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1 Introduction

1.1 The Idea of Secret Sharing

A secret sharing (SS) scheme is a method used to distribute a secret (for in-
stance, a bit-string), among a determined group of players, each of whom re-
ceives a share of the secret. The goal of the method is to allow any sufficiently
large subset of the players to reconstruct the secret, while leaking no knowledge
thereof to individuals or small groups of players. This concept has proved very
useful both practically, as means to keep important information both from over-
exposure and from possible loss, as well as theoretically, as a basis to general
multi-party secure protocols.

As examples of practical uses, a bank can program its safe to open only
when at least three coworkers enter their passwords; or a computational system
may split a file into shares, that are stored in hard drives physically distant one
from the other, so that it is highly unlikely for a thief to be able to seize more
than one of the shares, but a single share lost by the system to the thief neither
reveals any useful information to the latter nor prevents the recovery of the file
by the former.

A SS scheme is robust if it offers protection not only against loss but also
against modification of some of the shares, and still guarantees a correct recon-
struction with high probability. We focus on schemes tolerating a maximum
amount of modified shares (we study what this maximum value is), and with a
failure probability that is exponentially small over a security parameter. Nat-
urally, the size of each share grows as a function of the number of players and
the security parameter.

The concept of robust secret sharing (RSS) is closely related to that of
verifiable secret sharing (VSS). While RSS tolerates only corrupted players,
VSS in addition tolerates a corrupted dealer (the distributor of the shares), and
guarantees with a small error probability that the shares actually reconstruct a
unique secret. Notice that VSS is not in the scope of this paper, and we require
the dealer to be honest.

1.2 Our Contribution

We analyse RSS schemes that are information-theoretically secure. We prove
that any scheme with zero probability of failure requires more than 2/3 of the
players to be honest, while a scheme with an exponentially small probability
of failure requires only a majority of honest players. We also prove that the
average bit-length of a share is lower-bounded by the bit-length of the secret.

We introduce our new scheme in section 5, and compare its performance to
those of other common schemes. We consider for all schemes one same scenario
where an m-bit secret is shared among n = 2t + 1 players, t + 1 of whom are
honest, and the failure probability is required to be at most 2−λ, and obtain
the following results (the logarithmic terms will be ommited): The scheme by
Rabin and Ben-Or [13] is efficient (its algorithms run on polynomial time over
n) and its share size is m+O(n ·λ). On the other hand, the scheme by Cramer,
Fehr and Damg̊ard [5] is not efficient, but it offers an improved share size of
m+ O(n+ λ). The new scheme achieves simultaneously efficiency and a share
size of m+O(n+ λ).
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2 Preliminaries

2.1 Notation

R+ is the set of positive real numbers, N is the set of positive integers (thus 0
is excluded), and [n] is the set of the first n positive integers. Given a set A, a
positive integer n, a vector V = (v1, · · · , vn) ∈ An and an index subset I ⊂ [n],
we represent by VI the sub-vector (vi)i∈I ∈ A|I|; and for any element v ∈ A, we
denote by vn the vector in An where each coordinate equals v.

We refer by log(·) to the logarithm function with base 2, and by ln(·) to the
natural logarithm function. If K is a field, and t is a non-negative integer, we
denote by K[X]≤t the set of all polynomials with coefficients in K and degree
at most t.

2.2 Probabilistic Algorithms

The algorithms considered in this paper are always-halting, and may be deter-
ministic or probabilistic. A probabilistic algorithm has access to one or more
black boxes, each of which, when called upon, returns a truly random value
chosen uniformly from a specified finite domain. By definition, it is impossible
to gain any partial information about the next value a black box will return. A
run of a probabilistic algorithm is specified by its input plus the values returned
by all its black boxes; and, given a specific input, we can view the output of the
algorithm as a random variable. Finally, the definition of the algorithms in a
scheme may be public and available to any adversary, as we base the security
of the scheme solely on the randomness of the black boxes outputs.

2.3 Description of Model

In this paper, we consider information-theoretic security, i.e. security against an
adversary with unbounded computational capabilities. The dealer (the person
who holds a secret and computes and distributes the shares) and the recon-
structor (the person who collects the shares and computes a secret from them)
are not required to be share-holding players. They can be anybody, but both
must be honest. We focus on threshold schemes (i.e. any given subset of players
either knows everything or nothing about the secret, depending only on the size
of the subset). The adversary is free to corrupt any subset of players of a specific
size, and the secret chosen by the dealer to be shared may have any probability
distribution.

5



3 Secret Sharing

3.1 Definitions

Definition 3.1. A secret sharing (SS) scheme Ω is a tuple (n,A,B, SH,RE)
consisting of:

• A positive integer n, called the number of players;

• A finite set A with |A| ≥ 2, whose elements are called secrets;

• A finite set B, whose elements are called shares;

• An algorithm SH (usually probabilistic), called the sharing algorithm,
that takes as input a secret s ∈ A, and outputs a vector of n shares
(s1, · · · , sn) ∈ Bn; and

• An algorithm RE, called the reconstruction algorithm, that takes as input
a vector (s′1, · · · , s′n) ∈ (B ∪ {⊥})n, and outputs either a secret s′ ∈ A
or ⊥. Here, ⊥ is a fixed symbol, not contained in A ∪ B, that represents
a missing share in the input, and failure to reconstruct the secret in the
output.

We consider a model where there are n enumerated players P1, · · · , Pn, and
a SS scheme Ω = (n,A,B, SH,RE) publicly known to them. The model begins
with a sharing phase, where a dealer D arbitrarily picks a secret s ∈ A and
distributes it among the n players: each player Pi receives the share si out-
putted by SH from input s, while s itself remains unknown to them. At a later
reconstruction phase, a reconstructor R collects the shares from the players and
tries to retrieve the secret: he gives the collected shares as input to RE, and
hopes to receive the secret s as output. The behaviours of the players during
the reconstruction phase, and the corresponding results outputted by RE, are
to be analysed in the remainder of the paper.

Definition 3.2. Consider a SS scheme Ω = (n,A,B, SH,RE). For a given
secret s ∈ A, an index subset I ⊂ [n], and a share sub-vector W ∈ B|I|, we
define the matching probability PM (s, I,W ) as the probability that the sharing
algorithm outputs a vector SH(s) = V such that VI = W ; i.e. PM (s, I,W ) =
P [(SH(s))I = W ].

Since the players know how the sharing algorithm is defined, they can calcu-
late the matching probability function and use it to see what their shares reveal
about the secret. For instance, a group of players may compute what secrets
have the highest matching probability corresponding to their shares. The fol-
lowing properties of a SS scheme tell just how revealing its matching probability
is.

Definition 3.3. Consider a SS scheme Ω = (n,A,B, SH,RE) and integers t, r
satisfying 0 ≤ t < r ≤ n.

Ω is t-private if, for any index subset I ⊂ [n] of size |I| ≤ t, and any share
sub-vector W ∈ B|I|, the matching probability PM (s, I,W ) does not depend
on the secret s ∈ A.

Ω is r-reconstructible if, for any index subset I ⊂ [n] of size |I| ≥ r, any secret
s ∈ A, and any run of SH ouputting shares SH(s) = V , we obtain RE(V ′) = s,
where we define V ′ ∈ (B ∪ {⊥})n by V ′I = VI and V ′[n]\I = ⊥n−|I|.
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In other words, if Ω is t-private, for any subset of at most t players the
distribution probability of their shares is independent of the secret, and thus
their shares give zero information about the secret that generated them. And if
Ω is r-reconstructible, the shares of any r or more players automatically identify
the secret.

Definition 3.4. Consider a SS scheme Ω = (n,A,B, SH,RE).
For every index i ∈ [n], the i-th share range Bi of Ω is the subset of B

consisting of all possible values of the i-th coordinate of the outputs of SH,
over all possible inputs s ∈ A and all possible runs of SH.

The secret size and the share size of Ω are respectively lsecret = log |A| and
lshare = 1

n

∑n
i=1 log |Bi|.

The i-th share range is the set of all shares that the i-th player may receive,
and the secret size and share size of Ω are the average of the number of bits
required to represent, respectively, a secret or a share in a computational system.

A scheme with the properties of privacy and reconstructibility splits a secret
into several parts, and simultaneously grants access to large groups of players
and blocks access to small groups. In order to maximize this dual power of the
scheme, we would like to eliminate the middle ground, i.e. the situation where
a group receives only partial information about the secret. This maximization
however comes with a cost on the share size.

Definition 3.5. Let Ω be a SS scheme with n players. If there is an integer
0 ≤ t < n such that Ω is t-private and (t + 1)-reconstructible, Ω is called
threshold, or t-threshold.

Proposition 3.6. If the SS scheme Ω = (n,A,B, SH,RE) is threshold, then
|Bi| ≥ |A| for all i ∈ [n]; and in particular, |B| ≥ |A|, and lshare ≥ lsecret.

Proof. Suppose that a run of SH, for an unknown secret s ∈ A, outputs the
shares SH(s) = (si)i∈[n]. Let t be the number for which Ω is t-threshold, fix an
index i ∈ [n], and fix any subset of t players all distinct from Pi. By t-privacy,
their t shares give zero information about the secret s (so they deem all elements
of A possible), but by (t+ 1)-reconstructibility, knowledge of the share si ∈ Bi
would uniquely determine the secret to them. This defines a surjective function
from Bi to A (or to A ∪ {⊥}), and thus |Bi| ≥ |A|.

Definition 3.7. A threshold SS scheme Ω = (n,A,B, SH,RE) is ideal if
|A| = |B| (and consequently lshare = lsecret).

Next, we give two examples of ideal threshold SS schemes that are trivial
(in the sense that they are extreme cases).

Scheme 3.8. For any positive integer n and any finite set A with |A| ≥ 2, we
define the ideal 0-threshold SS scheme Ω = (n,A,A, SH,RE) as:

SH For input s ∈ A, output sn.

RE For input (s′i)i∈[n], if some s′i is not ⊥ then output s′i, otherwise output ⊥.

Scheme 3.9. For any positive integer n and any finite non-trivial group (G, ∗),
we define the ideal (n− 1)-threshold SS scheme Ω = (n,G,G, SH,RE) as:
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SH For input s ∈ G, output (si)i∈[n], where the shares si are picked at random
from G with the condition that s1 ∗ · · · ∗ sn = s.

RE For input (s′i)i∈[n], if some s′i = ⊥ then output ⊥, otherwise output
s′1 ∗ · · · ∗ s′n.

Notice that the previous examples are not exactly SS schemes, but rather
families of schemes, because they define a scheme for each value of one or more
parameters. Working with families of schemes permits to analyse the efficiency
of its algorithms. In this paper we equate the notion of efficiency with that of
polynomial time complexity.

Definition 3.10. Given a family of SS schemes indexed by a set C, {Ω(x)}x∈C ,
and a function ψ : C → R+, we say that the family is poly-time in ψ(x) if both
the sharing algorithms and the reconstruction algorithms of the family have
running times upper-bounded by a polynomial expression in ψ(x).

For instance, if G is any set of finite non-trivial groups, then we can use
the definition of scheme 3.9 to describe a family Ω(n,G) = (n,G,G, SH,RE)
indexed by the set N × G; and if besides G consists only of groups G whose
operations (including sampling random elements) can be performed in polyno-
mial time in log |G|, it can be proved that this family is poly-time in n log |G| =
n · lsecret.

When a family Ω(x) is given, and the index set is clear from the context, for
brevity we may refer to the whole family as a scheme, and say for instance that
the scheme is poly-time in some function ψ(x).

3.2 Shamir Scheme

Secret Sharing was invented by both Adi Shamir [16] and George Blakley [2]
independently in 1979. In what follows, we describe a non-trivial ideal threshold
scheme invented by Shamir, that relies on the Lagrange interpolation theorem.

Theorem 3.11 (Lagrange Interpolation Theorem). Let K be a field and t be a
non-negative integer, and let x0, ..., xt ∈ K be t+ 1 distinct points on K. Then
the map

φ : K[X]≤t → Kt+1

f 7→ (f(x0), ..., f(xt))

is a bijection, and its inverse is

φ−1(y0, ..., yt) = f(X) :=

t∑
j=0

yj
∏
k 6=j

X − xk
xj − xk

.

Scheme 3.12 (Shamir). For integers n, t, and a finite field K, satisfying 0 ≤
t < n < |K|, we define the Shamir SS scheme ΩS(t, n,K) = (n,K,K, SH,RE)
in the following way. Fix n+ 1 distinct points x0, x1, · · · , xn in the field K (this
is possible because n < |K|). Then define the algorithms:

SH For input s ∈ K, pick a random polynomial f(X) ∈ K[X]≤t with the
condition that f(x0) = s, and output (f(x1), · · · , f(xn)).
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RE For input (s′i)i∈[n], find an index subset I ⊂ [n] of size |I| = t+ 1 such that
s′i 6= ⊥ for all i ∈ I, or output ⊥ if such a subset cannot be found. Then,
compute the polynomial g(X) ∈ K[X]≤t for which g(xi) = s′i for all i ∈ I
(existence and uniqueness of such polynomial are guaranteed by Theorem
3.11). Finally, output g(x0).

Proposition 3.13. The Shamir SS scheme ΩS(t, n,K) = (n,K,K, SH,RE) is
t-threshold, ideal and poly-time in n log |K| = n · lsecret.

Proof. The (t + 1)-reconstructibility and the poly-time properties are evident
from the definition of the scheme, from Theorem 3.11, and from the fact that
the arithmetic in any finite field K can be performed in polynomial time in
log |K|. Also, if the scheme is threshold, the ideality property becomes aparent
from definition. Thus it only remains to prove t-privacy.

Fix a secret s ∈ K, a number 0 ≤ p ≤ t, an index subset I ∈ [n] of size |I| =
p, and a share sub-vector W ∈ Kp. The sharing algorithm SH, for input s, can
have |K|t distinct runs (one for each polynomial g(X) ∈ K[X]≤t s.t. g(x0) = s),
all equally probable, and only |K|t−p of them output a vector V such that VI =
W (again by Thm. 3.11). Therefore the matching probability, PM (s, I,W ) =
|K|t−p
|K|t = |K|−p, is independent of s. This completes the proof.

It is also worth mentioning another special property of the Shamir scheme.

Definition 3.14. A SS scheme Ω = (n,A,B, SH,RE) is linear if A and B
are abelian groups, and for any two secrets s, s′ ∈ A, the random variables
SH(s)+SH(s′) and SH(s+s′) have the same probability distribution over Bn.

Proposition 3.15. Shamir SS scheme ΩS(t, n,K) is linear.

The proof is direct from the definition and is not included.
The linearity property implies that for any two secrets s and s′, we always

obtain RE (SH(s) + SH(s′)) = s+ s′, and in general any linear transformation
on the secret produces the same transformation on the shares, and viceversa.
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4 Robust Secret Sharing

4.1 Definitions

A secret sharing scheme guarantees privacy against a small group of players,
and correct reconstruction against erasure of a small number of shares. Now
we expand our model to consider the possibility that some of the shares are
modified. This is, of course, a much greater attack, and for that reason we will
consider schemes admitting a small failure probability in the reconstruction.

Let’s define the possible behaviours of a player. An honest player receives
her share in the sharing phase, keeps it completely private and safe against
loss or modification, and delivers it to the reconstructor in the reconstruction
phase. A corrupted player, on the other hand, may communicate his share to
other corrupted players, and may pass a bogus share to the reconstructor. For a
t-threshold scheme, we will only study situations with up to t corrupted players.

In many applications of secret sharing, a player may become corrupted by
accident, such as channel noise or a system failure. However, for greater general-
ity, we suppose that there is an external player, called the adversary, who plots
an attack against a t-threshold scheme, with the intention to gain information
over the secret and prevent the correct recovery of it by the reconstructor. He
does so following some strategy, and has the ability to choose t players (who
will become corrupted), learn their shares, and modify or erase each of them
at will. No assumption about the computational capability of the adversary is
made.

Remark 4.1. Because of the simplified definitions in this paper, we require that
the adversary not have access to the communication channels between the honest
players and the reconstructor. Notice nonetheless that the Rabin Ben-Or scheme
(4.9) and our new scheme (5.1) also work for a model where the communication
channels between the players and the reconstructor are public, but the delivery
of the shares is made by stages, in a more interactive process.

Definition 4.2. Given a t-threshold SS scheme Ω = (n,A,B, SH,RE), we
define an adversary strategy for Ω as a pair (I,MO) consisting of an index subset
I ⊂ [n] of size |I| = t, and a (possibly probabilistic) modification algorithm
MO that takes as input a share sub-vector W ∈ Bt, and outputs a sub-vector
W ′ ∈ (B ∪ {⊥})t.

Definition 4.3. For a scheme Ω and an adversary strategy (I,MO) as above,
and a secret s ∈ A, we define the failure probability PF (s, I,MO) as the prob-
ability that RE(V ′) 6= s, where V ′ is the modified share vector defined by
V ′I = MO(VI), V

′
[n]\I = V[n]\I , and SH(s) = V .

The failure probability PF (s, I,MO) is exactly the probability that the ad-
versary manages to prevent the correct reconstruction of the original secret s,
when his strategy consists in choosing the t players signaled by I and modifying
their shares with algorithm MO.

Definition 4.4. Consider a t-threshold SS scheme Ω.
If there is a real number λ > 1 such that PF (s, I,MO) ≤ 2−λ for any

adversary strategy (I,MO) and any secret s, Ω is called robust, or λ-robust.
If PF (s, I,MO) = 0 for any adversary strategy (I,MO) and any secret s, Ω

is called perfectly robust.
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Notice that by definition of a robust SS (RSS) scheme, the failure probability
must always be strictly smaller than 1/2.

4.2 Existence of RSS Schemes

In the following three propositions we study the existence of robust t-threshold
schemes, depending on the values of t.

Proposition 4.5. A t-threshold SS scheme Ω = (n,A,B, SH,RE) with t ≥ n
2

cannot be robust.

Proof. Consider such a scheme Ω, and consider an adversary strategy (I,MO)
where I = [t] and MO outputs the vector ⊥t regardless of the input (i.e. the
first t shares are erased). Since n − t ≤ t and by t-privacy, the modified share
vector has the same probability distribution for all secrets, so RE will have to
output either ⊥ or a blind guess. Therefore:∑

s∈A
P [RE(V ′) = s] =

∑
s∈A

(
1− PF (s, I,MO)

)
≤ 1,

where V ′ is the modified share vector coming from s and (I,MO).
Thus there must be a secret s ∈ A for which 1 − PF (s, I,MO) ≤ 1

|A| ≤
1
2

(remember that |A| ≥ 2 by definition of a SS scheme), so PF (s, I,MO) ≥ 1
2 ,

and Ω is not robust.

Proposition 4.6. A t-threshold SS scheme Ω = (n,A,B, SH,RE) with t ≥ n
3

cannot be perfectly robust.

Proof. Consider such a scheme Ω. Fix two distinct secrets s, s′ ∈ A and a
partition of the index set [n] = I ∪ I ′ ∪ J so that |I| = |I ′| = t and |J | = n− 2t.
Since n − 2t ≤ t and by t-privacy, for both secrets the probability distribution
of the output shares indexed by J is the same, so there are possible outputs
SH(s) = V and SH(s′) = V ′ such that VJ = V ′J .

Now, define the vector V ∈ Bn by V [n]\I = V[n]\I and V [n]\I′ = V ′[n]\I′ .

This way, V differs both from V and from V ′ in at most t coordinates, so there
are adversary strategies that modify V and V ′, respectively, to V . Therefore V
can come from two different 〈secret, adversary strategy〉 pairs. Since RE(V ) is
either 6= s or 6= s′, the failure probability for one of these pairs is non-zero, and
the scheme is not perfectly robust.

Proposition 4.7. For t < n/3, Shamir SS scheme ΩS(t, n,K) becomes perfectly
robust under this new definition of the reconstruction algorithm:

RE Let x0, x1, · · · , xn ∈ K be the n + 1 points defined along with the scheme,
and consider the Reed-Solomon code RSK,{x1,··· ,xn}[n, t+ 1] = (C,D) (see
definition A.1). For input share vector V ∈ (K ∪{⊥})n, replace any coor-
dinate equal to ⊥ by any value in the field to obtain V ′ = (s′i)i∈[n] ∈ Kn.
Then, let g(X) = D(V ′) ∈ K[X]≤t (which is the polynomial satisfying
g(xi) = s′i for a maximum number of indices i), and output g(0).

Proof. Suppose that originally, in the sharing phase, SH received a secret s ∈ K
as input and picked a polynomial f(X) ∈ K[X]≤t such that f(x0) = s, in

11



order to produce the shares. Notice then that the share vector will be exactly
SH(s) = C(f(X)). For any adversary strategy, the input V of RE, and also
V ′, will have at most t modified shares, but the hypothesis t < n/3 implies that
t ≤

⌊
n−t−1

2

⌋
. Thus, by Proposition A.2, D(V ′) = f(X), and f(x0) = s is the

correct secret.

Remark 4.8. The Reed-Solomon code can be applied efficiently. Therefore,
for integers t, n and a finite field K satisfying 0 ≤ 3t < n < |K|, there is a t-
threshold SS scheme ΩS = (n,K,K, SH,RE) that is perfectly robust, ideal,
linear and poly-time in n log |K| (by Propositions 3.13, 3.15, 4.7 and A.3).

In conclusion, if a (t, n)-scheme represents a t-threshold SS scheme with n
players:

1. For n ≤ 3t, there is no perfectly robust (t, n)-scheme;

2. For n ≥ 3t+ 1, there are examples of perfectly robust (t, n)-schemes (with
very satisfactory properties);

3. For n ≤ 2t, there is no robust (t, n)-scheme;

4. For n ≥ 2t+1, there are examples of λ-robust (t, n)-schemes for any given
λ > 1.

We have proved the first three points, and the last one is proved by the
examples that follow in this section. We will focus exclusively on the limiting
case n = 2t+ 1, for schemes with the greatest tolerance to attacks.

Robustness is achieved in general by adding redundant information to the
shares, and thus increasing the share size from the ideal situation lshare = lsecret.
For one same level of robustness, we assess different schemes by comparing their
share sizes and their efficiency.

4.3 Rabin Ben-Or Scheme

We will present the RSS scheme invented by Tal Rabin and Michael Ben-Or in
1989 [13]. It bases its robustness on message authentication codes (MAC, see
Appendix B). In this paper we a use a different, improved version of the original
MAC employed by Rabin and Ben-Or.

In the sharing phase the dealer generates keys and tags that allow every
player to verify the authenticity of the share of every other player. These keys
and tags are defined over a finite field whose size is chosen big enough so that
the MAC has the needed error probability.

In the reconstruction phase, the reconstructor recovers a secret from the
point of view of each player (using the shares that this player accepts), and
outputs the majority value of them.

Scheme 4.9 (Rabin Ben-Or). For a positive odd integer n = 2t+1, a finite field
K satisfying |K| > n, and a real number λ > 1, we define the Rabin Ben-Or SS
scheme ΩRB(n,K, λ) = (n,K,K × F 3n, SH,RE), in the following way:

Define the integers q = dλ+ 2 log n+ log log |K| − 2e and d =
⌈
log |K|
q

⌉
, let

F be the field of order 2q, and fix and injective function ψ from K to F d. Define
the algorithms:
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SH For input secret s ∈ K, use Shamir scheme ΩS(t, n,K) (scheme 3.12)
to generate the vector (si)i∈[n] ∈ Kn. Then, for every pair of indices
i, j ∈ [n], pick a random key κij ∈ F 2, and use the polynomial-evaluation
MAC (definition B.3) to define the tag τji = hF,d(ψ(sj), κij) ∈ F . Output
(si, κi1, · · · , κin, τi1, · · · , τin)i∈[n].

RE Let the input shares be (s′i, κ
′
i1, · · · , κ′in, τ ′i1, · · · , τ ′in)i∈[n]. For every index

i ∈ [n], do the following:

Reconstruction according to i: Let I ⊂ [n] be the set of indices j for which
the equality τ ′ji = hF,d(ψ(s′j), κ

′
ij) holds. Define the vector W ∈ Kn as

WI = (s′j)j∈I , W[n]\I = ⊥n−|I|, and use Shamir scheme to reconstruct Si
from the share vector W .

If a majority of coordinates in the vector (Si)i∈[n] have one same value s′,
output s′; otherwise, output ⊥.

Proposition 4.10. The scheme ΩRB(n,K, λ) is poly-time in nλlsecret, and its
share size is lshare ≤ lsecret + 3nλ+ n ·O(log n+ log lsecret).

Proof. The core part of both the sharing and the reconstruction algorithms is to
calculate n2 times a polynomial-evaluation MAC, and by prop. B.5 this MAC
admits an algorithm that is poly-time in dq ≤ lsecret(λ+O(log n+ log lsecret)).
Thus the scheme is poly-time in n2lsecret(λ + O(log n + log lsecret)), or simpli-
fying, in nλlsecret.

Let’s calculate the share size:

lshare ≤ log |(set of shares)|
= log |K × F 3n|
= lsecret + 3nq

= lsecret + 3n(λ+O(log n+ log lsecret))

= lsecret + 3nλ+ n ·O(log n+ log lsecret).

Proposition 4.11. The SS scheme ΩRB(n,K, λ) = (n,K,K × F 3n, SH,RE)
is t-threshold and λ-robust.

Proof. The property of t-threshold is inherited directly from Shamir scheme.
Now, since the adversary knows nothing about the randomly generated keys of
the honest players, proposition B.4 states that for any adversary strategy the
probability that a given honest player accepts the modified share of a given
corrupted player is at most d

2q . By union bound, the probability that any
of the t + 1 honest players accepts any of the at most t modified shares is

≤ t(t+ 1) d2q <
n2d
2q+2 . If no honest player is deceived, all of them will recover the

correct secret, and this secret will be chosen by majority vote and succesfully

outputted. All that is left is to prove is that n2d
2q+2 ≤ 2−λ.

If we omit the trivial case n = 1 (where the failure probability is zero),
then we can also rule out some trivial low values of |K| and q, and obtain

the inequality d =
⌈
log |K|
q

⌉
≤ log |K|. On the other hand, q ≥ λ + 2 log n +

log log |K| − 2, so n2d
2q+2 ≤ n2 log |K|

2λn2 log |K| = 2−λ.
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4.4 CDF Scheme

We present the RSS scheme proposed by Cramer, Damg̊ard and Fehr in 2001
[5], based on ideas from Cabello, Padró and Sáenz [4].

Recall that in the Rabin Ben-Or scheme, the dealer first computes the shares
of the secret, and then uses a MAC to produce keys and tags for each pair of
players. Thus in the reconstruction phase, any player can judge what the good
shares are, and then reconstruct with them a secret.

In the CDF scheme, the dealer produces just one key and one tag from the
secret, and then computes shares for these three values. Now, in the reconstruc-
tion phase any subset of t+ 1 players can reconstruct a secret, and then judge
if it is good.

The (key, tag) couple we use and the linearity of Shamir scheme allow us to
isolate completely the effect of the adversary strategy in the reconstruction of
the secret.

Scheme 4.12 (CDF). For a positive odd integer n = 2t + 1, a real number
λ > 1, and a finite field K satisfying |K| ≥ 2n+λ, we define the CDF SS scheme
ΩCDF (n,K, λ) = (n,K,K3, SH,RE) as:

SH For input s ∈ K, pick a random key κ ∈ K, and compute the tag τ =
s · κ. Next, using Shamir scheme ΩS(t, n,K) (scheme 3.12), generate
vectors (si)i∈[n], (κi)i∈[n] and (τi)i∈[n] from each of the previous values,
respectively. Output the shares (si, κi, τi)i∈[n].

RE Let the input shares be (s′i, κ
′
i, τ
′
i)i∈[n]. For every set A of t + 1 shares

different from ⊥, do the following:

Reconstruction according to A: Use A and Shamir scheme to reconstruct
the respective values sA, κA and τA; and if they hold the equality τA =
sA · κA, then label sA as accepted.

If there is a unique element s′ ∈ K labeled as accepted, output s′, other-
wise output ⊥.

Proposition 4.13. The SS scheme ΩCDF (n,K, λ) = (n,K,K3, SH,RE) is
t-threshold and λ-robust.

Proof. The property of t-threshold is inherited directly from Shamir scheme.
Suppose that the original values of the secret, the key and the tag are s, κ and
τ respectively. For any adversary strategy, RE will receive at least t+1 original
shares (from the honest players), so the correct secret s will always be labeled
as accepted. It remains to prove that the probability that another secret is
accepted is at most 2−λ.

Fix a set A of t + 1 shares different from ⊥, let sA, κA and τA be the
corresponding values reconstructed through Shamir, and suppose that sA 6= s.
For this fixed set, the linearity of Shamir scheme implies that the adversary
strategy determines precisely the values of the differences ∆s = s − sA 6= 0,
∆κ = κ− κA and ∆τ = τ − τA. Then:

14



P [sA is accepted] = P [τA = sAκA | τ = sκ]

= P [τ −∆τ = (s−∆s)(κ−∆κ) | τ = sκ]

= P [−∆τ = −s∆κ− κ∆s+ ∆s∆κ | τ = sκ]

= P

[
κ =

∆τ − s∆κ
∆s

+ ∆κ

]
.

But κ is chosen at random from K independently from anything else, so even
if we assume that the adversary knows the secret s (this assumption could only
improve his strategy), the probability that κ holds the equality above (and that
sA is accepted) is at most |K|−1 = 2−n−λ. By union bound, the probability that
sA 6= s is accepted, for any set A of t+ 1 shares, is at most

(
n
t+1

)
2−n−λ < 2−λ.

This completes the proof.

How convenient is the CDF scheme? Its main feature is its share size, which
is evidently lshare = 3lsecret ≥ 3(n + λ). If the scheme is used for a very small
set of secrets, where lsecret ≈ n + λ, then we obtain the desired reduced share
size lshare = lsecret + O(n + λ). However if lsecret � n + λ, as is the case in
most applications, the share size is rocketing high, while the failure probability
is much smaller than required. The scheme has been corrected by Cramer,
Dodis, Fehr, Padró and Wichs in [6]. In the improved version of the scheme,
the correlation between the secret size and the security parameter has been
eliminated, so the share size is lshare = lsecret +O(n+λ) (omitting logarithms)
for all values of the variables.

On the other hand, there is no known reconstruction algorithm that is poly-
time on the number of players. For instance, the reconstruction algorithm above
makes a Shamir reconstruction for potentially every set of t + 1 players, and

the number of such sets can be proved to be
(
n
t+1

)
≥ 2n−1

√
n

. This function

cannot be upper-bounded by a polynomial expression in n. Another drawback
of the scheme is that it only works for a model where the adversary does not
have access to the communication channels between the honest players and the
reconstructor (see remark 4.1).
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5 Reducing the Share Size in RSS

We refer to our new RSS scheme simply as the New scheme, for want of a better
label.

5.1 New Scheme

This RSS scheme follows the same design as the Rabin Ben-Or scheme (4.9),
except that the reconstruction algorithm is improved, leading the scheme to
reduce its failure probability, and consequently the finite field used for the MAC
can be chosen of smaller size. As in the Rabin Ben-Or scheme, in the sharing
phase the dealer generates keys and tags to allow every player to verify the
authenticity of the share of every other player.

In the reconstruction phase, the reconstructor R no longer focuses on the
shares accepted by a particular player, but on the number of the players that
accept a particular share, in a voting system. Through several rounds, R elim-
inates the players whose shares receive low votes, and eliminates also the votes
given by these players, to end up with a core of certified players, who support
each other with their votes. Finally, R uses an error-correcting code (ECC,
section A) to raise the chances of recovering the original secret.

The joint use of the elimination rounds and the ECC is very effective: an
adversary attack that modifies a large number of shares will be greatly affected
by the rounds, while an adversary attack with too few modified shares will be
neutralized by the ECC.

Scheme 5.1 (New). For a positive odd integer n = 2t + 1, a finite field K
satisfying |K| > n, and a real number λ > 1, we define the New SS scheme
ΩN (n,K, λ) = (n,K,K × F 3n, RE, SH), in the following way:

Define the real number A = (e2λ)2/(t+1) and the integers q = dlog(t+ 1) +

logA+ log log |K|e and d =
⌈
log |K|
q

⌉
. Let F be the field of order 2q, and fix an

injective function ψ from K to F d. Fix also n+ 1 distinct points x0, x1, · · · , xn
in K, and consider the Shamir SS scheme ΩS(t, n,K) that is defined for those
points (scheme 3.12). Define the algorithms:

SH For input secret s ∈ K, use the Shamir scheme to generate the vector
(si)i∈[n] ∈ Kn. For all indices i, j ∈ [n], pick a random key κij ∈ F 2,
and use the polynomial-evaluation MAC (definition B.3) to define the tag
τji = hF,d(ψ(sj), κij) ∈ F . Output (si, κi1, · · · , κin, τi1, · · · , τin)i∈[n].

RE Let the input shares be (s′i, κ
′
i1, · · · , κ′in, τ ′i1, · · · , τ ′in)i∈[n]. For all indices

i, j ∈ [n], check whether τ ′ji = hF,d(ψ(s′j), κ
′
ij), in which case we say that

i accepts j. Let I = [n].

Elimination round: Eliminate from I all indices j with the property that
j is accepted by strictly fewer than t + 1 indices i in I. If some index is
indeed eliminated, start a new elimination round (with the updated I).

ECC reconstruction with certified shares: Let S = {xi | i ∈ I}, and use
Reed-Solomon code RSK,S [|I|, t+ 1] = (C,D) (definition A.1) to compute
g(X) = D ((si)i∈I) ∈ K[X]≤t (which is the polynomial satisfying g(xi) =
s′i for a maximum number of indices i). Output g(x0).
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Proposition 5.2. The scheme ΩN (n,K, λ) is poly-time in nλlsecret, and its
share size is lshare ≤ lsecret + 12λ+ n ·O(log n+ log lsecret).

Proof. The running time of the elimination rounds is bounded byO(n3), because
there are at most t+1 ≤ n rounds, and in each round we read at most |I|2 ≤ n2
Boolean values of the type ”i accepts j”; so this part of the reconstruction
algorithm is poly-time in nλlsecret. The rest of the scheme is composed of parts
already proven to be poly-time in nλlsecret. Let’s calculate the share size:

lshare ≤ log |(set of shares)|
= log |K × F 3n|
= lsecret + 3nq

= lsecret + 3n[logA+O(log n+ log lsecret)]

≤ lsecret + 3n

[
4

n
(λ+O(1)) +O(log n+ log lsecret)

]
= lsecret + 12λ+ n ·O(log n+ log lsecret).

Proposition 5.3. The SS scheme ΩN (n,K, λ) = (n,K,K × F 3n, RE, SH) is
t-threshold and λ-robust.

It is convenient at this point to introduce some notation. The subset of
players who pass the elimination rounds will be called certified. We distinguish
between the two components of a share: the Shamir share and the redundancy
part, the latter composed of n keys and n tags. Likewise we identify two kinds
of corrupted players: an active one provides a bogus Shamir share in the recon-
struction phase, and a passive one provides an unmodified Shamir share. Both
kinds of corrupted players may provide modified redundancy parts.

Lemma. The reconstruction algorithm of this scheme fails only if, among the
corrupted players that are certified, a strict majority is active.

Proof of Lemma. Remember that we assume in our model that there are at
least t + 1 honest players. Notice that all of them will be certified, for any
adversary strategy, because they all accept each other’s Shamir shares. Let t′

be the number of corrupted players that are certified (0 ≤ t′ ≤ t). In the final
step of the algorithm, the Shamir shares of the certified players are regarded as
the Reed-Solomon coding of a (t+1)-symbol message with t′ added redundancy
symbols. By proposition A.2, the message (and the secret) can be recovered
whenever at most bt′/2c Shamir shares are bogus. The lemma follows.

Proof of Proposition 5.3. The property of t-threshold is directly inherited from
Shamir scheme, so we go straight to proving robustness. The adversary knows
nothing about the randomly generated keys of the honest players, thus by propo-
sition B.4 the probability that a given honest player accepts the Shamir share of
a given active corrupted player is at most d

2q . If we omit the trivial case n = 1
(where the failure probability is zero), then we can also rule out some trivial

low values of |K| and q, and obtain the inequality d =
⌈
log |K|
q

⌉
≤ log |K|. On

the other hand, 2q ≥ (t+ 1)A log |K|, so d
2q ≤

1
(t+1)A .
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Since all honest players accept all good Shamir shares, then all passive play-
ers will be certified. In order to optimize the adversary strategy, we may assume
that all corrupted players modify their redundancy parts to accept each other’s
Shamir shares, and that all t of them participate in the reconstruction phase (i.e.
no share is ⊥). For the latter assumption, we reason that any strategy where
some corrupted players do not participate is weaker than a strategy where they
are active: in case they are eliminated, the two strategies are equivalent. Fi-
nally, notice that whether or not the corrupted players modify their redundancy
parts to reject the honest players’ Shamir shares is irrelevant.

We define the following closely related terms: PF is the maximum of the
failure probabilities PF (s, I,MO) over all secrets s ∈ K, and all adversary
strategies (I,MO); PFa is the same maximum, but only over strategies with
a active and t − a passive players; and PFa,c is the same as PFa , but with the
added requirement that exactly c out of the a active players become certified.
By the previous lemma, PFa,c is non-zero only for the values t/2 < a ≤ t and
t− a < c ≤ a, and we obtain the following formulas:

PFa =
∑

t−a<c≤a

PFa,c, (1)

PF = max
t/2<a≤t

PFa . (2)

Now, let’s find a bound for PFa,c, t−1 < c ≤ a. Notice that if exactly c out of
a active players are certified, then each one of their bogus Shamir shares must
be accepted by at least a− c+ 1 honest players. Indeed, each one of them must
be accepted by at least t + 1 certified players, of which at most (t − a) + c are
corrupted ((t− a) passive and c active). Hence:

PFa,c ≤ P [Exactly c out of a active players are certified]

≤ P [Exactly c bogus shares are accepted by ≥ a− c+ 1 honest players]

≤
(
a

c

)
P [c specific bogus shares are accepted by ≥ a− c+ 1 honest pl.]

=

(
a

c

)
(P [a specific bogus share is accepted by ≥ a− c+ 1 honest pl.])

c

≤
(
a

c

)[(
t+ 1

a− c+ 1

)(
1

(t+ 1)A

)a−c+1
]c

≤
(
a

c

)[
(t+ 1)a−c+1

(a− c+ 1)!

(
1

(t+ 1)A

)a−c+1
]c

=

(
a

c

)
A−c(a−c+1)

((a− c+ 1)!)c

=
A−c(a−c+1)

((a− c)!)c

[
a!/(a− c)!
c!(a− c+ 1)c

]
=
A−c(a−c+1)

((a− c)!)c
∏

1≤i≤c

a− c+ i

i(a− c+ 1)︸ ︷︷ ︸
≤1
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≤ A−c(a−c+1)

((a− c)!)c

≤ A−c(a−c+1)

(a− c)!

≤ 1

(a− c)!
max
1≤i≤a

A−i(a−i+1)

=
A−a

(a− c)!
,

where in the last line we used the fact that A =
(
e2λ
) 2
t+1 is constant and greater

than 1, and that for 1 ≤ i ≤ a the exponent −i(a− i+ 1) attains its maximum
at either i = 1 or i = a.

Now, using equation (1), we compute a bound for PFa :

PFa =
∑

t−a<c≤a

PFa,c

≤
∑

t−a<c≤a

A−a

(a− c)!

≤ A−a
∑
i≥0

1

i!
= eA−a.

And finally, equation (2) gives:

PF ≤ max
t/2<a≤t

PFa

≤ max
t/2<a≤t

eA−a

≤ eA−( t+1
2 )

= ≤ e
[(
e2λ
) 2
t+1

]−( t+1
2 )

= 2−λ.

We state formally what we just proved.

Theorem 5.4. For a positive odd integer n = 2t+ 1, a finite field K satisfying
|K| > n, and a real number λ > 1, there is a secret sharing scheme ΩN (n,K, λ)
for n players and a secret size lsecret = log |K|, that is t-threshold, λ-robust and
poly-time in nλlsecret, and with share size:

lshare ≤ lsecret + 12λ+ n ·O(log n+ log lsecret).
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6 Conclusions and Open Questions

We proved that for a threshold SS scheme, the share size is lower-bounded by the
secret size. Then, we examined the existence of robust secret sharing schemes
depending on the number of corrupted players, the conclusion being that the
interesting case is the range between one third and one half, because outside
that interval robust secret sharing is either impossible or already ideal. We
focused thus on the scenario where an m-bit secret is shared among n = 2t+ 1
players, of which t are corrupted (the maximum possible number), and the
failure probability is required to be at most 2−λ.

For this scenario, we presented two common RSS schemes: one by Rabin
and Ben-Or ([13]), and one by Cramer, Damg̊ard and Fehr ([5]), and then
we introduced a new RSS scheme. We compared their performances, and the
results, with omitted logarithmic terms, are as follows: The Rabin Ben-Or
scheme is poly-time in mλn (i.e. it is efficient), but its share size is m+O(λn).
The CDF scheme has a smaller share size, m+ O(λ+ n), but it has no known
efficient reconstruction algorithm. Finally, the new scheme is poly-time in mλn
and has a reduced share size of m+O(λ+ n).

The new scheme is based on Rabin Ben-Or scheme, i.e. it splits the secret
using Shamir SS scheme, and adds to the shares a redundancy part, allowing
each player to verify the authenticity of each other player’s share. The redun-
dancy parts of the shares are constituted by keys and tags, and come from the
application of a polynomial-evaluation message authentication code to every
pair of players. The improvement in the new scheme lies in the reconstruc-
tion algorithm. It features a series of elimination rounds that detect a great
deal of bogus shares, followed by a special reconstruction that is based on Reed
Solomon error correcting codes.

In the new scheme, the proof of its robustness considers all possible scenarios,
depending on the initial number of bogus Shamir shares, and the number of
them after the elimination rounds. We proved that for any such scenario the
reconstruction algorithm may fail only when there are at least n/4 deceptions,
i.e. n/4 pairs 〈Pi, s′j〉 of an honest player Pi accepting a bogus share s′j . By
contrast, in the Rabin Ben-Or scheme the proof of its robustness shows that
the reconstruction algorithm may fail only when there is at least one deception.
Then, in both cases the security parameter 2−λ turns out to be the probability
that n/4 or 1 deceptions occur, respectively.

If we compare the share sizes of both schemes, we notice that the gain factor
n/4 is reflected transparently in them: m+ 3nλ+n ·O(log n+ logm) is reduced
to m+ 12λ+ n ·O(log n+ logm).

It is, of course, natural to wonder what a tight lower bound for the share
size is, among the RSS schemes for the scenario above specified, but it seems
clear that one cannot hope for anything better than m+O(λ). Thus, it would
be interesting to know how much the factor 12 can be reduced, and whether or
not there is a scheme with a share size independent from n.
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A Error-Correcting Codes

Error-correcting codes are special ways to represent data, so that the original
information can be recovered even if some parts of it are corrupted. The basic
idea is to code the original message through a specific algorithm that intro-
duces some redundancy into it. If the corruption of the coded message is small
enough, the added redundancy will allow the original information to be recov-
ered, through a decoding process. Error-correcting codes are heavily applied in
communications and data storage, and their utility in RSS is evident as well.
The pioneer in this field of study was Richard Hamming [8].

A.1 Reed-Solomon Codes

We will describe the error-correcting codes introduced in 1960 by Irvin Reed and
Gus Solomon [14]. These codes have very convenient properties, for instance
they are linear and maximum distance separable (MDS). A precise definition
of these and other related terms can be read in any coding theory book, such
as the one by Van Lint [10], but in simple words the MDS property gives a
notion of optimality in the tradeoff between the amount of redundancy added
and the number of errors that can be corrected. The Reed-Solomon codes are
closely related to Shamir SS scheme (3.12). As such, these two concepts can be
naturally paired and used as the base of RSS schemes.

Definition A.1 (Reed-Solomon Code). For integers, k, n, and a finite field K,
satisfying 0 < k ≤ n < |K|, and a set of n distinct elements S = {x1, · · · , xn} ⊂
K, we define the Reed-Solomon code RSK,S [n, k] = (C,D) as the pair of the
coding function C : K[X]k−1 → Kn, and the decoding function D : Kn →
K[X]k−1, defined as follows:

C: For message f(X) ∈ K[X]k−1, let C (f(X)) = (f(xi))i∈[n].

D: For vector (yi)i∈[n] in Kn, find a polynomial g(X) ∈ K[X]k−1 such that

g(xi) = yi for a maximum number of indices i, and let D
(
(yi)i∈[n]

)
=

g(X).

Proposition A.2. Consider the Reed-Solomon code RSK,S [n, k] = (C,D). For
any message f(X) ∈ K[X]k−1 and any vector V ∈ Kn, if V differs from
C (f(X)) in at most

⌊
n−k
2

⌋
coordinates, then D(V ) = f(X).

Proof. Let f(X) ∈ K[X]k−1 and V ∈ Kn be as above, i.e. V differs from
C (f(X)) in at most

⌊
n−k
2

⌋
coordinates. To prove that D(V ) = f(X), it’s

enough to show that no other polynomial g(X) ∈ K[X]k−1 has an image
C (g(X)) with so many coordinates in common with V .

Suppose then that for some g(X) ∈ K[X]k−1, V also differs from C (g(X)) in
at most

⌊
n−k
2

⌋
coordinates. As a consequence, C (g(X)) differs from C (f(X))

in at most n−k coordinates, or equivalently, g(xi) = f(xi) for at least k indices
i. By Theorem 3.11, it must be that g(X) = f(X).

We can identify the message set K[X]k−1 with Kk (through Theorem 3.11),
and think of the coding function as adding n − k redundancy symbols to a k-
symbol message. Thus, the previous result says that the number of symbols
that can be corrected corresponds to one half of the amount of redundancy.

21



In the definition of the decoding function above, it is not specified how
to find the desired polynomial, and in fact the design of an efficient decoding
algorithm is not at all trivial. In 1960, Peterson invented the first efficient
algorithm for decoding Reed Solomon codes [12], and currently the Berlekamp-
Welch algorithm, covered under US Patent [19], is one of the most widely used.
A simplified version of the Berlekamp-Welch algorithm, provided by Gemmell
and Sudan, can be found in [7].

Proposition A.3. The Reed-Solomon code RSK,S [n, k] = (C,D) admits a de-
coding algorithm that is poly-time in n log |K|.
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B Message Authentication Codes

A message authentication code (MAC) is an algorithm that generates a block of
data (called a tag) based on a message and a determined secret key, so that it
is attached to the message in order to improve the security of a communication.
In particular, the two security properties involved in message authentication
are source authentication, which prevents the acceptance of messages from a
fraudulent source, and data integrity, which protects the data from modification.
Confidentiality of the message is not required. As in the rest of this paper, in
this section we focus on information-theoretic security.

The model works as follows. Player A wants to send a message m to player
B over an insecure channel, and player C may modify it. However, A and B are
assumed to share a secret (and usually randomly generated) key κ unknown to C,
and they agree upon a MAC based on κ, to add security to the communication.
A computes the tag τ = MAC(m,κ) and sends (m, τ) to B. Upon arrival of
the (possibly modified) pair (m′, τ ′), B checks if τ ′ = MAC(m′, κ), and accepts
it accordingly. The MAC should permit B to correctly accept the message
whenever it was unmodified, and reject a modified message with a very high
probability.

MAC’s with good cryptographic properties were introduced in the 1970s,
and the first reference to a MAC algorithm is a 1972 US patent application
by Simmons et al. (reference 10. in [15]). Several different terms are used in
literature to define the specific cryptographic properties that a MAC should have
(see for instance [11] and [17]), like being collision free and pre-image resistant.
We specify below an ad hoc property that matches our needs in this paper.

Definition B.1. Given a message set M, a key set K and a tag set T , a
corresponding message authentication code (MAC) is a function h :M×K → T .

Definition B.2. Consider a MAC h :M×K → T and a positive real number
λ. The MAC is λ-secure if for any two distinct messages m 6= m′ ∈ M, any
two tags τ, τ ′ ∈ T , and a random variable κ ∈ K, the conditional probability
P [h(m′, κ) = τ ′ | h(m,κ) = τ ] ≤ 2−λ.

In other words, if player C has zero information about the secret key, then
for any strategy and any computational capabilities of C, the probability that
B accepts a modified message is at most 2−λ.

B.1 Polynomial-Evaluation MAC

Many popular MAC’s are based on polynomial evaluation. A thorough study
of them is layed out by Bernstein in [1]. We present an optimized polynomial-
evaluation scheme that uses a very small key, and can achieve highly efficient
implementations based on Horner’s rule. It was introduced in the early 1990’s
independently by den Boer [3], by Johansson, Kabatianskii, and Smeets [9], and
by Taylor [18].

Definition B.3 (Polynomial-Evaluation MAC). For a finite field F and an
integer 0 < d < |F |, the polynomial-evaluation MAC hF,d : F d × F 2 → F is
defined in the following way:

For a message m = (m1, · · · ,md) ∈ F d and a key κ = (a, b) ∈ F 2 the

corresponding tag is τ = hF,d(m,κ) = a+
∑d
i=1mib

i.
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Proposition B.4. The polynomial-evaluation MAC hF,d is (log |F | − log d)-
secure.

Proof. Fix two distinct messages m = (m1, · · · ,md) and m′ = (m′1, · · · ,m′d) in
F d and two tags τ, τ ′ ∈ F , and let κ = (a, b) ∈ F 2 be a key generated at random.
Define the differences ∆τ = τ ′ − τ and ∆mi = m′i −mi, ∀i ∈ [d]. Then:

P [τ ′ = hF,d(m
′, κ) | τ = hF,d(m,κ)]

= P

[
τ ′ = a+

d∑
i=1

m′ib
i | τ = a+

d∑
i=1

mib
i

]

= P

[
∆τ =

d∑
i=1

∆mib
i | τ = a+

d∑
i=1

mib
i

]

= P

[
f(b) = 0 | τ = a+

d∑
i=1

mib
i

]
= P [f(b) = 0]

Where we define f(X) ∈ F [X]≤d as f(X) = −∆τ +
∑d
i=1 ∆miX

i, and in the

last line we use the fact that, conditioned on the event τ = a +
∑d
i=1mib

i, b
is still uniformly distributed. As f(X) cannot be the zero polynomial (because
m 6= m′), it has at most d distinct roots, and the probability that b is one of
them is at most d

|F | = 2log d−log |F |. This completes the proof.

Proposition B.5. The polynomial-evaluation MAC hF,d admits an algorithm
that is poly-time in d log |F |.
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[4] S. Cabello, C. Padró and G. Sáenz. Secret Sharing Schemes with Detection
of Cheaters for a General Access Structure. 12th International Symposium
on Fundamentals of Computation Theory, FCT’99, pp 185-193, 1999.

[5] R. Cramer, I. Damg̊ard and S. Fehr. On the Cost of Reconstructing a Se-
cret, or VSS with Optimal Reconstruction Phase. Advances in Cryptology
- CRYPTO ’01, pp 522-523, 2001.

[6] R. Cramer, Y. Dodis, S, Fehr, C. Padró and D. Wichs. Detection of Alge-
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