
A H2 well-posedness result for second order quasilinear parabolic PDE’s
on the real line with an application to a generalisation of the Gray-Scott
model
Siero, E.P.J.A.

Citation
Siero, E. P. J. A. (2011). A H2 well-posedness result for second order quasilinear parabolic
PDE’s on the real line with an application to a generalisation of the Gray-Scott model.
 
Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in the
Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3597381
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3597381


E.P.J.A. Siero

A H2 well-posedness result for second

order quasilinear parabolic PDE’s on

the real line with an application to a

generalisation of the Gray-Scott model

Master thesis

September 2011

Thesis advisors:
Dr. J.D.M. Rademacher
Prof. Dr. A. Doelman

Mathematisch Instituut
Universiteit Leiden





Contents

Introduction 1

1 Existence result for semilinear and quasilinear second order
PDE’s on the real line 5
1.1 Autonomous semilinear case . . . . . . . . . . . . . . . . . . . . . 5
1.2 Non-autonomous semilinear case . . . . . . . . . . . . . . . . . . 10
1.3 Quasilinear case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Some remarks on the assumptions made . . . . . . . . . . 15

2 Generalised Klausmeier Gray-Scott equations 19
2.1 Comparison of homogeneous steady states of Gray-Scott with

Klausmeier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.1 Local bifurcation analysis for Homogeneous Klausmeier . 19
2.1.2 Local bifurcation analysis for Homogeneous Gray-Scott . 22
2.1.3 Transformation of Homogeneous Klausmeier into Homo-

geneous Gray-Scott . . . . . . . . . . . . . . . . . . . . . . 24
2.2 A more general system of equations: GKGS . . . . . . . . . . . . 26
2.3 Bound below of the u-component of periodic solutions of GKGS 27
2.4 Solutions of GKGS on bounded domains . . . . . . . . . . . . . . 28
2.5 Perturbations of solutions of GKGS on the real line . . . . . . . . 29

3 Functional analytic background 33
3.1 Semigroups and evolution systems . . . . . . . . . . . . . . . . . 33
3.2 Norms on Sobolev spaces over R . . . . . . . . . . . . . . . . . . 35
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Introduction

This thesis has been written as a product of a traineeship at CWI, the National
Research Institute for Mathematics and Computer Science in the Netherlands.
Research was conducted under supervision of Jens Rademacher, to whom I owe
a debt of gratitude.

The aim of this study was to apply existence theory for quasilinear PDE’s on R
to a model for vegetation patterns that uses porous medium flow for the water.
This model is given by the Generalised Klausmeier Gray-Scott model (16):

GKGS:

{
ut = D

(
u2
)
xx

+ Cux +A(1− u)− uv2

vt = vxx − Bv + uv2

on R≥0 × R, where A,B,D are assumed to be strictly positive constants. For
u > 0 this is a second order parabolic quasilinear system of PDE’s.

In the article [3] by Amann an existence theory is developed for quasilinear
systems on bounded domains. In this article, on page 225 he makes the remark
that the domain Ω can be chosen to be unbounded, and refers to his own article
[2] which only considers semilinear parabolic systems on unbounded domains. In
their article [11] Wu and Zhao refer to a third article by Amann [4] to conclude
that they have local existence of a solution to a quasilinear system on what seems
to be an unbounded domain. An application of [4] to the bounded domain is
included in §2.4. But an explicit treatment of existence theory for quasilinear
parabolic systems on the unbounded domain has not been done in [4] and was
generally not found in the literature. This caused the focus of this thesis to shift
to the existence theory itself.1

In this thesis a well-posedness result is presented for quasilinear systems of
second order PDE’s on the unbounded domain R. The function space chosen
for this framework is the Sobolev space of twice weakly differentiable functions
on R, H2(R), which is a Banach algebra (section 3.2). The algebra property is
convenient for estimating the norm of nonlinear reaction terms and ultimately
provides a local Lipschitz property of the Nemytskii operator (see corollary 3.14).
A remarkable property of the existence results below is that they are obtained
without the use of fractional power spaces: the proofs are similar to the proof of
Picard-Lindelöf existence theorem for ODE’s, at the prize of requiring smooth
initial data.

We first return to GKGS to see how such an existence result could be applied.
By substituting w = u2 into GKGS it can be rewritten to a slightly more
transparent form (equation (18)):{

wt = D
√

2wwxx + Cwx +
√

2wA(1−
√
w)−

√
2wv2

vt = vxx − Bv +
√
wv2 .

1After completing the thesis the attention was drawn to an article by Kato [7], which does
treat existence theory for quasilinear systems on the unbounded domain, a comparison is to
be made.
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Figure 1: Sketch of travelling wave ψ without and with perturbation φ in H2(R).

From this one directly sees that the coefficient of the highest order derivative
depends on the solution itself in such a way that the PDE degenerates as w
vanishes. This is unavoidable for w in H2(R), confer corollary 3.11. Instead of
choosing a different function space, this problem is circumvented by looking at
H2(R) perturbations of existing solutions that stay away from 0.

To illustrate this, assume that there exists a travelling wave solution ψ(t) =(wψ
vψ

)
of GKGS with wψ(t, x) ≥ δ > 0. For a function φ = (wv ) it holds that

ψ + φ solves GKGS iff φ solves:

φt =Aψ(t, φ)φ+ fψ(t, φ); (1)

with Aψ(t, φ)φ =
(
D
√

2(wψ+w)wxx+Cwx 0

0 vxx

)
; (2)

see equations (19) and (20). The advantage of this PDE is that the coefficient
of the highest order derivative vanishes nowhere for w ∈ H2(R) small. Any
solution of GKGS that stays away from 0 suffices, so the travelling wave could
for instance be replaced by a homogeneous steady state of GKGS. These states
coincide with those found for Gray-Scott in section 2.1.2.

A crucial role is played by the Sobolev imbedding of H1(R) into the Hölder
continuous functions C0,γ(R) (theorem 3.9), and the pointwise L∞-bounds this
implies. A complete simple proof of this well-known result is provided next
to some additional properties of Hölder continuous functions. By applying our
main existence result below to the PDE for the perturbation with φ(0) small,
for some time a solution φ exists and thus we obtain short time existence of
a solution ψ + φ to GKGS. This is illustrated by figure 1. In §2.3 it is de-
rived, for illustration, that (periodic) solutions of GKGS which start out with
u-component u ≥ δ > 0 remain that way as long as the v-component remains
bounded.

Let n denote the number of PDE’s present in the system. The main existence
result can be formulated as follows, but for the full details see §1.3.2 Let A(t, φ)
be a second order differential operator, suppose we have the following quasilinear
n-dimensional system of PDE’s:

φt = A(t, φ)φ+ f(φ), φ(0) = u (Q)

2In §1.3, to simplify notation only, the theory is developed for a system containing only a
single PDE (n = 1). Generalisation to larger n is straightforward.
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Theorem (Main existence result). Suppose that f is locally Lipschitz on bounded
subsets of

(
H2(R)

)n
and A(t, φ) generate evolution systems {Uφ(t, s)}0≤s≤t≤T

which are Lipschitz in φ. If u ∈ D(A) then a mild solution of (Q) exists.

We give a sketch of the proof for n = 1. The proof is based on the Banach
contraction mapping theorem, just like the proof of Picard-Lindelöf for ODE’s.
The Banach space chosen to define a contraction on is:

Xτ =
(
C
(
[0, τ ], H2(R)

)
, ||·||∞

)
;

with ||φ||∞ = sup
0≤t≤τ

||φ(t)||H2 .

Sketch of proof. In the semilinear case with A(t, φ) = A(t) a single evolution
system U(t, s)0≤s≤t≤τ is generated. Mild solutions are fixed points of the map:

Ju,τ : Xτ → Xτ

φ 7→ U(t, 0)u+

∫ t

0

U(t, s)fN (φ(s))ds.

While showing that for some τ this defines a contraction on some neighbourhood
of u (as is done in the proof of theorem 1.8), the following estimate is made,
where v(s) is some element of H2(R):∣∣∣∣∣∣∣∣∫ t

0

U(t, s)v(s) ds

∣∣∣∣∣∣∣∣
H2

≤ τ · sup
0≤s≤t≤τ

||U(t, s)||L (H2(R),H2(R)) · sup
0≤s≤τ

||v(s)||H2 .

Note that since u ∈ H2(R) such a simple estimate suffices to make the argu-
ment; usually (in the parabolic case) the smoothening properties of the evolution
system are used.

To prove the theorem in the quasilinear case we first note that for fixed φ̄ in
a neighbourhood Bτ,ε of u we are back in the non-autonomous semilinear case
φ(t) = A(t, φ̄)φ+ f(φ), denote its solution by φ(φ̄). Then mild solutions of (Q)
coincide with fixed points of the map:

Ku,τ,ε : Bτ,ε(u)→ Bτ,ε(u)

φ̄ 7→ φ(φ̄);

for which we show that this again defines a contraction on a (possibly smaller)
neighbourhood of u.

There are some subtleties involved in defining the map K and showing that
it becomes a contraction. This is discussed in section §1.3, which ends the
discussion on abstract general well-posedness theory.

The second chapter contains results of a more applied nature. We start by
looking into local stability of a model by Klausmeier and the Gray-Scott model,
which reveals existence of a Hopf bifurcation. This leads to existence of travelling
wave train solutions of GKGS. As discussed previously in this introduction, the
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abstract framework can be applied to perturbations of solutions of GKGS to
obtain a short time existence result. Arguments on how the assumptions of the
abstract framework can be met in the case of GKGS are contained in §2.5.

The third chapter, as the title suggests, contains background material. These
are either well known results that are included for convenience of the reader or
rather lengthy or technical calculations that have been excluded from the main
body.

4



1 Existence result for semilinear and quasilinear
second order PDE’s on the real line

There is a close relationship between Cauchy problems and evolution operators.
Let the linear Cauchy problem be given by:{

φ̇(t) = Aφ(t) if t ≥ 0
φ(0) = u

;

where A is a linear operator on a Banach space X with domain D(A) ⊂ X.
The following relation with semigroups (see section 3.1) is well known and can
be found in [6, Proposition II.6.2].

Theorem 1.1. If (A,D(A)) generates a strongly continuous semigroup S(t),
and u ∈ D(A), then φ(t) = S(t)u is the unique classical solution of the linear
Cauchy problem.

In this section we look at a more general Cauchy problem: we introduce
a reaction term and later on have A depend on t and φ. Using the Banach
contraction mapping principle we obtain a similar result as theorem 1.1 for the
linear Cauchy problem.

Although our main interest goes out to an essentially parabolic equation
(see (16) below), only strong continuity of the generated semigroup is assumed.
So regularisation properties of the analytic semigroup are not used: the use of
interpolation theory for Banach spaces (fractional power spaces) is circumvented
at the price of a weaker but more transparant result. As a consequence the
framework below is built for regular initial conditions.

1.1 Autonomous semilinear case

Consider the autonomous Cauchy problem with reaction term:{
∂
∂tφ(t, x) = Aφ(t, x) + f(φ(t, x)) if t ≥ 0
φ(0, x) = u(x)

; (3)

where (A,D(A)) with D(A) = H2(R) is assumed to generate a strongly contin-
uous semigroup S(t) on L2(R).

Theorem 1.2 (Variation of constants formula). Suppose that φ : [0, τ ]×R with
φ(·, x) ∈ C1([0, τ ]) and φ(t, ·) ∈ C2(R) is a classical solution of (3), then it
holds:

φ(t, x) = S(t)u(x) +

∫ t

0

S(t− s)f(φ(s, x))ds.

Proof. Let φ be a classical solution of (3) and fix t. Then the X valued function
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s 7→ S(t− s)φ(s) is differentiable:

d

ds
S(t− s)φ(s) = lim

h→0

S(t− (s+ h)φ(s+ h)− S(t− s)φ(s)

h

= lim
h→0

S(t− (s+ h)φ(s+ h)− S(t− s)φ(s+ h)

h

+ lim
h→0

S(t− s)φ(s+ h)− S(t− s)φ(s)

h

=− S(t− s)Aφ(s) + S(t− s) d
ds
φ(s);

so it holds that:

φ(t, x)− S(t)φ(0, x) =

∫ t

0

d

ds
S(t− s)φ(s, x)ds

=

∫ t

0

(
−S(t− s)Aφ(s, x) + S(t− s) d

ds
φ(s, x)

)
ds

=

∫ t

0

S(t− s)
(
−Aφ(s, x) +

d

ds
φ(s, x)

)
ds

=

∫ t

0

S(t− s)f(φ(s, x))ds.

Replacing φ(0, x) by u(x) we obtain: φ(t, x) = S(t)u(x)+
∫ t

0
S(t−s)f(φ(s, x))ds.

We wish to interpret (3) as an ordinary differential equation on H2(R). For
this, we introduce the Nemytskii operator fN , see section 3.5. Equation (3) can
thus be rewritten: {

φ̇(t) = Aφ(t) + fN (φ(t)) if t ≥ 0
φ(0) = u

. (4)

We formulate the following assumption:

(A0) It holds that fN ∈ C (H2(R)) and fN is Lipschitz on any bounded subset
of D(A) = H2(R).

In light of corollary 3.14, this assumption could be replaced by the assump-
tion that fN (0) = 0 and f ∈ C 3(R). Since A is assumed to generate a strongly
continuous semigroup, A is a closed operator. In the following, D(A) is assumed
to be endowed with the graph norm ||·||A, see section 3.2.

Definition For τ > 0 introduce the Banach space :

Xτ := (C ([0, τ ], D(A)) , ||·||∞) .
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For u ∈ D(A) and ε > 0 let the closed ball centered around u with radious ε be
given by:

Bε(u) := {v ∈ D(A) |||u− v||A ≤ ε} ;

Bτ,ε(u) := {φ ∈ Xτ |φ(t) ∈ Bε(u) for 0 ≤ t ≤ τ } .

Definition An element φ ∈ Xτ is a mild solution of (4) if on [0, τ ] it holds
that:

φ(t) = S(t)u+

∫ t

0

S(t− s)f(φ(s))ds.

By theorem 1.2 every classical solution is a mild solution.
Using the Banach contraction mapping theorem we will prove the existence

of a mild solution to (4). To this end we define a map:

Ju,τ : Xτ → Xτ

φ 7→ S(t)u+

∫ t

0

S(t− s)f(φ(s))ds,

and we want to show that for sufficiently small τ , Ju,τ : Xτ → Xτ is a contraction
when restricted to some Bτ,ε(u) ⊂ Xτ .

We first need some preliminary results. For strongly continuous semigroups
{S(t)} it is well known that S(t)u ∈ D(A) and AS(t)u = S(t)Au if u ∈ D(A)
[6, Lemma II.1.3(ii)].

Lemma 1.3. Let u ∈ D(A). For all ε > 0 there exists a τ > 0 such that:

sup
0≤t≤τ

||S(t)u− u||A ≤ ε.

Proof. By strong continuity it holds:

lim
t↓0
||S(t)u− u||A = lim

t↓0
||S(t)u− u||L2 + lim

t↓0
||S(t)Au−Au||L2 = 0.

Lemma 1.4. Let τ > 0 be given, then there exists a M(τ) ≥ 1 such that:

sup
0≤t≤τ

||S(t)||L (D(A),D(A)) =M(τ).

Proof. The restriction of S(t) to D(A), S(t)|D(A), is a strongly continuous

semigroup itself (with generator (A,H4(R))) [6, Proposition II.2.15(ii)]. By
strong continuity the orbits are continuous, so it follows that for u ∈ D(A)
the partial orbits {S(t)u| t ∈ [0, τ ]} ⊂ D(A) are bounded. Thus the family
{S(t)| t ∈ [0, τ ]} ⊂ L (D(A), D(A)) is pointwise bounded. By the principle of
uniform boundedness the family is uniformly bounded.

Theorem 1.5. Let u ∈ D(A) and suppose that (A0) holds. Then for all ε > 0
there exists a τ > 0 such that the restriction Ju,τ |Bτ,ε(u) is a contraction.
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Proof. Let ε > 0 be given. Let the Lipschitz constant of fN on Bε(u) be given
by CLip and let C|f | be given such that ||fN (v)||A ≤ C|f | for v ∈ Bε(u). By
lemmas 1.3 and 1.4 we can find τ and M(τ) such that:

sup
0≤t≤τ

||(S(t)− 1)u||A ≤
ε

2
;

sup
0≤t≤τ

||S(t)||L (D(A),D(A)) ≤M(τ);

τ ≤ min

{
ε

2M(τ)C|f |
,

1

2M(τ)CLip

}
.

We have for φ ∈ Bτ,ε(u):

||Ju,τ (φ)− u||Xτ
= sup

0≤t≤τ
||Ju,τ (φ)− u||A

≤ sup
0≤t≤τ

||(S(t)− 1)u||A + sup
0≤t≤τ

∣∣∣∣∣∣∣∣∫ t

0

S(t− s)fN (φ(s))ds

∣∣∣∣∣∣∣∣
A

≤ ε

2
+ τ · sup

0≤s≤t≤τ
||S(t− s)fN (φ(s))||A

≤ ε

2
+ τ · sup

0≤s≤t≤τ
||S(t− s)||L (D(A),D(A)) · sup

0≤s≤τ
||fN (φ(s))||A

≤ ε

2
+ τM(τ)C|f |

≤ ε.

Thus Bτ,ε(u) is mapped into itself by Ju,τ . We also have, for φ1, φ2 ∈ Bτ,ε(u):

||Ju,τ (φ1)− Ju,τ (φ2)||Xτ
= sup

0≤t≤τ
||Ju,τ (φ1)− Ju,τ (φ2)||A

= sup
0≤t≤τ

∣∣∣∣∣∣∣∣∫ t

0

S(t− s)(fN (φ1(s))− fN (φ2(s)))ds

∣∣∣∣∣∣∣∣
A

≤ τ · sup
0≤s≤t≤τ

||S(t− s)(fN (φ1(s))− fN (φ2(s)))||A

≤ τ · sup
0≤s≤t≤τ

||S(t− s)||L (D(A),D(A)) · sup
0≤s≤τ

||fN (φ1(s))− fN (φ2(s))||A

≤ τM(τ)CLip · sup
0≤s≤τ

||(φ1 − φ2)(s)||A

≤ τM(τ)CLip · ||φ1 − φ2||Xτ

≤ 1

2
||φ1 − φ2||Xτ .

So the restriction Ju,τ |Bτ,ε(u) is a contraction.
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Corollary 1.6. There exists a τ > 0 such that Xτ contains a unique mild
solution of (4).

Proof. Apply the Banach contraction mapping principle to the mapping Ju,τ
from the previous theorem. So there exists a unique fixed point φ ∈ Bτ,ε(u) ⊂
Xτ , i.e.:

φ(t) = S(t)u+

∫ t

0

S(t− s)f(φ(s))ds.

Thus φ is a mild solution of (4).

9



1.2 Non-autonomous semilinear case

Now consider the non-autonomous semilinear Cauchy problem with reaction
term: {

∂
∂tφ(t) = A(t)φ(t) + f(φ(t)) if t ≥ 0
φ(0) = u

; (5)

where (A(t), D(A)) with D(A) = H2(R) is a time dependent unbounded op-
erator. We use the same approach as in the previous section. In this setting
we replace the semigroup by the assumption that the (A(t), D(A)) generate an
evolution system U(t, s) on H2(R), see section 3.1. Furthermore, since working
with some graph norm is no longer natural, we use the Sobolev norm instead.
In section 3.2 equivalence of these norms is proven, so this difference is only
minor.

Theorem 1.7 (Variation of constants formula). Suppose that φ : [0, τ ]×R→ R
with φ(·, x) ∈ C1([0, τ ]) and φ(t, ·) ∈ C2(R) is a classical solution of (5), then
it holds:

φ(t) = U(t, 0)u+

∫ t

0

U(t, s)f(φ(s))ds.

Proof. Let φ be a classical solution of (5) and fix t. Then the X valued function
s 7→ U(t, s)φ(s) is differentiable:

d

ds
U(t, s)φ(s) = lim

h→0

U(t, s+ h)φ(s+ h)− U(t, s)φ(s)

h

= lim
h→0

U(t, s+ h)φ(s+ h)− U(t, s)φ(s+ h)

h

+ lim
h→0

U(t, s)φ(s+ h)− U(t, s)φ(s)

h

=− U(t, s)A(t)φ(s) + U(t, s)
d

ds
φ(s);

so it holds that:

φ(t)− U(t, 0)φ(0) =

∫ t

0

d

ds
U(t, s)φ(s)ds

=

∫ t

0

(
−U(t, s)A(t)φ(s) + U(t, s)

d

ds
φ(s)

)
ds

=

∫ t

0

U(t, s)

(
−A(t)φ(s) +

d

ds
φ(s)

)
ds

=

∫ t

0

U(t, s)f(φ(s))ds.

Replacing φ(0) by u we obtain:

φ(t) = U(t, 0)u+

∫ t

0

U(t, s)f(φ(s))ds.
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To interpret (5) as an ordinary differential equation on H2(R), we again
introduce the Nemytskii operator fN . Equation (5) can be rewritten:{

φ̇(t) = A(t)φ(t) + fN (φ(t)) if t ≥ 0
φ(0) = u

. (6)

In the following definitions the Sobolev norm replaces the graph norm.

Definition For τ > 0 introduce the Banach space :

Xτ :=
(
C
(
[0, τ ], H2(R)

)
, ||·||∞

)
.

For u ∈ H2(R) and ε > 0 let the closed ball centered around u with radious ε
be given by:

Bε(u) :=
{
v ∈ H2(R) : ||u− v||H2 ≤ ε

}
;

Bτ,ε(u) := {φ ∈ Xτ : ||u− φ||∞ ≤ ε} .

In the definition above we implicitly used that we can view H2(R) as the subset
of constant functions (in time) in Xτ .

Definition An element φ ∈ Xτ is a mild solution of (6) if on [0, τ ] it holds
that:

φ(t) = U(t, 0)u+

∫ t

0

U(t, s)fN (φ(s))ds.

By theorem 1.7 every classical solution is a mild solution.
Using the Banach contraction mapping theorem we will prove the existence

of a mild solution to (6). To this end we define a map:

Ju,τ : Xτ → Xτ

φ 7→ U(t, 0)u+

∫ t

0

U(t, s)fN (φ(s))ds,

and we want to show that for sufficiently small τ , Ju,τ is a contraction in a
neighbourhood of u.

Theorem 1.8. Let u ∈ H2(R) and suppose that (A0) holds. Assume that for
some τ > 0 and 0 ≤ s ≤ t ≤ τ , U(t, s) is bounded: ||U(t, s)||L (H2,H2) ≤ M(τ).

Then for all ε > 0 there exists a τ > 0 such that the restriction Ju,τ |Bτ,ε(u) is a
contraction.

Proof. Let ε > 0 be given, then fN is Lipschitz on Bε(u), write CLip(f) for the
Lipschitz constant. There exists a constant C|f | such that for v ∈ Bε(u) it holds
||fN (v)||H2 ≤ C|f |. Since U(t, s) is strongly continuous, we can find a τ > 0
such that:

sup
0≤t≤τ

||(U(t, 0)− 1)u||H2 ≤
ε

2
;

sup
0≤s≤t≤τ

||U(t, s)||L (H2,H2) ≤M(τ);

τ ≤ min

{
ε

2M(τ)C|f |
,

1

2M(τ)CLip(f)

}
.
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So it holds:

||Ju,τ (φ)− u||Xτ
= sup

0≤t≤τ
||Ju,τ (φ)(t)− u||H2

≤ sup
0≤t≤τ

||(U(t, 0)− 1)u||H2 + sup
0≤t≤τ

∣∣∣∣∣∣∣∣∫ t

0

U(t, s)fN (φ(s))ds

∣∣∣∣∣∣∣∣
H2

≤ ε

2
+ τ · sup

0≤s≤t≤τ
||U(t, s)fN (φ(s))||H2

≤ ε

2
+ τ · sup

0≤s≤t≤τ
||U(t, s)||L (H2,H2) · sup

0≤s≤τ
||fN (φ(s))||H2

≤ ε

2
+ τM(τ)C|f |

≤ ε;

so Ju,τ maps Bτ,ε(u) into itself. We also have:

||Ju,τ (φ1)− Ju,τ (φ2)||Xτ
= sup

0≤t≤τ
||Ju,τ,(φ1)− Ju,τ (φ2)||H2

≤ sup
0≤t≤τ

∣∣∣∣∣∣∣∣∫ t

0

U(t, s)(fN (φ1(s))− fN (φ2(s)))ds

∣∣∣∣∣∣∣∣
H2

≤ τ · sup
0≤s≤t≤τ

||U(t, s)(fN (φ1(s))− fN (φ2(s)))||H2

≤ τ · sup
0≤s≤t≤τ

||U(t, s)||L (H2,H2) · sup
0≤s≤τ

||fN (φ1(s))− fN (φ2(s)))||H2

≤ τM(τ)CLip(f) · sup
0≤s≤τ

||(φ1 − φ2)(s)||H2

≤ τM(τ)CLip(f) · ||φ1 − φ2||Xτ

≤ 1

2
||φ1 − φ2||Xτ .

So the restriction Ju,τ |Bτ,ε(u) is a contraction.

Corollary 1.9. There exists a τ > 0 such that Bτ,ε(u) ⊂ Xτ contains a unique
mild solution of (6).

Proof. Apply the Banach contraction mapping principle to the map Ju,τ |Bτ,ε(u)

from the previous theorem.

Remark Let 0 < τ̃ < τ , then Ju,τ̃ |Bτ̃,ε(u) is still a contraction, so Bτ̃ ,ε(u) ⊂ Xτ

contains a unique mild solution of (6).
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1.3 Quasilinear case

Finally look at the quasilinear Cauchy problem with reaction term:{
φ̇(t) = A(t, φ)φ(t) + fN (φ) if t ≥ 0
φ(0) = u

; (7)

where (A(t, φ), D(A)) with D(A) = H2(R) is an unbounded operator that de-
pends on time and the function φ. Let Xτ , Bε(u) and Bτ,ε(u) be defined as in
the previous section. We list some assumptions.

(A1) There exists ε and τ1 such that for φ ∈ Bτ1,γ,ε(u) it holds that the
A(t, φ) generate an evolution system {Uφ(t, s)}0≤s≤t≤τ1 on H2(R), with

||Uφ(t, s)||L (H2,H2) ≤Mφ(τ1).

We thus obtain a family of evolution systems parametrised by φ. With this
assumption, similar to the previous section a variation of constants formula
holds. Given any classical solution φ of (7) we have:

φ(t) = Uφ(t, 0)u+

∫ t

0

Uφ(t, s)fN (φ(s))ds; (8)

which again is the defining equality for a mild solution.

Definition An element φ ∈ Xτ is a mild solution if on [0, τ ] equation (8) holds.

To obtain an intermediate result, let φ̄ ∈ Bτ1,ε(u) be fixed and consider:{
φ̇(t) = A(φ̄(t))φ(t) + fN (φ) if t ≥ 0
φ(0) = u

. (9)

This is a non-autonomous semilinear Cauchy problem, as in the previous section.
We continue with another assumption.

(A2) There exists a τ2 ≤ τ1 and M(τ2) such that for all φ ∈ Bτ2,ε(u) it holds
that:

(A2a) sup
0≤t≤τ2

||(Uφ(t, 0)− 1)u||H2 ≤
ε

2
;

(A2b) sup
0≤s≤t≤τ2

||Uφ(t, s)||L (H2,H2) ≤M(τ2).

Assumptions (A0)-(A2) are sufficient to apply theorem 1.8, so we can find

τ3 ≤ τ2 and a mild solution φφ̄ = Uφ̄(t, 0)u +
∫ t

0
Uφ̄(t, s)fN (φ(s))ds of (9) in

Bτ3,γ,ε(u). Assumption (A2) also ensures that these τ3 can be chosen indepen-
dent of φ̄ ∈ Bτ2,ε(u). This enables us to define a map, which sends an arbitrary
element φ̄ in Bτ3,ε(u) to the corresponding unique mild solution of (9):

Ku,τ3,ε : Bτ3,ε(u)→ Bτ3,ε(u)

φ̄ 7→ φφ̄ = Uφ̄(t, 0)u+

∫ t

0

Uφ̄(t, s)fN (φ(s))ds.

13



Note that by the remark below corollary 1.9, for 0 < τ < τ3 the same result
holds, so Ku,τ3,ε (Bτ,ε(u)) ⊂ Bτ,ε(u). We present a final assumption:

(A3) There exists a τ4 ≤ τ3 and CLip(U) such that for all φ1, φ2 ∈ Bτ4,ε(u):

(A3a) sup
0≤s≤t≤τ4

||(Uφ1
(t, s)− Uφ2

(t, s))u||H2 ≤
1

2
||φ1 − φ2||Xτ ;

(A3b) sup
0≤s≤t≤τ4

||Uφ1(t, s)− Uφ2(t, s)||L (H2,H2) ≤ CLip(U) ||φ1 − φ2||Xτ .

Theorem 1.10. Let u ∈ D(A) and suppose that assumption (A0)-(A3) hold.
Then there exists a τ > 0 such that the restriction Ku,τ3,ε|Bτ,ε(u) is a contrac-
tion.

Proof. The only thing left to prove is that for some 0 < τ ≤ τ3 the map
Ku,τ3,ε|Bτ,ε(u) is contractive. Let CLip(f) and C|f | be given as in the proof

of theorem 1.8. Choose τ < τ4 such that τ ≤ min
{

1
8MτCLip(f)

, 1
8CLip(U)C|f|

}
.

For φ̄1, φ̄2 ∈ Bτ,ε(u) it holds:∣∣∣∣Ku,τ,ε(φ̄1)−Ku,τ,ε(φ̄2)
∣∣∣∣
Xτ

= sup
0≤t≤τ

∣∣∣∣Ku,τ,ε(φ̄1)−Ku,τ,ε(φ̄2)
∣∣∣∣
H2

= sup
0≤t≤τ

∣∣∣∣∣∣∣∣Uφ̄1
(t, 0)u+

∫ t

0

Uφ̄1
(t, s)fN (φ1(s))ds

−Uφ̄2
(t, 0)u−

∫ t

0

Uφ̄2
(t, s)fN (φ2(s))ds

∣∣∣∣∣∣∣∣
H2

≤ sup
0≤t≤τ

∣∣∣∣(Uφ̄1
(t, 0)− Uφ̄2

(t, 0)
)
u
∣∣∣∣
H2

+ τ · sup
0≤s≤t≤τ

∣∣∣∣Uφ̄1
(t, s)fN (φ1(s))− Uφ̄2

(t, s)fN (φ2(s))
∣∣∣∣
H2

≤ 1

2

∣∣∣∣φ̄1 − φ̄2

∣∣∣∣
Xτ

+ τ · sup
0≤s≤t≤τ

∣∣∣∣Uφ̄1
(t, s)fN (φ1(s))− Uφ̄1

(t, s)fN (φ2(s))
∣∣∣∣
H2

+ τ · sup
0≤s≤t≤τ

∣∣∣∣Uφ̄1
(t, s)fN (φ2(s))− Uφ̄2

(t, s)fN (φ2(s))
∣∣∣∣
H2

≤ 1

2

∣∣∣∣φ̄1 − φ̄2

∣∣∣∣
Xτ

+ τ · sup
0≤s≤t≤τ

∣∣∣∣Uφ̄1
(t, s)

∣∣∣∣
L (H2,H2)

· sup
0≤s≤τ

||fN (φ1(s))− fN (φ2(s))||H2

+ τ · sup
0≤s≤t≤τ

∣∣∣∣Uφ̄1
(t, s)− Uφ̄2

(t, s)
∣∣∣∣

L (H2,H2)
· sup

0≤s≤τ
||fN (φ2(s))||H2

≤ 1

2

∣∣∣∣φ̄1 − φ̄2

∣∣∣∣
Xτ

+ τM(τ)CLip(f)

∣∣∣∣φ̄1 − φ̄2

∣∣∣∣
Xτ

+ τCLip(U)

∣∣∣∣φ̄1 − φ̄2

∣∣∣∣
Xτ

C|f |
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≤ 1

2

∣∣∣∣φ̄1 − φ̄2

∣∣∣∣
Xτ

+
1

8

∣∣∣∣φ̄1 − φ̄2

∣∣∣∣
Xτ

+
1

8

∣∣∣∣φ̄1 − φ̄2

∣∣∣∣
Xτ

=
3

4

∣∣∣∣φ̄1 − φ̄2

∣∣∣∣
Xτ

.

Using the Banach contraction mapping theorem, we again obtain existence
and uniqueness of a mild solution. A third ingredient for well-posedness is con-
tinuous dependence on initial conditions and parameters. Though not studied
in this thesis, this usually follows from the same contraction mapping theorem
with additional smoothness of the Nemytskii operator, as in theorem 3.16.

1.3.1 Some remarks on the assumptions made

A0 This assumption is satisfied when the assumptions of corollary 3.14 are
met, which is easy to verify for applications.

A1 The book by Pazy [9] has two different constructions of evolution systems:
for the hyperbolic case (§5.3) and the parabolic case (§5.6), see section 3.1.

Since GKGS (equation (16)) is parabolic, it seems natural to apply the con-
struction for the parabolic case. Property (P3) is satisfied if the coefficient of
the highest order derivative of A(t, φ) is Hölder continuous in time, which may
be satisfied if φ is Hölder continuous in time. Restriction of Xτ to such functions
leads to a need for more demanding assumptions then (A2) and (A3).

On the other hand the abstract general well-posedness result was obtained
without explicitly demanding the PDE to be parabolic, moreover Pazy also uses
the evolution system for the hyperbolic case in a parabolic setting (§6.4).

The boundedness property of the evolution families is a property automati-
cally satisfied in both constructions.

A2 Assumption (A2a) could be described by U uniformly (with respect to φ)
approximating identity at u.

Assumption (A2b) can be deduced from assumption (A1) together with as-
sumption (A3b). Given (A1) and (A3b) it holds that, for any φ ∈ Bτ4,ε(u):

sup
0≤s≤t≤τ4

||Uφ(t, s)||L (H2,H2) ≤ ||Uφ(t, s)− Uu(t, s)||L (H2,H2)

+ sup
0≤s≤t≤τ4

||Uu(t, s)||L (H2,H2)

≤CLip(U) ||φ1 − φ2||Xτ +Mu(τ4)

≤CLip(U) · 2ε+Mu(τ4).

A3 Assumption (A3) describes a property of Lipschitz continuity of U with
respect to φ. Assumption (A3a) requires the Lipschitz constant to be smaller
equal 1

2 when U is viewed to only map u.

15



One way to link assumption (A3) to a property of the generator is by making
use of the equation:

(Uφ1
(t, s)− Uφ2

(t, s)) v = −
∫ t

s

∂

∂r
Uφ1

(t, r)Uφ2
(r, s)v dr

=

∫ t

s

Uφ1
(t, r)[A(t, φ1(r))−A(t, φ2(r))]Uφ2

(r, s)v dr;

where φ1, φ2 ∈ Xτ , v ∈ H2(R) and s ≤ r ≤ t. So:

sup
0≤s≤t≤τ

||(Uφ1
(t, s)− Uφ2

(t, s)) v||H2

= sup
0≤s≤t≤τ

∣∣∣∣∣∣∣∣∫ t

s

Uφ1
(t, r)[A(r, φ1(r))−A(r, φ2(r))]Uφ2

(r, s)v dr

∣∣∣∣∣∣∣∣
H2

≤ τ · sup
0≤s≤r≤t≤τ

||Uφ1(t, r)[A(r, φ1(r))−A(r, φ2(r))]Uφ2(r, s)v||H2 .

The next step would be to split the supremum into parts and aim for an estimate:

sup
0≤r≤τ

||A(r, φ1(r))−A(r, φ2(r))|| ≤ C ||φ1(r)− φ2(r)||Xτ ;

and have the other parts ||Uφ1(t, r)|| and ||Uφ2(r, s)|| be bounded.
But this is problematic. If v would be an element of H4(R), then:

sup
0≤s≤r≤t≤τ

||Uφ1(t, r)[A(r, φ1(r))−A(r, φ2(r))]Uφ2(r, s)v||H2

≤ sup
0≤s≤r≤t≤τ

||Uφ1
(t, r)||L (H2,H2) · ||A(r, φ1(r))−A(r, φ2(r))||L (H4,H2)

· ||Uφ2
(r, s)||L (H4,H4) ||v||H4 ;

in which case ||Uφ1
(t, r)||L (H2,H2) and ||Uφ2

(r, s)||L (H4,H4) are easily seen to be

bounded. Alternatively, one could estimate:

sup
0≤s≤r≤t≤τ

||Uφ1
(t, r)[A(r, φ1(r))−A(r, φ2(r))]Uφ2

(r, s)v||H2

≤ sup
0≤s≤r≤t≤τ

||Uφ1
(t, r)||L (L2,H2) · ||A(r, φ1(r))−A(r, φ2(r))||L (H2,L2)

· ||Uφ2(r, s)||L (H2,H2) ||v||H2 ;

or

sup
0≤s≤r≤t≤τ

||Uφ1
(t, r)[A(r, φ1(r))−A(r, φ2(r))]Uφ2

(r, s)v||H2

≤ sup
0≤s≤r≤t≤τ

||Uφ1
(t, r)||L (H2,H2) · ||A(r, φ1(r))−A(r, φ2(r))||L (H4,H2)

· ||Uφ2(r, s)||L (H2,H4) ||v||H2 ;
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in which case there needs to be some uniform smoothening property of Uφ1(t, r)
or Uφ2(r, s) respectively. But this cannot be expected for a time interval con-
taining zero.

In conclusion, while assumption (A3) is convenient for the abstract approach
it is not clear whether it can be verified for specific equations such as GKGS.
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2 Generalised Klausmeier Gray-Scott equations

2.1 Comparison of homogeneous steady states of Gray-
Scott with Klausmeier

The PDE’s of interest will be:

Klausmeier:

{
ut = CKux +AK − u− uv2

vt = vxx −BKv + uv2 (10)

Gray-Scott:

{
ut = DGSuxx +AGS(1− u)− uv2

vt = vxx −BGSv + uv2 (11)

on R+ × R, where AK , BK , AGS , BGS are assumed to be strictly positive con-
stants. In order to first restrict attention to homogeneous solutions we introduce
homogeneous versions of these PDE’s:

Homogeneous Klausmeier:

{
ut = AK − u− uv2

vt = −BKv + uv2 (12)

Homogeneous Gray-Scott:

{
ut = AGS(1− u)− uv2

vt = −BGSv + uv2 (13)

The system of Klausmeier is used for modelling plant and water dynamics in
semiarid regions [8]. The Gray-Scott system models concentrations of chemical
reactants. As we shall see, the homogeneous systems of equations exhibit the
same qualitative behaviour.

2.1.1 Local bifurcation analysis for Homogeneous Klausmeier

Homogeneous steady state solutions of (12) would have to solve:{
0 = AK − u− uv2

0 = −BKv + uv2 . (14)

In the following we study stability with respect to homogeneous perturbations

only. Hence we compute the Jacobian J =

(
∂ut
∂u

∂ut
∂v

∂vt
∂u

∂vt
∂v

)
of the Homogeneous

Klausmeier equations:

J =

(
−1− v2 −2uv
v2 −BK + 2uv

)
.

The eigenvalues λ are given by the characteristic equation:

0 =(−1− v2 − λ)(−BK + 2uv − λ)− (−2uv)v2

=λ2 + λ(1 + v2 +BK − 2uv) + (1 + v2)(BK − 2uv) + 2uv3.
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Desert state One solution of (14) is given by v = 0 and u = AK , the so-called
desert state. The characteristic equation then becomes:

0 =λ2 + λ(1 +BK) +BK

=(λ+ 1)(λ+BK);

so λ = −1 or λ = −BK , thus the desert state is stable.

Saddle-node states The other solutions of (14) are given by:

uv = BK and u2 −AKu+B2
K = 0;

so:

u± =
AK
2
±
√
A2
K

4
−B2

K and v± =
AK
2BK

±

√
A2
K

4B2
K

− 1;

where (u+, v−) is one solution and (u−, v+) is the other. It is obvious that these

solutions only exist if
A2
K

4 > B2
K , so if AK > 2BK , i.e. BK ∈ (0, AK2 ).

With uv = BK we obtain:

0 =λ2 + λ(1 + v2 −BK)−BK +BKv
2;

so λ± = − 1
2 (1 + v2−BK)±

√
BK(1− v2) + 1

4 (1 + v2 −BK)2. Let <(λ) denote

the real part of λ. We can make the following general classification concerning
stability of (u, v).

Stability of (u, v) 1 + v2 −BK > 0 1 + v2 −BK < 0
1− v2 > 0 <(λ+) > 0, <(λ−) < 0 <(λ+) > 0, <(λ−) < 0

(saddle, unstable) (saddle, unstable)
1− v2 < 0 <(λ+) < 0, <(λ−) < 0 <(λ+) > 0, <(λ−) > 0

(stable node) (unstable node)

We use this table to determine
the stability of (u+, v−) and
(u−, v+).
It holds that:

u+ −BK

=
AK
2
−BK +

√
A2
K

4
−B2

K

> 0

for BK ∈ (0, AK2 ). So u+ > Bk,

thus v− = BK
u+

< 1. From this

it follows that 1 − v2 > 0, so
(u+, v−) is a saddle.

Homogeneous steady states Klausmeier

BK

u

0 AK 2

0
A

K
2

A
K

● SN

desert
node
saddle
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As for (u−, v+), it holds that u− −BK = AK
2 −BK −

√
A2
K

4 −B
2
K < 0 since

for BK ∈ (0, AK2 ): (
AK
2
−Bk

)2

=
A2
K

4
−AKBK +B2

K

<
A2
K

4
− AKBK

2

<
A2
K

4
−B2

K

=

(√
A2
K

4
−B2

K

)2

.

So u− < Bk, thus v+ > 1. So (u−, v+) is a node.
The homogeneous steady states are shown in the figure above. When BK

drops below AK
2 a saddle-node bifurcation occurs, depicted by SN in the figure.

To discern between the possibilties of (u−, v+) being a stable node (sink) or
an unstable node (source) we note that (u−, v+) is stable precisely if v2

+ > BK−1
(so BK ≥ 1). Write:

v2
+ =

A2
K

4B2
K

+
A2
K

4B2
K

− 1 +
AK
BK

√
A2
K

4B2
K

− 1;

then the following sequence of equivalencies holds.

(u−, v+) is stable⇔ A2
K

4B2
K

+
A2
K

4B2
K

− 1 +
AK
BK

√
A2
K

4B2
K

− 1 > BK − 1

⇔

√
A2
K

4B2
K

− 1 >
B2
K

AK
− AK

2BK

⇔ A2
K

4B2
K

− 1 >
B4
K

A2
K

+
A2
K

4B2
K

−BK

⇔ −A2
K > B4

K −BKA2
K

⇔ A2
K(BK − 1) > B4

K

⇔ AK >
B2
K√

BK − 1
.

21



In the figure on the right, the re-
gion where the saddle and node
states exist is coloured lavender.
The node has a Hopf instability
precisely when:

AK =
B2
K√

BK − 1
;AK 6= 4.

Only to the right of the Hopf
curve the node is stable. Gener-
ically, at Hopf instability a Hopf
bifurcation takes place. With-
out going into details, at the
point depicted by TB we expect
a Takens-Bogdanov bifurcation.

Bifurcation diagram Klausmeier

AK

B
K

0 4 10
0

2
5

●

TB

saddle−source
Hopf

We proceed by running through the same procedure for the Gray-Scott sys-
tem.

2.1.2 Local bifurcation analysis for Homogeneous Gray-Scott

The homogeneous steady state solutions of (13) are given by:{
0 = AGS(1− u)− uv2

0 = −BGSv + uv2 . (15)

The Jacobian of the Homogeneous Gray-Scott equations is:

J =

(
∂ut
∂u

∂ut
∂v

∂vt
∂u

∂vt
∂v

)
=

(
−AGS − v2 −2uv

v2 −BGS + 2uv

)
.

The eigenvalues λ are given by the characteristic equation:

0 =(−AGS − v2 − λ)(−BGS + 2uv − λ)− (−2uv)v2

=λ2 + λ(AGS + v2 +BGS − 2uv) + (AGS + v2)(BGS − 2uv) + 2uv3.

Desert state One solution of (15) is given by v = 0 and u = 1, which we call
the desert state to emphasise similarities with Klausmeier. The characteristic
equation becomes:

0 =λ2 + λ(AGS +BGS) +AGSBGS

=(λ+AGS)(λ+BGS);

so λ = −AGS or λ = −BGS , thus the desert state is stable.

22



Saddle-node states Other solutions of (15) are:

uv = BGS and u2 − u+
B2
GS

AGS
= 0;

so:

u± =
1

2
±

√
1

4
−
B2
GS

AGS
and v± =

AGS
2BGS

±

√
A2
GS

4B2
GS

−AGS ;

where (u+, v−) is one solution and (u−, v+) is the other. These solutions only

exist if
B2
GS

AGS
< 1

4 , so if AGS > 4B2
GS .

With uv = BGS we obtain:

0 = λ2 + λ(AGS + v2 −BGS) + (AGS + v2) · −BGS + 2BGSv
2.

From (15) with uv = BGS it follows that v2 = AGSv
BGS

−AGS , so:

0 = λ2 + λ
AGSv −B2

GS

BGS
+AGS(v − 2BGS);

thus λ± = −AGSv−B
2
GS

2BGS
±
√
−AGS(v − 2BGS) + 1

4B2
GS

(AGSv −B2
GS)

2
. The

following table gives an overview of the dependence of stability on λ.

AGSv −B2
GS > 0 AGSv −B2

GS < 0
v − 2BGS > 0 <(λ+) > 0, <(λ−) < 0 <(λ+) > 0, <(λ−) < 0

(saddle, unstable) (saddle, unstable)
v − 2BGS < 0 <(λ+) < 0, <(λ−) < 0 <(λ+) > 0, <(λ−) > 0

(stable node) (unstable node)

Again we determine stability of
(u+, v−) and (u−, v+), in accor-
dance with the table.
Since u− <

1
2 it holds that:

v+ =
BGS
u−

> 2BGS ;

so (u−, v+) is a saddle. On the
other hand, we have u+ > 1

2 so
v− < 2BGS . Thus (u+, v−) is a
node.
The homogeneous steady states
are shown in the figure to the
right, a saddle-node bifurcation
(SN) occurs when BGS drops

below
√
AGS
2 .

Homogeneous steady states Gray−Scott

BGS

u

0 AGS 2

0.
0

0.
5

1.
0

● SN

desert
node
saddle
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To determine stability of the node, we note that (u+, v−) is stable precisely

if v− >
B2
GS

AGS
. Recall that v− = AGS

2BGS
−
√

A2
GS

4B2
GS
−AGS . The following list of

equalities is true:

(u+, v−) is stable⇔ −

√
A2
GS

4B2
GS

−AGS >
B2
GS

AGS
− AGS

2BGS

⇔ A2
GS

4B2
GS

−AGS <
B4
GS

A2
GS

+
A2
GS

4B2
GS

−BGS

⇔ B4
GS +A3

GS −A2
GSBGS > 0.

In the figure, the region of ex-
istence of the saddle and node
states has a lavender colour.
The node has two complex
conjugate eigenvalues cross the
imaginary axis at:

B4
GS +A3

GS −A2
GSBGS = 0.

Only within this Hopf curve the
node is unstable. At the curve
a Hopf bifurcation takes place,
except for the point depicted by
TB, the Takens-Bogdanov bifur-
cation. We refrain from proving
this.

Bifurcation diagram Gray−Scott

AGS

B
G

S

0.0000 0.0625 0.1250

0.
00

00
0.

06
25

0.
12

50

●

TB

saddle−source
Hopf

2.1.3 Transformation of Homogeneous Klausmeier into Homogeneous
Gray-Scott

Let (uK , vK) be solutions to the homogeneous Klausmeier system (12). Write:

uK =Cuu;

vK =Cvv;

t =στ.

Substituting this into homogeneous Klausmeier gives:{
σCuuτ = AK − Cuu− CuC2

vuv
2

σCvvτ = −BKCvv + CuC
2
vuv

2 ;

which yields: {
uτ = AK

σCu
− u

σ −
C2
vuv

2

σ

vτ = −BKv
σ + CuCvuv

2

σ

.
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Now if we assume that (u, v) solves the homogeneous Gray-Scott equations (13)
then:

AK
σCu

=AGS ;

1

σ
=AGS ;

C2
v

σ
=1;

Bk
σ

=BGS ;

CuCv
σ

=1;

which after some calculations then yields:

Cu =
1√
AGS

;

Cv =
1√
AGS

;

σ =
1

AGS
;

AK =
1√
AGS

;

BK =
BGS
AGS

.

Conversely, substituting these values into the homogeneous Klausmeier eqau-
tions:

uτ =− 1√
AGS

AGS
√
AGS −AGSu−

1

AGS
AGSuv

2

=AGS(1− u)− uv2;

vτ =− BGS
AGS

AGSv +
1√
AGS

1√
AGS

AGSuv
2

=−BGSv + uv2;

which indeed shows that the transformed solution solves the homogeneous Gray-
scott equations.

Remark With these transformations it is possible to learn about (the stability
of) the homogeneous steady states of Gray-Scott via Klausmeier, without doing
the calculations of section 2.1.2.
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2.2 A more general system of equations: GKGS

Now we present a new system of equations, that is introduced in [5]. If below
γ = 1 is chosen, it can be viewed as a generalisation of the Klausmeier and the
Gray-Scott equations, therefore we call it the Generalised Klausmeier Gray-Scott
equations, abbreviated by GKGS :

GKGS:

{
ut = D (uγ)xx + Cux +A(1− u)− uv2

vt = vxx − Bv + uv2 (16)

on R≥0 × R, where A,B,D are assumed to be strictly positive constants and
γ = 1 or γ = 2. For γ = 1 the system is semilinear and parabolic.

In the case that GKGS is used to model vegetation in arid regions, where
roughly speaking u gives the availability of water and v stands for plant biomass,
γ = 2 is chosen if the water is thought to diffuse as through a porous medium.
For γ = 2 the system is quasilinear, and parabolic for u > 0.

Since the reaction terms equal those of the Gray-Scott equations, the ho-
mogeneous steady states and stability properties with respect to homogeneous
perturbations of these is the same, independent of the choice of γ. Thus for suit-
able parameters A and B a Hopf bifurcation takes place, so we expect a small
limit cycle branching from the fixed point. Homogeneous oscillations emerging
from the Hopf bifurcation imply existence of wavetrains, confer [10].

In the continuation of this thesis, we only look at the case γ = 2 as this is
viewed as being the harder case of the two.
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2.3 Bound below of the u-component of periodic solutions
of GKGS

The top equation of (16) for γ = 2 can be rewritten:(
ut
ux

)
·
(

1
−C

)
= 2Duuxx + 2Du2

x +A(1− u)− uv2, (17)

where ( utux ) ·
(

1
−C
)

is a directional derivative of u.
Denote by S1 the one-dimensional circle, this corresponds to an interval with

periodic boundary conditions.

Theorem 2.1. Suppose that (u, v) is a classical solution of (16) on [0, T ]×S1

with u(0, ·) ≥ δ0 > 0. If v is bounded, |v| ≤ vmax, then on [0, T ] × S1 it holds
that: u ≥ min{δ0, A

A+v2
max
} =: δ.

Proof. Let t0 ∈ [0, T ]. Since u(t0, ·) is continuous on S1, there exists a point
xmin such that (xmin, u(t0, xmin)) is a global minimum on S1. So we have
uxx(t0, xmin) ≥ 0. Ad absurdum suppose that 0 < u(t0, xmin) < δ. Evalu-
ating (17) in (t0, xmin) gives:(

ut
ux

)
·
(

1
−C

)
≥ A(1− u)− uv2

max.

Since A(1−u)−uv2
max is a strictly decreasing function of u, and u < δ ≤ A

A+v2
max

,

it holds that:(
ut
ux

)
·
(

1
−C

)
> A(1− A

A+ v2
max

)− A
A+ v2

max

v2
max = 0.

So the directional derivative in (t0, xmin) is positive. Since the directional deriva-
tive is a continuous function in x and t, it follows that it is positive in a neigh-
bourhood of (t0.xmin). So in this neighbourhood, in a comoving frame the
function will locally increase with time. So the function could never have gotten
smaller than δ on [0, T ]× S1.

Remark Since the coefficients of GKGS are analytic, it is expected that for
analytic initial conditions short time existence of a solution is guaranteed by
Cauchy-Kovalevskaya theorem. In this thesis the conditions for this theorem
are not checked.

The theorem above can be generalised to allow for solutions with isolated
irregularities, provided that minima still have a neigbourhood for which the
second derivative is positive, via the same proof. Another approach is to look at
an interval with Dirichlet or Neumann boundary conditions. At the interior of
the interval the same argument works as above and at the boundary the function
could be contained by the boundary conditions. For the real line the issue is to
control decay to 0 at infinity, which is beyond the scope of this thesis.
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2.4 Solutions of GKGS on bounded domains

For bounded domains, well-posedness of GKGS (equation (16), with γ = 2) is
covered by literature. To illustrate this, we show that on an interval, under
reasonable assumptions, an existence theorem of Amann [4] can be applied to
GKGS. Attention is restricted to solutions with u bounded away from 0, write
u ≥ ε > 0.

For γ = 2, equation (16) may be rewritten:(
ut
vt

)
− ∂

∂x

((
2Du 0
0 1

)
∂

∂x

(
u
v

))
=

(
Cux +A(1− u)− uv2

−Bv + uv2

)
.

If we put Ω = (0, 1), n = 1, N = 2, a11 = ( 2Du 0
0 1 ), f =

(
Cux+A(1−u)−uv2

−Bv+uv2

)
,

G = { (a, b) ∈ R2
∣∣ a ≥ ε}, then the following properties hold. Since linear and

constant maps are C∞ it follows that a11 is C∞. If we take f0 =
(
A(1−u)−uv2

−Bv+uv2

)
,

f1 = ( C 0
0 0 ) and f2 = ( 0 0

0 0 ), then we may write f(x,w, η) = f0 + f1η1 + f2η2 so
f is ‘affine in the gradient’. Now GKGS has been rewritten to the form (1) in
the article.

Next to check is that assumptions (i), (ii) and (iii) on page 4 of the article
hold. Since Ω = (0, 1) it holds that ∂Ω = {0, 1}. Let δ be a diagonal matrix
as in the article, with δii(x) = 0 if we impose Dirichlet boundary conditions
and δii(x) = 1 if we impose Neumann type boundary conditions. If we restrict
ourselves to only homogeneous Dirichlet and Neumann boundary conditions,
then assumption (iii) holds. We may write, implicitly defining B:

Bw := δwx + (1− δ)w = 0.

If we also put:

A(w)w := − ∂

∂x

((
2Dw1 0
0 1

)
∂

∂x

)
w,

then our system can be written in the concise form (6) of the article. Since we
have only one matrix ajk, we can define A(·, w) = a11(·, w) and α11 = 1, so our
equations are trivially of ‘separated divergence form’ (assumption (i)). The last
assumption to check is that the spectrum σ(A(x, ξ)) has positive real part for
(x, ξ) ∈ Ω̄×G. Since σ(A(x, ξ)) = {2Dξ1, 1}, and ξ1 ≥ ε by our definition of G,
assumption (ii) holds.

So the theorem on the top of page 5 can be applied, giving existence and
uniqueness of a solution of the concise form (6) of the article, so also of GKGS.

Remark Given a solution ψ of GKGS with u away from 0 and a slightly per-
turbed solution ψ + φ with φ� ε, the perturbation φ itself solves a PDE as in
theorem 3.17 below.
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2.5 Perturbations of solutions of GKGS on the real line

In this section an idea is given on how to use the framework of section 1.3 to
find solutions of GKGS (equation (16), with γ = 2). First problem is that
the framework is only set up for a single PDE and not for a system. But
generalisation to a system is straightforward: the spaceH2(R) has to be replaced
by the Cartesian product of copies of H2(R). Another problem is that from
equation (17) it is clear that the coefficient of the highest order derivative of u
vanishes as u vanishes. Since u is an element of H2(R), this can’t be avoided
(see corollary 3.11).

Instead of choosing a different Banach space for our framework, we take
another perspective. Given a solution ψ of GKGS we attempt to find a solution
φ of a related PDE for perturbations of solutions of GKGS, given by equation
(31). By theorem 3.17 this yield a solution ψ + φ of GKGS. Proving existence
of solutions near a given solution can be viewed as a first step towards learning
about stability of the given solution. An example of such a given solution
would be a wavetrain, whose existence was implied by the presence of a Hopf
bifurcation (see section 2.2). We restrict our attention to solutions of GKGS
with u positive.

First we rewrite GKGS. Since u is assumed to be positive, define w = u2.
Then u =

√
w, so ut = 1√

2w
wt and ux = 1√

2w
wx. It holds that:

1√
2w

wt =Dwxx + C 1√
2w

wx +A(1−
√
w)−

√
wv2;

wt =D
√

2wwxx + Cwx +
√

2wA(1−
√
w)−

√
2wv2.

Now a 2u2
x term will not appear as in equation (17), which is important because

without this trick it had to be included in the reaction term below. Now the
reaction term does not contain any derivatives of u and v. The GKGS equations
with substitution u =

√
w are given by:{

wt = D
√

2wwxx + Cwx +
√

2wA(1−
√
w)−

√
2wv2

vt = vxx − Bv +
√
wv2 . (18)

Derivation of a related PDE for perturbations Let ψ =
(wψ
vψ

)
be a given

solution of this PDE, and let φ = (wv ) ∈ H2(R)×H2(R). As in section 3.6 below
define:

B(ψ) :=

(
D
√

2wψ∂
2
x+C∂x 0

0 ∂2
x

)
;

g(ψ) :=

(√
2wψA(1−√wψ)−

√
2wψv

2
ψ

−Bvψ+
√
wψv

2
ψ

)
;

Aψ(φ) :=B(ψ + φ)

=

(
D
√

2(wψ+w)∂2
x+C∂x 0

0 ∂2
x

)
φ; (19)
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fψ(φ) :=B(ψ + φ)ψ −B(ψ)ψ + g(ψ + φ)− g(ψ)

=
(
D
√

2(wψ+w)(wψ)
xx

+C(wψ)
x

(vψ)
xx

)
−
(
D
√

2wψ(wψ)
xx

+C(wψ)
x

(vψ)
xx

)
+

(√
2(wψ+w)A(1−

√
wψ+w)−

√
2(wψ+w)(vψ+v)2

−B(vψ+v)+
√
wψ+w(vψ+v)2

)
−
(√

2wψA(1−√wψ)−
√

2wψv
2
ψ

−Bvψ+
√
wψv

2
ψ

)
.

Now the PDE for the perturbation is given by equation (31):

φt = Aψ(t, φ)φ+ fψ(t, φ). (20)

To apply theorem 1.10 to this equation we have to look at the requirements
(A0)-(A3). The verification of assumptions (A2) and (A3), which are properties
of the family of evolution system Uφ(t, s) uniform with respect to φ, is not
included.

Nemytskii operator (A0) Note that by lemma 3.18 it holds that fψ(0) = 0.
Also, the only concern for existence of derivatives of fψ with respect to w and v
is the term

√
wψ + w. Now assume that wψ ≥ δ > 0. Then it is clear that there

is no problem differentiating fψ as long as φ is chosen small, in particular fψ is
three times continuously differentiable in a neighbourhood of 0 ∈ R2. So by a
local two-dimensional version of corollary 3.14, fψN is Lipschitz continuous on
a neighborhood of 0 ∈ H2(R). This is a sufficient replacement of (A0).

Generation of an evolution system (A1) Now we shift attention to the
operator Aψ. This is a diagonal operator, so the action of this operator can be
split into two separate actions of Aψ11 and Aψ22 on H2(R). The operator Aψ22
is known to generate an analytic semigroup on H2(R). For Aψ11, as we already
assumed wψ ≥ δ > 0, the second order coefficient does not cause problems for
φ small.

Define L := Aψ11 − C∂x, write L = α2∂
2
x with α2 = D

√
2(wψ + w) and

domain D(L) = H2(R). The convection part of Aψ11 is relatively L-bounded
with L-bound equal to 0, confer [6, section III.2]. By [6, Theorem III.2.10] Aψ11
generates an analytic semigroup if L generates an analytic semigroup, so then
Aψ(·, φ) generates an analytic semigroup. The rest of this paragraph is devoted
to showing that L generates an analytic semigroup, which is sufficient for prop-
erty (H1) and (P1) in section 3.1.

Before proving that L generates an analytic semigroup, we do some prepara-
tory work. Since φ is small compared to ψ, let α2, α2 > 0 be given such that
α2 ≤ α2(x) ≤ α2. Let 〈·, ·〉 denote the standard inner product on L2(R).

Introduce the following alternative inner product on L2(R):

〈·, ·〉α2
: L2(R)× L2(R) → R

(u, v) 7→
∫
R

1
α2(x)uv dx

.

30



For u, v ∈ L2(R) it holds that:

1

α2
〈·, ·〉 ≤ 〈·, ·〉α2

≤ 1

α2
〈·, ·〉

so 〈·, ·〉 and 〈·, ·〉α2
induce equivalent norms. So L2(R) equipped with 〈·, ·〉α2

is
a Hilbert space.

Definition Let X,Y be Banach spaces with continuous duals X ′, Y ′. Let
D(A) ⊂ X dense and let (A,D(A)) with codomain Y be a densely defined
operator. The adjoint of A, (A′, D(A′)), is defined on the domain:

D(A′) = {y′ ∈ Y ′| < A(·), y′ >: D(A)→ C is continuous}

by mapping y′ to the continous extension of < A(·), y′ > in X ′.3

Note that H2(R) ⊂ L2(R) is dense, since it holds that the set of infinitely
many times continuously differentiable functions with compact support C∞0 (R)
is a dense subset of L2(R) [1, Theorem 2.19] and C∞0 (R) ⊂ H2(R). So the
adjoint of L is well-defined.

L generates an analytic semigroup

Lemma 2.2. The operator (L, D(L)) is a closed operator.

Proof. Let {uk} ⊂ D(L) be a sequence such that uk → u ∈ L2(R) and let
Luk → y ∈ L2(R). Then it holds:

||uk − ul||H̃2 = ||uk − ul||L2 +
∣∣∣∣∂2

xuk − ∂2
xul
∣∣∣∣
L2

≤ ||uk − ul||L2 +
1

α2
||Luk − Lul||L2 → 0

as k, l → ∞. So {uk} is a Cauchy sequence in H2(R), so u ∈ H2(R) = D(L).
Moreover:

||Lu− y||L2 ≤ ||Lu− Luk||L2 + ||Luk − y||L2

≤α2

∣∣∣∣∂2
xu− ∂2

xuk
∣∣∣∣
L2 + ||Luk − y||L2

≤α2 ||u− uk||H̃2 + ||Luk − y||L2 → 0

as k, l→∞. So Lu = y.

Lemma 2.3. The operator L is a self-adjoint operator on (L2(R), 〈·, ·〉α2
).

Proof. Since (L2(R), 〈·, ·〉α2
) is a Hilbert space, by Riesz representation theorem

the continuous dual L2(R)′ can be viewed as the space L2(R) itself. Using this

3This extension exists by Hahn-Banach theorem and is unique because D(A) ⊂ X is dense.
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identification one has, with partial integration and corollary 3.11, for u, y ∈
D(L):

〈Lu, y〉α2
=

∫
R

1

α2(x)
α2(x)(∂2

xu(x))y(x) dx

=

∫
R
(∂2
xu(x))y(x) dx

=

∫
R
u(x)(∂2

xy(x)) dx;

so by Hölder’s inequality:

|〈Lu, y〉|α2
≤
∣∣∣∣u(∂2

xy)
∣∣∣∣
L1

≤ ||u||L2

∣∣∣∣∂2
xy
∣∣∣∣
L2

≤ ||u||L2 ||y||H2 ;

so y ∈ D(A′). Now it holds:

〈Lu, y〉α2
=

∫
R

1

α2(x)
α2(x)(∂2

xu(x))y(x) dx

=

∫
R

(∂2
xu(x))y(x) dx

=

∫
R
u(x)(∂2

xy(x)) dx

=

∫
R

1

α2(x)
u(x)Ly dx

= 〈u,Ly〉α2
.

So it follows that (L′, D(L′)) is an extension of (L, D(L)). Since L is closed by
lemma 2.2, it holds that L is self-adjoint.

Corollary 2.4. The operator L generates an analytic semigroup.

Proof. It holds that:
〈Lu, u〉α2

≤ α2 ||u||2L2 ;

so L is bounded above. By lemma 2.3 it holds that L is self-adjoint. By [6,
Example II.3.27 & Corollary II.4.7] (L, D(L)) is the generator of an analytic
semigroup.
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3 Functional analytic background

3.1 Semigroups and evolution systems

Let X be a Banach space.

Definition A family (S(t))t≥0 of bounded linear operators on X is called a
semigroup if:

S(t+ s) = S(t)S(s) for all t, s ≥ 0;

S(0) = IdX .

It is a strongly continuous semigroup or C0-semigroup if in addition the orbit
maps

R≥0 3 t 7→ S(t)x ∈ X

are continuous.

Lemma 3.1. Let S(t) be a semigroup. Then S(t) is strongly continuous iff for
all x ∈ X:

lim
t↓0

S(t)x = x.

Proof. This result is part of [6, Proposition I.1.3] and proven there.

To every C0-semigroup one can associate an unbounded operator.

Definition The generator (A,D(A)) of a C0-semigroup S(t) on X is the oper-
ator given by:

D(A) =

{
x ∈ X : lim

h↓0

S(h)x− x
h

exists

}
A(x) = lim

h↓0

S(h)x− x
h

.

Necessary and sufficient conditions for an unbounded operator on a Banach
space to generate a C0-semigroup are known, and for instance given by [6,
Theorem II.3.8].

Definition A two parameter family (U(t, s))0≤s≤t≤T of bounded linear opera-
tors on X is called an evolution system if:

U(t, s)U(s, r) = U(t, r) for 0 ≤ r ≤ s ≤ t ≤ T ;

U(t, t) = IdX for all t ≤ T.

It is strongly continuous if moreover{
(τ, σ) ∈ R2 : τ ≥ σ ≥ 0

}
→ L (X)

(t, s) 7→ U(t, s)
;

is continuous.
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Remark For S(t) a C0-semigroup, U(t, s) := S(t − s) defines an evolution
system.

The analytic semigroups are a special class of strongly continuous semi-
groups, related to parabolic PDE’s, see for instance [9, section 2.5]. In [9, section
5.3] and [9, section 5.6] two independent constructions of evolution systems are
presented, given some sufficient conditions on a set of operators (A(t), D(A)).
Here we give a summary of these results. We list some properties for the hyper-
bolic (H) and the parabolic (P) case.

(H1)
(H2)
(H3)

For t ∈ [0, τ ] the A(t) generate strongly continuous semigroups St(s).
For t ∈ [0, τ ] the A(t) form a stable family [9, section 5.2].
For t ∈ [0, τ ] the map t 7→ A(t) ∈ L (Y,X) is continuous.

(P1)
(P2)

(P3)

For t ∈ [0, τ ] the A(t) generate analytic semigroups St(s).
For t ∈ [0, τ ] for all λ with Re(λ) ≥ 0 there exists a constant M such
that the resolvent R(λ : A(t)) of A(t) exists and:

||R(λ : A(t))||L (X,X) ≤
M

|λ|+ 1
.

There exist constants L and 0 < α ≤ 1 such that for s, t, r ∈ [0, τ ]:∣∣∣∣∣∣∣∣A(t)−A(s)

A(r)

∣∣∣∣∣∣∣∣
L (X,X)

≤ C|t− s|α.

If (H1)-(H3) hold, then [9, theorem 5.3.1] yields an evolution system. If
(P1)-(P3) hold, then [9, theorem 5.6.1] can be used.
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3.2 Norms on Sobolev spaces over R
For convenience some well known definitions are given first. Suppose that u :
R→ R is locally integrable, so u corresponds to a regular distribution Tu.

Definition Let m ∈ N be given. We say that u has a mth-weak partial deriva-
tive if there exists a locally integrable function v : R → R such that for all
infinitely smooth compactly supported functions φ in C∞c (R) it holds that:∫

R
uDmφ dx = (−1)m

∫
R
vφ dx.

Notation: v = Dmu.

Remark Alternatively and equivalently, Tu has a mth-weak partial derivative
if there exists a regular distribution Tv such that Dm(Tu) = Tv.

Definition The subspace Wm,p(R) ⊂ Lp(R) of functions with weak partial
derivatives up to and including order m is called the Sobolev space of order m
in Lp(R). For the case p = 2 we use notation Hm(R) := Wm,2(R).

Definition Let m ≥ 1 be given.

1. Endow Hm(R) with the Sobolev norm given by:

||u||Hm =

m∑
j=0

∣∣∣∣Dju
∣∣∣∣
L2 .

2. Endow Hm(R) with the simplified Sobolev norm given by:

||u||H̃m = ||u||L2 + ||Dmu||L2 .

3. Endow Hm(R) with the algebra norm given by:

||u||alg = K∗

√√√√ m∑
j=0

||Dju||2L2 ;

with K∗ a fixed constant so that
(
Hm(R), ||·||alg

)
becomes a Banach al-

gebra, as in [1, Theorem 5.23].

As indicated by the name, the algebra norm has the property that for all
u, v ∈ Hm(R):

||uv||alg ≤ ||u||alg ||v||alg .

A reminiscent property is inherited by norms ||·||equiv equivalent to the algebra

norm, write 1
C ||·||alg ≤ ||·||equiv ≤ C ||·||alg. Then:

||uv||equiv ≤ C ||uv||alg ≤ C ||u||alg ||v||alg ≤ C
3 ||u||equiv ||v||equiv . (21)

We now restrict our attention to the case that m = 1 or m = 2. On H1(R)
the three norms previously defined are easily seen to be equivalent, the same
holds for H2(R) with the help of lemma 3.2 below.
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Lemma 3.2. For u ∈ H2(R) it holds:

||ux||L2 ≤ ||u||L2 + ||uxx||L2 .

Proof. For a, b ∈ R it holds that ab ≤ 1
2 (a2 + b2) (see the proof of lemma 3.12).

Also, elements of H1(R) vanish at infinity by corollary 3.11 below. Using this
it holds:

||ux||2L2 =

∫
R
u2
xdx

=

∫
R

(−u)uxxdx+ [uux]
x=∞
x=−∞

≤1

2

∫
R

(u2 + u2
xx)dx

=
1

2

(
||u||2L2 + ||uxx||2L2

)
≤max

{
||u||2L2 , ||uxx||2L2

}
;

so ||ux||L2 ≤ ||u||L2 + ||uxx||L2 .

Remark This is an example of an operator being relatively bounded by another
operator, confer [6, section III.2].

Corollary 3.3. On H1(R) and H2(R) the Sobolev norm, simplified Sobolev
norm and algebra norm are equivalent.

Below some simple but valuable properties are presented in a lemma.

Lemma 3.4. For u ∈ H1(R) it holds:

||u||L1 ≤ ||u||H1 ;

||Du||L1 ≤ ||u||H1 .

And for u ∈ H2(R):

||u||H1 ≤ ||u||H2 ;

||Du||H1 ≤ ||u||H2 .

Graph norm Now let A = α2(x)∂xx + α1(x)∂x + α0(x) be a second order
differential operator with domain D(A) = H2(R) ⊂ L2(R). Assume that A is
closed. This operator gives rise to a fourth norm on H2(R). The rest of this
section will be devoted to showing that this norm is equivalent to the previous
ones, under light conditions. This result is well known.

Definition Endow D(A) with the graph norm given by:

||u||A = ||u||L2 + ||Au||L2 .

Since A is closed (D(A), ||·||A) is a Banach space, confer [6, Appendix A.5].
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Lemma 3.5. Suppose for j = 0, 1, 2 that |αj(x)| is a bounded function. Then
there exists C > 0 such that for all u ∈ D(A) it holds:

||u||A ≤ C ||u||H2 .

Proof. Write |αj | ≤Mj . Choose C = max {1 +M0,M1,M2}. Then:

||u||A = ||u||L2 + ||α2(x)uxx + α1(x)ux + α0(x)u||L2

≤(1 +M0) ||u||L2 +M1 ||ux||L2 +M2 ||uxx||L2

≤C ||u||H2 .

The application of the open mapping theorem below needs
(
H2(R), ||·||A

)
to

be a Banach space, for which A needs to be closed, as has been assumed.

Corollary 3.6. If A has bounded coefficients, the Sobolev norm and the graph
norm are equivalent on H2(R).

Proof. Look at the map Id between Banach spaces:

Id :
(
H2(R), ||·||H2

)
→
(
H2(R), ||·||A

)
u 7→ u

;

this is a bijective map and by lemma 3.5 it is continuous. By the open mapping
theorem Id is a homeomorphism.
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3.3 Some properties of Hölder continuous functions in
Lp(R)

Let 1 ≤ p < ∞ be given. Functions in sequence spaces lp vanish at infin-
ity. Functions in Lp(R) do not necessarily vanish at infinity, even if they are
continuous. For f ∈ Lp(R) continuous it holds that either limx→∞ f(x) = 0
or limx→∞ f(x) does not exist. To illustrate this we construct a continuous
function sp ∈ Lp(R) such that ||sp||L∞ =∞ and limx→∞ f(x) does not exist.

In L1(R). Define tn(x) = max{0, n4( 1
n3 − |x|)} which is a triangle function

with maximum at x = 0, tn(0) = n, width 2
n3 and slope n4. It holds that the

area under the triangle is given by ||tn(x)||L1 = 1
n3n = 1

n2 .4 Now define the
function s1(x) =

∑∞
n=1 tn(x− 2n), a sum of triangles translated over 2n. Note

that the support of the translated triangles is disjoint, so:

||s1||L1 =

∞∑
n=1

||tn|| =
∞∑
n=1

1

n2
<∞.

So s1 ∈ L1(R) is a continuous function, but limx→∞ s1(x) does not exist, in fact
||s1(x)||L∞ =∞.

In Lp(R). We can reach a similar result for Lp(R) by defining rn(x) = p
√
tn(x),

sp(x) =
∑∞
n=1 rn(x−2n). Because the summands have disjoint support, it holds:

||sp||Lp = p

√√√√ ∞∑
n=1

||rn||Lp = p

√√√√ ∞∑
n=1

||tn||L1 = p

√
||s||L1 .

So sp ∈ Lp(R) is a continuous function, but limx→∞ sp(x) does not exist, in fact
||sp(x)||L∞ =∞ since the maximum of the rn(x) have height p

√
n.

As we have seen, continuous functions f in Lp(R) do not necessarily vanish
at infinity, but as we show below they do if they are Hölder continuous.

Definition (Hölder continuity) Let 0 < γ ≤ 1. A function f : R→ R is Hölder
continuous with exponent γ if:

∃K > 0 ∀x, y ∈ R : |f(x)− f(y)| ≤ K |x− y|γ .

The space of functions that are Hölder continuous with exponent γ is denoted
by C0,γ(R).

4Or by direct calculations:

||tn||L1 =

∫ 1
n3

−1

n3

n4

(
1

n3
− |x|

)
dx =

∫ 0

−1

n3

n+ n4xdx+

∫ 1
n3

0
n− n4xdx

=n
1

n3
−

n4

2

1

n6
+ n

1

n3
−

n4

2

1

n6
=

1

n2
−

1

2n2
+

1

n2
−

1

2n2
=

1

n2
.
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Lemma 3.7. If f ∈ Lp(R) is Hölder continuous on R, then limx→±∞ f(x) = 0.

Proof. Suppose that f is Hölder continuous with exponent γ and constant K
and that limx→∞ f(x) 6= 0, but f is not necessarily an element of Lp(R). Then
it holds that:

∃ε > 0 ∀N ∃x ≥ N : |f(x)| ≥ ε.

So we can find an increasing sequence {xj}∞j=1 with xj+1 − xj > 2
(
ε
K

) 1
γ and

|f(xj)| ≥ ε. Define a function gxj ∈ Lp(R) by:

gxj (x) =

{
ε−K |x− xj |γ if |x− xj | ≤

(
ε
K

) 1
γ

0 if |x− xj | >
(
ε
K

) 1
γ
.

It holds that:

∣∣∣∣gxj ∣∣∣∣Lp =
p

√√√√∫ xj+( ε
K )

1
γ

xj−( ε
K )

1
γ

(ε−K |x− xj |)p

=
p

√√√√∫ ( ε
K )

1
γ

−( ε
K )

1
γ

(ε−K |x|)p

= : M(γ,K, ε).

Now define g : R→ R by:

g(x) =
∑
j∈N

gxj (x).

By Hölder continuity it holds that |f(x)| ≥ g(x). Since the gxj have disjoint
support, it holds that:

||f ||Lp ≥ ||g||Lp =
∑
j∈N

∣∣∣∣gxj ∣∣∣∣Lp =
∑
j∈N

M(γ,K, ε) =∞.

So f 6∈ Lp(R).

We proceed with a technical lemma. By showing in Lp(R) ∩ C0,γ(R) a
uniform lower bound estimate of the Lp-norm in terms of the L∞-norm we
obtain a uniform upper bound estimate of the L∞-norm in terms of the Lp-
norm. We restrict our attention to the case that p = 2, γ = 1

2 and K is fixed,
see the definition of Hölder continuity above.

Lemma 3.8. For u ∈ C0, 12 (R) it holds that ||u||L∞ ≤
4
√

23 ·
√
K ||u||L2 .

Proof. Let u ∈ C0, 12 (R) be given. Define for every x̄ ∈ R:

gx̄(x) =

 0 if |x− x̄| >
(
u(x̄)
K

)2

|u(x̄)| −K |x− x̄|
1
2 if |x− x̄| ≤

(
u(x̄)
K

)2 .
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From the Hölder condition it
follows that |u| ≥ gx̄. Since:

gx̄

(
x̄− u(x̄)2

4K2

)
=
|u(x̄)|

2
;

gx̄

(
x̄+

u(x̄)2

4K2

)
=
|u(x̄)|

2
;

it holds that:

gx̄ ≥
|u(x)|

2
χ[
x̄−u(x̄)2

4K2 ,x̄+
u(x̄)2

4K2

];

where χ denotes the characteris-
tic function of the interval. This
is illustrated by the figure on the
right.

x

x −
u(x)2

4K2
x +

u(x)2

4K2

|u(x)|
2

● ● ●

●

|u|
gx

Bound of |u| from below

Thus it holds that:

||u||2L2 ≥ ||gx̄||2L2

≥
∣∣∣∣∣∣∣∣ |u(x)|

2
χ[
x̄−u(x̄)2

4K2 ,x̄+
u(x̄)2

4K2

]∣∣∣∣∣∣∣∣2
L2

=2

(
u(x̄)2

4K2

)
·
(
|u(x̄)|

2

)2

=
u(x̄)4

23K2
.

This identity holds for every x̄ ∈ R, thus 23K2 ||u||2L2 ≥ ||u||4L∞ . Thus it holds

that: ||u||L∞ ≤
4
√

23 ·
√
K ||u||L2 .

Remark Calculating the L2-norm of gx̄ directly gives: ||gx̄||L2 = |u(x̄)|4
3K2 , so this

only improves the estimate by a constant.
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3.4 Sobolev embedding theorem

In the previous section Hölder continuity and the space C0,γ(R) have been
defined. First we define a space of functions whose derivatives up to order m
are Hölder continuous.

Definition Let m ∈ N and 0 < γ ≤ 1. Define:

C0,γ(R) :=

{
u : R→ R

∣∣∣∣ sup
x,y∈R

|u(x)− u(y)|
|x− y|γ

<∞ & ||u||L∞ <∞
}

;

Cm,γ(R) :=
{
u ∈ Cm(R)

∣∣for 0 ≤ j ≤ m it holds Dju ∈ C0,γ(R)
}

with norm:

||u||m,γ :=

m∑
j=0

∣∣∣∣Dju
∣∣∣∣
L∞

+

m∑
j=0

sup
x,y∈R

|Dju(x)−Dju(y)|
|x− y|γ

.

We now state a result on continuously embedding H1(R) and H2(R). Actu-
ally only the first embedding is used in this thesis.

Theorem 3.9. There exist continuous embeddings:

H1(R) ↪→C0, 12 (R)

H2(R) ↪→C1, 12 (R)

where each equivalence class in H1(R) respectively H2(R) is mapped to one
of its representatives. The constant K in the Hölder condition can be chosen
uniformly for bounded subsets of H1(R) respectively H2(R).

Proof. Let u ∈ H1(R), then:

u(x)− u(y) =

∫ y

x

u′(z)dz;

using the Hölder inequality (or equivalently, Cauchy-Schwarz) it holds:

|u(x)− u(y)| ≤
∫ y

x

|u′(z)| dz

= ||u′||L1[x,y]

= ||1 · u′||L1[x,y]

≤ ||1||L2[x,y] · ||u
′||L2[x,y]

≤
√
|x− y| · ||u||H1 .

So it holds that:

sup
x,y∈R

|u(x)− u(y)|
|x− y|

1
2

≤ ||u||H1 .
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So u is Hölder continuous with exponent 1
2 and constant K = ||u||H1 . So K can

be chosen uniformly for bounded subsets of H1(R).
By lemma 3.8 it holds that:

||u||L∞ ≤
4
√

23K2 ·
√
||u||L2

≤ 4
√

23 · ||u||L2

≤ 4
√

23 · ||u||H1 . (22)

so:

||u||0, 12 ≤
4
√

23 · ||u||H1 + ||u||H1

=
(

4
√

23 + 1
)
· ||u||H1 .

So the embedding H1(R) ↪→ C0, 12 (R) is well-defined and continuous.
Let u ∈ H2(R), then u and u′ are Holder continuous with exponent 1

2 and
constant K = ||u||H1 and K = ||u′||H1 respectively. By lemma 3.8 it holds that

||u||L∞ ≤
4
√

23 · ||u||H1 and ||u′||L∞ ≤
4
√

23 · ||u′||H1 respectively, so:

||u||1, 12 ≤
4
√

23 · (||u||H1 + ||u′||H1) + ||u||H1 + ||u′||H1

≤ 4
√

23 · 2 ||u||H2 + 2 ||u||H2

=2
(

4
√

23 + 1
)
· ||u||H2 .

So the embedding H2(R) ↪→ C1, 12 (R) is well-defined and continuous. It is also
clear that K can be chosen uniformly for bounded subsets of H2(R).

Corollary 3.10. For all u ∈ H1(R) with ||u||H1 ≤ ε it holds that:

||u||L∞ ≤
4
√

23ε.

From this it follows that, for v ∈ H2(R) with ||v||H2 ≤ ε:

||v||L∞ ≤
4
√

23ε;

||v′||L∞ ≤
4
√

23ε.

Proof. See equation (22) and lemma 3.4.

Corollary 3.11. Elements of H1(R) or H2(R) vanish at infinity.

Proof. Apply theorem 3.9 together with lemma 3.7.

42



3.5 Nemytskii operators on H2(R)
By interpretating a partial differential equation as an ordinary differential equa-
tion on an infinite dimensional Banach space, any reaction term has to be re-
placed by an operator on this Banach space. Since in this thesis H2(R) is chosen
to be the Banach space, we look at the induced operator on H2(R).

Definition Given a function f : R → R define the superposition or Nemytskii
operator fN to be given by:

fN : H2(R) → [R→ R]
u 7→ [x 7→ f(u(x))]

,

i.e. fN (u)(x) := f(u(x)).

By straightforward calculations we derive smoothness properties of fN from
smoothness properties of f . The results presented in this section may not be
optimal, but they are sufficient for use in this thesis. First we have the following
easy lemma.

Lemma 3.12. Let xj ≥ 0, j = 1, ..., l be given, then: l∑
j=1

xj

2

≤ l
l∑

j=1

x2
j .

Proof. It holds that:

2xjxk = x2
j + x2

k − (xj − xk)2 ≤ x2
j + x2

k

Let Bε(0) =
{
u ∈ H2(R)

∣∣ ||u||H2 ≤ ε
}

. By corollary 3.10 it holds that:

sup
||u||H2≤ε

||u||L∞ <
4
√

23ε.

So the set {u(x) ∈ R|u ∈ Bε(0), x ∈ R} is bounded in R. So the image of this set
under a continous map is also bounded. Frequent use of this kind of reasoning
is made in the proofs of lemma 3.13 and 3.15 below. Since exact knowledge
of constants is not of importance, a generic constant C is introduced that may
vary per instance.

Lemma 3.13. Suppose that f ∈ C 3(R), then:

∀ε > 0 ∃Cε > 0 ∀u, v ∈ Bε(0) : ||fN (u+ v)− fN (u)||H2 ≤ Cε ||v||H2 .
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Proof. It holds that:

(fN (u+ v)− fN (u))(x) = f(u(x) + v(x))− f(u(x))

=

∫ 1

0

f ′(u(x) + sv(x))v(x)ds.

For the first part of the Sobolev norm this yields:

||fN (u+ v)− fN (u)||2L2 =

∫
R

∣∣∣∣∫ 1

0

f ′(u(x) + sv(x))v(x)ds

∣∣∣∣2 dx
≤
∫
R
|v(x)|2

∫ 1

0

|f ′(u(x) + sv(x))|2 dsdx.

Because f ′ is continuous and ||u+ sv||L∞ ≤ 2
4
√

23ε uniformly, it follows that:

||fN (u+ v)− fN (u)||2L2 ≤
∫
R
|v(x)|2

∫ 1

0

Cdsdx = C ||v||2L2 ≤ C ||v||2H2 . (23)

For the second part of the Sobolev norm it holds that:

D2
x [(fN (u+ v)− fN (u))(x)]

= D2
x

[∫ 1

0

f ′(u(x) + sv(x))v(x)ds

]
=

∫ 1

0

D2
x [f ′(u(x) + sv(x))v(x)] ds

≤ max
s∈[0,1]

D2
x [f ′(u(x) + sv(x))v(x)]

= max
s∈[0,1]

Dx [f ′′(u(x) + sv(x))(u′(x) + sv′(x))v(x)]

+ max
s∈[0,1]

Dx [f ′(u(x) + sv(x))v′(x)]

= max
s∈[0,1]

f ′′′(u(x) + sv(x))(u′(x) + sv′(x))2v(x) (A)

+ max
s∈[0,1]

f ′′(u(x) + sv(x))Dx [(u′(x) + sv′(x))v(x)] (B)

+ max
s∈[0,1]

f ′′(u(x) + sv(x))(u′(x) + sv′(x))v′(x) (C)

+ max
s∈[0,1]

f ′(u(x) + sv(x))v′′(x). (D)

This yields, using lemma 3.12:∣∣∣∣D2
x [fN (u+ v)− fN (u)]

∣∣∣∣2
L2 =

∫
R
|A + B + C + D|2 dx

≤
∫
R

(|A|+ |B|+ |C|+ |D|)2
dx
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≤4

∫
R
|A|2 + |B|2 + |C|2 + |D|2dx

=4
(
||A||2L2 + ||B||2L2 + ||C||2L2 + ||D||2L2

)
. (24)

Still ||u+ sv||L∞ ≤
4
√

23 ||u+ sv||H2 ≤ 2
4
√

23ε uniformly, and f ′, f ′′, f ′′′ are
continuous. This yields, together with the algebra property of H1(R) (equation
(21)):

||A||L2 =

∣∣∣∣∣∣∣∣ max
s∈[0,1]

f ′′′(u+ sv)(u′ + sv′)2v

∣∣∣∣∣∣∣∣
L2

≤C max
s∈[0,1]

∣∣∣∣(u′ + sv′)2v
∣∣∣∣
H1

≤C max
s∈[0,1]

||u′ + sv′||2H1 ||v||H1

≤C ||v||H2 ;

||B||L2 =

∣∣∣∣∣∣∣∣ max
s∈[0,1]

f ′′(u+ sv)Dx [(u′(x) + sv′(x))v(x)]

∣∣∣∣∣∣∣∣
L2

≤C max
s∈[0,1]

||(u′ + sv′)v||H1

≤C max
s∈[0,1]

||u′ + sv′||H1 ||v||H1

≤C ||v||H2 ;

||C||L2 =

∣∣∣∣∣∣∣∣ max
s∈[0,1]

f ′′(u+ sv)(u′ + sv′)v′
∣∣∣∣∣∣∣∣
L2

≤C max
s∈[0,1]

||(u′ + sv′)v′||H1

≤C max
s∈[0,1]

||u′ + sv′||H1 ||v′||H1

≤C ||v||H2 ;

||D||L2 =

∣∣∣∣∣∣∣∣ max
s∈[0,1]

f ′(u+ sv)v′′
∣∣∣∣∣∣∣∣
L2

≤C ||v′′||L2

≤C ||v||H2 .

From these calculations it follows that:∣∣∣∣D2
x [fN (u+ v)− fN (u)]

∣∣∣∣2
L2 ≤ C ||v||

2
H2 . (25)

Equivalence of the various Sobolev norms (see section 3.2) together with (23)
and (25) yield:

||fN (u+ v)− fN (u)||H2 ≤ C ||fN (u+ v)− fN (u)||H̃2 ≤ Cε ||v||2H2 .
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Corollary 3.14. Let f ∈ C 3(R) and suppose that fN (0) = 0. Then it holds
that fN ∈ C (H2(R)) and fN is Lipschitz on any bounded subset of H2(R).

Proof. Let v ∈ H2(R) be given. Choose ε such that v ∈ Bε(0). By lemma 3.13,
it holds that:

||fN (v)||H2 = ||fN (0 + v)− fN (0)||H2 ≤ Cε ||v||H2 ;

so fN maps into H2(R).
Let ε > 0 and let u, v ∈ B ε

2
(0) be given, then v− u ∈ Bε(0). By lemma 3.13

it holds:

||fN (u)− fN (v)||H2 = ||fN (u)− fN (u+ (v − u))||H2 ≤ Cε ||v − u||H2 ;

so fN is Lipschitz on B ε
2
(0) with Lipschitz constant Cε. So fN is Lipschitz on

any bounded subset of H2(R).

In this thesis corollary 3.14 suffices, lemma 3.15 and theorem 3.16 are not
used. A typical application of theorem 3.16 would be to prove continuous depen-
dence on initial conditions and parameters, after a solution has been found by
applying the Banach contraction mapping theorem. The proof of the following
result is structured the same way as the proof of lemma 3.13. Recall that C is
a generic constant that may vary per instance.

Lemma 3.15. Suppose that f ∈ C 4(R), then ∀ε > 0 ∃Cε > 0 ∀u, v ∈ Bε(0) :

||fN (u+ v)− fN (u)− (Df)N (u) · v||H2 ≤ C ||v||2H2 .

So fN ∈ C1(H2(R)) and D(fN ) = (Df)N .

Proof. It holds that:

(fN (u+ v)− fN (u)− (Df)N (u) · v)(x)

= f(u(x) + v(x))− f(u(x))− f ′(u(x))v(x)

=

∫ 1

0

f ′(u(x) + sv(x))v(x)− f ′(u(x))v(x)ds

=

∫ 1

0

∫ 1

0

f ′′(u(x) + srv(x))s(v(x))2dsdr.

Substituting this into the first part of the Sobolev norm yields:

||fN (u+ v)− fN (u)− (Df)N (u) · v||2L2

=

∫
R

∣∣∣∣∫ 1

0

∫ 1

0

f ′′(u(x) + srv(x))s(v(x))2dsdr

∣∣∣∣2 dx
≤
∫
R

∣∣(v(x))2
∣∣2 ∫ 1

0

∫ 1

0

|f ′′(u(x) + srv(x))|2 dsdrdx.
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It holds that ||u+ srv||L∞ ≤ 2
4
√

23ε and because f ′′ is continuous, the following
estimate holds:

||fN (u+ v)− fN (u)− (Df)N (u) · v||2L2 ≤
∫
R

∣∣(v(x))2
∣∣2 ∫ 1

0

∫ 1

0

Cdsdrdx

≤C
∣∣∣∣v2

∣∣∣∣2
H2

≤C ||v||4H2 . (26)

Substitution into the second part of the Sobolev norm gives:

D2
x [(fN (u+ v)− fN (u)− (Df)N (u) · v)(x)]

= D2
x

[∫ 1

0

∫ 1

0

f ′′(u(x) + srv(x))s(v(x))2dsdr

]
=

∫ 1

0

∫ 1

0

D2
x

[
f ′′(u(x) + srv(x))s(v(x))2

]
dsdr

≤ max
s,r∈[0,1]

D2
x

[
f ′′(u(x) + srv(x))(v(x))2

]
= max
s,r∈[0,1]

Dx

[
f ′′′(u(x) + srv(x))(u′(x) + srv′(x))(v(x))2

]
+ max
s,r∈[0,1]

Dx [f ′′(u(x) + srv(x)) · 2v(x)v′(x)]

= max
s,r∈[0,1]

f ′′′′(u(x) + srv(x))(u′(x) + srv′(x))2(v(x))2 (A)

+ max
s,r∈[0,1]

f ′′′(u(x) + srv(x))Dx

[
(u′(x) + srv′(x))(v(x))2

]
(B)

+ max
s,r∈[0,1]

2f ′′′(u(x) + srv(x))(u′(x) + srv′(x))v(x)v′(x) (C)

+ max
s,r∈[0,1]

2f ′′(u(x) + srv(x))Dx [v(x)v′(x)] (D)

With equation (24), but now for different A, B, C, D, it suffices to esti-
mate the separate terms ||A||L2 , ||B||L2 , ||C||L2 , ||D||L2 independently. Again,

||u+ srv||L∞ ≤
4
√

23 ||u+ srv||H2 ≤ 2
4
√

23ε uniformly, so:

||A||L2 =

∣∣∣∣∣∣∣∣ max
s,r∈[0,1]

f ′′′′(u+ srv)(u′ + srv′)2v2

∣∣∣∣∣∣∣∣
L2

≤C max
s,r∈[0,1]

∣∣∣∣(u′ + srv′)2v2
∣∣∣∣
H1

≤C max
s,r∈[0,1]

||u′ + srv′||2H1 ||v||2H1

≤C ||v||2H2

||B||L2 =

∣∣∣∣∣∣∣∣ max
s,r∈[0,1]

f ′′′(u+ srv)Dx

[
(u′(x) + srv′(x))(v(x))2

]∣∣∣∣∣∣∣∣
L2

≤C max
s,r∈[0,1]

∣∣∣∣(u′ + srv′)v2
∣∣∣∣
H1

≤C max
s,r∈[0,1]

||u′ + srv′||H1 ||v||2H1
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≤C ||v||2H2

||C||L2 =

∣∣∣∣∣∣∣∣ max
s,r∈[0,1]

2f ′′′(u+ srv)(u′ + srv′)vv′
∣∣∣∣∣∣∣∣
L2

≤C max
s,r∈[0,1]

||(u′ + srv′)vv′||H1

≤C max
s,r∈[0,1]

||u′ + srv′||H1 ||v||H1 ||v′||H1

≤C ||v||2H2

||D||L2 =

∣∣∣∣∣∣∣∣ max
s,r∈[0,1]

2f ′′(u+ srv)Dx [v(x)v′(x)]

∣∣∣∣∣∣∣∣
L2

≤C ||vv′||H1

≤C ||v||H1 ||v′||H1

≤C ||v||2H2 .

From the equations above it follows that:∣∣∣∣D2
x [fN (u+ v)− fN (u)− (Df)N (u) · v]

∣∣∣∣2
L2 ≤ C ||v||

4
H2 . (27)

The result is now proven by combining (26) and (27):

||fN (u+ v)− fN (u)− (Df)N (u) · v||H2

≤ C ||fN (u+ v)− fN (u)− (Df)N (u) · v||H̃2

≤ Cε ||v||2H2 .

Theorem 3.16. Let k ≥ 3. If f ∈ C k(R) then fN ∈ C k−3(H2(R)).

Proof. For k = 3 the result has been shown by corollary 3.14. Assume that
the result holds for some k ≥ 3. Let f ∈ C k+1(R) be given arbitrarily, by
assumption (Df)N ∈ C k−3(H2(R)). By the previous lemma it holds that
D(fN ) = (Df)N , so fN ∈ C k−2(H2(R)). This ends the proof by induction.
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3.6 A related PDE for perturbations of solutions

Given a solution and a perturbed solution of a PDE, we derive that the perturba-
tion itself solves a related PDE. Let (B(t, ψ), D(B)) be an unbounded operator
and let g be a reaction term. Suppose that ψ is a solution of:

ψt = B(t, ψ)ψ + g(ψ). (28)

Now introduce:

Aψ(t, φ) :=B(t, ψ + φ); (29)

fψ(t, φ) :=B(t, ψ + φ)ψ −B(t, ψ)ψ + g(ψ + φ)− g(ψ). (30)

Using this, we introduce a related partial differential equation:

φt = Aψ(t, φ)φ+ fψ(t, φ). (31)

Theorem 3.17. Suppose that ψ is a solutions of (28). Then ψ+φ is a solution
of (28) iff φ is a solution of (31).

Proof. Suppose that ψ + φ is a solution of (28), then it holds:

φt = (ψ + φ)t − ψt
=B(t, ψ + φ)(ψ + φ) + g(ψ + φ)−B(t, ψ)ψ − g(ψ)

=Aψ(t, φ)φ+B(t, ψ + φ)ψ −B(t, ψ)ψ + g(ψ + φ)− g(ψ)

=Aψ(t, φ)φ+ fψ(t, φ);

so φ is a solution of (31).
Conversely, suppose that φ is a solution of (31), then:

(ψ + φ)t =ψt + φt

=B(ψ)ψ + g(ψ) +Aψ(φ, t, x)φ+ fψ(φ, t, x)

=B(ψ)ψ + g(ψ) +Aψ(φ, t, x)φ+Aψ(φ, t, x)ψ

−B(ψ)ψ + g(ψ + φ)− g(ψ)

=B(ψ + φ)(ψ + φ) + g(ψ + φ);

so ψ + φ is a solution of (28).

Solutions of (31) can be interpreted as perturbations of solutions of (28).
Thus they may give information on stability of solutions of (28). Another im-
portant property is that fψ vanishes at φ = 0.

Lemma 3.18. For the operator fψ(t, φ) defined above it holds that fψ(t, 0) = 0.

Proof. It holds that:

fψ(t, 0) = B(t, ψ + 0)ψ −B(t, ψ)ψ + g(ψ + 0)− g(ψ) = 0.
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