
Efficient Computations for a Class of Markov Chains and Related
Applications
Smit, L.C.

Citation
Smit, L. C. (2011). Efficient Computations for a Class of Markov Chains and Related
Applications.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in
the Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3597383

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3597383

L.C.Smit

Efficient Computations for a Class of Markov

Chains and Related Applications

Master thesis, defended on August 30, 2011

Thesis advisors:

Dr. F.M.Spieksma (Leiden)

Prof. M.N.Katehakis (Rutgers)

Specialisation: Applied Mathematics

Mathematisch Instituut, Rutgers Business School,
Universiteit Leiden Newark and

New Brunswick, NJ

2

Abstract

This thesis introduces the successive lumping procedure (SLP) to compute the steady state
probabilities for a class of Markov Chains with large state spaces. In this procedure we introduce
one or multiple successive lumping states processes. Also, this thesis studies the classical reorder
quantity, order point (Q, r) continuous review stochastic inventory model. This model has been
extensively studied in the literature and its use in practice is widespread. Using the SLP efficient
calculations can be done for this model when there are Bernoulli arrivals, a mixture of backorders,
lost sales and a random lead time. In addition, this work extends previous research in this area
by providing efficient algorithms for the computation of the optimal (Q∗, r∗) values when there
are Poisson arrivals, a multi-breakpoint discount pricing structure and a fixed lead time.

Contents

1 Introduction 5

1.1 Preface . 5

1.2 Outline . 6

2 Successively Lumpable Markov Chains 7

2.1 Introduction . 7

2.2 Definitions . 7

2.3 The Successive Lumping Method . 11

2.4 Algorithm . 14

2.5 A small state space example . 14

2.6 Multiple Successively Lumpable Markov Chains 19

2.7 Algorithm and Example . 23

3 Application on Inventory Management 25

3.1 Model Description . 25

3.2 Approach of the Model with Successive Lumping 28

3.3 Calculations . 29

3.4 Unimodality of the costfunction . 34

4 Quantity Discounts 35

4.1 Introduction . 35

4.2 Assumptions, Notation and Preliminaries . 35

4.3 Quantity Discounts . 38

4.4 Algorithms . 44

4.5 Computations . 46

4.6 Appendix A . 49

5 Concluding Remarks 55

3

4

Chapter 1

Introduction

1.1 Preface

This thesis has been written as the final stage of my master Applied Mathematics in Leiden. To
do research in the field of Inventory Management, Professor Michael Katehakis affiliated with the
Department of Management Science and Information Systems of Rutgers University in Newark,
New Jersey, agreed to guide me in this process. I am very grateful for this.
I have spent half a year in Newark, January 2011 until July 2011, and together with Professor
Katehakis I have written 2 papers, one of which is currently under review and the other will be
submitted shortly. The first paper is Chapter 4 of this Thesis and has been submitted toAnnals
of Operations Research with the title:

On Computing Optimal (Q, r) Replenishment Policies under Quantity Discounts.

Chapters 2 and 3 are on the edge of being submitted together to Operations Research. We do
not have a separate title for this paper yet.

This Master thesis handles an efficient way to compute steady state probabilities of a certain class
of Markov chains. Basically the main idea is to “lump” states in a consecutive way. Lumping
has been done before, but as far as literature research has shown, this idea is new. The class
of Markov Chains for which this successive lumping method is possible can be used in many
different applications. The example that is studied thoroughly in this thesis is from Inventory
Management, a specialization of Professor Katehakis.

My research direction was yet not fixed when I started in Newark. First I spent some time on
analyzing the known (Q, r)-inventory model, which is the basis for Chapter 4, our first paper.
The use of Quantity Discounts in the so-called EOQ model (no lead time, r = 0 and deterministic
demand) in [7], and a formula for the optimal value of Q was derived. I generalized this to the
(Q, r)−model.
Chapter 4 has been written first and has been the inspiration for Chapter 3. The concept of
inventory position and inventory level explained in Chapter 4, for example used by [2], has been
the inspiration for how to find a suitable state description for the model studied in Chapter 3.
However, because of the mixture of lost sales and backorders and therefore the loss of uniformity,
we had to modify the model on some points to do fast calculations to find the steady state

5

6 CHAPTER 1. INTRODUCTION

probabilities. After creating this model we extended our method steady state calculations to
handle a larger class of Markov Chains and named this class successively lumpable Markov
Chains.

1.2 Outline

Because this thesis is a combination of 2 separate papers, there is some discrepancy between
Chapters 2 and 3 on one hand and Chapter 4 on the other. For example in Chapter 4, P (X = i)
is denoted by pi, while in Chapters 2 and 3, because of the use of double (or triple) indices this
probability is denoted with p(i). Also, some definitions are explained twice or are stated slightly
different, since the inventory model introduced in Chapter 3 is almost the same as the inventory
model in Chapter 4. For simplicity of the exposition we will assume that the Markov Chain is
irreducible and all states are positive recurrent.
Although Chapter 4 has been written before Chapters 2 and 3, we have chosen for the present
order, since Chapters 3 and 4 handle almost the same model and Chapter 2 is a tool for the
application in Chapter 3.

Chapter 2 introduces the concept of a successively lumpable Markov Chain. In Section 2.2 single
lumping, used by [3] is explained, with different notation. In Section 2.3 a successively lumpable
Markov Chain is defined and various properties for a successively lumpable Markov Chain are
proven. In Section 2.4 an algorithm is introduced (a result of Section 2.3) and followed by a
small example in Section 2.5. Section 2.6 generalizes the main result of [3] by showing that the
successive lumping method can be used on different parts of a Markov Chain simultaneously.
Such a Markov Chain will be called a multiple successively lumpable Markov Chain. Section 2.7
gives the algorithm and an example.

Chapter 3 gives the major application for the successive lumping method introduced in Chapter
2: an inventory replenishment model with random lead time and a combination of backorders
and lost sales. This application has been the inspiration for the successive lumping method.
Unfortunately until now it has not been possible to prove convexity or unimodality over Q and
r, although Matlab graphs show that these properties are very likely to hold, as is shown on
the end of this chapter. Section 3.1 explains the model and introduces the notation. Section
3.2 shows how successive lumping can be used to derive the steady state probabilities in a
different way. Section 3.3 explains the different parameter regions that we need to study and
how the calculations differ per area. Section 3.3 shows a Matlab graph of the model for a specific
parameter choice to show the high probability of unimodality.

Chapter 4 contains the “basic” (Q, r)-model. However now the purchase price is taken into
account, since buying a large quantity at once might be cheaper: so-called quantity discounts.
In Section 4.2 we present the algorithm for finding the optimal Q and r, the proofs can be
found in the appendix of this chapter. In Section 4.3 both all-units discount (discount on every
product) and the incremental discount (discount on extra ordered products) are discussed and a
method for finding the optimal strategy are constructed. Further in Section 4.3.3 a new efficient
computation for finding the minimal value of a unimodal function is derived, under an extra
assumption on the fixed single costs per backordered product. This chapter continues with the
algorithms and an example in Sections 4.4 and 4.5 and ends with some proofs in Appendix A in
Section 4.6.

This thesis ends with some concluding remarks in Chapter 5.

Chapter 2

Successively Lumpable Markov
Chains

2.1 Introduction

In this Chapter we will introduce a new form of lumping, also known as state aggregation.
Lumping was first introduced in [8] in 1960. State aggregation is well known and used for many
applications. The process of aggregation/disaggregation is thoroughly described in [17] and [13].
In this Chapter we will show how we will lump states in a successive way and show that lumping
these states does not effect the steady state probabilities of the other states. The idea is to use
the mandatory state principle, which has been studied before in [3], [10] and [11].
Our method is different from the previous work for its successive approach, by creating new
artificial (lumped) mandatory states, which we will call entrance states. This process will be
described in Section 2.3.
In [3] a process with multiple mandatory states is described, each being the entrance state of a
bigger set. We will show that this idea can be expanded to a successive process within these sets
in Section 2.6. Both processes will be clarified with an example.

2.2 Definitions

Recall that we will assumed that all Markov Chains are irreducible and all states are positive
recurrent. Further,in this chapter we will use the following notation: A will denote a matrix,
a(i) its i-th row vector and a(i, j) its (i, j)-th element.
Let X(t) be a Markov chain on a finite (or countable) state space X . We will assume that the
state space X can be partitioned into a (possibly infinite) sequence of mutually exclusive and
exhaustive sets D = {D0, D1, . . . , DM}, i.e, M 6 ∞, ∪M

k=0Dk = X , and Dk ∩ Dk′ = ∅, when
k 6= k′. For notational convenience, the elements of each set Dk will be denoted (relabelled) as
{(k, 1), (k, 2), . . . , (k, ℓk)}, for some fixed constants ℓk 6 ∞. The transition matrix of X(t) will
be denoted by P = [p(k′, j′ | k, j)], where the ((k, j) , (k′, j′)) element is

p(k′, j′ | k, j) = Pr[X(t+ 1) = (k′, j′) |X(t) = (k, j)].

7

8 CHAPTER 2. SUCCESSIVELY LUMPABLE MARKOV CHAINS

We assume that the stationary probabilities π(k, j) = limt→∞ Pr[X(t) = (k, j)] exist. We will
use the notation

π =
(
π(0, 1), . . . , π(0, ℓ0), π(1, 1), . . . , π(1, ℓ1), . . . , π(M, 1), . . . , π(M, ℓM)

)
.

It is well known that π is the solution to the following system of equations: π P = π and
π 1 ′ = 1. Here 1 will denote a vector of ones of the same dimension as π.

We state the following definition for partition D.

Definition 2.1. A subset Dm of D has an entrance state (m, ε(Dm)) ∈ Dm if and only if

a) p(m, j |m′, j′) = 0, for all m′ 6= m with j 6= ε(Dm),

b) if the partition D has at least two sets, then there exists some (m′, j′) ∈ Dm′ with m′ 6= m
such that p(m, ε(Dm) |m′, j′) > 0.

Remark 2.1. Note that because of the positive recurrent assumption the Definition 2.1b) is
always true. It is been added for emphasis.

Note that an entrance state of a set Dm is the only state via which the set Dm can be entered
by the process X(t) from a state in X\Dm, where given two sets A and B, A\B denotes the
elements of A that do not belong to B.

Given a partition D with an entrance state (0, ε(D0)) ∈ D0 we construct the following Markov
chains.

a) A Markov process Z0(t) with state space D0 and transition matrix UD0 with elements

uD0(0, j | 0, i) =





p(0, ε(D0) | 0, i) +
∑

(k,ℓ)/∈D0

p(k, ℓ | 0, i), if j = ε(D0),

p(0, j | 0, i), otherwise.

(2.1)

b) A Markov process X1(t) with state space X1 = {(1, 0)}∪D1∪ . . .∪DM and transition matrix
P 1 where its ((k, j), (k′, j′))-th element is defined by Eq. (2.2) below if (k, j) = (k′j′) = (1, 0)
and by Eq. (2.3), in case (k, j) or (k′j′) is equal to (1, 0), but not simultaneously.

p1(1, 0 | 1, 0) =
∑

(0,ℓ′), (0,ℓ)∈D0

p(0, ℓ′ | 0, ℓ)υD0(0, ℓ), (2.2)

p1(k
′, j′ | k, j) =





∑

(0,ℓ)∈D0

p(k′, j′ | 0, ℓ)υD0(0, ℓ), if (k, j) = (1, 0),

∑

(0,ℓ)∈D0

p(0, ℓ | k, j), if (k′, j′) = (1, 0),

p(k′, j′ | k, j), otherwise,

(2.3)

where in Eqs. (2.2) and (2.3) above υD0(0, ℓ) = limt→∞ Pr[Z0(t) = (0, ℓ) |Z0(0) = (0, i)] are the
steady state probabilities of the transition matrix UD0 the elements of which are defined by Eq.
(2.1). Further,

π1 =
(
π1(1, 0);π1(1, 1), . . . , π1(1, ℓ1), . . . , π1(M, 1), . . . , π1(M, ℓM)

)

2.2. DEFINITIONS 9

will denote the vector of the steady state probabilities of the process X1. Note that with the
above notation, state (1, 0) represents the lumped states of the set D0. We have used a semicolon
in the above notation to emphasize this fact.

We will use the notation UD0 = [u′
D0

(0, 1), . . . , u′
D0

(0, ℓ0)], where u′
D0

(0, j) denotes the j-th
column of the matrix UD0 . Similarly, P = [p′(0, 1), . . . , p′(0, ℓ0), . . . , p

′(M, 1), . . . , p′(M, ℓ0)]

We will next state and prove the following two propositions.

Proposition 2.1. If D0 has an entrance state (0, ε(D0)), then the following is true for all
(0, i) ∈ D0:

υD0(0, i) =
π(0, i)∑

(0,ℓ)∈D0
π(0, ℓ)

. (2.4)

Proof. Let υD0
=
(
υD0(0, 1), . . . , υD0(0, ℓ0)

)
. It is clear that for υD0

, defined by Eq. (2.4), the
statement υD0

1 ′ = 1 holds. Further, we will show that υ D0
also satisfies:

υ D0
UD0 = υ D0

. (2.5)

By unicity of solutions to Eq (2.5) it follows that υ D0
is indeed the steady state vector. We

distinguish two cases: the entrance state (0, ε(D0)) or any of the other states. For (0, i) =
(0, ε(D0)) we will use the following:

∑

(0,j)∈D0

π(0, j)p(0, ε(D0) | 0, j) =π(0, ε(D0))−
∑

(k,ℓ)/∈D0

π(k, ℓ)p(0, ε(D0) | k, ℓ)

=π(0, ε(D0))−
∑

(k,ℓ)/∈D0

(
1−

∑

(k′,ℓ′)/∈D0

p(k′, ℓ′ | k, ℓ)π(k, ℓ)

=π(0, ε(D0))−
∑

(k,ℓ)/∈D0

π(k, ℓ)

+
∑

(k′,ℓ′),(k,ℓ)/∈D0

p(k′, ℓ′ | k, ℓ)π(k, ℓ)

=π(0, ε(D0))−
∑

(k,ℓ)/∈D0

π(k, ℓ)

+
∑

(k′,ℓ′)/∈D0


π(k′, ℓ′)−

∑

(0,j)∈D0

p(k′, ℓ′ | 0, j)π(0, j)




=π(0, ε(D0))−
∑

(0,j)∈D0

∑

(k,ℓ)/∈D0

p(k, ℓ | 0, j)π(0, j).

Using this equality we obtain:

υ D0
u′

D0
(0, ε(D0)) =

∑

(0,j)∈D0

υD0(0, j)uD0(0, ε(D0) | 0, j)

=

∑
(0,j)∈D0

π(0, j)
(
p(0, ε(D0) | 0, j) +

∑
(k,ℓ)/∈D0

p(k, ℓ | 0, i)
)

∑
(0,ℓ)∈D0

π(0, ℓ)

10 CHAPTER 2. SUCCESSIVELY LUMPABLE MARKOV CHAINS

=
π(0, ε(D0))−

∑
(0,j)∈D0

π(0, j)
∑

(k,ℓ)/∈D0
(p(k, ℓ | 0, j)− p(k, ℓ | 0, j))

∑
(0,ℓ)∈D0

π(0, ℓ)

=
π(0, ε(D0))∑
(0,ℓ)∈D0

π(0, ℓ)
.

For i 6= ε(D0):

υ D0
u′

D0
(0, i) =

∑

(0,j)∈D0

υD0(0, j)uD0(0, i | 0, j)

=
1∑

(0,ℓ)∈D0
π(0, ℓ)

∑

(0,j)∈D0

π(0, j)p(0, i | 0, j)

=
π(0, i)∑

(0,ℓ)∈D0
π(0, ℓ)

= υD0(0, i)

so the proof is complete.

For the process X1(t) we have the following result concerning the steady state distribution:

Proposition 2.2. If D0 has an entrance state (0, ε(D0)), then the following is true:

π1(k, j) =

{∑
(0,ℓ)∈D0

π(0, ℓ), if (k, j) = (1, 0),

π(k, j), otherwise.
(2.6)

Proof. First, it is clear that π1 1 ′ = 1. As in the previous proof we will show that π1 is the
solution of the linear system

π1 P 1 = π1.

For (k, j) = (1, 0):

π1 p
′
1
(1, 0) =

∑

(k′,j′)∈X1

π1(k
′, j′)p1(1, 0 | k

′, j′)

=
∑

(k′,j′)∈X1\{(1,0)}

∑

(0,ℓ)∈D0

p(0, ℓ | k′, j′)π(k′, j′)

+
∑

(0,ℓ),(0,ℓ′)∈D0

p(0, ℓ | 0, ℓ′)υD0(0, ℓ
′)

∑

(0,ℓ′′)∈D0

π(0, ℓ′′)

=
∑

(0,ℓ)∈D0

∑

(k,j)∈X1\{(1,0)}

p(0, ℓ | k, j)π(k, j) +
∑

(0,ℓ),(0,ℓ′)∈D0

p(0, ℓ | 0, ℓ′)π(0, ℓ′)

=
∑

(0,ℓ)∈D0

∑

(k′,j′)∈X

p(0, ℓ | k′, j′)π(k′, j′)

=
∑

(0,ℓ)∈D0

π(0, ℓ),

2.3. THE SUCCESSIVE LUMPING METHOD 11

Similarly for states (k, j) 6= (1, 0):

π1p
′
1
(k, j) =

∑

(k′,j′)∈X1

π1(k
′, j′)p1(k, j | k

′, j′)

=
∑

(k′,j′)∈X1\{(1,0)}

π(k′, j′)p(k, j | k′, j′)

+
∑

(0,ℓ)∈D0

p(k, j | 0, ℓ)υD0(0, ℓ)
∑

(0,ℓ′)∈D0

π(0, ℓ′)

=
∑

(k′,j′)∈X1\{(1,0)}

π(k′, j′)p(k, j | k′, j′) +
∑

(0,ℓ)∈D0

p(k, j | 0, ℓ)π(0, ℓ)

=π(k, j).

and the proof is complete.

2.3 The Successive Lumping Method

For a process X(t) with transition matrix P and state space X for which there exists a partition
D = {D0, . . . , DM}, with an entrance state (0, ε(D0)) we have shown in the previous Section
how to construct a lumped process X1(t) with state space X1 and transition matrix P 1 with the
same steady state probabilities for all states not equal to a lumped artificial state (1, 0). Further
it was shown, c.f. Proposition 1, that the steady state probabilities of the original process X(t)
can be computed for all states in D0 by proportionally distributing the steady state probability
π1(1, 0) of the process X1(t) according to the weights of the steady state probabilities υ D0

of
the process Z0(t). In this Section we show how to repeat this lumping procedure over the sets
D1, D2, . . . , successively.
We will need the following notation and definitions. Given a partition D = {D0, . . . , DM}, we
define ∆0 = D0, ∆1 = {(1, 0)} ∪ D1, ∆m = {(m, 0)} ∪ Dm, where states (m, 0) are artificial

states that are representing sets (
⋃m−1

k=0 Dk) of lumped states. We further define the partition
Dm = {∆m, Dm+1, . . . , DM}, for m = 0, . . . ,M. Also for notational consistency, we will use the
notation: X0(t) = X(t), X0 = X , D0 = D, P 0 = P , and π0 = π.

Given such a partition Dm we successively construct the following Markov chains.

a) A Markov process Zm(t) with state space ∆m and transition matrix U∆m
with

u∆m
(m, j |m, i) =





pm(m, j |m, i) +
∑

(k,ℓ)/∈∆m

p(k, ℓ |m, i), if(m, j) = (m, 0),

pm(m, j |m, i), otherwise.

(2.7)

b) A Markov process Xm+1(t) with state space Xm+1 = {(m + 1, 0)} ∪ Dm+1 ∪ . . . ∪ DM and
transition matrix Pm+1, with elements ((k, j), (k′, j′)) defined by Eq. (2.8) below if (k, j) =
(k′, j′) = (m+ 1, 0) and by Eq. (2.9) otherwise.

pm+1(m+ 1, 0 |m+ 1, 0) =
∑

(m,ℓ′), (m,ℓ)∈∆m

pm(m, ℓ′ |m, ℓ)υ∆m
(m, ℓ), (2.8)

12 CHAPTER 2. SUCCESSIVELY LUMPABLE MARKOV CHAINS

pm+1(k
′, j′ | k, j) =





∑

(m,ℓ)∈∆m

pm(k′, j′ |m, ℓ)υ∆m
(m, ℓ), if (k, j) = (m+ 1, 0),

∑

(m,ℓ)∈∆m

pm(m, ℓ | k, j), if (k′, j′) = (m+ 1, 0),

pm(k′, j′ | k, j), otherwise,

(2.9)

where in Eqs. (2.8), (2.9) above υ∆m
(m, ℓ) = limt→∞ Pr[Zm(t) = (m, ℓ)] are the steady state

probabilities of the transition matrix U∆m
defined in Eq. (2.7). Note again, that state (m+1, 0)

above is the artificial state that represents all states in the set
⋃m

k=0 Dk.

Further note that in order to compute pm+1(· | ·) we first need to compute υ∆m
(·). The vector of

the steady state probabilities of the process Xm+1 will be denoted by:

πm+1 =
(
πm+1(m, 0);πm+1(m, 1), . . . , πm+1(m, ℓm), . . . , πm+1(M, 1), . . . , πm+1(M, ℓM)

)
.

We will use the notation U∆m
= [u′

∆m
(m, 1), . . . , u′

∆m
(m, ℓm)], and

Pm = [p′
m
(m, 0); p′

m
(m, 1), . . . , p′

m
(m, ℓm), . . . , p′

m
(M, 1), . . . , p′

m
(M, ℓM)].

We next state the following definition.

Definition 2.2. A Markov Chain X(t) is called successively lumpable with respect to partition
D = {D0, . . . , DM} if and only if a) D0 has an entrance state (0, ε(D0)) and b) p(k′, j′ | k, j) = 0
for all (k′, j′), (k, j) with k′ < k and (k′, j′) 6= (0, ε(D0)).

The above condition means that a state in Dk can not be entered from a state in Dk′ when
k′ > k > 0. Note also that the definition implies that transitions out of states in Dk can only
lead to states in Dk′ with k′ > k > 0 or to the entrance state of the set ∆0.

Remark 2.2. Every Markov Chain is successively lumpable with respect to a partition D =
{D0, D1} where D0 = {(0, ε(D0))}, any single state and D1 contains the remaining states.

Proposition 2.3. If the process X0(t) with transition matrix P 0 is successively lumpable with
respect to partition D0, then Xm(t) with transition matrix Pm is successively lumpable with
respect to partition Dm, for all m = 1, . . . ,M.

Proof. To complete an induction proof we need to show that if Xm(t) with transition matrix
Pm is successively lumpable with respect to partition Dm, then Xm+1(t) with transition matrix
Pm+1 is successively lumpable with respect to partition Dm+1.

For m = 0, conditions (a) and (b) of Definition (2.2) hold by assumption on P 0 = P . We assume
the induction holds for k = 0, . . . ,m we show it holds for m+ 1.

Next, we have defined Pm+1 (c.f., Eq. (2.9)) . To show that (m + 1, 0) is the entrance state
of ∆m+1, it suffices to consider any other state (m + 1, j) of ∆m+1, and show that pm+1(m +
1, j | k, ℓ) = 0 when (k, ℓ) /∈ ∆m+1. Now by Eq. (2.9) we have

pm+1(k
′, j′ | k, j) = pm(k′, j′ | k, j) = 0,

where the last claim is the induction hypothesis (b) . For condition (b) the proof is similar.

2.3. THE SUCCESSIVE LUMPING METHOD 13

We next state the following.

Corollary 2.1. Under the assumption of Proposition 2.3 the following are true:

υ∆m
(m, i) =

πm(m, i)∑
(m,ℓ)∈∆m

πm(m, ℓ)
. (2.10)

πm+1(k, j) =





∑

(m,ℓ)∈∆m

πm(m, ℓ), if(k, j) = (m+ 1, 0),

πm(k, j), otherwise.

(2.11)

Proof. The proof is easy to complete by induction using a similar derivation as in Proposition
2.1 and 2.2, combined with the induction result of Propositions 2.3.

Using a combination of the previous results, the following theorem holds.

Theorem 2.1. If X(t) is successively lumpable, with the number of partitions M < ∞, the
following is true:

π0(m, j) = υ∆m
(m, j)

M∏

k=m+1

υ∆k
(k, 0), ∀(m, j) ∈ X0

Proof. The proof follows by induction on decreasing values of n = M,M − 1 . . . , 0 for fixed M.
For n = M, we need to show that

π0(M, j) = υ∆M
(M, j), for all (M, j) ∈ DM .

Indeed, by Corollary 2.1, we have υ∆M
(M, j) = πM (M, j)/1, where the denominator is 1 because

∆M contains all states of XM . Since j 6= 0, (i.e., (M, j) has never been lumped by our lumping
procedure) using Corollary 2.1 repeatedly we obtain πM (M, j) = πM−1(M, j) = . . . = π0(M, j),
and the proof is complete for n = M.

We next show that the claim is true for n = M − 1, i.e.,

π0(M − 1, j) = υ∆M−1(M − 1, j)

M∏

k=M

υ∆k
(k, 0).

Indeed, the right hand side of the above is

υ∆M−1(M − 1, j)υ∆M
(M, 0) =

πM−1(M − 1, j)∑
(M−1,ℓ)∈∆M−1

πM−1(M − 1, ℓ)
υ∆M

(M, 0)

=
πM−1(M − 1, j)∑

(M−1,ℓ)∈∆M−1
πM−1(M − 1, ℓ)

πM (M, 0)∑
(M,ℓ)∈∆M

πM (M, ℓ)

= πM−1(M − 1, j),

where the first two equalities follow from Corollary 2.1, Eq. (2.10) and the last one from Eq.
(2.11) and the fact that

∑
(M,ℓ)∈∆M

πM (M, ℓ) = 1, as before. The proof for n = M − 1 is

complete when we observe that πM−1(M − 1, j) = πM−2(M − 1, j) = . . . = π0(M − 1, j) since
j 6= 0, as in the case n = M.

The induction on n is easy to complete using similar arguments.

14 CHAPTER 2. SUCCESSIVELY LUMPABLE MARKOV CHAINS

2.4 Algorithm

Using the method of the previous Section, we can state an algorithm for a successively lumpable
Markov chain with respect to partition D. This algorithm does not require a proof, since it uses
Theorem 2.1 directly.

Algorithm SL
1 Construct UD0 , c.f. Eq. (2.1).
2 Calculate υ D0

.
3 Lump D0 to (1, 0) and let ∆1 = {(1, 0)} ∪D1.

Set m = 1.
While m 6 M

4.1 Construct U∆m
c.f. Eq. (2.7).

4.2 Calculate u′
∆m

.
4.3 Lump ∆m to (m+ 1, 0) and let ∆m+1 = (m+ 1, 0) ∪Dm.

m = m+ 1
End

5 Calculate π , c.f. Theorem 2.1.

2.5 A small state space example

We will clarify the previous results with a small example. Suppose we have a Markov chain X(t).
For clearance we will number the state space directly according to the notation introduced in
Section 2.3, so: X = {(0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)} and this transition
diagram P .

P =




(0, 1) (0, 2) (1, 1) (1, 2) (2, 1) (2, 2) (3, 1) (3, 2) (3, 3)
(0, 1) 0 1/3 5/9 0 0 0 0 1/9 0
(0, 2) 0 0 1/3 2/3 0 0 0 0 0
(1, 1) 0 0 0 1/6 2/3 0 1/6 0 0
(1, 2) 0 0 0 0 1/6 3/4 0 0 1/12
(2, 1) 0 0 0 0 0 1 0 0 0
(2, 2) 0 0 0 0 0 0 0 0 1
(3, 1) 1/2 0 0 0 0 0 0 1/2 0
(3, 2) 1/2 0 0 0 0 0 0 0 1/2
(3, 3) 1/2 0 0 0 0 0 1/2 0 0




We define a partition D = {D0, D1, D2, D3} with D0 = {(0, 1), (0, 2)}, D1 = {(1, 1), (1, 2)},
D2 = {(2, 1), (2, 2)} and D3 = {(3, 1), (3, 2), (3, 3)}. A graphical representation of X(t) in Figure
2.1 directly shows that X(t) is successively lumpable with respect to partition D.

The first steps of the algorithm are:

1. U
∆0

=

[
2/3 1/3
1 0

]
.

2. υ∆0
= [3/4, 1/4].

2.5. A SMALL STATE SPACE EXAMPLE 15

D0 D1 D2 D3

0, 1

0, 2

1, 1

1, 2

2, 1

2, 2

3, 1

3, 2

3, 3

Figure 2.1: Representation of possible transitions under P .

∆0

0, 1

0, 2

2
3

1
3

1

Figure 2.2: Graphical representation of U
∆0

.

Figure 2.2 illustrates this process. Now we continue with D1, already distinguished in the
picture and the numbering. We choose D1 6= ∅ in such a manner that for every p(k′, j′ | k, j)
with (k′, j′) ∈ D1 we have (k, j) ∈ D0 ∪D1.

3 Lump {(0, 1), (0, 2)} to (1, 0) and let ∆1 = {(1, 0), (1, 1), (1, 2)}

4.1 U
∆1

=




1/3 1/2 1/6
5/6 0 1/6
1 0 0




16 CHAPTER 2. SUCCESSIVELY LUMPABLE MARKOV CHAINS

4.2 υ∆1
= [4/7, 2/7, 1/7]

D1

1, 0

1, 1

1, 2

1
3

1
2

1
6

5
6

1
6

1

Figure 2.3: Graphical representation of U
∆1

.

Figure 2.3 illustrates this process.
Now, since we know υ∆1

we can construct transition probabilities of a set D2 without knowledge
of π with the use of the previous states {(1, 0), (1, 1), (1, 2)}.

4.3 Lump {(1, 0), (1, 1), (1, 2)} to (2, 0) and let ∆2 = {(2, 0), (2, 1), (2, 2)}

4.1 U
∆2

=




19/28 3/14 3/28
0 1 0
1 0 0




4.2 υ∆2
= [28/43, 6/43, 9/43]

Next we look at subset D3 and repeat the previous.

4.3 Lump {(2, 0), (2, 1), (2, 2)} to (3, 0) and let ∆3 = {(3, 0), (3, 1), (3, 2), (3, 3)}

4.1 U
∆3

=




93/129 4/129 4/129 4/129
1/2 0 1/2 0
1/2 0 0 1/2
1/2 1/2 0 0




4.2 υ∆3
= [43/67, 142/1407, 104/1407, 248/1407]

We advance to step 5 and calculate π:

2.5. A SMALL STATE SPACE EXAMPLE 17

D2

2, 0

2, 1

2, 2

19
28

3
14

3
28

1

1

Figure 2.4: Graphical representation of U
∆2

.

3, 0

D3

3, 1

3, 2

3, 3

93
129

4
129

4
129

28
129

1
2

1
2

1
2

1
2

1
2

1
2

Figure 2.5: Graphical representation of U
∆3

.

π(0, 1) = υ∆3(3, 0)υ∆2(2, 0)υ∆1(1, 0)υ∆0(0, 1) =
43

67

28

43

4

7

3

4
=

12

67

π(0, 2) = υ∆3(3, 0)υ∆2(2, 0)υ∆1(1, 0)υ∆0(0, 2) =
43

67

28

43

4

7

1

4
=

4

67

π(1, 1) = υ∆3(3, 0)υ∆2(2, 0)υ∆1(1, 1) =
43

67

28

43

2

7
=

8

67

π(1, 2) = υ∆3(3, 0)υ∆2(2, 0)υ∆1(1, 2) =
43

67

28

43

1

7
=

4

67

18 CHAPTER 2. SUCCESSIVELY LUMPABLE MARKOV CHAINS

π(2, 1) = υ∆3(3, 0)υ∆2(2, 1) =
43

67

6

43
=

6

67

π(2, 2) = υ∆3(3, 0)υ∆2(2, 2) =
43

67

9

43
=

9

67

π(3, 1) = υ∆3(3, 1) =
142

1407

π(3, 2) = υ∆3(3, 2) =
104

1407

π(3, 3) = υ∆3(3, 3) =
248

1407

To illustrate that X(t) can be successively lumpable with respect to different partitions Figure
2.6 shows Markov Chain X(t) with partition D. It is easy to see that X(t) is also successively
lumpable with respect to this partition.

Further in Figure 2.7 the original partition D is shown, but with transition matrix Pmax. In this
matrix the following holds for all m, i,m′, j′: pmax(m

′, i′ |m, j) = 0 if and only if X(t) is not
be successively lumpable with respect to partition D when pmax(m

′, i′ |m, j) > 0. For graphical
reasons loops are not displayed, but are all nonzero.

D′
0 D′

1 D′
2

D′
3

D′
4

0, 1

0, 2

1, 1

1, 2

2, 1

2, 2

3, 1

3, 2

3, 3

Figure 2.6: Representation of possible transitions under P with partition D′ = {D′
0, D

′
1, D

′
2,

D′
3, D

′
4}

2.6. MULTIPLE SUCCESSIVELY LUMPABLE MARKOV CHAINS 19

0, 1

0, 2

1, 1

1, 2

2, 1

2, 2

3, 1

3, 2

3, 3

Figure 2.7: Representation of possible transitions under Pmax.

2.6 Multiple Successively Lumpable Markov Chains

The main result of the previous Section is that we can calculate the steady state vector in a
successively lumpable way, if the Markov Chain is successively lumpable. In this Section we will
show that it is possible to have multiple lumpable processes in one Markov Chain and that in
this case it is possible to explicitly calculate the steady state vector as well. We will conclude
with an example.

Let X(t) be a Markov chain on a finite (or countable) state space X with transition matrix P .
We will assume that the state space X is composed of N mutually exclusive and exhaustive sets,
i.e.,

X =
N⋃

n=1

Xn,

where each subset Xn can be partitioned into a (possibly infinite) sequence of

Dn = {Dn
0 , . . . , D

n
Mn

}.

Alternatively the partition

D = {D1
0, . . . , D

1
M1

, . . . , DN
0 , . . . , DN

MN
}

is a sequence of N 6 ∞ subpartitions of X . For notational convenience, the elements of each
set Dn

m will be relabelled by a triple-notation as {(n,m, 1), (n,m, 2), . . . , (n,m, ℓ(n,m))}, for given

20 CHAPTER 2. SUCCESSIVELY LUMPABLE MARKOV CHAINS

constants ℓ(n,m) 6 ∞. After this state relabeling, the transition matrix of X(t) will be denoted
by P = [p(n′,m′, j′ |n,m, j)], where the ((n,m, j) , (n′,m′, j′)) element is given by

p(n′,m′, j′ |n,m, j) = Pr[X(t+ 1) = (n′,m′, j′) |X(t) = (n,m, j)].

The definition of an entrance state in this triple index notation is as follows.

Definition 2.3. A subset Dn
m of D has an entrance state (n,m, ε(Dn

m)) ∈ Dn
m if and only if

a) p(n,m, j |n′,m′, j′) = 0, for all m′ 6= m, n′ 6= n and j 6= ε(Dn
m),

b) when the partition D has at least two sets, then there exists some (n′,m′, j′) ∈ Dn′

m′ with
m′ 6= m or n′ 6= n such that p(n,m, ε(Dn

m) |n′,m′, j′) > 0.

We also define the following:

Definition 2.4. A Markov Chain X(t) is multiple successively lumpable with respect to a par-
tition D = {D1, . . . ,DN} if and only if

a) Dn
0 has an entrance state (n, 0, ε(Dn

0)), for all n = 1, . . . , N,

b) p(n,m′, j′ |n,m, j) = 0, for all (n,m′, j′), (n,m, j) with m′ < m and (n,m′, j′) 6= (n, 0, ε(Dn
0)),

and

c) p(n′,m′, j′ |n,m, j) = 0, for all (n,m, j) and (n′,m′, j′), with n 6= n′ and (n′,m′, j′) 6=
(n′, 0, ε(Dn′

0)).

The above conditions b) and c) assert that a state in Dn
m can not be entered from a state in Dn′

m′

when n = n′ ∧ m′ > m > 0 or when n′ 6= n ∧ m > 0. Note also that the definition implies that
transitions out of states in Dn

m can only lead to states in Dn
m′ with m′ > m or to the entrance

state of Dn′

0 , i.e, to state (n′, 0, ε(Dn′

0)), for any n′.

We now give the following definition.

Definition 2.5. Assume that X(t) is successively lumpable. Let Xn(t) be a Markov chain
with state space Xn and transition matrix P n, where its (n,m′, j′ |n,m, j) element is defined as
follows:

a) if (n,m′, j′)=(n, 0, ε(Dn
0)), then

pn(n,m′, j′ |n,m, j) = p(n,m′, j′ |n,m, j) +
∑

(n′,m′′,j′′)/∈Xn

p(n′,m′′, j′′ |n,m, j),

b) otherwise
pn(n,m′, j′ |n,m, j) = p(n,m′, j′ |n,m, j).

,

Lemma 2.1. When X(t) is multiple successively lumpable with respect to D, Xn(t), defined
above, is successively lumpable with respect to Dn for all n 6 N.

Proof. The transition probabilities pn(n,m′, j′ |n,m, j) can be shown to satisfy the conditions
of Definition 2.2 using Definition 2.4 a) and b) and their construction in Definition 2.5. This
becomes easier to see when pn(n,m′, j′ |n,m, j) is abbreviated to pn(m′, j′ |m, j), since n is
fixed.

2.6. MULTIPLE SUCCESSIVELY LUMPABLE MARKOV CHAINS 21

Given a partition D = {D1
0, . . . , D

1
M1

, . . . , DN
0 , . . . , DN

MN
}, we define ∆n

0 = Dn
0 , ∆

n
1 = {(n, 1, 0)}∪

Dn
1 , ∆

n
m = {(n,m, 0)} ∪ Dn

m, where states (n,m, 0) are lumped states representing
⋃m−1

k=0 Dn
k .

We also define the partition Dn
m = {∆n

m, Dm+1, . . . , DM} for m = 0, . . . ,M. Also for notational
consistency we will use the notation: X0(t) = X(t), X0 = X , Dn

0 = Dn, and P 0 = P . Anal-
ogously to the chains Zm(t) defined in Section 2.3, we define Markov Chains Zn

m(t) with state
space ∆n

m and transition matrix U n
∆m

. For notational simplicity we will abbreviate its elements
un
∆n

m
(n,m, j |n,m, i) to un

∆n
m
(j | i). To be precise:

un
∆n

m
(j | i) =





pnm(n,m, j |n,m, i) +
∑

(n,k,ℓ)/∈∆n
m

pn(n, k, ℓ |n,m, i), if (n,m, j) = (n,m, 0),

pm(m, j |m, i), otherwise.

(2.12)

Generalizing the notation of the previous Section, let π(n,m, j) = limt→∞ Pr[X(t) = (n,m, j)],
πn(n,m, j) = limt→∞ Pr[Xn(t) = (n,m, j)], υn

∆n
m
(j) = limt→∞ Pr[Zn

m(t) = (n,m, j)] and let π,

π n, υ n
∆n

m
be the corresponding vectors, with dimensions

∏N
n=1

∏Mn

m=0 ℓ
n
m,

∏Mn

m=0 ℓ
n
m, ℓnm+δ(m),

respectively, where the term “δ(m)” has been added due to the presence, m > 0, or absence,
m = 0, of an artificial state in ∆n

m .

Finally, we define a process Y (t) with state space E = {1, . . . , N} and transition matrix Q with

its (n′, n) element being equal to:

q(n′ |n) =
∑

(n′,m′,j′)∈Xn′

∑

(n,m,j)∈Xn

πn(n,m, j)p(n′,m′, j′ |n,m, j) (2.13)

We will use the notation σ(n) for the steady state probabilities of the above process, i.e., σ(n) =
limt→∞ Pr[Y (t) = n]. Note that the process Y (t) can be viewed as a process between the
different “lumped” successively lumpable processes.

We will first show the following:

Lemma 2.2. Assuming that X(t) is a multiple successively lumpable Markov Chain with Xn(t)
defined as above, the following is true:

πn(n,m, j) =
π(n,m, j)∑

(n,m′,j′)∈Xn π(n,m′, j′)
.

Proof. It is clear that πn 1 ′ = 1. Now from Definition 2.4 c) we see that Xn has an entrance
state (n, 0, ε(Dn

0)) and therefore we can use a similar derivation as is used in Proposition 2.1 to
complete the proof.

Lemma 2.3. Assuming that X(t) is a multiple successively lumpable Markov Chain with Y (t)
defined as above the following is true:

σ(n) =
∑

(n,m,j)∈Xn

π(n,m, j).

Proof. It is clear that σ 1 ′ = 1. It suffices to prove that σ is the solution of

σ(n′) =

N∑

n=1

σ(n)q(n′|n) for n′ = 1, 2, . . . , N.

22 CHAPTER 2. SUCCESSIVELY LUMPABLE MARKOV CHAINS

Indeed:

N∑

n=1

σ(n)q(n′|n) =
N∑

n=1




∑

(n,m,j)∈Xn

π(n,m, j)
∑

(n′,m′,j′)∈Xn′

∑

(n,m,j)∈Xn

πn(n,m, j)p(n′,m′, j′ |n,m, j)




=

N∑

n=1


 ∑

(n,m,j)∈Xn

π(n,m, j)
∑

(n′,m′,j′)∈Xn′

∑

(n,m,j)∈Xn

πn(n,m, j)p(n′,m′, j′ |n,m, j)∑
(n,m′,j′)∈Xn π(n,m′, j′)




=

N∑

n=1

∑

(n′,m′,j′)∈Xn′

∑

(n,m,j)∈Xn

π(n,m, j)p(n′,m′, j′ |n,m, j) (2.14)

=
∑

(n′,m′,j′)∈Xn′

∑

(n,m,j)∈X

π(n,m, j)p(n′,m′, j′ |n,m, j) (2.15)

=
∑

(n′,m′,j′)∈Xn′

π(n′,m′, j′)

= σ(n′).

The second equality above follows from Lemma 2.2. It is clear that the somations in Eqs. (2.14)
and (2.15) can be switched since they are independent.

The main result of this Section is the next theorem.

Theorem 2.2. The following is true for a multiple successively lumpable X(t) with respect to
partition D:

π(n,m, j) = σ(n)υn
∆n

m
(j)

M∏

k=m+1

υn
∆n

k
(0) for all (n,m, j) ∈ X .

Proof. Since by lemma 2.1, Xn(t) is a successively lumpable Markov chain with respect to
partition Dn we know by Theorem 2.1 that for all n

πn(n,m, j) = υn
∆n

m
(j)

M∏

k=m+1

υn
∆n

k
(0).

The proof is easy to complete using Lemmata 2.2 and 2.3.

Remark 2.3. When Mn = 1 for all n, then Theorem 2.2 has been proved by different methods
in [3].

Remark 2.4. For a multiple successively lumpable Markov Chain we can solve
∏N

n=1 Mn of sizes

ℓnmn
+ δ(mn) each, instead of one big system of size

∏N
n=1

∏Mn

m=0 ℓ
n
m. For example, if N = 104,

Mn = 104 for all n and lnmn
= 102 for all n,m, we need to solve 108 systems of size 102 instead

of 1 of size 1010.

2.7. ALGORITHM AND EXAMPLE 23

2.7 Algorithm and Example

Similar to algorithm SL for a successively lumpable Markov Chain presented in Section 2.4, we
state an algorithm for a Markov Chain that is multiple successively lumpable with respect to a
partition D = {D1, . . . ,DN}. Again, this algorithm does not require a proof, it is a direct result
of Theorem 2.2.

Algorithm MSL
For n = 1, . . .N

1.1 Construct Xn with Def. 2.5
1.2 Call Algorithm SL and solve Xn

End
2 Construct Q, c.f., Eq. (2.13)
3 Calculate σ with Lemma 2.3
4 Calculate π , c.f., Theorem 2.2

To clarify the algorithm, Figure 2.8 shows a multiple successively lumpable Markov Chain, with
N = 2,M1 = 2,M2 = 2, ℓ111 = 2, ℓ212 = 3, ℓ121 = 2, ℓ222 = 3, and the transition matrix P is given
below.

D1
1 D1

0

0, 1, 1

0, 1, 2

0, 1, 3

0, 0, 1

0, 0, 2

D2
0 D2

1

1, 0, 1

1, 0, 2

1, 1, 1

1, 1, 2

1, 1, 3

Figure 2.8: Representation of possible transitions under P .

Where P is as follows.




(0,0,1) (0,0,2) (0,1,1) (0,1,2) (0,1,3) (1,0,1) (1,0,2) (1,1,1) (1,1,2) (1,1,3)
(0, 0, 1) 0 1 0 0 0 0 0 0 0 0
(0, 0, 2) 0 0 1 0 0 0 0 0 0 0
(0, 1, 1) 0.5 0 0 0.5 0 0 0 0 0 0
(0, 1, 2) 0 0 0 0 0.2 0.8 0 0 0 0
(0, 1, 3) 0 0 0 0 0 1 0 0 0 0
(1, 0, 1) 0 0 0 0 0 0 0.6 0.4 0 0
(1, 0, 2) 0 0 0 0 0 0 0 0 0 1
(1, 1, 1) 0 0 0 0 0 0 0 0 0.2 0.8
(1, 1, 2) 0 0 0 0 0 0.5 0 0.5 0 0
(1, 1, 3) 0.2 0 0 0 0 0 0 0.8 0 0




After constructing X1 and X2, π1 and π2 are calculated with Algorithm SL as shown below.

24 CHAPTER 2. SUCCESSIVELY LUMPABLE MARKOV CHAINS

For X1:

U1

D1
0

=




(1, 0, 1) (1, 0, 2)
(1, 0, 1) 0 1
(1, 0, 2) 1 0




υ1
D1

0
= [1/2, 1/2]

U1

∆1
1

=




(1, 0, 0) (1, 1, 1) (1, 1, 2) (1, 1, 3)
(1, 0, 0) 0.5 0.5 0 0
(1, 1, 1) 0.5 0 0.5 0
(1, 1, 2) 0.8 0 0 0.2
(1, 1, 3) 1 0 0 0




υ1
∆1

1
= [20/36, 10/36, 5/36, 1/36].

And now:
π1 = [10/36, 10/36, 10/36, 5/36, 1/36].

For X2 :

U2

D2
0

=




(2, 0, 1) (2, 0, 2)
(2, 0, 1) 0.4 0.6
(2, 0, 2) 1 0




υ2
D2

0
= [5/8, 3/8]

U2

∆2
1

=




(2, 0, 0) (2, 1, 1) (2, 1, 2) (2, 1, 3)
(2, 0, 0) 0.375 0.25 0 0.375
(2, 1, 1) 0 0 0.2 0.8
(2, 1, 2) 0.5 0.5 0 0
(2, 1, 3) 0.2 0.8 0 0




υ2
∆2

1
= [104/583, 220/583, 44/583, 215/583].

And thus:
π2 = [65/583, 39/583, 220/583, 44/583, 215/583].

Now, step 2 of Algorithm MSL gives Q:

Q =




0 1
0 31/36 5/36
1 43/583 540/583


 .

Solving gives:
σ = [1548/4463, 2915/4463].

And finally step 5 of MSL gives π :

π = [430/4463, 430/4463, 430/4463, 215/4463, 43/4463,

325/4463, 195/4463, 1100/4463, 220/4463, 1075/4463].

Chapter 3

Application on Inventory
Management

3.1 Model Description

The basic order quantity - reorder point model studied herein was first introduced by [6] and
it is described in [7] (pages 181-194) as follows. The system under consideration consists of a
single installation that uses a transactions based inventory management (“reporting”) system
for a single item. There are no interactions between other items that the system may handle.

In each time interval there can be either an arrival of a single customer with probability α or no
customer arrival with probability 1− α. This type of arrival process is the discrete time analog
of a Poisson arrival process. The transaction system monitors in discrete time the inventory on
hand and an order of size Q is placed whenever the inventory on hand reaches the reorder point
r with Q and r integers.

In our model we will assume that orders are fulfilled after a random nonnegative procurement
lead time τ. As far as we know this model has not been studied before. The lead time τ takes the
values 0, 1, . . . , T with known probabilities f(t) = Pr[τ = t],

∑T
t=0 f(t) = 1. We also assume that

the value of the lead time becomes known and is announced to the waiting customers as soon as
an order is placed. Thus, each arriving customer that finds the system with no inventory left is
told the value of the remaining waiting time (remaining lead time) j and upon this information
he either chooses to wait with probability s(j), or he leaves the system with probability 1− s(j).
Often s(j) a decreasing function of j: the probability that customers will wait increases if the
remaining lead time decreases. The model including a mixture of lost sales and backorders has
been studied in [9], with a fixed probability of lost sales (s(j) = s for all j), a positive r and a
fixed lead time. When r is negative, an arriving customer may find the system with negative
inventory level greater than r, in which case he is informed that no order is pending, but he
cannot be served. It will be assumed that such a customer decides upon arrival to either stay
in the system until an order arrives (not directly placed) or to leave the system with respective
probabilities s(0) and 1− s(0).

To avoid pathological cases, we assume that there is at most one outstanding order. Because the
arrivals occur according to a Bernoulli process this assumption implies that T < Q, otherwise
there is a positive chance that there are more than Q arrivals of customers during the lead time.

25

26 CHAPTER 3. APPLICATION ON INVENTORY MANAGEMENT

Further, it is easy to see that if r < −Q it is not possible to ever have positive inventory and if
r > T the inventory is never negative.

If an order is outstanding with inventory j such that j + Q 6 0, we assume that s(j) = s(0).
This is a logical assumption since arriving customers will not be served with the next order to
arrive, and have to wait an unknown amount of time for the next order to be placed. Therefore
it makes sense to tread them as customers that arrive with an empty system without any order
outstanding.

Let ch, cp and co denote respectively the holding cost per inventory unit, the penalty costs per
backordered unit and the costs per replenishment order. Further, let cL denote the cost per
lost sale, i.e. the cost (missed income) for each customer that leaves the system if there is no
inventory on hand.

To obtain a discrete time Markov Chain model for the state evolution of the system, we first
make the following assumptions on the order of events and the way costs are incurred.
Formally, let X(t) denote the state of the system at time t. It would be neat and easy to work
with if we could only use the inventory level as indicator for the different states. Then X(t)
would have the form displayed in Figure 3.1.

r+1 r+2 r+Q-T r+Q-T+1

r-T+1

r+Q-T+2

r-T+2

r+Q-1

r-1

r+Q

r

However, it is not directly possible to construct a correct Markov Chain on this state space, since
the remaining lead time influences the customer decision, and therefore needs to be incorporated
in the state space description.

Therefore, at any point in time the system state can be summarized by the inventory level and
the remaining lead time. A negative inventory level represents the number of waiting customers.
The remaining lead time is taken to be zero if there is no order outstanding.

At any point in time the following events occur. a) There is either an arrival or no arrival of a
customer. b) If there is a customer arrival the inventory decreases by 1 or increases by Q − 1,
depending on whether there is an arrival of an outstanding order. If there is no customer arrival
the inventory stays the same or increases by Q, depending on whether there is an arrival of an
outstanding order. c) When the inventory level becomes equal to r immediately after a customer
arrival, an order is placed and the lead time value becomes known for this order. If the lead time
is zero, the placed order arrives immediately and the inventory increases with Q. d) Inventory

3.1. MODEL DESCRIPTION 27

holding cost is computed using this final inventory. Also, at any point in time the remaining lead
time decreases by 1 if it is positive (if an order is outstanding).

Including the remaining lead time in the state space to distinguish the states. So under the above
assumptions X(t) is a Markov chain on state space X defined below, where state (i, j) represent
a state with i inventory on hand an j time periods remaining lead time.

X = {(i, 0) : i = r + 1, . . . , r +Q} ∪
T⋃

j=1

{(i, j) : i = r − T + j, . . . , r}

The transition matrix of X(t) will be denoted by P = [p(i′, j′ | i, j)], where its ((i, j), (i′, j′))-
element is defined as follows, for all (i, j) ∈ X .

For notational convenience we introduce β(i, j) for state (i, j) :

β(i, j) =

{
α if i > 0,

s(j)α if i 6 0.

a) If j = 0, then

p(i− 1, 0 | i, 0) = β(i, 0) for r + 1 < i 6 r +Q,

p(i, 0 | i, 0) = 1− β(i, 0) for r + 1 6 i 6 r +Q,

p(r, j | r + 1, 0) = β(r + 1, 0)f(j) for j = 0, . . . , T,

p(i′, j′ | i, 0) = 0 otherwise.

b) If j = 1, then

p(i+Q− 1, 0 | i, 1) = β(i, 1),

p(i+Q, 0 | i, 1) = 1− β(i, 1),

p(i′, j′ | i, 1) = 0 otherwise.

b) If j > 1, then

p(i− 1, j − 1 | i, j) = β(i, j),

p(i, j − 1 | i, j) = 1− β(i, j),

p(i′, j′ | i, j) = 0 otherwise.

Figure 3.1 show a graphical representation of this model. The gray background means that an
order is outstanding in states with this background. For graphical simplicity we do not label all
arrows with their associated transition probabilities. Loops and arrows downwards leaving state
(i, j) have probability 1 − β(i, j), left and diagonal arrows leaving state (i, j) have probability
β(i, j).

28 CHAPTER 3. APPLICATION ON INVENTORY MANAGEMENT

r+1,0 r+2,0 r+Q-T,0 r+Q-T+1,0

r-T+1,1

r+Q-T+2,0

r-T+2,1

r-T+2,2

r+Q-1,0

r-1, 1

r-1,2

r-1,T-1

r+Q,0

r,1

r,2

r,T-1

r,T

f
(T

)β
(r

+
1
,0

)
f
(i
)β

(r
+
1
,0
)

f(
i)
β
(r

+
1,
0)

f(0)β(r+1,0)

Figure 3.1: General representation of the inventory model

3.2 Approach of the Model with Successive Lumping

Our first objective is to calculate the steady state probabilities of the previously defined Markov
Chain. We define partition D = {D0, . . .DT+1} of X as follows: D0 = {(r + 1, 0)}, Di =
{(r + 1 − i, 1) . . . , (r + 1 − i, T + 1 − i), (r + Q + 1 − i, 0)} for i = 1, . . . , T and DT+1 = {(r +
2, 0), . . . , (r+Q−T)}. In this model there is a natural two dimensional state description and to
avoid unnecessary complications we will not relabel the states (i.e., we do not need to refer to
the elements of set Dm as (m, i).)

We can now state and prove the following lemma.

Lemma 3.1. X(t) is successively lumpable with respect to D.

Proof. It is clear that D0 has an entrance state, since it contains only one state. Also, from the
above we have that p(i′, j′ | i, j) = 0 if (i′, j′) ∈ Dm′ and (i, j) ∈ Dm, for m > m′ > 0. Therefore
both conditions of the definition of successively lumpable are satisfied.

We will refer to the lumped state in ∆i as (r + i,−1). In the notation of the previous chapter
this lumped state would be denoted by (i − 1, 0), but as we already use this for the state with

3.3. CALCULATIONS 29

inventory level i− 1 and remaining lead time 0, we switch to (r + i,−1).

3.3 Calculations

We distinguish 5 intervals for possible values of r and Q, graphically shown in Figure 3.2. The
different areas differ by the choice of r for given Q. The structure of the transition probabilities
is the same on an area in the parameter space. Hence we study the following possibilities:

1. r 6 −Q (inventory can never be positive);

2. −Q < r < T −Q (inventory can cycle through negative states);

3. T −Q 6 r < 0 (inventory will pass a nonnegative state in every possible cycle);

4. 0 6 r < T − 1 (inventory can become negative during lead time);

5. T − 1 6 r (inventory is never negative).

r
=
T
−
Q

r
=

T
−
1

r
=
−
Q

r
=

0

T
1 T − 1

Q = T + 1

Figure 3.2: The 5 different areas.

For every area costs are calculated in a different way. Using the successive lumping method
introduced before, calculating steady states probabilities can be done in an iterative way. We
want to find expressions for holding costs Ch, penalty costs Cp, order costs Co and lost sales
costs Cl.

First we look at ∆1 = {(r+1, 0), (r, 0), . . . , (r, T), (r+Q, 0)}. This corresponding process X1(T)
is graphically shown in Figure 3.3.

Solving gives:

30 CHAPTER 3. APPLICATION ON INVENTORY MANAGEMENT

r+1,0

r+Q,0

r, 1

r,T−1

r, T

1− β(r +Q, 0)

1−
T∑

i=0

f(i)β(r + 1, 0)

f(0
)β(

r +
1, 0

)

f(1)β(r +
1, 0)

f(T − 1)β(r + 1, 0)

f(T)β(r, 0)

β(
r +

Q,
0)

β(r,
1)

β(r, T − 1)

β(r, T)1− β(r, T)

1− β(r +Q, 0)

Figure 3.3: U
∆1

υ∆1(r, T) = f(T)β(r + 1, 0)υ∆1(r + 1, 0)

υ∆1(r, k) =

T∑

i=k


f(i)

i∏

j=k+1

(1 − β(r, j))


 β(r + 1, 0)υ∆1(r + 1, 0) (3.1)

υ∆1(r +Q, 0) =

T∑

i=0


f(i)

i∏

j=1

(1− β(r, j))


 β(r + 1, 0)υ∆1(r + 1, 0)

+ (1− β(r +Q, 0))υ∆1(r +Q, 0)

=

T∑

i=0


f(i)

i∏

j=1

(1− β(r, j))


 β(r + 1, 0)

β(r +Q, 0)
υ∆1(r + 1, 0) . (3.2)

The calculation of υ∆m
follows similar lines, i.e., the process has the same structure, only

f(i)β(r + 1, 0) needs to be replaced by υ∆m−1(r − m + 1, i + 1)β(r − m + 1, i + 1) and the
transition leaving (r +Q−m, 0) to (r +Q−m+ 1, 0) needs to be taken in account. So:

υ∆m
(r −m+ 1, k) =

T−m+1∑

i=k


υ∆m−1(r −m+ 2, i+ 1)β(r−m+2, i+ 1)

i∏

j=k+1

(1 − β(r−m+1, j))


υ∆m

(r −m+ 2,−1)

3.3. CALCULATIONS 31

and

υ∆m
(r +Q−m+ 1, 0) =

(
T−m+1∑

i=0


υ∆m−1(r −m+ 2, i+ 1)β(r −m+ 2, i+ 1)

i∏

j=1

(1− β(r −m+ 1, j))




+ υ∆m−1(r +Q−m+ 2, 0)β(r +Q−m+ 2, 0)

)
υ∆m

(r −m+ 2,−1)

β(r +Q−m+ 1, 0)
.

In the sequel we use shorthand notations:

π(r −m) =

T−m∑

i=1

π(r −m, i) for m = 1, . . . , T (3.3)

π(i) = π(i, 0) for i = r + 1, . . . , r +Q. (3.4)

3.3.1 T − 1 6 r

In this case β(i, j) = α for every state (i, j). Furthermore, since there are never backorders it is
clear that Cp = Cl = 0.
Equations (3.1) and (3.2), now simplify to:

υ∆1(r, k) =

T∑

i=k

(
f(i)(1− α)i−k

)
αυ∆1(r + 1,−1)

υ∆1(r +Q, 0) =

T∑

i=0

(
f(i)(1− α)i

)
υ∆1(r + 1,−1)

and for υ∆m
:

υ∆m
(r −m+ 1, k) =

T−m+1∑

i=k

(
υ∆m−1(r −m+ 2, i+ 1)α(1 − α)i−k

)
υ∆m

(r −m+ 2,−1)

υ∆m
(r +Q−m+ 1, 0) =

(
T−m+1∑

i=0

(
υ∆m−1(r −m+ 2, i+ 1)(1− α)i

)

+ υ∆m−1(r +Q−m+ 2, 0)

)
υ∆m

(r −m+ 2,−1)

We can now state and prove the following lemma.

Lemma 3.2. For m = 1, 2, . . . , T the following holds:

υ∆m
= m/(m+ 1)

Proof. First we proof for m = 1 :

T∑

i=1

υ∆1(r, i) + υ∆1(r +Q, 0) = υ∆1(r + 1,−1) .

32 CHAPTER 3. APPLICATION ON INVENTORY MANAGEMENT

So υ∆1(r + 1,−1) = 1/2. Now, suppose the lemma is true for m− 1. Then for m:

T−m+1∑

i=1

υ∆m
(r −m+ 1, i) + υ∆m

(r +Q−m+ 1, 0) =

(
T−m+2∑

i=1

υ∆m−1(r −m+ 2, i) + υ∆m−1(r +Q−m+ 2, 0)

)
υ∆m

(r −m+ 2,−1) =

υ∆m
(r −m+ 2,−1)

m

thus υ∆m
(r −m+ 2,−1) = m/(m+ 1).

Further, in υ∆T+2 , it is clear that υ∆T+2(r + i, 0) = υ∆T+2(r + i + 1, 0) for i = 2, . . .Q − T − 2
and

υ∆T+2(r+Q−T − 1, 0) = υ∆T+1(r+Q−T, 0)υ∆T+2(r+Q−T, 0) = υ∆T+2(r+Q−T, 0)/(T +2).

Thus υ∆T+2(r +Q− T, 0) = (T + 2)/Q and υ∆T+2(r + i, 0) = 1/Q for i = 2, . . .Q− T − 1.

Now using the main result of a successively lumpable Markov Chain, and the abbreviation of
equations (3.3) and (3.4) we get that for k = 0, . . . T − 1

π(r − k) + π(r +Q− k) =
1

Q
.

and for k = 1, . . .Q− T :

π(r + k) =
1

Q
.

π(r−k) and π(r+Q−k) separately can be calculated with the successively lumpable result, but
these expressions are not very neat. Therefore we will just refer to these probabilities as π(r−k)
and π(r +Q− k).

The cost calculation will be as follows.

Ch = ch

(
r+Q∑

i=r−T+1

iπ(i)

)

= ch

(
r+Q∑

i=r+1

i/Q−Q

r∑

i=r−T+1

π(i)

)

= ch

(
Q(Q+ 2r + 1)

2Q
−Q

r∑

i=r−T+1

π(i)

)

= ch

(
Q+ 2r + 1

2
−

r∑

i=r−T+1

π(i)

)

Co = coαπ(r + 1)

=
coα

Q

It is immediately clear that increasing r will lead to higher costs. Therefore, the minimum value
in this area is at the boundary, where r = T − 1.

3.3. CALCULATIONS 33

3.3.2 r 6 −Q

In this case, the inventory will never reach a positive value. Therefore Ch = 0. Further, s(i) = s(0)
for all i by definition, since i+Q 6 0 for all i.
The derivation of the model is the same as when T − 1 6 r, only α is substituted by s(0)α.
Further, we have lost sales. The probability of a lost sale in state i is:(1− s(0)).
We calculate Co, Cp and Cl in the same way as in previous:

Cp = cp

(
r+Q∑

i=r−T+1

−iπ(i)

)
= cp

(
−(Q+ 2r + 1)

2
+Q

r∑

i=r−T+1

π(i)

)

Cl = cl(1− s(0))α

r+Q∑

i=r−T+1

π(i)

= cl(1− s(0))α

Co =
cos(0)α

Q

Again, it is clear that now decreasing r will increase the costs, thus the minimum value is at the
boundary where r = Q.

3.3.3 −Q < r < T −Q or T −Q 6 r < 0 or 0 6 r < T − 1

Calculations for these three areas follow similar lines. There is a mixture of penalty costs and
holding costs. Since the transitions differ from α to αs(0) we do not get the term 1/Q. However,
the successively lumpable procedure still gives a (fast) way to calculate π(i) for all i.

Ch = ch

r+Q∑

i=1

iπ(i)

Cp = cp

−1∑

i=r−T+1

−iπ(i)

Cl = cl




min(r,0)∑

i=r−T+1

i+T−r∑

j=1

(1 − s(j))απ(i, j) +

0∑

i=r+1

(1− s(0))π(i)




Co = coβ(r + 1, 0)π(r + 1)

The distinction between the different areas is important for the following.
When −Q 6 r < T −Q it is clear by using the successively lumpable method that

π(i) = π(r + 1) for i = r + 2, . . . , r +Q− T and

π(i) + π(i +Q) = π(r + 1) for i = r − T + 1, . . .−Q.

Similar for T −Q 6 r < 0 :

π(i) = π(r + 1) for i = r + 2, . . . 0

and for 0 6 r < T − 1:

π(i) = π(r + 1) for i = 2, . . . , r +Q − T and

π(i) + π(i+Q) = π(r + 1) for i = 1, . . . r.

34 CHAPTER 3. APPLICATION ON INVENTORY MANAGEMENT

3.4 Unimodality of the costfunction

The previous expressions have been used the cost as a function of Q and r. However, it is still
an open problem whether unimodality is true for the cost function over Q and r. Matlab graphs
show that this is very likely, for example shown in Figure 3.4 with the parameter choices given
in Table 3.4. Also, r = −10, . . . , 9 and Q = 6, . . . , 25 and we assume that s(i) = s for all i.

T co ch cp cl α s

5 100 1 5 10 0.8 0.3

Table 3.1: Model parameters.

−8 −6 −4 −2 0 2 4 4 8 10

6

8

10

1215

20

25

30

35

40

45

Q

C
(Q

,r
)

Figure 3.4: The costfunction over Q and r.

Chapter 4

Quantity Discounts

4.1 Introduction

This Chapter treats the classical order quantity, reorder point (Q, r) continuous review stochastic
inventory model with Poisson arrivals and a fixed lead time under quantity discount pricing, c.f.,
[7]. Procedures for both all-units and incremental quantity discount schedules are provided. The
term all-units refers to the discount schedule where a discount is given for all ordered products,
once you order more than a given breakpoint, multiple breakpoints are possible. Incremental
refers to the discount schedule where a discount is only given for the number of products ordered
above a certain ordering level.

For the case of a single ordering price, an efficient algorithm for this problem has been described
in [2]. This article generalizes this previous work by constructing algorithms for both all-units
and incremental quantity discount schedules. The quantity discounts studied herein are discussed
in the context of the “EOQ” model, in [7], pp. 62 to 68.

For other literature related to inventory management with quantity discounts, we refer to [15],
[16] and [14]. For a review of this general area we refer to [1] and [5].

This chapter is organized as follows. In Section 4.2 we review the work of [2] and [7] and give
some of the proofs, others are given in appendix A in Section 4.6. Section 4.3 contains the main
results of this paper regarding algorithms and complexity. Further, in this section it is shown
that a computational improvement of the order of O(r∗) is possible when one uses a normal
approximation to the Poisson distribution. Section 4.4 contains the algorithms and Section 4.5
provides computational and graphical illustrations.

4.2 Assumptions, Notation and Preliminaries

The basic order quantity - reorder point model studied herein was first introduced by [6] and it
is described in [7] (pages 181-194) as follows. A system under consideration consists of a single
installation that uses a transactions based inventory management (“reporting”) system for a
single item. There are no interactions between other items that the system may handle.

Let Nτ t denote the number of arrivals (which is the cumulative demand in the time interval

35

36 CHAPTER 4. QUANTITY DISCOUNTS

(t − τ, t], arrivals occur according to a Poisson Process. We denote: pk = P (Nτ t = k) =

e−λτ (λτ)k/k! and Pj =
∑j

k=0 pk = P (Nτ t 6 j). Further, there is a fixed, positive, procurement
lead time τ. A stochastic lead time was discussed in the previous Chapters, without quantity
discounts. The transaction system monitors continuously the inventory position, defined as the
inventory on hand plus the quantity on order - if any. The policy employed is determined by two
integer values Q (the order quantity) and r (the reorder level) such that an order of size Q > 0 is
placed when the inventory position reaches the reorder level r. In this model the demand variable
is discrete, the order quantity Q, the reorder point r, and all the inventory levels will also be
treated as discrete.

Let ch and cp denote respectively the holding cost per inventory unit and the penalty costs
per backordered unit per time unit. Let cp̃, cK denote respectively the fixed single costs per
backordered unit and the costs per replenishment order.

Finally let ci denote the unit ordering cost (unit price) per product when the quantity ordered
is in the ith price interval: [bi, bi+1), for i = 1, . . . ,M, where M is the fixed number of pricing
intervals, with b1 = 0 and bM+1 = ∞.

The time unit is taken to be a year and the optimal values of Q and r are those that minimize
the annual expected cost. To avoid trivialities: ch, cK and ci are assumed to be positive as well
as that at least one of the costs: cp, cp̃ is positive. Further, without loss of generality we will
assume that

ci > ci+1 for all i = 0, 1, . . . ,M.

Also, for notational convenience we will rename

ci = ciλ, cK = cKλ and cp̃ = cp̃λ. (4.1)

Definitions.
a) A sequence of real numbers {d1, d2, . . .} is said to be unimodal if there exists a finite index k∗

called the mode such dj decreases as j increases up to j = k∗ and then increases from then on,
i.e., d1 > d2 > . . . > dk∗ < dk∗+1 6 dk∗+2 6 . . .

b) We call a real function g on the integers unimodal if there exists a minimizing point x∗ such
that . . . > g(x∗ − 1) > g(x∗) < g(x∗ + 1) 6 g(x∗ + 2) 6

c) For a umimodal function g we define the x−mode to be the point xg:

xg = min{x : g(x− 1) > g(x) < g(x+ 1)}.

d) For a fixed unimodal function g and for any k > 1 define the set of points Lg
k = {x1, . . . , xk}

as follows:

x1 = xg,

x2 = argminx{g(x), x /∈ {x1}},

...
...

xk = argminx{g(x), x /∈ {x1, . . . , xk−1}}.

Remark 4.1. From the definition of unimodality it follows easily that each set Lg
k contains k

adjacent points, by expanding the set to the left or to the right in each iteration.

4.2. ASSUMPTIONS, NOTATION AND PRELIMINARIES 37

Theorem 4.1 and Lemma 4.1 below are due to [2] (see also, [16]). Theorem 4.1 provides an
expression of the annual cost C(Q, r), without quantity discounts, in terms of a unimodal function
G. Further, it is shown that for this G, its x−mode point xG exists (i.e. the “min” is well defined
above) and it is the maximal minimizing point ofG. Lemma 4.1 provides a simple characterization
for r∗(Q) that minimizes C(Q, r), with respect to r for a fixed Q > 0. Also, Lemma 4.1 gives
the minimum value C(Q∗, r∗(Q∗)) of C(Q, r), with respect to Q and r, in terms of G. Further
it provides an implicit solution for Q∗ (and thus r∗ = r∗(Q∗)) in terms of a condition on G and
the function of Q defined as follows: C∗(Q) := minr C(Q, r). A proof of Theorem 4.1 is included
in the appendix of this Chapter. We repeat both Theorem 4.1 and Lemma 4.1 for clarification
and the proves are partly along different lines.

Theorem 4.1. The following are true:
a)

C(Q, r) = cK/Q+

r+Q∑

x=r+1

G(x)/Q, (4.2)

where,

G(x) = (ch + cp)

x−1∑

i=0

Pi + cp(λτ − x) + cp̃(1− Px−1).. (4.3)

b) The function G(x) is unimodal and its x−mode point xG is its maximal minimizing point.

Remark 4.2. If cp > 0, simple algebra implies: G(x + 1) −G(x) = −cp < 0 (for all x < 0.) It
then follows that xG is the unique minimizing point of G(x).

In the sequel xG will always refer to the x − mode of G, and LG
Q{x1, . . . , xQ} are the sets

constructed as in Definition d) above for G.

Lemma 4.1. a) For any fixed positive integer Q, C(Q, r), is minimized with respect to r at
r∗ = minLG

Q − 1, and C∗(Q) := minr C(Q, r) is given by:

C∗(Q) =
cK +

∑Q
i=1 G(xi)

Q
. (4.4)

b) The value Q∗ = min{Q : G(xQ+1) < C∗(Q)} is the optimal order quantity i.e.,
minQ,r{C(Q, r} = C(Q∗, r∗(Q∗))).

Proof. For a) note that the unimodality of G and Remark 4.1 imply that LG
Q contains Q adjacent

integers andG(x1), . . . , G(xQ) are the smallest values ofG(x). Then
∑Q

i=1 G(xi) is the summation
of the Q smallest values of G(x), corresponding to C(Q, r) attaining a minimum at r = r∗ =
minLG

Q − 1.

For part b) we first show that the following inequalities are equivalent.

C∗(Q+ 1) 6 C∗(Q) (4.5)

G(xQ+1) < C∗(Q). (4.6)

The proof of the equivalence is by noticing that C∗(Q+1)−C∗(Q) = (QC∗(Q)+G(xQ+1)/(Q+
1)− C∗(Q) = (G(xQ+1)− C∗(Q)/(Q+ 1)), and the equivalence follows directly.

38 CHAPTER 4. QUANTITY DISCOUNTS

Now, note that if Q > Q∗ we have:

C∗(Q)− C∗(Q∗) =
cK +

∑Q
i=1 G(xi)

Q
− C∗(Q∗)

=
cK +

∑Q∗

i=1 G(xi)

Q
+

∑Q
i=Q∗+1 G(xi)

Q
− C∗(Q∗)

=
1

Q


Q∗C∗(Q∗) +

Q∑

i=Q∗+1

G(xi)−QC∗(Q∗)




>
Q−Q∗

Q
(G(xQ∗+1)− C∗(Q∗))

> 0,

where the first inequality above follows using
∑Q

i=Q∗+1 G(xi) >
∑Q

i=Q∗+1 G(xQ∗+1) = (Q −
Q∗)G(xQ∗+1).

Remark 4.3. Note that Q∗ is not the x-mode: Q∗ is the size of set LG
Q∗) and has the property

that adding an extra point will lead to a higher value of C∗(Q∗ + 1).

Now, using the previous lemma, a process for finding (Q∗, r∗) works as follows: first find xG, by
comparing G(x+ 1) with G(x), starting at x = 0, and stop when G(x+ 1) > G(x).

After finding x1 = xG, we continue to the second stage with initializing Q = 1, C∗(Q) =
cK +G(xG) and also LG

1 = xG.

Next, we compare G(xQ+1) with C∗(Q), with xQ+1 defined as in the previous. If G(xQ+1) >
C∗(Q) we stop, and C∗ = C∗(Q), Q∗ = Q and r∗ = min(LG

Q)− 1.
If not, C∗(Q+ 1) = (QC∗(Q) +G(xQ+1))/(Q + 1), Q = Q+ 1, and we repeat the process.

4.3 Quantity Discounts

In this Section we consider the case when the unit ordering cost (unit price) depends on the
quantity ordered Q and it is ci per unit of the product when Q is in the ith price interval:
[bi, bi+1), for i = 1, . . . ,M, where M + 1 > 2, is a fixed number of pricing intervals, with b1 = 0
and bM+1 = ∞. Both all-units and incremental discounts are considered. Note that in the
previous Section, the cost function C(Q, r) did not contain unit ordering costs, since they were
all equal and therefore they did not influence the values of Q∗ and r∗.

Let CD(Q, r) denote the expected annual cost function, including the average unit price. If
D = A, CD(Q, r) will refer to the all units case and if D = I it will refer to the incremental case.
For CD(Q, r) we state the following lemma (with G(x) as in the previous Section):

Lemma 4.2.

CD(Q, r) =
(cK +Ri(Q)) +

∑r+Q
x=r+1G(x)

Q
+ ci(Q), (4.7)

where i(Q) is the unique i for which Q ∈ [bi, bi+1). and

Ri =

{ ∑i
j=1 bj(cj−1 − cj), if D=I,

0, if D=A.

4.3. QUANTITY DISCOUNTS 39

Proof. Let cavD (Q) be the average unit ordering cost, for D = A, I. Then:

cavA ((Q) = (Qci(Q))/Q

= ci(Q), for the all-units case. (4.8)

cavI (Q) =
(
ci(Q)(Q− bi(Q)) + ci(Q)−1(bi(Q) − bi(Q)−1) + . . .+ c0(b1 − 0)

)
/Q

=
(
Qci(Q) + bi(Q)(ci(Q)−1 − ci(Q)) + . . .+ b1(c0 − c1)

)
/Q

=

i(Q)∑

j=1

bj(cj−1 − cj)/Q+ ci(Q), for the incremental case. (4.9)

Furthermore, CD(Q, r) is by definition:

CD(Q, r) = cK
1

Q
+ ch

r+Q∑

x=0

xπx − cp

0∑

x=−∞

xπx + cp̃

0∑

x=−∞

πx + cavD (Q)

The proof can be now completed using Lemma 4.9 and Eq. (4.8), (4.9).

4.3.1 The All Units Discount Case

In this case we have:
CA(Q, r) = C(Q, r) + ci(Q),

where C(Q, r) is the cost function of Section 2.
Furthermore, define

C∗
A(i) = minQ,r{CA(Q, r) : Q ∈ [bi, bi+1)},

and
C∗

A = mini C
∗
A(i).

In Section 2 unimodality of G was used for creating a stopping criterion for finding Q∗ that
minimizes C∗(Q) = minrC(Q, r), which was in turn used to minimize C(Q, r).
However in the present case the unimodality of G does not suffice directly to construct stopping
criteria for an algorithm. This is achieved by the following two lemmata, Lemma 4.3 describes a
useful property of C∗(Q).

Lemma 4.3. For any integers Q′ and Q′′ with Q′′ > Q′ > Q∗ the following holds: C∗(Q′′) >
C∗(Q′).

Proof. First we will look at the difference between C∗(Q′′) and C∗(Q′). By the same arguments
as in Lemma 4.1 we get that:

C∗(Q′′)− C∗(Q′) >
Q′′ −Q′

Q′′
(G(xQ′+1)− C∗(Q′)) . (4.10)

Now, we will prove the lemma by contradiction. If C∗(Q′′) < C∗(Q′), then by (4.10) we get that
G(xQ′+1) < C∗(Q′). If this is true, then:

G(xQ′+1) <
cK +

∑Q′

i=0 G(xi)

Q′
.

40 CHAPTER 4. QUANTITY DISCOUNTS

It is clear that this can only hold if cK = Q′G(xQ′+1)−
∑Q′

i=0 G(xi) + α, for some α > 0.
We look at C∗(Q∗). In the first inequality we use that G(xQ′+1) > G(xi) for all i 6 Q′.

C∗(Q∗) =
Q′G(xQ′+1)−

∑Q′

i=0 G(xi) + α+
∑Q∗

i=0 G(xi)

Q∗

=
Q∗G(xQ′+1) + α+ (Q′ −Q∗)G(xQ′+1)−

∑Q′

i=Q∗+1 G(xi)

Q∗

> G(xQ′+1) +
α

Q∗

> G(xQ′+1) +
α

Q′

> C∗(Q′).

The above implies C∗(Q′) < C∗(Q∗) and this is a contradiction to the definition of Q∗. Thus,
G(xQ′+1) > C∗(Q′) and by (4.10) we have C∗(Q′′) > C∗(Q′).

Recall, CA(Q, r) equals C(Q, r) + ci(Q) if we get all-units discounts. The results from Lemma
4.1 (b) and Lemma 4.3 will form the basis for the next lemma, with Q∗ the previously defined
optimal order quantity of C(Q, r) and r∗(Q) = LG

Q − 1.

Lemma 4.4. For the expected all-units discount cost function CA(Q, r), the following hold:

a) C∗
A(i) > C∗

A(i(Q
∗)) for all i < i(Q∗),

b) C∗
A(i) = CA(bi, r

∗(bi)) for all i > i(Q∗).

Proof. Note that for every Q < bi(Q∗) by definition ci(Q∗) < ci(Q). This implies that, for every
Q < Q∗:

CA(Q, r) = C(Q, r) + ci(Q),

> C(Q, r) + ci(Q∗)

> C∗(Q∗) + ci(Q∗).

> C∗
A(i(Q

∗)).

The proof of part a) is complete by noting that the validity of the above inequality for every
Q < Q∗ implies its validity for C∗

A(i), with i < i(Q∗).
For the proof of part b) note that Lemma 4.3 implies:

CA(bi, r
∗(bi)) = C∗(bi) + ci

6 C∗(Q) + ci for all Q ∈ [bi, bi+1).

Corollary 4.1. In the all units discount case the following are true,

C∗
A = mini>i(Q∗){C

∗ + ci(Q∗), C∗(bi) + ci}.

Q∗
A = argminQ (CA(Q, r∗A(Q)), with Q ∈ {Q∗, bi, for i > i(Q∗)}).

r∗A = rA(Q
∗
A).

4.3. QUANTITY DISCOUNTS 41

Proof. It follows immediately from Lemma 4.4.

Corollary 4.1 suggests a procedure for determining the minimal value of C∗
A:

We start with finding C∗, Q∗ and r∗, according to the process described for the case without
quantity discounts. Then C∗

A(i(Q
∗)) = C∗ + ci(Q∗). Next, determine r∗(bi(Q∗)+j) and compute

C∗
A(i(Q

∗) + j) = C∗(bi(Q)+j) + ci(Q∗)+j for 1 6 j 6 M . Compute the minimum of all these
values. The overall minimum is C∗

A, with (Q∗
A, r

∗
A) the corresponding order quantity and reorder

level.

4.3.2 The Incremental Discount Case

In this case we have:

CI(Q, r) = Ci(Q)(Q, r) + ci(Q), (4.11)

where Ci(Q)(Q, r) is the general cost function for the case without quantity discounts, where,
instead of cK , we use cK + Ri(Q) as the order costs. As before i(Q) is the unique i for which
Q ∈ [bi, bi+1) and

Ri =

i∑

j=1

bj(cj−1 − cj).

Again, the unimodality of G does not suffice to construct stopping criteria for an algorithm
to determine the minimal costs. As in the all units discounts case, we will derive a different
procedure for finding (Q∗

I , r
∗
I) to minimize CI(Q, r).

Towards this end we introduce the functions:

ĈI(Q, r, i) = Ci(Q, r) + ci, (4.12)

where Ci(Q, r) is the general cost function for the case without quantity discounts, where, instead
of cK , we use cK + Ri as the order costs, independent of Q. The idea behind these functions,
is that these functions can be treated as the general cost function for the case without quantity
discounts plus a constant. In this way the results for the case without quantity discounts can be
used directly.
We also define the following:

Ĉ∗
I (i) = min

Q,r
{ĈI(Q, r, i)}.

A minimizing point for the unconstrained problem Ĉ∗
I (i) = minQ,r{ĈI(Q, r, i)} will be denoted

by (Q∗
i , r

∗
i). This minimizing point will be called achievable if Q∗

i ∈ [bi, bi+1).

Let A be the set of i such that (Q∗
i , r

∗
i) is achievable. For such an achievable point we have by

definition Ĉ∗
I (Q

∗
i , r

∗
i , i) = CI(Q

∗
i , r

∗
i).

Lemma 4.5. For the “cost” function ĈI(Q, r, i) there is a price domain [bio , bio+1) for which
io ∈ A.

42 CHAPTER 4. QUANTITY DISCOUNTS

Proof. Note that the assumption 0 6 ci+1 < ci, for all i < M implies that the set up “costs”
cK + Ri are increasing in i : Ri+1 > Ri. Because G(x) is the same for Ci(Q, r) and Ci+1(Q, r)
we have:

C∗
i+1(Qi+1)) =

C∗
i (Q) + (Ri+1 − Ri)

Q
.

Then it is easy to see that:
Q∗

i+1 > Q∗
i . (4.13)

Now, suppose that i 6∈ A for every i. Because Q∗
i is increasing over i and the intervals are

positioned in an increasing way as well, there are four cases possible if the assumption is true.
It is easy to see that the cases below are the only possible cases. We will show that each case
leads to a contradiction.

Case 1: ∃i1, i2, with i1 < i2, such that Q∗
i > bi+1, for all i 6 i1 and Q∗

i 6 bi, for all i > i2.

In this case, there is a j with i1 6 j < i2 for which Q∗
j−1 > bj and Q∗

j+1 6 bj+1, by the increasing
property of Q∗

i . This means that Q∗
j is achievable, a contradiction to our assumption.

Case 2: ∃j such that Q∗
i < bi, ∀i 6 j and Q∗

i+1 > bi+1, ∀i > j.

Recall that b1 = 0 and bM+1 = ∞. In this case the only solution can be a Q∗
0 < 0 However, for

all i Theorem 4.1 implies 0 < Q∗
i < ∞ which is a contradiction.

Case 3: For all i : Q∗
i < bi.

A contradiction can be obtained as in case 2.

Case 4: For all i : Q∗
i > bi+1.

In this case Q∗
M > ∞ a contradiction.

All the cases lead to a (trivial) contradiction and therefore there is an index io for which io ∈ A,
i.e. A is not the empty set.

Now we know, Ĉ∗
I (Q

∗
i , r

∗
i , i) = CI(Q

∗
i , r

∗
i) for some i, next we will show that C∗

I = CI(Q
∗
i , r

∗
i) for

some i.

Lemma 4.6. The solution to C∗
I = minQ,r{CI(Q, r)}, is the minimum of Ĉ∗

I (i) for which i ∈ A.

Proof. In the this proof we will denote price interval [bi, bi+1) by price interval i.
Let Q∗

I be the optimal order quantity. As said before, Q∗
I can not be b1 = 0. If Q∗

I is not Q∗
i

for all i ∈ A, then using the unimodality of Ci(Q, r) this is the global minimum of C∗
i (Q). Q∗

I

occurs at a boundary point bi for some i or at bi − 1 for some i.

If Q = bi (i > 0) is a local minimum of CI(Q, r∗(Q)) then CI(Q, r∗(Q)) is increasing for Q in
the entire price interval i and strictly decreasing for Q in price interval i− 1. This is clear from
Lemma 4.3.

Then by Theorem 4.1 we get that Q∗
i < bi and Q∗

i−1 > bi, and therefore Q∗
i < Q∗

i−1. which is not
possible, by virtue of Lemma 4.5. So Q = bi can not be the global minimum of CI(Q, r∗(Q)),

and thus Q∗ ∈ (bi, bi+1) for some bi and then C∗
I is the minimum of Ĉ∗

I (i) for which i ∈ A. A
similar argument shows that Q = bi− 1 can not be the global minimum if Q is not the minimum
of C∗

i (Q, r∗(Q)).

4.3. QUANTITY DISCOUNTS 43

Corollary 4.2. In the incremental case, C∗
I is the minimum of all achievable solutions of Ĉ∗

I (i)
which exists for at least one i.

Proof. It is a direct consequence of Lemmata 4.5 and 4.6.

Now, a process of computing (Q∗
I , r

∗
I) works by finding all the (Q∗

i , r
∗
i) (the minimizers of Ci(Q, r),

found as in the no discount case), checking if they are achievable and comparing the corresponding
CI(Q

∗
i , r

∗
i). The minimum of these values is C∗

I .

4.3.3 Efficient computation of the x−mode of G when cp̃ = 0

Next we point out that when cp̃ = 0, the computation of the x−mode point xG, c.f., Definition
(c), can be done more efficiently using the observation of the lemma below, where P−1 is the
inverse cumulative distribution function of the Poisson distribution P .

Lemma 4.7. If cp̃ = 0 then xG = P−1(cp/(cp + ch)).

Proof. Since cp̃ = 0, simple algebra using Eq. (4.3) shows that

G(x + 1)−G(x) = (ch + cp)Px − cp. (4.14)

The above and the definition of xG imply the following:

PxG−1 6 cp/(ch + cp),

PxG > cp/(ch + cp).

The proof is easy to complete.

Note that in the above proof the argument for the difference G(x+1)−G(x) is analogous to the
one used in the context of the newsvendor model, c.f. [7], p. 297.

Further, one can use the Normal approximation to PxG to obtain the easily computable expression
for xG = P−1(cp/(cp + ch)) ≈ F−1(cp/(cp + ch)), where F is the normal cumulative distribution
with mean µ = λτ and variance σ2 = λτ , c.f., [4].

Indeed, as Table 4.1 displays the exact value of xG and the corresponding value of F−1(cp/(cp+
ch), we see that in all cases when F−1(cp/(cp + ch) is rounded to its closest integer we obtain
the exact value for xG. In Table 4.1 below ρ denotes the fraction cp/(cp + ch).

λτ = 10 λτ = 50 λτ = 100 λτ = 250

ρ xG F−1(ρ) xG F−1(ρ) xG F−1(ρ)) xG F−1(ρ)
0.1 6 5.9 41 40.9 87 87.2 230 229.7
0.3 8 8.3 46 46.3 95 94.8 242 241.7
0.5 10 10.0 50 50.0 100 100.0 250 250.0
0.7 12 11.7 54 53.7 105 105.2 258 258.3
0.9 14 14.1 59 59.1 113 112.8 270 270.3

Table 4.1: Display of xG with corresponding values of F−1(cp/(cp + ch)).

44 CHAPTER 4. QUANTITY DISCOUNTS

4.4 Algorithms

The procedures described in the previous Section can be presented as statement algorithms.
The NoDiscounts-algorithm is meant for the computation of a global optimum when there
are no quantity discounts. The AllUnits and Incremental algorithms work according to the
procedures described in Corollary 4.1 and 4.2.

AllUnits first calls NoDiscounts to find the value of C∗, then finds the corresponding interval
and adds G(x1 − 1) or G(xQ + 1) until LG

Q contains bi points, so Q = bi. Then it compares the
current lowest value with the corresponding costs. This is done for all bi, with i > i(Q∗).

Incremental calls NoDiscounts once for each price interval with the corresponding value Ri,
i = 0, . . . ,M and it computes the minimum of ĈI(i). It checks whether i ∈ A, and if i ∈ A it
compares C∗ + ci with the up to then minimum value of C∗ + cj for j ∈ A and j 6 i− 1 defined
in the algorithm as CI . When i = M, C∗

I = CI .
For notational convenience, all parameters in the algorithms are not defined explicitly as inputs
but we assume they are global. Also, the results returned by NoDiscounts are used with the
same notation in AllUnits and Incremental. Finally computations for G(x) are done by
using Eq. (4.15) below.

G(x) = (ch + cp)

x−1∑

i=0

Pi + cp(λτ − x) + cp̃(1− Px−1)

= (ch + cp)(xPx−1 − λτPx−2) + cp(λτ − x) + cp̃(1 − Px−1). (4.15)

NoDiscounts(K)
If cp̃ > 0

i = 0
While G(i+ 1) < G(i)

i = i+ 1
End
x1 = i

Else
x1 = F−1(cp/(ch + cp))
G(x1) = (ch + cp)(x1Px1−1 − λτPx1−2) + cp(λτ − x1)

End
SumG = G(x1); C = K +G(x1); Q = 1; r = x1 − 1; r = x1 + 1
While C > G(r) and C > G(r)

If G(r) < G(r)
SumG = SumG+G(r); r = r − 1

Else
SumG = SumG+G(r); r = r + 1

End
Q = Q+ 1; C = (K + SumG)/Q

End
C∗ = C; Q∗ = Q; r∗ = r;

Return C∗; Q∗; r∗

AllUnits

4.4. ALGORITHMS 45

Call NoDiscounts(cK)
i = 0
While bi+1 6 Q∗

i = i+ 1
End
CA = C∗ + ci; QA = Q∗; rA = r∗; rA = r∗ +Q∗ + 1; bi = Q∗

For j = i : M − 1
For k = 1 : bj+1 − bj

If G(rA)< G(rA)
SumG = SumG+G(rA); rA = rA − 1

Else
SumG = SumG+G(rA); rA = rA + 1

End
End
If (cK + SumG)/bj+1 + cj+1 < CA

CA = (cK + SumG)/bj+1 + cj+1; QA = bj ; rA = rA;
End

End
C∗

A = CA; Q
∗
A = QA; r

∗
A = rA;

Return C∗
A; Q

∗
A; r

∗
A

Incremental

CI = ∞
For i = 0 : M

Call NoDiscounts(cK +Ri)
If bi 6 Q∗ < bi+1 and C∗ + ci < CI

CI = C∗ + ci; QI = Q∗; rI = r∗;
End

End
C∗

I = CI ; Q
∗
I = QI ; r

∗
I = rI ;

Return C∗
I ; Q

∗
I ; r

∗
I

In the next theorem we assume that the computation of Px is can be done in O(1).

Theorem 4.2. Algorithms AllUnits and Incremental have complexity O(Q∗+ |r∗|+ bmM)
and O((Q∗ + |r∗|)M) respectively. If cp̃ = 0, the complexities are O(Q∗ + bmM) and O(Q∗M).

Proof. The complexity of NoDiscounts is O(Q∗ + |r∗|): it consists of two while loops, where
every loop has length O(1). The first while-loop runs in at most |r∗|+ i, iterations, with i < Q∗

(since xG 6 |r∗| + Q∗), and the second loop in Q∗ steps. Together both loops take at most
Q∗ + |r∗|+ i iterations with complexity O(Q∗ + |r∗|).

AllUnits runs NoDiscounts once and afterwards a loop of bi iterations and a double loop with
at most (M − bi)bm iterations. So AllUnits has complexity O(Q∗+ |r∗|+ bmM). Furthermore,
AllUnits is correct since Corollary 4.1.

Incremental calls NoDiscounts and makes 2 single computations each loops. Therefore,
NoDiscounts has complexity O((Q∗ + r∗)M).

46 CHAPTER 4. QUANTITY DISCOUNTS

Remark 4.4. a) If cp̃ = 0, one can use the Normal Approximation to replace the first loop of
NoDiscounts, see proof of theorem 4.2 above, by a single computation. Then, the complexities
of the AllUnits and the Incremental algorithms become respectively O(Q∗ + bmM) and
O(Q∗M).

b) It is preferable to express the complexity in terms of exogenous parameters ch, cp, cp̃, M,
b, c, λ, τ . However, in this model this is not possible, because there are too many parameters
and they have correlated effects.

4.5 Computations

To test the algorithms and demonstrate some of the issues discussed above, some simple com-
putations have been done, both for all-units and incremental discounts. The data used for both
cases is summarized in Table 4.2 below.

λ τ ch cp cK cp̃ M

1 15 2 5 100 5 3

Table 4.2: Parameter values

Tables 4.3 and 4.4 below summarize the results. Note that an entry of the form: “-” means that
the corresponding value need not to be computed because it cannot be optimal (for all-units) or it
is not achievable (for incremental). The boldface entry is the corresponding minimal value of C∗

A

and C∗
I respectively. The values of ~c are chosen differently for the all-units and the incremental

discounts cases for emphasizing different issues regarding both cases.

In Table 4.3, C∗ is computed, and the lower bounds of the above price intervals are compared
since these values can be optimal as well, exactly as the algorithm has described. The minimal
value can be any value of these.

~b = [0, 10, 20, 30], ~c = [10, 7, 6, 1.5]

τ (C∗
A(0), Q

∗
0, r

∗
0) (C∗

A(1), Q
∗
1, r

∗
1) (C∗

A(2), Q
∗
2, r

∗
2) (C∗

A(3), Q
∗
3, r

∗
3)

5 - (25.00, 12, 0) (25.95, 20, -2) (26.70, 30, -5)

15 - (27.63, 14, 11) (27.84, 20, 9) (27.98, 30, 6)

25 - (29.58, 15, 21) (29.43, 20, 19) (28.63, 30, 16)

~b = [0, 20, 40, 50], ~c = [10, 7, 6, 1.5]

5 (28.00, 12, 0) (26.95, 20, -2) (37.40, 40, -8) (40.48, 50, -11)

15 (30.63, 14, 11) (28.84, 20, 9) (38.36, 40, 3) (40.25, 50, 0)

25 (32.58, 15, 21) (30.43, 20, 19) (39.24, 40, 13) (40.95, 50, 10)

Table 4.3: All Units discounts

Table 4.4, for the incremental case, shows that the differences between the optimal values can
be very small, even for large discounts, as in this case. However, we still need to compute every
value since all the values can be feasible, especially with an uneven distribution of boundary
points or discount prices.

4.5. COMPUTATIONS 47

~b = [0, 10, 20, 30], ~c = [60, 50, 40, 30]

τ (Ĉ∗
I (0), Q

∗
0, r

∗
0) (Ĉ∗

I (1), Q
∗
1, r

∗
1) (Ĉ∗

I (2), Q
∗
2, r

∗
2) (Ĉ∗

I (3), Q
∗
3, r

∗
3)

3 (-, 12, -1) (74.50, 17, 3) (74.23, 24, -4) (75.05, 32, -7)

10 (-, 13, 6) (75.88, 18, 8) (75.28, 25, 2) (75.81, 32, 0)

15 (-, 14, 11) (76.77, 19, 9) (75.94, 25, 7) (76.35, 33, 5)

~b = [0, 20, 40, 50] ~c = [60, 50, 40, 30]

3 (77.71, 12, -1) (79.78, 29, -6) (-, 29, -6) (-, 43, -10)

10 (79.52, 13, 6) (80.63, 22, 3) (-, 30, 1) (-, 43, -3)

15 (80.63, 14, 11) (81.69, 22, 8) (-, 33, 5) (-, 44, 2)

Table 4.4: Incremental discounts

Below are graphical representations of both cases. They show CA and CI respectively as function
of Q and r.

The figures show the characteristic described in the lemmata. In the all-units case, local minima
can be found at the “no discounts” minimum in the second interval and on the lower bounds of
the third and fourth interval.
In the incremental case, Figure 4.2 shows that the minimum can be either the “achievable”
minimum in the second, third or fourth interval.

To emphasize the forms of the surfaces the values of the parameters ~c and~b are chosen as in Table
4.5 below, all other parameters are chosen as in Table 4.2. It is hard to compare the all-units
discounts case and the incremental discounts case. The only thing that is clear when comparing
is that when the same parameter values are used, the all-units leads to more discount. Then the
discount is for all articles, and therefore the optimal value Q∗ is usually higher.

~c [30, 20, 10, 0] for all-units

~c [75, 50, 25, 0] for incremental
~b [0, 20, 40, 60] for both

Table 4.5: Parameter values

48 CHAPTER 4. QUANTITY DISCOUNTS

0

10

20
0 10 20 30 40 50 60 70

40

60

80

100

120

140

Qr

C
(Q

,r
)

Figure 4.1: The Expected cost function with all units discount pricing.

0

5

10

15

20
0 20 40 60 80

100

120

140

160

180

Q
r

C
(Q

,r
)

Figure 4.2: The Expected cost function with incremental discount pricing.

4.6. APPENDIX A 49

4.6 Appendix A

This appendix summarizes some of the previous work in this area. The proofs are sometimes
along different lines.

In this model, the inventory position (defined as the inventory at hand plus outstanding orders)
provides a suitable state description variable. This is not the case with the inventory level
(defined as inventory at hand or net inventory). Indeed, when there is heavy demand during
some cycle resulting in a large number of backorders, then the arrival of outstanding orders might
never bring the on hand inventory back up to the reorder point again, and hence another order
would never be placed under a (Q, r) system that is based on the inventory at hand. However,
when a (Q, r) system is based on the inventory position, the holding costs cannot be computed
directly. If during some cycle there is a considerable number of backorders, then a large number
of orders will be placed, for the reorder point in terms of the inventory position will be crossed
a large number of times. If r is the reorder point in terms of the inventory position, then
immediately after an order is placed the inventory position is Q+ r. Using the Poisson demand
arrival assumption we see that the time evolution of the inventory position can be described by
a continuous time Markov Chain with state space S = {r+1, . . . , r+Q} and transition diagram
given by Figure 4.3 below.

-

� � � � �
s s s s s s

r + 1 r + 2 r + 3 Q+ r − 2 Q+ r − 1 Q+ r

λ λ λ λ λ

λ

Figure 4.3: inventory position

Since all rates of this Markov chain are equal it follows that the steady state probabilities of the
inventory position, πip(x) = limt→∞P (X(t) = x) = 1/Q, for all x = r + 1, . . . , r + Q, i.e., in
equilibrium the inventory position is uniformly distributed over r + 1, . . . , r +Q.

Repeat from the previous that Nτ t denotes the number of arrivals (which is the cumulative
demand in the time interval (t − τ, t] and that pk = P (Nτ t = k) = e−λτ (λτ)k/k!. Further, let

Pj =
∑j

k=0 pk = P (Nτ t 6 j). Also, let X(t), Y (t) denote respectively the inventory position nd
the inventory level at time t. Note that X(t) = Y (t) + OtQ, all t > 0, where Ot denotes the
number of outstanding orders at time t. Since orders placed after t− τ have not arrived by time
t, the following equation holds:

Y (t) = Y (t− τ) +Ot−τQ−Nτ t. (4.16)

Note also that X(t− τ) = Y (t− τ) +Ot−τQ, hence

Y (t) = X(t− τ)−Nτ t. (4.17)

From Eq. (4.17) it follows that Y (t) is also a continuous time Markov chain. Its state space is
the set {. . . ,−2,−1, 0, 1, 2, . . . , Q+ r} and transition diagram given by Figure 4.4 below.

Even though, the transition rates and diagram of the inventory level process Y (t) are more
complex, Eq. (4.17) above allows the computation of the steady state probabilities π(x) =

50 CHAPTER 4. QUANTITY DISCOUNTS

- -

� � � �

� � � � �
s s s s s s

r − 1 r r + 1 Q+ r − 2 Q+ r − 1 Q+ r

Figure 4.4: inventory level

limt→∞ P (Y (t) = x) in terms of those of the probabilities πip(x) = 1/Q and Pj = P (Nτ t 6 j)
as follows.

Lemma 4.8. For any integer inventory level x the following are true:

π(x) =

{
(Pr+Q−x − Pr−x) /Q, for −∞ < x 6 r,
Pr+Q−x/Q, for r + 1 6 x 6 r +Q.

Proof. Since it is easy to see that both X(t) and Y (t) Markov chains are ergodic, we can assume
that for t = ∞, P (X(t) = k) = πip(k) = 1/Q and P (Y (t) = x) = π(x). For −∞ < x 6 r we
have:

π(x) = P (Y (t) = x) =

Q+r∑

j=r+1

P (Y (t) = x |X(t− τ) = j)P (X(t− τ) = j)

=

Q+r∑

j=r+1

P (Nτ t = j − x |X(t− τ) = j)P (X(t− τ) = j)

=

Q+r∑

j=r+1

P (Nτ t = j − x)πip(j)

=

r+Q−x∑

k=r+1−x

pk/Q,

where in the above we have used the independence of X(t−τ) and Nτ t as well as the observation
that conditional on X(t− τ) = j, Y (t) = x if and only if Nτ t = j − x. Similarly, for r+1 6 x 6

r +Q we have:

π(x) = P (Y (t) = x) =

Q+r∑

j=r+1

P (Y (t) = x |X(t− τ) = j)PX(t− τ) = j)

=

Q+r∑

j=x

P (Y (t) = x |X(t− τ) = j)PX(t− τ) = j)

=

Q+r∑

j=x

P (Nτ t = j − x |X(t− τ) = j)P (X(t− τ) = j)

4.6. APPENDIX A 51

=

Q+r∑

j=x

pj−xπip(j)

=

r+Q−x∑

y=0

py/Q.

where the first equality above follows from the observation that P (Y (t) = x |X(t− τ) = j) = 0
if j < x, since it is not possible for the inventory level at time t to be Y (t) = x > r + 1, if the
inventory position at time t − τ is smaller then x. The other equalities follow as those of part
i).

Next, assuming for the moment for simplicity that there are no quantity discounts, the expected
annual cost is a function C(Q, r), can be written as follows.

C(Q, r) = cK
1

Q
+ ch

r+Q∑

x=0

xπ(x) − cp

0∑

x=−∞

xπ(x) + cp̃

0∑

x=−∞

π(x) (4.18)

One can simplify C(Q, r) using the lemma below.

Lemma 4.9. The following are true:

i)
∑r+Q

x=0 xπ(x) =
∑r+Q

x=r+1

∑x−1
i=0 Pi/Q.

ii) −
∑−1

x=−∞ xπ(x) =
(∑r+Q

x=r+1

(∑x−1
i=0 Pi + λτ − x

))
/Q.

iii)
∑0

x=−∞ λπ(x) =
(∑r+Q

x=r+1 λ(1 − Px−1)
)
/Q.

Proof. For i) we have:

r+Q∑

x=0

xπ(x) =

(
r∑

x=0

x(Pr+Q−x − Pr−x) +

r+Q∑

x=r+1

xPr+Q−x

)
/Q

=

(
r+Q∑

x=0

(r +Q− x)Px −
r∑

x=0

(r − x)Px

)
/Q

=

(
r+Q∑

x=r+1

(r +Q− x)Px +Q
r∑

x=0

Px +
r∑

x=0

(r − x)Px −
r∑

x=0

(r − x)Px

)
/Q

=

r+Q∑

x=r+1

(
x−1∑

i=r+1

Pi +
r∑

i=0

Pi

)
/Q

=

r+Q∑

x=r+1

x−1∑

i=0

Pi/Q.

Similarly, for ii) using the following property of a Poisson distribution, xpx = λτpx−1 for any
x = 1, 2, . . . we obtain:

52 CHAPTER 4. QUANTITY DISCOUNTS

−
0∑

x=−∞

xπx = −
−1∑

x=−∞

x(Pr+Q−x − Pr−x)/Q

=

∞∑

x=1

x((1 − Pr+x)− (1− Pr+Q+x))/Q

=




∞∑

x=r+Q+1

(r +Q− x)(1 − Px)−
∞∑

x=r+1

(r − x)(1 − Px)


 /Q

=

(
Q

∞∑

x=0

xpx −

r+Q∑

x=r+1

(
(r +Q− x)(1 − Px) +

r∑

i=0

(1− Pi)

))
/Q

=

(
r+Q∑

x=r+1

(
x−1∑

i=0

Pi + λτ − x

))
/Q.

Finally, for iii) we have

0∑

x=−∞

π(x) =

0∑

x=−∞

(Pr+Q−x − Pr−x)/Q

=




∞∑

x=r

(1− Px)−
∞∑

x=r+Q

(1− Px)


 /Q

=

(
r+Q∑

x=r+1

(1− Px−1)

)
/Q.

Proof of Theorem 4.1:
It is important to remember the renaming in equation 4.1 so the factor λ is not repeated separately
in the calculations below. a) From Lemma 4.9 we have:

C(Q, r) = cK
1

Q
+ ch

r+Q∑

x=0

xπx − cp

0∑

x=−∞

xπx + cp̃

0∑

x=−∞

πx

=

cK +

r+Q∑

x=r+1

(
ch

x−1∑

i=0

Pi + cp

(
x−1∑

i=0

Pi + λτ − x

)
+ cp̃(1− Px−1)

)

Q

=

cK +

r+Q∑

x=r+1

(
(ch + cp)

x−1∑

i=0

Pi + cp (λτ − x) + cp̃(1− Px−1)

)

Q

b) First, we will establish that xG exists. Then the uniqueness of xG will be established by
showing that G(x) is strictly increasing for x > xG + 1.

4.6. APPENDIX A 53

Simple algebra shows that

G(x+ 1)−G(x) = (ch + cp)Px − cp̃px − cp. (4.19)

The above implies the following

G(x+ 1)−G(x) =

{
6 0, iff (ch + cp)Px − cp̃px 6 cp
> 0, iff (ch + cp)Px − cp̃px > cp

We notice that for every x < 0, G(x+1)−G(x) = −cp 6 0. Thus, xG is non-negative if it exists.
Since G(x + 1)−G(x) > 0, (because G(x+ 1)−G(x) ≈ ch > 0) for large x, xG exists.

For the uniqueness, when cp̃ is positive, we show that G(x) is strictly increasing for x > xG + 1,
by first finding a lower bound for xG, using its definition and Eq. (4.19), as follows.

G(xG)−G(xG − 1) 6 0 < G(xG + 1)−G(xG)

G(xG)−G(xG − 1) < G(xG + 1)−G(xG)

−cp̃pxG−1 < (ch + cp − cp̃)pxG

pxG−1/pxG > (cp̃ − ch − cp)/cp̃

i.e.,

xG >
τ(cp̃ − ch − cp)

cp̃
.

Using this bound, we obtain for G(xG + 2)−G(xG + 1):

G(xG + 2)−G(xG + 1) = (ch + cp)PxG+1 − cp̃pxG+1 − cp

= (ch + cp)PxG − cp̃pxG

+(ch + cp − cp̃)pxG+1 + cp̃pxG − cp

> (cp̃ − (cp̃ − ch − cp)λτ/(x
G + 1))pxG

> cp̃(1− τ(ch + cp − cp̃)/(τ(cp̃ − ch − cp) + cp̃))

> 0.

Thus, G(xG + 2) > G(xG + 1) and by an induction argument on x > xG we have
G(x+ 2) > G(x+ 1 > 0) and we see that xG is the maximal minimizing point.

If cp̃ = 0 then G(x+ 1)−G(x) = (ch + cp)Px − cp. Thus, for x
G we have:

PxG−1 6 cp/(ch + cp),

PxG > cp/(ch + cp).

Since Px is increasing in x, we have that Px 6 PxG−1 for x < xG and Px > PxG for x > xG, thus
it follows that xG is the maximum minimizing point of the function G(x), i.e, G(x) is unimodal.

�

54

Chapter 5

Concluding Remarks

Infinitely many extensions are possible for further research. For example, a combination of
Chapter 3 and 4: a model with quantity discounts, random lead time, and a mixture of backorders
and lost sales. Also it is interesting to include perishable products instead of products that do
not lose their value or quality. Also it is still a challenge to find a way to prove unimodality for
the model described in Chapter 3, similar to the first part of Chapter 4. We conjecture that it
is very likely that unimodality can be proven for this model, but until now we have not been
able to do find this. Matlab graphs confirm this conjecture. If unimodality can be proven, an
efficient algorithm can be constructed for finding the optimal value of Q and r for this model.

Another interesting aspect to investigate is whether another model is wether there are other
strategies more efficient for one of the pricing and customer behaviour models above: a dynamic
reorder point or a changing value of Q might be some ideas.

Furthermore, with respect to Chapter 2 there are a lot of new research directions. Maybe more
complex structures can be handled analogously and the class of successively lumpable Markov
Chains can be expanded. Maybe there is a neat way of approximating a complete new class
of Markov Chains with a successively lumpable Markov Chain. In the paper concerning the
successively lumpable Markov Chains we will show that a direct extension to a Semi-Markov
chain is possible.

Finally, I would like to thank Michael Katehakis and Floske Spieksma for their incredible amount
of time and support they have given me during the process. Michael especially for the patience
and for being both my supervisor and mentor in New Jersey. Floske for helping to find a place
abroad to do my master thesis work, various comments on the first article, and a lot of comments
during the process of completing this thesis.

55

56

Bibliography

[1] Benton, W.C., Seungwook Park, 1996, “A classification of literature on determining the
lot size under quantity discounts”, European Journal of Operational Research, 92, 219-238.

[2] Federgruen, A., Zheng, Y.S. 1992, “An efficient algorithm for finding an optimal (r,Q)
policy in continuous review stochastic inventory systems”, Operations Research, 40, 808-
813.

[3] Feinberg, B.N., Chui, S.S., 1987, “A method to calculate steady state distributions of large
Markov chains”, Operations Research, Vol. 35, No 2, 282-290.

[4] Feller W. 1968, An introduction to probability theory and its applications Vol. 1, Wiley,
New York.

[5] Gallego G. and Katircioglu K. 2007, “Inventory management under highly uncertain de-
mand”, Oper. Res. Letters, 281-289.

[6] Galliher, H., P. Morse and M. Simmond. 1959, “Dynamics of two Classes of Continuous-
Review Inventory Systems”, Operations Research, 7, 362-384.

[7] Hadley, G., Whitin, T.M. 1963, Analysis of Inventory Systems, Prentice Hall International,
Englewood Cliffs, N.J.

[8] Kemeny, J., G., Snell, J., L. 1960, Finite Markov Chains, D. van Nostrand Company, Inc.,
Princeton, N.J..

[9] Kim, D.H., Park, K.S., 1985, “(Q, r) Inventory Model with a Mixture of Lost Sales and
Time-Weighted Backorders”, The Journal of the Operational Research Society, 36, 231-238.

[10] Kim, D.S., Smith, R.L., 1989, “An Exact Aggregation Algorithm for a Special Class of
Markov Chains”, Technical Report, 89-2.

[11] Kim, D.S., Smith, R.L., 1990, “An Exact Aggregation-Disaggregation Algortihm for
Mandatory Set Decomposable Markov Chains”, Numerical Solution of Markov Chains,
89-104.

[12] Meyer, C.D., 1989, Stochastic complementation, uncoupling Markov chains, and the theory
of nearly reducible systems, SIAM Rev., Vol. 31, No 2, 240-272.

[13] Miranker, W. L., Pan, V. Ya., 1980, “Methods of aggregation”, Linear Algebra and its
Applications, Vol. 29, 231-257.

57

58 BIBLIOGRAPHY

[14] Munson, CL and Hu, J., 2010, “Incorporating quantity discounts and their inventory im-
pacts into the centralized purchasing decision”, European Journal of Operational Research,
201, 581-592.

[15] Papachristos, S. and Skouri, K., 2003, “An inventory model with deteriorating items,
quantity discount, pricing and time-dependent partial backlogging”, International Journal
of Production Economics, 83, 247-256.

[16] Rubalskiy, G., 1972, “Calculation of optimum parameters in an inventory control problem”,
Journal of Computer and Systems Sciences International, 10, 182-187.

[17] Schweitzer, P.J., Puterman, M.L., Kindle, W.L, 1984, “Iterative Aggregation-Disaggre-
gation Procedures for Discounted Semi-Markov Reward Processes”, Operations Research,
Vol. 33, No 3, 589-605.

