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1 Introduction

The following is a theorem by Richard Brauer and Cecil Nesbitt, as found in
[6].

Quotation 1.1 (Brauer-Nesbitt, 1937) Let G be a group and let k be an
algebraically closed field. Let A and B be two representations of a group G
which associate the matrices Ag and Bg with the element Q) of G. If both Ag
and Bg have the same characteristic roots for every Q in G, then A and B have
the same irreducible constituents.

Let k be a field and A a k-algebra. Let B be a subset of A that generates
A as a k-vectorspace, for example a k-basis of A. For ¢ € A and a (left) A-
module M that is finite-dimensional over k, denote by xs(a) the characteristic
polynomial of left multiplication by a, which can be viewed as an element of the
multiplicative group A(k) = 1+Tk[[T]] for a suitable definition of the character-
istic polynomial (see Definition 5.3). Denote by G (A) the Grothendieck group
of A-modules that are finite-dimensional over k (see Definition 2.14 for the pre-
cise definition). Defining ¢(M) = (xar(b))pep induces a group homomorphism
Gr(A) — A(k)B.

One can rephrase Quotation 1.1 as follows.

Theorem 1.2 Let G be a group and let k be an algebraically closed field. Then
the group homomorphism ¢ : Gy(k[G]) — A(k)€ defined by [M] — (xr(9))gec
1S 1njective.



This is Theorem 5.21 in this thesis. This theorem is not the strongest form
one can have. For example, we can replace the group algebra k[G] with k-vector
space basis G by any algebra A with a subset B of A that generates A as a
k-vector space, and one can omit the requirement that k is algebraically closed.
However, the map ¢ from the theorem will never be surjective, and it suffices
to know certain coefficients of the characteristic polynomials to determine the
isomorphism class of a module. To be somewhat more precise, if the field k£ has
characteristic 0, it suffices to know the traces of the action of the elements of B.
If k has positive characteristic p, let A, (k) C A(k) be 14+> 52, TP'k and let 7 be
the surjective map A(k) — A, (k) obtained by sending 1+a1T+a2T?+azT3+. ..
to 14+ a1T + a,TP + aI,QTp2 + .... Then the map 7 o ¢ is injective. The latter
was shown in [1], and a comparable result can be found in [2]. These results
originally inspired this thesis.

Observe that A, (k) is not even a group, so the map 7o ¢ is not even a group
homomorphism.

The idea of somehow replacing the mentioned map 7 o ¢ by a group ho-
momorphism that gives the same information leads to the study of Witt rings;
see section 3. If A is a commutative ring, then there is a commutative ring
W (A), isomorphic as a set to A%>0 such that there is a group isomorphism
W(A) — A(A) = 1+ TA[[T]]. In particular, addition in W(A) corresponds
with multiplication in A(A), and in Theorem 1.2, one may replace A(k) by
W (k). More importantly, if k is a field of characteristic p, there is a ring W), (k)
that behaves like A, (k) (or like k if p equals 0) in the way that we want; as a
set it is isomorphic to L{tpp®d if p > 0 and to k1™ if p = 0 and there is a
natural surjective ring homomorphism 7 : W (k) — W,(k) by componentwise
projection. We have the following theorem.

Theorem 1.3 Let k be a field of characteristic p, let A be a k-algebra and let
B be a subset of A that generates A as a k-vector space. Let m be the projection
W(k) = Wy(k). Ifa € A and if M is an A-module, denote by rr(a) the element
of W(k) that corresponds with the characteristic polynomial xnr(a) € A(k) via
the correspondence of A(k) and W (k).

Then the group homomorphism Gy(A) — W, (k)B that is defined by [M] —
(m (Y (D))ven is injective.

The definitions of W (k) and W, (k) can be found in Definition 3.5 and Nota-
tion 3.8. The above theorem is Theorem 5.22 in this thesis. There is a stronger
version of this theorem; Theorem 5.43 in this thesis.

Theorem 1.4 Let k be a field of characteristic p, let A be a k-algebra and let
B be a subset of A that generates A as a k-vector space. Let 7 be the projection
W(k) = Wy(k). Ifa € A and if M is an A-module, denote by rr(a) the element
of W(k) that corresponds with the characteristic polynomial xp(a) € A(k) via
the correspondence of A(k) and W (k).

Then the group homomorphism Gi(A) @, Wy(k) — W, (k)P that is defined
by [M] @ w — (m(ar(b)) - w)pep is injective.



There is a deeper relation between W (k) and W, (k). We have the following
theorem.

Theorem 1.5 Let p € Z~q be a prime number and let A be a commutative
ring such that for each n € Z with p 1 n, one has n is invertible (in other
words, A is a commutative Zy-algebra). Then there is a ring isomorphism
P:W(A) = W,(A)2>0\PL>o,

The mentioned ring isomorphism is functorial in the category of commutative
Zpy-algebras. To effectively compute it, it would be useful if we can efficiently
calculate in Witt rings. In many practical cases, this is not a problem, but if A is
an abstract ring, the number of computations required seems to be polynomial
in p even if we only look at the first two components of W, (A), which limits the
size of the possible characteristic of A.

If we can calculate efficiently in Witt rings, if a € A, suppose one is given
(m(¥ar(a™)))nezoo\pzoo, Where m and ¢pr(a) are as in Theorem 1.3. Then
one can compute ¥, (a) efficiently using the theorem above. If one is given
(m(¥ar(D)))sep for a subset B of A that generates A as a k-vector space, one
may compute ¥y (a) as well, but possibly not as efficiently.

There are more generalizations of Theorem 1.2. In the end, we will prove
the following theorem. It is Theorem 5.54 in this thesis.

Theorem 1.6 Let k be a field, let A be a k-algebra and let B be a subset
of A that generates A as a k-vector space. Then the group homomorphism
Gr(A) @, W (k) = W (k)B defined by [M] ® w +— (xam(b)w)pep is injective.

Finally, there is a generalization of Theorem 1.2 not by replacing G (A) by
some larger ring or by replacing A(k) by some smaller ring in the statement of
the theorem, but by replacing the set B that generates A as a k-vector space by
a set C such that {¢" : ¢ € ¢,n € Z~o} generates A as a k-vector space. This is
Theorem 5.62 in this thesis.

Theorem 1.7 Let k be a field, let A be a k-algebra and let C' be a subset of A
such that Y .. klcle = A. Then the group homomorphism Gi(A) — W (k)°
defined by [M] — (Var(c))eec is injective.

Here is a summary of the thesis. In section 2, some basic algebra is found
that is useful in the later sections. Section 3 defines Witt rings and gives some
basic properties. Section 4 essentially describes the isomorphism mentioned in
the theory above. Section 5 describes the theorem of Brauer and Nesbitt, and
shows some generalizations of it.

2 Algebra

In the context of this thesis, a ring is defined to be an abelian group equipped
with an associative, bilinear multiplication and a unit element with respect to
multiplication. If not explicitly mentioned, a module over a ring is assumed to



be a left module. An algebra A over a ring R is a ring A together with a ring
homomorphism f : R — A such that f(R) C Z(A) (where Z(A) denotes the
center of A); in particular, any algebra is assumed to be associative and unital.
Let R be a ring.

Definition 2.1 Let M be an R-module. We call M simple (as an R-module)
if it has precisely two submodules, being 0 and M. We call M semisimple (as
an R-module) if every short exact sequence 0 — M’ — M — M"” — 0 of
R-modules splits. We call R a semisimple ring if any R-module is semisimple.

Remark 2.2 Note that an R-module is semisimple if and only if it is isomor-
phic to some direct sum of simple modules. Furthermore, any submodule of
a semisimple module is semisimple and a direct sum of semisimple modules is
semisimple. Moreover, R is a semisimple ring if and only if it is semisimple as
a left R-module, hence we may just call R semisimple. Proofs of these remarks
can be found in chapter 9 of [3].

Definition 2.3 We call R a simple ring if R has precisely two two-sided ideals,
being 0 and R.

Note that if R is a simple ring, it isn’t necessarily simple as an R-module.

Definition 2.4 We call R left respectively right Artinian if it satisfies the de-
scending chain condition on left respectively right ideals

Definition 2.5 The Jacobson radical of R is the intersection of all maximal
left ideals of R. It is denoted by J(R).

Lemma 2.6 The Jacobson radical annihilates any simple R-module. It is a
two-sided ideal of R.

PRrOOF Let M be a simple R-module. For any m € M \ {0}, one has Rm = M
since M is simple. The R-linear map R — M that maps r € R to rm is therefore
surjective, and as M is simple, its kernel m is a maximal left ideal. As J(R) is
contained in m, one has J(R)m = 0. This holds for any m € M \ {0}, hence for
all m € M, hence J(R)M = 0.

Consequently, for any maximal left ideal m of R, one has J(R)(R/m) = 0,
hence J(R)R is contained in m for any maximal left ideal m of R and therefore
in the intersection of the maximal left ideals of R, which is J(R). n

As the maximal left ideals in R/J(R) correspond naturally to the maximal
left ideals in R containing J(R), which are all of them by definition, it follows
that R/J(R) has Jacobson radical 0.

Lemma 2.7 If R is semisimple, then J(R) = 0. Suppose there are finitely many

mazimal left ideals my, ..., m, such that J(R) = (i_, m;. Then R is semisimple

if and only if J(R) equals 0.



PROOF Suppose R is semisimple. Using Remark 2.2, one has R is a finite direct
sum of simple R-modules, say R = @@, S;. For each i € {1,2,...,n}, the
projection m; : R — S; has kernel EB;L:L oy S;, which is a maximal left ideal
in R since S; is simple. Clearly, the intersection of the kernels of m; for each
i€{1,2,...,n} is 0, hence one has J(R) = 0.

For the second part, suppose J(R) = 0 and there are finitely many maximal
left ideals my, ..., m,, such that J(R) = ()., m;. We have an injective R-linear
map R/, m; = @;_, R/m;, induced by the quotient maps ¢; : R — R/m,.
As R/Ni_, m; = R/J(R) = R, it follows that we can view R as a submodule of
the semisimple module @], R/m;, hence R is semisimple. n

Corollary 2.8 If R is a finite ring, it is semisimple if and only if J(R) = 0.

Corollary 2.9 If k is a field and A is a k-algebra that is finite-dimensional
over k, it is semisimple if and only if J(A) = 0.

ProOF The first implication follows directly from Lemma 2.7. Suppose J(A) =
0. Since the dimension of any finite intersection of maximal left ideals can
only take values in {0,1,...,dimg(A)}, there is some finite intersection M =
my N...Nm; of maximal left ideals of minimal dimension d. Since J(A4) =0, if d
is positive, there is some non-zero x € M and hence some maximal ideal m that
does not contain . It follows that M Nm C M and hence dimy (M Nm) < d, a
contradiction. Hence d equals 0 and thus M equals J(A). Then by Lemma 2.7,
it follows that A is semisimple. n

Notation 2.10 Let R be a ring and M an R-module. Then the annihilator of
M over R is denoted Anng(M).

Lemma 2.11 Let k be a field and A a k-algebra. Let M be a semisimple A-
module that is finite-dimensional over k. Then A/Ann (M) is finite-dimensional
over k and semisimple.

PRrROOF Since M is finite-dimensional over k, so is Endy (M), and as one has
A/Ann (M) C Endg (M), it follows that A/Ann 4 (M) is finite-dimensional over
k.

As M is semisimple, there are Si,...,S; such that M = @le S; as an A-
module, and hence it follows that Anna (M) = ('_, Anna(S;) 2 J(A). Thus
J(A/Anny(M)) =0 and hence A/Ann4(M) is semisimple by Corollary 2.9. g

Definition 2.12 Let R be a ring and let M and N be R-modules.

1 A chain for M is a finite sequence 0 = My C M; C ... C M; = M of R-
submodules of M, with ¢t € Z>g. Achain0=My C M, C...C M, =M
for M is called a composition series for M if for each i € {1,2,...,t}, the
quotient M;/M,;_1 is simple (as an R-module). If a composition series for
M exists, M is said to be of finite length.



2f0=MyC M C...C My=M is achain for M and 0 =Ny C N; C ... C
Ng = N is a chain for NV, these chains are called isomorphic if is a bijection
p:{1,2,...,t} = {1,2,...,s} such that for each i € {1,2,...,¢}, one has
M;/Mi—1 = Ny [Np(iy—1-

3 If M and N have isomorphic chains, M and N are called Jordan-Holder
isomorphic as R-modules, denoted M Zjgr N or just M =jy N if it is
clear which ring R we are using.

4 Suppose 0 = My C My € ... C My = M is a composition series for M. Then
the semisimplification of M is the R-module My = @le M;/M;_.

Remark 2.13 Jordan-Holder isomorphism is in fact an equivalence relation.
Moreover, a composition series for an R-module M is unique up to isomorphism
of chains if it exists, hence the semisimplification of an R-module M of finite
length is well-defined up to isomorphism. Moreover, if M has finite length, M
is semisimple, as it is a direct sum of simple modules. Proofs of these statements
can be found in [3].

Note that if k is a field, A a k-algebra and M an A-module that is finite-
dimensional over k, any proper submodule of M has dimension strictly smaller
than dimg(M). It immediately follows that M is of finite length.

Definition 2.14 Let k be a field and A a k-algebra. Let My(A) be the set
of isomorphism classes of A-modules that are finite-dimensional over k. We
denote the isomorphism class of a finite-dimensional A-module M by M. We
define Fj(A) to be the free group generated by My (A) and denote by Ry (A)
the subgroup of Fj(A) generated by elements of the form M’ + M"” — M, where
M’ M" and M are elements of My, (A) such that there exists an exact sequence
0> M — M — M" — 0 of A-modules. Then the Grothendieck group of
A-modules that are finite-dimensional over k is Gi(A) = Fr(A)/Rir(A). The
class of an element M of Fj(A) modulo Ry (A) is denoted by [M].
Note that Gj(A) is abelian and has zero element [0].

Definition 2.15 Let k& be a field and A a k-algebra. Let X be an abelian
group. A map f : My(A) — X is called additive if for every exact sequence
0> M — M — M" — 0 of A-modules with M’, M, M" € My(A), one has
f(M) = f(M') + f(M"). The set of additive functions from My(A4) to X is
denoted Add(M(4), X).

Proposition 2.16 Let k be a field and A a k-algebra. Let X be an abelian
group. Denote by 7 the map My (A) — Gi(A) defined by sending M € My (A) C
Fi(A) to [M] = M + Ri(A).

There is a canonical bijection g : Hom(Gy(A), X) — Add(My(A), X) given
by 9(F)(M) = F(x(M)) for any | € Hom(Gi(A), X) and M € My(4).

This proposition is a special case of Theorem 8.5 in [3]. It is trivially true.

Proposition 2.17 Let k be a field and A a k-algebra. Let M, N € My(A).
Then one has [M] = [N] if and only if M Zjua N.



This proposition is a special case of Corollary 8.9 in [3].

Theorem 2.18 Let k be a field and A a k-algebra. Let X be an abelian group.
Let g be the map from Proposition 2.16. Let f € Hom(Gg(A),X). Then the
following are equivalent.

1 The group homomorphism f is injective.

2 For any two elements M, N € My(A), one has g(f)(M) = g(f)(N) if and
only if M =y N.

PROOF Suppose [ is injective. Let M, N € My (A). Then one has g(f)(M) =
9(f)(N) if and only if f([M]) = f([N]), which holds if and only [M] = [N] since
f is injective. One has [M] = [N] if and only if M 254 N by Proposition 2.17,
hence one has g(f)(M) = g(f)(N) if and only if M =5y N.

Conversely, suppose f is not injective. Then there is a non-zero x € G (A)
with f(z) = 0. Let i, d;M; € Fj(A) be a representative of z with d; € Z
and M; € My(A) for each ¢ € {1,2,...,n}. Assume without loss of generality
that none of the d; is equal to 0 and that there is j € {0,1,2,...,n} such that
d; is positive if 1 < ¢ < j+ 1 and that d; is negative if 7 + 1 < i < n. Note that
if M',M" € My(A), one has M' + M" — M' @ M" € Ry(A). Then defining
My =@_, M% and M_ = D M; % we find that M, — M_ is also a
representative of x.

Since f(x) = 0, one has g(f)(My) = g(f)(M_). Since z # 0 by assump-
tion, one has [M,] # [M_] and hence My %;y M_. This shows the other
implication. n

Notation 2.19 Let k be a field and A a k-algebra. Let X be an abelian group.
Suppose f : My(A) — X is an additive map. Let g be the map from Proposi-
tion 2.16 and let h = g=*(f). Then we say that h is the group homomorphism
h:Gg(A) — X defined by [M]— f(M).

Corollary 2.20 Let k be a field and A a k-algebra. Then Gy, (A) is torsion-free
as an abelian group.

PROOF For any n € Z~( the map f, : My(A) = Gi(A) defined by M +— n[M]
is well-defined. It is additive by the commutativity of direct sums. Moreover,
it is easily seen that f,(M) = f,(N) if and only if [M™] = [N"]. One has
[M™] = [N"] if and only if M™ 25y N™. By uniqueness of decomposition
chains up to chain isomorphisms, the latter holds if and only if M ;g N.
Thus it follows that the group homomorphism h,, : Gx(A) — Gi(A) defined by
[M] — n[M] is injective for each n € Z~q, hence Gj(A) is torsion-free. n

Notation 2.21 Let n € Z~¢ and let R be a ring. Then M (n, R) denotes the n
by n matrix ring with coefficients in R.

Lemma 2.22 Let k be a field and A a k-algebra that is finite-dimensional over
k and that is semisimple as a ring. Then there are t € Z>q, ni,N2,...,Nt €



Z~o and division rings D1, ..., Dy that are k-algebras, finite-dimensional over
k, such that A = H§:1 M(n;,D;). The integer t € Z>o is unique and the
pairs (n1, D1), ..., (ng, Dy) are unique up to ordering and k-algebra isomorphism
classes of the D;.

Moreover, if k is algebraically closed, one has D; = k for alli € {1,2,...,t}.

Furthermore, one has the following. For each i € {1,2,...,t}, denote S; =
D!'. Each S; is an M (n;, D;)-module, and defining M(n;, D;)S; = 0 if i,j €
{1,2,...,t} with i # j, one has each S; is an A-module. Then Si,Ss,...,S%
are pairwise non-isomorphic simple A-modules and every simple A-module is
isomorphic to S; for some unique i € {1,2,...,t}.

PRrROOF This follows from theorems 9.10 and 9,11 from [3]. n

We assume the basic definition of the tensor product is known.

Definition 2.23 Let R, S be rings and let f : R — S a ring homomorphism.
Let V be an R-module. We denote Vz ¢ = S @y V. Here, we consider S to be
a right R-module by s-r=s- f(r) for s € S and r € R. If it is clear what ring
we take the tensor product over, we may denote Vg = Vg g.

We recall a few facts about the tensor product.

Lemma 2.24 Let R and S be rings. Let f: R — S be a ring homomorphism.
Then the following hold.

1 IfV is an R-module, Vg can be given an S-module structure in a canonical
way such that for all a, 8 € S and v € V, one has o - (B @ v) = (aff) Q@ v.
The S-module Vg can be given an R-module structure in a canonical way
such that for alla € R, B € S andv € V, one has a-(f@v) = (f(a)B)®@wv.
In this way, Vs is an R-module as well, and with this structure, the map
V — Vg given by v — 1 ® v is R-linear.

Any set {v; }ier that generates V' as an R-module gives rise to a set {1 ®
v; bier that generates Vg as an S-module. Moreover, if V is a free R-
module, any free subset of V' that generates V as an R-module gives rise
to a free subset of Vg that generates Vg as an S-module.

2 Suppose f(R) C Z(S) and A is an R-algebra with defining ring homomor-
phism g : R — A. Then Ag has a unique ring structure such that for all
a,f €S and all a,b € A, one has (a®a) - (B®b) = (af) ® (ab). The
canonical maps A — Ag and S — Ag, given bya— 1®a and s— s® 1
respectively, are ring homomorphisms with respect to this multiplication.

With this structure, Ag is canonically an R-algebra, with defining ring
homomorphism r— f(r)®@1=1® g(r).

Suppose the canonical ring homomorphism h : S — Ag, given by s — s®1,
satisfies h(S) C Z(Ag). Then Ag is also an S-algebra.



3 Suppose f(R) C Z(S), let A be an R-algebra and let M be an A-module. Then
M is also an R-module via the homomorphism R — A. Then Mprgs =
SQprM can be given the structure of an Ag-module via the canonical
isomorphism Mr s =SQ@pM =SQr(AQ M) = (SQrA) QM =
As @ 4 M = Ma ag given by the correspondence s@m < (s®@1) @ m for
seS, meM.

4 The functor S@p — from the category of R-modules to the category of S-
modules is right exact.

Checking these properties is straightforward. It is left as an exercise for the
reader.

Definition 2.25 Let R be a commutative ring and T' an R-module. Then T'
is called flat if for any injective R-module homomorphism f : M — N, the
induced map f@Id: M QrT — N @y T is injective as well.

Lemma 2.26 Suppose R is a principal ideal domain and T an R-module. Then
T is flat if and only if it is torsion-free as an R-module.

A proof of this lemma can be found in [7]. The lemma is given as proposition
3.2 in chapter X VI of [5] without proof, and it easily follows from proposition
3.7 in the same chapter of [5].

Proposition 2.27 Suppose R is a principal ideal domain and let T be a torsion-
free R-module. Let B be some index set. Then the R-linear map R®P @, T —
TE given by (ry)pep @t +— (rpt)pep is injective.

PROOF Let S be a finitely generated submodule of T. Since R is a principal
ideal domain and since T is torsion-free as an R-module, there is s € Z>q such
that S = R®.

Observe that RP QRp s = SB since S is a direct sum of copies of R, since
direct sums commute with tensors and since R® ®p R =2 R® canonically.

One has T = li_ngS , where S ranges over the finitely generated R-submodules

of T Moreover, one has R® @, T = R” Qp limS = lim(R” @5 S) = lim(S”)
C TB. Here, we use that direct limits commute with tensor products; see
exercise 12 on page 639 in [5]. This map is given by (rp)pen @ t = (T5t)ben- m

3 Witt rings

Definition 3.1 Let A be a commutative ring. Let w = (wy,ws,...) € AZ>0,

Let n € Z~o. Then the n-th ghost component of w is w(™ = de de/d.

Lemma 3.2 For each n € Zso, denote by Q[z4]qn the polynomial ring in

the variables zq with d dividing n. Then there are unique polynomials g, €
Qlz1, 22, - - .| such that the following holds.

10



Let A be a commutative Ting that is torsion-free as an abelian group and let
wy,wa, ... € A. We denote w = (wy,ws,...) € AZ>0. Then for each n € Z,
one has gn((w(d))d|n) exists in A and is equal to wy,.

Furthermore, for each n € Zxq, one has g, € Qzalan C Q[z1, 22, . ...

PrROOF We apply induction to n. For m = 1, the result is trivial; one has
g1 = z1. For N € Z~,, assume g, exists as in the statement of the lemma if
N/d
n < N. Define gy = ~(2n — D dINAdEN dgd/ ) € Q[z1, 22, - - .|
Let A be a torsion-free commutative ring and let wq,ws,... € A. Denote
w = (wy,ws,...) € AZ>0. One has wV) = 2odN dwﬁl\[/d7 hence Nwy = w) —
D dINAdEN dw(llv/d. Since A is torsion-free, & (w™) — D dINAdEN dwiv/d) is well-

defined in A and is equal to wy. Then gy ((w?)yy) exists in A and is equal to
wy. Uniqueness of gy is easily seen by taking for A the polynomial ring over

Q in the variables x1, 2, ... and taking wy = x1,we = 9, .. ..
By induction, the result holds for all n € Z~ . By induction, one easily sees
that g, € Q[za]q)n for each n € Z-,. n

Let A be a torsion-free commutative ring and let w = (wy, ws,...) € AZ>0,
We define
fo= [ @ —=w.T™) ™" € 1+ TA[[T]].

n€Zlxo
Note that it is well-defined as for any M € Z-( and any m € Zx>ps, one has
T, (= w, ) =17, (1 — w,T") ! mod TM and hence
fo = limy, oo TT7 (1 — w, T™) 71 exists in 1+ TA[[T]].

Lemma 3.3 One hasT
of fu with respect to T.

j}:‘u =2 nezoo w™T™, where f! is the formal derivative

Proor If f,g € 1 + TA[[T]], one has (J;—Z), = f7/ + %/. Hence one has T;—‘/” =

TZnEZ>0 nw, T" (1 — w,T")"! = Znez>0 Zrez>0 n(w,T™)". Tt is easily
seen that the n-th coefficient of the latter is indeed 3, dwg/ 4= w™ as was

to be shown. u

Let wy,wo,... and v1,vs,... be algebraically independent elements over Z
and let w = (w1, ws,...), v = (v1,vs,...). By Lemma 3.2, for each i € Z<q
there are unique elements s;(w,v) and m;(w,v) € Q[wy, wa,...,v1,vs,...] such

that for s(w,v) = (s1(w,v), s2(w,v),...), m(w,v) = (m1(w,v), ma(w,v),...)
and n € Zsg, one has s(w,v)™ = w™ + v and m(w,v)™ = w™ . (),
Moreover, for each n € Z~g, one has m,,(w,v) and s,(w,v) can be expressed as
polynomials in terms of wy and vy for dln with coefficients in Q (namely, one
has s, (w,v) = g, ((w'® + v(d))d‘n) and my (2,y) = gn((wPv(@),,,), where the
gn are the polynomials of Lemma 3.2). The following proposition shows that
these rational coefficients are in fact integers.
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Proposition 3.4 Let wi,ws,... and v1,vs, ... be algebraically independent el-
ements over Z and let w = (wy,wa,...), v = (v1,v2,...). Then the following
hold.

1 The power series f, - fo satisfies T% = Znez>0(w(”) +vM)T™,
2 The power series g = Hd ez (1 _ ’LUZ/ ng(dve)Ug/ ng(dve)Tde/ gcd(d,e))fgcd(d,e)
) >0
satisfies T% =2 neZoo w™yM T,

3 For each n € Zso, the n-th coefficient of fu, - fu is sp(w,v) and the n-th
coefficient of h is my(w,v).

4 For each n € Zg, both s,(w,v) and m,(w,v) are elements of Zlwg, va]qn C
@[wl,wg, c..,U1,02,.. ]
PROOF One has T(];‘”ié”)’ = T;—{” + T;—’:; the first result holds by Lemma 3.3.
Denote m = ged(d, e) for convenience. One has
e/’mrug/dee/m)fmfl . (_%)wZ/mvg/dee/mfl

g —m(1 —wy,
Tt -1
9 2 (1 — ws/ ™o/ mde/m)=m

d,e€Z~0
e d/m
/m’U/ Tde/m

:Z dew

e/m d/m :
decToo 1— wd/ Ue/ Tde/m

Expanding and writing out, we find that the n-th coefficient of the latter
equals

E dew’"e/mvrd/m _ § dwn/devn/e
d e - d e
d,e,r€Z>o:r%:n d,e€Z>0:%\n
d
= E dwg/ ev™/¢ = ™y,
d|n,e|n

This shows the second result.

For n € Z~q, let o, be the n-th coefficient of f, f, and let u, be the n-
th coefficient of g. Clearly, one has o, i, € Z[wy,wa,...,v1,0s,...]. Let 0 =
(01,00,...)and let p = (i1, pio, . . .). By Lemma 3.3, one has (™ = (™) (™) =
s(w,v)™ for each n € Zsg and pu(™ = w™y(™ = m(w,v)™ for each n € Z,.

Then by Lemma 3.2, one has o, = g,((w'® + v(¥),,,) = s,(w,v) and
likewise, one has p, = m,(w,v), hence s,(w,v) and m,(w,v) are elements of
Zlwy, wy, ..., v1,v2,...]()Qwg, v4]qmn, hence both are elements of Z[wg, va]q)n-m

Definition 3.5 Let A be a commutative ring.

1 We define W(A) = AZ>0 as a set. An element w = (wy,wy,...) of W(A)
is called a Witt vector. For w,v € W(A), we define w + v = s(w,v) =
(s1(w,v), s2(w,v),...) and w - v = m(w,v) = (M1 (w,v), ma(w,v),...).
With this addition and multiplication, we call W (A) the Witt ring of A.
For w € W(A) and n € Z~¢, the n-th component of w is denoted w,,.

12



2 We define A(A) =1+ TA[[T]]. We have a bijection W(A) — A(A) given by
(w1, wa,...) = []hez. (1 — w,T™)~L. For f = [Tz, (1= w, Tt €
A(A), we say that (wy,ws,...) is the Witt vector associated to f.

3 Suppose B is also a commutative ring. A map f : W(A) — W(B) is called
continuous if for each n € Z-( there is some m € Z-( such that for all
w,v € W(A) with w; = v, fori € {1,2,...,m}, one has f(w); = f(v); for
each j € {1,2,...,n}.

Remark 3.6 Here are some remarks about Definition 3.5.

1 Note that for wyi,ws,...,v1,v2,..., U1, U, ... algebraically independent over
Z, the fact that componentwise addition and multiplication on the ghost
components are commutative, bilinear and associative, it follows easily
that s(s(w,v),u) = s(w, s(v,u)), that s(w,v) = s(v,w), that m(w, s(v,u))
= s(m(w,v), m(w,u)) and that m(m(w,v),u) = m(w, m(v,u)). Hence the
addition and multiplication defined on W(A) are commutative, bilinear
and associative. The Witt vector (0,0,...) € W(A) is the zero element,
and the Witt vector (1,0,0,...) € W(A) is the unit element. So the Witt
ring of a commutative ring A is indeed a ring.

2 The bijection between W (A) and A(A) also makes A(A) into a commutative
ring. By Proposition 3.4, A(A) has its standard multiplication as addition.

It has zero element 1 and unit element (1 —77)~!.

3 Let w € W(A). Then the maps s,m : W(A) — W(A) defined by s(v) = w+wv
and m(v) = w-v are continuous, since for each positive integer n, the n-th
coefficient of s(v) (respectively m(v)) depends only on those vy for which
d divides n.

4 We could have used different identifications of W(A) and A(A). For example,
we could use the correspondence (wi,ws,...) < [[,cz (1 —wnT™) or
(w1, wa,...) < [[ez (1 + w,T™)~t. The identification we use is the one
used in [4].

Proposition 3.7 Let S C Z~q be a set such that for alln € S and all d € Z~q
with d|n, one has d € S. Then the projection m : W (A) — A® given by projecting
an element (w1, ws, ...) to (wy)nes induces a unique ring structure on AS such
that w is a ring homomorphism.

PrOOF This follows directly from Proposition 3.4, using that (w + v), and
(w - v),, only depend on the wy and vy with d|n. n

Notation 3.8 Let A be a commutative ring and let S C Zsg be a set that is
closed under division, meaning that for all n € S and all d € Z~( with d|n, one
has d € S. Then Ws(A) is the set A% with the ring structure induced by the
ring structure of W(A) as in Proposition 3.7. We denote by mg the projection
W(A) — Ws(A). For an element w € W(A), we denote wg = mg(z) € Wg(A).
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If p € Zso is a prime and P = {1,p,p?, p?,...}, we denote W,(A) = Wp(a).
We denote 1, = mp. We define Wy(A) = Wy13(A) = A and denote mg = myq3.

Abusing notation, if S C T are both closed under division, we denote by
ms the projection Wr(A) — Wg(A) induced by the projection wg : W(A) —
Ws(A). Similarly, if S = {1,p,p?% p?,...}, we denote by m, the projection
Wr(A) - Wg(A) induced by the projection m, : W(A) = Ws(A) and if S =
{1}, we denote by 7 the projection Wr(A4) — Wg(A) induced by the projection
7o - W(A) — Ws(A)

Example 3.9 For S = {1}, one has Wg(A4) = A, since for all w,v € W(A),
one has (w+v); = wy + vy, (w-v); =w; -v1 and mp(1) = 1.

Notation 3.10 Let A be a commutative ring.

For a € A we denote by {a} € W (A) the Witt vector associated to (1—aT) ™!,
i.e. the Witt vector (a,0,0,...) € W(A).

For n € Z>¢, we define V,, : W(A) — W(A) by letting V,,((w1,ws,...)) be
the Witt vector associated to [],,c; (1 — wy, TP™) 71, As the first m compo-
nents of w determine the first nm components of V,,(w), it follows immediately
that V,, is continuous (if n = 0, continuity of V,, is trivial). Clearly, if n € Zs,
one has V,, is injective.

Note that for any commutative ring A, any a E A and any n € Zsg, one has
that V;,({a}) is the Witt vector associated to 7 Note moreover that for
any n,m € Zxq, one has V,, oV, =V,

Tn .

Lemma 3.11 Let A, B be commutative rings and f : A — B a ring homomor-
phism. Then f induces a natural ring homomorphism W(f) : W(A) — W(B)
gven by (Wn)nez.o = (f(Wn))nezos-

Moreover, if f is injective, surjective or bijective respectively, then W (f) is
injective, surjective or bijective respectively.

Furthermore, one has W(f) o V,, =V, o W(f) for each n € Zsy.

PrROOF Omne has W(f)(1) = (f(1), f(0), f(0),...) =(1,0,0,...
W(A), one has W(f)(w +v) = (f(s1(w,v)), f(s2(w,v)),...)
(s1(W(f)(w), W(f)(v)), s2(W(f)(w), ( )(v),...) = W(f)(w)+W(f)(v) and
similarly W (f)(w - v) = W(f)(w) - W(f)(v).

The last parts of the lemma are trivial. n

= 1. For w,v €

I I ~—

Proposition 3.12 Let A be a commutative ring and let a,b € A. Letn,m € Z~q
and denote g = ged(n,m). Then one has

Vi{a}) - Vin({0}) = g - Vnm/g({am/gbn/g}).

PRrROOF By Proposition 3.4, one has that V,,({a}) - V,,({b}) is the Witt vector
associated to (1 — a™/9p"/9T™/9)=9. Then V,({a}) - V;n({b}) is indeed equal
tog- Vnm/g({am/gbn/g})' ]
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Proposition 3.13 Let A be a commutative ring, let w,v € W(A). Then for all
n € Zsq, one has

n(w+v)n = n(w, +va)+ Y dwy! + o = (w+0)f )
d|nAd#n

and

n(w - v), = Z dws/d eve — Z d(w - v)g/d.

d,eln d|lnAd#n

PROOF Denote the operations by o. Note that (w o v)™ = w( o v for all
n € Zsg. Let n € Z~g.
One has (w o)™ = 2 d(w o ’U)Z/d, hence it immediately follows that

n n/d n n n/d
n(wov)n = (U}O'U)( )_Zd|n/\d;én d(U}O'U)d/ = w( )O’U( )_Zd|n/\d;€n d(U}O'U)d/ .

Writing out w( =3 djn dwg/ d, the equalities in the lemma follow. n

Corollary 3.14 Let A be a commutative ring and let w = (wy,ws,...), v =
(v1,v2,...) € W(A). Let n € Zso. Suppose wqg = 0 = vy for all din, d # n.
Then one has (w4 v), = Wy, + v, and (W - V), = NWHU,.

Moreover, suppose for all din, d # n, at least one of wq, vq equals 0. Then
(w4 v)y = wy + v, as well.

Corollary 3.15 Let A be a commutative ring and let m € Zsqo. Then Vi, :
W(A) = W(A) is a continuous group homomorphism.

ProOF It suffices to show this in a torsion-free ring, so assume A is torsion-
free. Let w,v € W(A). It follows by Corollary 3.14 and induction that for
any n € Zsg, one has Vi, (w +v)y, = 0 = (Viu(w) + Vi (v))y, if n ¥ m. So it
suffices to show Vi, (w +v)pm = (Vin(w) + Vi (V) ), for each n € Z~. One has
Vin(w + 0)pm = (w + v),,. On the other hand, one has

= (Vo (W) AV () + Y d(Vin () +Vin (0) 37 = Vi (w+0),*)
d|lnm,d#nm

= nm(wy, + vy) + Z md(w;”m + vﬁ —(w+v)d™) =nm(w+v),
d|n,d#n

and hence V,, (0)nm + Vi (V) nm = (W4 v)n = Vi (w4 0) p, for each n € Zso.m

Proposition 3.16 Let A be a commutative ring and let m be a non-negative

integer. Then Vi, (W (A)) is an ideal in W (A).
PROOF Let S = Zso \ mZsq. It is easily seen that S is closed under divi-

sion. Then 7g is a ring homomorphism, and it is easily seen that Ker(mg) =
Vin (W (A)), hence V,,(W(A)) is an ideal. =
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Proposition 3.17 Suppose A and B are commutative rings and f : W(A) —
W (B) is a continuous group homomorphism. Let w € W(A) and suppose there
are wy,wa, ... € W(A) such that Y o, w; exists and is equal to w. Then the
sum Y ooy f(w;) € W(B) is well-defined and equal to f(w).

PrROOF Let w € W(A) and let wy,ws, ... € W(A) such that ) .o, w; exists and
is equal to a.

Note that since f is continuous, for each I € Z~q there is some n € Z~ such
that if v € W(A) has first n components equal to zero, the first I components
of f(v) are equal to the first [ components of f(0) = 0. Moreover, for each
n € Zo, there is M € Z~q such that for each m € Z> ), the first n components
of w— Y w; are equal to 0 by the continuity of addition.

Then for each | € Z~ there is M € Z-( such that for all m € Z> s, the first
! components of f(w — > i, w;) are equal to 0. Hence the first [ components
of f(w) and f(3°1", w;) are equal if m is sufficiently large.

In particular, one has f(3_", w;) = Yo, f(w;) since f is a group homo-
morphism and hence Y .o, f(w;) exists and is equal to f(w). n

Theorem 3.18 Suppose one is given for each commutative ring A a map fa :
W(A) = W(A) such that the following hold.

1 The map fa is a group homomorphism.
2 The map fa is continuous.

3 For each a,b € A, one has fa({a} - {b}) = fa({a}) - fa({b}) and fa(1) = 1.

4 If A and B are commutative rings and g : B — A is a group homomorphism,
then the following diagram is commutative.

W(B) " w(B)

[W(g) ‘W(g)
W(4) — w(a)

Then for each commutative ring A, the map fa is a ring homomorphism.

PROOF Let A be a commutative ring, let w = (wy,ws,...),v = (v1,va,...) €
W (A). Note that one has w-v =>"" _ V,({wn}) - Vin({vm}) using continuity

n,m=1

of addition and multiplication. Hence one has fa(w-v) = 327" _; fa(Va({wn})-
Vin({om})) and fa(w) Fa(0) = 5550y Fa(Va({wn})-F4(Vin({0m })) by Propo-
sition 3.17, using that fa is a continuous group homomorphism by assump-
tion. Thus it suffices to show that for each n,m € Z~g, one has fa(V,,{wn}) -
Vin({vm})) = fa(Va{wn})) - fa(Vi({vm}))-

Let n,m € Zso. Let B =Z[X™,Y™] be the polynomial ring in the variables
X™and Y. Let (, and (,, be primitive n-th and m-th roots of unity respec-
tively, and let C' = Z[(m, Cn, X, Y]. Let ¢ : B — C be the natural inclusion. Since
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one has — =[], % in A(C), one has V,,({X"}) = Y7 {¢: X} in
W(C) and likewise V,,,({Y™}) = 37" {¢}, Y} in W(O).

Then one has fo(Va({X"}) - Vin({Y™})) = 2200, 275 fe({G XY {GL YD)
since fc is a group homomorphism. By property 3, one has fo({¢i X}-{¢)Y})
= fo({¢E X)) fe({¢2,Y'}) and hence one concludes fo(Vy,({X"}) -V, ({Y™})) =
fe(Vu({X™1) - fe(Vin({Y™})).

By property 4, one also has fp(V,({X"}) - V., ({Y™})) = fe(VL({X™})) -
fB(Viu({Y™})), using that W(¢) is injective.

Now, define a ring homomorphism g : B —+ A by X™ +— w,, and by Y™
Um. By property 4, we conclude that fa(V,,({wn}) - Vin({vm})) = fa(Vi({wn}))-
fa(Viu({vm})). This concludes our proof. n

Theorem 3.19 Suppose one is given for each commutative ring A maps fa,ga :
W(A) = W(A) such that the following hold.

1 Both fa and ga are group homomorphisms.
2 Both fa and ga are continuous.
3 For each a € A, one has fa({a}) = ga({a}).

4 If A and B are commutative rings and h : B — A is a group homomorphism,
then the following diagram is commutative if one hases = fa andeg = fp
or if one has ey = ga and eg = gp.

€B

W(B) —— W(B)

[W(h) ‘W(h)

€A

W(A) —2 W(A)

Then one has fa = ga for each commutative Ting A.

PROOF Analogously to the proof of Theorem 3.18, it suffices to show that for
each commutative ring A, for each a € A and for each n € Zsg, one has
fa(Vn({a})) = ga(Vi({a})) since both f4 and g4 are continuous group homo-
morphisms.

Let n € Zsg. Let B = Z[X™] be the polynomial ring in the variables X™
and Y. Let (, and (,, be primitive n-th and m-th roots of unity respectively,
and let C = Z[(m, G, X, Y]. Let ¢ : B — C be the natural inclusion.

Then analogously to the proof of Theorem 3.18, one finds fo(V,({X"})) =
S fol{CXE) = Sy go({CLXY) = go(Va({X™})) using properties 1 and
3. By property 4, one concludes fp(V,({X"})) = 95(Vo({X"})) as well.

Now, define a ring homomorphism g : B — A by X™ — a. By property 4,
we conclude that fa(V,({a})) = ga(Vi({a})). This concludes our proof. m
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Lemma 3.20 Let A be a commutative ring of characteristic p, where p € Zsq
is prime. Forn € Z>o, let Q, ={1,p,...,p"}.
Then for w = (wy,ws,...) € W(A), one has p-w = V,((wh,wh,...)). Also,

n+1 1

D annihilates W, (A) and Wo, (A) is a ring of characteristic p™**.

PROOF Note that for any element w € W(A), we have p - w is the Witt vec-
tor associated to (I],,cz_ (1 = w,T") ™" = [1,e5., (1 — whTP")~*, which is
V,((wh,wh,...)). In particular, one has p"*! - aq, = 0 and for 1 € Wq, (A),
one has p"-1=(0,0,...,0,1) # 0, so indeed Wy, (A) is a ring of characteristic
pn-&-l. -

We end this section with an example.

Example 3.21 Let p € Z~o be prime and let A be a commutative ring. Let
S ={1,p} and consider the ring Wg(A4). An element w of Wg(A) is denoted by
(w1, wp) with wy, w, € A. Let w,v € Wg(A). Then the following hold:

1 wtv = (wi+v1, wy+v,— 0] %w{v’ki), where @ is computed in Z as it
may not be well-defined in A. This just follows by writing out the formal
equality p(x + y)p, = pxp + pyp + 24 + vy — (x1 + y1)P in characteristic 0
and dividing by p.

2 w-v = (wyvy, pwpvy+wiv,+w,vl). This one follows by writing out p(z-y), =
P22y + D2l yp + eyl + 2yl — (x1y1)P in characteristic 0 and dividing
by p.

n nP—n

3 For any n € Z, one has n-w = (nwy, nw, — “=—"2w?"), where is computed
in Z. This follows from the fact that for any n, m € Z, one has

(nwy, nw, — C="08) 4+ (mwy, mw, — WMy =
((n+m)wy, (n+ m)w, — 2mimnmmp 4 ()Tl tne)?)
((n+m)w, (n +m)w, — Wﬂw’f) and induction.

4 As a direct corollary of 3, one has —w = (—w1, —w, — #w’f) In par-

ticular, if p = 2, one has —w = (—wy, —ws — w?}) and if p is odd, one has
—w = (—wi, —wp).

5 Suppose A has characteristic p. Then for any n € Zx>(, one has w" =

(wh, anb_l)p wp). This can easily be shown by induction, since it is true

for n = 1, and for any m,n € Z, provided that w; is invertible if ei-
ther m < 0 or n (< O71 one has (wf{é,mﬁgnfl)pwp) . (wi",mwgmfl)pwp) =
(", (i) (mawy™ ™ Pw,) + (nwf™™ P w,) (wi)r) =

(Wi, (m o+ n)uy™ ),
In particular, one has (wy,w,)? = (w},0).

Moreover, if w is invertible, one has w™ = (w}, nwgnfl)pwp) for all n € Z.
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6 Suppose A has characteristic p. Then w = (w1, w,) is invertible if and only
if w; is invertible; in this case, the inverse of w is (w;y ', —w] **w,). This
is a direct consequence of 5.

4 Witt power sums

Notation 4.1 Let p € Z>( be a prime (possibly 0). We denote Z,y = {a/b €
Qla,b € Z,p1b}. In particular, one has Z = Q.

Remark 4.2 Tt is easily verified that Z, is a subring of Q for each prime p,
and that any n € Z~o with p{n is invertible in Z,).

Moreover, a ring A is a Z,)-algebra if and only if any n € Z that is not
divisible by p is invertible. In particular, any Z,)-algebra has characteristic
either 0 or some power of p.

Let A be a commutative ring and let n € Zs¢. Recall that V,, : W(A) —
W (A) is the map defined by letting V,,((w1, ws,...)) be the Witt vector associ-
ated to the element []>>_, (1—w,, T™™)~* of A(A). We showed in Corollary 3.15
and Proposition 3.16 that V,, is a continuous group homomorphism and that
Vo (W(A)) is an ideal of W (A). Moreover, V,, is injective. We are going to use
these properties to define certain ring homomorphisms P, : W(A) — W (A). If
there is some prime p € Zx>q (possibly 0) such that W (A) is a Z)-algebra, then
the ring homomorphisms P,, will allow us to find a ring isomorphism of W (A)
with the product [] W, (A).

n€Zxo,ptn

4.1 Definition and properties of Witt power sums

Definition 4.3 Let A be a commutative ring. Let n € Z~y. We define P, :
W(A) — W(A), by Vo(P,(w)) = V(1) - w. We call P, the n-th Witt power
sum.

Remark 4.4 Since V,,(W(A)) is an ideal, one has V,(1) - w € V,,(W(A)). As
V., is injective for any n € Zsg, the element P,(w) is well defined for each
w € W(A).

Recall that if A is a commutative ring and if a € A, one denotes by {a} the

Witt vector associated to ﬁ, i.e. the Witt vector (a,0,0,...).

Theorem 4.5 Let A be a commutative ring and let n € Z~q. Then one has the
following.

1 The map P, is a group homomorphism.
2 The map P, is continuous.

3 For alla € A and m € Z~y, letting g = ged(n,m), one has

Po(Vin({a})) = gVimye({a™/7}).
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4 For all a € A, one has P,({a}) = {a"}.

5 For all a,b € A, one has P,({a} - {b}) = P.({a}) - P,({b}) and one has
P,(1)=1.

6 Let B be a commutative ring and suppose g : B — A is a ring homomorphism.
Then the following diagram commutes.

W(B) — W(B)
Wi(g) W(g)
P’Vl

W(A) —— W(A)

7 The map P, is a ring homomorphism.

PROOF Properties 1 and 2 follow from the fact that V,, is an injective, con-
tinuous group homomorphism. Property 6 follows from Lemma 3.11. For all
a,b € A, one has {a} - {b} = {ab}, this means that property 4 implies property
5. Clearly property 3 implies property 4.

Let a € A and m € Zsg. Let g = ged(n,m). One has V,(1) - V;,,{a} =
gVnm/g({a"/g}) = Vnm/g(g{a"/g}) by Proposition 3.12. Hence one has P,(a) =
Vnil(‘/nm/g (g{an/g})) = Vm/g(g{an/g}) = gv;n/g({an/g})' This shows property
3.

Property 7 now holds by Theorem 3.18. n

Corollary 4.6 Let n,m € Z~g. Then P, o Py, = Ppny,, for each commutative
ring A.

PROOF Let A be a commutative ring and let a € A. Then one has P, o
P,({a}) = P,({a™}) = {a"™} = Pyn({a}). As both P, o P,, and P,,, are
continuous ring homomorphisms that satisfy property 4 from Theorem 3.19,
one has by Theorem 3.19 that they are equal. n

Proposition 4.7 Let m,n € Z~q. Let g = ged(m,n). Let m', n' € Z~q such

that m = gm’ and n = gn’. For a commutative ring A, denote by ¢4 the group

homomorphism W (A) — W(A) given by ¢q4(w) = gw for each w € W(A).
Then one has Py oV, = Vi o g 0 Py

Proor Observe that both P,oV;, and V;,,y 0940 P, are continuous group homo-
morphisms that satisfy property 4 from Theorem 3.19. Then by Theorem 3.19
it suffices to show that for each commutative ring A and for each a € A, one has
P,oVy({a}) = Vi oggo Py ({a}). Let A be a commutative ring and let a € A.
One has Pn(Vm({a})) = ng/g({an/g}) = Vm/(g{an/}) = Vm’(¢g(Pn’({a})))
using properties 3 and 4 from Theorem 4.5. This completes the proof. ]

Corollary 4.8 Let m,n € Z~q be coprime. Then one has P, oV, = Vi, 0 P,
for each commutative ring A.
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Corollary 4.9 Let A be a commutative ring and let n € Z~qg. Then for each
w € W(A), one has Pp(V,(w)) = nw.

Proposition 4.10 Let A be a commutative ring and let w = (wy,wa,...) €
W(A). Let n € Z~g. Then the first component of P,(w) is equal to w(™.

PROOF Let m € Zso. Let g = ged(n,m). Then by Theorem 4.5, the first
component of P, (V,,({wp,})) is the first component of ng/g({wfn/g ). If one
has g # m, this component is zero. One has ged(n,m) = m if and only if
m|n. If this is the case, the first component of P, (V,,({wn})) is equal to the
first component of mVl({wgl/ 1), which is mwp!™. Since P, is a continuous
group homomorphism, one has P,(w) =Y .=, P,(Vi({w;})) and hence the first
component of P,(w) is equal to the first component of },, Pn(Va({wa})),

which is 37, dwg/d =w™, n

Theorem 4.11 Let A be a commutative ring, let m € Zsq, let n € Zsg
such that ged(m,n) = 1 and let w = (wy,wa,...) € W(A). Then one has
P,(Vin(w)) € Vi (W(A)) and the m-th component of P, (Vi,(w)) is equal to

w\™,

PROOF Since n and m are coprime, one has P, (V;,(w)) = Vi (P, (w)). The m-
th component of P, (V;,(w)) is therefore equal to the first component of P, (w),
which is w(™ by Proposition 4.10. -

Theorem 4.12 Let A be a commutative ring, let m € Z~q, let n € Z~qg such
that ged(m,n) = 1 and let w = (wy,wa,...) € W(A). If one has wy = 0 for
each divisor k of nm, then the e-th coefficient of Py(w) is equal to O for each
d|n and each e|m.

Suppose that n is invertible in A. If the e-th coefficient of Py(w) is equal to
0 for each d|n and each e|m, then one has wy = 0 for each divisor k of nm.

PROOF Letl € Z~ . Suppose k € Z~¢ is not a divisor of nm. Let d be a divisor
of n and let g = ged(k,d). One has Py(Vi,({wi})) = ng/g({wZ/g}). Since k/g
does not divide m (as this would imply that k divides mg and hence that k
divides mn), the e-th coefficient of Py(Vj({wy})) is zero for each divisor e of
m. Hence for each divisor d of n and for each divisor e of m, one has the e-th
component of P;(w) is the e-th component of kam Pi(Vi;({wk})), which is 0
if wy = 0 for all k|nm.

Suppose n is invertible. Suppose there is a divisor k = de of nm with wj, # 0.
There is a minimal divisor e of m such that there is d|n with wg. # 0. Let e be
such a minimal divisor of m, and let d be the minimal divisor of n with wg. # 0.
Then d and e are coprime, and for each divisor k of de, one has w; = 0. Hence
one has 3 4. Pa(Vi({wr})) = Pa(Vie({wae})) and by the previous argument,
the e-th component of Py(w) is the e-th component of Py(Vie({wge})). One has
Pi(Vae({wge})) = dVe({wge}), which has e-th component dwge # 0 since d is
invertible. u
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Definition 4.13 Let k be a field and A a k-algebra. Let M be an A-module
that is finite-dimensional over k. Let a € A and denote by a,s the k-linear map
M — M given by m +— am. The characteristic polynomial of a with respect to
M is xp(a) = det(I — Tap)~t € A(k). We denote by 1as(a) € W (k) the Witt
vector associated to xas(a) and we denote by Trps(a) the trace of ayy.

We will repeat these definitions in section 5.

Lemma 4.14 Let k be an algebraically closed field and let A be a k-algebra. Let
M be an A-module that is finite-dimensional over k. Let a € A and let n € Z~g.
Then one has Py (¢Ypr(a)) = vpr(a™) € W(k).

PROOF Note that the action of a on M has eigenvalues A1, ..., \q € k, counted
with multiplicity. Then one has xas(a) = Hle ﬁ, hence one has ¥y (a) =
S {\i}. By property 4 of Theorem 4.5, one has P, (¢ (a)) = Z?Zl{)\?}.
As the action of a” on M has eigenvalues A7, ..., A} counted with multiplicity,
one finds ¥y (a™) = P, (¥ar(a)) as was to be shown. n

Proposition 4.15 Let k be a field and let A be a k-algebra. Let M be an A-
module that is finite-dimensional over k. Let a € A and let n € Z~y. Then one

has P, (v (a)) = ¢ar(a™).

PRrOOF Replace k by some algebraic closure k, replace A by Ay, replace M by
Mz, and replace a by 1 ® a € Ag.

Observe that under the natural inclusion W (k) — W (k) induced by the
inclusion k C k, one has 1(a) — ¥, (1 ® a) and pr(a™) — Yar (1 @ a™).
Applying Lemma 4.14, the statement of the lemma follows immediately. ™

Corollary 4.16 Let k be a field and let A be a k-algebra. Let M be an A-
module that is finite-dimensional over k. Let a € A and let n € Z~q. Then one
has Tras(a™) = ¥ (a)™.

PROOF One has Trys(a™) is the first component of ¢5s(a™). The latter is equal
to P, (1a(a)) by Proposition 4.15 and hence Tras(a™) = 1as(a)™ by Proposi-
tion 4.10. ]

4.2 The isomorphism W (A) — W,(A)%>0\P2>0 for commuta-
tive Z,-algebras

Proposition 4.17 Letp € Z>( be a prime, possibly 0, and let A be a commuta-
tive Zy)-algebra. Let S be a subset of Z>q \ pZxo that is closed under division,
meaning that if n € S and d € Zso with d|n, then d € S. Recall that mo is
the projection W (A) — Wo(A). The ring homomorphism g : W(A) — Wy(A)S
defined by g(w), = mo(P,(w)) = w™ for n € S induces a ring isomorphism
Ws(A) — Wo(A)* given by w + Ker(ms) — g(w) for each w € W(A).
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PRrROOF Let w = (wy,ws,...) € Ker(rg) and let n € S. Then for each d|n,

one has d € S and hence w(™) = 2din dwg/d = 0. Hence Ker(mg) C Ker(g).

Then there is a unique ring homomorphism gg : Wg(A) — Wy(A)® such that
gsoms =g-

Let w € W(A) \ Ker(ng). Then there is some minimal n € S such that
w, # 0. Then one has w™ = nw, # 0 since n is invertible, hence g(w) # 0. So
Ker(g) = Ker(wg). Hence one has g(W(A)) = Wg(A) as rings.

Let v = (vp)nes. Define wy = vy and for n € S, n > 1, define inductively
Wy = = (vp — Zd|n,d¢ndwg/d) € A. Asptnforany n € S, one has + € A,
hence w,, is well-defined for any n € S.

Let w € 75" ((wn)nes). Clearly, one has w(™ = 2din dwg/d = v, for each
n € S, showing ¢ is surjective. Hence g induces a ring isomorphism Wg(A) —
Wo(A)S as was to be shown. n

Corollary 4.18 Let A be a commutative Q-algebra. Then the map P : W(A) —
Wo(A)2>0 defined by P(w), = mo(Pn(w)) for any n € Zsq is a ring isomor-
phism.

PrOOF Take S = Z~ ¢ in the previous proposition. n

Corollary 4.19 Let p € Z~¢ be a prime number and let A be a commutative
Zpy-algebra. Let S = Zwo \ pZ=o. Then the ring homomorphism g : W(A) —
Wo(A)* defined by g(w), = mo(Py(w)) for any n € S has kernel V,(A) =
Ker(mg) and induces a ring isomorphism Ws(A) — Wy(A)S.

Proposition 4.20 Let p € Z~q be a prime number and let A be a commutative
Zpy-algebra. Let S = Zxo \ pL>o. For | € Zxo, denote by im = T, . ot}
the componentwise projection W,(A)S — W{Lp"__,pz}(A)S. Denote by P the
ring homomorphism P : W(A) — W,(A)® defined by P(w), = mp(Py(w)) for
each n € S. Then for each | € Z>g, the ring homomorphism ;w o P has kernel
Vi1 (W(A)) and is surjective.

PROOF Let | € Zso. If w € Vjys1(W(A)), Theorem 4.11 immediately gives
1m(P(w)y,) = 0 for each n € S and hence w € Ker(f). Conversely, suppose
w & Vye1 (W(A)). Then there is some minimal i € Z~o with i < [ 41 such that
there is some minimal n € S such that w,:,, # 0. Writing w = V,:(w’), one has
P, (w),: = w'™ # 0, hence w ¢ Ker(P). This shows Ker(;moP) = Vi1 (W (A))
for each | € Z+y.

Let v = (,0)nes € W,(A)S. By Proposition 4.17, there is w € W(A) such
that (o o P(w)), = nv1 for each n € S. This shows o7 o P is surjective.

Let | € Z~o; assume ;_17 o P is surjective. Then there is w € W(A) such
that v — P(w) € Ker(;_17m) = Vi (W,(A)%). Let v = (,v)nes € Wp(A)® such
that V,(v") = v — P(w). By Proposition 4.17, there is w’ € W(A) such that
(om o P(w')),, = pv for each n € S.

Then one has P(V,i(w')) = Vi (P(w')) = Vi (v') € ;m(W,(A)%) since one
has Vo P, = P,oV, foralln € S.
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Vi (v') = P(Vyu(w')) € Ker(;m) by construction, meaning ;7(b) = ;7w o P(a).
Hence ;7 o P is surjective.

By induction, ;7 o P is surjective for each | € Z>o. n

Theorem 4.21 Let p € Z~g be a prime number and let A be a commutative
Zpy-algebra. Let S = Z>o \ pZ>o. Then the ring homomorphism P : W(A) —
W, (A)S defined by P(w),, = m,(Pn(w)) for anyn € S is a ring isomorphism.

PROOF By Proposition 4.20, one has Ker(P) C ;.5 Vi (W(4)) = 0, hence
P is injective.

Let v = (nv)nes € Wp(A)®. For each | € Zx, denote m = myy ,  1y. For
each | € Zx>g, there is ;w € W(A) such that ;7(v) = ;7 o P(;w) by Proposi-
tion 4.20. For I,m € Zso with I <'m, one has ;7(v) = ;7o P(w) as well, hence
1w — w € Vi (W(A)). Tt follows that there is w € W(A) such that for each
| € Z>o, one has wy = (jw)s for each s € Z~q with p!*! { 5. Namely, if s = p'u
with p { u, define wy = (jw),. Clearly, we have w —w € V141 (W (A)) and hence
ymoP(w) = m(v) for each | € Z>(. It immediately follows that P(w) = v, hence
P is surjective. n

If w= (wy,ws,...) € W(A), the proposition below essentially tells us that
for given n = p!m € Z-o with p { m, we can reconstruct wy for d|n given the
pi-th coefficients of P,(w) for each divisor e of m and for each i € {0,1,...,1}. It
is more explicit than Proposition 4.20. In essence, it gives us a way to compute
the inverse of the isomorphism P on a finite level. Provided one can calculate in
W(A) in an efficient manner, this computation can be performed in an efficient
manner.

Proposition 4.22 Let p € Z~q be a prime number and let A be a commutative
Z(p)-algebra. Let P : W(A) — W,(A)?>0\P2>0 be the ring homomorphism de-
fined by P(w),, = mp(Py(w)) for alla € A and alln € Zo\pZso. Forn € Zsy,
denote Sy, = {d € Z~o : d|n}.

Then for each n € Z~q, one has the following. Write n = qu with q,u €
Z>q such that p t u and q is a power of p. Then P induces an isomorphism
gn : Ws, (A) = Wg, (A)5».

PROOF Let n € Z~q. Write n = qu with ¢ = p! for some | € Z~¢ and p{u. Let
w = (wy,wy,...) € W(A). One has g, (w) = 0 if and only if the p’-th coefficient
of Py(w) is equal to 0 for each divisor d of u and each ¢ € {0,1,...,1}. Since u
is invertible, by Theorem 4.12 this is the case if and only if the k-th coefficient
of w is equal to 0 for each divisor k of qu. This shows Ker(g,,) = Ker(ng, ).

Fix u. If I = 0, one has g, is surjective by Proposition 4.17. We apply
induction to [. Let L € Z~( and suppose g, is surjective for every I < L. Write
N = up”. Note that gy maps V. (Wg, (A)) surjectively to V,z (Wg, (A)%+) by
Proposition 4.17, using Corollary 4.8. Let v € W, (A)%«.

Let w € W, (A) such that & = v — gy (w) € Vyr (Wsy (A)5+); such w exists
by the induction hypothesis. Now let w € V,r(W(A)) such that gn(w) = .
Then one has gy (w + @) = v, showing that gy is surjective.
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By induction, the proposition holds for any positive integer n. n
We can combine Corollary 4.18 and Theorem 4.21 in the following theorem.

Theorem 4.23 Letp € Z> be a prime (possibly 0) and let A be a commutative
Zpy-algebra. Let S = Z>o \ pZxo. Denote by m, the componentwise projection
W(A)S — W,(A)S. Then the ring homomorphism P : W(A) — W,(A)® de-
fined by P(w),, = mp(Py(w)) for any n € S is a ring isomorphism.

Remark 4.24 Let p € Z>o be a prime and let A be a commutative Z,)-algebra.
Using the ring isomorphism P from Theorem 4.23; one can give W(A) the
structure of a W, (A)-module. Namely, if S = Z> \ pZz0, one has W,(A)° is a
Wp(A)-module by componentwise multiplication. Moreover, using the diagonal
embedding ¢ : W,(A) — W,(A)®, one finds that P~! o is an injective ring
homomorphism from W,(A) to W(A), meaning that W,(A) can be viewed as a
subring of W (A). Observe that m,o(P~'or) = Idy, (a), since w = P~ ((an ) nes)
satisfies 7, (w) = m,(P1(w)) = ay for each (ay,)nes € W(A)S.

5 Brauer-Nesbitt

Notation 5.1 In this section, unless noted otherwise, k denotes a field, A de-
notes a k-algebra and M and N denote A-modules that are finite-dimensional
over k.

5.1 Definitions and notations

Notation 5.2 Let a in A. We denote by a,; the k-linear map M — M given
by m +— a-m. We denote by Trps(a) the trace of apy.

We repeat Definition 4.13.
Definition 5.3 Let a € A. The characteristic polynomial of a with respect to
M is xar(a) = det(I—Tapr) ' € A(k). The n-th coefficient of x/(a) is denoted
XM,n(@).

Note that this is not the standard definition of the characteristic polynomial.
Observe however that in this way, xas(1) corresponds to dimy (M) - 1y (k) via
the identification of A(k) with W (k).

Notation 5.4 We denote by vp(a) € W(k) the Witt vector associated to
xum(a) € A(k) and for each n € Zs, we denote by 1., (a) the n-th component
of ’(/)M (0,)
Remark 5.5 Note that for any a € A, one has Trps(a) = xar,1(a) = Yar1(a).
Note that if M’ C M is an A-submodule of M, then M” = M/M’ is an
A-module as well, and xa(a) = xar(a)xm(a) for any a € A, as can be seen
by choosing a k-basis of M’ and extending it to a k-basis of M. Note that in
particular, we have ¥y (a) = ¥ (a) + Y (a).
From this, we can conclude that for any a € A, the maps x_(a) : Mg(A) —
A(k) and ¥_(a) : My(A) — W (k) are additive in the sense of Definition 2.15.
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5.2 The Brauer-Nesbitt Theorem

A known theorem is the following.

Quotation 5.6 (Brauer-Nesbitt, 1937) Let G be a group and let k be an
algebraically closed field. Let A and B be two representations of a group G
which associate the matrices Ag and Bg with the element Q) of G. If both Ag
and Bg have the same characteristic roots for every Q) in G, then A and B have
the same irreducible constituents.

Essentially, this quotation tells us that two modules A and B over a group
algebra k[G], with k algebraically closed and G a group, are Jordan-Holder
isomorphic if and only if for each element @ of GG, the characteristic polynomials
of the action of @ on A and B by left multiplication are equal.

In other words, we only need information about characteristic polynomials
in order to determine the Jordan-Holder isomorphism class of an k[G]-module.
We aim to generalize this theorem.

We formulate a somewhat stronger version of the Brauer-Nesbitt theorem.

Theorem 5.7 Let B be a subset of A that generates A as a k-vector space. Then
one has M =5ua N if and only if for each b € B, one has xa(b) = xn(b).

This theorem immediately implies Quotation 5.6, as the elements of G form
a basis of k[G] as a k-vector space. A proof of Theorem 5.7 will be provided at
the end of this subsection.

Lemma 5.8 Let a € A. Suppose ap; has eigenvalue X\ € k. Then xa(a)™?,
viewed as an element of k[T|, is divisible by (1 — X\T). If X # 0, one has

xm(a) # 1.

PROOF If aps has eigenvalue A\ € k, there is some k-basis {mq,...,m,} of M
satisfying aprmi = Amy. We easily see that for M’ = kmy and M" = M/M’,
we have xar(a)™r = xar(a)™t - xarr (@)™t As xar(a)™! = (1 — AT), one has
xa (@)™t is divisible by (1 — AT). If A # 0, one has (1 — AT) is not invertible in
k[T, hence it follows that xs(a)~! # 1 and hence s (a) # 1. =

Lemma 5.9 Let R be a semisimple ring and let S be a simple R-module. Then
for each s € S\ {0} there is some r € R with rs = s and such that for any
simple R-module T that is not isomorphic to S, one has rT = 0.

ProOOF Let s € S\ {0}. Consider the R-linear map f : R — S defined by
f(r) =rs for each r € R. As S is simple and f(1) = s # 0, one has f(R) = S.
Consider the exact sequence 0 — Ker(f) — R EN S — 0. Since R is semisimple,
this sequence splits, hence there is an R-linear map ¢ : S — R such that
fod =1dg. Define r = ¢(s). Then one hasrs = f(r) = f(P(s)) = (fod)(s) = s.

Let T be a simple R-module and suppose it is not isomorphic to S. Let
t € T. Then there is an R-linear map g : S — T defined by s’ — ¢(s')t for
s’ € S. If g is injective, it is an isomorphism since T' is simple and S is not
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0. This is false by assumption, hence Ker(g) # 0. Since S is simple, it follows
Ker(g) = S. In particular, one has rt = ¢(s)t = g(s) = 0. Hence one has
rT = 0. [ ]

Theorem 5.10 Let M, N be semisimple A-modules that are finite-dimensional
over k. Then the following are equivalent.

1 One has M and N are isomorphic as A-modules.

2 For all a € A, one has xp(a) = xn(a).

PrOOF The implication 1 = 2 is trivial. Suppose 2 holds.

First, we show that we may assume that A is finite-dimensional over k and
semisimple. Let I C A be the annihilator of M @ N. Then both M and
N are A/I-modules and A/I is semisimple and finite-dimensional over k by
Lemma 2.11.

As (a+ 1)y =ap and (a+ 1)y = an for any a € A, we have xp(a+I)
xn(a+1I) for all @ € A. Note that we have a canonical bijection Hom 4 (M, N)
Hom /7 (M, N), since any A-linear map from M to N is also A/I-linear and vice
versa. Hence we have M =4 N if and only if M =4,; N. Moreover, M and N
are still semisimple as A/I-modules. So if the theorem holds with A replaced
by A/I, it holds for A as well.

Assume that A is semisimple and finite-dimensional over k.

Write M = @7, 8; and N = @¢_, T; with d,e € Zso, and Sy,..., S,
Ti,...,T, simple A-modules. Assume d > e without loss of generality. We
apply induction to d.

If d =0, both M and N are the 0-module, and hence one has M = N.

Suppose d > 0 and that the result is true for all d’ < d. View a component
S1 of M as a subset of M. Let s € S1\ {0}. Let a € A such that as = 1 and
aT = 0 for each simple A-module T that is not isomorphic to S7. Such a exists
by Lemma 5.9.

Suppose Sp is not isomorphic to T; for any i € {1,2,...,e}. Then one has
aT; =0 for each i € {1,2,...,e}. In particular, it follows that aN = 0, yielding
that xn(a) equals 1.

On the other hand, viewing S7 as an A-submodule of M, we see that ay; has
eigenvalue 1 since we have as = s. Thus xa(a) # 1 by Lemma 5.8, contradicting
xm(a) = xn(a). So at least one of the T; is isomorphic to Sj.

Assume without loss of generality that 77 and S; are isomorphic. Now con-
sider the modules M /S, and N/T; these satisfy x5, (a) = xa(a)/xs, (a) =
xw~(a)/xt (@) = xnyr,(a) for all a € A by 2, using xs,(a) = x1,(a) since
S1 2 Ty. As both M/S; and N/T; have precisely one fewer simple submodule
in their decomposition, we can apply the induction hypothesis to M/S; and
N/Ty and conclude M/S; = N/Ty. As M = M/S;@PS; and N = N/TVPTh
since M and N are semisimple, it follows that M and N are isomorphic. n

e

Corollary 5.11 Let M, N be A-modules that are finite-dimensional over k.
Then the following are equivalent.
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1 One has M and N are Jordan-Hélder isomorphic as A-modules.

2 For all a € A, one has xp(a) = xn(a).

PrOOF One has M and N are Jordan-Holder isomorphic if and only if their
semisimplifications Mgs and Ny are isomorphic. Both Mg, and Ny will also be
semisimple and finite-dimensional over k. Moreover, for any a € A, one has
xm(a) = xam..(a) and xn(a) = xn..(a). Now apply the previous theorem to
My and Ng. [ |

We can reformulate the above corollary as follows, using Theorem 2.18:

Corollary 5.12 The group homomorphism ¢ : Gp(A) — A(k)A defined by
[M] — (xm(a))aca is injective.

This immediately has the following consequence.

Corollary 5.13 Letl be a field extension of k. Then the group homomorphism
t: GR(A) = Gi(4;) defined by [M] — [M;] is injective.

PROOF Define ¢ : Gx(A) — A(k)? as in Corollary 5.12. Define the group
homomorphism ¢; : G;(4;) — A(1)? by [M] — (xar(a))aca, viewing A as a
subring of A; in the canonical way. The inclusion k£ C [ induces an inclusion
i: A(k)* — A(1)? via the induced inclusion A(k) C A(l).

Clearly, the following diagram commutes.

Gi(A) —2 A

L ] i\J
¢ 4
Gr(A) —— A(k)
As i o ¢ is injective, ¢t must be injective as well. n
The following is Lemma 9 in [8].

Lemma 5.14 Let Z(X,Y) denote the noncommutative polynomial ring gener-
ated by X and Y. Then there exists a unique sequence fo(X,Y), f1(X,Y),...
of polynomials in Z(X,Y) such that in Z(X,Y)[[T]] we have

1-(X+Y)T)=01-XT)1-YT) ﬁ 1— fu(X,Y)XYTk+2),

The polynomial f,,(X,Y) is homogeneous of degree m in X and Y.

A proof can be found in [8].

Lemma 5.15 Let R = Z(X,Y) denote the noncommutative polynomial ring
generated by X and Y. Let V' be the set of homogeneous polynomials in R of
degree at least equal to 2. Let S be the polynomial ring over Z in the variables
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H,,; where w ranges over the elements of V and i ranges over the positive
integers. We make S into a graded ring by defining the weight of H,, ; to be
equal to the degree of w times i.

For each s € Z~ there is a polynomial Qs € S such that for every field k,
every k-algebra A, every A-module M that is finite-dimensional over k and for
all a,b € A, one has the following.

Define a ring homomorphism S — k by mapping H., ; to the i-th coefficient
xum,i(w(a, b)) of the characteristic polynomial xar(w(a,b)) of w(a,b) for each
pair (w,1) € V X Zsyg.

Then one has

Xn,s(a+b) = xar,s(a) + Xar,s(0) + Qs ((Xari(w(a, b)) (w,iyev xz-o)-
Moreover, QS is homogeneous of degree s.

PROOF For m € Z>g, let f,,(X,Y) be the polynomial from Lemma 5.14. Let k
be a field, A a k-algebra, M an A-module that is finite-dimensional over k& and
let a,b € A.

Then one has (1—(a+b)T) = (1 —aT)(1 —bT) [[;2,(1 = (fi(a,b)ab)T*?) €
A(A). Taking determinants and inverting on both sides, one finds xas(a + b) =
xar(a)xar(0) TT;20(1 + Z;il X, (fi(a, b)ab) T +2)7).

Comparing the coefficients of T on both sides, one finds a formal relation
Q, of the form we seek that does not depend on a, b, M, A and k for each
s € Zi>o. n

Remark 5.16 Observe that in terms of Witt vectors, the equality

o0

X (a+b) = xar(a)xa () H(l + ) xan(fia, b)ab)TH2)

=0 j=1

can be written as

Yar(a+b) =var(a) +ar(b) + Z Vita(Ym(fi(a,b)ab)).

=0

Theorem 5.17 Let R = Z(X,Y) denote the noncommutative polynomial ring
generated by X and Y. Let W be the set of monomials in R of degree at least
equal to 2 that are not equal to x™ ory™ for anyn € Z~1. Let S be the polynomial
ring over Z in the variables H,, ; where w ranges over the elements of W and ¢
ranges over the positive integers. We make S into a graded ring by defining the
weight of Hy, ; to be equal to the degree of w times i.

For each s € Z~q there is a polynomial Qs € S such that for every field k,
every k-algebra A, every A-module M that is finite-dimensional over k and for
all a,b € A, one has the following.

Define a ring homomorphism S — k by mapping H., ; to the i-th coefficient
xum,i(w(a, b)) of the characteristic polynomial xa(w(a,b)) of w(a,b) for each
pair (w,i) € W x Zso.
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Then one has

XM7s(a + b) = XMﬂs(a/) + XM,s(b) + Qs((XM,i(w(aa b)))(w,i)GWXZ>g>-
Moreover, Qs is homogeneous of degree s.

Remark 5.18 One can prove this theorem by induction to s. We will not
do this here. The main conclusion of Theorem 5.17 is that if k is a field, A
a k-algebra, M an A-module, a,b € A and s € Zsg, one has xps(a +b) =
Xaz,s(a) + xar,5(0) + Qs (Xa1,i(w(a, b)) (w,iyew xz-, ), Where Q4 does not depend
on the xar,;(w(a, b)) for which the product of 7 and the degree of w(X,Y") exceeds
s. Moreover, (); does not depend on the xar,;(w(a, b)) for which w(z,y) has the
form z™ or y" for some n € Z>y.

Observe that similar polynomials W exist such that one has ¥y s(a +b) =
Uar,s(a) +1nr,s (D) + We(¥ari(w(a, b)) w,iyew xz-, ), Where W does not depend
on the ¥ ;(w(a, b)) for which the product of i and the degree of w(X,Y") exceeds
s.

Corollary 5.19 Let B be a subset of A that generates A as a k-vector space.
Then the following are equivalent.

1 For alla € A, one has xup(a) = xn(a).
2 For allb € B, one has xp(b) = xn(b).

PrOOF The implication 1 = 2 is trivial. Suppose 2 holds. For any a € A, one
has xar,1(a) = xn,1(a) by the linearity of the trace.

Let S € Z~; and assume inductively that one has x s s(a) = xn,s(a) for any
s€{1,2,...,8—1} and any a € A. Let a € A. Then one has a = Y .~ \;b;
for certain m € Z>o, A; € k and b; € B. One has xar,s(\ib;) = /\;SXM,S(bi) =
Xn,s(A;b;) for each @ by assumption. Thus if m = 0 or m = 1, one has xr,s(a) =
xn,s(a).

Suppose m > 1. Inductively, assume one has the equality x M7S(Z£—11 Aib) =
XN,S(Z;Z_ll Aib;). Write a’ = Z:i_ll Aibi. Then one has xar,s(a) = xars(a’) +
XM, (Ambm) +Qs((Xar,s(w(a', \mbm))) (w,s)ew xz+,) by Theorem 5.17. One has
xum,s(a’) = xn,s(a’) by assumption and we already showed that xas,s(Ambm)
equals XN,S()‘mbm)~ Note that QS((XM,s(w(ala )\mbm)))(w,s)EWXZ>g) Is polyno-
mial in the x s, s(w(a’, Amby,)) with s < S. By the induction hypothesis for S, we
have xar,s(w(a’, Ambm)) = xn.s(w(a’, Apb,)) if s < S and hence it follows that
QS((XM,S(U}(@/’ )\mbm)))(w,s)EWXZ>0) = QS((XN,s(w(a'/7 )\mbm)))(w,s)EWXZ>o)-
Hence one finds xa,s(a) = xn,s(a).

By induction one has xas(a) = xn(a) for all a € A. n

The combination of Corollary 5.11 and Corollary 5.19 proves Theorem 5.7.

Example 5.20 Let k be a field and G a group. Let A = k[G] and let M, N
be A-modules. We have that G is a k-vector space basis of A, hence one has
M =5y N if and only if for each g € G, one has xa(g) = xn(9)-
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Equivalently to Theorem 5.7, we have the following.

Theorem 5.21 Let B be a subset of A that generates A as a k-vector space.
Then the group homomorphism ¢ : Gi.(A) — A(k)P defined by [M] — (xa(a))pen
18 injective.

5.3 Generalizations

In this subsection, we give a few generalizations of Theorem 5.21. We still use
Notation 5.1.

5.3.1 Replacing A(k)® by W,(k)?

In this subsubsection, we prove the following generalization of Theorem 5.21.
Recall that 7, denotes the projection W (k) — W, (k).

Theorem 5.22 Let p = char(k). Let B be a subset of A that generates A as
a k-vector space. Then the group homomorphism Gy(A) — W,(k)B defined by

[M] — (mp(¢¥ar(b)))ven is injective.
A proof will be provided at the end of this subsubsection.

Proposition 5.23 Let k be a field of positive characteristic p. Let A be a k-
algebra and let a € A. Let j € Z>o; suppose that w1, . pi-1y(Yar(a™)) =0 for
each n € Zsq. Then one has y(a) € V, (W(A)).

PROOF Let P denote the isomorphism W(A) — W,(A)?>0\P%>0 from Theo-
rem 4.23, noting that k is a Z,-algebra. For any n € Zs¢ \ pZo, one has
Tp(Pn(Yrr(a))) = mp(ar(a™)) € Vi (Wy(A)) by assumption, using Proposi-
tion 4.15. By Proposition 4.20, one has 1ns(a) € V,i (W(A)). n

Proposition 5.24 Let k be a field of positive characteristic p. Let A be a k-
algebra and let a,b € A. Let Z(X,Y) be the noncommutative polynomial ring
generated by X andY . Letj € Zxo; suppose that w(y 5, . pi—13 (Y (w(a,b))) =0
for each monomial w € Z(X,Y) that is not of the form Y™ for some n € Zx>y.
Then one has m(1 o, piy(Yar(a+b)) = T piy(Yar(a)) + 712, piy (Y2 (D)).

PROOF By assumption, for any w € Z(X,Y) not of the form Y™ for any
n € Zxo, one has ¥y ;(w(a,b)) = 0 if i < p’ using Proposition 5.23. Using
Remark 5.18, we find that this means that one has ¥ n(a +b) = Yarn(a) +
Yar,n(b) for each n € {1,2,...,p’}. Hence one has (12,0} (Wa(a + b)) =
T2, p 3 (Wa(a)) + T2, iy (Yar (D)), using Corollary 3.14. n

Remark 5.25 The proposition above can be made more general. One can
replace the set {1,2,...,p’} by the set S = (Z~o \p’Z~0) U{p’}. This is simply
because for any s € S with s # p’, the s-th coefficient of 1y (w(a,b)) equals
0 for any monomial w € Z(X,Y) not of the form Y for some n € Z>o. It
seems this S is the largest possible, since if n € Z~, the p/n-th coefficient of
¥ (a+b) may have extra terms arising from the Vi 2(¢ar(fi(a, b)ab)) for which
1 + 2 divides n from Remark 5.16.
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Theorem 5.26 Suppose k is a field of characteristic p > 0. Let I be a subset
of A that is closed under left and right multiplication by elements of A, meaning
that if a € A and i € I, one has ai € I and ia € I. Let j € Z>¢ and suppose
that w1 ... pi-13(¥ar (b)) = 0 for each b € I. Then one has the following.

1 For allb e I, one has ypr(b) € Vi (W(A)).

2 Forallac A, bel, one has w15, piy(Ym(a+0)) =m0 piy(Un(a)) +
12,0} (Yar (D).

This theorem follows directly from Proposition 5.23 and Proposition 5.24.

Remark 5.27 If I, j and k are as in the theorem, then for all a,b € I and
i€{0,1,...,5 — 1}, one has vy i (a + b) = 0. The subgroup I’ spanned by I
is a two-sided ideal satisfying 7y, . pi-11(¥ar(b)) =0 for all b € I".

Corollary 5.28 Suppose k has positive characteristic p. Let B be a subset of
A that generates A as a k-vector space.

1 Let j € Z>o and suppose Yy i (b) =0 for allb e B and i € {0,1,...,j —1}.
Then for all a € A, one has Ypr(a) € Vi (W(A)).

2 Suppose dimy (M) is bounded above by n € Z~q and assume that |y i (b) = 0
forany b€ B andi € {0,1,...,[log,(n)]}. Then M is the 0-module.

PRrOOF The first part follows from Remark 5.27 and Theorem 5.26.

For the second part, let j = [log,(n)|. Note that from Theorem 5.26, it
follows ¥ps(1) € Vpi+1(W(A)). On the other hand, if M is not the 0-module,
there are u € {1,2,...,p—1} and i € {0,1,...,5} such that n = p‘u. Then one
has 957(1) = p'u, which has p’-th component equal to u # 0, a contradiction.g

In essence, there is no real difference between knowing the coefficients of
xm(a) € A(k) and the components of the associated Witt vector ¢y (a) € W (k)
of an element of A. The following propositions and theorems will make this a bit
more explicit. In particular, they give analogues to Theorem 5.26, Remark 5.27
and Corollary 5.28.

Proposition 5.29 Let k be a field of positive characteristic p, let I be a subset
of A that is closed under left and right multiplication by elements of A and let
J € Zsqg. The following are equivalent.

1 ForallacI andi€ {0,1,...,5 —1}, one has Yy pi(a) = 0.
2 Foralla €l and s € Z~q with p’ t s, one has Yar,s(a) = 0.
3 ForallacI andic€{0,1,...,5—1}, one has xprpi(a) = 0.
4 Foralla €I and s € Zo with p’ { s, one has xu,s(a) =0.

5 For S ={1,p,p% ...,p" "1}, the map I — Ws(k) defined by a — ms(var(a))
is the zero map.
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6 For S = 7o\ P/ Zso, the map I — Wg(k) defined by a — ms(¢rr(a)) is the
zero map.

PrROOF The implications 2 = 1 and 4 = 3 are trivial; the implication 1 = 2
is part 1 of Theorem 5.26. The equivalence of 2, 4 and 6 is trivial, and so is
the equivalence of 1 and 5.

Let S = {1,2,...,p? — 1}, let a € I. We apply induction to i € {0,1,...,j—
1}. For i = 0, one has ¥ 0(a) = Xarpo(a) = 0 for all a € 1. Let i €
{1,2,...,j — 1} and assume one has 1, ,i(a) = 0 for all I € {0,1,...,i — 1}
and @ € I. Then by Theorem 5.26, one has ¥ s(a) = 0 for all s < p’, and
consequently xps.s(a) = 0 for all s < p* and a € I since one has yus(a) =
¥u,s(a) provided one has ¥ o (a) = 0 for all ' < s. It immediately follows
Y pi(a) = Xarpi(a) = 0 for all @ € I. By induction, we find v i (a) = 0 for
alla eI and i€ {0,1,...,5 — 1}. This shows the implication 3 = 1. n

Theorem 5.30 Suppose k is a field of characteristic p > 0. Let I be a subset of
A that is closed under left and right multiplication by elements of A. Let j € Z>¢
and suppose that X pi(a) =0 for alla € I and all i € {0,1,...,5 —1}. Then
for all a € I, one has Xnrpi(a) = Yarpi(a) and for alla € I, b€ A and s €
{1,2,...,p7}, one has xa,s(a+b) = xar,s(a)+xn,s(b). Forse {1,2,...,p7—1}
anda €1, be A, one has xur,s(a +b) = xar,s(b).

PROOF Let S ={1,2,...,p’},leta € I and b € A. By Proposition 5.29, one has
xs(a) =0foralla € I and s € S\ {p’}. In particular, yar(a) = 1+ xaspi (a)TP
mod TP !, showing immediately that x s, (a) = 1 i (a).

Moreover, if S = {1,2,...,p?}, the equivalence wg(1ps(a+b)) = ms(¥ar(a))+
ms(xar (b)) from Theorem 5.26 tells us that xas(a + b) = xar(a) - xar(b) mod
TP+, We immediately conclude that xas.s(a + ) = xar.s(a) + xar.s(b) for all
s € S; moreover, one has yars(a+b) = xas(b) if s € 9, s # p. m

Remark 5.31 If I, j and k are as in Theorem 5.30, then for all a,b € I, and
i€{0,1,...,7—1}, one has x s i (a+b) = 0. The subgroup I’ spanned by I is a
two-sided ideal satisfying x s pi(a) = 0 for alla € I’ and all i € {0,1,...,5—1}.

Corollary 5.32 Suppose k has characteristic p > 0. Let B be a subset of A

that generates A as a k-vector space.

1 Let j € Z>o and suppose Xprpi(b) = 0 for allb € B and i € {0,1,...,j}.
Then one has xms(a) =0 for alla € A and s € Zso \ P’ Z~o.

2 Suppose dimy (M) is bounded above by n € Z~o and assume that Xy ,i (b) =0
forany b€ B and j € {0,1,...,[log,(n)|}. Then M is the 0-module.

PRrOOF This follows directly from Corollary 5.28 and Proposition 5.29. n

Lemma 5.33 Suppose k has characteristic p > 0 and let B be a subset of A

that generates A as a k-vector space. Let M’ be an A-submodule of M and

let M" = M/M'. Let j € Z>o and suppose either iy ,i(b) = 0 for any

i€{0,1,...,j—1}, b€ B, orthp i (b) =0 for any i € {0,1,...,j—1}, b€ B.
Then one has Vg pi(a) = Y pi (@) + Ve pia) for any a € A.
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PROOF Let S = {1,p,p?,...,p'}, let a € A. By Corollary 5.28, one has
ijl (a)s = (0, 0, ey 0, wM/,pj (a)) or ’(/JMN ((1)5 = (O7 07 e 707 ’L/)JVI//J,J' (a)), hence
by Corollary 3.14, we have ;i (a) = Ya(a)y = (Y (a) + Yare(a))y =
Ua (@) pi + Yar (@) ps - n

Proposition 5.34 Assume k has positive characteristic p and let B be a subset
of A that generates A as a k-vector space. Let M and N be A-modules, finite-
dimensional over k with dimensions bounded above by n € Z~q. Then the
following are equivalent.

1 For alla € A, one has ¥y(a) = ¢Yn(a)
2 Foralla € A, s € Zsg, one has Y s(a) = PN s(a).
3 Foralla€ A, j€Zxo, one has Yy pi(a) = Yy pi(a).

4 Forallbe B, j€{0,1,...,log,(n)|}, one has s pi (D) = ¥y pi (D).

PROOF The equivalence of 1 and 2 is trivial, and the implications 2 = 3 and
3 = 4 are trivial as well.

Assume that 4 holds. Let J = Llogp(n)J + 1 and consider the module P =
MP =L@ N. Let S = {1,2,...,p" — 1}. Observe that one has ¥p(a)s =
(p? = 1) - Yum(a)s + ¥n(a)s = —Ym(a)s + Yn(a)s for all a € A since p’
annihilates Wg(A).

Note that for any b € B, one has ﬂ{l,p,...,pJ’I}(/l/}M(b)) = 7r{17p7___7pJ—1}(’l/1N(b))
by assumption. This means 1)p,; (b) =0 for all b € B and j € {0,1,...,J —1}.
Then by Corollary 5.28, one has ¥p(a) € V,s(W(k)) for all @ € A and hence
one has ¥p(a)s =0 for all a € A.

By these observations, we find that for all @ € A, one has —¢p(a)s +
Yn(a)s = Yp(a)s = 0. Therefore, for any a € A, one has ¥p(a)s = Yn(a)s.
Since one has p? > n > max{dim; M, dim; N}, it follows that 15 (a) and ¥y (a)
are equal for all @ € A (using that they are both inverses of polynomials of degree
at most n via the isomorphism W (k) — A(k)). This shows the implication
4=1. n

Proposition 5.35 Suppose k has characteristic p > 0 and let B be a subset of
A that generates A as a k-vector space. Let M and N be semisimple A-modules
that are finite-dimensional over k, with dimensions bounded above by n € Z~g.
Then the following are equivalent.

1 One has M and N are isomorphic as A-modules.
2 For alla € A, one has ¥p(a) = ¥n(a).
3 Forallbe B, j€{0,1,..., max{[log,(n)]}}, one has ¥y pi(b) = V¥ pi (b)-

PROOF The equivalence of 2 and 3 is Proposition 5.34. The equivalence of 1
and 2 follows immediately from Theorem 5.10. n
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Theorem 5.36 Suppose k has characteristic p > 0 and let B be a subset of
A that generates A as a k-vector space. Let M and N be A-modules that are
finite-dimensional over k, with dimensions bounded above by n € Z~q. Then the
following are equivalent.

1 One has M and N are Jordan-Hélder isomorphic as A-modules.
2 For all a € A, one has Yp(a) = Yy (a).
3 One has g i (b) = Y pi(b) for allb € B, i € {0,1,..., [log,(n)]}.

4 For j = |log,(n)] and S = {1,p,p?,...,p’}, the map B — Wg(k) given by
b= ms(¥a (b)) — ws (¥ (b)) is identically zero.

PrOOF The equivalence of 1 and 2 follows immediately from Corollary 5.11.
The equivalence of 3 and 4 is trivial, and the equivalence of 2 and 3 is Propo-
sition 5.35. ]

Corollary 5.37 Suppose k has characteristic p > 0. Let B be a subset of
A that generates A as a k-vector space. Recall that 7, denotes the projection
W (k) — W,(k). Then the group homomorphism Gy (A) — W,(k)? defined by
[M] — (mp(¥ar(b)))oen is injective.

Note that the above corollary is Theorem 5.22 for positive characteristic.

Many of the techniques used in the section above will fail for fields of char-
acteristic 0. We will use alternate methods to show that we may still replace
A(k) by W, (k) if p = char(k) = 0.

Lemma 5.38 Suppose A is semisimple and char(k) = 0. Let n € Zsg. Sup-
pose Si,...,S, are pairwise non-isomorphic simple A-modules that are finite-
dimensional over k. Then there are ay,...,a, € A such that for all i €
{1,2,...,n}, one has Trg,(a;) # 0 and such that for any i,j € {1,2,...,n}
with i # j, one has Trs,(a;) = 0.

PrOOF For each i € {1,2,...,n} let s; € S; \ {0}. By Lemma 5.9, for each i €
{1,2,...,n}, there is b; € A such that b;s; = s; and b;S; =01if j € {1,2,...,n}
with i #£ j.

Clearly, for each i € {1,2,...,n}, the action of b; on S; has eigenvalue 1. By
Lemma 5.8, one has g, (b;) # 0. Since A is a Q-algebra, this means that there
is n; € Zso such that the n;-th ghost component of g, (b;) is non-zero using
Corollary 4.18. By Corollary 4.16, this means Trg, (b;'") # 0.

Define a; = b;"". As b;S; = 0 if j # i, one has a;S; = 0 if j # i and hence
Tl"sj(ai) :Olf] 757, ]

Proposition 5.39 Suppose char(k) = 0. Let n € Zsqo. Suppose Si,...,Sn
are pairwise non-isomorphic simple A-modules that are finite-dimensional over
k. Then there are ay,...,an, € A such that for all i € {1,2,...,n}, one has
Trg,(a;) # 0 and such that for any i,5 € {1,2,...,n} with i # j, one has
Trs; (a;) = 0.
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PROOF Let I = Anna(@;_, S;). By Lemma 2.11, A/I is semisimple. More-
over, one easily sees that Si,...,S, are pairwise non-isomorphic simple A/I-
modules. By Lemma 5.38, there are a; + I,...,a, + 1 € A/I such that for all
i€{1,2,...,n}, one has Trg, (a;+1I) # 0 and such that for all 4,5 € {1,2,...,n}
with j # 4, one has Trg,(a; + I) = 0. It easily follows that Trg, (a;) # 0 for all
i€{1,2,...,n} and Trg,(a;) =0 for all 4,5 € {1,2,...,n} with j # . n

With this, we can prove Theorem 5.22 in characteristic 0.

Theorem 5.40 Suppose k has characteristic 0 and let B be a subset of A
that generates A as a k-vector space. Let M, N be A-modules that are finite-
dimensional over k. Then the following are equivalent.

1 One has M and N are Jordan-Hdélder isomorphic as A-modules.
2 For all a € A, one has Ypr1(a) = Yy a(a).

3 For allb € B, one has ¥pr1(b) = ¢Yn1(b).

4 For allb € B, one has Trpr(b) = Try (D).

PROOF The equivalence of 3 and 4 is trivial since ¥as,1(a) = Tras(a) for any
a € A. The equivalence of 2 and 3 follows from the linearity of the trace.
The implication 1 = 2 is trivial. Suppose 2 holds. As we may replace M
and N by their semisimplifications, we may assume M and N are semisimple
without loss of generality. This means there are pairwise non-isomorphic simple
k-modules 51, ...,.S, and non-negative integers dy,...,d,, €1, ..., e, such that
M=@} 5% and N = @7, S¢'.

By Lemma 5.38, there are ay,...,a, € A satisfying Trg,(a;) = 0if ¢ # j
and Trg,(a;) # 0. Then for ¢ € {1,2,...,n}, one has d; Trg, (a;) = Trp(a;) =
Yama(a;) =vYna(a;) = Try(a;) = e; Trg, (a;). Since Trg, (a;) # 0, it follows that
d; = e; for each i € {1,2,...,n} and hence one has M = N. =

Remark 5.41 The equivalence of 1 and 4 in the above theorem is already
known. For example, Corollary 3.8 in chapter XVII of [5], together with the
linearity of the trace, directly implies this result. An early version of this result
for group algebras can be found in [9].

Corollary 5.42 Suppose k has characteristic 0. Let B be a subset of A that
generates A as a k-vector space. Then the group homomorphism Gi(A) —
Wo(k)P defined by [M] — (¥ar,1(b))oen is injective.

Theorem 5.22 follows immediately from Corollary 5.37 and Corollary 5.42.

5.3.2 Replacing G;(A) by Gi(A) Q, Wy(k).

In this subsubsection, we will prove the following theorem.
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Theorem 5.43 Let p = char(k). Let B be a subset of A that generates A as a
k-vector space. Let ¢ : Gi(A) — W,(k)P be the group homomorphism defined
by [M] = (mp(ar(b)))ven. Then the Wy(k)-linear map 6 : Gi(A) Q, Wp(k) —
W, (k)B defined by x ® w — wo(z) is injective.

Again, we have distinct proofs in characteristic 0 and p > 0.

Lemma 5.44 Suppose char(k) = 0. Let n € Zsqo. Suppose Si,...,S, are
pairwise non-isomorphic simple A-modules that are finite-dimensional over k.
Let B be a subset of A that generates A as a k-vector space.

Then there are by, ...,b, € B such that the n-tuples (Trg, (b1), ..., Trs, (by))
forie{1,2,...,n} are k-linearly independent.

PRrROOF By Proposition 5.39, there are aq,...,a, € A such that for any i,j €
{1,2,...,n} with ¢ # j, one has Trg,(a;) = 0 and Trg,(a;) # 0. In particular,
the n-tuples (Trg, (a;), ..., Trg, (a;)) for i € {1,2,...,n} are k-linearly indepen-
dent. As these n-tuples lie in the k-span of the n-tuples (Trg, (b),...,Trg, (b))
for b € B, there are by, ..., b, € B such that the n-tuples (Trg, (b;), ..., Trg, (b;))
are k-linearly independent. Then the n-tuples (Trg,(b1),...,Trg,(b,)) for i €
{1,2,...,n} must be k-linearly independent as well. n

Theorem 5.45 Suppose k has characteristic 0. Let B be a subset of A that
generates A as a k-vector space. Let ¢ : Gi(A) — Wy(k)P be the group
homomorphism defined by [M] — (Trar(b))ven. Then the Wy(k)-linear map
0 : Gp(A) Q®, Wolk) = Wo (k)P defined by x @ X — Ap(x) is injective.

PrROOF Note that 6 is well-defined. Let @ € Gi(4)Q, Wo(k) and suppose
6(z) = 0. Then z has the form Y " [M;] ® \; for certain M; € My(A) and
Ai € k. Then there are simple pairwise non-isomorphic A-modules Sq,...,S,,
finite-dimensional over k, and non-negative integers d; ; for i € {1,2,...,m},
j€{1,2,...,n} such that [M;] = Z?:1 d; ;[S;]. Tt follows easily that there are
(1. pn € k such that z =37 | [S;] @ p.

By Lemma 5.44, there are elements bq,...,b, € B such that the n-tuples
(Trs, (b1),...,Trs,(bs)) are k-linearly independent. This means that one has

S wi(Trs, (b1), ..., Trg, (by)) # O unless pg = po = ... = p, = 0. Since
6(z) = 0, one has >, p; Trg, (b;) = 0 for each j, hence it follows that p; =
to = ... = pp = 0 and therefore x = 0. n

In positive characteristic, we have to work a bit harder for a similar result.

Lemma 5.46 Suppose k is perfect of positive characteristic p. Then Wy(k) is
a domain.

PRrROOF Let w,v € W,(k), both not equal to 0. Suppose n, m € Z>( are minimal

such that wy» # 0 and vym # 0. Then there are w',v" € W, (k) such that

g, — am,,/ N 1 defi !’ 1/p™ d !’ 1/p™ B
w = pw, v =pru. amely, enewpif'wpn“an ?)i—vpm“. Yy

Lemma 3.20, one has p"w’ = w and p™v’ = v. Note that (w’); # 0 and
(v")1 # 0. Then (w'-v"); # 0, hence w’-v" # 0. Now w-v # 0 as w-v = p"T™w’-v/

n+m

and hence (w - v)pn+im = (W' -0")1)P  #0. -
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Proposition 5.47 Suppose k has positive characteristic p. Then Wy, (k) is a
domain.

PROOF We can embed W),(k) in W,(k). Since the algebraic closure k of k is
perfect, it follows by Lemma 5.46 that W, (k) can be embedded in a domain.
Hence W, (k) is a domain. =

Lemma 5.48 Suppose k has positive characteristic p and suppose k is alge-
braically closed. Suppose Si,...,S: are pairwise non-isomorphic simple A-
modules. Then there are ay,...,a; € A such that for all i € {1,2,...,t}, one
has Trg,(a;) # 0 and such that for all i,j € {1,2,...,t}, one has Trg,(a;) =0
if i # 7.

PROOF Let I = AnnA(@Ezl Si). Then A/I is finite-dimensional over k and
semisimple by Lemma 2.11. Moreover, Si,...,.S; are pairwise non-isomorphic
simple A/I-modules. By Lemma 2.22, one has A/I =[] | M(n;, k) for certain
u € Z>o and nq,...,n, € Zsg. Moreover, each S; is isomorphic to some
unique k™ with trivial action by M(n;, k) if | # j and with standard matrix
multiplication by M (n;, k). By permuting the coordinates if necessary, we may
assume without loss of generality that S; = k™ with trivial action by M (n,, k)
if j # i and with standard matrix multiplication by M (n;, k). The element
a; +1 € M(n;, k) C A/I satisfying (a; + I)11 = 1 and (a; + I);r = 0 if
(4, k) # (1,1) satisfies (a; +I)S; = 0 if i # j and Trg,(a; +1) =1 # 0. It
immediately follows that aq,...,a; € A satisfy the required properties. n

Corollary 5.49 Suppose k has positive characteristic p and suppose k is alge-
braically closed. Let B be a subset of A that generates A as a k-vector space.
Suppose S1,...,S, are pairwise non-isomorphic simple A-modules.

Then there are by, ...,b, € B such that the n-tuples (Trg, (b1), ..., Trs, (b))
forie{1,2,...,n} are k-linearly independent.

PROOF The proof is analogous to the proof of Lemma 5.44, using Lemma 5.48
instead of Proposition 5.39 where necessary. ™

Proposition 5.50 Suppose k has positive characteristic p and suppose k is
algebraically closed. Let B be a subset of A that generates A as a k-vector space.
Recall that T, is the projection W (k) — W (k). Let ¢ : Gr(A) — W,(k)B be the
group homomorphism defined by [M] — (mp(¥ar(b)))ves. Then the Wy(k)-linear
map 0 : G(A) @, W,(k) = W,(k)P defined by x @ w — we(z) is injective.

PrOOF Note that 6 is well-defined. Let z € Gi(A) Q, Wp(k) and assume
6(z) = 0. We may write z = Y. | [S;] ® w; for certain pairwise non-isomorphic
A-modules Sy, ..., S, and elements wy, ..., w, € Wy(k).
By Corollary 5.49, there are elements by, ...,b, € B such that the n-tuples
(Trs, (b1), ..., Trg, (by)) for i € {1,2,...,n} are k-linearly independent.
Consider the following commutative diagram.
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Crl(A) @y, Wy (k) —— W, (k)P

Here IIj is the projection W,(k)® — k% defined by the componentwise
projection my : Wy,(k) — Wy (k) = k. Note that the map 7 sends a simple tensor
[M] ® w to (Trp(b)mo(w))pep since Trys(b) is the first coefficient of 1 (b) for
each b € B.

Suppose wy, ..., w, are not all 0. Then there is some minimal [ € Z>( such
that there is i € {1,2,...,n} for which the p'-th coefficient of w; is non-zero,
say i = 1 without loss of generality. As k is algebraically closed and hence
perfect, it follows that there are wi,...,w), € Wy(k) such that w; = plw} for
each i € {1,2,...,n}. In particular, one has mo(w}) = ((wl)pz)l/pl # 0. Let
o= Y (8] @ w

We now find x = p'a’. As 6(z) = 0, it follows that p'6(z') = 0 and hence
0(z") = 0 since W,(k) is torsion-free as an abelian group. As the n-tuples
(Trs, (b1), ..., Trs, (bs)) are k-linearly independent, this can only be the case if
mo(w}) = 0 for each 7 € {1,2,...,n}, contradicting my(w}) # 0. Hence one has
w; =0 for each i € {1,2,...,n} and hence z is equal to 0. n

Theorem 5.51 Suppose k has positive characteristic p. Let B be a subset of
A that generates A as a k-vector space. Let ¢ : Gx(A) — Wy(k)B be the group
homomorphism defined by [M] — (m,(¥ar(b)))ver. Then the Wy(k)-linear map
0: Gr(A) Q, Wy(k) — Wy(k)B defined by x @ w — we(x) is injective.

PROOF Let i denote the natural inclusion W,(k) — W,(k) and let ¢ denote
the map Gr(A) — Gj(A4;) defined by [M] — [Mj;]. Note that the latter is
well-defined and injective by Corollary 5.13.

As both W, (k) and G (A) are torsion-free, they are both flat by Lemma 2.26.
Hence the maps Id®i : G(A) @, Wp(k) — Gr(A) Q, W,(k) and + @ 1d :
Gr(A) ®, W,(k) — Gi(Ap) &, Wp(k) are injective and thus the map ¢ ® i =
(¢ ®Id) o (Id ®i) is injective.

The following diagram is commutative.

Go(A) @y Wy (k) —— W, (k)5

[“g)i

Gr(Ap) 7 Wy (k) —— Wy(k)”

|

Here ip is the componentwise inclusion and 6 is the injective group homo-
morphism from Proposition 5.50. It follows that 6 is injective as well. n

Together, Theorem 5.45 and Theorem 5.51 prove Theorem 5.43. The fol-
lowing example will show that it is possible that surjectivity of the map 6 in
Theorem 5.43 may occur.
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Example 5.52 Let k be any field and assume A = k. Clearly, the set B = {1}
generates A as a k-vector space. Then one has G(A) @, W, (k) = W,(k), as
Gr(A) 2 Z. Hence the map 0 : G, (A) @, Wy(k) — W, (k)P, defined as in the

previous theorem, is an isomorphism.

Example 5.53 Surjectivity is not guaranteed. For example, let k be any field
and take A = k[X]/(X?). It only has one simple module, namely k[X]/(X), so
Gr(A) ®, Wy(k) = W,(k) which cannot map surjectively to W,(k)? for any
subset B of A that generates A as a k-vector space since dimg(A) = 2.

Note that the proof of Theorem 5.51 and Theorem 5.45 suggests that the
cardinality of a set B C A such that the conclusion of Theorem 5.43 is satisfied
can be bounded above by the cardinality of the set of isomorphism classes of
simple A-modules that are finite-dimensional over k. If there are only finitely
many pairwise non-isomorphic simple A-modules Si,...,S, that are finite-
dimensional over k, one has Gi(A4) @, Wy(k) = @), W,(k)[S;]. Moreover,
the number n is bounded above by dimg(A). If k is algebraically closed or if &

has characteristic 0, one may take B = {ay,...,a,} where aq, ..., a, satisfy the
conditions of Lemma 5.48 or Proposition 5.39 depending on whether k is alge-
braically closed or has characteristic 0. In this case, the set B = {ay,...,a,}

does not necessarily generate A as a k-vector space. I do not know whether a
similar result holds if k is neither algebraically closed nor has characteristic 0.
Likewise, I do not know whether a similar result holds if A has infinitely many
pairwise non-isomorphic simple modules.

In general, if S is the set of isomorphism classes of simple A-modules, one
has Gi(A) @, Wp(k) = @ges Wp(k)[S], which embeds into W,(k)? by Theo-
rem 5.43. Since W),(k)® is a product of copies of W), (k) and not a direct sum, the
cardinality of B may be strictly smaller than the cardinality of S. For example,
take A = k[X] with A an uncountable field. Then the set B = {1, X, X?,...}
is countable, while there are uncountably many pairwise non-isomorphic sim-
ple A-modules (for example, for each A, 1 € k, the modules k[X]/(X — \) and
k[X]/(X — p) are simple and non-isomorphic).

Conversely, the cardinality of a set B such that the conclusion of Theo-
rem 5.43 is satisfied should be at least equal to the minimum of the cardinality
of N and the cardinality of the set of isomorphism classes of simple A-modules
that are finite-dimensional over k.

5.3.3 The injection Gj(A) ®, W (k) — W (k)P

As might be expected from the title of this subsubsection, we are going to prove
the following theorem.

Theorem 5.54 Let k be a field, let A be a k-algebra and let B be a subset of
A that generates A as a k-vector space. Let ¢ : Gi(A) — W (k)® be the group
homomorphism defined by [M] — (¢¥ar(b))pes.

Then the W (k)-linear map 9 : Gi(A) @, W (k) — W (k) defined by z@w —
wao(x) is injective.
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Lemma 5.55 Let k be a field of characteristic p > 0. Let w = (wy, wp, wp2, .. .)
be an element of W, (k) and assume wy # 0. Then w is invertible.

PROOF Let n,m € Z~g; assume n > m without loss of generality. Let a, 5 € k.
Then one has Vyr ({a})Vpn ({8)) = 9"V ({aB”" ") = V({0 8.
Hence for any v,u € Wj(k), one has Viyn (v) - Vym (1) € Vpnim (W ()).

Write v = 1 — w{w; '}. Then the first component of v is equal to 0, hence
v € V,(W,(k)) (noting that V, is well-defined on W,(k)). Then one has v! €
Vyt (Wy(k)) for each | € Zsq and hence Y5~ v* exists in W, (k).

One has w{w; '} -3\ vf = (1 —v) 3\, v* = 1 —v!*! and hence one finds
w{wy '} 32, vt = 1 by continuity of multiplication. Hence w is invertible.

Proposition 5.56 Let k be a perfect field. Let p = char(k). Then W,(k) is a
principal ideal domain, and each non-zero ideal of W,(k) has the form p™W,(k)
for some n € Z>.

PROOF If p = 0, this is trivial; the only ideals are 0 and Wy(k) = k. Assume
p > 0. Let I C W, (k) be a non-zero ideal. Then there is some minimal n € Zsg
such that there is w = (w1, wp,...) € I that satisfies wyn # 0. As k is perfect,
one has w = p™v for some v = (v1, vy, ...) € Wp(k) with vy # 0. By Lemma 5.55,
v is invertible and hence p™ € I. Hence p"W,(k) C I. Let u = (u1, up,...) € I.
Then by the minimality condition on n, one has u; = u, = ... = upn-1 = 0.
Hence one has u € p"W,(k) since k is perfect. Hence one has I = p"W,(k). m

Proposition 5.57 Let k be a perfect field, let A be a k-algebra and let B
be a subset of A that generates A as a k-vector space. Let p = char(k).
Let 0 : Gi(A) @, Wy(k) — Wy(k)B be the injective Wy, (k)-linear map from
Theorem 5.43.  Then the map 6 @ Id : (Gr(A) @z Wp(k)) Qw, iy W(k) —
W, (k)B ®Wp(k) W (k) is well-defined and injective.

PrROOF Note that W (k) is a W, (k)-module by Remark 4.24, so § ® Id is well-
defined. Since W (k) = W, (k)?>0\P2>0 as a W, (k)-module, it is torsion-free as
a Wp(k)-module as well.

By Proposition 5.56, Wy(k) is a principal ideal domain. By Lemma 2.26, it
follows W (k) is flat and therefore, @ Id is injective. n

Lemma 5.58 Let k be a field of characteristic p and let A be a k-algebra. The
map 7 1 Gi(A) @, W(K) = (Gr(A) @, Wy(k)) @y ) W (k). given by [M] @
w ([M]®1)®w, is an isomorphism.

PROOF One has Gi(A) @, W (k) = Gi(A) Q7 (Wp (k) Qw, 1y W (K)) =
(Gr(A) Q7 Wi (k) Qw, (1) W (k). One easily verifies that this canonical iso-
morphism is given by [M] @ w— ((M]®1) ® w. n
Lemma 5.59 Let k be a perfect field and let A be a k-algebra. Let B be a
subset of A that generates A as a k-vector space and let p = char(k). Then the
W, (k)-linear map ¢ : W, (k)P ®Wp(k) W (k) — W(k)B defined by (vp)pen @w
(vpw)pep is injective.
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PrOOF Since W, (k) is a principal ideal domain and since W (k) is torsion-free
as a Wp(k)-module, this follows directly from Proposition 2.27. n

Proposition 5.60 Let k be a perfect field and let A be a k-algebra. Let B be a
subset of A that generates A as a k-vector space. Let ¢ : Gp(A) — W(k)B be
the group homomorphism defined by [M] — (¥ar(b))sen- Then the W (k)-linear
map ¥ : G(A) @, W (k) — W (k)P defined by x @ w — we(x) is injective.

PROOF Let p = char(k) and consider the following diagram.

(Gi(A) @ Wy (k) @y o W (k) 2% Wo(k)E @y 1y W)

vy L

Gr(A) @z W (k)

The maps in the diagram are those from Proposition 5.57, Lemma 5.58 and
Lemma 5.59. One easily verifies that this diagram is commutative. Injectivity
of ¥ follows immediately. n

W (k)2

Theorem 5.61 Let k be a field and let A be a k-algebra. Let B be a subset
of A that generates A as a k-vector space. Let ¢ : Grp(A) — W(k)B be the
group homomorphism defined by [M] — (Var(0))sen. Then the W (k)-linear
map ¥ : Gi(A) @, W (k) — W (k)P defined by x @ w — we(x) is injective.

PROOF Let k be some algebraic closure of k. Let i denote the natural inclusion

W (k) — W (k) and let ¢ denote the map Gi(A) — G(A4;) defined by [M] —
[Mj;]. Note that the latter is well-defined and injective by Corollary 5.13.

As both W (k) and G (A) are torsion-free as Z-modules, they are both flat
by Lemma 2.26. Hence the maps Id®i : G(A) @, W (k) — Gr(A) Q, W (k)
and ¢ ® Id : G(A) @, W (k) — Gi(Ar) ®, W (k) are injective and thus the
map t @4 = (¢t ®@1d) o (Id ®1) is injective.

The following diagram is commutative.

Ciu(4) @, W (k) —— W(k)E

Cr(Ap) @y, W (k) —— W (k)"

Here ip is the componentwise inclusion and 9 is the injective group homo-

morphism from Proposition 5.60. It follows that ¢ is injective as well. n

This proves Theorem 5.54.
Finally, note that one has an even stronger version of Theorem 5.61 since
the image of 1 is contained in h_H}S B where S ranges over the finitely generated

W, (k)-submodules of W (k). If B is infinite, ligSB is not equal to W (k)B.
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5.3.4 A different way of generalization

In the previous subsection, we found a generalization of Theorem 5.21 by re-
placing Gi(A) by the larger ring G(A) @, W (k). In this section, we find a
generalization of Theorem 5.21 by replacing a subset B of A that generates A
as a k-vector space by a subset C' of A such that one has A =3 _-k[c]-c.

Theorem 5.62 Let k be a field and A a k-algebra. Let C be a subset of A such
that one has A = ) . k[c] - c. Then the group homomorphism ¢ : G(A) —
W (k)¢ defined by [M] — (¥ar(c))eec is injective.

PROOF Let B = {¢" : ¢ € C,n € Zso}. Then B generates A as a k-vector
space. Define 6 : Im(¢p) — W (k)® by mapping (1ar(c))eec to (P (¥ar(c)))enen
(recall that P, denotes the n-th Witt power sum). Note that 6 is well-defined;
if one has ¢" = &", one has P, (var(c)) = Yar(c?) = (") = Pr(¥ar(€)) using
Proposition 4.15. It is easily seen that 6 is an injective group homomorphism.
Since the group homomorphism Gy (A) — W (k)® defined by [M] — (111 (b))ben
is injective by Theorem 5.21, and since this homomorphism is equal to 6 o ¢ by
Proposition 4.15, one must have that ¢ is injective as well. n

Unfortunately, if C is as above, the group homomorphism G (A) Q, W (k) —
W (k)¢ defined by [M]® w + (Ypr(c)w)eec is not in general injective and like-
wise, if p = char(k), the group homomorphism Gj(A) — W, (k)¢ defined by
[M] — (mp(¢ar(c)))cec is not in general injective.

Example 5.63 The following are counterexamples to the statements of Theo-
rem 5.22 and Theorem 5.54 with B replaced by a set C as above.

1 Let k be a field of characteristic p not equal to 2. Let A = k[X] be the
polynomial ring in X and let C' = {1, X}. Clearly one has A = 3" __ . k[c|c.
Let M = k[X]/(X) @ k[X]/(X) and let N = k[X]/(X?—1). Then M and
N are semisimple, not Jordan-Hélder isomorphic (as xar(X?) # xn(X?))
and satisty (7 (13(1)), mp(ar (X)) = (2,0) = (my (i (1)), m (o (X))
Hence the homomorphism Gy (A) — W, (k)€ given by [M] — (¢asr(c))ecc
is not injective.

2 Let k be a field of characteristic p not equal to 2. Let A = k[X]/(X2% — 1).
Let C = {X}. Since one has X? = 1, the set {X, X2} generates A as
a k-module and hence one has ) . k[c]c = A. Let M = k[X]/(X —1)
and let N = k[X]/(X 4+ 1). Then M and N are simple non-isomorphic
A-modules. Let w be the Witt vector associated to (1+7)~* € A(k). The
elements [M]®1 and [N]|®w in G (A) Q, W (k) are distinct, and one has
ar(X)-1=1=1¢n(X)w. Hence the homomorphism G (A4) Q, W (k) —
W (k)¢ given by [M] ® v+ v - (¥ar(c))eec is not injective.

3 Let k be any field and let A = k[X]. The set C = {1, X} satisfies A =
> ecc klcJc. In this case, there is no subset C’ of A of cardinality at most

1 such that the group homomorphism ¢ : Gy (A) — W (k)€ defined as in
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Theorem 5.62 is injective. Suppose namely that such C’ exists. Clearly
one has C’ # (), so C’ contains one element, say f € k[X]. If f is constant,
one has ¥p(f) = dimg(M) - {f} for each A-module M that is finite-
dimensional over k. The modules M = k[X]/(X) and N = k[X]/(X +
1) are both one-dimensional and are not Jordan-Hélder isomorphic, and
one has ¥ (f) = ¥n(f), contradicting injectivity. If f is not constant,
consider the modules M = k[X]/(f) and N = 0. Clearly, the modules
M and N are not Jordan-Holder isomorphic. On the other hand, one has
Yar(f) = 0 = ¥n(f), contradicting the assumption of injectivity again.
So the minimal cardinality of a set C’ such that group homomorphism
¢ : Gp(A) = W (k) defined as in Theorem 5.62 is injective is 2. So C' is
minimal in a way.
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