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Introduction

Nowadays huge quantities of information have to be transmitted in each second.
One can think of videos, music and text documents that must be sent through wire
and wireless connections. Data must also reach very far targets like the hundreds
of satellites around the earth and those in the far outer space. In coding theory
tools have been developed to make it possible to compress information in order
to transmit is efficiently. Compressing data means that information gets encoded
(converted into another form) such that fewer bits are used than the original data
would contain. After encoding, information has to be sent efficiently in the sense
that this must happen not only quickly but also less expensively 1. As soon as the
information arrives at the receiver it gets decoded/decompressed to get the origi-
nal information back. What usually happens is that errors occur in the decoding
of information and this means that the decoded information does not match with
what has been sent.

For example if you copy music from your computer to a CD, then a lot of bits
(“0” ’s and “1” ’s) representing the music get encoded in the form of pits on one
of the flat surfaces of the compact disk. Using laser technique the optic lens of
the CD-player reads these pits and decodes them into bits again. If there is some
dust or scratch on the CD, then this may result into weird noises. Luckily coding
theory provides us with tools to recognize errors and sometimes, when possible, to
locate and recover them. That is why you do not get weird noises if the CD has only
small scratches or a bit of dust. The idea behind such tools is to encode information
into a code (new information which includes control symbols) with good properties.
These symbols serve to check whether errors occur and if possible the errors get
located and repaired. A good code should have at least the following properties:

(1) Small probability of errors when decoding.
(2) Coding and decoding should not be complicated.
(3) Limited control symbols (redundancy).

In this thesis we deal with linear codes. These codes are widely used and math-
ematically well understood to a certain extent. We restrict2 ourselves to algebraic-
geometric codes (AG-codes) which are just linear codes arising from specific con-
structions in algebraic geometry. We will deal only with AG-codes that enjoy the
property of being MDS codes. This property is defined for linear codes in general.
It has been shown that MDS codes up to some equivalence are in fact equivalent to
‘arcs’; these are objects in finite geometry which have been studied for decennia and
which is still an active research area. We will make this equivalence more concrete
and use results from both algebraic geometry and from finite geometry on AG-MDS
codes. We will try to understand the main conjecture on MDS codes and we will
deal with the case of AG-MDS codes from a geometric point of view. This will
be done by comparing several attacks to solve this conjecture and by catching the

1A space scientist from the university of Leicester has worked out that sending texts
via mobile phones is at least four times more expensive than receiving data from Hub-
ble Space Telescope (compare £ 85 per MB to £ 374.49 per MB), See the online source

http://www2.le.ac.uk/ebulletin/news/press-releases/2000-2009/2008/05/nparticle.2008-05-
12.4476906328

2A result of
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geometric ideas behind these attacks. Finally we will state and prove a result that
is an improvement of a result on the main conjecture in a special case of AG-MDS
codes.

Summary

In Chapter I we define linear codes and MDS codes. We will also state the main
conjecture of MDS codes and give a historical overview on its origin and mention
some of the results that are achieved by trying to solve it.
In Chapter II we recall important algebraic-geometric concepts and theorems which
will serve us for the rest of the thesis. In Chapter III we make a connection between
MDS codes and arcs (an object from finite geometry). We give some important
results on arcs and use the connection we have established to conclude results on
MDS codes. In Chapter IV we restrict our attention to AG-MDS codes. We define
these codes and derive some of their important properties. Results on MDS codes
from Chapter III will be rephrased and made explicit using algebraic-geometric
notions developed in Chapter II. In Chapter V we deal in more detail with the
main conjecture of MDS codes for AG-codes. Attacks on this conjecture will be
studied and compared. We will see that they have more in common than what
may appear at first sight. Finally we will derive a new theorem which has been
developed during my research and we will also relate this theorem to the main
conjecture. In Chapter V I we will work out concrete examples of AG-MDS codes.
This will be done using the Magma software package.
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1. Linear codes and MDS codes

A good reference to most of the theory on linear codes in this section is [39,
Chapter 3].

1.1. Linear codes.
Let Fq be a finite field, q = pm and p is prime. For an element z = (z1, ..., zn) of
the Fq-vector space Fnq we define its Hamming weight w(z) by

w(z) := #{i|i ∈ {1, 2, ..., n} : zi 6= 0}.

This leads to the notion of a distance in Fnq : for x, y ∈ Fnq we define

d(x, y) := w(x− y).

Note that d(x+ z, y+ z) = d(x, y) makes the distance function d translation invari-
ant.

Definition 1.1. A linear code C of length n over Fq is a nonzero linear subspace
in Fnq . An element of C is called a code word. The dimension of C is by definition
k = dim(C) = dimFq (C). The minimal distance d = d(C) of C is defined by:

d(C) = min{d(x, x′) : x ∈ C, x′ ∈ C, x 6= x′}.

Note that d(C) is the same as min{w(x) : x ∈ C, x 6= 0}.
We usually say that C is a [n, k, d]-linear code. The minimal distance determines
in fact the maximal number of errors that can be corrected independently of the
position of the errors. If we are not interested in d we just write [n, k] instead of
[n, k, d]. In this thesis a ‘code’ is always a ‘linear code’.

Let A be the subgroup in the group of linear automorphisms of Fnq generated by
permutations of coordinates and multiplications of coordinates by nonzero elements
of Fq. Then A acts on linear subspaces of Fnq and hence on codes. Two [n, k]-codes
C and C ′ over Fq are called equivalent if α(C) = C ′ for some α ∈ A. That is,
C = C ′ ·P ·D with P a permutation matrix with entries in Fq and D a nonsingular
diagonal matrix with entries in Fq.

A matrix G of which the rows generate a [n, k]-code C is called a generator ma-
trix for C. This matrix G is not unique but under the set of generator matrices of
C there exists a unique generator matrix in the reduced row echelon form.

Linear codes are a kind of codes which enjoy the property of being systematic.
We can explain this property as follows: Let G = (Ik|A) be a k×n generator matrix
in reduced echelon form of a linear code C. We get a linear map

Fkq → Fnq , u→ uG.

An element u = (u1, ..., uk) ∈ Fkq has as image an 1×n-vector (u1, u2, ..., uk, ∗, ..., ∗) =
(u, uA), where “ ∗ ” are some elements of Fq. The part uA consists of the n − k
control symbols. The code C has the property that the information word u is a
part of the code word uG. This property makes the code systematic.
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Let C be an embedding for a code C. We can interpret C as the kernel of the
quotient map Fnq → Fnq /C. A parity-check for a linear code C is a linear equation

a1x1 + ...+ anxn = 0 (ai ∈ Fq).

that holds for all (x1, ..., xn) ∈ C.
Since a linear code C is just a (finite) Fq-vector subspace of Fnq we can speak of

the dual code C⊥ of C:

C⊥ := {a ∈ Fnq : (a, x) = 0 for all x ∈ C}.

where (a, x) is the dot-product
∑n
i=1 aixi in Fnq . Note that C⊥ is an (n, n−k)-linear

code over Fq. A generator matrix H for C⊥ is called the parity-check matrix of C.
As C = (C⊥)⊥,we can easily deduce that

C = {Fnq : HxT = 0}.

Notice that if C is an [n, k]-code with generator matrix G, then an [n − k, n]-
matrix with rank n − k is a parity-check matrix H for C if and only if HGT =
0n−k×k.

Remark 1.2.
A useful observation tells us that if an [n, k]-code C has minimal distance d, then for
its parity-check matrix H it holds that d is the minimal number of any linearly de-
pendent set of columns of H. To show this fact let ki for i = 1, ..., n be the columns
of H. Then we have x = (x1, ..., xn) ∈ C if and only if HxT =

∑n
i=1 xiki = 0 ∈ Fnq .

An element x ∈ C which has positive weight yields a nontrivial relation between
the columns of H.

1.2. MDS codes.
Now we define MDS codes and state some general facts on them. Facts on the his-
tory of MDS codes can be found in [19, Chapter 11, p.329]. The name “maximum
distance separable code” comes from the fact that an MDS code has the maximum
possible distance between code words for fixed n and k, and from the fact that code
words can be separated into information word and control symbols. Investigating
how large the length of MDS codes with a given dimension over a fixed Fq can
get;can be closely associated to several combinatorial problems. An example of
such problem is the following:

Problem 1.3. Consider the vector space Fnq . What is the largest number of vectors
in this space with the property that any n of them form a basis for the space?

Soon we will give a partial answer to this problem.

Proposition 1.4. For a [n, k, d]-linear code C we have

d ≤ n− k + 1.

Proof. Let H be a parity-check matrix for C. Then H has rank n − k which is
the maximal number of linearly independent columns of H. By the observation
(Remark 1.2) in the previous subsection we have d ≤ n − k + 1 and hence k ≤
n− d+ 1. �

Definition 1.5. The bound d ≤ n− k + 1 is called the Singleton bound.
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Definition 1.6. An [n, k, d]-linear code which satisfies the Singleton bound (i.e
d = n− k + 1) is called a maximum distance separable code (MDS).

Over any field there exist [n, 1, n], [n, n−1, 2] and [n, n, 1] MDS codes. These are
called trivial MDS codes. Nontrivial codes have 2 ≤ k ≤ n−2. The mathematician
Richard Collom Singleton is apparently the first one who explicitly studied MDS
codes [30]. The bound in Definition 1.5 is named after him. However in 1952
Bush [5] had already discovered the so called Reed-Solomon codes (which are MDS
codes) and he also had given an extension of them using the ‘language’ of orthogonal
arrays.

Proposition 1.7. If G is an k×n generator matrix of an [n, k, d = n−k+1]-MDS
code C, then we have:

(1) Each k-tuple of column vectors is linearly independent.
(2) The dual code C⊥ is MDS, that is d(C⊥) = k + 1.

Proof.

(1) To see this remember that the minimum distance is d = n− k + 1. So any
nonzero linear combination of the rows of G has at most k − 1 zeros. We
know that the row-rank of a matrix is equal to the column-rank. So for the
columns of G this means that any k columns are linearly independent.

(2) (See [20, Lemma 6.7, p. 245]) Let H be an (n− k)×n parity check matrix
for C. Then H is a generator matrix for C⊥. If for some m ∈ Fn−kq we

have c = mH ∈ C⊥ with w(c) ≤ k, then c has zero elements in ≥ n − k
positions. Let the zero elements of c have indices {i1, ..., in−k}. Write

H = [h1 h2 ... hn].

The zero elements of c are obtained from

0 = m[hi1 hi2 ...hin−1
] = mH̃

with H̃ a singular (n− k)× (n− k) submatrix of H. Using again that the
row-rank of a matrix is equal to the column-rank there must be n − k <
n − k + 1 = d columns of H which are linearly dependent. According to
Remark 1.2 this contradicts the assumption that C has minimum distance
n− k + 1 so d(C⊥) > k. But then we must have d(C⊥) = k + 1.

�

Corollary 1.8. Let C be an [n, k]-MDS code. Then every n−k columns of a parity
check matrix of C are linearly independent.

A useful tool of studying the properties of a linear code C over Fq is the distri-
bution of the weights of elements in C. The weight distribution of a linear code C
is the sequence of numbers

At := #{c ∈ C|w(c) = t}.

The (single variable) weight distribution enumerator is defined as

A(z) =
∑
x∈C

zw(x) = A0 +A1z + ...+Anz
n(∈ Z[z]).
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MacWilliams proved that for the weight distribution enumerator B(z) of the dual
code C⊥ the identity

B(z) = (1 + (q − 1)z)nA

(
1− z

1 + (q − 1)z

)
holds. More specifically, if we define Bt := #{c ∈ C⊥|w(c) = t}, then for all
v ∈ {0, ..., n} we get the MacWilliams equations:

n−v∑
i=0

(
n− i
v

)
Ai = qk−v

v∑
i=0

(
n− i
n− v

)
Bi.

For a proof of this result see [15, Chapter 7, Theorem 1.3, p. 254]. An MDS code
has the property that its weight distribution is completely determined by k and n.
If C is MDS, then Ai = 0 for i = 1, ..., n− k and Bi = 0 for i = 1, ..., k. Using the
previous identity one can prove (after rearrangement of terms) that :

Theorem 1.9. Let C be an [n, k, d = n− k + 1] MDS code over Fq. Then for the
number of words of weight w in C we have:

Aw =

(
n

w

)
(q − 1)

w−d∑
j=0

(−1)j
(
w − 1

j

)
qw−d−j .

Corollary 1.10. Let C be an [n, k, d = n− k + 1] MDS code over Fq
(1) If k ≥ 2, then n ≤ q + k − 1.
(2) If k ≤ n− 2, then k + 1 ≤ q.

Proof. For the first statement substitute in Theorem 1.9 w = n− k + 2 so you get
An−k+2 =

(
n
k−2

)
(q− 1)(q− n+ k− 1) and note that An−k+2 must be nonnegative.

The second statement follows from examining the weight distribution of C⊥. �

An improvement of this result can be found in [19, Theorem 11, p. 326]:

Proposition 1.11. If C is a nontrivial [n, k ≥ 3, n−k+1] MDS code over Fq with
q odd, then n ≤ q + k − 2.

Now we see why [n, 1, n] (and its dual [n, n− 1, 2]) and [n, n, 1] codes are called
trivial MDS codes. In Theorem 1.9 if k = 1, then there are arbitrarily long MDS
codes, namely the repetition codes3. Note that the zero code and the whole space Fnq
([n, n, 1] ) are also MDS and can get arbritarily long. If k ≤ n−2, then k ≤ q−1. So
nontrivial [n, k]−MDS codes exist only if 2 ≤ k ≤ min(n−2, q−1). As n ≤ q+k−1
we find k ≤ min(n − 2, q − 1) ≤ q − 1 and n ≤ 2q − 2. This gives a primary an-
swer to Problem 1.3: the length of nontrivial MDS codes is bounded when q is fixed.

We already see for k = 3 that n ≤ q + 2. In the following subsection we will
see that one conjectures that for 1 < k < q (hence for nontrivial MDS codes) the
bound n ≤ q + k − 1 can be sharpened to n ≤ q + 1 or n ≤ q + 2 depending on the
parity of q.

3For example: A binary repetition code of length n consists of just two words (0, 0, ..., 0) and
(1, 1, ..., 1) of length n.



7

1.3. The main conjecture of MDS codes.
It is easy to construct codes which do not satisfy the Singleton bound. It is also
not that hard to construct codes which do satisfy this bound. For an [n, k]-MDS
code the following conjecture is still not completely solved:

Conjecture 1.12. For every linear [n, k]-MDS code over Fq if 1 < k < q, then
n ≤ q + 1, except when q is even and k = 3 or k = q − 1 in which cases n ≤ q + 2.

This conjecture is called the main conjecture of MDS codes. It has been partially
solved due to the work of several mathematicians. At the moment of writing this
thesis a result of Simeon Ball [3] implies that the main conjecture of MDS codes
holds for all primes q. The methods used in his (to appear) article are beyond
the scope of this thesis since we are interested in algebraic-geometric approaches.
We study a few simple cases by considering a generator matrix for an [n, k]-MDS
code and viewing the columns of this matrix as a set S of n points in Pk−1. The
statement ‘All k-tuple of column vectors is linearly independent‘ in Proposition 1.7
is then equivalent to the statement ‘All k-tuples of the corresponding points in Pk−1

are not contained in a hyperplane’.
Case k = 2:
Since #P1(Fq) = q + 1 we must have n ≤ q + 1 and the conjecture holds for k = 2.

Case k = 3 and q is odd:
Observe that for any point in P2(Fq) there are exactly q + 1 lines passing through
this point. Suppose that #S = q + 2 and there are no three distinct points in S
which are collinear. For any Q ∈ S a line passing through Q must pass exactly
one other point in S\{Q} since there are no three points which are collinear and
#(S\{Q}) = q + 1. Now we conclude that the points of S are coupled into pairs
by lines. Hence q + 2 is even and so is q. We see in particular that n ≤ q + 1.

Case k = 3 and q is even:
We show that n ≤ q+2. This is a straightforward application of Corollary 1.10 but
we proceed giving another proof. Suppose that #S = q+ 3 and that S is in general
position. Take a Q ∈ S and connect Q with each of the other points through a line.
Since S is in general position each of these q + 2 lines intersects S in exactly two
points, one of which isQ. So by removingQ we get a set L of q+2 ‘lines’ each of them
is missing one point. In P2(Fq) we know that each line contains q+1 points and that
#P2(Fq) = q2+q+1. But we have (q+1−1)(q+2) = q2+2q > q2+q+1 = #P2(Fq)
so S can not contain q + 3 points.

The cases k = 4 and k = 5 have been also solved using other techniques from
finite geometry. We saw that conjecture deals only with nontrivial codes and since
the dual of an MDS code is also MDS one may assume that 5 < k ≤ n/2. In
the literature ([13] and [7]) there are proofs for q ≤ 27 hence q > 27 may also be
assumed.
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2. Linear codes and algebraic geometry

2.1. Divisors and rational maps.
In this section we shall introduce terminology from algebraic geometry and coding
theory. We shall define a linear code using algebraic geometry. We refer to [11,
II.6 ] and [11, IV] for more details and results. Other useful sources for this chap-
ter which will be frequently referred to are [38, 2] and [2, I]. Some definitions are
slightly different from the ones used by Hartshorne. We shall write K for a field
and K for a fixed algebraic closure of K.

We introduce the notion of a projective space over a field using [29, I.2].

Definition 2.1. Affine n-space (over K) is the set of n-tuples

An = An(K) = {(x1, ..., xn) : xi ∈ K}.

Definition 2.2. Projective n-space (over K), denoted by Pn or Pn(K), is the set
of all (n+ 1)-tuples

(x0, ..., xn) ∈ An+1

such that at least one xi is nonzero, modulo the equivalence relation:

(x0, ..., xn) ∼ (y0, ..., yn)

if there exists a λ ∈ K
∗

such that for all i we have xi = λyi. We denote by
(x0 : x1 : ... : xn) an equivalence class

{(λx0, ..., λxn) : λ ∈ K∗}.
The individuals x0, ..., xn are called homogenous coordinates for the corresponding
point in Pn.

The set of K-rational points in Pn is the set

Pn(K) := {(x0 : ... : xn) ∈ Pn(K) : all xi ∈ K}.

Definition 2.3. Let P = (x0 : ... : xn) ∈ Pn(K). The minimal field of definition
for P (over K) is the field

K(P ) := K(x0/xi, ..., xn/xi) for any i with xi 6= 0.

Suppose that K is perfect. Then the Galois group of K/K (notation GK/K)

acts on Pn(K) by acting on its homogeneous coordinates: Pσ = (x0 : ... : xn)σ =
(xσ0 : ... : xσn) for any σ ∈ GK/K . One can check that

Pn(K) = {P ∈ Pn(K) : Pσ = P for all σ ∈ GK/K}

and that
K(P ) = fixed field of {σ ∈ GK/K : Pσ = P}.

Definition 2.4. By a curve over K we mean a projective nonsingular geometri-
cally irreducible 4 one-dimensional variety over K.

4A curve X over a field K is called geometrically irreducible if for any field extension K′ of K
the curve X ⊗K′ obtained from X by base change remains irreducible.
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For abbreviation we usually say ‘X is a curve’ without specifying the field K.
But we keep in mind that we are working over K.

Definition 2.5. A (Weil) divisor on a curve X is a finite formal sum D =∑
P∈X(K) nPP , with np ∈ Z and nP = 0 for all but a finite number of K−valued

points P ∈ X(K).

We denote by supp(D) the support of a divisor D, that is the set of points with
nonzero coefficients in Z. The set of divisors on X is denoted by Div(X). This
is an (additively written) abelian group with the obvious neutral element and ad-
dition. A divisor D =

∑
P∈X(K) nPP on X is called effective if nP ≥ 0 for all

P ∈ X. The degree of such a divisor D (notation deg(D)) is by definition the
integer

∑
P∈X(K) nP .

The Galois group ofK/K acts in an obvious way on a divisorD =
∑
P∈X(K) nPP

on X:

Dσ =
∑

P∈X(K)

nPP
σ.

Definition 2.6. A divisor D is called defined over K if Dσ = D for all σ ∈ GK/K .

The set of all divisors D on X defined over K is usually denoted by DivK(X). By

Divd(X) we denote the subgroup of Div(X) of elements of degree d.

Let X is a curve over K. A function f : X → K is called regular at a point P ∈ X
if there is a neighborhood U with P ∈ U ⊂ X, and homogeneous polynomials
g, h ∈ S = K[x0, ..., xn], such that h is nowhere zero on U and f = g/h on U .
We say that f is regular on X if it is regular at every point. We denote by OP,X
the local ring in P . So OP,X is the ring of germs of regular functions on X near
P . Since X is smooth; OP,X is a discrete valuation ring and it has a unique max-
imal ideal mP . It is known that mP is principal and we call a generator of mP a
uniformizer for X.The function field of X (notation K(X)) is the field of rational
functions over X. A function f ∈ K(X) is regular (defined) at P if it lies in OP,X .
Let f ∈ K(X)∗ be any nonzero rational function on X. Then the quotient field of
the local ring OP,X coincides with K(X). On OP,X there is a function ordP which is
defined for f ∈ O∗P,X by ordP (f) = max{l|f ∈ ml

P , l ∈ Z≥1}. If f ∈ K(X)∗, write

f = g
h with g, h ∈ Op and define ordP (f) = ordP (g) − ordP (h). This gives a dis-

crete valuation K(X)∗ → Z. Note that if t is a uniformizer for X, then ordP (t) = 1.

It is known that for f ∈ K(X)∗ a nonzero rational function on X that ordP (f) 6=
0 holds only for finitely many points P ∈ X. We define the divisor of a nonzero
rational function f which will be denoted by (f) or div(f) by

(f) =
∑

P∈X(K)

ordP (f) · P.

Definition 2.7. A divisor D is called a principal divisor if D = (f) for some
f ∈ K(X)∗.

One can prove that principal divisors over a curve X have degree 0. This leads
us to the following definition:
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Definition 2.8. Two divisors D and D′ over K on X are said to be linearly
equivalent, written D ∼ D′ if D − D′ is a principal divisor, i.e, if D − D′ = (f)
where f ∈ K(X)∗ is a nonzero principal divisor. The equivalence class of a divisor
D is denoted by [D]. The group Div(X) of all divisors divided by the subgroup of
principal divisors is called the divisor class group of X (or the Picard group of X,

notation Pic(X)). We also write Picd(X) for Divd(X)/ ∼.

Remark 2.9.
For a not necessarily smooth variety X, what we have defined is not the Picard
group, but the Weil divisor class group. The Picard group in general is the group
of isomorphism classes of line bundles on X. Studying the differences is beyond the
scope of this thesis. We refer the reader to [11, II.6] or [4, II, Remark 1].

Later in this thesis we will use the notion of the Jacobian of a curve. This
is a special variety which is closely connected to the Picard group. Some of its
properties will be used in different proofs.

For the following we write Specm(K) for the set of the maximal ideals of K and
we will mean by an algebraic variety G an algebraic reduced variety of finite type
of dimension over a field K.

Definition 2.10. A group variety G over K is an algebraic variety together with
regular maps

m : G×K G→ G

inv : G→ G

and an element e ∈ G(K) such that the structure on G(K) defined by m and inv
is a group with identity e.

Such a quadruple (V,m, inv, e) is a group in the category of varieties over K.
This means that:

(1)

G
(id,e)// G×k G

m // G, G
(e,id)// G×k G

m // G

are both the identity map which makes e the identity element.
(2)

G
∆ // G×k G

id×inv //

inv×id
// G×k G

m // G

are equal to the composite

G // Specm(K)
e // G

which implies that inv is the map taking an element to its inverse.
(3) The diagram

G×K G×K G

m×1

��

1×m // G×K G

m

��
G×K G

m // G

commutes (the associativity).

An example of a group variety is the set of nondegenerate n × n matrices over
K under the standard matrix multiplication law.



11

Definition 2.11. A connected algebraic group G which is also a projective variety
is called an abelian variety.

The name abelian variety is justified by the (nontrivial) fact that it is abelian as
a group.

Theorem 2.12. For each curve there exists a unique abelian variety JX(K) such
that

(1) JX(K) is isomorphic to Pic0(X) as a group;
(2) The map

iP0
: X → JX(K)

P 7→ [P − P0],

where P0 is an arbitrary fixed point of X, is regular;
(3) For any regular map φ : X → A from X to an abelian variety A such that

φ(P0) is the neutral element of A, there is a morphism of abelian varieties
λ : JX(K)→ A with φ = λ ◦ iP0

.

The abelian variety JX(K) is called the Jacobian of X.

We are most interested in the number of rational points on JX(K) when X (and
hence JX(K)) is defined over K = Fq.

Theorem 2.13. For the number of Fq-points of the Jacobian JX(Fq) corresponding
to a curve X over Fq of genus g we have:

(
√
q − 1)2g ≤ h ≤ (

√
q + 1)2g.

Proof. See [38, III.1, Proposition 23]. �

Definition 2.14. Let D be any divisor on a curve X over K. Define

L(D) = {f ∈ K(X)∗ : (f) +D ≥ 0} ∪ {0}.
This is a K-vector space of rational functions of which the pole divisor (the

part of the associated rational divisor where points have negative coefficients) is
bounded by D. We call it the space associated to the divisor D. We denote by l(D)
or dimL(D) its dimension. It is known that l(D) depends only on the equivalence
class of D and that this dimension is finite for any D ∈ Div(X). Furthermore, if
deg(D) < 0 then L(D) = {0} and l(D) = 0. In the rest of this thesis we will use
divisors defined on Fq (see 2.6) instead of working over an algebraically closed field

Fq. The next lemma helps us to get a suitable definition of L(D) when K is not
necessary algebraically closed.

Lemma 2.15. Let X be a curve over a perfect field K. Let D ∈ DivK(X). Then
L(D) has a basis consisting of functions in K(X).

Proof. See [29, I.5, Proposition 5.8 and Lemma 5.8.1] �

Definition 2.16. Note also that if a curve is defined over a field K and two equiv-
alent divisors D ∼ D′ on X are also defined over K, then there exist an f ∈ K(X)∗

such that D −D′ = (f).

Let D be a divisor on a curve X. Let V ⊂ L(D) be a subspace. The set of
effective divisors of the form (f) +D with f ∈ V \ {0} is called a linear system and
is denoted by |V |. If V = L(D), then |V | is called a complete linear system and it
is denoted by |D|.
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One can verify that |V | ∼= P(V ) (the projectivization of V ) by noticing that for
f, g ∈ K(X)∗ we have (f) = (g) if and only if there is a constant λ ∈ K∗ such
that f = λg. For V 6= 0 this gives an isomorphism from P(V ) onto |V | by sending
nonzero f ∈ V to the divisor (f) +D. It follows that dim |V | = dimV − 1.

Explicitly we have for L(D):

P(L(D))∗ = { The dual space of P(L(D))}
= { Hyperplanes in P(L(D))}
= P(L(D)∗)
= P({ Linear forms on L(D)})
= P({ HomK(L(D),K)}).

Definition 2.17. Let D be a divisor on a curve X. Let 0 6= V ⊂ L(D) be a
nonzero subspace. Let |V | be the corresponding linear system. A point P ∈ X is
called a base point of |V | if P ∈ supp(E) for all E ∈ |V |. If |V | has no base point,
then |V | is called base point free.

Lemma 2.18. Let D be a divisor on a curve X. The complete linear system |D|
has no base point if and only if for every point P ∈ X we have:

dim |D − P | = dim |D| − 1.

Proof. See [11, IV.3, 3.1]. �

If D be a divisor of degree d and |V | is a linear system where V is a vector
subspace of L(D) and dim(V ) = r+ 1, then write grd for |V |. We call a g1

d a pencil.

2.1.1. From linear systems to morphisms.

We conclude this subsection by giving an explicit connection between linear sys-
tems on a curve X and rational maps from X to projective spaces. This will be
very useful when treating the main conjecture of MDS codes as a conjecture in
terms of algebraic geometry.

Let φ : X 99K Pn be a rational map given by

(1) φ : X 99K (f0(P ) : ... : fn(P )).

Assume that Im(φ) is not degenerate ( i.e, not contained in a hyperplane, oth-
erwise we can consider φ as a rational map from X to Pm with m < n). Let

(fi) =
∑

aP,iP, i = 0, ..., n

and let

D = −
∑

aPP

where aP = min0≤i≤n aP,i. By construction it follows that (fi) +D ≥ 0, hence fi ∈
L(D). It also follows that D is in fact base point free. Let Vφ = span(f0, ..., fn) ⊂
L(D). Then to φ we assign the linear system |Vφ| ⊂ |L(D)|.

On the other hand let |V | ⊂ |D| and let n = dim |V |. Let (f0, ..., fn) be a basis in
V . Suppose that |V | is base point free. Then

P → (f0(P ) : ... : fn(P )).
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defines a rational map φ : X 99K Pn. This is well defined since demanding that |V |
has no base points guarantees that a P ∈ X is never a zero for all fi(P ), i = 0, ..., n.
The map φ above ‘is’ even a morphism. This follows directly from the next theorem:

Theorem 2.19. Any rational map from a curve to a projective space extends to a
morphism.

Proof. See [38, 2.1.60]. �

We conclude that we have the following 1− 1 correspondence:

{ Base point free linear systems of dimension. n on X} / ∼
l

{ Morphisms φ : X → Pn with nondegenerate image, up to linear coordinate changes. }

It may be useful to bear in mind that the (fi) +D can be viewed as inverse images
of hyperplanes, for if λ = (λ0 : ... : λn) ∈ Pn(K) and Hλ is a hyperplane given
by
∑
λixi = 0, then f∗(Hλ) = (

∑
λifi) + D. In the case that n = 1 we get

deg(f) = deg(D).

Proposition 2.20. Let φ : X → Pn be the morphism 5 corresponding to the base-
point-free linear system L = P(V ) ⊂ P(L(D)). Then φ is an embedding if and only
if:

(1) For any distinct points P,Q ∈ X there is a D′ ∈ L with D′ ≥ P and not
D′ ≥ Q. (L separates points).

(2) For any P ∈ X there is a D′ ∈ L with D′ ≥ P but D ≥ 2P . (L separates
tangent vectors).

Proof. See [16, 4, Proposition 3.5] �

Definition 2.21. A divisor D on a curve X is called very ample if there exists a
projective embedding

f : X → Pm

such that D is linearly equivalent to f∗(H) for some hyperplane H of Pm.

In particular if D is a very ample divisor of degree d and dimension k = l(D) on
a curve X, then D gives rise to embedding fD : X ↪→ Pk−1 such that the image of
X is a curve in Pk−1 of degree d. Later on in this section we give a way of verifying
whether a divisor is very ample which works in many important cases.

2.2. Differential forms and Riemann-Roch. The Riemann-Roch theorem is
indispensable when studying algebraic geometric codes. Before we state it we need
some definitions and lemmas. These can be found in [29, I.4].

Definition 2.22. Let X be a curve. The space of differential forms on X, denoted
by ΩX , is theK(X)-vector space generated by symbols of the form dx for x ∈ K(X),
subject to the usual relations:

(1) d(x+ y) = dx+ dy for all x, y ∈ K(X).

5it is unique up to an automorphism of Pn.
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(2) d(xy) = xdy + ydx for all x, y ∈ K(X).
(3) da = 0 for all a ∈ K.

We state a few results on ΩX :

Proposition 2.23. Let P ∈ X, and let t ∈ K(X) be a uniformizer at P .

(1) The K(X)-vector space ΩX is one dimensional. If x ∈ K(X), then dx
is a K(X) basis for ΩX if and only if K(X)/K(x) is a finite separable
extension.

(2) For every ω ∈ ΩX there exists a unique function g ∈ K(X), depending on
ω and t, such that

ω = gdt.

(Another notation for g is ω
dt).

(3) Let f ∈ K(X) be regular at P then df
dt is also regular at P .

(4) The quantity

ordP (
ω

dt
)

depends only on ω and P . It is independent of the choice of the uniformizer
t. We call ordP ( ωdt ) the order of ω at P and we write for abbreviation
ordP (ω).

(5) Assume that ω 6= 0. For all but finitely many P ∈ X we have:

ordP (ω) = 0.

Proof. See [29, I.4, Proposition 4.2] and [29, I.4, Proposition 4.3]. �

The next proposition tells us how to calculate the order of a differential form on
X:

Lemma 2.24. Let x, f ∈ K(X) with x(P ) = 0 and let p = char(K). Then

(1) ordP (fdx) = ordP (f) + ordP (x)− 1, if p = 0 or p - ordP (x).
(2) ordP (fdx) ≥ ordP (f) + ordP (x), if p > 0 and p|ordP (X).

Proof. See [29, I.4, Proposition 4.3]. �

Definition 2.25. Let ω ∈ ΩX and P ∈ X. We define the residue of ω at P
(notation resP (ω)) as follows: Write ω = gdt with t a local parameter at P and
g ∈ K(X). If vP (g) ≥ 0, then resP (ω) := 0. Otherwise, if vP (g) = −n ≤ −1,
write g = a−nt

−n + ... + a−1t
−1 + h with h ∈ K(X) regular at P , then define

resP (ω) := a−1. This definition does not depend on t (See [11, III, 7.14]).

The next useful theorem is called the Residue Theorem.

Proposition 2.26. For any ω ∈ ΩX we have
∑
P∈X(K) resP (ω) = 0.

Proof. See [11, III, Theorem 7.14.2]. �

Definition 2.27. Let 0 6= ω ∈ ΩX . The divisor associated to ω is

divP (ω) =
∑

P∈X(K)

ordP (ω)P ∈ DivK(X).
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Differentials ω ∈ ΩX for which ordP (ω) ≥ 0 for all P ∈ X are called regular.

According to the Proposition 2.23.5 divP (ω) is well defined and the previous
lemma gives us a way to calculate the coefficients ordP (ω)(P ) in many cases. How-
ever, in this thesis we will not have to make such calculations.

Definition 2.28. The canonical divisor class on X is the image in Pic(X) of
div(ω) for any nonzero differential ω ∈ ΩX . A divisor in the canonical divisor class
is called a canonical divisor.

We have to be a bit careful. This definition makes sense since Proposition
2.23.1 holds. This follows from the fact that if ω1, ω2 ∈ ΩX are nonzero differ-
entials, then there is a rational function f ∈ K(X)∗ so that ω1 = fω2 and hence
div(ω1) = div(f) + div(ω2) (remember div(f) = (f)).

Recall (see Definition 2.14) that for a divisor D on a curve X we associated to
D a K−vector space L(D), namely

L(D) = {f ∈ K(X)∗ : (f) +D ≥ 0} ∪ {0}.

The case in which D is a canonical divisor is of special interest:

Let KX = div(ω) ∈ Div(X) be a canonical divisor on X where ω is some nonzero
differential. By definition each f ∈ L(KX) satisfies div(fω) = div(f) + div(ω) ≥ 0.
This means that

L(KX) ' {ω ∈ ΩX : ω is regular}.
The next theorem is called the Riemann-Roch theorem:

Theorem 2.29. Let X be a curve and K a canonical divisor on X. There is an
integer g ≥ 0, called the genus of X, such that for every divisor D ∈ Div(X),

l(D)− l(KX −D) = deg(D)− g + 1.

Proof. See [11, IV.1]. �

Corollary 2.30.

(1) l(KX) = g.
(2) deg(KX) = 2g − 2.
(3) If deg(D) > 2g − 2, then:

l(D) = deg(D)− g + 1.

Proof. See [29, I.5, Corollary 5.5]. �

Remark 2.31.

(1) A divisor D on X is called special if l(KX −D) > 0 and nonspecial other-
wise. In the case that D is special l(KX−D) is called its index of speciality.
Note that if deg(D) > 2g − 2, then D is nonspecial.

(2) A curve of genus g = 0 is called a rational curve. In this case |KX | is empty.
If the curve has genus g = 1 and a rational point on it, then it is called an
elliptic curve and we have |KX | = 0. One can deduce that for any point
P ∈ X we have dim |P | = 0 if and only if g ≥ 1.
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Although for a special divisor D it is hard to predict the exact dimension of l(D)
(and hence |D|) using the Riemann Roch Theorem, it is still possible to give an
upper bound for it, just in terms of the degree of D. Clifford’s theorem gives us such
a bound. First we give some lemmas and introduce the notion of a hyperelliptic
curve.

Now we give a sufficient condition for a complete linear system of to be base
point free in terms of the genus. The proof is based on an application of the
Riemann-Roch theorem.

Lemma 2.32. Let D be a divisor on a curve X. The complete linear system |D|
has no base point if deg(D) ≥ 2g.

Proof. See [11, IV.3, 3.2]. �

Lemma 2.33. Let D be a divisor on a curve X of genus g. Then D is very ample
if and only if for every two points P,Q ∈ X (including the case P = Q) we have:

dim |D − P −Q| = dim |D| − 2.

If degD ≥ 2g + 1, then D is very ample.

Proof. [11, IV.3, 3.2] �

Let us analyze these lemmas with a view towards the definition of a very am-
ple divisor (Definition 2.21) and an embedding (Proposition 2.20). The previous
lemma tells us that the linear system|D| of a very ample divisor D on X has the
nice properties of separating points and tangent spaces, hence it gives rise to an
embedding. A quite interesting case is when D = KX is a canonical divisor.

Lemma 2.34. For a curve X of genus g ≥ 2 the canonical system |KX | has no
base points.

Proof. Fix a point P ∈ X. We must show that dim |KX−P | = dim |KX |−1 = g−2
(Lemma 2.18 ). Since g 6= 0 the curve X is not rational (Remark 2.31) and hence
we have l(P ) = 1. By Riemann-Roch theorem:

1 = l(P ) = l(KX − P ) + deg(P ) + 1− g = l(K − P ) + 2− g

So l(KX − P ) = g − 1 and dim |KX − P | = g − 2. �

Recall that the degree of a finite morphism of curves f : X → Y is defined as
the degree of the field extension [K(X) : K(Y )].

Definition 2.35. A curve X is called hyperelliptic if g ≥ 2 and there exists a finite
morphism f : X → P1 of degree 2. We call X nonhyperelliptic if g ≥ 2 and X is
not hyperelliptic.

Example 2.36. If X has genus g = 2, then a canonical divisor KX on X has degree
2g − 2 = 4 − 2 = 2 and by Riemann-Roch theorem l(KX) = 1. So the complete
linear system |KX | has dimension 1. It has no base points by Lemma 2.34. Hence
|KX | defines a morphism of degree 2 from X to P1.

Proposition 2.37. Let X be a curve of genus g ≥ 2 then |KX | is very ample if
and only if X is not hyperelliptic.

Proof. See [11, IV.5, Proposition 5.2]. �
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Theorem 2.38. (Cifford’s theorem) Let D be an effective special divisor on a curve
X. Then

dim |D| ≤ 1

2
deg(D).

The equality occurs if and only if either D = 0 or D = KX or X is hyperelliptic
and D is a multiple of its unique g1

2.

Proof. See [11, IV.5, Theorem 5.4]. �

2.3. Hurwitz’s Theorem.
Let f : X → Y be a finite morphism of curves over K. We give in this subsection

a relation between the genus of these two curves which follows from a relation
between their canonical divisors.

Let P ∈ X and let Q = f(P ). Let tQ ∈ OQ be a uniformizer at Q. We can view
t as an element of OP via the natural map f∗ : OQ → OP . Set eP = vP (t) where
vP is the valuation associated to OP . We see that for a uniformizer tP ∈ OP we
have f∗(tQ) = tePP u where u ∈ O∗P . If eP > 1, then f is said to be ramified at P and
in this case Q is called a branch point of f . If eP = 1, then f is called unramified
at P . If char(K) = 0 or char(K) = p but p does not divide eP the ramification is
said to be tame at p. If p divides eP , then it is called wild at p. The morphism f
is called wildly ramified if it has a wild ramification point and it is called tamely
ramified if it has only tame ramification points.

We construct an induced homomorphism f∗ : Div(Y )→ Div(X) by defining

f∗(Q) =
∑

f(P )=Q

ePP

and extending it by linearity. One can check that this definition does not depend
on the uniformizers chosen. Note that deg f∗(Q) = deg(f) for any point Q ∈ Y
and that deg f∗(D) = deg(D) deg(f) holds for any divisor D ∈ Div(Y ).
Keeping the notation above we have f∗(dtQ) = gdtP for some g ∈ OP . Set bP =
ordP (g). Then bP 6= 0 only for ramification points of f . We define the ramification
divisor of f to be

Rf =
∑

bPP ∈ Div(X).

Using this definition we can state the following theorem:

Theorem 2.39. Let f : X → Y be a non-constant separable morphism of degree
n. Let g(X) and g(Y ) be the genus of X respectively Y . Then

2g(X)− 2 = n(2g(Y )− 2) + deg(Rf ).

Proof. See [28, IV, Theorem 33]. Let KX and KY be canonical divisors of X
respectively Y . If we show that KX = f∗(KY ) + Rf , then by taking the degrees
and using Corollary 2.30 we find 2g(X)− 2 = n(2g(Y )− 2) + degRf .
Take 0 6= ω ∈ ΩY such that supp(ω) is disjoint from the finite set of branch points
of f . Let Q ∈ Y and suppose Q is not a branch point of f and that ω = gdtQ
where tQ is a uniformizer at Q. Then f∗(tQ) is a uniformizer for any point P in
the fiber above Q. So KX and f∗(KY ) coincide on X\supp(Rf ). Now suppose
that Q is a branch point of f and write ω = hdtQ for some rational function h. We
assumed that Q /∈ supp(ω) hence ordQ(h) = 0. Let P ∈ X such that f(P ) = Q.
Let f∗(dtQ) = gtP . Then ordP (f∗(ω)) = ordP (g) and so ordP (f∗(ω)) = bP , since
ordP (f∗(h)) = 0. �
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In the case that f has only tame ramification we get the famous Hurwitz’s
formula:

Corollary 2.40. Let f : X → Y be a non-constant separable morphism of degree
n which is tamely ramified, then

2g(X)− 2 = n(2g(Y )− 2) +
∑

P∈X(K)

(eP − 1).

Proof. According to the previous theorem it suffices to show thatRf =
∑
P∈X(K)(eP−

1). Keeping using the notation above if f∗(tQ) = htePP with ordP (h) = 0, then
f∗(dtQ) = ePht

eP−1dtP + teP dh. Since the characteristic of K does not divide eP
we have eP 6= 0 in K and the formula follows. �

2.4. Gonality. Now we define the gonality of a curve and state some results on it.
We borrow the definition and results from [38, 4.2.25, p. 215].

Definition 2.41. The gonality γ(X) of a curve X over a field K is the minimal
degree of a non-constant map (defined over K) from X to the projective line.

Lemma 2.42. If D is a divisor of degree degD < γ(X), then l(D) ≤ 1.

Proof. If l(D) > 1, then there exitss a non-constant rational function f on X
such that (f) ≥ −D, whence we have (f)∞ ≤ D. One can view f also as a non-
constant map, defined over the field of constants, from X to the projective line. The
degree of this map is equal to deg(f)∞ ≤ degD < γ contradicting the definition of
gonality. �

Lemma 2.43. Let X be a curve of genus g defined over Fq and let N = #X(Fq),
then g + 1 ≥ γ(X) ≥ N

q+1 . Moreover if γ = g + 1 > 3 then g ≤ 10 and q ≤ 31.

Proof. For the left inequality note that over a finite field there always exists a di-
visor of degree g + 1 ( see [21, Theorem 3.2]). By the Riemann-Roch theorem the
dimension of such a divisor is at least 2.

For the right inequality note that under a non-constant map of degree γ from a
curve X to the projective line, the N rational points of the curve are mapped to
one of the q + 1 rational points of the projective line and the inverse of a point on
the projective line contains at most γ rational points.

Assume now that γ = g + 1 > 3. We first show that such a curve has no effective
divisors of degree g − 2. Indeed, if such a divisor D exists, take a canonical divisor
KX so you get l(KX − D) ≥ l(KX) − deg(D) = 2 and deg(KX − D) = g. So
deg(KX −D) = g < g + 1 = γ. But this contradicts Lemma 2.42. Now the curve
has no effective divisors of degree g− 2 hence the curve over an extension of degree
g − 2 has no rational points. By the Weil bound we have

qg−2 + 1− 2gq
g−2
2 ≤ 0

whence g < 2 logq(2g) + 1. This implies that g ≤ 10 and q ≤ 31.
�

Lemma 2.44. Let X be a curve of genus g, then:

(1) γ(X) = 1 if and only if X is isomorphic to the projective line.
(2) γ(X) = 2 if and only if X is either elliptic or X is hyperelliptic.
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3. MDS codes and finite geometry

In this section we state some results on arcs in projective spaces. These objects
are closely related to MDS codes. In fact we will see that the existence of these
arcs is equivalent in some sense to the existence of MDS codes.

One notes that in the literature the most important results on arcs and on the
main conjecture of MDS codes are stated in the language of ‘arcs in projective
spaces’. Important works have been done by Segre [25], [26], [27] and later Thas
[35], [36], Casse [6], Hirschfeld [14] and others.

Definition 3.1. Let Pk−1(Fq) be the projective space of k− 1 dimensions over Fq.
A set S of n ≥ k points in Pk−1(Fq) is said to be an n−arc if there is no hyperplane
containing k points of the set.

The following lemma gives the relation between MDS codes and arcs. It follows
easily from Proposition 1.7. It has been used implicitly in Subsection 1.3.

Lemma 3.2. We have the following one to one correspondence:

{[n, k]-MDS codes over Fq} / ∼
l{

n-arcs in Pk−1(Fq)
}

where ∼ denotes the equivalence of linear codes (Section 1.1).

3.1. Complete arcs.

An n−arcA in Pk−1(Fq) is called complete if it is not contained in any (n+1)−arc
in Pk−1(Fq). We denote by m(k−1, q) the maximum size of an n−arc in Pk−1(Fq).
We have the following results on n−arcs (See [12, Table 3, p.50]):

Theorem 3.3. For q odd we have: m(k − 1, q) = q + 1 if q > (4k − 55
4 )2.

Theorem 3.4. For q even we have: m(k − 1, q) = q + 1 if q > (2k − 15
2 )2.

Proof. See [37], Theorem E. �

Next we translate these two results into a statement about the main conjecture
of MDS codes (Subsection 1.3).

Theorem 3.5. The main conjecture of MDS codes holds in the following cases:

(1) For q odd with q > (4k − 55
4 )2.

(2) For q even with q > (2k − 15
2 )2.

Proof. This follows directly from Theorems 3.4 and 3.3 and the obvious fact that the
maximum length of an MDS code over Fq of dimension k is equal to the maximum
size of an n−arc in Pk−1(Fq). �

Remark 3.6. The proofs of the previous lower bounds for q in terms of k use finite
geometries. To get a very good feeling on how these proofs proceed one can have
a look at [33] and [24]. The main idea is to find a lower bound in the case of plane
arcs. By induction on the dimension of the projective space and using projections
a modified bound is proved for higher dimensions.

The next two examples give a feeling about how algebraic geometry and finite
geometries come together when dealing with linear MDS codes.
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Example 3.7. Consider in P2(Fq) with q > 2 the nondegenerate conic given by the
equation x2

0 = x1x2 where xi for i = 0, 1, 2 are homogeneous coordinates in P2(Fq).
This conic consists of q+1 (Fq-)rational points: (0 : 1 : 0), (0 : 0 : 1) and (x : 1 : x2)
with x ∈ F∗q and these points lie in general position. We construct a linear code C
as follows: take of each of the rational points on the conic one representative. A
parity check matrix H of C is a 3× (q+1)-matrix of which the columns are exactly
those representatives. Since the points on the conic are in general position, each
triple of the columns of H is linearly independent so by Remark 1.2 the minimal
distance of C is 4. We see that C is an [q + 1, q − 2, 4] MDS code.

By Lemma 3.2 the points (0 : 1 : 0), (0 : 0 : 1) and (x : 1 : x2) with x ∈ F∗q
form an (q + 1)-arc in P(F2

q). Is this arc complete? In other words, can we extend

this (q + 1)-arc by adding a rational point from P(F2
q) to get an (q + 2)-arc? The

answer depends on the parity of q. In the case that q is odd Segre [23] proved that
(q + 1)-arcs are complete. In the case q > 2 is even we can extend the (q + 1)-arc
above by adding the point (1 : 0 : 0) the intersection of all tangent lines of points
on the conic, such point is called the nucleus of a conic. A quick verification shows
that these (q + 2) points are in general position. So this construction gives us an
[q + 2, q − 1, 4] MDS code. Now to see that this (q + 2)-arc is complete remember
that we have shown in Subsection 1.3 for an MDS code that n ≤ q + 2 when k = 3
and q is even.

Example 3.8. As a generalization of the previous example we show that it is always
possible to construct an (q + 1)-arc in Pm(Fq) with m ≥ 2. Consider the image X
of the embedding

vm : P1 → Pm

(x0 : x1)→ (xm0 : xm−1
0 x1 : ... : xm1 ) = (z0 : ... : zm).

Such a curve is called a rational normal curve. It is the common zero locus of the
polynomials zizj − zi−1zj+1 for 1 ≤ i ≤ j ≤ m − 1. As the name vm may suggest
this map is just the well known Veronese map of degree m. Note that in the case
m = 2 we get z2

1 = z0z2 which is just the curve in Example 3.7. If m = 3, then we
get the well known twisted cubic.

Note that any m + 1 points of a rational normal curve as described above are
linearly independent. This is due to the fact that the Vandermonde determinant
only vanishes if two of its rows coincide.

In general, for q odd it is not known yet whether points of rational normal curves
always form a maximal arc. The completeness of rational normal curve has been
investigated by Storme, Thas, Kovacs and others. In [32] the problem is solved
for the case that q is a large prime number and for the following case proved by
Storme:

Theorem 3.9. For each prime number p, p ≥ 1007231, every normal rational curve
in Pn(Fp), 2 ≤ n ≤ p− 1, is complete.

Theorem 3.10. For a fixed integer h ≥ 1 let p0(h) be the smallest odd number p
satisfying

ph+1 > 24ph
√
p(2h+ 1)ln(p) +

29

4
p− 20.
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Then for each odd prime number p ≥ p0(h) in Pn(Fq), q = p2h+1, 2 ≤ n ≤ p − 1,
every normal rational curve is complete.

4. Translation into algebraic geometric terms

4.1. Algebraic-geometric codes.

In Section 3 we translated the ‘object’ MDS code into an object in (finite) ge-
ometry. In this section we give an approach from the point of view of algebraic
geometry. For this we restrict our attention to the case of Algebraic Geometric
(Goppa) Codes. Notions and tools from Section 2 will be useful. Since we will be
working with curves over a finite field Fq, it will be important to know something
about the number of Fq-rational points on such curves. The Hasse-Weil bound is
an important tool in the proofs of many results on algebraic geometric codes.

Theorem 4.1. Let X be a curve over Fq of genus g ≥ 0. Then we have

|#X(Fq)− (q + 1)| ≤ 2gq
1
2 .

Proof. See [31, VI, Theorem 2.3]. �

Now we define the notion of an algebraic geometric (or Goppa) code:

Definition 4.2. ( Goppa 1978)
Let X be a curve over Fq. Let P1, ..., Pn ∈ X(Fq) be n distinct points. Define the

divisor D = P1 +P2 + ...+Pn on X. Let G be any divisor on X defined over Fq of
which the support is disjoint from the support of D. The Goppa Code C(X,D,G)
is the image of the linear map

αG : L(G)→ Fnq
f 7→ (f(P1), ..., f(Pn)).

Remark 4.3.

(1) According to Lemma 2.15 this definition makes sense because it is possible
to give a basis for L(G) consisting of functions in Fq(X) making αG well
defined. So we see L(G) as a Fq-vector space.

(2) The assumption supp(G) ∩ supp(D) = ∅ is in some sense not necessary.
One can redefine C(X,D,G) by choosing a t ∈ Fq(X) with ordPi

(t) =
multiplicity of Pi in G and sending f ∈ L(G− (t)) to (f(P1), ..., f(Pn)) . A
different choice of such t gives a different but an equivalent code 6.

(3) If we are interested in the parameters of a code, we may assume without
loss of generality that G is effective and we then get is an equivalent code.
This follows from the fact that for a divisor G defined over k on a curve
X with l(G) 6= 0 there exist G′ ≥ 0 such that G ∼ G′. The proof is easy:
l(G) > 0 hence there is an 0 6= f ∈ L(G). By definition (f) +G ≥ 0 so just
take G′ := (f) +G.

6For each Pi ∈ D let φi ∈ Fq(X)∗ such that ordPi
(φi) = ordPi

(G). Then send f to

(φ1f1(P1), ..., φnfn(Pn)). If we take another ψi ∈ Fq(X)∗ such that ordPi
(ψi) and we define

λi = ψi/φi, then λi lies in (F )q(X)∗ and has no poles or zeroes at Pi. So choosing ψi in stead
of φi leads to a multiplication of the coordinates by nonzero constants λi(Pi). Hence it gives an

equivalent code.
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(4) If C(X,D,G) is an [n, k] AG-code defined over Fq, then there exist P1, ..., Pn ∈
X(Fq) and an effective divisor G′ of degree k − 1 + g such that C ∼
C(X,P1 + ...+ Pn, G

′).

We list two statements on the parameters of algebraic geometric codes. We
inherit the notation of Definition 4.2.

Proposition 4.4. (Goppa 1978)
Let k and d be the dimension and the minimum distance of C(D,G) = C(X,D,G).
Then we have

(1) k = dimL(G) − dimL(G − D). In particular if n > deg(G), then k =
dimL(G). If moreover 2g − 2 < deg(G) we have k = deg(G) + 1− g.

(2) d(C(D,G)) ≥ n− deg(G).

Proof.

(1) Let f ∈ ker(αG). Then f vanishes in Pi for i = 1, ..., n. Since Pi /∈
supp(G) for i = 1, ..., n we must have f ∈ L(G−D). This gives C(D,G) ∼=
L(G)/L(G−D) which implies (1). Now if n > deg(G), then dimL(G−D) =
0 so αG is injective and hence k = dimL(G). If moreover 2g− 2 < deg(G),
then by the Riemann-Roch theorem k = deg(G) + 1− g.

(2) There exists an 0 6= f ∈ L(G) with w(αG(f)) = d(C(D,G)) = d > 0.
Without loss of generality we may assume that f(Pi) 6= 0 for i = 1, ..., d and
f(Pi) = 0 for i = d+1, ..., n. This means that 0 6= f ∈ L(G−Pd+1−...−Pn).
so deg(G)− (n− d) = deg(G− Pd+1 − ...− Pn) ≥ 0 hence d ≥ n− deg(G).

�

In Section 1 we defined the dual of a linear code. Now we define ‘the dual of an
algebraic geometric code’ and show that it is also an algebraic code arising from
the same curve and that it is indeed its dual in the usual sense. We deduce some
statements on its parameters and investigate how they are related to the parameters
of the original code. For this, Subsection 2.2 is needed. The following and more
can be found in [39, 10.6].

Definition 4.5. Let D be a divisor on a curve X over K. We define

Ω(D) := {ω ∈ Ω(X) : (ω)−D ≥ 0}.
The dimension dimK Ω(D) is the called the index of speciality of D.

Note that we have defined the index of speciality in Remark 2.31. One can see
that dimK Ω(D) = l(KX −D) by noticing that the linear map

φ : L(KX −D)→ Ω(D)

f 7→ fω

where ω is a canonical divisor is an isomorphism.

Definition 4.6. Let C = C(X,D,G) denote an algebraic geometric code. The
dual algebraic geometric code C∗(X,D,G) is the image of the linear map

α∗ : Ω(G−D)→ Fnq
η 7→ (resP1(η), ..., resPn(η)),

where resPi
(η) is the residue of η at Pi.

Proposition 4.7.
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(1) The code C∗(D,G) has dimension k∗ = dimL(KX +D−G)−dimL(KX −
G). In particular if deg(G) > 2g − 2, then k∗ = dimL(KX + D − G) and
if deg(G) < n also holds, then k∗ = n− (deg(G) + 1− g).

(2) For the minimum distance we have d∗ ≥ deg(G)− 2g + 2.

Proof.

(1) The kernel of α∗ is L(KX − G) so if deg(G) > 2g − 2 then α∗ is injective
since dimL(KX − G) = 0. Using the Riemann-Roch theorem if 2g − 2 <
deg(G) < n we get k∗ = L(KX +D −G) = n− (deg(G) + 1− g).

(2) Imitate the proof for Proposition 4.4.

�

From this proposition we see why it is common to ask for G and D in the
definition of C(X,D,G) that 2g − 2 < deg(G) < deg(D): the parameters become
easy to calculate. Remark 4.3.4 tells us that if we are interested in the parameters of
an AG-code, then it is not a restriction to assume that 2g− 2 < deg(G) < deg(D).

Proposition 4.8. The codes C(X,D,G) and C∗(X,D,G) are dual to each other.

Proof. We first show that C∗ ⊂ C⊥ and then that dimC∗ = dimC⊥. This gives
C∗ = C⊥.
Let η ∈ Ω(G−D) and f ∈ L(G). We want to show that α(f) ·α∗(η) = 0. We have:

α(f) · α∗(η) =

n∑
i=1

f(Pi)resPi
(η).

The differential form fη lies in Ω(−D) so fη has simple poles only in supp(D). By
the Residues theorem:

0 =
∑
P∈(K)

resP (fη) =

n∑
i=1

resPi
(fη) =

n∑
i=1

f(Pi)resPi
(η).

Hence α(f) · α∗(η) = 0.
We have

dimC⊥ = n− k = n− dimL(G) + dimL(G−D)

= dimL(KX +D −G)− dimL(KX −G) = k∗ = dimC∗.

We conclude that C∗ = C⊥. �

Proposition 4.9. Let C(X,D,G) be an algebraic geometric code such that 2g−2 <
deg(G) < n and let C∗(X,D,G) be its dual. Denote by d and d∗ the minimum
distance of C(X,D,G) and C∗(X,D,G) respectively. Then:

(1) n− deg(G) ≤ d ≤ n− deg(G) + g.
(2) deg(G)− 2g + 2 ≤ d∗ ≤ deg(G)− g + 2.

Proof. The bounds on the right hand side are the Singleton bound (Remark 1.5 ).
The bounds on the left hand side follow from Propositions 4.4 and 4.7. �

Thinking of AG MDS codes we get the following corollary:

Corollary 4.10. Suppose that 2g − 2 < deg(G) < n. Then the codes C(X,D,G)
and C∗(X,D,G) are MDS if g = 0.
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4.2. Bound on n.
In Corollary 1.10 we proved for an [n, k] MDS code over Fq that n ≤ q + k − 1
using MacWilliam’s identity. For the special case where the code is also algebraic
geometric we give another proof which makes use of a totally different technique.

Proposition 4.11. Let C = C(X,Q, G) be an [n, k]-AG MDS code with G a very
ample divisor. Then we have

n ≤ q + k − 1.

Proof. Let Q ⊂ X(Fq) be a set of n rational points on a curve X such that Q gives
rise to an [n, k]-AG MDS code C = C(X,Q, G). So we have k = l(G) and G is
disjoint from Q. Define d = deg(G) and note that G gives rise to an embedding
X ↪→ Pk−1 and we get deg(X) = deg(G) = d. By abuse of notation we use Q and
X(Fq) to denote the image of these sets under the embedding. We wish to give an
upper bound for #Q.

Let Q1, .., Qk−2 ⊂ Q be k−2 distinct points. Then these points span a subspace
V ∼= Pk−3 of codimension 2 in Pk−1. Note that V can not contain more points from
Q for if there is P ∈ V ∩ (Q\{Q1, ..., Qk−2}), then adding any other point from
Q\{Q1, ..., Qk−2, P} we get k points of Q in the same hyperplane which contradicts
the fact that Q gives rise to an MDS code. Choose a line L ∼= P1 defined over
Fq in Pk−1 such that V and L are disjoint. We project X from V on L using the
following projection φ (also called Lefschetz Fibration): Let P ∈ X\V and consider
the hyperplane PV spanned by P and V . The image of P is defined as L ∩ PV .
We get a morphism over Fq:

φ : X − {Q1, ..., Qk−2} → L ∼= P1.

Since L is projective the morphism φ extends (Theorem 2.19) to a morphism

φ : X → L.

We show that φ is injective on Q\{Q1, .., Qk−2}. Let Q,Q′ ∈ Q\{Q1, .., Qk−2} be
two distinct points and suppose that φ(Q) = φ(Q′). By definition of φ the set of
k points Q,Q′, Q1, .., Qk−2 lies in the same hyperplane in Pk−1. But this can not
happen since Q gives rise to an MDS code. Now there are q+ 1 rational points on
L so by the box principle we conclude that #Q = n ≤ k − 2 + q + 1 = q + k − 1.

�

Remark 4.12.

(1) The proposition implies that dmin(C) = n− k + 1 ≤ q.
(2) To determine the degree of φ we note that for a point z ∈ L the fibre of z

consists of the intersection of X with the hyperplane belonging to z minus
the points Q1, .., Qk−2. Hence

deg(φ) = degree of X − (k − 2) = deg(X)− (k − 2) = d− k + 2.

By Riemann-Roch’s Theorem: k ≥ d− g+ 1 so d ≤ k+ g− 1 and deg(φ) ≤
k+ g− 1− (k− 2) = g+ 1. In the case that d ≥ 2g− 1 we get the equality
deg(φ) = g + 1.
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4.3. The main conjecture for algebraic-geometric codes.

In the next subsections we give an overview of attacks on the main conjecture of
MDS codes. First we give a geometric equivalence for a geometric code to be MDS.
This proposition has been used by many mathematicians working on this problem
like Munuera but also by De Boer, Walker and Chen.
We abuse notation and write a divisor D = P1 + ...+Pn and we denote its support
also by D. Whether D is a divisor or a set should be clear from the context.

Proposition 4.13. Let C = C(X,D,G) be a Goppa [n, k]−code. The code C is
MDS if and only if for every m−tuple of distinct points P1, ..., Pm ∈ D, m = 0, ..., k
it holds 7 that

l(G− P1 − ...− Pm) = k −m.

Proof. (See [10, p. 24, Proposition 1.1]).

(⇒): Let C = C(X,D,G) be an MDS Goppa [n, k]−code. Let m ∈ {0, ..., k}
and let P1, ..., Pm ∈ D be m distinct points. By Riemann-Roch theorem we
have l(G − P1 − ... − Pm) ≥ k − m. If l(G − P1 − ... − Pm) > k − m then for
every (k − m)−tuple of distinct points Q1, .., Qk−m ∈ D\{P1, ..., Pm} we have
l(G − P1 − ... − Pm − Q1 − ... − Qk−m) > 0. Hence there are nonzero code words
that vanish in at least k coordinates which contradicts the assumption that C is
MDS.

(⇐): Suppose that for every m−tuple of distinct points P1, ..., Pm ∈ D, m =
0, ..., k it holds that l(G − P1 − ... − Pm) = k − m. Then in particular we have
l(G−P1− ...−Pk) = 0 for every k−tuple of distinct points P1, ..., Pk ∈ D. So there
is no 0 6= f ∈ L(G) vanishing at k or more points of D. So each nonzero code word
has weight at least n− k + 1 and hence C is MDS. �

Remark 4.14.

(1) The proof of this proposition tells us that a code C(X,D,G) is MDS if and
only if for all nonzero f ∈ L(G) we have f(P ) = 0 for at most k−1 distinct
P ∈ D.

(2) If C(X,D,G) is MDS and X has genus g = 0, then the main conjecture
holds definitely. This follows easily from the fact that #X(Fq) ≤ q + 1.
The length of such code is thus at most q + 1 which is consistent with the
bounds in the main conjecture.

(3) We have used MacWilliams identities to show that the weight distribution
of an MDS code is completely determined by k and n. Proposition 4.13
implies in fact the same result.

Usually when trying to prove the main conjecture of MDS codes for an algebraic
geometric MDS code C(X,D,G) authors restrict them to the case that n = q + 2.
The idea behind this ‘without loss of generality’ assumption is easy to understand.
First a notation: If D = P1 + ...+Pn with Pi 6= Pj for all i, j ∈ {1, ..., n}, then for a
positive integer a we denote by Da a subdivisor of D consisting of a points. The fact

7The case m = 0 corresponds with l(G) = k.
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that truncating an MDS code yields an MDS code can easily seen by remembering
that for a generator matrix of an MDS codes it holds that each k× k-minor matrix
should be invertible (Proposition 1.7). The fact that truncating an AG-code yields
an AG-code follows easily from the definition of an AG-code: instead of evaluating
all points in the support of D we restrict to a subdivisor Da.
Now if there exists a geometric code with n > q + 2, we can truncate the length to
q+ 2 without changing k. Hence if the main conjecture does not hold for geometric
MDS codes, then there would exist a geometric MDS code of length n = q+2 when
k 6= 1, 3 and q is even.

4.4. Munuera’s proposition.

The article of Carlos Munuera [22, 1] in 1992 has been the inspiration for the
authors of at least four other articles on geometric MDS codes. In his article he
deals with geometric MDS codes arising from curves over Fq of which the genus is
1 or 2 and when q is large enough.

Let X be a curve over Fq of genus g, D = P1 + ... + Pn ⊂ X(Fq) where the n
points are distinct and let G be a rational divisor on X such that deg(G) < n and
D ∩ supp(G) = ∅. Then C = C(X,D,G) is just the linear code as we defined in
Definition 4.2. Now let t ∈ Z, 1 < t ≤ n/2− 2. We introduce

Lt(D) = {Pi1 + ...+ Pit |ij ∈ {1, ..., n}, Pir ∈ D,Pir 6= Pis if r 6= s}.

For each t this is just a set of divisors and we write Lt(D)/ ∼ for the quotient
set, where ∼ is the familiar linear equivalence of divisors. We define the following
property:

L[X,D, t]: There exists a class in Lt(D)/ ∼ such that for every two distinct
points R,S ∈ D, this class has at least one representative E ∈ Lt(D) (depending
on R and S) satisfying that neither R nor S is in E.

The following proposition, due to Munuera, is an essential ingredient in the
proofs in the articles of Munuera and authors who exploited his idea. Because of
its importance we include a proof of it:

Theorem 4.15. If #D = n > q + 1 and L[X,D, t] holds for all 1 < t ≤ n/2 − 2,
then there are no [n, k]−MDS geometric codes arising from D for 3 < k < q, except
possibly for k = q − 1 and n = q + 2.

Proof. See [22, Proposition 1] and [10, Proposition 1.3].
Let k = t + 2. Suppose that C = C(X,D,G) is an [n, k] MDS code with 3 < k
and n > q + 1. The dual of a geometric MDS code is also a geometric MDS code
by (Proposition 4.8) so we may assume that 3 < k ≤ n/2. By assumption we know
that L[X,D, k− 2] holds, so there is a class [D] in Lk−2(D)/ ∼ such that for every
two points R,S ∈ D there is a representative D′ ∈ Lk−2(D) of [D] not containing
R and S in its support. Let P1 + ... + Pk−2 be a representative of [D]. For any
Pi ∈ D we have #|G− P1 − ...− Pk−2 − Pi| ≥ 1 by Proposition 4.13. Let Ei be an
effective divisor of degree g such that

G− P1 − ...− Pk−2 ∼ Pi + Ei.
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We claim that the divisors {Pi + Ei} where Pi runs over D are pairwise different.
If we prove this claim, then it follows that n = #D ≤ |G−P1 − ...−Pk−2| = q+ 1
which is a contradiction. So suppose we had Pi + Ei = Pj + Ej for some i 6= j.
Define E′ = Ei − Pj and note that E′ = Ej − Pi and E′ ≥ 0. We have thus
Ei = Pj + E′ and Ej = Pi + E′. There is a representative Q of [D] such that
Q = Q1 + ...+Qk−2 and Pi, Pj 6= Qr for 1 ≤ r ≤ k − 2. Hence we find that

G ∼ Q1 + ...+Qk−2 + Pi + Pj + E′.

This says that there exists a nonzero code word in C with at least k zeroes contra-
dicting Proposition 4.13. �

Theorem 4.15 has been proved to be very useful in proving the main conjecture
of MDS codes even it works in just one direction.

Remark 4.16.
The theorem is also a corollary of the following: If L[X,D, t] holds for some t,
1 < t ≤ n/2−2, then the maximal length of a non-trivial algebraic geometric MDS
codes of dimension t+ 2 over Fq is q + 1.

Unfortunately, for large genus g the property L[X,D, t] can be strong if X is
hyperelliptic. The next corollary implies that for g = 3 the property L[X,D, 3]
never holds for any set D. For a proof of it we refer to [10, Proposition 2.2]. Recall
that for a P ∈ X(Fq) there is a unique Q ∈ X(Fq) such that P + Q ∈ g1

2 , here g1
2

is the unique linear system of degree 2 and dimension 1. The g1
2 gives rise to an

involution ι : X → X and we have Q = ι(P ). Now define Dt = {P1 + .. + Pt|Pi ∈
D,Pi 6= Pj , ι(Pj)}, so the support of each element of such a Dt does not contain
conjugated pairs.

Proposition 4.17. Let X be a hyperelliptic curve over Fq and D a set of rational
points on X and suppose that 0 ≤ t ≤ g. Then L[X,D, t] holds if and only if t is
even and D contains at least t/2 + 2 conjugate pairs.

Nevertheless, Chen succeeded to prove the conjecture for g ≥ 2 if q is large
enough (See Theorem 4.26).

4.5. Application to elliptic curves.

We consider the case where X over Fq is elliptic . This case has been studied by
several mathematicians including Munuera and Walker (see next subsection). We
give outlines of their proofs. Note how Theorem 4.15 is used in these cases.

We start with some facts on elliptic curves: The rational points X(Fq) can be
given a composition law ⊕ induced by a bijection8 from the Jacobian of X onto
X(Fq) so X(Fq) becomes an abelian group. Given a divisor G =

∑
nPP we asso-

ciate to G the point G∗ = ⊕nP ·P . Note that G∗ ∈ X(Fq) if G is rational over Fq.
One can prove that for two rational divisors G and G′ on X we have G ∼ G′ if and
only if deg(G) = deg(G′) and G∗ = G′∗. Each pair of distinct points Q,Q′ ∈ X(Fq)
gives rise to a unique point P = Q ⊕ Q′ ∈ Fq. We call {Q,Q′} a P−pair. In
fact two P−pairs {Q,Q′} and {R,R′} we must have either {Q,Q′} = {R,R′} or

8The bijection is not unique. You first have to choose a rational point which becomes the
neutral element of the group structure.
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{Q,Q′} ∩ {R,R′} = ∅.

The main idea of Munuera’s proof is to prove L[X,D, t] for 1 < t ≤ n/2− 2 by
showing that for a P ∈ X(Fq) there exist enough P−pairs in D. For instance, if
t is even, then Munuera shows it is enough to prove that there is P ∈ X(Fq) such
that D contains at least t/2 + 2 P -pairs. In fact if {Q1, Q

′
1}, ..., {Qt/2+2, Q

′
t/2+2}

are such P -pairs, then

[E] := [Q1 +Q′1 + ...+Qt/2 +Q′t/2] ∈ Lt(D)/ ∼ .

Note that all pairs obtained as sum of t/2 P -pairs are actually equivalent to E.
This follows easily from G ∼ G′ if and only if deg(G) = deg(G′) and G∗ = G′∗ as
stated above.

How can we understand this in a more geometric fashion?

We aim to give the set of P -pairs of a point P ∈ X(Fq) a geometric interpretation.
Let

X ×X a // X

(x, y)
� // x⊕ y

denote the addition map on X. Then a factors as following

X ×X

ι

��

a // X

(X ×X)/ι

a

::

where ι denotes the map

X ×X // X ×X

(x, y) � // (y, x)

which exchanges the factors. By taking the quotient we get a smooth projective
surface (X ×X)/ι which is the symmetric product X(2).

Let p ∈ X be fixed and write O for the identity element under addition in X.
Then obviously {P,O} is a P -pair and hence a−1(P ) is not empty. Now we show
that for any (x0, y0) ∈ a−1(P ) we have

a−1({P}) = {(x0 ⊕ q, y0 	 q)|q ∈ X}.

Let (x0, y0) ∈ a−1({P}). For ⊃ note that (x0⊕ q⊕ y0	 q) = x0⊕ yo = P for any
q ∈ X. For ⊂ take any (u, v) ∈ a−1({P}) there is a unique q ∈ X with u = x0 ⊕ q
and v = y0 	 q namely q := u	 x0. Note that v = P 	 u = x0 ⊕ y0 	 u = y0 	 q.
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Let δ : X → X be the involution x 7→ 	x. then we have

a−1({P}) = {(x0 ⊕ q, y0 	 q)|q ∈ X}
= {(x0 ⊕ q, y0 ⊕ δ(q))|q ∈ X}
∼= {q + δ(q)|q ∈ X}
= |P +O|
∼= P1.

Hence taking P -pairs modulo ι we can identify the quotient with a g1
2 .

An important and somehow surprising result of Munuera is the following:

Proposition 4.18. If a nontrivial MDS code arises from an elliptic code and it
has length n > q + 1, then it is a [6, 3] code over F4 arising from an (unique up to
isomorphism) elliptic curve with 9 rational points.

Proof. See [22, Proposition 3]. �

The proof makes use of the group structure of rational points of an elliptic curve,
namely the number of points of order 1 or 2 in X(Fq). It also uses a result of R.
Pellikaan and Liu and Kumar 9. In Section 5 we give an explicit example of such
code.

4.6. Arcs on curves vs AG-codes.

In 1996 an article [40] of Judy L. Walker was published on the main conjecture
on algebraic geometric MDS codes. In her article she described a new approach to
attack this conjecture. She used the geometry of a curve after a specific embedding
to prove the conjecture in the case of codes arising from curves of genus 1. This
result is just a corollary of her main result which is about the maximum number of
points in an arc lying on an elliptic curve.

In Lemma 3.2 we established a one-to-one correspondence between classes of
MDS [n, k]-codes over Fq and n-arcs in Pk−1(Fq). The next proposition rephrases
this correspondence in the case of algebraic geometric codes. The statement and
the proof are modifications of a result of Judy L. Walker.

Write n = #D. If we take G to be any very ample divisor on X with supp(G)∩
supp(D) = ∅ and deg(G) ≥ 0, then dimL(G) = k = 1+deg(G)+dimL(KX−G)−g
(the Riemann Roch theorem), where KX is a canonical divisor on X.

Proposition 4.19. Using the notation of Definition 4.2: There is a one-to-one
correspondence:

{ Algebraic geometric [n, k]-MDS codes C(X,D,G) over Fq} / ∼
l{

n-arcs in Pk−1(Fq) of which all points lie in X
}

where ∼ denotes the equivalence of linear codes.

9They give an example of an [6, 3, 4]−AG-code arising from the curve X : y2z+ yz2 = x3 over
F4 which has 9 rational points with X(F4) ∼= Z/3× Z/3.
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Proof. See [40, Section 2].
↑:

Assume that X is embedded as a curve X ⊂ Pk−1
Fq

of degree d and genus g ≥ 0

with k ≥ 2 and d = k − 1 + g − dim L(K −G). Let {Q1, ..., Qn} = Q ⊂ X(Fq) be
an n−arc and denote by Q also the divisor Q1 + ...+Qn. We will show that there
is a [n, k] MDS code arising from X and Q.
Let H.X be any hyperplane section. By the approximation theorem 10 there is a
divisor G defined over Fq which satisfies:

(1) G ∼ H.X
(2) supp(G) ∩Q = ∅.

Then G is a divisor of degree d 11. Consider the code C = C(X,Q, G) of length
n and dimension k = 1+d+dim L(K−G)−g where KX is the canonical divisor on
X. We know that C is MDS if and only if there is no 0 6= f ∈ L(G) with f(Q) = 0
for k distinct Q ∈ Q. But if such an f exists, we must have (f) + G = H ′.X for
some hyperplane H ′ and H ′ contains at least k points of Q because the set of hy-
perplane sections is a complete linear system on X. But then H ′ contains at least
k points ofQ which is impossible by Remark 4.14 sinceQ is assumed to be an n−arc.

↓:

Let X be a curve of genus g over Fq and D ⊂ X(Fq) with #D = n. Let G be a
very ample divisor. Since G is very ample it defines an embedding φ : X → Pk−1.
By letting Y = φ(X) and Q = φ(D) we have Y is a curve of degree equal to
deg(G). Assume that k points of Q lie in a hyperplane. Write φ = (φ0 : ... : φk).
Since the points of D are not in the support of G the functions φi are regular
at each point of D. To say that k points of Q lie in a hyperplane is to say that
for some a0, ..., ak−1 ∈ Fq, there are k distinct solutions in D to the equation
aoφ0(P ) + ... + ak−1φk−1(P ) = 0. Since f = a0φ0 + ... + ak−1φk−1 ∈ L(G), by
Remark 4.14 the code C can not be MDS.

�

Remark 4.20.

(1) We see from the proof that proving that there is an [n, k]-MDS code aris-
ing from a given curve X with a very ample divisor G on it is equiva-
lent to proving that when X is embedded in Pk−1 as a curve of degree
k+ g−dimL(KX −G)−1, there are n− Fq-rational points of X in general
position.

It was Walker’s idea to state and prove the one-to-one correspondence of Propo-
sition 4.19. She used this to prove the following theorem:

Theorem 4.21. Fix δ > 2
3 . Then there exists q0 = q0(δ) that can be computed

effectively such that if q ≥ q0, m ≥ δq and X ⊂ Pk−1 is a curve of genus one and

10A corollary of the (weak) approximation theorem proven by Lang states that any divisor

class containing a K-rational divisor also contains a K-rational divisor whose support is disjoint

from a given finite set. See [17, II, lemma 3.].
11The degree of an embedded curve is the degree of a hyperplane section.
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degree k defined over Fq with k ≤ bm2 c, then for any set Q ⊂ X(Fq) of m rational

points on X, some k points of Q must lie in a hyperplane of Pk−1.

From the theorem above we deduce the following:

If we take m = q + 2 and q > 19 in the theorem and use older results 12. from
finite geometries we can deduce:

Corollary 4.22. The main conjecture on MDS codes holds for all AG-codes arising
from elliptic curves.

We give a sketch of the proof of Theorem 4.21 when k is even since. The other
case goes almost similarly.

Take k− 2 distinct rational points Q1, ..., Qk−2 on X in Q with Q1 +Q2 ∼ ... ∼
Qk−3 + Qk−2 ∈ g1

2 . According to the lemma there are at least three other pairs
P + P ′ ∈ g1

2 with P, P ′ ∈ Q and distinct. One can show that through any point
Q ∈ Q′ = Q \ {Q1, ..., Qk−2} there is a unique hyperplane HQ through Q and
Q1, ..., Qk−2. The hyperplane section HQ.X is of degree k since X itself has degree
k. Note that HQ.X −Q−Q1 − ..−Qk−2 is an effective divisor of degree 1 on X,
hence it is a rational point on X.

The next step to show that HQ.X is the sum of k distinct points from Q, which
actually means that there are k points of Q lying in HQ and that is what Theorem
4.21 says.

First we construct a 2 : 1 morphism π from X to P1. Such a morphism will give
rise to a g1

2 on X as noticed before. Fix a copy of P1 not containing Q1, .., Qk−2

and consider X the Pk−2 spanned by Q1, .., Qk−2. Denote by X the curve obtained
from X by extending scalars to Fq. Then the projection away from X to P1 is the

Lefschetz fibration which in this case maps points on X which don’t lie in X to
points on P1. This projection can be extended uniquely to a morphism π : X → P1.
Roughly speaking, it sends a point x ∈ X to the unique intersection of the hyper-
plane determined by X and x with P1. Walker shows that this morphism is 2 : 1
and defined over Fq hence it comes with an involution i.

Now Walker shows that there exists an Q ∈ Q with i(Q) ∈ Q′ \Q which has as a
consequence that HQ.X ∼ Q+ i(Q) +Q1 + ...+Qk−2, the sum of k distinct points.
To do so, one can consider the cases Q ∈ {Q1, ..., Qk−2} and Q ∈ Q′. The second
case is more interesting. Walker shows that i(Q) = Q if and only if Q is a ramifi-
cation point of the induced map π : Y → P1, here Y = X \X ∩ V . The Hurwitz’s
theorem applied to π; which is proved to be separable, shows that there are at most
4 ramification points. If q is large enough, then an application of the Hasse-Weil
bound Theorem 4.1 shows that there must be a Q ∈ Q with i(Q) ∈ Q′ \Q.

Remark 4.23.

12The proof of the conjecture when q ≤ 11 can be found in [13] and for 13 ≤ q ≤ 19 it can be
found in [7]
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The whole idea of the proof is to view HQ.X as a divisor in Picn+1(X(Fq)) and

by subtracting Q+Q1 + ...+Qn−1 from HQ.X we get an element in Pic1(X(Fq)).
To write HQ.X as a sum of n + 1 distinct points, we need just one point from Q
which is not in the support of Q+Q1 + ...+Qn−1. Using a property of π we show
that such extra point exists.

4.7. Case X is hyperelliptic.

In the article of Munuera [22] in which he dealt with elliptic curves, he also proves
the main conjecture for codes arising from curves of genus g = 2 for q large enough.
His attack on this special case of hyperelliptic curves has been generalized by de
Boer [10] and Chen [8] in their articles to cover many other hyperelliptic curves of
higher genus. The characteristic of all these proofs is again the use of Theorem 4.15
and exploiting the existence of a (unique) 13 g1

2 for hyperelliptic curves. The core
of the proof is generalized in the next subsection but we state some specific results
on hyperelliptic curves:

Theorem 4.24. (By Munuera)
The main conjecture on MDS codes is true for codes arising from curves of genus
2 when q > 83.

Theorem 4.25. (By de Boer)
The main conjecture on MDS codes holds for [n, k]−codes arising from hyperelliptic
curves of genus g over Fq with g + 3 < k < n− g − 3 if

2g+2

(
d q2e+ 1

g + 2

)
> 2(
√
q + 1)2gb q + 1

g + 1
c

and

g ≤ q − 8

4
√
q + 6

.

In other words for fixed g there is a q0 such that for all q > q0 the main conjecture
holds for MDS codes arising from hyperelliptic curves of genus g over Fq. A very
good improvement of this exponential constant q0 (it is an expression in terms of
g! ) has been reached by the work of Chen:

Theorem 4.26. (By Chen)
The main conjecture on MDS codes is true for codes arising from hyperelliptic
curves of genus g ≥ 2 over Fq if

q > 8g2 + 4g + 8 + 8g
√
g2 + g + 2

or
q < 8g2 + 4g + 8− 8g

√
g2 + g + 2.

4.8. A generalization of the hyperelliptic case.

The previous subsections show that proofs for the main conjecture on AG MDS
codes heavily make use of the fact that elliptic curves and hyperelliptic curves ad-
mit at least a g1

2 . A possible generalization is to look at curves admitting a g1
m for

m ≥ 3. We give a generalization in which we assume that m is prime and co-prime
to q.

13The uniqueness has not been necessary in the proofs.
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Theorem 4.27. There exists a constant q0 ∈ O(g3) such that if q > q0 and
C(X,D,G) is an MDS code arising from X, where X is a curve over Fq of genus
g ≥ 3 which has a prime gonality m with gcd(m, q) = 1, then the main conjecture
of MDS codes holds for C(X,D,G). In other words for such C(X,D,G) we have
n ≤ q + 1 or n ≤ q + 2 if q is even and k ∈ {3, q − 1}.

Proof. Let X be a curve over Fq of genus g ≥ 1 which has a prime gonality m ≥ 3
with gcd(q,m) = 1, then there exists a morphism φ of degree m from X to the pro-
jective line. So on X there exists at least one linear system g1

m of dimension 1; which
consists of preimages of the points of the projective line under φ. We assume that g1

m

is Galois over Fq. That is, there is an automorphism σ : X ∼= X of order m defined
over Fq such that X/ < σ > ∼=P1. Write Nf for the number of ramification points
of f . We know by Hurwitz’s formula (Corollary 2.40) that 2g−2 = −2m+deg(Rf )
where Rf is the ramification divisor. From (m, q) = 1 it follows that that f is
tamely ramified. Hence there are (since m is prime) Nf = 2(g + m − 1)/(m − 1)
ramification points.

As in the definition of geometric codes, take a subset D ⊂ X(Fq) and an effective
divisor G such that C = C(X,D,G) is an [n, k]-code. We prove L[X,D, t] for
1 < t ≤ n/2 − 2 by assuming that n = q + 2 and 3 < k ≤ n/2. We consider two
cases and derive two inequalities and then we show when they not hold.
Case 1: t is multiple of m;

First note that t+ 2 = m(t/m+ 2/m) ≤ m(t/m+ 1). Hence it suffices to show
that D contains at least t/m+ 1 + 1 = t/m+ 2 effective divisors (representatives)
from g1

m such that none is of the form mQ with Q ∈ D. Suppose that D contains
at most t/m+ 1 of such representatives. There are at most Nf divisors of the form
mQ in D.

We consider the worst case: For at least n−m(t/m+1)−Nf points, these points
appear in conjugates, say Q+σ(Q)+...+σm−2(Q) and for each such a (m−1)-tuple
there is a point Q′ in X(Fq)\D such that Q+ σ(Q) + ...+ σm−2(Q) +Q′ ∈ g1

m. If
we write N1 = #X(Fq) then we get:

m(t/m+ 1) +Nf + (n−m(t/m+ 1)−Nf ) + (n−m(t/m+ 1)−Nf )/(m− 1) ≤ N1.

Hence

n+ (n− t−m−Nf )/(m− 1) ≤ N1.

Case 2: t is not a multiple of m;
A similar counting argument as in Case 1 shows that it suffices to show that there
are at least (t+ 1)/m+ 2 representatives of g1

m in D. This corresponds to the case
when m divides t−m+ 1. Suppose that D contains at most (t+ 1)/m+ 1 of such
representatives. Analogous to Case 1 we get the following inequality

n+ (n−m((t+ 1)/m+ 1)−Nf )/(m− 1) ≤ N1.

Which gives

n+ (n− t−m− 1−Nf )/(m− 1) ≤ N1.

Using the assumptions n = q+2, t ≤ bn/2c−2 and N1 ≤ q+1+2g
√
q (Theorem 4.1)

together with the fact that m ≤ g+ 1 (Lemma 2.43) we get for both cases that the
inequalities hold only for q > q0 for some q0 ∈ O(g3). We conclude that for q > q0

the property L[X,D, t] holds and hence (by theorem 4.15)the main conjecture for
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MDS codes holds for this particular case of MDS codes which satisfy the conditions
in the theorem. �

4.9. A new result.
We have seen so far that the main conjecture of MDS codes is solved for AG-codes
in the case that g = 1. For g = 2 Munuera solved it for q > 83. Note that the con-
jecture definitely holds for codes rising from curves of genus g = 0 since such curves
contain (at most) q+1 rational points. For hyperelliptic curves Chen gave quadratic
bounds q0(g) and q1(g) for q such that the conjecture holds if q > q0(g) or q < q1(g).

In this subsection we consider a special case of AG-codes and we improve the
lower bounds for q in Theorem 3.5 from quadratic bounds in terms of k to linear
bounds in terms of k for a fixed genus g. This is a quite interesting improvement in
the bound. What is also interesting is the fact that the proof of this new result does
not demand from the curve X (in the definition of C(X,D,G)) to have a specific
linear system or gonality (note that this was necessary in the case of elliptic and
hyperelliptic curves). The only nontrivial requirement is that G must be very
ample. But in algebraic geometry it is not strange to demand this because very
ample divisors are geometrically ‘good’ divisors since they give rise to embeddings
of curves into projective spaces.

Theorem 4.28. Let X be a curve over Fq of genus g ≥ 2. Let δ be a very ample
divisor class on X of degree d ≥ 1. Assume that k := dimL(δ) ≥ 4. Let Q ⊂ X(Fq)
with #Q ≥ q+ 2. There exist constants α > 0 and β depending only on g such that
if q > αk + β, then there is a representative H of δ that contains k distinct points
from Q in its support.

Before we prove this theorem we state and prove the following result:

Corollary 4.29. Let D (defined over Fq) be a representative of the divisor class δ
on X. Then Theorem 4.28 implies the main conjecture of MDS codes for C(X,Q, D)
if q is odd or if q is even and k /∈ q − 1.

Proof. Let D (defined over Fq) be a representative of the divisor class δ on X and
consider C = C(X,Q, D). The very ample divisor D gives rise (see Subsection
2.1.1) to an embedding f : X ↪→ P(L(D))∗ ∼= Pk−1. Consider f(Q) ⊂ P(L(D))∗.
Note that #f(Q) = #Q ≥ q + 2. There exists an effective divisor H on X defined
over Fq with H ∼ D and Q1, ..., Qk ∈ Q ∩ supp(H). This is equivalent to saying
that there is a hyperplane in P(L(D))∗ containing k points of f(Q). Hence C can
not be MDS (otherwise Q would be in general position as follows from Proposition
4.19). But this is what the main conjecture of MDS codes tells in the case that q
is odd or q is even and k /∈ q − 1.

�

Now we give a proof of Theorem 4.28:

Proof. We prove the statement by induction on d, the degree of δ.

Case 1: d ∈ [1, ..., 2g − 2];

Using the Riemann-Roch theorem we have l(δ) − l(KX − δ) = d − g + 1 where
KX is the canonical divisor class of X. Note that deg(KX − δ) ∈ [0, ..., 2g − 2].
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Hence, by Clifford’s theorem (Theorem 2.38):

l(KX − δ)− 1 ≤ 2g − 2

2
.

Hence
l(KX − δ) ≤ g.

This gives
l(δ) = d− g + 1 + l(KX − δ)

≤ d− g + 1 + g ≤ 2g − 2− g + 1 + g

≤ 2g.

Case 2: d ∈ [2g − 1, ..., 4g];

We have
l(δ) = k = d− g + 1 ≤ 3g + 1.

For these two cases it holds that for d ∈ [1, ..., 4g] we have

k − 1 = dimP(L(δ))∗ ≤ 3g.

By Theorem 3.5 and since 3 < k < q− 1 we already know that the main conjecture
of MDS Codes holds for k ≤ 3g + 1 if q > (4(3g + 1)− 55

4 )2 = (12g − 39
4 )2.

Case 3: d ≥ 4g+1; We use Case 1 and 2 to do an induction procedure on d. There

are

(
#Q
2g

)
effective reduced divisors of degree 2g of which the support lies in

Q. So there is a divisor class e of degree 2g on X having at least

⌈(
#Q
2g

)
/h

⌉
of such representatives, where h = #Pic2g(X). So we have δ − e ∈ Picd−2g(X).
Since d − 2g ≥ 2g + 1 we know by Lemma 2.33 that δ − e is a very ample divisor
class. The induction hypothesis (since l(δ − e) ≥ g + 2 ≥ 4) says that there exists
an effective representative H ′ of δ − e and {Q1, ..., Qd−2g−(g−1) = Qd−3g+1} ⊂ Q
such that H ′ −Q1 − ...−Qd−3g+1 is effective.

We show that there exists a representative E of the class e such that E = Q′1 + ...+
Q′2g and supp(E) ∩ {Q1, ..., Qd−3g+1} = ∅ with Q′i ∈ Q. This would imply that for
H := H ′+E ∈ δ we have H−E = Q1+...+Qd−3g+1 and so we are done. We count
the number of effective representatives of e that contain Q1 or Q2 or...or Qd−3g+1.
To count those that contain Qi we note that the set of effective representatives of
e containing Qi can be mapped injectively into the set of effective representatives
of e − [Qi]. Hence the number of effective representatives of e containing Qi is at
most

qdeg(e)−g+1−1 − 1

q − 1
=
qg − 1

q − 1
.

Here we use that deg(e− [Qi]) = 2g− 1 and hence the Riemann-Roch theorem tell
us the exact dimension of e− [Qi] namely l(e− [Qi]) = 2g − 1− (g − 1) = g.

Noticing that d ≥ 4g + 1 and hence k − 2g > 0, there are at most

(d− 3g + 1)
qg − 1

q − 1
= (k − 2g)

qg − 1

q − 1
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effective representatives containing Q1 or Q2 or...or Qd−3g+1.
Now we are done if ⌈(

#Q
2g

)
/h

⌉
> (k − 2g)

qg − 1

q − 1

Claim 4.30. The inequality⌈(
#Q
2g

)
/h

⌉
> (k − 2g)

qg − 1

q − 1

holds for q > (2g)!22g−1(k − 2g) + 2g(2g − 2).

Proof. We estimate h using the bound for the Jacobian (Proposition 2.13):
h ≤ (

√
q + 1)2g ≤ (2

√
q)2g = (4q)g and hence 1

h ≥
1

(4q)g .

Also ⌈(
#Q
2g

)
/h

⌉
≥
(

#Q
2g

)
/h ≥

(
q + 2

2g

)
/h.

Assuming q + 2− 2g ≥ 1 (i.e, q ≥ 2g − 1) we get(
q + 2

2g

)
=

(q + 2)!

(2g)!(q + 2− 2g)!

=
(q + 2)(q + 1)...(q + 3− 2g)

(2g)!
>

(q + 2− 2g)2g

(2g!)
.

On the other hand:
qg − 1

q − 1
<

qg

q − 1
≤ qg

q
2

=
qg−1

2
.

Combining the results above we see that a solution of

(q + 2− 2g)2g

(2g)!(4q)g
> (k − 2g)

qg−1

2

will give us a solution to Claim 4.30. We solve thus

q(
q + 2− 2g

q
)2g >

(2g)!4g

2
(k − 2g).

Using Bernoulli’s inequality (note that 2g is even) we get:

(
q + 2− 2g

q
)2g = (1 +

2− 2g

q
)2g ≥ 1 +

2g(2− 2g)

q
.

So

q(
q + 2− 2g

q
)2g ≥ q + 2g(2− 2g).

A solution for q of the inequality

q + 2g(2− 2g) >
(2g)!4g

2
(k − 2g)

is a solution of the inequality in the claim. Hence for q > (2g)!22g−1(k − 2g) +
2g(2g − 2) the claim holds.

�

From the induction basis we see that for q > (12g − 39
4 )2 the main conjecture

of MDS codes holds. Combining this with the inequality q > (2g)!22g−1(k − 2g) +
2g(2g − 2) there are constants α(g) > 0 and β that take in account that q >
(12g − 39

4 )2 such that Theorem 4.28 holds. �
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5. Examples of AG-codes

Example 5.1.
Let X be the curve over F4 defined by the equation y2z3 + yz4 = x5 + x3z2 + xz4.
Then X has genus 2 and hence is hyperelliptic. Take G = P∞ = (1 : 0 : 0) and let P
be any point of X. Define G = P +3P∞ ∈ Div(X). Set D = X(F4)\{P, σ(P ), P∞},
where σ is the hyperelliptic involution on X induced by the unique g1

2 on X. We
have l(G) = l(K −G) + deg(G)− g+ 1 = 0 + 4− 2 + 1 = 3. For any P which is not
P∞ we can verify that C = C(X,D,G) is a [6, 3, 4]-code and hence it is an MDS
code. We use Magma to construct an explicit example of such code by choosing
P := (1 : α : 1) with α ∈ F∗4 is a primitive generator of the cyclic group F∗4:

> K<x>:= PolynomialRing(GF(4));

> K;

Univariate Polynomial Ring in x over GF(2^2)

> C:= HyperellipticCurve(x^5+x^3+x,1);

> C;

Hyperelliptic Curve defined by y^2 + y = x^5 + x^3 + x over GF(2^2)

> PointsAtInfinity(C);

>{@ (1 : 0 : 0) @}

> pts:=Points(C);

> pts;

{@ (1 : 0 : 0), (1 : $.1 : 1), (1 : $.1^2 : 1), ($.1 : 0 : 1), ($.1 : 1 : 1),

($.1^2 : 0 : 1), ($.1^2 : 1 : 1), (0 : 0 : 1), (0 : 1 : 1) @}

> Involution(pts[1]);

(1 : 0 : 0)

> Involution(pts[2]);

(1 : $.1^2 : 1)

> plcs:=Places(C,1);

> plcs;

[

Place at (1 : 0 : 0),

Place at (0 : 0 : 1),

Place at (0 : 1 : 1),

Place at ($.1 : 0 : 1),

Place at ($.1 : 1 : 1),

Place at ($.1^2 : 0 : 1),

Place at ($.1^2 : 1 : 1),

Place at (1 : $.1 : 1),

Place at (1 : $.1^2 : 1)

]

> SetVerbose("AGCode",true);

> c:=AGCode(plcs[2..#plcs-2],plcs[#plcs-1]+3*plcs[1]);

Algebraic-geometric code:

Genus computation time: 0.000

Riemann-Roch dimension: 3

Riemann-Roch space time: 0.000

Evaluation time: 0.000

Algebraic-geometric code time: 0.000

> c;
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[6, 3, 4] Quasicyclic of degree 2 Linear Code over GF(2^2)

Generator matrix:

[ 1 0 0 $.1 1 $.1]

[ 0 1 0 $.1 $.1 1]

[ 0 0 1 1 $.1 $.1]

Constructing an algebraic geometric hexacode.

Note that Magma writes $.1 for α.

Example 5.2. (see [39, Example 10.7.6 ,p.164]).
Let F4 = {0, 1, α, α2} and letX be the curve over F4 defined by x2y+αy2z+α2z2x =
0. Then X has genus 1 and #X(F4) = 9. The rational points are given by:

P1 P2 P3 P4 P5 P6 Q1 Q2 Q3

x 1 0 0 1 1 1 α 1 1
y 0 1 0 α α2 1 1 α 1
z 0 0 1 α2 α 1 1 1 α

Now we construct an algebraic geometric code as follows: Let D := P1 + ...+P6,
G := 2Q1 +Q2 and consider C := C(X,D,G). The minimal distance d of C is at
least n−deg(G) = 6−3 = 3. For the dimension of C we can show that k = l(G) = 3
using Riemann Roch’s theorem. An explicit method goes as follows: The functions
x/(x + y + α2z), y/(x + y + α2z) and α2z/(x + y + α2z) form a basis of L(G),
namely the numerators in these functions are not 0 in Q1 and Q2 and the line with
equation x+ y + α2z = 0 meets X in Q2 and it is tangent to X in Q1.

We use Magma to construct the code mentioned after Proposition 4.18 and verify
its parameters:

>F<w>:=GF(4);F;

Finited field of size 2^2

>K<x,y,z>:=PolynomialRing(F,3);K;

Polynomial ring of rank 3 over GF(2^2)

Order: Lexicographical

Variables: x, y, z

>f:=x^2*y+w*y^2*z+w^2*z^2*x;

>C:=Curve(ProjectiveSpace(k,2),f);C;

Curve over GF(2^2) defined by

$.1^2*$.2+w*$.2^2*$.3+w^2*$.1*$.3^2

>plcs:=Places(C,1);plcs;

[

Place at (0 : 1 : 0),

Place at (0 : 0 : 1),

Place at (1 : 0 : 0),

Place at (w^2 : w : 1),

Place at (1 : w : 1),

Place at (w : w^2 : 1),
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Place at (w^2 : w^2 : 1),

Place at (1 : 1 : 1),

Place at (w : 1 : 1)

]

>l:=[5,7,9] \\ We define a set existing of positions of points in

\\complement of support of D.

> m:=1;k:=[]; for i:=1 to #plcs do if i notin l then k[m]:=plcs[i];

m:=m+1; end if; end for;

\\ We define a set called k of points in complement of support of D,

>Div:=DivisorGroup(C);

Group of divisors of Curve over GF(2^2) defined by

$.1^2*$.2 + w*$.2^2*$.3 + w^2*$.1*$.3^2

> G:= Div! plcs[5]+plcs[5]+plcs[9];G;

Divisor 2*Place at (1 : w : 1) + 1*Place at (w : 1 : 1)

>SetVerbose("AGcode",true);

>c:=AGCode(k[1..#k],G);c;

Algebraic-geometric code:

Genus computation time: 0.000

Riemann-Roch dimension: 3

Riemann-Roch space time: 0.000

Evaluation time: 0.000

Algebraic-geometric code time: 0.000

[6, 3, 4] Linear Code over GF(2^2)

Generator matrix:

[ 1 0 0 w^2 w^2 1]

[ 0 1 0 w^2 1 w^2]

[ 0 0 1 1 w^2 w^2]

Hexacode from an elliptic curve.

We see now that d = 4 and hence C is MDS.

We can also use Magma to find the algebraic geometric dual code C∗ of C:

> AlgebraicGeometricDualCode(k[1..#k], G);

Algebraic-geometric code:

Genus computation time: 0.000

Riemann-Roch dimension: 3

Riemann-Roch space time: 0.010

Evaluation time: 0.000

Algebraic-geometric code time: 0.010

[6, 3, 4] Linear Code over GF(2^2)

Generator matrix:

[ 1 0 0 w w 1]

[ 0 1 0 w 1 w]

[ 0 0 1 1 w w]
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The dual of a hexacode from an elliptic curve.
It is a self-dual code.
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