, 0)

Protocol

Protocol 3.6.1 (Generalized 0/1 Protocol). Consider the relation R as de-
fined before, a pair of PITM (P, V ) and the following protocol:

Public Input: (pk, c)

Private Input: (k, r)

Interaction:
1. P computes for all i 2 {1, . . . , n}

r0
i

=

P
j 6=i

r
j

P computes for all i 2 {1, . . . , n}
c0
i

=

Q
j 6=i

c
j

2. For all i 2 {1 . . . , n}, P and V run the protocol 3.5.1 on public
input (pk, c

i

, c0
i

)

Theorem 3.6.2. The pair (P, V ) as described in protocol 3.6.1 is a ⌃-
protocol for relation R.

Proof.

Completeness: If ((pk, c), (k, r)) 2 R then 8i 2 {1, . . . , n}, c
i

= Com(r
i

, 1),
c
j

= Com(r0
i

, 0) or c
i

= Com(r
i

, 0), c
j

= Com(r0
i

, 1). This is because
n < q, hence there can’t be more than q ones, hence the cyclic structure
of Z

q

cannot be used to cheat. Thus from the completeness of the basic
0/1 protocol (Protocol 3.5.1) we have that the proof is never rejected.

Special Soundness: Suppose that (pk, c) 2 RX and suppose that we have a
collision, then by the special soundness of the protocol 3.5.1 we can
compute for all i 2 {1, . . . , n}, r

i

and b
i

. Then r = (r
1

, . . . , r
n

) and k
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is equal to the b
i

such that the 1 was not hidden in the sum. Hence we
can compute a witness from a collision.
Suppose that (pk, c) /2 RX then from the collision we can compute a
witness by the special soundness of protocol 3.5.1, but such witness
does not exists, hence also the collision does not exists.

SHVZK: The simulation can be done just using the simulator of the basic
0/1 protocol (Protocol 3.5.1).

Proposition 3.6.3. The protocol 3.6.1 has a communication cost of O(n)

Proof. In terms of communication (P, V ) is simply using the protocol 3.5.1
n times, hence the communication cost is O(n)

3.7 Protocols over Fqk

In all the previous protocols and in the following, the values to commit are
chosen in Z

q

. Since q is prime, Z
q

is a finite field of q elements and from
now on we will denote it with F

q

. Later in this thesis we will need to take
our values not just in F

q

but also in finite fields of the same characteristic,
namely in F

q

k for some k 2 N. To generalize the commitment scheme and
the protocols, we present in this section the notion of multiplicative friendly
embedding, we explicitly define one of it and we describe how to use it on
commitment and protocols.

Definition 3.7.1 (Multiplicative Friendly Embedding). The triplet:

• n 2 N

• ⇠ : F
q

k ! Fn

q

• � : Fn

q

! F
q

k

is a multiplicative friendly embedding if ⇠ and � are F
q

-linear, ⇠ is injective
and for all a, b 2 F

q

k it holds:

a · b = �(⇠(a) ⇤ ⇠(b))
where · is usual multiplication in F

q

k and ⇤ is the usual component-wise
multiplication of Fn

q
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Construction of a multiplicative friendly embedding

In this section we will construct a multiplicative friendly embedding based
on interpolations and evaluations of polynomials. All the theorems will im-
plicitly require that q � 2k � 1. However they do not require that q is a
prime, hence if q > 2 (as it happens in the case of commitments), we can
iterate the construction.

Theorem 3.7.2. Let F
q

be a field of q elements. Fix an algebraic closure
F
q

of F
q

. Suppose that x
1

, . . . , x
m

2 F
q

satisfy the following: for each pair
(x

i

, x
j

) with i 6= j the element x
j

is not a Galois-conjugate of x
i

over F
q

.
Then the map:

E : F
q

[X]M�1

!
mM

i=1

F
q

(x
i

)

f ! (f(x
1

), . . . , f(x
n

))

is an isomorphism of F
q

-vector spaces, where

M =

mX

i=1

dimFq Fq

(x
i

)

Proof. The proof is a generalization of Lagrange interpolation.

Suppose first m = 1.
If x

1

2 F
q

, F
q

(x
1

) = F
q

and M = 1, thus the claim is trivial.
If x

1

/2 F
q

, consider the basis 1, . . . , xM�1

1

of F
q

(x
1

) as F
q

-vector space. For
y 2 F

q

(x
1

) we have E(f) = y, where f(X) is the (unique) polynomial of
degree at most M � 1 whose coefficient are the coordinate of y according to
the previous basis.

Now suppose m > 1.
For all i 2 {1, . . . ,m} define:

• The monic polynomial in F
q

[X] of minimal degree having x
i

as a zero.
Denotes it by h

i

(X) and observe that deg(h
i

) = dimFq Fq

(x
i

).

• Define
�
i

=

Y

1km,k 6=i

h
i

(X)

and observe that �
i

(x
j

) = 0 if i 6= j and that deg(�
i

) = M�dimFq Fq

(x
i

).
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• Define z
i

= �
i

(x
i

) and observe that by the assumption on the x
i

, z
i

2
F
q

(x
i

) \ {0}.
E is surjective, indeed:
let y 2 Lm

i=1

F
q

(x
i

), for all i 2 {1, . . . ,m} choose f
i

(x) 2 F
q

[X] such that
deg(f

i

)  dimFq Fq

(x
i

) and f
i

(x
i

) = y
i

z�1

i

(such f
i

exists by the claim in the
case m = 1).
Then define

f(X) =

mX

i=1

�
i

(X)f
i

(X) 2 F
q

[X]

We have:

deg(f)  max

i

((M � dimFq Fq

(x
i

)) + (dimFq Fq

(x
i

)� 1)) = M � 1

and for all j 2 {1, . . . ,m}

f(x
j

) =

mX

i=1

�
i

(x
j

)f
i

(x
j

) = �
j

(x
j

)f
j

(x
j

) = z
j

y
j

z
j

= y
j

Hence f(X) 2 F
q

[X]M�1

and E(f) = y.
E is injective, indeed:
Suppose E(f) = 0. It implies f(x

j

) = 0 for all j 2 {1,,m}. Hence f(X) is
divisible by each of the h

i

(X), which, by the condition on the x
j

are coprime.
Therefore f(X) is divisible by the product of all the h

i

(x) which has degree
M . Since deg(f) M � 1 f(X) is the zero polynomial.

The idea is now to build an multiplicative friendly embedding (2k� 1,�, ),
using the fact that by theorem 3.7.2, F

q

k
⇠
=

F
q

[X]k�1

and using the evalua-
tion map in 2k � 1 distinct elements of F

q

Definition 3.7.3. Let x
0

2 F
q

be such that F
q

(x
0

) = F
q

k and x
1

, . . . , x
2k�1

2
F
q

be such that for all i, x
i

6= x
j

for all j 6= i. Then we define the map � as:

� : F
q

k ! F2k�1

q

a ! (f(x
1

), . . . , f(x
2k�1

))

where f is the unique polynomial of degree at most k�1 such that f(x
0

) = a.
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Definition 3.7.4. Let x
0

2 F
q

be such that F
q

(x
0

) = F
q

k and x
1

, . . . , x
2k�1

2
F
q

be such that for all i, x
i

6= x
j

for all j 6= i.Then we define the map  as:

 : F2k�1

q

! F
q

k

(b
1

, . . . , b
2k�1

) ! (g(x
0

))

where g is the unique polynomial of degree at most 2k � 2 such that for all
i 2 {1, . . . , 2k � 1}, g(x

i

) = b
i

.

Lemma 3.7.5. The map � defined as in definition 3.7.3 is injective.

Proof. Suppose by contradiction that we have z = �(a) = �(b) = y with
a, b 2 F

q

k and a 6= b. Then there are two polynomials g and h of degree at
most k � 1 such that g(x

0

) = a 6= b = h(x
0

) and for all i 2 {1, . . . , 2k �
1}, g(x

i

) = h(x
i

). But this is a contradiction since there is at most one
polynomial of degree at most k � 1 passing through 2k � 1 points.

Theorem 3.7.6. Let x
0

2 F
q

be such that F
q

(x
0

) = F
q

k , x
1

, . . . , x
2k�1

2 F
q

be such that for all i, x
i

6= x
j

for all j 6= i and � and  and in definitions
3.7.3 and 3.7.4.
Then (2k � 1,�, ) is a multiplication friendly embedding.

Proof. Polynomial interpolation and polynomial evaluation are F
q

-linear maps,
and so are � and  By lemma 3.7.5, � is injective.
Now consider a, b 2 F

q

k .

�(a) = (f(x
1

), . . . , f(x
2k�1

))

where f(X) is a polynomial of degree at most k � 1 such that f(x
0

) = a.

�(b) = (g(x
1

), . . . , g(x
2k�1

))

where g(X) is a polynomial of degree at most k � 1 such that g(x
0

) = b.

�(a) ⇤ �(b) = (f(x
1

)g(x
1

), . . . , f(x
2k�1

)g(x
2k�1

)) = (y
1

, . . . , y
2k�1

)

Now consider the polynomial

h(X) 2 F
q

[X]2k�2

such that 8i 2 {1, . . . , 2k � 1}, h(x
i

) = y
i

.

Since h(X) has degree at most 2k�2, it is uniquely determined by Lagrange
interpolation theorem. Moreover consider fg(X) = f(X)g(X). Since f(X)
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and g(X) have degree at most k � 1, fg(X) has degree at most 2k � 2 and
clearly fg(x

i

) = y
i

, 8i 2 {1, . . . , 2k � 1}. Hence by the uniqueness of the
interpolation polynomial,

h(X) = fg(X).

Thus

 (�(a)⇤�(b)) =  (h(x
1

), . . . , h(x
2k�1

)) = h(x
0

) = fg(x
0

) = f(x
0

)·g(x
0

) = a·b

Linear algebra properties of Fq-linear maps

Suppose that A and B are respectively a k-dimensional and a m-dimensional
F
q

vector spaces and that ⇣ is a F
q

linear map from A to B. By definition
Im(⇣) is a linear subspace of B. Thus, to compute ⇣(x) for x 2 A we can
proceed as follow:

• Using the F
q

basis (a
1

, . . . , a
k

) of A we compute the F
q

basis of Im(⇣)
(⇣(a

1

), . . . , ⇣(a
k

)).

• Using the F
q

basis (a
1

, . . . , a
k

) of A we write x in the coordinates
(x

1

, . . . , x
k

).

• We define the m⇥ k matrix

M
⇣

=

0

B@

...
...

...
⇣(a

i

) ⇣(a
2

) · · · ⇣(a
k

)

...
...

...

1

CA

• We compute ⇣(z) = M
⇣

x.

This way of computing ⇣ is useful in our context because it allows us to
compute a commitment to the image of an elements whose coordinates are
hidden by an homomorphic commitment scheme, without opening such com-
mitment. In fact suppose that x = (x

1

, . . . , x
k

), r = (r
1

, . . . , r
k

) 2 A and
that

c = (Com(r
1

, x
1

), . . . ,Com(x
k

, r
k

)).
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Then we can define:

M
⇣

•c =

0

B@
⇣(a

1

)

1

· · · ⇣(a
k

)

1

... . . . ...
⇣(a

1

)

m

· · · ⇣(a
k

)

m

1

CA•

0

B@
c
1

...
c
k

1

CA =

0

B@

Q
k

i=1

c⇣(ai)1
i

...Q
k

i=1

c⇣(ai)m
i

1

CA =

0

B@
d
1

...
d
m

1

CA

and we will have that for all i 2 {1, . . . ,m}, d
i

= Com(⇣(x)
i

, ⇣(r)
i

).

Commitments over Fqk

We will now describe how a prover P can commit to an element of F
q

k .
Since the family of functions of such commitment scheme would be rather
complicated to describe, we chose to describe it as a protocol. We assume
that a homomorphic commitment scheme over F

q

is given and that such
commitment is unconditionally hiding and computationally binding. We will
denote with CS such commitment scheme.

Protocol 3.7.7. Given an homomorphic commitment scheme CS over F
q

a
prover P can commit to an element a 2 F

q

k following these steps:

Set-up phase 1. V runs the generator of CS
2. V chooses x

0

2 F
q

k such that F
q

(x
0

) = F
q

k

3. V chooses x
1

, . . . , x
2k�1

2 F
q

such that for all i 2 {1, . . . , 2k� 1},
x
i

6= x
j

for all j 6= i

4. V sends (pk, x
0

, x
1

, . . . , x
2k�1

) to P

5. P checks that pk 2 PK and that x
0

, . . . , x
2k�1

are correctly gener-
ated.

Commit phase To commit to a value a 2 F
q

k

1. P computes the coordinate-vector (a
1

, . . . , a
k

) using the F
q

basis
(1, . . . , xk�1

0

) of F
q

k

2. P selects r 2
R

F
q

k

3. P computes the coordinate-vector (r
1

, . . . , r
k

) using the F
q

basis
(1, . . . , xk�1

0

) of F
q

k

4. P computes C = (commit

pk

(r
1

, a
1

), . . . , commit
pk

(r
k

, a
k

)). Such C
is defined to be the commitment of a.
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Opening phase To open a commitment P sends a and r to V

Verify phase To verify a opening (a, r) given a commitment C 2 Fk

q

1. V computes the coordinate-vector (a
1

, . . . , a
k

) using the F
q

basis
(1, . . . , xk�1

0

) of F
q

k

2. V computes the coordinate-vector (r
1

, . . . , r
k

) using the F
q

basis
(1, . . . , xk�1

0

) of F
q

k

3. V checks that for all i 2 {1, . . . , k},C
i

?

= (commit

pk

(r
i

, a
i

)).

We like to recall that, if a multiplicative friendly embedding (2k � 1, ⇠, �) is
given, P and V can compute M

⇠

• C to have the commitment vector of the
embedding of a in F2k�1

q

. We will refer to such commitment vector as the
extended commitment of a and we will denote it with eC.

Multiplication protocol over Fqk

Aim

We will now describe the protocol that proves that, given two commitments
B and C of values b, c 2 F

q

k , a third commitment D hides the value b·c 2 F
q

k .
Given a multiplicative friendly embedding (2k � 1, ⇠, �) it works as follows.
P and V compute from B and C the extended commitment eB and eC of b
and c using M

⇠

. Then a component-wise multiplication proof is done using
protocol 3.2.1 and the auxiliary 2k�1 vector D0 of commitments of the values
(⇠(b)⇤⇠(c))

i

. Finally V checks in a non interactive step that the values hidden
by M

�

•D0 are the same as the ones hidden by D.

Relation

Our public input will be a public key pk 2 PK, x
0

, . . . , x
2k�1

as generated in
the set-up phase of the protocol 3.7.7 a friendly embedding (2k� 1, ⇠, �) and
commitments B,C,D 2 G ⇥ . . . ⇥ G of b, c and bc, while the witness will
be b, c 2 F

q

k and the random elements r, s, t 2 F
q

k that are used in protocol
3.7.7 to hide those values and their product. More precisely we say that
(x, w) 2 R if

x = (pk, x
0

, . . . , x
2k�1

, (2k � 1, ⇠, �), B, C,D) and w = (b, r, c, s, t)

such that
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B = (B
1

, . . . , B
k

) is the commitment of b according to protocol 3.7.7, with
random choice r

C = (C
1

, . . . , C
k

) is the commitment of c according to protocol 3.7.7, with
random choice s

D = (D
1

, . . . , D
k

) is the commitment of b · c according to protocol 3.7.7,
with random choice t

Protocol

Protocol 3.7.8 (Multiplication protocol over F
q

k).
Consider the relation R as defined before, a pair of PITM (P, V ) and the
following protocol

Public input: (pk, x
0

, . . . , x
2k�1

, (2k � 1, ⇠, �), B, C,D)

Private input: (b, r, c, s, t)

Interaction:
1. P and V compute eB = M

⇠

•B and eC = M
⇠

• C
2. P computes r0 = ⇠(r), t0 = ⇠(t), s0 = ⇠(s), b0 = ⇠(b) and c0 = ⇠(c)

3. For all i 2 {1, . . . , 2k � 1}, P computes D0
i

= Com(r0
i

s0
i

, b0
i

c0
i

)

4. For all i 2 {1, . . . , k}, P computes ⇢
i

= (rs)
i

� t
i

5. P sends D0 and ⇢ to V

6. For all i 2 {1, . . . , 2k� 1}, (P, V ) run the protocol 3.2.1 on public
input (pk, eB

i

, eC
i

, D0
i

) and private input (b0
i

, r0
i

, c0
i

, s0
i

, r0
i

s0
i

)

7. V checks that M
�

•D0 ?

= D ⇤ (Com(⇢
1

, 0), . . . ,Com(⇢
k

, 0))

Theorem 3.7.9. The pair (P, V ) as described in protocol 3.7.8 is a ⌃-
protocol for relation R.

Proof. Completeness: Suppose that ((pk, x
0

, . . . , x
2k�1

, B, C,D), (b, r, c, s, t)) 2
R. Then by construction for all i 2 {1, . . . , 2k� 1}, D0

i

= Com(t0
i

, b0
i

c0
i

),
eB
i

= Com(r0
i

, b0
i

) and eB
i

= Com(r0
i

, b0
i

) hence the protocol 3.2.1 on step
5 will always be accepted.
Now consider D0 and step 6. We have:

M
�

•D0
= (Com((�(r0s0))

1

, (�(b0c0))
1

), . . . ,Com((�(r0s0))
k

, (�(b0c0))
k

)) =
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= (Com((rs)
1

, (bc)
1

), . . . ,Com((rs)
k

, (bc)
k

) =

= (Com(t
1

, bc
1

), . . . ,Com(t
k

, bc
k

))⇤(Com((rs)
1

�t
1

, 0), . . . ,Com((rs)
k

�t
k

, 0)) =

= D ⇤ (Com(⇢
1

, 0), . . . ,Com(⇢
k

, 0))

Hence V will accept the protocol with probability 1.

Special Soundness: Suppose that (pk, , x
0

, . . . , x
n

, B, C,D) 2 RX, then sup-
pose to have a collision. From it V can compute in step 6: b0, r0, c0, s0, r0s0
and applying ⇠�1 (⇠ is injective and thus invertible in its image) b,r,c,s,rs
Moreover, from ⇢, V can compute t = ⇢+ rs, thus a witness.
Now suppose that (pk, , x

0

, . . . , x
n

, B, C,D) /2 RX, then if a collision
exists we can compute a witness as before, but such witness does not
exist, hence a collision cannot exist either.

SHVZK: Supposing that the verifier is honest and that we have access to
the simulator of the protocol 3.2.1. Then we can build a simulator
M((pk, x

0

, . . . , x
2k�1

, B, C,D)) performing:

• M computes eB = M
⇠

•B and eC = M
⇠

• C
• M selects for all i 2 {1, . . . , k}, ⇢0

i

2
R

F
q

.
• M selects E such that M

�

•E = D ⇤ (Com(⇢0
1

, 0), . . . ,Com(⇢0
k

, 0))

• M runs for all i 2 {1, . . . , 2k � 1}, the simulator of protocol 3.2.1
on input (pk, eB

i

, eC
i

, E
i

)

The simulation in step 4 has already been proved. We just have to
show that ⇢0 and E have the same distribution of ⇢ and D0. By the
unconditionally hiding property of the commitment scheme, E and D0

have the uniform distribution over G⇥· · ·⇥G. Clearly ⇢0 as the uniform
distribution over Fk

q

since it is chosen at random and independently
from any other values. On the other hand, ⇢ depends on t, r and s,
but since their distributions are uniform over Fk

q

and independent from
any other values, also ⇢ has the uniform distribution.

Proposition 3.7.10. The protocol 3.7.8 has a communication cost of O(k)
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Proof. In the first 4 steps no communication are required. In step 5 P has
to communicate 2k � 1 committed values and k values in F

q

, while in step
6 (P, V ) uses 2k � 1 times a protocol of cost O(1). Step 7 does not require
communication. Thus the total communication cost is O(k).

It should be clear that from this multiplication protocol, we can adapt any
other protocols described in this section to work over F

q

k . This will always
lead to a growth in the communication cost of a factor k.



Chapter 4

Permutation Protocols

Introduction
At this point we have introduced all the mathematical elements that we need
and we are ready to restate the initial problem in mathematical terms.
We have the following situation:

• A homomorphic commitment scheme (we will use Pedersen commit-
ment).

• Two vectors

x = (commit

pk

(r
1

, a
1

), . . . , commit
pk

(r
n

, a
n

))

y = (commit

pk

(r0
1

, b
1

), . . . , commit
pk

(r0
n

, b
n

))

of committed elements a
i

, b
i

2 F
q

.

We want a protocol that allows P to prove to V :

• The multisets (a set with repetitions) {a
1

, . . . , a
n

} and {b
1

, . . . , b
n

} are
equal.

• P knows a permutation ⌧ : {1, . . . , n}! {1, . . . , n} such that

⌧(i) = j if and only if a
i

= b
j

.

Under the conditions:
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• The commitment cannot be opened.

• ⌧ cannot be revealed.

In this chapter we will provide some solutions:

Cut and Choose based protocol: Applying the method described in sec-
tion 2.4.2 to our problem, we will discuss a general solution. This is in
some sense our adversary: we want to build up protocols with smaller
communication cost or at least with smaller cheating probability.

Permutation Matrix based Protocol: Using the fact that every permu-
tation can be seen as a permutation matrix we describe this solution,
that is already better than the Cut and Choose based.

DFT based protocol for rotation: We describe the content of the article
published in 2010 by de Hoogh, Schoenmakers, S̆korić and Villegas ([6]).
They were able, using the Discrete Fourier Transform, to describe the
problem of rotating a vector in terms of component-wise multiplication
over Fn

q

and then using known protocols to solve it.

Wedderburn decomposition based protocols: We generalize the idea
of de Hoogh, Schoenmakers, S̆korić and Villegas observing that the
Discrete Fourier Transform can be described as an isomorphism be-
tween the group algebra of a cyclic group and Fn

q

and that we can use
any isomorphism of this type (with different groups) to obtain a similar
and more general results.

4.1 Permutations, Group actions and Permu-
tation Matrices

Before dealing with the protocols, we state some theorems that connect per-
mutations, group actions and permutation matrices. This connections will
be used in the rest of the chapter to build different types of protocols.

Definition 4.1.1 (Permutation). A permutation is a bijective map from
{1, . . . , n} to {1, . . . , n} with n 2 N

Theorem 4.1.2. The set of permutations {� s.t. � : {1, . . . , n}! {1, . . . , n}}is
a group under the usual maps composition. Such group is denoted by S

n
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Proof. The composition of bijective maps is associative, the composition of
any permutation � with the identity permutation is � itself and, since the
permutation are bijective there exists the inverse ��1 for all � 2 S

n

. Thus
S
n

is a group.

Permutations and Group Actions

First we define the concept of group action.

Definition 4.1.3 (Group Action). Given a group G and a set X, a group
action is a function:

G⇥X ! X

(g, x)! g · x
such that it verifies:

• 1

G

· x = x for all x 2 X

• g · (h · x) = (gh) · x for all g, h 2 G and for all x 2 X

This definition can be interpreted in the following way, for every element g,
there is a map from X to X. As proved in the following lemma, such map is
bijective and hence it can be seen as a permutation on X.

Lemma 4.1.4. Given a group G and a group action of G over the finite set
X, then for all g 2 G the map

 
g

: X ! X

x ! g · x
is bijective.

Proof. Indeed suppose that  
g

is not injective, i.e. there exists x, y such
that x 6= y and g · x = g · y. Then by associativity of the group action
x = (g�1g) · x = g�1 · (g · x) = g�1 · (g · y) = g�1g · y = y. Contradiction. So
 
g

is injective and hence bijective since X is finite.

This fact allows us to see any group G for which a group action on {1, . . . , n}
is defined, as a subset of S

n

. However to see such group as a subgroup of
S
n

of the same cardinality of G we need an additional property of the group
action:
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Definition 4.1.5 (Transitive Group Action). A group action is transitive if
for all x, y 2 X there exists g 2 G such that g · x = y

Now the following theorem holds:

Theorem 4.1.6. Consider a group G of cardinality n that acts transitively
on {1, . . . , n}. Then G is isomorphic (as group) to a subgroup of S

n

. Such
isomorphism is induced by the group action.

Proof. Consider the map ' defined as:

' : G ! S
n

g ! ⌧

where ⌧ is defined by ⌧(i) = j if and only if g · i = j.
Such map is well defined since the map

 
g

: X ! X

x ! g · x
in bijective. Moreover the map ' is injective. Indeed suppose that '(g) =
⌧ = � = '(h). Then for all x 2 X,

g · x = h · x) h�1g · x = x

Since the action is transitive by the Burnside lemma the only element with
fixed points is the identity. Hence

h�1g = 1

G

) g = h

Finally by the properties of the group action, if ⌧ = '(g), � = '(h) then
'(gh) = ⌧ � �, '(1

G

) = 1

Sn and if '(g) = ⌧ then '(g�1

) = ⌧�1, thus the
image of ' is a subgroup of S

n

Clearly one can argue that such a transitive action may not exist, however
the next property guarantees us that we can always define a transitive action
on {1, . . . , n} for a group of cardinality n, just using the properties of the
operation of the group.

Proposition 4.1.7. Given any group G of cardinality n, then a transitive
group action of G on {1, . . . , n} can be defined.
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Proof. List of the elements of G = {g
1

, . . . , g
n

}. Then define:

G⇥ {1, . . . , n} ! {1, . . . , n}
(g, x) ! y

where y is such that gg
x

= g
y

. Clearly 1

G

· x = x for all x 2 {1, . . . , n}
and g · (h · x) = gh · x for all g, h 2 G and x 2 {1, . . . , n}. Moreover for all
a, b 2 {1, . . . , n} we have g · a = b for g = g

b

g�1

a

and hence such action is
transitive.

Hence, combining theorem 4.1.6 and proposition 4.1.7 we have that:

Corollary 4.1.8. Any group G of cardinality n is (isomorphic to) a subgroup
of S

n

Permutations and Permutation Matrices

Now we relate permutations with matrices. Several equivalent definitions of
a permutation matrix can be done. Not surprisingly, we will have a one to
one correspondence between permutation matrices and permutations.

Definition 4.1.9 (Permutation Matrix). A matrix M 2M(n,F
2

) is called a
permutation matrix if it can be obtained from the identity matrix by permuting
its rows according to a permutation � 2 S

n

. Equivalently M is a permutation
if it has exactly one non-zero component in every row and in every column
and such components are all equal to 1.

Theorem 4.1.10. The set {P 2M(n,F
2

) : P is a permutation matrix} is
a group under usual matrix multiplication. Such group is denoted by P(n)

Proof. Clearly the identity matrix is a permutation matrix and the matri-
ces multiplication is associative. Moreover one can checks directly that the
product of two permutation matrices is still a permutation matrix and that if
a permutation matrix is obtained permuting the rows of the identity accord-
ing to �, the inverse can be obtained by permuting the rows of the identity
according to ��1.

Theorem 4.1.11. The group P(n) is isomorphic to S
n

Proof. The proof is trivial since every permutation matrix is uniquely defined
by a permutation and viceversa. Moreover the matrices multiplication of
P(n) corresponds to the composition of permutations of S

n

.
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4.2 Cut and Choose-based Protocol

Aim

The aim of this protocol is to allow P to prove that, given two n-vectors x
and y of committed values a and b, he knows a permutation ⌧ , that applied
to the indices of the components sends a to b.

Relation

Our public input will be a public key pk 2 PK and two n-vectors of commit-
ments x, y 2 G⇥ . . .⇥G while the witness will be the two vectors of values
a, b 2 Fn

q

, the n-vectors of random elements r, r0 2 Fn

q

that hide those values
and the permutation ⌧ 2 S

n

. More precisely we say that (x, w) 2 R if

x = (pk, x, y) and w = (a, r, b, r0, ⌧)

such that for all i 2 {1, . . . , n}

x
i

= commit

pk

(r
i

, a
i

), y
i

= commit

pk

(r0
i

, b
i

), ⌧(i) = j if and only if a
i

= b
j

.

Protocol

Protocol 4.2.1. Consider the relation R as before, a pair of PITMs (P, V )

and the following protocol:

Public input (pk, x, y)

Private input (a, r, b, r0, ⌧)

Interaction
1. P selects � 2

R

S
n

P selects for all i, s
i

2
R

F
p

P computes z
i

= Com(a
�(i)

, s
i

)

P sends (z
1

, . . . , z
n

) to V .
2. V selects e 2

R

{0, 1}
V sends e to P
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3. if e = 0,
P computes for all i, t

i

= s
i

� r
�(i)

P sends � and t
1

, . . . , t
n

if e = 1,
P computes for all i, t0

i

= s
i

� r
�⌧

�1
(i)

P sends �⌧�1 and t0
1

, . . . , t0
n

4. For all i, V checks either

z
i

?

= x
�(i)

· Com(t
1

, 0)

or
z
i

?

= x
�⌧

�1
(i)

· Com(t0
1

, 0)

Theorem 4.2.2. The pair (P, V ) as described in protocol 4.2.1 is a ⌃-
protocol for relation R.

Proof. This comes directly from theorem 2.4.3.

Proposition 4.2.3. The protocol 4.2.1 has a communication cost of O(n)
with a cheating probability of 1

2

or O(n2

) if we want a cheating probability
negligible in n.

Proof. (P,V) has to communicate

(z
1

, . . . , z
n

, e, h, t
1

, . . . , t
n

)

or
(z

1

, . . . , z
n

, e, g�1h, t0
1

, . . . , t0
n

).

Thus the communication cost is O(n). If we want a cheating probability
negligible in n we have to repeat the protocol n times, thus the final cost
would be O(n2

).

4.3 Permutation Matrix-based Protocol

Aim

In this section we will use the presentation of a permutation as a permutation
matrix to prove that two given two n-vectors of commitments x and y, the
n-vectors a and b hidden by them are one the permutation of the other.
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This protocol will be composed of two main steps: the verification of the
presentation (i.e. that the committed n ⇥ n matrix M hides a permutation
matrix P ) and the verification of the multiplication (i.e Mx hides the same
vector hidden by y). These steps will be performed with the protocols 3.6.1
and 3.3.1

Relation

Our public input will be a public key pk 2 PK, two n-vectors of commitment
x, y 2 G ⇥ . . . ⇥ G and a matrix of commitments M 2 M(n,G) while
the witness will be the two vectors of values a, b 2 Fn

q

, the n-vectors of
random elements r, r0 2 Fn

q

that hide those values, the permutation matrix
Q 2 M(n,F

q

) hidden by M and the corresponding matrix S of random
values that hides it. More precisely we say that (x, w) 2 R if

x = (pk, x, y,M) and w = (a, r, b, r0, Q, S)

such that for all i 2 {1, . . . , n}

x
i

= commit

pk

(r
i

, a
i

), y
i

= commit

pk

(r0
i

, b
i

)

for all i, j 2 {1, . . . , n}

M
ij

= commit

pk

(S
ij

, Q
ij

)

and
Qa = b

Protocol

Protocol 4.3.1 (Permutation Matrix based Protocol). Consider the relation
R as defined before, a pair of PITM (P, V ) and the following protocols run
in parallel with the same challenge e 2 F

q

:

Public Input: (pk, x, y,M)

Private Input: (a, r, b, r0, Q, S)

Interaction:
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1. (a) For all i 2 {1, . . . , n}, (P, V ) runs the protocol 3.6.1 on public
input (pk,M

i

) and private input (k
i

, S
i

), where M
i

and S
i

are
the ith rows of M and S and k

i

is the column index of the
non-zero component of the ith row of Q.

(b) For all j 2 {1, . . . , n}, (P, V ) runs the protocol 3.6.1 on public
input (pk,M

j

) and private input (k
j

, S
j

), where M
j

and S
j

are
the jth columns of M and S and k

j

is the row index of the
non-zero component of the jth column of Q.

2. For all i 2 {1, . . . , n}, (P, V ) runs the protocol 3.3.1 on public in-
put (pk,M

i

, x, y
i

) and private input (Q
i

, S
i

, x, r, r0
i

), where M
i

, Q
i

and S
i

are the ith rows of M,Q and S.

Theorem 4.3.2. The pair (P, V ) as described in protocol 4.3.1 is a ⌃-
protocol for relation R.

Proof. The theorem comes from the fact that we are simply running in par-
allel subprotocols that we proved to be ⌃-protocols

Proposition 4.3.3. The protocol 4.3.1 has a communication cost of O(n2

)

Proof. (P, V ) is running 2n times the protocol 3.6.1 of cost O(n) and n
times the protocol 3.3.1 of cost O(n), hence the total communication cost is
O(n2

).

4.4 DFT-based Protocol

Discrete Fourier Transform

Definition 4.4.1 (Discrete Fourier Transform). Suppose q is prime and sup-
pose that n|q�1, then we define as Discrete Fourier transform over the finite
field F

q

, and we call it D
n

, the function:

D
n

: F
q

[X]n�1

!
nM

i=1

F
q

f ! (f(�0

), f(�1

), . . . , f(�n�1

))

where � is such that �n

= 1 and �k 6= 1 if k < n.

Proposition 4.4.2. D
n

is an isomorphism of F
q

-vector spaces.
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Proof. It comes directly from theorem 3.7.2 setting for all i 2 {1, . . . , n},
x
i

= �i�1.

Observation 4.4.3. Given an element (x
0

, . . . , x
n�1

) 2 Fn

q

, we can see it as
the coefficient-vector of a polynomial in F

q

[X]n�1

. Hence we can apply the
Discrete Fourier transform to it and we get:

D
n

: Fn

q

! Fn

q

(x
0

, . . . , x
n�1

) ! (x0
0

, . . . , x0
n�1

)

where

x0
i

=

n�1X

j=0

x
j

�ij.

Definition 4.4.4. Using observation 4.4.3 we can define D
n

as the matrix:
0

BBBBBBB@

�0 �0 �0 · · · �0

�0 �1 �2 · · · �(n�1)

�0 �2 �4 · · · �2(n�1)

...
...

... . . . ...
�0 �(n�2) �2(n�2) · · · �(n�1)(n�2)

�0 �(n�1) �2(n�1) · · · �(n�1)

2

1

CCCCCCCA

or more synthetically (b
ij

) = (�(i�1)(j�1)

)

Proposition 4.4.5. The matrix that defines D
n

has inverse:

1

n

0

BBBBBBB@

�0 �0 �0 · · · �0

�0 ��1 ��2 · · · ��(n�1)

�0 ��2 ��4 · · · ��2(n�1)

...
...

... . . . ...
�0 ��(n�2) ��2(n�2) · · · ��(n�1)(n�2)

�0 ��(n�1) ��2(n�1) · · · ��(n�1)

2

1

CCCCCCCA

or more synthetically (c
ij

) =

1

n

(��(i�1)(j�1)

)

Proof. Consider the matrix product (d
ij

).

d
ij

=

1

n

nX

k=1

b
ik

· c
kj

=

1

n

n�1X

k=0

�k(i�j)
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hence we have

d
ij

=

8
><

>:

1

n

P
n�1

k=0

�0

= 1 if i = j

1

n

P
n�1

k=0

�k(i�j)

= 0 if i 6= j

Where the last holds because �n

= 1, �(i�j) 6= 1 for all i, j 2 {1, . . . , n}, i 6= j
and

1

n

n�1X

k=0

�kt

=

1� (�(i�j)

)

n

n(1� �(i�j)

)

=

1� 1

(i�j)

n(1� �(i�j)

)

= 0

Rotation and DFT

Now we restrict our initial problem to the case of rotations and we see how
use the properties of the DFT to construct a protocol that solves it, using
the protocols of chapter 3.

Definition 4.4.6 (Rotation). A rotation � is a permutation that for all
i 2 {1, . . . , n} satisfies:

�(i) = i+ r mod n

where r 2 Z
n

.

Proposition 4.4.7. Consider two vectors (x
0

, . . . , x
n�1

) and (y
0

, . . . , y
n�1

)

such that for all i 2 {0, . . . , n� 1}, x
i

= y
�(i)

for a rotation �. Then we have

y0
k

= ↵kx0
k

8k 2 {1, . . . , n}

where ↵ = �r and r is such that �(i) = j + r mod n.

Proof. We have

y0
k

=

n�1X

j=0

y
j

�kj

=

n�1X

j=0

x
j�r

�kj

=

n�1X

i=0

x
i

�k(i+r)

= ↵kx0
k
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Now suppose that we have two vectors

x = (commit

pk

(r
a0 , a0), . . . , commitpk(ran�1 , an�1

))

y = (commit

pk

(r
b0 , b0), . . . , commitpk(rbn�1 , bn�1

))

of committed elements a
i

, b
i

2 F
q

such that for all i 2 {0, . . . , n�1} a
i

= b
�(i)

for a rotation �.
Since � is public and the DFT is F

q

-linear, a verifier can compute:

x0
= (

n�1Y

j=0

x�

0j

j

, . . . ,
n�1Y

j=0

x�

(n�1)j

j

) =

= (Com(

n�1X

j=0

r
aj�

0j,
n�1X

j=0

a
j

�0j

), . . . ,Com(

n�1X

j=0

r
aj�

(n�1)j,
n�1X

j=0

a
j

�(n�1)j

)) =

= (Com(r0
a0
, a0

0

), . . . ,Com(r0
an�1

, a0
n�1

))

and

y0 = (

n�1Y

j=0

y�
0j

j

, . . . ,
n�1Y

j=0

y�
(n�1)j

j

) =

= (Com(

n�1X

j=0

r
bj�

0j,
n�1X

j=0

b
j

�0j

), . . . ,Com(

n�1X

j=0

r
bj�

(n�1)j,
n�1X

j=0

b
j

�(n�1)j

)) =

= (Com(r0
b0
, b0

0

), . . . ,Com(r0
bn�1

, b0
n�1

))

Now if a prover can prove to the verifier that for all i 2 {0, . . . , n� 1}:

x0
i

= (y0
i

)

↵

i (4.1)

keeping ↵ secret, then he would also prove to the verifier that

a0
i

= (b0
i

↵i

)

and by proposition 4.4.7 that

a
i

= b
i+r

without revealing r (and hence the rotation �).
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The main idea

The ⌃-protocol to prove equation (4.1) is described in the article [6] and it
can be done using the multiplication protocol. However we are much more
interested in the idea behind this construction.

Idea 4.4.8. To prove a relation between x and y de Hoogh, Schoenmakers,
S̆korić and Villegas find a way to translate the problem into a domain where
such relation can be proved component-wise and protocols to do it were already
known. The fact that they use the DFT for that is not so important. Every
isomorphismfrom the usual domain to a domain in which we can use known
protocols can be applied in the same way.

In the following section we will introduce some notions from representation
theory that allow us to see the DFT from a different point of view and then
to generalize it easily.

4.5 A new point of view
All the procedures described in the previous section can be interpreted in
a different way, that suggests a good strategy to generalize the idea of [6],
applying it not only to the rotation but to any permutation of a given group
(seen as a subgroup of S

n

). In this section we will state some basic results of
representation theory of finite groups (the proofs can be found in [3] or any
other basic book on finite representation theory), that will allow us to give
a new point of view on the DFT-based protocol.

Definition 4.5.1 (Group Algebra). Let G be a finite group and K a field, we
define the group algebra K[G] as the vector space over K with basis G. Hence
every element x 2 K[G] can be written as a formal sum of the following form:

x =

X

g2G

x
g

g

with x
g

2 K, g 2 G

Proposition 4.5.2. The group algebra is a ring with component-wise addic-
tion and multiplication defined as

x·y =

 
X

g2G

x
g

g

!
·
 
X

h2G

y
h

h

!
=

X

g2G

 
X

h2G

(x
g

y
h

)(gh)

!
=

X

g2G

 
X

h2G

x
gh

�1y
h

!
g
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Theorem 4.5.3. Let G be a finite group and F
q

a finite field of characteristic
q such that |G| does not divide q.Then

F
q

[G]

⇠
=

tM

i=1

M(n
i

,F
q

ki )

as algebras and
tX

i=1

n2

i

k
i

= dimFq Fq

[G] = |G|

Observation 4.5.4. Since the isomorphism of theorem 4.5.3 is an isomor-
phism of algebras, it maps elements of F

q

[G] in
L

t

i=1

M(n
i

,F
q

ki ) in such a
way that the operations are respected. Thus the product of two elements
in F

q

[G] is mapped in the component-wise product (the components are the
matrices) of the image of the two elements.

The isomorphism of theorem 4.5.3 can be founded explicitly, if the group
G is known. In fact it depends on the irreducible representations and on
the irreducible characters of the group G. The study of how to compute this
character and the corresponding isomorphism is beyond the aim of this thesis,
however many books about this topic can be found in the literature and there
are even computer algebra packages, such as the GAP package Wedderga,
(more information can be founded here [14]) that can do the computations.

Notation 4.5.5. From now on we will denotes with � this isomorphism of
algebras and we will assume that is F

q

linear. Moreover we will refer toL
t

i=1

M(n
i

,F
q

ki ) as to the Wedderburn decomposition of F
q

[G]

Proposition 4.5.6. If G is abelian and |G| divides q � 1, then

F
q

[G]

⇠
=

F|G|
q

Proposition 4.5.7. Suppose that G is a cyclic (hence abelian) finite group
of order n and that F

q

is a finite field of characteristic q. Suppose also that
n|q � 1. Then the isomorphism

� : F
q

[G]! Fn

q

is the Discrete Fourier Transform.
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Loosely speaking the proposition 4.5.7 holds because the irreducible charac-
ters of a cyclic group of order n are powers of a primitive n-root of unit.
Thus � and D

n

map the element (x
0

, . . . , x
n�1

) (seen as the coefficient vector
of an element of F

q

[G] for � and as a coefficients vector of a polynomial of
degree at most n� 1 for D

n

) in the same element (x0
0

, . . . , x0
n�1

) 2 Fn

q

.

Now it should be clear that we can look at the solution of de Hoogh, Schoen-
makers, S̆korić and Villegas in a different way. In fact we can interpret a
and b as the coefficients vectors of two elements in the group algebra F

q

[G],
D

n

(a) and D
n

(b) as �(a) and �(b), (↵0, . . . ,↵n�1

) as �(�) and the proof that
a
i

= ↵ib
i

as the proof that �(b) ⇤ �(�) = �(a). The advantage of looking at
this method from the point of view of representation theory is that it is nat-
ural to ask if we can use a similar method, when G is not cyclic. In fact this
would mean that we can prove in zero-knowledge, not only the rotation of a
vector, but also a generic permutation, provided that it is in the established
group G.

Observation 4.5.8. There are many differences that we have to face when
G is not cyclic.

• At the beginning we will only consider groups G with cardinality equal
to the number n of components of our starting vector. In this way the
group algebra F

q

[G] has dimension n over F
q

and hence the identifica-
tion of the starting vector with an element of F

q

[G] is straightforward.
Later we will give some conditions to use groups that have cardinality
greater then n.

• The operation that we have to perform in the Wedderburn decom-
position is not just the multiplication of a root of unit, but we have
to multiply by something different, namely by the element that will
correspond (in a way that we will explain later) in the Wedderburn
decomposition to the permutation � that we want to apply. Hence we
have to use the protocols to perform the multiplication proof and the
inner product proof.

• The Wedderburn decomposition contains not only copies of F
q

but also
field extensions F

q

ki . Hence we have to use the section 3.7 protocols
to perform the multiplication proof and the inner product proof in the
field extension.
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• The Wedderburn decomposition contains not only extension of our
field, but also matrix algebras on such extensions. Hence we have to
use the matrix multiplication protocol.

4.6 Wedderburn-based Protocol
Suppose that we have two vectors x, y 2 Fn

q

and that there exists a permuta-
tion ⌧ : {1, . . . , n}! {1, . . . , n} such that x

i

= y
⌧(i)

. Moreover suppose that
we have a group G = {g

1

, . . . , g
n

} of cardinality n such that there exists a
g 2 G that verifies the following:

gg
i

= g
j

if and only if ⌧(i) = j

Basically we are saying that if we see G as a subgroup of S
n

as in section 4.1,
then ⌧ 2 G. Then, if we see x, y and g as elements of F

q

[G] the following
proposition holds:

Proposition 4.6.1. Suppose that we have x =

P
n

i=1

x
gigi and y =

P
n

i=1

y
gigi

with x, y 2 F
q

[G], such that y
g·gi = x

gi8i 2 {1, . . . , n}. Then

g · x = y

where · is the usual multiplication in F
q

[G]

Proof. By the multiplication in the group algebra we have:

g · x = g ·
nX

i=1

x
gigi =

nX

i=1

x
giggi =

nX

i=1

x
g

�1
gi
g
i

=

nX

i=1

y
gigi = y

This proposition allows us to interpret the permutation ⌧ 2 S
n

of a vector
x 2 Fn

q

as the multiplication of the corresponding element x̄ =

P
n

i=1

x
gigi in

the group algebra F
q

[G] with the element g of the group G corresponding
to ⌧ (provided that it is in the group). However proving multiplications in
the group algebra is not efficient. Thus, as for the DFT, we will consider the
relation between x̄, ȳ and g in the Wedderburn decomposition of F

q

[G]. In
fact, since � is an isomorphism of algebras, the following corollary holds:
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Corollary 4.6.2. Suppose that we have x =

P
n

i=1

x
gigi and y =

P
n

i=1

y
gigi

with x, y 2 F
p

[G], such that y
g·gi = x

gi8i 2 {1, . . . , n}. Then

�(g) ⇤ �(x) = �(y)

where ⇤ is the component-wise product in
L

t

i=1

M(n
i

,F
q

ki ) (such components
are matrices).

Before describing formally the protocol, we will set some notations:

Notation 4.6.3.

• Given an homomorphic commitment scheme, any F
q

linear map ⇣ in-
duces a map that can be applied to committed values. We will denote
such induced map with b⇣ without describing it explicitly.

• Sometimes we will apply a function with domain F
q

[G] to an element
a 2 Fn

q

. We assume to be applying it to
P

n

i=1

a
i

g
i

.

• We can see any element g 2 G as the element
P

n

i=1

a
i

g
i

2 F
q

[G] where
a
i

= 0 if g 6= g
i

and a
i

= 1 if g = g
i

. We will denote by ḡ the vector
(a

1

, . . . , a
n

) 2 Fn

q

• In the following protocols we will have the group G selected by the
generator of the commitment scheme and the group of permutations
H.

Relation

Our public input will be a public key pk 2 PK, two n-vectors of commitments
x, y 2 G⇥. . .⇥G and a group H = {h

1

, . . . , h
n

}, while the witness will consist
of the two vectors of values a, b 2 Fn

q

, the n-vectors of random elements
r, r0 2 Fn

q

that hide those values and the element h
k

2 H that corresponds
to the permutation. More precisely we say that (x, w) 2 R if

x = (pk, x, y,H) and w = (a, r, b, r0, h
k

)

such that for all i 2 {1, . . . , n}
x
i

= commit

pk

(r
i

, a
i

), y
i

= commit

pk

(r0
i

, b
i

)

a
i

= b
j

if and only if h
k

h
i

= h
j
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Protocol

Protocol 4.6.4. Consider the relation R as defined before, a pair of PITM
(P, V ) and the following protocols run in parallel with the same challenge
e 2 F

q

:

Public Input: (pk, x, y,H)

Private Input: (a, r, b, r0, h
k

)

Interaction:
1. P computes the vector ¯h

k

(observe that the non zero component
will be k).
For all i 2 {1, . . . , n}, P selects w

i

2
R

F
q

For all i 2 {1, . . . , n}, P computes �
i

= Com(w
i

, ( ¯h
k

)

i

)

P sends � to V
(P, V ) uses the protocols 3.6.1 on public input (pk, �) and private
input (k, w) to checks that � hides an element of H.

2. V computes b�(x), b�(y) and b�(�)
For every component i 2 {1, . . . , t} of the Wedderburn decomposi-
tion of F

q

[H], (P, V ) runs the protocol 3.4.1 on public input

(pk, (b�(x))
i

, (b�(�))
i

, (b�(y))
i

)

and private input

((�(a))
i

, (�(r))
i

, (�( ¯h
k

))

i

, (�(w))
i

, (�(r0))
i

)

to check the component-wise product in the Wedderburn decompo-
sition, where the components are matrices

Theorem 4.6.5. The pair (P, V ) as described in protocol 4.6.4 is a public-
coin relaxed ⌃-protocol for relation R.

Proof. All the properties of the protocol 4.6.4 comes from protocol 3.6.1 and
protocol 3.4.1 since all the other steps are non iterative, thus it is a public-
coin relaxed ⌃-protocol for relation R.

Proposition 4.6.6. The protocol 4.6.4 has a communication cost of O(n)
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Proof. The step 1 has communication cost of O(n) since we are using once
the protocol 3.6.1. In the second step we perform a number of matrix mul-
tiplication proofs equal to the number of components in the Wedderburn
decomposition. Such matrices have entries in F

q

ki and dimension n
i

. But by
theorem 4.5.3

tX

i=1

n2

i

k
i

= |G| = n

Hence the total cost is O(n).

4.7 Generalized Wedderburn-based Protocol
The protocol 4.6.4 has the big advantage over the protocol presented in [6]
that can be used not just for proving rotations, but also general permutations.
However, once that the group G has been chosen the number of possible per-
mutations is always n, as the number of possible rotations. Depending on the
application, it can be useful to be able to use larger groups of permutations.
The problem is the following: in protocol 4.6.4 it is trivial to see an element
x = (x

1

, . . . , x
n

) of Fn

q

as an element of the group algebra F
q

[G] just setting
x̄ =

P
n

i=1

x
i

g
i

. This cannot be done when |G| > n. Thus we need a way
to embed Fn

q

in F
q

[G]. Moreover, to build protocol, we also need a map to
“come back” that respects the multiplication in the group algebra. To define
such embedding we will first define a proper embedding of X in G, where
the terms “proper” denotes the fact that there is a map from G to X that
respects the multiplication in G. Formally we have the following definition:

Definition 4.7.1 (Proper embedding). Let G be a group acting on X =

{1, . . . , n}. We call a proper embedding of X in G a pair of functions
� : G! X and ⇢ : X ! G that satisfy

�(g · ⇢(i)) = g(i)

for all g 2 G and i 2 X.

The following theorem gives us a sufficient and necessary condition to have
a proper embedding of X in G.

Theorem 4.7.2. Given a group G and the set X = {1, . . . , n}, a proper
embedding of X in G exists if and only if there exists a transitive group
action of G on X.
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Proof. Suppose that a proper embedding of X in G exists. For any i and
any j consider g = ⇢(j)⇢(i)�1. We have:

g(i) = �(g · ⇢(i)) = �(⇢(j)⇢(i)�1 · ⇢(i)) = �(1
G

· ⇢(j)) = 1

G

(j) = j

Hence for every i, j 2 X there exists a g 2 G such that g(i) = j. Thus the
action is transitive.
Now suppose that there exists a transitive action of G on X. For all i in X
choose an element of G that maps 1 to i and call it g

i

. Such elements exists
by transitivity. Define the proper embedding as:

�(g) = g(1)

⇢(i) = g
i

⇢ is well defined by the fact that we choose only one g for each i. � is well
defined because if g

1

= h
1

then

�(g) = g(1) = h(1) = �(h)

moreover it is defined over the whole G since the only g that send 1 in 1 is
the identity. Finally

�(g · ⇢
i

) = �(gg
i

) = gg
i

(1) = g(i)

hence � and ⇢ are a proper embedding.

Now, starting from a proper embedding of X in G we construct a proper
embedding of Fn

q

in F
q

[G] as follows:

Definition 4.7.3. Let � and ⇢ be a proper embedding of X in G, then we
define a proper embedding of Fn

q

in F
q

[G] as the pair of functions:

�0
: Fn

q

! F
q

[G]

(x
1

, . . . , x
n

) !
X

g2G

x
�(g)

g

and

⇢0 : F
q

[G] ! Fn

q

(

P
g2G x

g

g) ! (x
⇢(1)

, . . . , x
⇢(n)

)
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Proposition 4.7.4. �0 and ⇢0 are F
q

-linear and

⇢0(g · �0
(x)) = (x

g

�1
(1)

, . . . , x
g

�1
(n)

)

Proof. Clearly they are both F
q

-linear by definition. Then

⇢0(g · �0
(x)) = ⇢0(g ·

X

h2G

x
⇢(h)

h) = ⇢0(
X

h2G

x
g

�1
⇢(h)

h) = (x
g

�1
(1)

, . . . , x
g

�1
(n)

).

Relation

Our public input will be a public key pk 2 PK, two n-vectors of commitments
x, y 2 G ⇥ . . . ⇥ G and a group H = {h

1

, . . . , h
m

} of cardinality m acting
transitively on X = {1, . . . , n}, while the witness will be the two vectors of
values a, b 2 Fn

q

, the n-vectors of random elements r, r0 2 Zn

q

that hide those
values and the element h

k

2 H that corresponds to the permutation. More
precisely we say that (x, w) 2 R if

x = (pk, x, y,H) and w = (a, r, b, r0, h
k

)

such that for all i 2 {1, . . . , n}

x
i

= commit

pk

(r
i

, a
i

), y
i

= commit

pk

(r0
i

, b
i

)

a
i

= b
j

if and only if h
k

· i = j

Protocol

Protocol 4.7.5. Consider the relation R as defined before, a pair of PITM
(P, V ) and the following protocols run in parallel with the same challenge
e 2 F

q

:

Public Input: (pk, x, y,H)

Private Input: (a, r, b, r0, h
k

)

Interaction:
1. P computes ā = �0

(a), ¯b = �0
(b), r̄ = �0

(r) and r̄0 = �0
(r0).
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2. P and V compute both x̄ =

b�0
(x) and ȳ =

b�0
(y)

3. P computes the vector ¯h
k

(observe that the non zero component
will be the kth).
For all i 2 {1, . . . ,m}, P selects w

i

2
R

F
q

For all i 2 {1, . . . ,m}, P computes �
i

= Com(w
i

, ( ¯h
k

)

i

)

P sends � to V
(P, V ) uses the protocol 3.6.1 on public input (pk, �) and private
input (k, w) to check that � hides an element of H.

4. V computes b�(x̄), b�(ȳ) and b�(�)
For every component i 2 {1, . . . , t} of the Wedderburn decompo-
sition of F

q

[H], (P, V ) runs the protocol 3.4.1 (extended to works
on F

q

extensions) on public input

(pk, (b�(x̄))
i

, (b�(�))
i

, (b�(ȳ))
i

)

and private input

((�(ā))
i

, (�(r̄))
i

, (�( ¯h
k

))

i

, (�(w))
i

, (�(r̄0))
i

)

to check the component-wise product in the Wedderburn decompo-
sition, where the components are matrices

Theorem 4.7.6. The pair (P, V ) as described in protocol 4.7.5 is a public-
coin relaxed ⌃-protocol for relation R.

Proof. All the properties of the protocol 4.7.5 come from protocol 3.6.1 and
protocol 3.4.1 since all the other steps are non iterative, thus it is a public-
coin relaxed ⌃-protocol for relation R.

Proposition 4.7.7. The protocol 4.7.5 has a communication cost of O(|H|)
Proof. Step 1 and Step 2 do not require communication. Step 3 has com-
munication cost of O(|H|) since we are using once the protocol 3.6.1. In the
fourth step we perform a number of matrix multiplication proofs equal to
the number of components in the Wedderburn decomposition. Such matri-
ces have entries in F

q

ki and dimension n
i

. But by theorem 4.5.3

tX

i=1

n2

i

k
i

= |G|

Hence the total cost is linear in O(|H|).
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We would like to underline that we proved that the existence of a transitive
action of H on X = {1, . . . , n} is a necessary condition (Theorem 4.7.2).
Hence to use the approach described here, G must contain a subgroup of
order n and hence n divides |G|.

4.8 Final considerations
Let us summarize the main features of all the solutions that we provide:

Cut and Choose based: It is a ⌃-protocol, with communication cost O(n2

)

and cheating probability 1

2

n . It works for any permutation in S
n

.

Permutation matrix based: It is a ⌃-protocol, with communication cost
O(n2

) and cheating probability 1

p

. It works for any permutation in S
n

.

Wedderburn based: It is a public coin relaxed ⌃-protocol, with commu-
nication cost O(n) and cheating probability negligible in `. It works
for any permutation in a group H of order n.

Generalized Wedderburn based: It is a public coin relaxed ⌃-protocol,
with communication cost of O(|H|) and cheating probability negligible
in `. It works for any permutation in a group H of order m.

The permutation matrix based protocol is asymptotically better than Cut
and Choose. In fact, we can require p to be very large and this makes the
commitment scheme more secure and the cheating probability smaller in the
permutation matrix based protocol, while it only affects the on commitment
security in the other case.
The advantage of the Wedderburn based protocol should be clear: it requires
a smaller communication cost, even if at the expense of the number of per-
mutations that can be used.
Finally the generalization is helpful for groups of cardinality between n and
n2 since, beyond this bound, it loses the advantage on the communication
cost that it has with respect to the permutation matrix protocol.
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