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1 Introduction

The following is a theorem by Richard Brauer and Cecil Nesbitt, as found in
[6].

Quotation 1.1 (Brauer-Nesbitt, 1937) Let G be a group and let k be an
algebraically closed field. Let A and B be two representations of a group G
which associate the matrices AQ and BQ with the element Q of G. If both AQ
and BQ have the same characteristic roots for every Q in G, then A and B have
the same irreducible constituents.

Let k be a field and A a k-algebra. Let B be a subset of A that generates
A as a k-vectorspace, for example a k-basis of A. For a ∈ A and a (left) A-
module M that is finite-dimensional over k, denote by χM (a) the characteristic
polynomial of left multiplication by a, which can be viewed as an element of the
multiplicative group Λ(k) = 1+Tk[[T ]] for a suitable definition of the character-
istic polynomial (see Definition 5.3). Denote by Gk(A) the Grothendieck group
of A-modules that are finite-dimensional over k (see Definition 2.14 for the pre-
cise definition). Defining φ(M) = (χM (b))b∈B induces a group homomorphism
Gk(A)→ Λ(k)B .

One can rephrase Quotation 1.1 as follows.

Theorem 1.2 Let G be a group and let k be an algebraically closed field. Then
the group homomorphism φ : Gk(k[G])→ Λ(k)G defined by [M ] 7→ (χM (g))g∈G
is injective.
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This is Theorem 5.21 in this thesis. This theorem is not the strongest form
one can have. For example, we can replace the group algebra k[G] with k-vector
space basis G by any algebra A with a subset B of A that generates A as a
k-vector space, and one can omit the requirement that k is algebraically closed.
However, the map φ from the theorem will never be surjective, and it suffices
to know certain coefficients of the characteristic polynomials to determine the
isomorphism class of a module. To be somewhat more precise, if the field k has
characteristic 0, it suffices to know the traces of the action of the elements of B.
If k has positive characteristic p, let Λp(k) ⊂ Λ(k) be 1+

∑∞
i=1 T

pik and let π be
the surjective map Λ(k)→ Λp(k) obtained by sending 1+a1T+a2T

2+a3T
3+. . .

to 1 + a1T + apT
p + ap2T p

2

+ . . .. Then the map π ◦ φ is injective. The latter
was shown in [1], and a comparable result can be found in [2]. These results
originally inspired this thesis.

Observe that Λp(k) is not even a group, so the map π ◦φ is not even a group
homomorphism.

The idea of somehow replacing the mentioned map π ◦ φ by a group ho-
momorphism that gives the same information leads to the study of Witt rings;
see section 3. If A is a commutative ring, then there is a commutative ring
W (A), isomorphic as a set to AZ>0 , such that there is a group isomorphism
W (A) → Λ(A) = 1 + TA[[T ]]. In particular, addition in W (A) corresponds
with multiplication in Λ(A), and in Theorem 1.2, one may replace Λ(k) by
W (k). More importantly, if k is a field of characteristic p, there is a ring Wp(k)
that behaves like Λp(k) (or like k if p equals 0) in the way that we want; as a

set it is isomorphic to k{1,p,p
2,...} if p > 0 and to k{1} if p = 0 and there is a

natural surjective ring homomorphism π : W (k) → Wp(k) by componentwise
projection. We have the following theorem.

Theorem 1.3 Let k be a field of characteristic p, let A be a k-algebra and let
B be a subset of A that generates A as a k-vector space. Let π be the projection
W (k)→Wp(k). If a ∈ A and if M is an A-module, denote by ψM (a) the element
of W (k) that corresponds with the characteristic polynomial χM (a) ∈ Λ(k) via
the correspondence of Λ(k) and W (k).

Then the group homomorphism Gk(A)→ Wp(k)B that is defined by [M ] 7→
(π(ψM (b)))b∈B is injective.

The definitions of W (k) and Wp(k) can be found in Definition 3.5 and Nota-
tion 3.8. The above theorem is Theorem 5.22 in this thesis. There is a stronger
version of this theorem; Theorem 5.43 in this thesis.

Theorem 1.4 Let k be a field of characteristic p, let A be a k-algebra and let
B be a subset of A that generates A as a k-vector space. Let π be the projection
W (k)→Wp(k). If a ∈ A and if M is an A-module, denote by ψM (a) the element
of W (k) that corresponds with the characteristic polynomial χM (a) ∈ Λ(k) via
the correspondence of Λ(k) and W (k).

Then the group homomorphism Gk(A)
⊗

ZWp(k)→Wp(k)B that is defined
by [M ]⊗ w 7→ (π(ψM (b)) · w)b∈B is injective.
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There is a deeper relation between W (k) and Wp(k). We have the following
theorem.

Theorem 1.5 Let p ∈ Z>0 be a prime number and let A be a commutative
ring such that for each n ∈ Z with p - n, one has n is invertible (in other
words, A is a commutative Z(p)-algebra). Then there is a ring isomorphism

P : W (A)→Wp(A)Z>0\pZ>0 .

The mentioned ring isomorphism is functorial in the category of commutative
Z(p)-algebras. To effectively compute it, it would be useful if we can efficiently
calculate in Witt rings. In many practical cases, this is not a problem, but if A is
an abstract ring, the number of computations required seems to be polynomial
in p even if we only look at the first two components of Wp(A), which limits the
size of the possible characteristic of A.

If we can calculate efficiently in Witt rings, if a ∈ A, suppose one is given
(π(ψM (an)))n∈Z>0\pZ>0

, where π and ψM (a) are as in Theorem 1.3. Then
one can compute ψM (a) efficiently using the theorem above. If one is given
(π(ψM (b)))b∈B for a subset B of A that generates A as a k-vector space, one
may compute ψM (a) as well, but possibly not as efficiently.

There are more generalizations of Theorem 1.2. In the end, we will prove
the following theorem. It is Theorem 5.54 in this thesis.

Theorem 1.6 Let k be a field, let A be a k-algebra and let B be a subset
of A that generates A as a k-vector space. Then the group homomorphism
Gk(A)

⊗
ZW (k)→W (k)B defined by [M ]⊗ w 7→ (χM (b)w)b∈B is injective.

Finally, there is a generalization of Theorem 1.2 not by replacing Gk(A) by
some larger ring or by replacing Λ(k) by some smaller ring in the statement of
the theorem, but by replacing the set B that generates A as a k-vector space by
a set C such that {cn : c ∈ c, n ∈ Z>0} generates A as a k-vector space. This is
Theorem 5.62 in this thesis.

Theorem 1.7 Let k be a field, let A be a k-algebra and let C be a subset of A
such that

∑
c∈C k[c]c = A. Then the group homomorphism Gk(A) → W (k)C

defined by [M ] 7→ (ψM (c))c∈C is injective.

Here is a summary of the thesis. In section 2, some basic algebra is found
that is useful in the later sections. Section 3 defines Witt rings and gives some
basic properties. Section 4 essentially describes the isomorphism mentioned in
the theory above. Section 5 describes the theorem of Brauer and Nesbitt, and
shows some generalizations of it.

2 Algebra

In the context of this thesis, a ring is defined to be an abelian group equipped
with an associative, bilinear multiplication and a unit element with respect to
multiplication. If not explicitly mentioned, a module over a ring is assumed to
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be a left module. An algebra A over a ring R is a ring A together with a ring
homomorphism f : R → A such that f(R) ⊆ Z(A) (where Z(A) denotes the
center of A); in particular, any algebra is assumed to be associative and unital.
Let R be a ring.

Definition 2.1 Let M be an R-module. We call M simple (as an R-module)
if it has precisely two submodules, being 0 and M . We call M semisimple (as
an R-module) if every short exact sequence 0 → M ′ → M → M ′′ → 0 of
R-modules splits. We call R a semisimple ring if any R-module is semisimple.

Remark 2.2 Note that an R-module is semisimple if and only if it is isomor-
phic to some direct sum of simple modules. Furthermore, any submodule of
a semisimple module is semisimple and a direct sum of semisimple modules is
semisimple. Moreover, R is a semisimple ring if and only if it is semisimple as
a left R-module, hence we may just call R semisimple. Proofs of these remarks
can be found in chapter 9 of [3].

Definition 2.3 We call R a simple ring if R has precisely two two-sided ideals,
being 0 and R.

Note that if R is a simple ring, it isn’t necessarily simple as an R-module.

Definition 2.4 We call R left respectively right Artinian if it satisfies the de-
scending chain condition on left respectively right ideals

Definition 2.5 The Jacobson radical of R is the intersection of all maximal
left ideals of R. It is denoted by J(R).

Lemma 2.6 The Jacobson radical annihilates any simple R-module. It is a
two-sided ideal of R.

Proof Let M be a simple R-module. For any m ∈M \ {0}, one has Rm = M
since M is simple. The R-linear map R→M that maps r ∈ R to rm is therefore
surjective, and as M is simple, its kernel m is a maximal left ideal. As J(R) is
contained in m, one has J(R)m = 0. This holds for any m ∈M \ {0}, hence for
all m ∈M , hence J(R)M = 0.

Consequently, for any maximal left ideal m of R, one has J(R)(R/m) = 0,
hence J(R)R is contained in m for any maximal left ideal m of R and therefore
in the intersection of the maximal left ideals of R, which is J(R). �

As the maximal left ideals in R/J(R) correspond naturally to the maximal
left ideals in R containing J(R), which are all of them by definition, it follows
that R/J(R) has Jacobson radical 0.

Lemma 2.7 If R is semisimple, then J(R) = 0. Suppose there are finitely many
maximal left ideals m1, . . . ,mn such that J(R) =

⋂n
i=1 mi. Then R is semisimple

if and only if J(R) equals 0.
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Proof Suppose R is semisimple. Using Remark 2.2, one has R is a finite direct
sum of simple R-modules, say R =

⊕n
i=1 Si. For each i ∈ {1, 2, . . . , n}, the

projection πi : R → Si has kernel
⊕n

j=1,j 6=i Si, which is a maximal left ideal
in R since Si is simple. Clearly, the intersection of the kernels of πi for each
i ∈ {1, 2, . . . , n} is 0, hence one has J(R) = 0.

For the second part, suppose J(R) = 0 and there are finitely many maximal
left ideals m1, . . . ,mn such that J(R) =

⋂n
i=1 mi. We have an injective R-linear

map R/
⋂n
i=1 mi ↪→

⊕n
i=1R/mi, induced by the quotient maps φi : R→ R/mi.

As R/
⋂n
i=1 mi = R/J(R) = R, it follows that we can view R as a submodule of

the semisimple module
⊕n

i=1R/mi, hence R is semisimple. �

Corollary 2.8 If R is a finite ring, it is semisimple if and only if J(R) = 0.

Corollary 2.9 If k is a field and A is a k-algebra that is finite-dimensional
over k, it is semisimple if and only if J(A) = 0.

Proof The first implication follows directly from Lemma 2.7. Suppose J(A) =
0. Since the dimension of any finite intersection of maximal left ideals can
only take values in {0, 1, . . . ,dimk(A)}, there is some finite intersection M =
m1∩ . . .∩ml of maximal left ideals of minimal dimension d. Since J(A) = 0, if d
is positive, there is some non-zero x ∈M and hence some maximal ideal m that
does not contain x. It follows that M ∩m (M and hence dimk(M ∩m) < d, a
contradiction. Hence d equals 0 and thus M equals J(A). Then by Lemma 2.7,
it follows that A is semisimple. �

Notation 2.10 Let R be a ring and M an R-module. Then the annihilator of
M over R is denoted AnnR(M).

Lemma 2.11 Let k be a field and A a k-algebra. Let M be a semisimple A-
module that is finite-dimensional over k. Then A/AnnA(M) is finite-dimensional
over k and semisimple.

Proof Since M is finite-dimensional over k, so is Endk(M), and as one has
A/AnnA(M) ⊆ Endk(M), it follows that A/AnnA(M) is finite-dimensional over
k.

As M is semisimple, there are S1, . . . , St such that M ∼=
⊕t

i=1 Si as an A-

module, and hence it follows that AnnA(M) =
⋂t
i=1 AnnA(Si) ⊇ J(A). Thus

J(A/AnnA(M)) = 0 and hence A/AnnA(M) is semisimple by Corollary 2.9. �

Definition 2.12 Let R be a ring and let M and N be R-modules.

1 A chain for M is a finite sequence 0 = M0 ( M1 ( . . . ( Mt = M of R-
submodules of M , with t ∈ Z≥0. A chain 0 = M0 (M1 ( . . . (Mt = M
for M is called a composition series for M if for each i ∈ {1, 2, . . . , t}, the
quotient Mi/Mi−1 is simple (as an R-module). If a composition series for
M exists, M is said to be of finite length.
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2 If 0 = M0 (M1 ( . . . (Mt = M is a chain for M and 0 = N0 ( N1 ( . . . (
Ns = N is a chain for N , these chains are called isomorphic if is a bijection
ρ : {1, 2, . . . , t} → {1, 2, . . . , s} such that for each i ∈ {1, 2, . . . , t}, one has
Mi/Mi−1

∼= Nρ(i)/Nρ(i)−1.

3 If M and N have isomorphic chains, M and N are called Jordan-Hölder
isomorphic as R-modules, denoted M ∼=JHR N or just M ∼=JH N if it is
clear which ring R we are using.

4 Suppose 0 = M0 (M1 ( . . . (Mt = M is a composition series for M . Then
the semisimplification of M is the R-module Mss =

⊕t
i=1Mi/Mi−1.

Remark 2.13 Jordan-Hölder isomorphism is in fact an equivalence relation.
Moreover, a composition series for an R-module M is unique up to isomorphism
of chains if it exists, hence the semisimplification of an R-module M of finite
length is well-defined up to isomorphism. Moreover, if M has finite length, Mss

is semisimple, as it is a direct sum of simple modules. Proofs of these statements
can be found in [3].

Note that if k is a field, A a k-algebra and M an A-module that is finite-
dimensional over k, any proper submodule of M has dimension strictly smaller
than dimk(M). It immediately follows that M is of finite length.

Definition 2.14 Let k be a field and A a k-algebra. Let Mk(A) be the set
of isomorphism classes of A-modules that are finite-dimensional over k. We
denote the isomorphism class of a finite-dimensional A-module M by M . We
define Fk(A) to be the free group generated by Mk(A) and denote by Rk(A)
the subgroup of Fk(A) generated by elements of the form M ′+M ′′−M , where
M ′,M ′′ and M are elements ofMk(A) such that there exists an exact sequence
0 → M ′ → M → M ′′ → 0 of A-modules. Then the Grothendieck group of
A-modules that are finite-dimensional over k is Gk(A) = Fk(A)/Rk(A). The
class of an element M of Fk(A) modulo Rk(A) is denoted by [M ].

Note that Gk(A) is abelian and has zero element [0].

Definition 2.15 Let k be a field and A a k-algebra. Let X be an abelian
group. A map f : Mk(A) → X is called additive if for every exact sequence
0 → M ′ → M → M ′′ → 0 of A-modules with M ′,M,M ′′ ∈ Mk(A), one has
f(M) = f(M ′) + f(M ′′). The set of additive functions from Mk(A) to X is
denoted Add(Mk(A), X).

Proposition 2.16 Let k be a field and A a k-algebra. Let X be an abelian
group. Denote by π the mapMk(A)→ Gk(A) defined by sending M ∈Mk(A) ⊆
Fk(A) to [M ] = M +Rk(A).

There is a canonical bijection g : Hom(Gk(A), X)→ Add(Mk(A), X) given
by g(f)(M) = f(π(M)) for any f ∈ Hom(Gk(A), X) and M ∈Mk(A).

This proposition is a special case of Theorem 8.5 in [3]. It is trivially true.

Proposition 2.17 Let k be a field and A a k-algebra. Let M,N ∈ Mk(A).
Then one has [M ] = [N ] if and only if M ∼=JHA N .
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This proposition is a special case of Corollary 8.9 in [3].

Theorem 2.18 Let k be a field and A a k-algebra. Let X be an abelian group.
Let g be the map from Proposition 2.16. Let f ∈ Hom(Gk(A), X). Then the
following are equivalent.

1 The group homomorphism f is injective.

2 For any two elements M , N ∈ Mk(A), one has g(f)(M) = g(f)(N) if and
only if M ∼=JH N .

Proof Suppose f is injective. Let M , N ∈ Mk(A). Then one has g(f)(M) =
g(f)(N) if and only if f([M ]) = f([N ]), which holds if and only [M ] = [N ] since
f is injective. One has [M ] = [N ] if and only if M ∼=JH N by Proposition 2.17,
hence one has g(f)(M) = g(f)(N) if and only if M ∼=JH N .

Conversely, suppose f is not injective. Then there is a non-zero x ∈ Gk(A)
with f(x) = 0. Let

∑n
i=1 diMi ∈ Fk(A) be a representative of x with di ∈ Z

and Mi ∈ Mk(A) for each i ∈ {1, 2, . . . , n}. Assume without loss of generality
that none of the di is equal to 0 and that there is j ∈ {0, 1, 2, . . . , n} such that
di is positive if 1 ≤ i < j + 1 and that di is negative if j + 1 ≤ i ≤ n. Note that
if M ′,M ′′ ∈ Mk(A), one has M ′ + M ′′ −M ′

⊕
M ′′ ∈ Rk(A). Then defining

M+ =
⊕j

i=1M
di
i and M− =

⊕n
i=j+1M

−di
i , we find that M+ −M− is also a

representative of x.
Since f(x) = 0, one has g(f)(M+) = g(f)(M−). Since x 6= 0 by assump-

tion, one has [M+] 6= [M−] and hence M+ 6∼=JH M−. This shows the other
implication. �

Notation 2.19 Let k be a field and A a k-algebra. Let X be an abelian group.
Suppose f :Mk(A) → X is an additive map. Let g be the map from Proposi-
tion 2.16 and let h = g−1(f). Then we say that h is the group homomorphism
h : Gk(A)→ X defined by [M ] 7→ f(M).

Corollary 2.20 Let k be a field and A a k-algebra. Then Gk(A) is torsion-free
as an abelian group.

Proof For any n ∈ Z>0 the map fn :Mk(A)→ Gk(A) defined by M 7→ n[M ]
is well-defined. It is additive by the commutativity of direct sums. Moreover,
it is easily seen that fn(M) = fn(N) if and only if [Mn] = [Nn]. One has
[Mn] = [Nn] if and only if Mn ∼=JH Nn. By uniqueness of decomposition
chains up to chain isomorphisms, the latter holds if and only if M ∼=JH N .
Thus it follows that the group homomorphism hn : Gk(A)→ Gk(A) defined by
[M ] 7→ n[M ] is injective for each n ∈ Z>0, hence Gk(A) is torsion-free. �

Notation 2.21 Let n ∈ Z>0 and let R be a ring. Then M(n,R) denotes the n
by n matrix ring with coefficients in R.

Lemma 2.22 Let k be a field and A a k-algebra that is finite-dimensional over
k and that is semisimple as a ring. Then there are t ∈ Z≥0, n1, n2, . . . , nt ∈
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Z>0 and division rings D1, . . . , Dt that are k-algebras, finite-dimensional over
k, such that A ∼=

∏t
i=1M(ni, Di). The integer t ∈ Z≥0 is unique and the

pairs (n1, D1), . . . , (nt, Dt) are unique up to ordering and k-algebra isomorphism
classes of the Di.

Moreover, if k is algebraically closed, one has Di
∼= k for all i ∈ {1, 2, . . . , t}.

Furthermore, one has the following. For each i ∈ {1, 2, . . . , t}, denote Si =
Dni
i . Each Si is an M(ni, Di)-module, and defining M(nj , Dj)Si = 0 if i, j ∈
{1, 2, . . . , t} with i 6= j, one has each Si is an A-module. Then S1,S2,. . .,St
are pairwise non-isomorphic simple A-modules and every simple A-module is
isomorphic to Si for some unique i ∈ {1, 2, . . . , t}.

Proof This follows from theorems 9.10 and 9, 11 from [3]. �

We assume the basic definition of the tensor product is known.

Definition 2.23 Let R, S be rings and let f : R → S a ring homomorphism.
Let V be an R-module. We denote VR,S = S

⊗
R V . Here, we consider S to be

a right R-module by s · r = s · f(r) for s ∈ S and r ∈ R. If it is clear what ring
we take the tensor product over, we may denote VS = VR,S .

We recall a few facts about the tensor product.

Lemma 2.24 Let R and S be rings. Let f : R → S be a ring homomorphism.
Then the following hold.

1 If V is an R-module, VS can be given an S-module structure in a canonical
way such that for all α, β ∈ S and v ∈ V , one has α · (β ⊗ v) = (αβ)⊗ v.
The S-module VS can be given an R-module structure in a canonical way
such that for all α ∈ R, β ∈ S and v ∈ V , one has α·(β⊗v) = (f(α)β)⊗v.
In this way, VS is an R-module as well, and with this structure, the map
V → VS given by v 7→ 1⊗ v is R-linear.

Any set {vi}i∈I that generates V as an R-module gives rise to a set {1⊗
vi}i∈I that generates VS as an S-module. Moreover, if V is a free R-
module, any free subset of V that generates V as an R-module gives rise
to a free subset of VS that generates VS as an S-module.

2 Suppose f(R) ⊆ Z(S) and A is an R-algebra with defining ring homomor-
phism g : R → A. Then AS has a unique ring structure such that for all
α, β ∈ S and all a, b ∈ A, one has (α ⊗ a) · (β ⊗ b) = (αβ) ⊗ (ab). The
canonical maps A→ AS and S → AS, given by a 7→ 1⊗ a and s 7→ s⊗ 1
respectively, are ring homomorphisms with respect to this multiplication.

With this structure, AS is canonically an R-algebra, with defining ring
homomorphism r 7→ f(r)⊗ 1 = 1⊗ g(r).

Suppose the canonical ring homomorphism h : S → AS, given by s 7→ s⊗1,
satisfies h(S) ⊆ Z(AS). Then AS is also an S-algebra.
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3 Suppose f(R) ⊆ Z(S), let A be an R-algebra and let M be an A-module. Then
M is also an R-module via the homomorphism R → A. Then MR,S =
S
⊗

RM can be given the structure of an AS-module via the canonical
isomorphism MR,S = S

⊗
RM

∼= S
⊗

R(A
⊗

AM) ∼= (S
⊗

RA)
⊗

AM =
AS

⊗
AM = MA,AS

given by the correspondence s⊗m↔ (s⊗ 1)⊗m for
s ∈ S, m ∈M .

4 The functor S
⊗

R− from the category of R-modules to the category of S-
modules is right exact.

Checking these properties is straightforward. It is left as an exercise for the
reader.

Definition 2.25 Let R be a commutative ring and T an R-module. Then T
is called flat if for any injective R-module homomorphism f : M → N , the
induced map f ⊗ Id : M

⊗
R T → N

⊗
R T is injective as well.

Lemma 2.26 Suppose R is a principal ideal domain and T an R-module. Then
T is flat if and only if it is torsion-free as an R-module.

A proof of this lemma can be found in [7]. The lemma is given as proposition
3.2 in chapter XVI of [5] without proof, and it easily follows from proposition
3.7 in the same chapter of [5].

Proposition 2.27 Suppose R is a principal ideal domain and let T be a torsion-
free R-module. Let B be some index set. Then the R-linear map RB

⊗
R T →

TB given by (rb)b∈B ⊗ t 7→ (rbt)b∈B is injective.

Proof Let S be a finitely generated submodule of T . Since R is a principal
ideal domain and since T is torsion-free as an R-module, there is s ∈ Z≥0 such
that S ∼= Rs.

Observe that RB
⊗

R S
∼= SB since S is a direct sum of copies of R, since

direct sums commute with tensors and since RB ⊗R R ∼= RB canonically.
One has T = lim−→S, where S ranges over the finitely generated R-submodules

of T . Moreover, one has RB
⊗

R T = RB
⊗

R lim−→S
∼= lim−→(RB

⊗
R S) ∼= lim−→(SB)

⊆ TB . Here, we use that direct limits commute with tensor products; see
exercise 12 on page 639 in [5]. This map is given by (rb)b∈B ⊗ t 7→ (rbt)b∈B . �

3 Witt rings

Definition 3.1 Let A be a commutative ring. Let w = (w1, w2, . . .) ∈ AZ>0 .

Let n ∈ Z>0. Then the n-th ghost component of w is w(n) =
∑
d|n dw

n/d
d .

Lemma 3.2 For each n ∈ Z>0, denote by Q[zd]d|n the polynomial ring in
the variables zd with d dividing n. Then there are unique polynomials gn ∈
Q[z1, z2, . . .] such that the following holds.
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Let A be a commutative ring that is torsion-free as an abelian group and let
w1, w2, . . . ∈ A. We denote w = (w1, w2, . . .) ∈ AZ>0 . Then for each n ∈ Z>0,
one has gn((w(d))d|n) exists in A and is equal to wn.

Furthermore, for each n ∈ Z>0, one has gn ∈ Q[zd]d|n ⊂ Q[z1, z2, . . .].

Proof We apply induction to n. For n = 1, the result is trivial; one has
g1 = z1. For N ∈ Z>1, assume gn exists as in the statement of the lemma if

n < N . Define gN = 1
N (zN −

∑
d|N∧d 6=N dg

N/d
d ) ∈ Q[z1, z2, . . .].

Let A be a torsion-free commutative ring and let w1, w2, . . . ∈ A. Denote

w = (w1, w2, . . .) ∈ AZ>0 . One has w(N) =
∑
d|N dw

N/d
d , hence NwN = w(N) −∑

d|N∧d6=N dw
N/d
d . Since A is torsion-free, 1

N (w(N)−
∑
d|N∧d6=N dw

N/d
d ) is well-

defined in A and is equal to wN . Then gN ((w(d))d|N ) exists in A and is equal to
wN . Uniqueness of gN is easily seen by taking for A the polynomial ring over
Q in the variables x1, x2, . . . and taking w1 = x1, w2 = x2, . . ..

By induction, the result holds for all n ∈ Z>0. By induction, one easily sees
that gn ∈ Q[zd]d|n for each n ∈ Z>0. �

Let A be a torsion-free commutative ring and let w = (w1, w2, . . .) ∈ AZ>0 .
We define

fw =
∏

n∈Z>0

(1− wnTn)−1 ∈ 1 + TA[[T ]].

Note that it is well-defined as for any M ∈ Z>0 and any m ∈ Z≥M , one has∏M
n=1(1− wnTn)−1 ≡

∏m
n=1(1− wnTn)−1 mod TM and hence

fw = limm→∞
∏m
n=1(1− wnTn)−1 exists in 1 + TA[[T ]].

Lemma 3.3 One has T
f ′w
fw

=
∑
n∈Z>0

w(n)Tn, where f ′w is the formal derivative
of fw with respect to T .

Proof If f, g ∈ 1 + TA[[T ]], one has (fg)′

fg = f ′

f + g′

g . Hence one has T
f ′w
fw

=

T
∑
n∈Z>0

nwnT
n−1(1 − wnT

n)−1 =
∑
n∈Z>0

∑
r∈Z>0

n(wnT
n)r. It is easily

seen that the n-th coefficient of the latter is indeed
∑
d|n dw

n/d
d = w(n) as was

to be shown. �

Let w1, w2, . . . and v1, v2, . . . be algebraically independent elements over Z
and let w = (w1, w2, . . .), v = (v1, v2, . . .). By Lemma 3.2, for each i ∈ Z>0

there are unique elements si(w, v) and mi(w, v) ∈ Q[w1, w2, . . . , v1, v2, . . .] such
that for s(w, v) = (s1(w, v), s2(w, v), . . .), m(w, v) = (m1(w, v),m2(w, v), . . .)
and n ∈ Z>0, one has s(w, v)(n) = w(n) + v(n) and m(w, v)(n) = w(n) · v(n).
Moreover, for each n ∈ Z>0, one has mn(w, v) and sn(w, v) can be expressed as
polynomials in terms of wd and vd for d|n with coefficients in Q (namely, one
has sn(w, v) = gn((w(d) + v(d))d|n) and mn(x, y) = gn((w(d)v(d))d|n), where the
gn are the polynomials of Lemma 3.2). The following proposition shows that
these rational coefficients are in fact integers.
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Proposition 3.4 Let w1, w2, . . . and v1, v2, . . . be algebraically independent el-
ements over Z and let w = (w1, w2, . . .), v = (v1, v2, . . .). Then the following
hold.

1 The power series fw · fv satisfies T (fwfv)′

fw(T )fv(T ) =
∑
n∈Z>0

(w(n) + v(n))Tn.

2 The power series g =
∏
d,e∈Z>0

(1−we/ gcd(d,e)
d v

d/ gcd(d,e)
e T de/ gcd(d,e))− gcd(d,e)

satisfies T g′

g =
∑
n∈Z>0

w(n)v(n)Tn.

3 For each n ∈ Z>0, the n-th coefficient of fw · fv is sn(w, v) and the n-th
coefficient of h is mn(w, v).

4 For each n ∈ Z>0, both sn(w, v) and mn(w, v) are elements of Z[wd, vd]d|n ⊂
Q[w1, w2, . . . , v1, v2, . . .].

Proof One has T (fwfv)′

fwfv
= T

f ′w
fw

+ T
f ′v
fv

; the first result holds by Lemma 3.3.

Denote m = gcd(d, e) for convenience. One has

T
g′

g
= T

∑
d,e∈Z>0

−m(1− we/md v
d/m
e T de/m)−m−1 · (−dem )w

e/m
d v

d/m
e T de/m−1

(1− we/md v
d/m
e T de/m)−m

=
∑

d,e∈Z>0

dew
e/m
d v

d/m
e T de/m

1− we/md v
d/m
e T de/m

.

Expanding and writing out, we find that the n-th coefficient of the latter
equals ∑

d,e,r∈Z>0:r de
m =n

dew
re/m
d vrd/me =

∑
d,e∈Z>0: de

gcd(d,e)
|n

dw
n/d
d evn/ee

=
∑
d|n,e|n

dw
n/d
d evn/ee = w(n)v(n).

This shows the second result.
For n ∈ Z>0, let σn be the n-th coefficient of fwfv and let µn be the n-

th coefficient of g. Clearly, one has σn, µn ∈ Z[w1, w2, . . . , v1, v2, . . .]. Let σ =
(σ1, σ2, . . .) and let µ = (µ1, µ2, . . .). By Lemma 3.3, one has σ(n) = w(n)+v(n) =
s(w, v)(n) for each n ∈ Z>0 and µ(n) = w(n)v(n) = m(w, v)(n) for each n ∈ Z>0.

Then by Lemma 3.2, one has σn = gn((w(d) + v(d))d|n) = sn(w, v) and
likewise, one has µn = mn(w, v), hence sn(w, v) and mn(w, v) are elements of
Z[w1, w2, . . . , v1, v2, . . .]

⋂
Q[wd, vd]d|n, hence both are elements of Z[wd, vd]d|n.�

Definition 3.5 Let A be a commutative ring.

1 We define W (A) = AZ>0 as a set. An element w = (w1, w2, . . .) of W (A)
is called a Witt vector. For w, v ∈ W (A), we define w + v = s(w, v) =
(s1(w, v), s2(w, v), . . .) and w · v = m(w, v) = (m1(w, v),m2(w, v), . . .).
With this addition and multiplication, we call W (A) the Witt ring of A.
For w ∈W (A) and n ∈ Z>0, the n-th component of w is denoted wn.
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2 We define Λ(A) = 1 + TA[[T ]]. We have a bijection W (A)→ Λ(A) given by
(w1, w2, . . .) 7→

∏
n∈Z>0

(1 − wnTn)−1. For f =
∏
n∈Z>0

(1 − wnTn)−1 ∈
Λ(A), we say that (w1, w2, . . .) is the Witt vector associated to f .

3 Suppose B is also a commutative ring. A map f : W (A) → W (B) is called
continuous if for each n ∈ Z>0 there is some m ∈ Z>0 such that for all
w, v ∈W (A) with wi = vi for i ∈ {1, 2, . . . ,m}, one has f(w)j = f(v)j for
each j ∈ {1, 2, . . . , n}.

Remark 3.6 Here are some remarks about Definition 3.5.

1 Note that for w1, w2, . . . , v1, v2, . . . , u1, u2, . . . algebraically independent over
Z, the fact that componentwise addition and multiplication on the ghost
components are commutative, bilinear and associative, it follows easily
that s(s(w, v), u) = s(w, s(v, u)), that s(w, v) = s(v, w), that m(w, s(v, u))
= s(m(w, v),m(w, u)) and thatm(m(w, v), u) = m(w,m(v, u)). Hence the
addition and multiplication defined on W (A) are commutative, bilinear
and associative. The Witt vector (0, 0, . . .) ∈ W (A) is the zero element,
and the Witt vector (1, 0, 0, . . .) ∈W (A) is the unit element. So the Witt
ring of a commutative ring A is indeed a ring.

2 The bijection between W (A) and Λ(A) also makes Λ(A) into a commutative
ring. By Proposition 3.4, Λ(A) has its standard multiplication as addition.
It has zero element 1 and unit element (1− T )−1.

3 Let w ∈W (A). Then the maps s,m : W (A)→W (A) defined by s(v) = w+v
and m(v) = w ·v are continuous, since for each positive integer n, the n-th
coefficient of s(v) (respectively m(v)) depends only on those vd for which
d divides n.

4 We could have used different identifications of W (A) and Λ(A). For example,
we could use the correspondence (w1, w2, . . .) ↔

∏
n∈Z>0

(1 − wnT
n) or

(w1, w2, . . .)↔
∏
n∈Z>0

(1+wnT
n)−1. The identification we use is the one

used in [4].

Proposition 3.7 Let S ⊆ Z>0 be a set such that for all n ∈ S and all d ∈ Z>0

with d|n, one has d ∈ S. Then the projection π : W (A) 7→ AS given by projecting
an element (w1, w2, . . .) to (wn)n∈S induces a unique ring structure on AS such
that π is a ring homomorphism.

Proof This follows directly from Proposition 3.4, using that (w + v)n and
(w · v)n only depend on the wd and vd with d|n. �

Notation 3.8 Let A be a commutative ring and let S ⊂ Z>0 be a set that is
closed under division, meaning that for all n ∈ S and all d ∈ Z>0 with d|n, one
has d ∈ S. Then WS(A) is the set AS with the ring structure induced by the
ring structure of W (A) as in Proposition 3.7. We denote by πS the projection
W (A)→WS(A). For an element w ∈W (A), we denote wS = πS(x) ∈WS(A).

13



If p ∈ Z>0 is a prime and P = {1, p, p2, p3, . . .}, we denote Wp(A) = WP (a).
We denote πp = πP . We define W0(A) = W{1}(A) ∼= A and denote π0 = π{1}.

Abusing notation, if S ⊆ T are both closed under division, we denote by
πS the projection WT (A) → WS(A) induced by the projection πS : W (A) →
WS(A). Similarly, if S = {1, p, p2, p3, . . .}, we denote by πp the projection
WT (A) → WS(A) induced by the projection πp : W (A) → WS(A) and if S =
{1}, we denote by π0 the projection WT (A)→WS(A) induced by the projection
π0 : W (A)→WS(A).

Example 3.9 For S = {1}, one has WS(A) ∼= A, since for all w, v ∈ W (A),
one has (w + v)1 = w1 + v1, (w · v)1 = w1 · v1 and π0(1) = 1.

Notation 3.10 Let A be a commutative ring.
For a ∈ A we denote by {a} ∈W (A) the Witt vector associated to (1−aT )−1,

i.e. the Witt vector (a, 0, 0, . . .) ∈W (A).
For n ∈ Z≥0, we define Vn : W (A) → W (A) by letting Vn((w1, w2, . . .)) be

the Witt vector associated to
∏
m∈Z>0

(1 − wmTnm)−1. As the first m compo-

nents of w determine the first nm components of Vn(w), it follows immediately
that Vn is continuous (if n = 0, continuity of Vn is trivial). Clearly, if n ∈ Z>0,
one has Vn is injective.

Note that for any commutative ring A, any a ∈ A and any n ∈ Z>0, one has
that Vn({a}) is the Witt vector associated to 1

1−aTn . Note moreover that for
any n,m ∈ Z≥0, one has Vn ◦ Vm = Vnm.

Lemma 3.11 Let A,B be commutative rings and f : A→ B a ring homomor-
phism. Then f induces a natural ring homomorphism W (f) : W (A) → W (B)
given by (wn)n∈Z>0

7→ (f(wn))n∈Z>0
.

Moreover, if f is injective, surjective or bijective respectively, then W (f) is
injective, surjective or bijective respectively.

Furthermore, one has W (f) ◦ Vn = Vn ◦W (f) for each n ∈ Z>0.

Proof One has W (f)(1) = (f(1), f(0), f(0), . . .) = (1, 0, 0, . . .) = 1. For w, v ∈
W (A), one has W (f)(w + v) = (f(s1(w, v)), f(s2(w, v)), . . .) =
(s1(W (f)(w),W (f)(v)), s2(W (f)(w),W (f)(v)), . . .) = W (f)(w)+W (f)(v) and
similarly W (f)(w · v) = W (f)(w) ·W (f)(v).

The last parts of the lemma are trivial. �

Proposition 3.12 Let A be a commutative ring and let a,b ∈ A. Let n,m ∈ Z>0

and denote g = gcd(n,m). Then one has

Vn({a}) · Vm({b}) = g · Vnm/g({am/gbn/g}).

Proof By Proposition 3.4, one has that Vn({a}) · Vm({b}) is the Witt vector
associated to (1 − am/gbn/gTnm/g)−g. Then Vn({a}) · Vm({b}) is indeed equal
to g · Vnm/g({am/gbn/g}). �
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Proposition 3.13 Let A be a commutative ring, let w, v ∈W (A). Then for all
n ∈ Z>0, one has

n(w + v)n = n(wn + vn) +
∑

d|n∧d6=n

d(w
n/d
d + v

n/d
d − (w + v)

n/d
d )

and
n(w · v)n =

∑
d,e|n

dw
n/d
d · evn/ee −

∑
d|n∧d 6=n

d(w · v)
n/d
d .

Proof Denote the operations by ◦. Note that (w ◦ v)(n) = w(n) ◦ v(n) for all
n ∈ Z>0. Let n ∈ Z>0.

One has (w ◦ v)(n) =
∑
d|n d(w ◦ v)

n/d
d , hence it immediately follows that

n(w◦v)n = (w◦v)(n)−
∑
d|n∧d 6=n d(w◦v)

n/d
d = w(n)◦v(n)−

∑
d|n∧d 6=n d(w◦v)

n/d
d .

Writing out w(n) =
∑
d|n dw

n/d
d , the equalities in the lemma follow. �

Corollary 3.14 Let A be a commutative ring and let w = (w1, w2, . . .), v =
(v1, v2, . . .) ∈ W (A). Let n ∈ Z>0. Suppose wd = 0 = vd for all d|n, d 6= n.
Then one has (w + v)n = wn + vn and (w · v)n = nwnvn.

Moreover, suppose for all d|n, d 6= n, at least one of wd, vd equals 0. Then
(w + v)n = wn + vn as well.

Corollary 3.15 Let A be a commutative ring and let m ∈ Z≥0. Then Vm :
W (A)→W (A) is a continuous group homomorphism.

Proof It suffices to show this in a torsion-free ring, so assume A is torsion-
free. Let w, v ∈ W (A). It follows by Corollary 3.14 and induction that for
any n ∈ Z>0, one has Vm(w + v)n = 0 = (Vm(w) + Vm(v))n if n - m. So it
suffices to show Vm(w+ v)nm = (Vm(w) +Vm(v))nm for each n ∈ Z>0. One has
Vm(w + v)nm = (w + v)n. On the other hand, one has

nm(Vm(w) + Vm(v))nm

= nm(Vm(w)nm+Vm(v)nm)+
∑

d|nm,d 6=nm

d(Vm(w)
nm
d

d +Vm(v)
nm
d

d −Vm(w+v)
nm
d

d )

= nm(wn + vn) +
∑

d|n,d 6=n

md(w
nm
dm

d + v
nm
dm

d − (w + v)
nm
dm

d ) = nm(w + v)n

and hence Vm(w)nm +Vm(v)nm = (w+ v)n = Vm(w+ v)nm for each n ∈ Z>0.�

Proposition 3.16 Let A be a commutative ring and let m be a non-negative
integer. Then Vm(W (A)) is an ideal in W (A).

Proof Let S = Z>0 \ mZ>0. It is easily seen that S is closed under divi-
sion. Then πS is a ring homomorphism, and it is easily seen that Ker(πS) =
Vm(W (A)), hence Vm(W (A)) is an ideal. �
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Proposition 3.17 Suppose A and B are commutative rings and f : W (A) →
W (B) is a continuous group homomorphism. Let w ∈W (A) and suppose there
are w1, w2, . . . ∈ W (A) such that

∑∞
i=1 wi exists and is equal to w. Then the

sum
∑∞
i=1 f(wi) ∈W (B) is well-defined and equal to f(w).

Proof Let w ∈W (A) and let w1, w2, . . . ∈W (A) such that
∑∞
i=1 wi exists and

is equal to a.
Note that since f is continuous, for each l ∈ Z>0 there is some n ∈ Z>0 such

that if v ∈ W (A) has first n components equal to zero, the first l components
of f(v) are equal to the first l components of f(0) = 0. Moreover, for each
n ∈ Z>0, there is M ∈ Z>0 such that for each m ∈ Z≥M , the first n components
of w −

∑m
i=1 wi are equal to 0 by the continuity of addition.

Then for each l ∈ Z>0 there is M ∈ Z>0 such that for all m ∈ Z≥M , the first
l components of f(w −

∑m
i=1 wi) are equal to 0. Hence the first l components

of f(w) and f(
∑m
i=1 wi) are equal if m is sufficiently large.

In particular, one has f(
∑m
i=1 wi) =

∑m
i=1 f(wi) since f is a group homo-

morphism and hence
∑∞
i=1 f(wi) exists and is equal to f(w). �

Theorem 3.18 Suppose one is given for each commutative ring A a map fA :
W (A)→W (A) such that the following hold.

1 The map fA is a group homomorphism.

2 The map fA is continuous.

3 For each a, b ∈ A, one has fA({a} · {b}) = fA({a}) · fA({b}) and fA(1) = 1.

4 If A and B are commutative rings and g : B → A is a group homomorphism,
then the following diagram is commutative.

W (B) W (B)

W (A) W (A)

fB

W (g)

fA

W (g)

Then for each commutative ring A, the map fA is a ring homomorphism.

Proof Let A be a commutative ring, let w = (w1, w2, . . .), v = (v1, v2, . . .) ∈
W (A). Note that one has w ·v =

∑∞
n,m=1 Vn({wn}) ·Vm({vm}) using continuity

of addition and multiplication. Hence one has fA(w·v) =
∑∞
n,m=1 fA(Vn({wn})·

Vm({vm})) and fA(w)·fA(v) =
∑∞
n,m=1 fA(Vn({wn}))·fA(Vm({vm})) by Propo-

sition 3.17, using that fA is a continuous group homomorphism by assump-
tion. Thus it suffices to show that for each n,m ∈ Z>0, one has fA(Vn({wn}) ·
Vm({vm})) = fA(Vn({wn})) · fA(Vm({vm})).

Let n,m ∈ Z>0. Let B = Z[Xn, Y m] be the polynomial ring in the variables
Xn and Y m. Let ζn and ζm be primitive n-th and m-th roots of unity respec-
tively, and let C = Z[ζm, ζn, X, Y ]. Let ι : B → C be the natural inclusion. Since
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one has 1
1−XnTn =

∏n
i=1

1
1−ζinXT

in Λ(C), one has Vn({Xn}) =
∑n
i=1{ζinX} in

W (C) and likewise Vm({Y m}) =
∑m
j=1{ζjmY } in W (C).

Then one has fC(Vn({Xn}) · Vm({Y m})) =
∑n
i=1

∑m
j=1 fC({ζinX} · {ζjmY })

since fC is a group homomorphism. By property 3, one has fC({ζinX} · {ζjmY })
= fC({ζinX})·fC({ζjmY }) and hence one concludes fC(Vn({Xn})·Vm({Y m})) =
fC(Vn({Xn})) · fC(Vm({Y m})).

By property 4, one also has fB(Vn({Xn}) · Vm({Y m})) = fB(Vn({Xn})) ·
fB(Vm({Y m})), using that W (ι) is injective.

Now, define a ring homomorphism g : B → A by Xn 7→ wn and by Y m 7→
vm. By property 4, we conclude that fA(Vn({wn})·Vm({vm})) = fA(Vn({wn}))·
fA(Vm({vm})). This concludes our proof. �

Theorem 3.19 Suppose one is given for each commutative ring A maps fA, gA :
W (A)→W (A) such that the following hold.

1 Both fA and gA are group homomorphisms.

2 Both fA and gA are continuous.

3 For each a ∈ A, one has fA({a}) = gA({a}).

4 If A and B are commutative rings and h : B → A is a group homomorphism,
then the following diagram is commutative if one has eA = fA and eB = fB
or if one has eA = gA and eB = gB.

W (B) W (B)

W (A) W (A)

eB

W (h)

eA

W (h)

Then one has fA = gA for each commutative ring A.

Proof Analogously to the proof of Theorem 3.18, it suffices to show that for
each commutative ring A, for each a ∈ A and for each n ∈ Z>0, one has
fA(Vn({a})) = gA(Vn({a})) since both fA and gA are continuous group homo-
morphisms.

Let n ∈ Z>0. Let B = Z[Xn] be the polynomial ring in the variables Xn

and Y m. Let ζn and ζm be primitive n-th and m-th roots of unity respectively,
and let C = Z[ζm, ζn, X, Y ]. Let ι : B → C be the natural inclusion.

Then analogously to the proof of Theorem 3.18, one finds fC(Vn({Xn})) =∑n
i=1 fC({ζinX}) =

∑n
i=1 gC({ζinX}) = gC(Vn({Xn})) using properties 1 and

3. By property 4, one concludes fB(Vn({Xn})) = gB(Vn({Xn})) as well.
Now, define a ring homomorphism g : B → A by Xn 7→ a. By property 4,

we conclude that fA(Vn({a})) = gA(Vn({a})). This concludes our proof. �
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Lemma 3.20 Let A be a commutative ring of characteristic p, where p ∈ Z>0

is prime. For n ∈ Z≥0, let Qn = {1, p, . . . , pn}.
Then for w = (w1, w2, . . .) ∈W (A), one has p · w = Vp((w

p
1 , w

p
2 , . . .)). Also,

pn+1 annihilates WQn
(A) and WQn

(A) is a ring of characteristic pn+1.

Proof Note that for any element w ∈ W (A), we have p · w is the Witt vec-
tor associated to (

∏
n∈Z>0

(1 − wnTn)−1)p =
∏
n∈Z>0

(1 − wpnT pn)−1, which is

Vp((w
p
1 , w

p
2 , . . .)). In particular, one has pn+1 · aQn = 0 and for 1 ∈ WQn(A),

one has pn · 1 = (0, 0, . . . , 0, 1) 6= 0, so indeed WQn
(A) is a ring of characteristic

pn+1. �

We end this section with an example.

Example 3.21 Let p ∈ Z>0 be prime and let A be a commutative ring. Let
S = {1, p} and consider the ring WS(A). An element w of WS(A) is denoted by
(w1, wp) with w1, wp ∈ A. Let w, v ∈WS(A). Then the following hold:

1 w+v = (w1 +v1, wp+vp−
∑p−1
i=1

(p
i)
p w

i
1v
p−i
1 ), where

(p
i)
p is computed in Z as it

may not be well-defined in A. This just follows by writing out the formal
equality p(x + y)p = pxp + pyp + xp1 + yp1 − (x1 + y1)p in characteristic 0
and dividing by p.

2 w·v = (w1v1, pwpvp+wp1vp+wpv
p
1). This one follows by writing out p(x·y)p =

p2xpyp + pxp1yp + pxpy
p
1 + xp1y

p
1 − (x1y1)p in characteristic 0 and dividing

by p.

3 For any n ∈ Z, one has n·w = (nw1, nwp− np−n
p wp1), where np−n

p is computed
in Z. This follows from the fact that for any n,m ∈ Z, one has
(nw1, nwp − np−n

p wp1) + (mw1,mwp − mp−m
p wp1) =

((n+m)w1, (n+m)wp− np+mp−n−m
p wp1 + (nw1)p+(mw1)p−(nw1+mw1)p

p ) =

((n+m)w1, (n+m)wp − (n+m)p−(n+m)
p wp1) and induction.

4 As a direct corollary of 3, one has −w = (−w1,−wp − (−1)p+1
p wp1). In par-

ticular, if p = 2, one has −w = (−w1,−w2 − w2
1) and if p is odd, one has

−w = (−w1,−wp).

5 Suppose A has characteristic p. Then for any n ∈ Z≥0, one has wn =

(wn1 , nw
(n−1)p
1 wp). This can easily be shown by induction, since it is true

for n = 1, and for any m,n ∈ Z, provided that w1 is invertible if ei-

ther m < 0 or n < 0, one has (wn1 , nw
(n−1)p
1 wp) · (wm1 ,mw

(m−1)p
1 wp) =

(wm+n
1 , (wn1 )p(mw

(m−1)p
1 wp) + (nw

(n−1)p
1 wp)(w

m
1 )p) =

(wm+n
1 , (m+ n)w

(m+n−1)p
1 wp).

In particular, one has (w1, wp)
p = (wp1 , 0).

Moreover, if w is invertible, one has wn = (wn1 , nw
(n−1)p
1 wp) for all n ∈ Z.
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6 Suppose A has characteristic p. Then w = (w1, wp) is invertible if and only

if w1 is invertible; in this case, the inverse of w is (w−1
1 ,−w−2p

1 wp). This
is a direct consequence of 5.

4 Witt power sums

Notation 4.1 Let p ∈ Z≥0 be a prime (possibly 0). We denote Z(p) = {a/b ∈
Q|a, b ∈ Z, p - b}. In particular, one has Z(0) = Q.

Remark 4.2 It is easily verified that Z(p) is a subring of Q for each prime p,
and that any n ∈ Z>0 with p - n is invertible in Z(p).

Moreover, a ring A is a Z(p)-algebra if and only if any n ∈ Z that is not
divisible by p is invertible. In particular, any Z(p)-algebra has characteristic
either 0 or some power of p.

Let A be a commutative ring and let n ∈ Z>0. Recall that Vn : W (A) →
W (A) is the map defined by letting Vn((w1, w2, . . .)) be the Witt vector associ-
ated to the element

∏∞
m=1(1−wmTnm)−1 of Λ(A). We showed in Corollary 3.15

and Proposition 3.16 that Vn is a continuous group homomorphism and that
Vn(W (A)) is an ideal of W (A). Moreover, Vn is injective. We are going to use
these properties to define certain ring homomorphisms Pn : W (A)→ W (A). If
there is some prime p ∈ Z≥0 (possibly 0) such that W (A) is a Z(p)-algebra, then
the ring homomorphisms Pn will allow us to find a ring isomorphism of W (A)
with the product

∏
n∈Z>0,p-nWp(A).

4.1 Definition and properties of Witt power sums

Definition 4.3 Let A be a commutative ring. Let n ∈ Z>0. We define Pn :
W (A) → W (A), by Vn(Pn(w)) = Vn(1) · w. We call Pn the n-th Witt power
sum.

Remark 4.4 Since Vn(W (A)) is an ideal, one has Vn(1) · w ∈ Vn(W (A)). As
Vn is injective for any n ∈ Z>0, the element Pn(w) is well defined for each
w ∈W (A).

Recall that if A is a commutative ring and if a ∈ A, one denotes by {a} the
Witt vector associated to 1

1−aT , i.e. the Witt vector (a, 0, 0, . . .).

Theorem 4.5 Let A be a commutative ring and let n ∈ Z>0. Then one has the
following.

1 The map Pn is a group homomorphism.

2 The map Pn is continuous.

3 For all a ∈ A and m ∈ Z>0, letting g = gcd(n,m), one has

Pn(Vm({a})) = gVm/g({an/g}).
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4 For all a ∈ A, one has Pn({a}) = {an}.

5 For all a, b ∈ A, one has Pn({a} · {b}) = Pn({a}) · Pn({b}) and one has
Pn(1) = 1.

6 Let B be a commutative ring and suppose g : B → A is a ring homomorphism.
Then the following diagram commutes.

W (B) W (B)

W (A) W (A)

Pn

W (g)

Pn

W (g)

7 The map Pn is a ring homomorphism.

Proof Properties 1 and 2 follow from the fact that Vn is an injective, con-
tinuous group homomorphism. Property 6 follows from Lemma 3.11. For all
a, b ∈ A, one has {a} · {b} = {ab}, this means that property 4 implies property
5. Clearly property 3 implies property 4.

Let a ∈ A and m ∈ Z>0. Let g = gcd(n,m). One has Vn(1) · Vm{a} =
gVnm/g({an/g}) = Vnm/g(g{an/g}) by Proposition 3.12. Hence one has Pn(a) =

V −1
n (Vnm/g(g{an/g})) = Vm/g(g{an/g}) = gVm/g({an/g}). This shows property

3.
Property 7 now holds by Theorem 3.18. �

Corollary 4.6 Let n,m ∈ Z>0. Then Pn ◦ Pm = Pnm for each commutative
ring A.

Proof Let A be a commutative ring and let a ∈ A. Then one has Pn ◦
Pm({a}) = Pn({am}) = {anm} = Pnm({a}). As both Pn ◦ Pm and Pnm are
continuous ring homomorphisms that satisfy property 4 from Theorem 3.19,
one has by Theorem 3.19 that they are equal. �

Proposition 4.7 Let m,n ∈ Z>0. Let g = gcd(m,n). Let m′, n′ ∈ Z>0 such
that m = gm′ and n = gn′. For a commutative ring A, denote by φg the group
homomorphism W (A)→W (A) given by φg(w) = gw for each w ∈W (A).

Then one has Pn ◦ Vm = Vm′ ◦ φg ◦ Pn′ .

Proof Observe that both Pn◦Vm and Vm′◦φg◦Pn′ are continuous group homo-
morphisms that satisfy property 4 from Theorem 3.19. Then by Theorem 3.19
it suffices to show that for each commutative ring A and for each a ∈ A, one has
Pn ◦Vm({a}) = Vm′ ◦φg ◦Pn′({a}). Let A be a commutative ring and let a ∈ A.

One has Pn(Vm({a})) = gVm/g({an/g}) = Vm′(g{an
′}) = Vm′(φg(Pn′({a})))

using properties 3 and 4 from Theorem 4.5. This completes the proof. �

Corollary 4.8 Let m,n ∈ Z>0 be coprime. Then one has Pn ◦ Vm = Vm ◦ Pn
for each commutative ring A.
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Corollary 4.9 Let A be a commutative ring and let n ∈ Z>0. Then for each
w ∈W (A), one has Pn(Vn(w)) = nw.

Proposition 4.10 Let A be a commutative ring and let w = (w1, w2, . . .) ∈
W (A). Let n ∈ Z>0. Then the first component of Pn(w) is equal to w(n).

Proof Let m ∈ Z>0. Let g = gcd(n,m). Then by Theorem 4.5, the first

component of Pn(Vm({wm})) is the first component of gVm/g({w
n/g
m }). If one

has g 6= m, this component is zero. One has gcd(n,m) = m if and only if
m|n. If this is the case, the first component of Pn(Vm({wm})) is equal to the

first component of mV1({wn/mm }), which is mw
n/m
m . Since Pn is a continuous

group homomorphism, one has Pn(w) =
∑∞
i=1 Pn(Vi({wi})) and hence the first

component of Pn(w) is equal to the first component of
∑
d|n Pn(Vd({wd})),

which is
∑
d|n dw

n/d
d = w(n). �

Theorem 4.11 Let A be a commutative ring, let m ∈ Z>0, let n ∈ Z>0

such that gcd(m,n) = 1 and let w = (w1, w2, . . .) ∈ W (A). Then one has
Pn(Vm(w)) ∈ Vm(W (A)) and the m-th component of Pn(Vm(w)) is equal to
w(n).

Proof Since n and m are coprime, one has Pn(Vm(w)) = Vm(Pn(w)). The m-
th component of Pn(Vm(w)) is therefore equal to the first component of Pn(w),
which is w(n) by Proposition 4.10. �

Theorem 4.12 Let A be a commutative ring, let m ∈ Z>0, let n ∈ Z>0 such
that gcd(m,n) = 1 and let w = (w1, w2, . . .) ∈ W (A). If one has wk = 0 for
each divisor k of nm, then the e-th coefficient of Pd(w) is equal to 0 for each
d|n and each e|m.

Suppose that n is invertible in A. If the e-th coefficient of Pd(w) is equal to
0 for each d|n and each e|m, then one has wk = 0 for each divisor k of nm.

Proof Let l ∈ Z>0. Suppose k ∈ Z>0 is not a divisor of nm. Let d be a divisor

of n and let g = gcd(k, d). One has Pd(Vk({wk})) = gVk/g({w
d/g
k }). Since k/g

does not divide m (as this would imply that k divides mg and hence that k
divides mn), the e-th coefficient of Pd(Vk({wk})) is zero for each divisor e of
m. Hence for each divisor d of n and for each divisor e of m, one has the e-th
component of Pd(w) is the e-th component of

∑
k|nm Pd(Vk({wk})), which is 0

if wk = 0 for all k|nm.
Suppose n is invertible. Suppose there is a divisor k = de of nm with wk 6= 0.

There is a minimal divisor e of m such that there is d|n with wde 6= 0. Let e be
such a minimal divisor of m, and let d be the minimal divisor of n with wde 6= 0.
Then d and e are coprime, and for each divisor k of de, one has wk = 0. Hence
one has

∑
k|de Pd(Vk({wk})) = Pd(Vde({wde})) and by the previous argument,

the e-th component of Pd(w) is the e-th component of Pd(Vde({wde})). One has
Pd(Vde({wde})) = dVe({wde}), which has e-th component dwde 6= 0 since d is
invertible. �
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Definition 4.13 Let k be a field and A a k-algebra. Let M be an A-module
that is finite-dimensional over k. Let a ∈ A and denote by aM the k-linear map
M →M given by m 7→ am. The characteristic polynomial of a with respect to
M is χM (a) = det(I − TaM )−1 ∈ Λ(k). We denote by ψM (a) ∈W (k) the Witt
vector associated to χM (a) and we denote by TrM (a) the trace of aM .

We will repeat these definitions in section 5.

Lemma 4.14 Let k be an algebraically closed field and let A be a k-algebra. Let
M be an A-module that is finite-dimensional over k. Let a ∈ A and let n ∈ Z>0.
Then one has Pn(ψM (a)) = ψM (an) ∈W (k).

Proof Note that the action of a on M has eigenvalues λ1, . . . , λd ∈ k, counted
with multiplicity. Then one has χM (a) =

∏d
i=1

1
1−λiT

, hence one has ψM (a) =∑n
i=1{λi}. By property 4 of Theorem 4.5, one has Pn(ψM (a)) =

∑d
i=1{λni }.

As the action of an on M has eigenvalues λn1 , . . . , λ
n
d counted with multiplicity,

one finds ψM (an) = Pn(ψM (a)) as was to be shown. �

Proposition 4.15 Let k be a field and let A be a k-algebra. Let M be an A-
module that is finite-dimensional over k. Let a ∈ A and let n ∈ Z>0. Then one
has Pn(ψM (a)) = ψM (an).

Proof Replace k by some algebraic closure k̄, replace A by Ak̄, replace M by
Mk̄ and replace a by 1⊗ a ∈ Ak̄.

Observe that under the natural inclusion W (k) → W (k̄) induced by the
inclusion k ⊆ k̄, one has ψM (a) 7→ ψMk̄

(1 ⊗ a) and ψM (an) 7→ ψMk̄
(1 ⊗ an).

Applying Lemma 4.14, the statement of the lemma follows immediately. �

Corollary 4.16 Let k be a field and let A be a k-algebra. Let M be an A-
module that is finite-dimensional over k. Let a ∈ A and let n ∈ Z>0. Then one
has TrM (an) = ψM (a)(n).

Proof One has TrM (an) is the first component of ψM (an). The latter is equal
to Pn(ψM (a)) by Proposition 4.15 and hence TrM (an) = ψM (a)(n) by Proposi-
tion 4.10. �

4.2 The isomorphism W (A)→ Wp(A)
Z>0\pZ>0 for commuta-

tive Z(p)-algebras

Proposition 4.17 Let p ∈ Z≥0 be a prime, possibly 0, and let A be a commuta-
tive Z(p)-algebra. Let S be a subset of Z≥0 \ pZ≥0 that is closed under division,
meaning that if n ∈ S and d ∈ Z>0 with d|n, then d ∈ S. Recall that π0 is
the projection W (A)→ W0(A). The ring homomorphism g : W (A)→ W0(A)S

defined by g(w)n = π0(Pn(w)) = w(n) for n ∈ S induces a ring isomorphism
WS(A)→W0(A)S given by w + Ker(πS) 7→ g(w) for each w ∈W (A).
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Proof Let w = (w1, w2, . . .) ∈ Ker(πS) and let n ∈ S. Then for each d|n,

one has d ∈ S and hence w(n) =
∑
d|n dw

n/d
d = 0. Hence Ker(πS) ⊆ Ker(g).

Then there is a unique ring homomorphism gS : WS(A) → W0(A)S such that
gS ◦ πS = g.

Let w ∈ W (A) \ Ker(πS). Then there is some minimal n ∈ S such that
wn 6= 0. Then one has w(n) = nwn 6= 0 since n is invertible, hence g(w) 6= 0. So
Ker(g) = Ker(πS). Hence one has g(W (A)) ∼= WS(A) as rings.

Let v = (vn)n∈S . Define w1 = v1 and for n ∈ S, n > 1, define inductively

wn = 1
n (vn −

∑
d|n,d6=n dw

n/d
d ) ∈ A. As p - n for any n ∈ S, one has 1

n ∈ A,
hence wn is well-defined for any n ∈ S.

Let w ∈ π−1
S ((wn)n∈S). Clearly, one has w(n) =

∑
d|n dw

n/d
d = vn for each

n ∈ S, showing g is surjective. Hence g induces a ring isomorphism WS(A) →
W0(A)S as was to be shown. �

Corollary 4.18 Let A be a commutative Q-algebra. Then the map P : W (A)→
W0(A)Z>0 defined by P (w)n = π0(Pn(w)) for any n ∈ Z>0 is a ring isomor-
phism.

Proof Take S = Z>0 in the previous proposition. �

Corollary 4.19 Let p ∈ Z>0 be a prime number and let A be a commutative
Z(p)-algebra. Let S = Z>0 \ pZ>0. Then the ring homomorphism g : W (A) →
W0(A)S defined by g(w)n = π0(Pn(w)) for any n ∈ S has kernel Vp(A) =
Ker(πS) and induces a ring isomorphism WS(A)→W0(A)S.

Proposition 4.20 Let p ∈ Z>0 be a prime number and let A be a commutative
Z(p)-algebra. Let S = Z≥0 \ pZ≥0. For l ∈ Z≥0, denote by lπ = π{1,p,...,pl}
the componentwise projection Wp(A)S → W{1,p,...,pl}(A)S. Denote by P the

ring homomorphism P : W (A) → Wp(A)S defined by P (w)n = πp(Pn(w)) for
each n ∈ S. Then for each l ∈ Z≥0, the ring homomorphism lπ ◦ P has kernel
Vpl+1(W (A)) and is surjective.

Proof Let l ∈ Z>0. If w ∈ Vpl+1(W (A)), Theorem 4.11 immediately gives

lπ(P (w)n) = 0 for each n ∈ S and hence w ∈ Ker(f). Conversely, suppose
w 6∈ Vpl+1(W (A)). Then there is some minimal i ∈ Z>0 with i < l+ 1 such that
there is some minimal n ∈ S such that wpin 6= 0. Writing w = Vpi(w

′), one has

Pn(w)pi = w′(n) 6= 0, hence w 6∈ Ker(P ). This shows Ker(lπ◦P ) = Vpl+1(W (A))
for each l ∈ Z>0.

Let v = (nv)n∈S ∈ Wp(A)S . By Proposition 4.17, there is w ∈ W (A) such
that (0π ◦ P (w))n = nv1 for each n ∈ S. This shows 0π ◦ P is surjective.

Let l ∈ Z>0; assume l−1π ◦ P is surjective. Then there is w̄ ∈ W (A) such
that v − P (w̄) ∈ Ker(l−1π) = Vpl(Wp(A)S). Let v′ = (nv)n∈S ∈ Wp(A)S such
that Vpl(v

′) = v − P (w̄). By Proposition 4.17, there is w′ ∈ W (A) such that
(0π ◦ P (w′))n = nv

′
1 for each n ∈ S.

Then one has P (Vpl(w
′)) = Vpl(P (w′)) = Vpl(v

′) ∈ lπ(Wp(A)S) since one
has Vpl ◦ Pn = Pn ◦ Vpl for all n ∈ S.
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Let w = w̄ + Vpl(w
′). Then one has v − P (w) = v − P (w̄) − P (Vpl(w

′)) =
Vpl(v

′) − P (Vpl(w
′)) ∈ Ker(lπ) by construction, meaning lπ(b) = lπ ◦ P (a).

Hence lπ ◦ P is surjective.
By induction, lπ ◦ P is surjective for each l ∈ Z≥0. �

Theorem 4.21 Let p ∈ Z>0 be a prime number and let A be a commutative
Z(p)-algebra. Let S = Z≥0 \ pZ≥0. Then the ring homomorphism P : W (A) →
Wp(A)S defined by P (w)n = πp(Pn(w)) for any n ∈ S is a ring isomorphism.

Proof By Proposition 4.20, one has Ker(P ) ⊆
⋂
l∈Z>0

Vpl(W (A)) = 0, hence
P is injective.

Let v = (nv)n∈S ∈ Wp(A)S . For each l ∈ Z≥0, denote lπ = π{1,p,...,pl}. For
each l ∈ Z≥0, there is lw ∈ W (A) such that lπ(v) = lπ ◦ P (lw) by Proposi-
tion 4.20. For l,m ∈ Z>0 with l ≤ m, one has lπ(v) = lπ ◦P (mw) as well, hence

lw − mw ∈ Vpl+1(W (A)). It follows that there is w ∈ W (A) such that for each
l ∈ Z≥0, one has ws = (lw)s for each s ∈ Z>0 with pl+1 - s. Namely, if s = plu
with p - u, define ws = (lw)s. Clearly, we have w− lw ∈ Vpl+1(W (A)) and hence

lπ◦P (w) = lπ(v) for each l ∈ Z≥0. It immediately follows that P (w) = v, hence
P is surjective. �

If w = (w1, w2, . . .) ∈ W (A), the proposition below essentially tells us that
for given n = plm ∈ Z>0 with p - m, we can reconstruct wd for d|n given the
pi-th coefficients of Pe(w) for each divisor e of m and for each i ∈ {0, 1, . . . , l}. It
is more explicit than Proposition 4.20. In essence, it gives us a way to compute
the inverse of the isomorphism P on a finite level. Provided one can calculate in
W (A) in an efficient manner, this computation can be performed in an efficient
manner.

Proposition 4.22 Let p ∈ Z>0 be a prime number and let A be a commutative
Z(p)-algebra. Let P : W (A) → Wp(A)Z>0\pZ>0 be the ring homomorphism de-
fined by P (w)n = πp(Pn(w)) for all a ∈ A and all n ∈ Z>0 \pZ>0. For n ∈ Z>0,
denote Sn = {d ∈ Z>0 : d|n}.

Then for each n ∈ Z>0, one has the following. Write n = qu with q, u ∈
Z≥0 such that p - u and q is a power of p. Then P induces an isomorphism
gn : WSn

(A)→WSq
(A)Su .

Proof Let n ∈ Z>0. Write n = qu with q = pl for some l ∈ Z>0 and p - u. Let
w = (w1, w2, . . .) ∈W (A). One has gn(w) = 0 if and only if the pi-th coefficient
of Pd(w) is equal to 0 for each divisor d of u and each i ∈ {0, 1, . . . , l}. Since u
is invertible, by Theorem 4.12 this is the case if and only if the k-th coefficient
of w is equal to 0 for each divisor k of qu. This shows Ker(gn) = Ker(πSn

).
Fix u. If l = 0, one has gn is surjective by Proposition 4.17. We apply

induction to l. Let L ∈ Z>0 and suppose gupl is surjective for every l < L. Write
N = upL. Note that gN maps VpL(WSN

(A)) surjectively to VpL(WSN
(A)Su) by

Proposition 4.17, using Corollary 4.8. Let v ∈WSN
(A)Su .

Let w ∈WSN
(A) such that ṽ = v − gN (w) ∈ VpL(WSN

(A)Su); such w exists
by the induction hypothesis. Now let w̃ ∈ VpL(W (A)) such that gN (w̃) = ṽ.
Then one has gN (w + w̃) = v, showing that gN is surjective.
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By induction, the proposition holds for any positive integer n. �

We can combine Corollary 4.18 and Theorem 4.21 in the following theorem.

Theorem 4.23 Let p ∈ Z≥0 be a prime (possibly 0) and let A be a commutative
Z(p)-algebra. Let S = Z≥0 \ pZ≥0. Denote by πp the componentwise projection
W (A)S → Wp(A)S. Then the ring homomorphism P : W (A) → Wp(A)S de-
fined by P (w)n = πp(Pn(w)) for any n ∈ S is a ring isomorphism.

Remark 4.24 Let p ∈ Z≥0 be a prime and letA be a commutative Z(p)-algebra.
Using the ring isomorphism P from Theorem 4.23, one can give W (A) the
structure of a Wp(A)-module. Namely, if S = Z≥0 \ pZ≥0, one has Wp(A)S is a
Wp(A)-module by componentwise multiplication. Moreover, using the diagonal
embedding ι : Wp(A) → Wp(A)S , one finds that P−1 ◦ ι is an injective ring
homomorphism from Wp(A) to W (A), meaning that Wp(A) can be viewed as a
subring ofW (A). Observe that πp◦(P−1◦ι) = IdWp(A), since w = P−1((αn)n∈S)

satisfies πp(w) = πp(P1(w)) = α1 for each (αn)n∈S ∈W (A)S .

5 Brauer-Nesbitt

Notation 5.1 In this section, unless noted otherwise, k denotes a field, A de-
notes a k-algebra and M and N denote A-modules that are finite-dimensional
over k.

5.1 Definitions and notations

Notation 5.2 Let a in A. We denote by aM the k-linear map M → M given
by m 7→ a ·m. We denote by TrM (a) the trace of aM .

We repeat Definition 4.13.

Definition 5.3 Let a ∈ A. The characteristic polynomial of a with respect to
M is χM (a) = det(I−TaM )−1 ∈ Λ(k). The n-th coefficient of χM (a) is denoted
χM,n(a).

Note that this is not the standard definition of the characteristic polynomial.
Observe however that in this way, χM (1) corresponds to dimk(M) · 1W (k) via
the identification of Λ(k) with W (k).

Notation 5.4 We denote by ψM (a) ∈ W (k) the Witt vector associated to
χM (a) ∈ Λ(k) and for each n ∈ Z>0, we denote by ψM,n(a) the n-th component
of ψM (a).

Remark 5.5 Note that for any a ∈ A, one has TrM (a) = χM,1(a) = ψM,1(a).
Note that if M ′ ⊆ M is an A-submodule of M , then M ′′ = M/M ′ is an

A-module as well, and χM (a) = χM ′(a)χM ′′(a) for any a ∈ A, as can be seen
by choosing a k-basis of M ′ and extending it to a k-basis of M . Note that in
particular, we have ψM (a) = ψM ′(a) + ψM ′′(a).

From this, we can conclude that for any a ∈ A, the maps χ−(a) :Mk(A)→
Λ(k) and ψ−(a) :Mk(A)→W (k) are additive in the sense of Definition 2.15.
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5.2 The Brauer-Nesbitt Theorem

A known theorem is the following.

Quotation 5.6 (Brauer-Nesbitt, 1937) Let G be a group and let k be an
algebraically closed field. Let A and B be two representations of a group G
which associate the matrices AQ and BQ with the element Q of G. If both AQ
and BQ have the same characteristic roots for every Q in G, then A and B have
the same irreducible constituents.

Essentially, this quotation tells us that two modules A and B over a group
algebra k[G], with k algebraically closed and G a group, are Jordan-Hölder
isomorphic if and only if for each element Q of G, the characteristic polynomials
of the action of Q on A and B by left multiplication are equal.

In other words, we only need information about characteristic polynomials
in order to determine the Jordan-Hölder isomorphism class of an k[G]-module.
We aim to generalize this theorem.

We formulate a somewhat stronger version of the Brauer-Nesbitt theorem.

Theorem 5.7 Let B be a subset of A that generates A as a k-vector space. Then
one has M ∼=JHA N if and only if for each b ∈ B, one has χM (b) = χN (b).

This theorem immediately implies Quotation 5.6, as the elements of G form
a basis of k[G] as a k-vector space. A proof of Theorem 5.7 will be provided at
the end of this subsection.

Lemma 5.8 Let a ∈ A. Suppose aM has eigenvalue λ ∈ k. Then χM (a)−1,
viewed as an element of k[T ], is divisible by (1 − λT ). If λ 6= 0, one has
χM (a) 6= 1.

Proof If aM has eigenvalue λ ∈ k, there is some k-basis {m1, . . . ,mn} of M
satisfying aMm1 = λm1. We easily see that for M ′ = km1 and M ′′ = M/M ′,
we have χM (a)−1 = χM ′(a)−1 · χM ′′(a)−1. As χM ′(a)−1 = (1 − λT ), one has
χM (a)−1 is divisible by (1− λT ). If λ 6= 0, one has (1− λT ) is not invertible in
k[T ], hence it follows that χM (a)−1 6= 1 and hence χM (a) 6= 1. �

Lemma 5.9 Let R be a semisimple ring and let S be a simple R-module. Then
for each s ∈ S \ {0} there is some r ∈ R with rs = s and such that for any
simple R-module T that is not isomorphic to S, one has rT = 0.

Proof Let s ∈ S \ {0}. Consider the R-linear map f : R → S defined by
f(r) = rs for each r ∈ R. As S is simple and f(1) = s 6= 0, one has f(R) = S.

Consider the exact sequence 0→ Ker(f)→ R
f→ S → 0. Since R is semisimple,

this sequence splits, hence there is an R-linear map φ : S → R such that
f◦φ = IdS . Define r = φ(s). Then one has rs = f(r) = f(φ(s)) = (f◦φ)(s) = s.

Let T be a simple R-module and suppose it is not isomorphic to S. Let
t ∈ T . Then there is an R-linear map g : S → T defined by s′ 7→ φ(s′)t for
s′ ∈ S. If g is injective, it is an isomorphism since T is simple and S is not
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0. This is false by assumption, hence Ker(g) 6= 0. Since S is simple, it follows
Ker(g) = S. In particular, one has rt = φ(s)t = g(s) = 0. Hence one has
rT = 0. �

Theorem 5.10 Let M , N be semisimple A-modules that are finite-dimensional
over k. Then the following are equivalent.

1 One has M and N are isomorphic as A-modules.

2 For all a ∈ A, one has χM (a) = χN (a).

Proof The implication 1⇒ 2 is trivial. Suppose 2 holds.
First, we show that we may assume that A is finite-dimensional over k and

semisimple. Let I ⊂ A be the annihilator of M
⊕
N . Then both M and

N are A/I-modules and A/I is semisimple and finite-dimensional over k by
Lemma 2.11.

As (a+ I)M = aM and (a+ I)N = aN for any a ∈ A, we have χM (a+ I) =
χN (a+I) for all a ∈ A. Note that we have a canonical bijection HomA(M,N) ∼=
HomA/I(M,N), since any A-linear map from M to N is also A/I-linear and vice
versa. Hence we have M ∼=A N if and only if M ∼=A/I N . Moreover, M and N
are still semisimple as A/I-modules. So if the theorem holds with A replaced
by A/I, it holds for A as well.

Assume that A is semisimple and finite-dimensional over k.
Write M =

⊕d
i=1 Si and N =

⊕e
i=1 Ti with d, e ∈ Z≥0, and S1, . . . , Sd,

T1, . . . , Te simple A-modules. Assume d ≥ e without loss of generality. We
apply induction to d.

If d = 0, both M and N are the 0-module, and hence one has M = N .
Suppose d > 0 and that the result is true for all d′ < d. View a component

S1 of M as a subset of M . Let s ∈ S1 \ {0}. Let a ∈ A such that as = 1 and
aT = 0 for each simple A-module T that is not isomorphic to S1. Such a exists
by Lemma 5.9.

Suppose S1 is not isomorphic to Ti for any i ∈ {1, 2, . . . , e}. Then one has
aTi = 0 for each i ∈ {1, 2, . . . , e}. In particular, it follows that aN = 0, yielding
that χN (a) equals 1.

On the other hand, viewing S1 as an A-submodule of M , we see that aM has
eigenvalue 1 since we have as = s. Thus χM (a) 6= 1 by Lemma 5.8, contradicting
χM (a) = χN (a). So at least one of the Ti is isomorphic to S1.

Assume without loss of generality that T1 and S1 are isomorphic. Now con-
sider the modules M/S1 and N/T1; these satisfy χM/S1

(a) = χM (a)/χS1
(a) =

χN (a)/χT1
(a) = χN/T1

(a) for all a ∈ A by 2, using χS1
(a) = χT1

(a) since
S1
∼= T1. As both M/S1 and N/T1 have precisely one fewer simple submodule

in their decomposition, we can apply the induction hypothesis to M/S1 and
N/T1 and conclude M/S1

∼= N/T1. As M ∼= M/S1

⊕
S1 and N ∼= N/T1

⊕
T1

since M and N are semisimple, it follows that M and N are isomorphic. �

Corollary 5.11 Let M,N be A-modules that are finite-dimensional over k.
Then the following are equivalent.
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1 One has M and N are Jordan-Hölder isomorphic as A-modules.

2 For all a ∈ A, one has χM (a) = χN (a).

Proof One has M and N are Jordan-Hölder isomorphic if and only if their
semisimplifications Mss and Nss are isomorphic. Both Mss and Nss will also be
semisimple and finite-dimensional over k. Moreover, for any a ∈ A, one has
χM (a) = χMss(a) and χN (a) = χNss(a). Now apply the previous theorem to
Mss and Nss. �

We can reformulate the above corollary as follows, using Theorem 2.18:

Corollary 5.12 The group homomorphism φ : Gk(A) → Λ(k)A defined by
[M ] 7→ (χM (a))a∈A is injective.

This immediately has the following consequence.

Corollary 5.13 Let l be a field extension of k. Then the group homomorphism
ι : Gk(A)→ Gl(Al) defined by [M ] 7→ [Ml] is injective.

Proof Define φ : Gk(A) → Λ(k)A as in Corollary 5.12. Define the group
homomorphism φl : Gl(Al) → Λ(l)A by [M ] 7→ (χM (a))a∈A, viewing A as a
subring of Al in the canonical way. The inclusion k ⊆ l induces an inclusion
i : Λ(k)A → Λ(l)A via the induced inclusion Λ(k) ⊆ Λ(l).

Clearly, the following diagram commutes.

Gl(Al) Λ(l)A

Gk(A) Λ(k)A

φl

ι

φ

i

As i ◦ φ is injective, ι must be injective as well. �

The following is Lemma 9 in [8].

Lemma 5.14 Let Z〈X,Y 〉 denote the noncommutative polynomial ring gener-
ated by X and Y . Then there exists a unique sequence f0(X,Y ), f1(X,Y ), . . .
of polynomials in Z〈X,Y 〉 such that in Z〈X,Y 〉[[T ]] we have

(1− (X + Y )T ) = (1−XT )(1− Y T )

∞∏
k=0

(1− fk(X,Y )XY T k+2).

The polynomial fm(X,Y ) is homogeneous of degree m in X and Y .

A proof can be found in [8].

Lemma 5.15 Let R = Z〈X,Y 〉 denote the noncommutative polynomial ring
generated by X and Y . Let V be the set of homogeneous polynomials in R of
degree at least equal to 2. Let S be the polynomial ring over Z in the variables
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Hw,i where w ranges over the elements of V and i ranges over the positive
integers. We make S into a graded ring by defining the weight of Hw,i to be
equal to the degree of w times i.

For each s ∈ Z>0 there is a polynomial Q̃s ∈ S such that for every field k,
every k-algebra A, every A-module M that is finite-dimensional over k and for
all a, b ∈ A, one has the following.

Define a ring homomorphism S → k by mapping Hw,i to the i-th coefficient
χM,i(w(a, b)) of the characteristic polynomial χM (w(a, b)) of w(a, b) for each
pair (w, i) ∈ V × Z>0.

Then one has

χM,s(a+ b) = χM,s(a) + χM,s(b) + Q̃s((χM,i(w(a, b)))(w,i)∈V×Z>0
).

Moreover, Q̃s is homogeneous of degree s.

Proof For m ∈ Z≥0, let fm(X,Y ) be the polynomial from Lemma 5.14. Let k
be a field, A a k-algebra, M an A-module that is finite-dimensional over k and
let a, b ∈ A.

Then one has (1− (a+ b)T ) = (1−aT )(1− bT )
∏∞
i=0(1− (fi(a, b)ab)T

i+2) ∈
Λ(A). Taking determinants and inverting on both sides, one finds χM (a+ b) =
χM (a)χM (b)

∏∞
i=0(1 +

∑∞
j=1 χM,j(fi(a, b)ab)T

(i+2)j).
Comparing the coefficients of T s on both sides, one finds a formal relation

Q̃s of the form we seek that does not depend on a, b, M , A and k for each
s ∈ Z>0. �

Remark 5.16 Observe that in terms of Witt vectors, the equality

χM (a+ b) = χM (a)χM (b)

∞∏
i=0

(1 +

∞∑
j=1

χM,j(fi(a, b)ab)T
(i+2)j)

can be written as

ψM (a+ b) = ψM (a) + ψM (b) +

∞∑
i=0

Vi+2(ψM (fi(a, b)ab)).

Theorem 5.17 Let R = Z〈X,Y 〉 denote the noncommutative polynomial ring
generated by X and Y . Let W be the set of monomials in R of degree at least
equal to 2 that are not equal to xn or yn for any n ∈ Z>1. Let S be the polynomial
ring over Z in the variables Hw,i where w ranges over the elements of W and i
ranges over the positive integers. We make S into a graded ring by defining the
weight of Hw,i to be equal to the degree of w times i.

For each s ∈ Z>0 there is a polynomial Qs ∈ S such that for every field k,
every k-algebra A, every A-module M that is finite-dimensional over k and for
all a, b ∈ A, one has the following.

Define a ring homomorphism S → k by mapping Hw,i to the i-th coefficient
χM,i(w(a, b)) of the characteristic polynomial χM (w(a, b)) of w(a, b) for each
pair (w, i) ∈W × Z>0.
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Then one has

χM,s(a+ b) = χM,s(a) + χM,s(b) +Qs((χM,i(w(a, b)))(w,i)∈W×Z>0
).

Moreover, Qs is homogeneous of degree s.

Remark 5.18 One can prove this theorem by induction to s. We will not
do this here. The main conclusion of Theorem 5.17 is that if k is a field, A
a k-algebra, M an A-module, a, b ∈ A and s ∈ Z>0, one has χM,s(a + b) =
χM,s(a) +χM,s(b) +Qs((χM,i(w(a, b)))(w,i)∈W×Z>0

), where Qs does not depend
on the χM,i(w(a, b)) for which the product of i and the degree of w(X,Y ) exceeds
s. Moreover, Qs does not depend on the χM,i(w(a, b)) for which w(x, y) has the
form xn or yn for some n ∈ Z≥0.

Observe that similar polynomials Ws exist such that one has ψM,s(a+ b) =
ψM,s(a) + ψM,s(b) +Ws(ψM,i(w(a, b))(w,i)∈W×Z>0

), where Ws does not depend
on the ψM,i(w(a, b)) for which the product of i and the degree of w(X,Y ) exceeds
s.

Corollary 5.19 Let B be a subset of A that generates A as a k-vector space.
Then the following are equivalent.

1 For all a ∈ A, one has χM (a) = χN (a).

2 For all b ∈ B, one has χM (b) = χN (b).

Proof The implication 1⇒ 2 is trivial. Suppose 2 holds. For any a ∈ A, one
has χM,1(a) = χN,1(a) by the linearity of the trace.

Let S ∈ Z>1 and assume inductively that one has χM,s(a) = χN,s(a) for any
s ∈ {1, 2, . . . , S − 1} and any a ∈ A. Let a ∈ A. Then one has a =

∑m
i=1 λibi

for certain m ∈ Z≥0, λi ∈ k and bi ∈ B. One has χM,S(λibi) = λSi χM,S(bi) =
χN,S(λibi) for each i by assumption. Thus if m = 0 or m = 1, one has χM,S(a) =
χN,S(a).

Supposem > 1. Inductively, assume one has the equality χM,S(
∑m−1
i=1 λibi) =

χN,S(
∑m−1
i=1 λibi). Write a′ =

∑m−1
i=1 λibi. Then one has χM,S(a) = χM,S(a′) +

χM,S(λmbm)+QS((χM,s(w(a′, λmbm)))(w,s)∈W×Z>0
) by Theorem 5.17. One has

χM,S(a′) = χN,S(a′) by assumption and we already showed that χM,S(λmbm)
equals χN,S(λmbm). Note that QS((χM,s(w(a′, λmbm)))(w,s)∈W×Z>0

) is polyno-
mial in the χM,s(w(a′, λmbm)) with s < S. By the induction hypothesis for S, we
have χM,s(w(a′, λmbm)) = χN,s(w(a′, λmbm)) if s < S and hence it follows that
QS((χM,s(w(a′, λmbm)))(w,s)∈W×Z>0

) = QS((χN,s(w(a′, λmbm)))(w,s)∈W×Z>0
).

Hence one finds χM,S(a) = χN,S(a).
By induction one has χM (a) = χN (a) for all a ∈ A. �

The combination of Corollary 5.11 and Corollary 5.19 proves Theorem 5.7.

Example 5.20 Let k be a field and G a group. Let A = k[G] and let M,N
be A-modules. We have that G is a k-vector space basis of A, hence one has
M ∼=JH N if and only if for each g ∈ G, one has χM (g) = χN (g).
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Equivalently to Theorem 5.7, we have the following.

Theorem 5.21 Let B be a subset of A that generates A as a k-vector space.
Then the group homomorphism φ : Gk(A)→ Λ(k)B defined by [M ] 7→ (χM (a))b∈B
is injective.

5.3 Generalizations

In this subsection, we give a few generalizations of Theorem 5.21. We still use
Notation 5.1.

5.3.1 Replacing Λ(k)B by Wp(k)B

In this subsubsection, we prove the following generalization of Theorem 5.21.
Recall that πp denotes the projection W (k)→Wp(k).

Theorem 5.22 Let p = char(k). Let B be a subset of A that generates A as
a k-vector space. Then the group homomorphism Gk(A) → Wp(k)B defined by
[M ] 7→ (πp(ψM (b)))b∈B is injective.

A proof will be provided at the end of this subsubsection.

Proposition 5.23 Let k be a field of positive characteristic p. Let A be a k-
algebra and let a ∈ A. Let j ∈ Z≥0; suppose that π{1,p,...,pj−1}(ψM (an)) = 0 for
each n ∈ Z>0. Then one has ψM (a) ∈ Vpj (W (A)).

Proof Let P denote the isomorphism W (A) → Wp(A)Z>0\pZ>0 from Theo-
rem 4.23, noting that k is a Z(p)-algebra. For any n ∈ Z>0 \ pZ>0, one has
πp(Pn(ψM (a))) = πp(ψM (an)) ∈ Vpj (Wp(A)) by assumption, using Proposi-
tion 4.15. By Proposition 4.20, one has ψM (a) ∈ Vpj (W (A)). �

Proposition 5.24 Let k be a field of positive characteristic p. Let A be a k-
algebra and let a, b ∈ A. Let Z〈X,Y 〉 be the noncommutative polynomial ring
generated by X and Y . Let j ∈ Z≥0; suppose that π{1,p,...,pj−1}(ψM (w(a, b))) = 0
for each monomial w ∈ Z〈X,Y 〉 that is not of the form Y n for some n ∈ Z≥0.
Then one has π{1,2,...,pj}(ψM (a+ b)) = π{1,2,...,pj}(ψM (a)) +π{1,2,...,pj}(ψM (b)).

Proof By assumption, for any w ∈ Z〈X,Y 〉 not of the form Y n for any
n ∈ Z≥0, one has ψM,i(w(a, b)) = 0 if i < pj using Proposition 5.23. Using
Remark 5.18, we find that this means that one has ψM,n(a + b) = ψM,n(a) +
ψM,n(b) for each n ∈ {1, 2, . . . , pj}. Hence one has π{1,2,...,pj}(ψM (a + b)) =
π{1,2,...,pj}(ψM (a)) + π{1,2,...,pj}(ψM (b)), using Corollary 3.14. �

Remark 5.25 The proposition above can be made more general. One can
replace the set {1, 2, . . . , pj} by the set S = (Z>0 \pjZ>0)

⋃
{pj}. This is simply

because for any s ∈ S with s 6= pj , the s-th coefficient of ψM (w(a, b)) equals
0 for any monomial w ∈ Z〈X,Y 〉 not of the form Y n for some n ∈ Z≥0. It
seems this S is the largest possible, since if n ∈ Z>1, the pjn-th coefficient of
ψM (a+b) may have extra terms arising from the Vi+2(ψM (fi(a, b)ab)) for which
i+ 2 divides n from Remark 5.16.
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Theorem 5.26 Suppose k is a field of characteristic p > 0. Let I be a subset
of A that is closed under left and right multiplication by elements of A, meaning
that if a ∈ A and i ∈ I, one has ai ∈ I and ia ∈ I. Let j ∈ Z≥0 and suppose
that π{1,p,...,pj−1}(ψM (b)) = 0 for each b ∈ I. Then one has the following.

1 For all b ∈ I, one has ψM (b) ∈ Vpj (W (A)).

2 For all a ∈ A, b ∈ I, one has π{1,2,...,pj}(ψM (a + b)) = π{1,2,...,pj}(ψM (a)) +
π{1,2,...,pj}(ψM (b)).

This theorem follows directly from Proposition 5.23 and Proposition 5.24.

Remark 5.27 If I, j and k are as in the theorem, then for all a, b ∈ I and
i ∈ {0, 1, . . . , j − 1}, one has ψM,pi(a + b) = 0. The subgroup I ′ spanned by I
is a two-sided ideal satisfying π{1,p,...,pj−1}(ψM (b)) = 0 for all b ∈ I ′.

Corollary 5.28 Suppose k has positive characteristic p. Let B be a subset of
A that generates A as a k-vector space.

1 Let j ∈ Z≥0 and suppose ψM,pi(b) = 0 for all b ∈ B and i ∈ {0, 1, . . . , j − 1}.
Then for all a ∈ A, one has ψM (a) ∈ Vpj (W (A)).

2 Suppose dimk(M) is bounded above by n ∈ Z>0 and assume that ψM,pi(b) = 0
for any b ∈ B and i ∈ {0, 1, . . . , blogp(n)c}. Then M is the 0-module.

Proof The first part follows from Remark 5.27 and Theorem 5.26.
For the second part, let j = blogp(n)c. Note that from Theorem 5.26, it

follows ψM (1) ∈ Vpj+1(W (A)). On the other hand, if M is not the 0-module,
there are u ∈ {1, 2, . . . , p− 1} and i ∈ {0, 1, . . . , j} such that n = piu. Then one
has ψM (1) = piu, which has pi-th component equal to u 6= 0, a contradiction.�

In essence, there is no real difference between knowing the coefficients of
χM (a) ∈ Λ(k) and the components of the associated Witt vector ψM (a) ∈W (k)
of an element of A. The following propositions and theorems will make this a bit
more explicit. In particular, they give analogues to Theorem 5.26, Remark 5.27
and Corollary 5.28.

Proposition 5.29 Let k be a field of positive characteristic p, let I be a subset
of A that is closed under left and right multiplication by elements of A and let
j ∈ Z>0. The following are equivalent.

1 For all a ∈ I and i ∈ {0, 1, . . . , j − 1}, one has ψM,pi(a) = 0.

2 For all a ∈ I and s ∈ Z>0 with pj - s, one has ψM,s(a) = 0.

3 For all a ∈ I and i ∈ {0, 1, . . . , j − 1}, one has χM,pi(a) = 0.

4 For all a ∈ I and s ∈ Z>0 with pj - s, one has χM,s(a) = 0.

5 For S = {1, p, p2, . . . , pj−1}, the map I → WS(k) defined by a 7→ πS(ψM (a))
is the zero map.
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6 For S = Z>0 \ pjZ>0, the map I → WS(k) defined by a 7→ πS(ψM (a)) is the
zero map.

Proof The implications 2 ⇒ 1 and 4 ⇒ 3 are trivial; the implication 1 ⇒ 2
is part 1 of Theorem 5.26. The equivalence of 2, 4 and 6 is trivial, and so is
the equivalence of 1 and 5.

Let S = {1, 2, . . . , pj −1}, let a ∈ I. We apply induction to i ∈ {0, 1, . . . , j−
1}. For i = 0, one has ψM,p0(a) = χM,p0(a) = 0 for all a ∈ I. Let i ∈
{1, 2, . . . , j − 1} and assume one has ψM,pl(a) = 0 for all l ∈ {0, 1, . . . , i − 1}
and a ∈ I. Then by Theorem 5.26, one has ψM,s(a) = 0 for all s < pi, and
consequently χM,s(a) = 0 for all s < pi and a ∈ I since one has χM,s(a) =
ψM,s(a) provided one has ψM,s′(a) = 0 for all s′ < s. It immediately follows
ψM,pi(a) = χM,pi(a) = 0 for all a ∈ I. By induction, we find ψM,pi(a) = 0 for
all a ∈ I and i ∈ {0, 1, . . . , j − 1}. This shows the implication 3⇒ 1. �

Theorem 5.30 Suppose k is a field of characteristic p > 0. Let I be a subset of
A that is closed under left and right multiplication by elements of A. Let j ∈ Z≥0

and suppose that χM,pi(a) = 0 for all a ∈ I and all i ∈ {0, 1, . . . , j − 1}. Then
for all a ∈ I, one has χM,pj (a) = ψM,pj (a) and for all a ∈ I, b ∈ A and s ∈
{1, 2, . . . , pj}, one has χM,s(a+b) = χM,s(a)+χM,s(b). For s ∈ {1, 2, . . . , pj−1}
and a ∈ I, b ∈ A, one has χM,s(a+ b) = χM,s(b).

Proof Let S = {1, 2, . . . , pj}, let a ∈ I and b ∈ A. By Proposition 5.29, one has

χs(a) = 0 for all a ∈ I and s ∈ S \{pj}. In particular, χM (a) ≡ 1+χM,pj (a)T p
j

mod T p
j+1, showing immediately that χM,pj (a) = ψM,pj (a).

Moreover, if S = {1, 2, . . . , pj}, the equivalence πS(ψM (a+b)) = πS(ψM (a))+
πS(χM (b)) from Theorem 5.26 tells us that χM (a + b) = χM (a) · χM (b) mod

T p
j+1. We immediately conclude that χM,s(a + b) = χM,s(a) + χM,s(b) for all

s ∈ S; moreover, one has χM,s(a+ b) = χM,s(b) if s ∈ S, s 6= pj . �

Remark 5.31 If I, j and k are as in Theorem 5.30, then for all a, b ∈ I, and
i ∈ {0, 1, . . . , j−1}, one has χM,pi(a+b) = 0. The subgroup I ′ spanned by I is a
two-sided ideal satisfying χM,pi(a) = 0 for all a ∈ I ′ and all i ∈ {0, 1, . . . , j−1}.

Corollary 5.32 Suppose k has characteristic p > 0. Let B be a subset of A
that generates A as a k-vector space.

1 Let j ∈ Z≥0 and suppose χM,pi(b) = 0 for all b ∈ B and i ∈ {0, 1, . . . , j}.
Then one has χM,s(a) = 0 for all a ∈ A and s ∈ Z>0 \ pj+1Z>0.

2 Suppose dimk(M) is bounded above by n ∈ Z>0 and assume that χM,pj (b) = 0
for any b ∈ B and j ∈ {0, 1, . . . , blogp(n)c}. Then M is the 0-module.

Proof This follows directly from Corollary 5.28 and Proposition 5.29. �

Lemma 5.33 Suppose k has characteristic p > 0 and let B be a subset of A
that generates A as a k-vector space. Let M ′ be an A-submodule of M and
let M ′′ = M/M ′. Let j ∈ Z≥0 and suppose either ψM ′,pi(b) = 0 for any
i ∈ {0, 1, . . . , j−1}, b ∈ B, or ψM ′′,pi(b) = 0 for any i ∈ {0, 1, . . . , j−1}, b ∈ B.

Then one has ψM,pj (a) = ψM ′,pj (a) + ψM ′′,pj (a) for any a ∈ A.
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Proof Let S = {1, p, p2, . . . , pj}, let a ∈ A. By Corollary 5.28, one has
ψM ′(a)S = (0, 0, . . . , 0, ψM ′,pj (a)) or ψM ′′(a)S = (0, 0, . . . , 0, ψM ′′,pj (a)), hence
by Corollary 3.14, we have ψM,pj (a) = ψM (a)pj = (ψM ′(a) + ψM ′′(a))pj =
ψM ′(a)pj + ψM ′′(a)pj . �

Proposition 5.34 Assume k has positive characteristic p and let B be a subset
of A that generates A as a k-vector space. Let M and N be A-modules, finite-
dimensional over k with dimensions bounded above by n ∈ Z>0. Then the
following are equivalent.

1 For all a ∈ A, one has ψM (a) = ψN (a)

2 For all a ∈ A, s ∈ Z>0, one has ψM,s(a) = ψN,s(a).

3 For all a ∈ A, j ∈ Z≥0, one has ψM,pj (a) = ψN,pj (a).

4 For all b ∈ B, j ∈ {0, 1, . . . , blogp(n)c}, one has ψM,pj (b) = ψN,pj (b).

Proof The equivalence of 1 and 2 is trivial, and the implications 2 ⇒ 3 and
3⇒ 4 are trivial as well.

Assume that 4 holds. Let J = blogp(n)c + 1 and consider the module P =

MpJ−1
⊕
N . Let S = {1, 2, . . . , pJ − 1}. Observe that one has ψP (a)S =

(pJ − 1) · ψM (a)S + ψN (a)S = −ψM (a)S + ψN (a)S for all a ∈ A since pJ

annihilates WS(A).
Note that for any b ∈ B, one has π{1,p,...,pJ−1}(ψM (b)) = π{1,p,...,pJ−1}(ψN (b))

by assumption. This means ψP,pj (b) = 0 for all b ∈ B and j ∈ {0, 1, . . . , J − 1}.
Then by Corollary 5.28, one has ψP (a) ∈ VpJ (W (k)) for all a ∈ A and hence
one has ψP (a)S = 0 for all a ∈ A.

By these observations, we find that for all a ∈ A, one has −ψM (a)S +
ψN (a)S = ψP (a)S = 0. Therefore, for any a ∈ A, one has ψM (a)S = ψN (a)S .
Since one has pJ > n ≥ max{dimkM,dimkN}, it follows that ψM (a) and ψN (a)
are equal for all a ∈ A (using that they are both inverses of polynomials of degree
at most n via the isomorphism W (k) → Λ(k)). This shows the implication
4⇒ 1. �

Proposition 5.35 Suppose k has characteristic p > 0 and let B be a subset of
A that generates A as a k-vector space. Let M and N be semisimple A-modules
that are finite-dimensional over k, with dimensions bounded above by n ∈ Z>0.
Then the following are equivalent.

1 One has M and N are isomorphic as A-modules.

2 For all a ∈ A, one has ψM (a) = ψN (a).

3 For all b ∈ B, j ∈ {0, 1, . . . ,max{blogp(n)c}}, one has ψM,pj (b) = ψN,pj (b).

Proof The equivalence of 2 and 3 is Proposition 5.34. The equivalence of 1
and 2 follows immediately from Theorem 5.10. �
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Theorem 5.36 Suppose k has characteristic p > 0 and let B be a subset of
A that generates A as a k-vector space. Let M and N be A-modules that are
finite-dimensional over k, with dimensions bounded above by n ∈ Z>0. Then the
following are equivalent.

1 One has M and N are Jordan-Hölder isomorphic as A-modules.

2 For all a ∈ A, one has ψM (a) = ψN (a).

3 One has ψM,pi(b) = ψN,pi(b) for all b ∈ B, i ∈ {0, 1, . . . , blogp(n)c}.

4 For j = blogp(n)c and S = {1, p, p2, . . . , pj}, the map B → WS(k) given by
b 7→ πS(ψM (b))− πS(ψN (b)) is identically zero.

Proof The equivalence of 1 and 2 follows immediately from Corollary 5.11.
The equivalence of 3 and 4 is trivial, and the equivalence of 2 and 3 is Propo-
sition 5.35. �

Corollary 5.37 Suppose k has characteristic p > 0. Let B be a subset of
A that generates A as a k-vector space. Recall that πp denotes the projection
W (k) → Wp(k). Then the group homomorphism Gk(A) → Wp(k)B defined by
[M ] 7→ (πp(ψM (b)))b∈B is injective.

Note that the above corollary is Theorem 5.22 for positive characteristic.
Many of the techniques used in the section above will fail for fields of char-

acteristic 0. We will use alternate methods to show that we may still replace
Λ(k) by Wp(k) if p = char(k) = 0.

Lemma 5.38 Suppose A is semisimple and char(k) = 0. Let n ∈ Z>0. Sup-
pose S1, . . . , Sn are pairwise non-isomorphic simple A-modules that are finite-
dimensional over k. Then there are a1, . . . , an ∈ A such that for all i ∈
{1, 2, . . . , n}, one has TrSi(ai) 6= 0 and such that for any i, j ∈ {1, 2, . . . , n}
with i 6= j, one has TrSj

(ai) = 0.

Proof For each i ∈ {1, 2, . . . , n} let si ∈ Si \ {0}. By Lemma 5.9, for each i ∈
{1, 2, . . . , n}, there is bi ∈ A such that bisi = si and biSj = 0 if j ∈ {1, 2, . . . , n}
with i 6= j.

Clearly, for each i ∈ {1, 2, . . . , n}, the action of bi on Si has eigenvalue 1. By
Lemma 5.8, one has ψSi

(bi) 6= 0. Since A is a Q-algebra, this means that there
is ni ∈ Z>0 such that the ni-th ghost component of ψSi

(bi) is non-zero using
Corollary 4.18. By Corollary 4.16, this means TrSi

(bni
i ) 6= 0.

Define ai = bni
i . As biSj = 0 if j 6= i, one has aiSj = 0 if j 6= i and hence

TrSj
(ai) = 0 if j 6= i. �

Proposition 5.39 Suppose char(k) = 0. Let n ∈ Z>0. Suppose S1, . . . , Sn
are pairwise non-isomorphic simple A-modules that are finite-dimensional over
k. Then there are a1, . . . , an ∈ A such that for all i ∈ {1, 2, . . . , n}, one has
TrSi

(ai) 6= 0 and such that for any i, j ∈ {1, 2, . . . , n} with i 6= j, one has
TrSj

(ai) = 0.
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Proof Let I = AnnA(
⊕n

i=1 Si). By Lemma 2.11, A/I is semisimple. More-
over, one easily sees that S1, . . . , Sn are pairwise non-isomorphic simple A/I-
modules. By Lemma 5.38, there are a1 + I, . . . , an + I ∈ A/I such that for all
i ∈ {1, 2, . . . , n}, one has TrSi

(ai+I) 6= 0 and such that for all i, j ∈ {1, 2, . . . , n}
with j 6= i, one has TrSi

(aj + I) = 0. It easily follows that TrSi
(ai) 6= 0 for all

i ∈ {1, 2, . . . , n} and TrSi(aj) = 0 for all i, j ∈ {1, 2, . . . , n} with j 6= i. �

With this, we can prove Theorem 5.22 in characteristic 0.

Theorem 5.40 Suppose k has characteristic 0 and let B be a subset of A
that generates A as a k-vector space. Let M , N be A-modules that are finite-
dimensional over k. Then the following are equivalent.

1 One has M and N are Jordan-Hölder isomorphic as A-modules.

2 For all a ∈ A, one has ψM,1(a) = ψN,1(a).

3 For all b ∈ B, one has ψM,1(b) = ψN,1(b).

4 For all b ∈ B, one has TrM (b) = TrN (b).

Proof The equivalence of 3 and 4 is trivial since ψM,1(a) = TrM (a) for any
a ∈ A. The equivalence of 2 and 3 follows from the linearity of the trace.
The implication 1 ⇒ 2 is trivial. Suppose 2 holds. As we may replace M
and N by their semisimplifications, we may assume M and N are semisimple
without loss of generality. This means there are pairwise non-isomorphic simple
k-modules S1, . . . , Sn and non-negative integers d1, . . . , dn, e1, . . . , en such that
M =

⊕n
i=1 S

di
i and N =

⊕n
i=1 S

ei
i .

By Lemma 5.38, there are a1, . . . , an ∈ A satisfying TrSi
(aj) = 0 if i 6= j

and TrSi
(ai) 6= 0. Then for i ∈ {1, 2, . . . , n}, one has di TrSi

(ai) = TrM (ai) =
ψM,1(ai) = ψN,1(ai) = TrN (ai) = ei TrSi(ai). Since TrSi(ai) 6= 0, it follows that
di = ei for each i ∈ {1, 2, . . . , n} and hence one has M ∼= N . �

Remark 5.41 The equivalence of 1 and 4 in the above theorem is already
known. For example, Corollary 3.8 in chapter XVII of [5], together with the
linearity of the trace, directly implies this result. An early version of this result
for group algebras can be found in [9].

Corollary 5.42 Suppose k has characteristic 0. Let B be a subset of A that
generates A as a k-vector space. Then the group homomorphism Gk(A) →
W0(k)B defined by [M ] 7→ (ψM,1(b))b∈B is injective.

Theorem 5.22 follows immediately from Corollary 5.37 and Corollary 5.42.

5.3.2 Replacing Gk(A) by Gk(A)
⊗

ZWp(k).

In this subsubsection, we will prove the following theorem.
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Theorem 5.43 Let p = char(k). Let B be a subset of A that generates A as a
k-vector space. Let φ : Gk(A) → Wp(k)B be the group homomorphism defined
by [M ] 7→ (πp(ψM (b)))b∈B. Then the Wp(k)-linear map θ : Gk(A)

⊗
ZWp(k)→

Wp(k)B defined by x⊗ w 7→ wφ(x) is injective.

Again, we have distinct proofs in characteristic 0 and p > 0.

Lemma 5.44 Suppose char(k) = 0. Let n ∈ Z>0. Suppose S1, . . . , Sn are
pairwise non-isomorphic simple A-modules that are finite-dimensional over k.
Let B be a subset of A that generates A as a k-vector space.

Then there are b1, . . . , bn ∈ B such that the n-tuples (TrSi
(b1), . . . ,TrSi

(bn))
for i ∈ {1, 2, . . . , n} are k-linearly independent.

Proof By Proposition 5.39, there are a1, . . . , an ∈ A such that for any i, j ∈
{1, 2, . . . , n} with i 6= j, one has TrSi(aj) = 0 and TrSi(ai) 6= 0. In particular,
the n-tuples (TrS1

(ai), . . . ,TrSn
(ai)) for i ∈ {1, 2, . . . , n} are k-linearly indepen-

dent. As these n-tuples lie in the k-span of the n-tuples (TrS1
(b), . . . ,TrSn

(b))
for b ∈ B, there are b1, . . . , bn ∈ B such that the n-tuples (TrS1

(bi), . . . ,TrSn
(bi))

are k-linearly independent. Then the n-tuples (TrSi(b1), . . . ,TrSi(bn)) for i ∈
{1, 2, . . . , n} must be k-linearly independent as well. �

Theorem 5.45 Suppose k has characteristic 0. Let B be a subset of A that
generates A as a k-vector space. Let φ : Gk(A) → W0(k)B be the group
homomorphism defined by [M ] 7→ (TrM (b))b∈B. Then the W0(k)-linear map
θ : Gk(A)

⊗
ZW0(k)→W0(k)B defined by x⊗ λ 7→ λφ(x) is injective.

Proof Note that θ is well-defined. Let x ∈ Gk(A)
⊗

ZW0(k) and suppose
θ(x) = 0. Then x has the form

∑m
i=1[Mi] ⊗ λi for certain Mi ∈ Mk(A) and

λi ∈ k. Then there are simple pairwise non-isomorphic A-modules S1, . . . , Sn,
finite-dimensional over k, and non-negative integers di,j for i ∈ {1, 2, . . . ,m},
j ∈ {1, 2, . . . , n} such that [Mi] =

∑n
j=1 di,j [Sj ]. It follows easily that there are

µ1, . . . , µn ∈ k such that x =
∑n
i=1[Si]⊗ µi.

By Lemma 5.44, there are elements b1, . . . , bn ∈ B such that the n-tuples
(TrSi

(b1), . . . ,TrSi
(bn)) are k-linearly independent. This means that one has∑n

i=1 µi(TrSi
(b1), . . . ,TrSi

(bn)) 6= 0 unless µ1 = µ2 = . . . = µn = 0. Since
θ(x) = 0, one has

∑n
i=1 µi TrSi(bj) = 0 for each j, hence it follows that µ1 =

µ2 = . . . = µn = 0 and therefore x = 0. �

In positive characteristic, we have to work a bit harder for a similar result.

Lemma 5.46 Suppose k is perfect of positive characteristic p. Then Wp(k) is
a domain.

Proof Let w, v ∈Wp(k), both not equal to 0. Suppose n,m ∈ Z≥0 are minimal
such that wpn 6= 0 and vpm 6= 0. Then there are w′, v′ ∈ Wp(k) such that

w = pnw′, v = pmv′. Namely, define w′pi = w
1/pn

pn+i and v′pi = v
1/pm

pm+i . By

Lemma 3.20, one has pnw′ = w and pmv′ = v. Note that (w′)1 6= 0 and
(v′)1 6= 0. Then (w′·v′)1 6= 0, hence w′·v′ 6= 0. Now w·v 6= 0 as w·v = pn+mw′·v′

and hence (w · v)pn+m = ((w′ · v′)1)p
n+m 6= 0. �
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Proposition 5.47 Suppose k has positive characteristic p. Then Wp(k) is a
domain.

Proof We can embed Wp(k) in Wp(k̄). Since the algebraic closure k̄ of k is
perfect, it follows by Lemma 5.46 that Wp(k) can be embedded in a domain.
Hence Wp(k) is a domain. �

Lemma 5.48 Suppose k has positive characteristic p and suppose k is alge-
braically closed. Suppose S1, . . . , St are pairwise non-isomorphic simple A-
modules. Then there are a1, . . . , at ∈ A such that for all i ∈ {1, 2, . . . , t}, one
has TrSi

(ai) 6= 0 and such that for all i, j ∈ {1, 2, . . . , t}, one has TrSi
(aj) = 0

if i 6= j.

Proof Let I = AnnA(
⊕t

i=1 Si). Then A/I is finite-dimensional over k and
semisimple by Lemma 2.11. Moreover, S1, . . . , St are pairwise non-isomorphic
simple A/I-modules. By Lemma 2.22, one has A/I ∼=

∏u
i=1M(ni, k) for certain

u ∈ Z≥0 and n1, . . . , nu ∈ Z>0. Moreover, each Si is isomorphic to some
unique knj with trivial action by M(nl, k) if l 6= j and with standard matrix
multiplication by M(nj , k). By permuting the coordinates if necessary, we may
assume without loss of generality that Si ∼= kni with trivial action by M(nj , k)
if j 6= i and with standard matrix multiplication by M(ni, k). The element
ai + I ∈ M(ni, k) ⊆ A/I satisfying (ai + I)1,1 = 1 and (ai + I)j,k = 0 if
(j, k) 6= (1, 1) satisfies (ai + I)Sj = 0 if i 6= j and TrSi

(ai + I) = 1 6= 0. It
immediately follows that a1, . . . , at ∈ A satisfy the required properties. �

Corollary 5.49 Suppose k has positive characteristic p and suppose k is alge-
braically closed. Let B be a subset of A that generates A as a k-vector space.
Suppose S1, . . . , Sn are pairwise non-isomorphic simple A-modules.

Then there are b1, . . . , bn ∈ B such that the n-tuples (TrSi
(b1), . . . ,TrSi

(bn))
for i ∈ {1, 2, . . . , n} are k-linearly independent.

Proof The proof is analogous to the proof of Lemma 5.44, using Lemma 5.48
instead of Proposition 5.39 where necessary. �

Proposition 5.50 Suppose k has positive characteristic p and suppose k is
algebraically closed. Let B be a subset of A that generates A as a k-vector space.
Recall that πp is the projection W (k)→Wp(k). Let φ : Gk(A)→Wp(k)B be the
group homomorphism defined by [M ] 7→ (πp(ψM (b)))b∈B. Then the Wp(k)-linear
map θ : Gk(A)

⊗
ZWp(k)→Wp(k)B defined by x⊗ w 7→ wφ(x) is injective.

Proof Note that θ is well-defined. Let x ∈ Gk(A)
⊗

ZWp(k) and assume
θ(x) = 0. We may write x =

∑n
i=1[Si]⊗wi for certain pairwise non-isomorphic

A-modules S1, . . . , Sn and elements w1, . . . , wn ∈Wp(k).
By Corollary 5.49, there are elements b1, . . . , bn ∈ B such that the n-tuples

(TrSi(b1), . . . ,TrSi(bn)) for i ∈ {1, 2, . . . , n} are k-linearly independent.
Consider the following commutative diagram.
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Gk(A)
⊗

ZWp(k) Wp(k)B

kB

θ

τ
Π0

Here Π0 is the projection Wp(k)B → kB defined by the componentwise
projection π0 : Wp(k)→W0(k) = k. Note that the map τ sends a simple tensor
[M ] ⊗ w to (TrM (b)π0(w))b∈B since TrM (b) is the first coefficient of ψM (b) for
each b ∈ B.

Suppose w1, . . . , wn are not all 0. Then there is some minimal l ∈ Z≥0 such
that there is i ∈ {1, 2, . . . , n} for which the pl-th coefficient of wi is non-zero,
say i = 1 without loss of generality. As k is algebraically closed and hence
perfect, it follows that there are w′1, . . . , w

′
n ∈ Wp(k) such that wi = plw′i for

each i ∈ {1, 2, . . . , n}. In particular, one has π0(w′1) = ((w1)pl)
1/pl 6= 0. Let

x′ =
∑n
i=1[Si]⊗ w′i.

We now find x = plx′. As θ(x) = 0, it follows that plθ(x′) = 0 and hence
θ(x′) = 0 since Wp(k) is torsion-free as an abelian group. As the n-tuples
(TrSi

(b1), . . . ,TrSi
(bn)) are k-linearly independent, this can only be the case if

π0(w′i) = 0 for each i ∈ {1, 2, . . . , n}, contradicting π0(w′1) 6= 0. Hence one has
wi = 0 for each i ∈ {1, 2, . . . , n} and hence x is equal to 0. �

Theorem 5.51 Suppose k has positive characteristic p. Let B be a subset of
A that generates A as a k-vector space. Let φ : Gk(A) → Wp(k)B be the group
homomorphism defined by [M ] 7→ (πp(ψM (b)))b∈B. Then the Wp(k)-linear map
θ : Gk(A)

⊗
ZWp(k)→Wp(k)B defined by x⊗ w 7→ wφ(x) is injective.

Proof Let i denote the natural inclusion Wp(k) → Wp(k̄) and let ι denote
the map Gk(A) → Gk̄(Ak̄) defined by [M ] 7→ [Mk̄]. Note that the latter is
well-defined and injective by Corollary 5.13.

As both Wp(k̄) and Gk(A) are torsion-free, they are both flat by Lemma 2.26.
Hence the maps Id⊗i : Gk(A)

⊗
ZWp(k) → Gk(A)

⊗
ZWp(k̄) and ι ⊗ Id :

Gk(A)
⊗

ZWp(k̄) → Gk̄(Ak̄)
⊗

ZWp(k̄) are injective and thus the map ι ⊗ i =
(ι⊗ Id) ◦ (Id⊗i) is injective.

The following diagram is commutative.

Gk(A)
⊗

ZWp(k) Wp(k)B

Gk̄(Ak̄)
⊗

ZWp(k̄) Wp(k̄)B

θ

ι⊗ i

θ̄

iB

Here iB is the componentwise inclusion and θ̄ is the injective group homo-
morphism from Proposition 5.50. It follows that θ is injective as well. �

Together, Theorem 5.45 and Theorem 5.51 prove Theorem 5.43. The fol-
lowing example will show that it is possible that surjectivity of the map θ in
Theorem 5.43 may occur.
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Example 5.52 Let k be any field and assume A = k. Clearly, the set B = {1}
generates A as a k-vector space. Then one has Gk(A)

⊗
ZWp(k) ∼= Wp(k), as

Gk(A) ∼= Z. Hence the map θ : Gk(A)
⊗

ZWp(k) → Wp(k)B , defined as in the
previous theorem, is an isomorphism.

Example 5.53 Surjectivity is not guaranteed. For example, let k be any field
and take A = k[X]/(X2). It only has one simple module, namely k[X]/(X), so
Gk(A)

⊗
ZWp(k) ∼= Wp(k) which cannot map surjectively to Wp(k)B for any

subset B of A that generates A as a k-vector space since dimk(A) = 2.

Note that the proof of Theorem 5.51 and Theorem 5.45 suggests that the
cardinality of a set B ⊆ A such that the conclusion of Theorem 5.43 is satisfied
can be bounded above by the cardinality of the set of isomorphism classes of
simple A-modules that are finite-dimensional over k. If there are only finitely
many pairwise non-isomorphic simple A-modules S1, . . . , Sn that are finite-
dimensional over k, one has Gk(A)

⊗
ZWp(k) ∼=

⊕n
i=1Wp(k)[Si]. Moreover,

the number n is bounded above by dimk(A). If k is algebraically closed or if k
has characteristic 0, one may take B = {a1, . . . , an} where a1, . . . , an satisfy the
conditions of Lemma 5.48 or Proposition 5.39 depending on whether k is alge-
braically closed or has characteristic 0. In this case, the set B = {a1, . . . , an}
does not necessarily generate A as a k-vector space. I do not know whether a
similar result holds if k is neither algebraically closed nor has characteristic 0.
Likewise, I do not know whether a similar result holds if A has infinitely many
pairwise non-isomorphic simple modules.

In general, if S is the set of isomorphism classes of simple A-modules, one
has Gk(A)

⊗
ZWp(k) ∼=

⊕
S∈SWp(k)[S], which embeds into Wp(k)B by Theo-

rem 5.43. Since Wp(k)B is a product of copies of Wp(k) and not a direct sum, the
cardinality of B may be strictly smaller than the cardinality of S. For example,
take A = k[X] with A an uncountable field. Then the set B = {1, X,X2, . . .}
is countable, while there are uncountably many pairwise non-isomorphic sim-
ple A-modules (for example, for each λ, µ ∈ k, the modules k[X]/(X − λ) and
k[X]/(X − µ) are simple and non-isomorphic).

Conversely, the cardinality of a set B such that the conclusion of Theo-
rem 5.43 is satisfied should be at least equal to the minimum of the cardinality
of N and the cardinality of the set of isomorphism classes of simple A-modules
that are finite-dimensional over k.

5.3.3 The injection Gk(A)
⊗

ZW (k) ↪→W (k)B

As might be expected from the title of this subsubsection, we are going to prove
the following theorem.

Theorem 5.54 Let k be a field, let A be a k-algebra and let B be a subset of
A that generates A as a k-vector space. Let φ : Gk(A) → W (k)B be the group
homomorphism defined by [M ] 7→ (ψM (b))b∈B.

Then the W (k)-linear map ϑ : Gk(A)
⊗

ZW (k)→W (k)B defined by x⊗w 7→
wφ(x) is injective.
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Lemma 5.55 Let k be a field of characteristic p > 0. Let w = (w1, wp, wp2 , . . .)
be an element of Wp(k) and assume w1 6= 0. Then w is invertible.

Proof Let n,m ∈ Z>0; assume n ≥ m without loss of generality. Let α, β ∈ k.

Then one has Vpn({α})Vpm({β}) = pmVpn({αβpn−m}) = Vpn+m({αpmβpn}).
Hence for any v, u ∈Wp(k), one has Vpn(v) · Vpm(u) ∈ Vpn+m(Wp(k)).

Write v = 1 − w{w−1
1 }. Then the first component of v is equal to 0, hence

v ∈ Vp(Wp(k)) (noting that Vp is well-defined on Wp(k)). Then one has vl ∈
Vpl(Wp(k)) for each l ∈ Z>0 and hence

∑∞
i=0 v

i exists in Wp(k).

One has w{w−1
1 } ·

∑l
i=0 v

i = (1− v)
∑l
i=0 v

i = 1− vl+1 and hence one finds
w{w−1

1 }
∑∞
i=0 v

i = 1 by continuity of multiplication. Hence w is invertible. �

Proposition 5.56 Let k be a perfect field. Let p = char(k). Then Wp(k) is a
principal ideal domain, and each non-zero ideal of Wp(k) has the form pnWp(k)
for some n ∈ Z≥0.

Proof If p = 0, this is trivial; the only ideals are 0 and W0(k) = k. Assume
p > 0. Let I ⊆Wp(k) be a non-zero ideal. Then there is some minimal n ∈ Z>0

such that there is w = (w1, wp, . . .) ∈ I that satisfies wpn 6= 0. As k is perfect,
one has w = pnv for some v = (v1, vp, . . .) ∈Wp(k) with v1 6= 0. By Lemma 5.55,
v is invertible and hence pn ∈ I. Hence pnWp(k) ⊆ I. Let u = (u1, up, . . .) ∈ I.
Then by the minimality condition on n, one has u1 = up = . . . = upn−1 = 0.
Hence one has u ∈ pnWp(k) since k is perfect. Hence one has I = pnWp(k). �

Proposition 5.57 Let k be a perfect field, let A be a k-algebra and let B
be a subset of A that generates A as a k-vector space. Let p = char(k).
Let θ : Gk(A)

⊗
ZWp(k) → Wp(k)B be the injective Wp(k)-linear map from

Theorem 5.43. Then the map θ ⊗ Id : (Gk(A)
⊗

ZWp(k))
⊗

Wp(k)W (k) →
Wp(k)B

⊗
Wp(k)W (k) is well-defined and injective.

Proof Note that W (k) is a Wp(k)-module by Remark 4.24, so θ ⊗ Id is well-
defined. Since W (k) ∼= Wp(k)Z>0\pZ>0 as a Wp(k)-module, it is torsion-free as
a Wp(k)-module as well.

By Proposition 5.56, Wp(k) is a principal ideal domain. By Lemma 2.26, it
follows W (k) is flat and therefore, θ ⊗ Id is injective. �

Lemma 5.58 Let k be a field of characteristic p and let A be a k-algebra. The
map γ : Gk(A)

⊗
ZW (k) → (Gk(A)

⊗
ZWp(k))

⊗
Wp(k)W (k), given by [M ] ⊗

w 7→ ([M ]⊗ 1)⊗ w, is an isomorphism.

Proof One has Gk(A)
⊗

ZW (k) ∼= Gk(A)
⊗

Z(Wp(k)
⊗

Wp(k)W (k)) ∼=
(Gk(A)

⊗
ZWp(k))

⊗
Wp(k)W (k). One easily verifies that this canonical iso-

morphism is given by [M ]⊗ w 7→ ([M ]⊗ 1)⊗ w. �

Lemma 5.59 Let k be a perfect field and let A be a k-algebra. Let B be a
subset of A that generates A as a k-vector space and let p = char(k). Then the
Wp(k)-linear map ι : Wp(k)B

⊗
Wp(k)W (k)→W (k)B defined by (vb)b∈B⊗w 7→

(vbw)b∈B is injective.
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Proof Since Wp(k) is a principal ideal domain and since W (k) is torsion-free
as a Wp(k)-module, this follows directly from Proposition 2.27. �

Proposition 5.60 Let k be a perfect field and let A be a k-algebra. Let B be a
subset of A that generates A as a k-vector space. Let φ : Gk(A) → W (k)B be
the group homomorphism defined by [M ] 7→ (ψM (b))b∈B. Then the W (k)-linear
map ϑ : Gk(A)

⊗
ZW (k)→W (k)B defined by x⊗ w 7→ wφ(x) is injective.

Proof Let p = char(k) and consider the following diagram.

(Gk(A)
⊗

ZWp(k))
⊗

Wp(k)W (k) Wp(k)B
⊗

Wp(k)W (k)

Gk(A)
⊗

ZW (k) W (k)B

θ ⊗ Id

ιγ

ϑ

The maps in the diagram are those from Proposition 5.57, Lemma 5.58 and
Lemma 5.59. One easily verifies that this diagram is commutative. Injectivity
of ϑ follows immediately. �

Theorem 5.61 Let k be a field and let A be a k-algebra. Let B be a subset
of A that generates A as a k-vector space. Let φ : Gk(A) → W (k)B be the
group homomorphism defined by [M ] 7→ (ψM (b))b∈B. Then the W (k)-linear
map ϑ : Gk(A)

⊗
ZW (k)→W (k)B defined by x⊗ w 7→ wφ(x) is injective.

Proof Let k̄ be some algebraic closure of k. Let i denote the natural inclusion
W (k) → W (k̄) and let ι denote the map Gk(A) → Gk̄(Ak̄) defined by [M ] 7→
[Mk̄]. Note that the latter is well-defined and injective by Corollary 5.13.

As both W (k̄) and Gk(A) are torsion-free as Z-modules, they are both flat
by Lemma 2.26. Hence the maps Id⊗i : Gk(A)

⊗
ZW (k) → Gk(A)

⊗
ZW (k̄)

and ι ⊗ Id : Gk(A)
⊗

ZW (k̄) → Gk̄(Ak̄)
⊗

ZW (k̄) are injective and thus the
map ι⊗ i = (ι⊗ Id) ◦ (Id⊗i) is injective.

The following diagram is commutative.

Gk(A)
⊗

ZW (k) W (k)B

Gk̄(Ak̄)
⊗

ZW (k̄) W (k̄)B

ϑ

ι⊗ i

ϑ̄

iB

Here iB is the componentwise inclusion and ϑ̄ is the injective group homo-
morphism from Proposition 5.60. It follows that ϑ is injective as well. �

This proves Theorem 5.54.
Finally, note that one has an even stronger version of Theorem 5.61 since

the image of ϑ is contained in lim−→S
B , where S ranges over the finitely generated

Wp(k)-submodules of W (k). If B is infinite, lim−→S
B is not equal to W (k)B .
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5.3.4 A different way of generalization

In the previous subsection, we found a generalization of Theorem 5.21 by re-
placing Gk(A) by the larger ring Gk(A)

⊗
ZW (k). In this section, we find a

generalization of Theorem 5.21 by replacing a subset B of A that generates A
as a k-vector space by a subset C of A such that one has A =

∑
c∈C k[c] · c.

Theorem 5.62 Let k be a field and A a k-algebra. Let C be a subset of A such
that one has A =

∑
c∈C k[c] · c. Then the group homomorphism φ : Gk(A) →

W (k)C defined by [M ] 7→ (ψM (c))c∈C is injective.

Proof Let B = {cn : c ∈ C, n ∈ Z>0}. Then B generates A as a k-vector
space. Define θ : Im(φ)→W (k)B by mapping (ψM (c))c∈C to (Pn(ψM (c)))cn∈B
(recall that Pn denotes the n-th Witt power sum). Note that θ is well-defined;
if one has cn = c̃ñ, one has Pn(ψM (c)) = ψM (cn) = ψM (c̃ñ) = Pñ(ψM (c̃)) using
Proposition 4.15. It is easily seen that θ is an injective group homomorphism.
Since the group homomorphism Gk(A)→W (k)B defined by [M ] 7→ (ψM (b))b∈B
is injective by Theorem 5.21, and since this homomorphism is equal to θ ◦ φ by
Proposition 4.15, one must have that φ is injective as well. �

Unfortunately, if C is as above, the group homomorphismGk(A)
⊗

ZW (k)→
W (k)C defined by [M ]⊗w 7→ (ψM (c)w)c∈C is not in general injective and like-
wise, if p = char(k), the group homomorphism Gk(A) → Wp(k)C defined by
[M ] 7→ (πp(ψM (c)))c∈C is not in general injective.

Example 5.63 The following are counterexamples to the statements of Theo-
rem 5.22 and Theorem 5.54 with B replaced by a set C as above.

1 Let k be a field of characteristic p not equal to 2. Let A = k[X] be the
polynomial ring in X and let C = {1, X}. Clearly one has A =

∑
c∈C k[c]c.

Let M = k[X]/(X)
⊕
k[X]/(X) and let N = k[X]/(X2−1). Then M and

N are semisimple, not Jordan-Hölder isomorphic (as χM (X2) 6= χN (X2))
and satisfy (πp(ψM (1)), πp(ψM (X))) = (2, 0) = (πp(ψN (1)), πp(ψN (X))).
Hence the homomorphism Gk(A)→Wp(k)C given by [M ] 7→ (ψM (c))c∈C
is not injective.

2 Let k be a field of characteristic p not equal to 2. Let A = k[X]/(X2 − 1).
Let C = {X}. Since one has X2 = 1, the set {X,X2} generates A as
a k-module and hence one has

∑
c∈C k[c]c = A. Let M = k[X]/(X − 1)

and let N = k[X]/(X + 1). Then M and N are simple non-isomorphic
A-modules. Let w be the Witt vector associated to (1+T )−1 ∈ Λ(k). The
elements [M ]⊗1 and [N ]⊗w in Gk(A)

⊗
ZW (k) are distinct, and one has

ψM (X)·1 = 1 = ψN (X)·w. Hence the homomorphism Gk(A)
⊗

ZW (k)→
W (k)C given by [M ]⊗ v 7→ v · (ψM (c))c∈C is not injective.

3 Let k be any field and let A = k[X]. The set C = {1, X} satisfies A =∑
c∈C k[c]c. In this case, there is no subset C ′ of A of cardinality at most

1 such that the group homomorphism φ : Gk(A)→ W (k)C
′

defined as in
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Theorem 5.62 is injective. Suppose namely that such C ′ exists. Clearly
one has C ′ 6= ∅, so C ′ contains one element, say f ∈ k[X]. If f is constant,
one has ψM (f) = dimk(M) · {f} for each A-module M that is finite-
dimensional over k. The modules M = k[X]/(X) and N = k[X]/(X +
1) are both one-dimensional and are not Jordan-Hölder isomorphic, and
one has ψM (f) = ψN (f), contradicting injectivity. If f is not constant,
consider the modules M = k[X]/(f) and N = 0. Clearly, the modules
M and N are not Jordan-Hölder isomorphic. On the other hand, one has
ψM (f) = 0 = ψN (f), contradicting the assumption of injectivity again.
So the minimal cardinality of a set C ′ such that group homomorphism
φ : Gk(A)→W (k)C

′
defined as in Theorem 5.62 is injective is 2. So C is

minimal in a way.
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