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Chapter 1

Introduction

Phytoplankton is the collection of microscopic small plants that drift in the
water columns of lakes, oceans, rivers. There exist many species of phyto-
plankton, approximately 5000, and new species are being discovered every day.
Each phytoplankton species has its own characteristic shape, size, and features.
Phytoplankton does not feed on any other organisms. Instead it depends on
nutrients such as nitrate and phosphate, which are brought up by deep ocean
currents. Phytoplankton forms the basis of nearly all food webs in aquatic
ecosystems. Therefore it is vital to the health of all sorts of bodies of water.
Through the process of photosynthesis, it converts carbon dioxide (CO2) into
oxygen and organic matter. Phytoplankton plays an important role in climate
regulation because it extracts carbon dioxide from the atmosphere and trans-
ports significant amounts of carbon dioxide into the deep ocean. Phytoplankton
is responsible for the production of most of the oxygen found in the Earth’s at-
mosphere. Since phytoplankton depends on sunlight for photosynthesis and for
their metabolism, it is usually found close to the surface, since light availabil-
ity decreases rapidly with depth. Phytoplankton is confronted with contrasting
gradients of two essential resources: light that is supplied from above and nu-
trients that are supplied from below. It is therefore not only important for
phytoplankton to stay near the surface but it also has to be deep enough to get
nutrients. Since phytoplankton depends on certain conditions for growth, such
as nutrients and light, and because it is at the base of the aquatic food chain, it
is a good indicator of changes in its environment. Phytoplankton populations
respond rapidly to changes in their environment. Any decrease or increase in a
population of phytoplankton due to changes in the environment, will most likely
lead to changes in the populations of other types of aquatic life.

The dynamics of phytoplankton concentration in an ocean, lake or any other
body of water, exhibits a variety of patterns. A phytoplankton concentration
might become maximum at the bottom of a water column. This is called a
benthic layer (BL). Or a phytoplankton concentration might become maximum
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4 CHAPTER 1. INTRODUCTION

at the surface of a water column. This is called a surface layer (SL). Interesting
patterns exhibited by phytoplankton are DCMs (deep chlorophyll maxima), in
which the phytoplankton concentration has a maximum at a certain depth, far
below the surface in the deep layers of an ocean or lake. The density of phy-
toplankton cells is a species-specific parameter and so is the vertical velocity
V . Many phytoplankton species have a slightly higher density than water and
therefore have an tendency to sink. For species heavier than water the vertical
velocity V is positive and the motion is downwards. We refer to these species
as sinking species. Some species have a lower density than water, for example
due to a high oil content, they will float upwards. The vertical velocity V is
negative and the motion is upwards. In this case the phytoplankton species will
be called buoyant species.
In [17] a non-local, coupled phytoplankton-nutrient model was studied for a sink-
ing species. In this model an equation for a phytoplankton concentration W is
coupled to an equation for a nutrient N . This model is based on the model in
[10], where it is shown that such systems may exhibit complex behaviour rang-
ing from periodically oscillating DCMs to chaotic DCMs. The model in [17] was
studied for sinking species, to understand the bifurcational structure associated
to such models. For sinking species, the mathematical analysis predicts for any
given values of the parameters whether one may expect a phytoplankton pattern
with the structure of a (possibly oscillating) DCM, a pattern with the structure
of a BL, or whether the phytoplankton will become extinct. The topic of this
thesis is to determine the structure of phytoplankton patterns that are exhibited
by buoyant species. For any given value of parameters we want to be able to
predict the structures of the phytoplankton patterns for buoyant species. To de-
termine the bifurcational structure associated to the model for buoyant species,
we have studied the model from [17]. But now with V < 0 instead of V > 0.
All the mathematical analysis in this thesis has been performed for V < 0 and
for V > 0. In every chapter the results for the sinking species are also stated
and explained. In every chapter it is also made clear which results were found
in [17] and which results were found in this thesis.

We now present the outline of the chapters. In chapter 2 we give background
information of phytoplankton. In chapter 3 we explain what a DCM is, and we
give a summary of the results in [10]. In chapter 4 we introduce and motivate the
non-local, coupled phytoplankton-nutrient model for one phytoplankton species
from [17]. First, we scale the model into a system with a natural singularly per-
turbed nature. Then, we will determine the the associated eigenvalue problem,
which can be decoupled into a problem of Sturm-Liouville type. Therefore it
is possible to obtain explicit (and rigorous) bounds on, and accurate approxi-
mations of, the eigenvalues. These bounds on the eigenvalues are stated in the
main result Theorem 5.1 in chapter 5. In this chapter we also summarise the
outcome of [17] and the outcome of this thesis. That is, for the eigenfunction we
give the structures of the phytoplankton species that corresponds to the profiles.
We use two different analytical approaches to study the structure of the eigen-
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value problem. In chapters 6 and 7 we derive explicit and rigorous bounds on
the eigenvalues in terms of expressions based on the zeros of the Airy functions
of the first kind and its derivatives. In chapter 8 we derive eigenfunctions for
the eigenvalues for the buoyant species. We also describe the profiles of these
eigenfunctions. The detailed knowledge of the eigenvalues and eigenfunctions
of the Sturm-Liouville problem forms the foundation of analytical insight in
the bifurcations exhibited by the rescaled model. The analysis of the Sturm-
Liouville problem is completed by a WKB approach in chapter 9. Using this
method we deduce for buoyant species the structures of the phytoplankton pat-
terns corresponding to the critical eigenfunctions. We determine the structures
of the phytoplankton concentrations that correspond to the profiles of the eigen-
functions. In chapter 10 we determine the bifurcation curves in the biological
parameter space associated to the model, for buoyant species. As in [17], the
mathematical analysis predicts, for any given values of parameters, the struc-
ture of the phytoplankton pattern. In chapter 11 we explain the limitations of
the model. Chapter 12 contains summary and conclusion.
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Chapter 2

Phytoplankton

2.1 General features of phytoplankton

Phytoplankton is the collective of microscopic, photosynthetic organism that
live suspended in seas, lakes, ponds, and rivers. The word phytoplankton comes
from the Greek words for ”plant” and ”floating”. Phytoplankton are for ex-
ample algae, bacteria, viruses. It is important to realize the diversity among
phytoplankton. Approximately between 4000 and 5000 species of marine phyto-
plankton have been described and new species are being discovered all the time.
The first phytoplankton existed approximately 3 billion years ago.

Through the process of photosynthesis phytoplankton converts inorganic ma-
terial into new organic compounds using the energy from the sun. This process
is very complex and consists of a series of reactions. These chemical reactions
can be generally summarized as:

6CO2 + 6H2O −→ C6H12O6 + 6O2

Phytoplankton is an autotrophic organism, that is, it does not require organic
materials as an energy source. The primarily nutrients are nitrate (NO−3 ), phos-
phate (PO3−

4 ) and silicic acid (SiO2). Since phytoplankton needs photosynthesis
to grow, it lives in the sunlit surface waters of the euphotic zone. This zone
includes the surface waters of the oceans, where light is sufficient to support
photosynthesis, and therefore support the growth and reproduction of plants.
Phytoplankton is present throughout the lighted regions of all seas, including
under ice in polar regions.

Phytoplankton is the dominant primary producer of the pelagic realm, build-
ing organic material from inorganic elements by the process of photosynthesis,

7



8 CHAPTER 2. PHYTOPLANKTON

and thereby starting the pelagic food chain. The pelagic realm is that of the
ocean water column, from the surface to the great depths. Because it is at the
base of the aquatic food web, it provides an essential ecological function for all
aquatic life.

Respiration is essentially the reverse reaction of photosynthesis. It is a metabolic
process, in which organic substances are broken down and as an consequence
the energy stored in organic matter is released. The result of respiration is that
a part of the CO2 taken up by phytoplankton is released back into the atmo-
sphere. The other part becomes incorporated into plant tissue. The chemical
reactions for respiration can be generally summarized as:

C6H12O6 + 6O2 −→ 6CO2 + 6H2O + energy

All organisms, including plants, carry out respiration. In contrast to photosyn-
thesis, respiration is carried out during both light and dark periods.

The conversion of radiant energy to chemical energy during the process of photo-
synthesis depends on special photosynthetic pigments such as chlorophyll and
accessory pigments. These photosynthetic pigments are usually contained in
the chloroplasts of the algae. Chlorophyll is a group of green plant pigments
that capture photons of light that are used in photosynthesis. Among these
pigments, the dominant pigment is chlorophyll a, but there are many other
pigments present. There are also accessory pigments, these are plant pigments
other than chlorophyll that capture photons of light used in photosynthesis,
such as carotenes. A phytoplankton bloom is the sudden appearance of a high
concentration phytoplankton which is a result of an increased reproduction of a
species as a response to favourable conditions. When these accessory pigments
dominate over the green colour of chlorophyll the colour of the water turns red
or brown.

2.2 Water and phytoplankton

Phytoplankton is by no means a simple organism. The relationship that phy-
toplankton has with the physical properties of its environment is very complex.
It is important to notice that water is a very important component which needs
to be taken in account. Water has very special properties, it is relatively dense,
viscous and a barely compressible fluid. This means for phytoplankton species
that they live in an environment that is characteristically viscous. Water is al-
ways in motion and the movement of water is, almost always, turbulent. That
is, the flow is not along trajectories but in billowing eddies or gyres, which are
small respectively large circular movements of water. Turbulence is the phys-
ical mixing of water, and is due to wind, currents, eddies, and gyres. Oceanic
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surface currents generated by global wind systems, and their direction is modi-
fied by the Earth’s rotation. This results in gyres, large circular movements of
water, in the oceans.

A vital requirement for all phytoplankton species is to stay in the upper well lit
layer at most times. Its intrinsic movements are to weak to overcome the veloc-
ity and direction of all possible movements in the water. Because phytoplankton
species only seldomly have the same density as water, they have a tendency ei-
ther to float upwards or sink downwards. Physical mixing mechanisms create
the required turbulence to keep populations suspended in the water column.
These mechanisms also govern the degree of turbulence in the phytoplankton’s
environment. All these movements in the water influence the velocity and di-
rection of the settling phytoplankton. To counteract the inevitability of sinking,
different species of phytoplankton have very different sophisticated means and
adaptive strategies of overcoming the problems in all sorts of water and remain-
ing in the water column. For example, certain species can regulate their cell
density and buoyancy, and therefore position themselves in the most favourable
light and nutrient conditions. Settling can also be controlled by altering shape
while density and volume remain constant. There exists an enormous diversity
in size and shape, factors that have a significant influence on the sinking rates.

2.3 Growth of phytoplankton

There are many different variables that limit the growth of phytoplankton, which
is primarily reliant on nutrient supply, light availability and temperature. All
these variables are constantly changing. Nutrients concentrations vary con-
stantly, light and temperature change daily and seasonally. There are also other
physical properties such as salinity, wind conditions, turbulence, that influence
the growth of phytoplankton. The amount of nutrients and light an algae cell
receives depends on its position in the water column, which is in part controlled
by mixing and circulation.
Mortality is also a factor that influences phytoplankton concentration. Mor-
tality reduces phytoplankton concentration and is due to a variety of causes:
not enough light and nutrient concentration needed for production, unsuitable
temperatures, disease and infection by viruses, or grazing by higher order or-
ganisms.
Long term temporal changes may also have an effect on phytoplankton dynam-
ics: changes in climate, pollution, fishery.
All the mentioned processes and factors that influence the concentration of phy-
toplankton are subject to strong changes in season, and differ from place to
place. This means that the primary productivity in phytoplankton in various
areas of the global ocean varies with season and location.
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Each species responds differently to these constantly changing conditions in
their environment. Every phytoplankton species has its own optimal growth
rate, which is highly influenced by temperature. All phytoplankton species have
different nutrient concentrations requirements and favour different light condi-
tions. Because different species of phytoplankton respond differently to changes
in their environment, changing environmental conditions will favour different
species at different times. These species-specific differences in growth rates and
responses to nutrients allows for the coexistence of many species in the same
body of water. As a result, there are different species at different times and this
leads to a succession of different dominant species in the community.

The well illuminated surface layer is generally depleted of nutrients while little
light reaches deeper waters which are rich in nutrients. As a consequence, it
is necessary for phytoplankton, that there is a compromise between being deep
enough to be able to get higher nutrient availability, but shallow enough to be
able to harvest enough light for photosynthesis.

2.4 Phytoplankton and the carbon cycle

The fixation of carbon by primary producers, mainly plants, is the basis of all
life on Earth. In the global carbon cycle, carbon is continually cycled through
all sorts of reservoirs such as: Earth’s living organisms, the soil, the atmosphere,
and the oceans. The element carbon moves periodically between these reservoirs
and rearranges itself into different compounds. The carbon cycle involves cy-
cling from timescales of years or decades, up to hundreds of thousands of years.
The overall carbon cycle is actually a number of cycles that occur on these dif-
ferent timescales. These cycles link these different timescales together.
In the oceanic carbon cycle the organic matter in dead phytoplankton cells and
animal’s fecal material sinks and is consumed by microbes. These microbes
convert it back into inorganic nutrients, including CO2. Much of this recycling
happens in the sunlit layer of the ocean, where the CO2 is instantly available
to be photosynthesized or absorbed back into the atmosphere. A major part
of the organic matter is decomposed during sinking and can be returned to the
surface by upwelling of deep water. However another part of the organic mat-
ter, that sinks before it decays or is being eaten, is stored into the deep ocean.
The biological process, in which phytoplankton removes CO2 from the surface
waters and atmosphere and stores it in the deep ocean is called the biological
pump. The result is a storage of carbon for periods of decades to centuries
or even permanently in the sediments. Permanent storage may be in the form
of organic matter, the type material that is the source of oil and natural gas.
Fossil fuels are ancient deposits of organic matter that have transformed into
oil, natural gas, or coal.
It is necessary to understand how the biological pump varies both geograph-
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ically and temporally to predict CO2 concentrations in the atmosphere. It is
also important to understand the effects that changes in temperature, ocean
circulation and ocean chemistry have on the biological pump.

2.5 Studying phytoplankton

As described in the introduction, phytoplankton depends on sunlight, water, and
nutrients to survive. Physical or chemical changes in any of these ingredients
will affect a phytoplankton population for a given region. Phytoplankton popu-
lations will grow or diminish rapidly in response to changes in their environment.
On the other hand, changes in a population is a sign that environmental condi-
tions are changing in that region. By measuring these changes in populations
and comparing them to other measurements, such as temperature, we can learn
more about how phytoplankton may be contributing to environmental changes
and climate changes. And also how it is affected by changes in the climate and
environment.

Phytoplankton populations are observed with satellite instruments. All phyto-
plankton have chlorophyll a and accessory pigments. These pigments absorb
the blue and green wavelengths of sunlight, whereas water molecules scatter
them. Depending on the type and density of the phytoplankton population, the
ocean over regions with high concentrations of phytoplankton will appear blue,
green or green-blue. The more phytoplankton absorbs sunlight in a given area,
the darker that part of the ocean looks to an observer from space. A satellite
detects different concentrations of chlorophyll a. Satellite measurements of the
ratio of blue-green light leaving the ocean is thus a way to quantify chlorophyll,
and thus a way to measure phytoplankton abundance. The reason that changes
in populations of phytoplankton can be easily observed using satellite images is
due to the rapid life cycle of phytoplankton. Phytoplankton increases its popu-
lation very fast but lives only a short time. Phytoplankton cells divide - every
six days on average - half the daughter cell die or are eaten by zooplankton, that
in turn provide food for shrimps, fish and larger carnivores. In contrast, land
plants must invest huge amounts of energy to build wood, leaves and roots and
take an average of twenty years to replace themselves. It would therefore not
be so easy to observe the changes in productivity of a forest of long-lived trees.
Satellite analysis reveals that phytoplankton draw nearly as much CO2 out of
the atmosphere and oceans through photosynthesis as do trees, grasses and all
other plants combined.
Also long-term sampling programs are being used to study phytoplankton. Phy-
toplankton samples are taken to see how it is affected by the physical environ-
ment and its food web interactions. The satellite images of chlorophyll, together
with thousands of productivity measurements, and mathematical models has
contributed to our knowledge about phytoplankton and its environment.
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Chapter 3

Oscillations and chaos in
the oceanic deep
chlorophyll maximum

In chapter 2 we have explained the different phytoplankton patterns that can be
a found in an ocean, lake or in an other body of water. In this chapter we explain
in more detail what a DCM exactly is. By studying this pattern, we will get a
better understanding of phytoplankton dynamics. This chapter is a summary of
[10], where it was shown that DCMs are not always stable features but can also
show sustained fluctuations. These are caused by a difference in the timescales
of two processes. The first process is the rapid export of sinking phytoplankton
withdrawing nutrients from the euphotic zone. The second process is a slow
upward flux of nutrients needed for new phytoplankton production. The model
in [10] shows that reduced vertical mixing can generate oscillations and chaos
in phytoplankton biomass and species composition of DCMs. This variability
in DCMs enhances the variability in oceanic primary production and in carbon
export into the oceanic interior.

We start this chapter by giving the definition of a DCM. In section 2.2 we
introduce the model and explain what exactly happens to a phytoplankton pop-
ulation in a DCM when turbulent diffusivity is reduced. In section 2.3 we give
a summary of the model’s predictions.

3.1 The definition of a DCM

Deep chlorophyll maxima (DCM) are absolute maxima of chlorophyll a concen-
tration that can be found in deep layers far from the surface. In other words, a
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14 CHAPTER 3. OSCILLATIONS AND CHAOS

DCM is a presence in high concentrations of chlorophyll far beneath the surface.
They are widespread in large parts of the world’s oceans and in lakes. There are
many possible mechanisms that are responsible for the formation of a particular
DCM which we will not be explaining here. A DCM is formed by only a few
phytoplankton species. The species that form DCMs have the ability to cope
with the special environmental features at these depths. They can accumulate
dense populations at depths where there is low light availability and where nu-
trient limitation can be less severe.
DCMs are often found in oligotrophic waters, where the surface mixed layer is
depleted of nutrients, and they generally develop in the metalimnion of a strat-
ified water body. Stratification is the separation of water into layers based on
density differences. The metalimnion is the middle layer of a stratified water
body. It is the region with the most prominent temperature, oxygen, nutrient
and density gradients. DCMs are permanent features in large parts of the trop-
ical and subtropical oceans (Fig. 3.1a,b).

3.2 Oscillations and chaos in a DCM

We now introduce the partial differential equations of the model that was used in
[10] to study the various phytoplankton patterns that can occur. This model will
be explained in full detail in chapter 4. The model in [10] has as extra term, the
term recycling, in the partial differential equation ∂N

∂t . This term is not included
in [17] and in this thesis. For now it suffices to see and understand the terms of
the partial differential equations. Let W denote the phytoplankton population
density, that is the number of cells per m3. Then the population dynamics of the
phytoplankton can be described by the following partial differential equation

∂W

∂t
= growth− loss− sinking + mixing

= µP (L,N)W − lW − VWz +DWzz

Let N denote a nutrient. Then the nutrient dynamics can be described by the
partial differential equation

∂N

∂t
= −uptake + recycling + mixing

= αµP (L,N)W + εαlW +DNzz

It is often argued that DCMs are stable features. A DCM is stable if the pop-
ulation settles at a stable equilibrium at which the downward flux of consumed
nutrients equals the upward flux of new nutrients (Fig. 3.2a). However, the
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Figure 3.1: Time course of the DCM at Station ALOHA, in the sub-
tropical Pacific Ocean, North of Hawaii. a. Clorophyll a b. Nitrate and
nitrite.
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model predicts that if vertical mixing is reduced, the phytoplankton population
in the DCM will oscillate. This phenomenon was investigated by running nu-
merous simulations using a wide variety of turbulent diffusivities. Depending
on the parameter settings, fluctuations in the DCM can range from mild oscil-
lations (Fig. 3.2b) to pronounced chlorophyll peaks (Fig. 3.2c).

The model also shows that fluctuating DCMs show even more complex dynamics
in a seasonal environment than in a constant environment. In a seasonal envi-
ronment, there are seasonal changes in light conditions which have a large effect
on the dynamics of DCMs. Seasonal DCMs commonly develop in temperate re-
gions and even in polar oceans. In a model simulation with turbulent diffusivity
of 0.50cm2s−1, the DCM tracks the seasonal changes in light (Fig. 3.2d). For
lower values of turbulent diffusivities the model predicts that the DCM shows
double periodicity (Fig. 3.2e). For even more lower values of turbulent diffu-
sivity, seasonal forcing generates irregular phytoplankton blooms with chaotic
multi-annual variability (Fig. 3.2f).

These fluctuations in the DCM are caused by a difference in the timescale be-
tween the sinking flux of phytoplankton and the upward diffusive flux of nu-
trients. Model simulations indicate that the sinking flux has an important role
in these oscillations, as oscillations were not observed with neutrally buoyant
species.
The model simulations predict that for very low values of turbulent diffusivity
the DCM becomes unstable, and a chaotic DCM can develop (Fig. 3.3.a,b). The
period and amplitude of the DCM oscillations increase with increasing phyto-
plankton sinking velocity (Fig. 3.3c), and they decrease with increasing vertical
diffusivity (Fig. 3.3d). Thus, the model shows that oscillations become more
pronounced if the timescale of sinking is fast compared to the timescale of the
upward flux of nutrients.

In reality, DCMs consist of multiple phytoplankton species with different growth
rates, nutrient and light requirements, and sinking velocities. In order to find
out how such a diverse assemblage would respond to fluctuations in the DCM,
a multi-species version of the DCM model in [17] was developed. This multi-
species DCM model is analogous to earlier phytoplankton competition models,
and is also forced by seasonal changes in incident light intensity (Fig. 3.4).
Periods with co-dominance are altered with periods in which one of the three
species dominate (Fig. 3.4e). Simulations show that all three species persist in
a non-equilibrium environment, which confirms earlier notions that oscillations
and chaos promote phytoplankton diversity.
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Figure 3.2: Model simulations at different intensities of vertical mix-
ing. For a-f, the left panel shows phytoplankton dynamics (P) and the right
panel shows nutrient dynamics (N).
a-c. Constant environment.
a. Stable DCM (κ = 0.50 cm2s−1).
b. Mild oscillations in the DCM (κ = 0.20 cm2s−1).
c. Large-amplitude oscillations in the DCM, double periodicity (κ =
0.12 cm2s−1).
d-f. Seasonal environment in which the model is forced by seasonal changes
in incident light itensity.
d. DCM tracks seasonal variability (κ = 0.50 cm2s−1).
e. Double periodicity of DCM locked in a seasonal environment (κ =
0.14 cm2s−1).
f. Chaotic DCM in a seasonal environment (κ = 0.08 cm2s−1).
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Figure 3.3: Bifurcation Patterns generated in a constant environment.
a. Bifurcation diagram showing the local minima and maxima of the phyto-
plankton population as a function of turbulent diffusivity.
b. Detail of the chaotic region in the bifurcation diagram.
c. The period (blue line) and relative amplitude (red line) of the oscillations
increase with phytoplankton sinking velocity.
d. The period (blue line) and relative amplitude (red line)of the oscillation
decrease with vertical turbulent diffusivity.
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Figure 3.4: Competition between three phytoplankton species in an
oscillating DCM.
The model (with κ = 0.12 cm2s−1) is forced by the same seasonal changes in
incident light itensity as in Fig. 2d-f.
a. Initial time course of the phytoplankton species.
b,c. In the long run, the nutrient concentration (b) and the phytoplankton
concentration (c) settle down at a periodic attractor.
d. Phase plane illustrating the periodic attractor of the phytoplankton species.
e. Time series of of consecutive depth profiles within a single period. Coloured
lines show depth profiles of the three phytoplankton species, dashed lines shows
light intensity, black lines show nutrient concentration.
In a-d phytoplankton population density and nutrient concentration are inte-
grated over the upper 300 m of the water column.
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3.3 The model’s predictions

The model is parameterized for clear ocean water, reflecting the North Pacific
subtropical gyre. Although this model is a simple version of the reality, it repro-
duces many features of real-world DCMs. We give a summary of the predictions
of this model. As stated before this model predicts that the process of reduced
vertical mixing may induce oscillations and chaos in the phytoplankton of the
DCM, generated by the difference in timescale between the sinking flux of phy-
toplankton and the upward flux of nutrients. Other predictions of the model
are

1. DCMs form at a similar depth of 100m and span a similar depth range
as observed in clear ocean waters.

2. These ocean time series confirm the prediction that the seasonal light cycle
gives rise to seasonal patterns in chlorophyll and nutrient concentrations
in the DCM (Fig. 3.1).

3. Detailed ocean measurements from the subtropical North Pacific confirm
the prediction of a vertical zonation of species, with different species as-
semblages dominating at different depths.

4. The time series tentatively suggest that phytoplankton species with rel-
atively high sinking velocities show larger variability than small phyto-
plankton species with low sinking velocities (Fig. 3.4c-e).

In total, time-series data support the theoretical prediction that deep chlorophyll
maxima can show sustained non-equilibrium dynamics, driven by a combination
of external forces and the complex internal dynamics of DCMs.



Chapter 4

A phytoplankton-nutrient
model

In this chapter we introduce and motivate our model in which a phytoplank-
ton concentration W is coupled to an equation for a nutrient N . This model
was used in [17] for sinking species, to understand the bifurcational structure of
non-local, coupled phytoplankton-nutrient models. In this thesis we use exactly
the same model, this means that we use the same partial differential equations,
functions, and boundary conditions. As stated in the introduction, all the anal-
ysis in this thesis was done for the sinking species with V > 0, and then again
for the buoyant species with V < 0. We are especially interested in the results
of the analysis for the buoyant species.
In the first section we introduce and explain all the parameters and the func-
tions of the model. In section 4.2 we rescale the model obtaining dimensionless
variables which we will use in the analysis. In section 4.3 we determine the one
component Sturm-Liouville problem.

4.1 The model

We consider the one-dimensional, i.e. depth-dependent only, non-local model.
In this model the phytoplankton concentration W is coupled to an equation for
nutrients N . Let z denote the depth within the water column, where z runs
from 0 at the top to a (maximum) depth, zm, at the bottom. And let W denote
the phytoplankton population density (number of cells per m3 at time t and
depth z). We consider the one-dimensional, non-local model

{
Wt = DWzz − VWz + [µP (L,N)− l]W,
Nt = DNzz − αµP (L,N)W.

(4.1)

21
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for (z, t) ∈ R+ and z is positive downwards. Here D is the diffusion coefficient,
V is the sinking speed of phytoplankton, l is the species-specific loss rate, α
is the conversion factor and µ is the maximum specific production rate. The
parameters l, α, and µ are all assumed to be positive. The velocity V for the
sinking specie is positive and downwards, for the buoyant species it is negative
and upwards.

The light intensity L is modeled by

L(z, t) = LIe
−Kbgz−R

∫ z
0
W (ζ,t)dζ , (4.2)

where LI is the intensity of light at the water surface. We assume that the
light intensity decreases exponentially with depth following Lambert-Beer’s law.
Light is absorbed by the phytoplankton population, by water and by dissolved
substances. Kbg, R are the light absorption coefficients due to non-plankton
components and due to the plankton respectively.

The function P (L,N) is responsible for the coupling and models the influence
of light and nutrient on the phytoplankton growth

P (L,N) =
LN

(L+ LH)(N +NH)
, (4.3)

where LH and NH are half-saturation constants of light and nutrient, respec-
tively.

We assume zero-flux boundary conditions

DWz − VW = 0, at z = 0 and z = zB , (4.4)

Nz = 0 at z = 0, and N = NB at z = zB .

That is, phytoplankton does not enter or leave the water column neither at the
top nor at the bottom. Nutrients do not leave the top of the water column but
are supplied at the bottom, where N takes its maximum.
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4.2 Rescaling the model

We recast the model in non-dimensional variables by rescaling time and space

x = z/zB ∈ (0, 1) and τ = µt ≥ 0.

We also introduce the scaled phytoplankton concentration ω, nutrient concen-
tration η and light intensity j

ω(x, τ) =
lαz2

B

DNB
W (z, t), η(x, τ) =

N(z, t)

NB
, j(x, t) =

L(z, t)

LI
.

Recasting (4.1) we obtain the following form

{
ωτ = εωxx −

√
εaωx + (p(j, η)− `)ω,

ητ = ε(ηxx − 1
` p(j, η)ω).

(4.5)

Here,

j(x, τ) = exp(−κx− r
∫ x

0

ω(χ, τ)dχ), with κ = KbgzB and r =
RDNB
lαzB

,(4.6)

and

ε =
D

µz2
B

, a =
V√
µD

, ` =
l

µ
and p(j, η) =

jη

(j + jH)(η + ηH)
, (4.7)

where

jH = LH/LI , ηH = NH/NB .

The rescaled conditions are given by

(
√
εωx − aω)(0) = (

√
εωx − aω)(1) = 0, ηx(0) = 0 and η(1) = 1. (4.8)

The scalings are suggested by realistic parameter values in the original model
(4.1) as reported in [17]. Typically, we might have
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D ≈ 0.1 cm2/s, V ≈ 4.2 cm/h, zB ≈ 3 · 104 cm, l ≈ 0.01/h µ ≈ 0.04/h,

so that

ε ≈ 10−5, a ≈ 1 and ` ≈ 0.25 (4.9)

in (4.5). Thus realistic choices of the parameters in (4.1) induce a natural
singularly perturbed structure in the model, as is made explicitly by the scaling
of (4.1) into (4.5). In this article, ε shall be considered as an asymptotically
small parameter, i.e. 0 < ε� 1.

4.3 The Sturm-Liouville problem

The simulations in [17] indicate that the DCMs bifurcate from the trivial sta-
tionary pattern,

ω̄(x, τ) ≡ 0, η̄(x, τ) ≡ 1, for all (x, τ) ∈ [0, 1]×R+ (4.10)

To analyze this first bifurcation, we set

(ω(x, τ), η(x, τ)) = (ω̃eλτ , 1 + η̃eλτ ), with λ ∈ C,

and consider the spectral stability of (ω̄, η̄). This yields the linear eigenvalue
problem, {

εωxx −
√
εaωx + (f(x)− `)ω = λω
ε(ηxx − 1

` f(x)ω) = λη,
(4.11)

where the tildes have been dropped. The linearized boundary conditions here
are also given by (4.8), while the function f is the linearization of the function
p(j, η)

f(x) =
1

(1 + ηH)(1 + jHeκx)
(4.12)

The linearized system (4.11) is partially decoupled, so that the stability of (ω̄, η̄)
as the solution of the two-component system (4.1) is determined by a one-
component Sturm-Liouville problem,
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εωxx −
√
εaωx + (f(x)− `)ω = λω (4.13)

(
√
εωx − aω)(0) = (

√
εωx − aω)(1) = 0.
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Chapter 5

The main results

In this section we will introduce the main result Theorem 5.1 which was derived
in [17]. This Theorem is also valid buoyant species. Before introducing the
theorem, we define a number of functions which we will be using throughout
the whole work. Then, we explain the facts that are established by the theorem.
Finally we give a summary of the results of the analysis of [17] for the sinking
species (a > 0), and also the main results for the buoyant species (a < 0) found
in this thesis.

First, we define the function F through

F (x) = F (x; jH , κ, ηH) = f(0)− f(x) ≥ 0 for all x ∈ [0, 1] (5.1)

see (4.12), and the constants σL = σL(κ, jH , ηH) and σU = σU (κ, jH , ηH) so
that

σLx ≤ F (x) ≤ σUx, for all x ∈ [0, 1] (5.2)

The optimal values of σU and σL can be determined explicitly. This is stated
in Lemma 5.1 at the end of this section.

We write Ai and Bi for the Airy functions of the first and second kind, respec-
tively, and An < 0 for the n-th zero of Ai(x).

We also define the functions

Γ(Ai, x) = Ai(x)− 2ε1/6σ1/3a−1Ai′(x)

Γ(Bi, x) = Bi(x)− 2ε1/6σ1/3a−1Bi′(x), (5.3)

27
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Figure 5.1: The Airy functions of first and second kind (plotted in thick lines in
the left and right panel, respectively) together with the functions Γ(Ai, x) and
Γ(Bi, x) (plotted in thin lines). Here, ε = 0.1, a = 3, σ = 2.

with a as in (4.7) and σ an a priori parameter. This parameter will later be set
to σL or σU .

We let A′n,σ, n = 1, 2, . . . , be the n−th zero of Γ(Ai, x) and B0,σ be the positive

zero of Γ(Bi, ε−1/3σ1/3(1 + x)). Note that A′n,σ is O(ε1/6) close to An and that
B0,σ = a2/4σ − 1 at leading order in ε. See Lemma A.2 for more accurate
estimates.

Finally, we let

λ∗ = f(0)− `− a2/4,
λ∗,σ0 = λ∗ + σB0,σ,
λ∗,σn = λ∗ − ε1/3σ2/3|A′n,σ|,

(5.4)

where n ∈ N and we note that λ∗,σ0 and λ∗,σn are decreasing functions of σ.

Now we can state the main result.

Theorem 5.1. There exists an ε0 > 0 and constants B,C > 0 such that, for
all 0 < ε < ε0 and 0 ≤ n ≤ N , the first N + 1 eigenvalues λ0 > . . . > λN of
(4.13) satisfy:

(a) For 0 < σU < a2/4,

λ0 ∈
[
λ∗,σU

0 − Cε1/6e−B/
√
ε, λ∗,σL

0 + Cε1/6e−B/
√
ε
]

and
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λn ∈
[
λ∗,σU
n − Cε1/6e−B/

√
ε, λ∗,σL

n + Cε1/6e−B/
√
ε
]
, for all 1 ≤ n ≤ N.

(b) For σL > a2/4,

λn ∈
[
λ∗,σU

n+1 − Cε1/6e−B/
√
ε, λ∗,σL

n+1 + Cε1/6e−B/
√
ε
]
, for all 0 ≤ n ≤ N.

The proof of this theorem will be given in chapters 6, 7, and 8. This Theorem
establishes the following facts:

1. There is an eigenvalue sequence λ1, . . . , λN which is associated to the
bifurcation of the DCM for a > 0. For buoyant species (a < 0), this
eigenvalue sequence is associated to the bifurcation of the SL.

2. There is another eigenvalue λ0 which is isolated in the sense that it is
not part of the sequence with the DCMs and SLs. Instead it corresponds
to a zero of a linear combination of the Airy function of the second kind
and its derivative. This eigenvalue λ0 is associated to the bifurcation of a
BL for a > 0. We were not able to determine the structure of the other
phytoplankton pattern, therefore we are not able to give any information
concerning this isolated eigenvalue associated to a < 0.

3. The distance between successive eigenvalues is of O(ε1/3).

4. All first N + 1 eigenvalues of (4.13) are ε1/3 close to λ∗, except for the
special eigenvalue λ0 if σU < a2/4.

5. Up to exponentially small terms, the bounds on the eigenvalues are ex-
plicitly given in terms of zeros of the Airy functions Ai(x) and Bi(x) and
their derivatives.

6. The width of the intervals that bound the eigenvalues λn of (4.13) is of the
same order as the distance between successive eigenvalues, that is O(ε1/3).

In chapter 10 we will see that the eigenvalues established by Theorem 5.1 are
quite sharp and agree very well with the bifurcations of the full (unscaled) model
(4.1).

The analysis in chapters 6, 7, and 8 does not give any information on the struc-
ture of the associated eigenfunctions of (4.13). This is of particular interest to
the nature of the of the patterns that are generated by (4.1) as λ0 passes through
zero. Also, Theorem 5.1 does not give any information about the transitional
case σL < a2/4 < σU .
Therefore, the analysis of (4.13) is completed by performing an asymptotic WKB
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approximation in chapter 9. In [17] explicit formulas were derived for the eigen-
values and for the corresponding eigenfunctions for a < 0. In chapter 9 we will
perform an asymptotic WKB approximation for a < 0, and we will use these
explicit formulas to determine the profiles of the eigenfunctions for a < 0. Then
we will explain what this means in biological terms.

The case a > 0, sinking species

• Case (a) of Theorem 5.1
The profile of the eigenfunction ω0, which corresponds to the largest eigen-
value λ0, is of boundary layer type near the bottom.
In terms of the phytoplankton concentration, this corresponds to a BL.

• Case(b) of Theorem 5.1
The eigenfunction ω0 has the shape of a spike around the point x = xDCM,
where xDCM is determined, to leading order in ε, by

F (xDCM) = a2/4

In terms of the phytoplankton concentration, this profile corresponds to a
DCM around xDCM.

The case a < 0, buoyant species

• Case (a) of Theorem 5.1
The eigenfunction ω0 has a maximum around the point xmax

F (xmax) = a2/4 +O(ε1/2).

The eigenfunction ω0 has negative values in the beginning of the interval.
For this reason, we were not able to determine the structure of the phy-
toplankton concentration in this case.

• Case (b) of Theorem 5.1
The eigenfunction ω0 is of boundary layer type near the surface. In terms
of phytoplankton concentration, this corresponds to a SL.

The transitional region between the cases (a) and (b) in Theorem 5.1 is
described to leading order in ε, by the equation a2/4 = F (1). Indeed, the
leading order approximation of λ0 is:
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• λ0 = f(1)− ` in the region F (1) < a2/4.
Sinking species: The eigenfunction ω0 corresponds to a BL.
Buoyant species: The eigenfunction ω0 corresponds to the unknown struc-
ture.

• λ0 = f(0)− `− a2/4 in the region F (1) > a2/4.
Sinking species: The eigenfunction ω0 corresponds to a DCM.
Buoyant species: The eigenfunction ω0 corresponds to a SL.

Recalling Lemma 5.1 we see that this transition occurs at a value of a2/4 which
is, always to leading order in ε, equal to

• σU when 0 < jH ≤ j(1)
H ,

• σL, when jH ≥ j(2)
H ,

• Between σU and σL, when j
(1)
H < jH < j

(2)
H .

Lemma 5.1. Let

j
(1)
H (κ) =

e−κ − 1 + κ

eκ − 1− κ
and j

(2)
H (κ) =

e−κ

j
(1)
H (κ)

,

so that 0 < j
(1)
H (κ) < j

(2)
H (κ) < 1 for all κ > 0. Also, define for all κ > 0 and

jH ∈ (j
(1)
H (κ), 1), the point x0 = x0(κ, jH) ∈ (0, 1) via F (x0) = x0F

′(x0). Then,

σL(κ, jH , ηH) =

{
F ′(0), 0 < jH ≤ j(2)

H ,

F (1), jH > j
(2)
H ,

σU (κ, jH , ηH) =


F (1), 0 < jH ≤ j(1)

H ,

F ′(x0), j
(1)
H < jH < 1,

F ′(0), jH ≥ 1,

(5.5)

and

σL,U (κ, jH , ηH) = νσL,U (κ, jH , 0), with ν = (1 + ηH)−1. (5.6)
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Chapter 6

Eigenvalue bounds

In this chapter we make the first stepts towards the proof of Theorem 5.1. The
results presented in this chapter apply to the case a > 0 and a < 0. To make the
analysis easier we recast the eigenvalue problem (4.13) in a different form. First,
we observe that the operator involved in this eigenvalue problem is self-adjoint
only if a = 0. Applying the Liouville transformation

w(x) = e−ax/2
√
εω(x), (6.1)

we obtain the self-adjoint problem

εwxx + (f(x)− `− (a2/4))w = λw,

(
√
εwx − (a/2)w)(0) = (

√
εwx − (a/2)w)(1) = 0.

Recalling (5.1) and (5.4), we write this equation in the form

Lw = µw, with G(w, 0) = G(w, 1) = 0. (6.2)

In this chapter we derive crude bounds for the eigenvalues of (6.2) in section
6.1, and tight bounds in section 6.2.

The operator L, the scalar µ, and the linear functional G(·, x) are defined by

L = −ε d
2

dx2
+ F (x), µ = λ∗ − λ, G(w, x) = w(x)− 2

√
ε

a
wx(x). (6.3)

33
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This is the desired form of the eigenvalue problem (4.13). We decompose L into
a self-adjoint part for which (6.2) is solvable and a positive definite part. We
use the following comparison principle to obtain the desired bounds.

Theorem 6.1. Let the operators Â and A be self-adjoint, bounded below, and
have compact inverses, and write their eigenvalues as µ̂0 ≤ µ̂1 ≤ . . . ≤ µ̂n ≤ . . .
and µ0 ≤ µ1 ≤ . . . ≤ µn ≤ . . ., respectively. If the difference A − Â is positive
semidefinite, then µ̂n ≤ µn, for all n ∈ {0, 1, . . .}.

6.1 Crude bounds for the eigenvalues of L

We derive crude bounds for the spectrum {µn} of L to demonstrate the method
and to establish that L satisfies the boundedness condition of Theorem 6.1.

Lemma 6.1. The eigenvalues µn satisfy the inequalities

− a2/4 ≤ µ0 ≤ F (1)− a2/4 and εn2π2 ≤ µn ≤ F (1) + ε2n2π2, n ∈ N.(6.4)

Proof. Let c ∈ R. We start by decompositing L as

L = L0,c + F0,c, where L0,c = −ε d
2

dx2
+ c and F0,c = F (x)− c. (6.5)

Then, we write
{
µ0,c
n

}
for the set of eigenvalues of the problem

L0,cw0,c = µ0,cw0,c, with G(w0,c, 0) = G(w0,c, 1) = 0, (6.6)

with the eigenvalues arranged so that µ0,c
0 ≤ µ0,c

1 ≤ . . . ≤ µ0,c
n ≤ . . ..

For c = cL = 0, the operator L0,cL is self-adjoint, while F0,cL = F (x) ≥ 0 is
a positive definite multiplicative operator. Thus, using Theorem 6.1, we obtain
the following inequalities

µ0,cL
n ≤ µn, for all n ∈ N ∪ {0} .

Next, for c = cU = F (1), the operator F0,cU = F (x) − F (1) ≤ 0 is negative
definite, while L0,cU is self-adjoint. Hence, we write

L0,cU = L − F0,cU ,
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where −F0,cU is positive definite. The fact that the spectrum {µn} of L is
bounded from below by (6.7) allows us to use Theorem 6.1 to bound each µn
from above,

µn ≤ µ0,cU
n , for all n ∈ N ∪ {0} .

Combining this bound and (6.7), we obtain

µ0,cL
n ≤ µn ≤ µ0,cU

n , for all n ∈ N ∪ {0} . (6.7)

Naturally, the eigenvalue problem (6.6) may be solved exactly to obtain

µ0,c
0 = c− a2/4 and µ0,c

n = c+ εn2π2, n ∈ N (6.8)

Combining these formulas with (6.8), we obtain the inequalities (6.4).

6.2 Tight bounds for the eigenvalues of L

In Lemma 6.2, we bound the eigenvalues of µn by the eigenvalues µ1,σ
n of a

simpler problem. Then, in Lemma 6.3, we obtain strict, exponentially small
bounds for µ1,σ

n .

Lemma 6.2. Let σ ∈ {σL, σU} ,with σL and σU as defined in (5.5), define

the operator L1,σ = ε d
2

dx2 +σx , and write µ1,σ
n for the eigenvalues corresponding

to the problem

L1,σw = µ1,σw, with G(w, 0) = G(w, 1) = 0. (6.9)

Let
{
µ1,σ
n

}
be arranged so that µ1,σ

0 ≤ µ1,σ
1 ≤ . . . ≤ µ1,σ

n ≤ . . . Then,

µ1,σL
n ≤ µn ≤ µ1,σU

n , for all n ∈ N ∪ {0} . (6.10)

Proof. First, we decompose L as

L = L1,σ + F1,σ, where L1,σ = −ε d
2

dx2
+ σx, F1,σ = F (x)− σx, (6.11)
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and σ ∈ {σL, σU}. We note here that L1,σ is self-adjoint.

Next, F1,σL is a positive definite multiplicative operator, since F (x) ≥ σLx (see
(4.2)). Thus, µ1,σL

n ≤ µn, for all n ∈ N∪{0}, by Theorem 6.1. On the contrary,
F1,σU is negative definite, since F (x) ≤ σUx. Therefore, we write

L1,σU = L − F1,σU ,

where now −F1,σU is positive definite. The fact that the spectrum {µn} is
bounded from below by Lemma 6.1 allows us to use Theorem 6.1 to bound each
µn from above, µn ≤ µ1,σU

n . Combining both bounds for each n, we obtain
(6.11).

The eigenvalue problem (6.10) is not exactly solvable, despite this fact we may
calculate the eigenvalues up to terms exponentially small in ε. Recalling the
definitions in chapter 5 and letting

µ∗,σ0 = λ∗ − λ∗,σ0 = −σB0,σ and µ∗,σn = λ∗ − λ∗,σn = ε1/3σ2/3|A′n,σ| > 0,(6.12)

for n ≥ 1, we can state Lemma 6.3:

Lemma 6.3. Let N ∈ N be fixed and B̄ = 1 +B0,σ. We define

δ0,σ = ε1/6σ−1/6exp
(
−(2/3)[3(B̄ −B)3/2 − 2(B0,σ −B)3/2 − (B̄ +B)3/2]

√
σ/ε
)

δn,σ = ε1/6exp
(
−(4/3)

√
σ/ε+ 2|An+1|(σ/ε)3/2

)
, for all 1 ≤ n ≤ N + 1,

and for all 0 < B < B0,σ for which the exponent in the expression for δ0,σ
is negative. Then, for each such B there is an ε0 > 0 and positive constants
C0, . . . , CN+1, such that for all 0 < ε < ε0 and 0 ≤ n ≤ N , the first N + 1
eigenvalues µ1,σ

0 , . . . , µ1,σ
N corresponding to (3.10) satisfy:

(a) For 0 < σ < a2/4, |µ1,σ
0 − µ∗,σ0 | < C0δ0,σ and |µ1,σ

n − µ∗,σn | < Cnδn,σ.

(b) For σ > a2/4, |µ1,σ
n − µ∗,σn+1| < Cn+1δn+1,σ.

Part (a) is valid for all 1 ≤ n ≤ N , and part (b) is valid for all 0 ≤ n ≤ N .
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The proof of this Lemma is given in chapter 7. The fact that these are indeed
the N + 1 first eigenvalues corresponding to (6.10) is proved in chapter 7.

Theorem 5.1 follows by combining the three Lemmas in this chapter and using
the definitions (5.4) and (6.13).
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Chapter 7

The eigenvalues µ
1,σ
0 , . . . , µ

1,σ
N

In this section, we derive the bounds on µ1,σ
0 , . . . , µ1,σ

N of Lemma 6.3. In section
7.1, we reduce the eigenvalue problem (6.10) to the algebraic one by formulat-
ing an Evans-type function D and identifying its roots. Then in section 7.2,
we rewrite D in a different form, using two other functions A and B for the
expression of D. These two functions are easier to analyse. Finally, in the last
section, we identify the roots of D by identifying the relevant roots of A and B.
All the results in this chapter are valid for a > 0 and a < 0.

7.1 Reformulation of the eigenvalue problem

First, we derive an algebraic equation whose solutions correspond to the eigen-
values of (6.10). We start by rescaling the parameter a, the small parameter ε,
the eigenvalue µ1,σ, and the independent variable x via

β =
a

2
√
σ
, 0 < γ ≡

( ε
σ

)1/3

� 1, χ̄ = −µ
1,σ

γσ
, x = γ (χ− χ̄) , (7.1)

and we note that the inequality 0 < σ < a2/4 becomes β > 1 if a > 0, and
β < 1 if a < 0. The inequality σ > a2/4 becomes 0 < β < 1 if a > 0, and
−1 < β < 0 if a < 0. Then, we define the linear functional

Γ(w, χ̄) = w(χ̄)−
√
γ

β
w′(χ̄), for all differentiable functions w, (7.2)

and we remark that, for w equal to Ai and Bi, this definition agrees with the
one given in (5.3).
Further introducing the Wronskian

39
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D(χ̄) = Γ(Ai, χ̄)Γ(Bi, γ−1 + χ̄)− Γ(Ai, γ−1 + χ̄)Γ(Bi, χ̄) (7.3)

we can prove the following lemma.

Lemma 7.1. The eigenvalue problem (6.10) has µ1,σ as an eigenvalue if and
only if D(χ̄) = 0.

Proof. Using (7.1) we rewrite problem (6.10) in the form

d2w

dχ2
= χw, χ ∈ [χ̄, γ−1 + χ̄]

Γ(w, χ̄) = Γ(w, γ−1 + χ̄) = 0. (7.4)

This is an Airy equation and thus has the general solution

w(χ) = DAAi(χ) +DBBi(χ). (7.5)

The boundary condition becomes

Γ(w, χ̄) = DAΓ(Ai, χ̄) +DBΓ(Bi, χ̄) = 0,

Γ(w, γ−1 + χ̄) = DAΓ(Ai, γ−1 + χ̄) +DBΓ(Bi, γ−1 + χ̄) = 0. (7.6)

The sufficient and necessary condition for the existence of nontrivial solutions
to this system is that its determinant, which is the Wronskian D given in (7.3),
vanishes, and the lemma is proved.

Thus we see that the values of χ̄ that corresponds to the eigenvalues µ1,σ are
zeros of D.

7.2 Product decomposition of the function D

To identify the roots of D, we rewrite D in the form

D(χ̄) = Γ(Bi, γ−1 + χ̄)A(χ̄) = Γ(Ai, χ̄)B(χ̄), (7.7)

where we have defined the functions
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Figure 7.1: The function D(χ̄) for a = 3, σ = 1, and ε = 0.1 (left panel),
ε = 0.001 (right panel).

A(χ̄) = Γ(Ai, χ̄)− Γ(Ai, γ−1 + χ̄)

Γ(Bi, γ−1 + χ̄)
Γ(Bi, χ̄), (7.8)

B(χ̄) = Γ(Bi, γ−1 + χ̄)− Γ(Bi, χ̄)

Γ(Ai, χ̄)
Γ(Ai, γ−1 + χ̄). (7.9)

Here, A is well-defined for all χ̄ such that Γ(Bi, γ−1 + χ̄) 6= 0, while B is well-
defined for all χ̄ such that Γ(Ai, χ̄) 6= 0. Equation (7.7) implies that the roots
of A and B are also roots of D.

In the next section, we will prove that the first few zeros of D are all O(1), in
the case 0 < β < 1. The zeros are both O(1) and O(γ−1) in the case β > 1. We
will also establish that the O(1) roots of D coincide with roots of the function
A and the O(γ−1) ones with the function B. To prove this, we first characterise
the behaviours of A and B for O(1) and O(γ−1) values of χ̄, respectively, in the
next two lemmas. We write E(x) = exp(−(2/3)x3/2) and

||w||[XL,XR] = max
χ̄∈[XL,XR]

|w(χ̄)|+ max
χ̄∈[XL,XR]

|w′(χ̄)|. (7.10)

Lemma 7.2. Let X be fixed. Then, there is a γ0 > 0 and a constant cA > 0
such that

||A(χ̄)− Γ(Ai, χ̄)||[X,0] < cAγ
−1/2E(γ−1(2 + 3Xγ)2/3), (7.11)

for all 0 < γ < γ0.
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For the next lemma we switch to the independent variable ψ̄ = γχ̄ to make the
calculations easier. We analyse the behaviour of B(γ−1ψ̄) for O(1) values of ψ̄
(equivalently, for O(γ−1) values of χ̄) as γ ↓ 0.

Lemma 7.3. Let 0 < ΨL < ΨR be fixed. Then, there is a γ0 and a constant
cB > 0 such that, for all 0 < γ < γ0,

||E(γ−1(1 + ψ̄))[B(γ−1ψ̄)− Γ(Bi, γ−1(1 + ψ̄))]||[ΨL,ΨR] < cBγ
−1/4

[
E(γ−1(1 + ΨL))

E(γ−1ΨL)

]2

The proofs of these two lemmas are given in Appendix B and C.

7.3 Zeros of the function D

We use the above results and the following lemma to locate the roots of D.

Lemma 7.4. Let N ∈ N be fixed, A′n,σ and B0,σ be defined as in chapter
5, and B, δ0,σ, . . . , δN,σ as in Lemma 6.3. Then for each admissible B, there
is a γ0 > 0 and positive constants c0, . . . , cn such that, for all 0 < γ < γ0, the
function D(χ̄) has roots χ̄0 > χ̄1 > . . . > χ̄N which satisfy the following bounds:

(a) For β > 1 (equivalently 0 < σ < a2/4 ),

|χ̄0 − γ−1B0,σ| < c0γ
−1δ0,σ, |χ̄n −A′n,σ| < cnγ

−1δn,σ, for all 1 ≤ n ≤ N.

(b) For 0 < β < 1 (equivalently σ > a2/4 ),

|χ̄n −A′n+1,σ| < cnγ
−1δn+1,σ, for all 0 ≤ n ≤ N.

For buoyant species, in part (a) of Lemma 7.4 β > 1 is be replaced by β < 1
and in part (b), 0 < β < 1 is replaced by −1 < β < 0. To prove this lemma we
need the following result.

Lemma 7.5. Let C, G, and H be real-valued, continuous functions. Let
δ > 0 and z0 ∈ [ZL, ZR] ⊂ R be such that
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H(z0) = 0, max
[ZL,ZR]

H ′ = −H0 < 0, max
[ZL,ZR]

|C(G−H)| < δ and min
[ZL,ZR]

C = C0 > 0.

If δ < C0H0min(z0 − ZL, ZR − z0), then G has a zero z∗ such that |z∗ − z0| ≤
δ/(C0H0).

Proof. Let z` = z0 − δ/ (C0H0) and zr = z0 + δ/ (C0H0). By assumption,
ZL < z` < z0 < zr < ZR, and thus

G(z`) ≥
∫ z`

z0

H ′(z)dz −
max[ZL,ZR] |C(G−H)|

min[ZL,ZR] C
> (z0 − z`)H0 −

δ

C0
= 0,

where we write G(z`) = H(z`) + G(z`) −H(z`). Similarly, we may prove that
G(zr) < 0 and the desired result follows.

Proof. (Lemma 7.4.) First, we prove the existence of a root χ̄0 satisfying the
desired bound. We start by rescaling the independent variable through ψ̄ = γχ̄.
Then, it suffices to show that there is a root ψ̄0 of D(γ−1ψ̄) satisfying the bound
|ψ̄0 −B0,σ| < c0δ0, for some c0 > 0. Equation (7.7) reads

D(γ−1ψ̄) = Γ(Ai, γ−1ψ̄)B(γ−1ψ̄).

Here, Γ(Ai, γ−1ψ̄) has no positive roots, by definition of Γ and because Ai(γ−1ψ̄) >
0 and Ai′(γ−1ψ̄) < 0, for all ψ̄ > 0. Thus, χ̄0 must be a root of B. Its existence
and the bound on it follow from Lemmas 7.3 and 7.5. Indeed, let

z0 = B0,σ, ZL = B0,σ −B, ZR = B0,σ +B,

C = E, G = B, H = Γ(Bi, ·).

Lemma 7.3 provides a bound δ on ||C(G−H)||[ZL,ZR]. Also, using the expres-
sions for the Airy functions in Appendix A, we may calculate

C0 = min[ZL,ZR]E(γ−1(1 + ψ̄)) = E(γ−1(1 + Zr)),

−H0 = max[ZL,ZR]Γ(Bi′, γ−1(1 + ψ̄)) < cγ−1/4[E(γ−1(1 + ZL))]−1.
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Now, δ satisfies the condition δ < C0H0B of Lemma 7.5 for all γ small enough.
Thus we may apply Lemma 7.5 to obtain the desired bound on χ̄0. That is,

δ = cBγ
1/4

[
E(γ−1(1 + ψ))

E(γ−1ψ)

]2

.

Next we show that A has the remaining roots χ̄1, . . . , χ̄N . We fix AN+1 <
X < AN and let I1, . . . , IN be disjoint intervals around A1, . . . , AN , respec-
tively. Lemma 7.2 states that A(χ̄) and Γ(Ai, χ̄) are exponentially close in the
W 1
∞-norm over [X, 0]. Thus, for all 0 < γ < γ0 (with γ0 small enough), A

has N distinct roots χ̄1 ∈ I1, . . . , χ̄N ∈ IN in [X, 0] by Lemma A.2. Since
Γ(Bi, γ−1 + χ̄) can be bounded away from zero over [X, 0] using the expressions
for the Airy functions in Appendix A, we conclude that D has N distinct roots
χ̄1, . . . , χ̄N in [X, 0].

(b) The argument used in part (a)- where β > 1 - to establish the bounds on
the O(1) roots of A does not depend on the sign of β − 1. Therefore, it ap-
plies also to this case - where 0 < β < 1 - , though in an interval [X, 0], with
AN+2 < X < AN+1, yielding N + 1 roots which we label χ̄0, . . . , χ̄N .

On the other hand, B0,σ < 0 for 0 < β < 1, because of the estimate on B0,σ in
Lemma A.2. As a result, the argument used to identify that root does not apply
anymore, since B0,σ < 0 and thus Lemma 7.3 may not be applied to provide the
bound δ needed in Lemma 7.5. In fact, were this roots to persist and remain
close to γ−1B0,σ as in case (a), it would become large and negative by the
estimate in Lemma A.2 and thus smaller than the roots χ̄0, . . . , χ̄N obtained
above. Thus it could never be the leading value in this parameter regime.

By rescaling back to the original parameters we obtain the bounds on the eigen-
values µ1,σ

0 , . . . , µ1,σ
N in Lemma 3.3.



Chapter 8

The eigenfunctions

w
1,σ
0 , . . . , w

1,σ
N

In this chapter we derive formulas for the eigenfunctions w1,σ
0 , . . . , w1,σ

N associ-

ated with the eigenvalues µ1,σ
0 , . . . , µ1,σ

N , respectively. We will show that each
eigenfunction w1,σ

n has n zeros in the interval [χ̄n, γ
−1 + χ̄n]. This will be proved

in the following lemma. In this way, we can show that these eigenvalues are the
largest ones.

Lemma 8.1. Let N ∈ N. Then, there is a γ0 > 0 such that, for all
0 < γ < γ0 and for all n = 0, 1, . . . , N , the eigenfunction w1,σ

n corresponding to
the eigenvalue µ1,σ

n has exactly n zeros in the interval [χ̄n, γ
−1 + χ̄n].

This lemma will be proved in section 8.1 for the cases β > 1 and β < −1.
In section 8.2 it will be proved for the cases 0 < β < 1 and −1 < β < 0.
For each case we determine the function ω0 and study the profiles associated
with this function. The cases β > 1 and 0 < β < 1 corresponding to the case
a > 0, sinking species, were found in [17]. The cases β < −1 and −1 < β < 0
corresponding to a < 0, the buoyant species, were found in this thesis.

The profiles in section 8.1

• β > 1: De eigenfunction ω0 has a boundary layer at x = 1.

• β < −1: De eigenfunction ω0 has a maximum at xmax = (−β)4/3−β2+1.

The profiles in section 8.2

• 0 < β < 1: De eigenfunction ω0 has a spike around the point

|xβ − (β2 + |A1|γ)| < cγ2, for some c > 0.
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• −1 < β < 0: De eigenfunction ω0 has a boundary layer at x = 0.

We start by fixing χ̄ to be χ̄n, for some n = 1, . . . , N . The corresponding
eigenvalue is

µ1,σ
n = −γσχ̄n,

while the corresponding eigenfunction wn is given by (7.5),

w1,σ
n (χ) = DAAi(χ) +DBBi(χ), where χ ∈

[
χ̄n, γ

−1 + χ̄n
]

(8.1)

Here the coefficients DA and DA satisfy (7.6),

DAΓL,n(Ai) +DBΓL,n(Bi) = DAΓR,n(Ai) +DBΓR,n(Bi) = 0,

where

ΓL,n(·) = Γ(·, χ̄n), and ΓR,n(·) = Γ(·, γ−1 + χ̄n).

8.1 The cases β > 1 and β < −1

In this section, we select DA and DB so that (8.1) becomes

w1,σ
n (χ) = DnBi(χ)−Ai(χ), with Dn =

ΓL,n(Ai)

ΓL,n(Bi)
(8.2)

We use this formula to prove Lemma 8.1 for β > 1 and β < 1. In section 8.1.1
we prove that w1,σ

0 has no zeros in [χ̄0, γ
−1 + χ̄0], then we evaluate D0 and

the eigenfuntion ω0(x). In section 8.1.2 we study ω0(x) for each case separately
and determine the profile for each case. In section 8.1.3 we show that the
eigenfunction w1,σ

n has exactly n zeros in [χ̄n, 0] and we evaluate Dn.

8.1.1 The eigenfunction w1,σ
0

First, we show that w1,σ
0 has no zeros in the interval [χ̄0, γ

−1 + χ̄0]. We need
the following expression

D0 =

(
∆2

1

2
+ C̄0(γ)

)
exp

(
−4

(
(β2 − 1)3/2

3γ3/2
+

√
1− 1

β2

))
.
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Here, ∆2
1 = (β+

√
β2 − 1)/(β−

√
β2 − 1) and |C̄0(γ)| < c0γ

3/2, for some c0 > 0.
Thus also, D0 > 0.

The eigenfunction w1,σ
0 has no zeros in the interval [χ̄0, γ

−1 +
χ̄0].
First, we prove that (w1,σ

0 )′ > 0 everywhere on the interval. Then we show that
w1,σ

0 (χ̄0) > 0 if β > 1 (sinking species), and w1,σ
0 (χ̄0) < 0 if β < −1 (buoyant

species). For n = 0, (8.2) yields (w1,σ
0 )′(χ) = D0Bi′(χ)−Ai′(χ), and Lemma 7.4

shows that [χ̄0, γ
−1χ̄0] ⊂ R+. Hence, Bi′(χ) > 0 and Ai′(χ) < 0 for all χ in this

interval. Since D0 > 0 we can conclude that (w1,σ
0 )′ > 0. Next, we determine

the sign of w1,σ
0 (χ̄0). The definition of ΓL,0 yields

Ai(χ̄0) = ΓL,0(Ai) + β−1√γAi′(χ̄0).

Bi(χ̄0) = ΓL,0(Bi) + β−1√γBi′(χ̄0).

Substituting these expressions in the function w1,σ
0 (χ̄0) in (8.2), we find that

w1,σ
0 (χ̄0) = β−1√γ[D0Bi′(χ̄0)−Ai′(χ̄0)].

Thus we see that w1,σ
0 (χ̄0) > 0 if β > 1 and w1,σ

0 (χ̄0) < 0 if β < −1, by
our remarks on the signs of Bi′, Ai′ and D0. In the same way we find that
w1,σ

0 (γ−1 + χ̄0) > 0 if β > 1, and w1,σ
0 (γ−1 + χ̄0) < 0 if β < −1. This completes

the proof.

The estimation D0.
From (8.2) and the formulas for Ai(z), Bi(z) in Appendix A, we find that

Γ(Ai, z)

Γ(Bi, z)
=

Ai(z)− β−1√γAi′(z)

Bi(z)− β−1√γBi′(z)
=

1

2

β + γ1/2z1/2

β − γ1/2z1/2
exp

(
−(4/3)z3/2

)
.

Here we have for n = 0

D0 =
ΓL,0(Ai)

ΓL,0(Bi)
=

1

2

β + γ1/2χ̄
1/2
0

β − γ1/2χ̄
1/2
0

exp
(
−(4/3)χ̄

3/2
0

)
.

Using the estimates of Lemma 7.4. for χ̄0 and A.2 for B0,σ we find that

χ̄0 = γ−1B0,σ = γ−1
(
β2 − 1 + 2β−1γ3/2

)
.
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Using Taylor’s theorem we find that

χ̄
1/2
0 = γ−1/2(β2 − 1)1/2 + γβ−1(β2 − 1)−1/2

χ̄
3/2
0 = γ−3/2(β2 − 1)3/2 + 3β−1(β2 − 1)1/2.

Thus

D0 =
1

2

β +
√
β2 − 1 + c(β)γ3/2

β −
√
β2 − 1− c(β)γ3/2

exp

(
−4

(
(β2 − 1)3/2

3γ3/2
+ β−1

√
β2 − 1

))

with c(β) = β−1(β2 − 1)−1/2.

We rewrite this expression for D0 in a simpler form. Let

Gβ(γ) =
β +

√
β2 − 1 + c(β)γ3/2

β −
√
β2 − 1− c(β)γ3/2

and g(γ) =
1

β −
√
β2 − 1− c(β)γ3/2

.

Then,

Gβ(γ) =
(
β +

√
β2 − 1 + c(β)γ3/2

)( 1

β −
√
β2 − 1

+
c(β)

(β −
√
β2 − 1)2

γ3/2

)

=
β +

√
β2 − 1

β −
√
β2 − 1

+ c1(β)γ3/2 + c2(β)γ3,

where c1(β) = 2βc(β)

β−
√
β2−1

and c2(β) = c(β)2

(β−
√
β2−1)2

.

We write (1/2)Gβ(γ) = (1/2)∆2
1 + C̄0(γ) where ∆2

1 =
β+
√
β2−1

β−
√
β2−1

and

C̄0(γ) = (1/2)
(
c1(β)γ3/2 + c2(β)γ3

)
.

From this it follows that |C̄0(γ)| < c0γ
3/2. This gives the desired result.

The eigenfunction ω0.
Equations (6.1) and (7.1) yield

ω0(x) = exp

(
β

γ3/2
x

)
[D0Bi(γ−1x+ χ̄0)−Ai(γ−1x+ χ̄0)], x ∈ [0, 1].



8.1. THE CASES β > 1 AND β < −1 49

We can now find ω0(x) using the estimation of Lemma 5.4 for χ̄0 and the
expressions Ai(z) and Bi(z)

ω0(x) = CI(x+ β2 − 1)−1/4exp

(
β

γ3/2
x

)
sinh(θ1(x)), x ∈ [0, 1], (8.3)

where CI = (π−1/2)γ1/4exp(−c̃γ−3/2 + c̃0), |CI | < cIγ
1/4 for some cI > 0, and

θ1(x) =
2

3γ3/2

[
(x+ β2 − 1)3/2 − (β2 − 1)3/2

]
+

2

β

[
(x+ β2 − 1)1/2 − (β2 − 1)1/2

]
+ log∆1.

We show how we have derived ω0, in four steps. Here we have γ−1x + χ̄0 =
γ−1(x+ β2 − 1 + 2β−1γ3/2). Thus

(γ−1x+ χ̄0)−1/4 = γ1/4(x+ β2 − 1)−1/4 − γ7/4 1

2
β−1(x+ β2 − 1)−5/4

(γ−1x+ χ̄0)3/2 = γ−3/2(x+ β2 − 1)3/2 + 3β−1(x+ β2 − 1)1/2

Step 1

Bi(γ−1x+ χ̄0) = π−1/2(x+ β2 − 1)−1/4exp

(
2(x+ β2 − 1)3/2

3γ3/2
+ 2β−1(x+ β2 − 1)1/2

)
.

Step 2

D0Bi(γ−1x+ χ̄0) =

(
∆2

1

2
+ C̄0(γ)

)(
π−1/2γ1/4(x+ β2 − 1)−1/4

)
exp (ϕ(x)) .

we neglect the higher order term C̄0 and write

D0Bi(γ−1x+ χ̄0) =
(
π−1/2γ1/4(x+ β2 − 1)−1/4

)
exp (ϕ(x)) ,

with

ϕ(x) =
2

3γ3/2

[
(x+ β2 − 1)3/2 − 2(β2 − 1)3/2

]
+

2

β

[
(x+ β2 − 1)1/2 − 2

√
β2 − 1

]
+ log∆2

1.

Step 3

Ai(γ−1x+ χ̄0) =
1

2
π−1/2γ1/4(x+ β2 − 1)−1/4exp

(
−2(x+ β2 − 1)3/2

3γ3/2
− 2

β
(x+ β2 − 1)1/2

)
.



50 CHAPTER 8. THE EIGENFUNCTIONS W 1,σ
0 , . . . ,W 1,σ

N

Step 4
To make calculations easier we write

ϕ0(x) =
2

3γ3/2
(x+ β2 − 1)3/2 +

2

β
(x+ β2 − 1)1/2.

ϕ1 = − 4

3γ3/2
(β2 − 1)3/2 − 4

β

√
β2 − 1 + log∆2

1.

and ϕ(x) = ϕ0(x) + ϕ1. Then,

D0Bi(γ−1x+ χ̄0)−Ai(γ−1x+ χ̄0) = (1/2)π−1/2γ1/4β̂−1/4
(
eϕ0+ϕ1 − e−ϕ0

)
= π−1/2γ1/4(x+ β2 − 1)−1/4e(1/2)ϕ1sinh(θ1(x)),

where θ1(x) = (1/2)
(
eϕ0+(1/2)ϕ1 − e−(ϕ0+(1/2)ϕ1)

)
. Thus

ω0(x) = CI(x+ β2 − 1)−1/4exp

(
β

γ3/2
x

)
sinh(θ1(x)).

where

CI = (π−1/2)γ1/4exp

(
− 2

3γ3/2
(β2 − 1)3/2 − 2

β

√
β2 − 1 + log∆1

)
.

8.1.2 The profiles

The profile for β > 1, sinking species

To leading order we can write

ω0(x) = b1exp

(
β

γ3/2
x

)
sinh

(
2

3γ3/2
b2

)
,

where b1, b2 > 0 are constants. If x→ 1, exp
(

β
γ3/2x

)
→∞, and sinh

(
1

γ3/2 (2/3)c2

)
→

∞ because γ is very small. Hence ω0(x) → ∞. Thus ω0(x) corresponds to a
boundary layer at x = 1 (Figure 8.1), which is of width O(ε3/2).

The profile for β < −1, buoyant species

The function ω0(x) has a maximum at
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Figure 8.1: Sinking species The function w0(x) corresponds to a boundary
layer at x = 1. Here, β = 1.1 and γ = 0.05.

xmax = (−β)
4/3 − β2 + 1. (8.4)

The function takes on negative values at the beginning of the interval, see Figure
8.2.

8.1.3 The eigenfunctions w1,σ
1 , . . . , w1,σ

N

The eigenfunction w1,σ
n is given by (8.2), where the estimation Dn is

Dn =

(
∆2

2

2
+ C̄n(γ)

)
exp

(
− 4

3γ3/2
+ 2

An√
γ
− 2

β

)
. (8.5)

where ∆2
2 = (β+1)/(β−1) and |C̄n(γ)| < cnγ, for some cn > 0. Hence Dn > 0.

The eigenfunction w1,σ
n has exactly n zeros in [χ̄n, 0].

The estimate (8.3) and the fact that Bi is uniformly bounded on [χ̄n, 0] imply
that, for all 0 < γ < γ0 (with γ0 small enough), the functions w1,σ

0 and Ai are
exponentially close in the W 1

∞−norm over that interval,
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Figure 8.2: Buoyant species The function w0(x) has a maximum at xmax and
has negative values in the beginning of the interval. Here, β = −2 and γ = 0.01.

∥∥w1,σ
n + Ai

∥∥
[χ̄,0]

< cnexp

(
− 4

3γ3/2
+ 2
|An|√
γ

)
, for some cn > 0. (8.6)

As a result, we may use an argument exactly analogous to the one used in the
proof of Lemma 7.4 to show that w1,σ

n has at least n − 1 distinct zeros in that
interval, each of which is exponentially close to one of A1, . . . , An−1. Also, ob-
serving that χ̄n is algebraically larger than An, by Lemmas 7.4 and A.2, while
w1,σ
n is exponentially close to −Ai, by estimate (6.4), we conclude that the zero

of w1,σ
n close to An lies to the left of χ̄n and thus there are no other zeros in

[χ̄n, γ
−1 + χ̄n].

It remains to show that there is a unique zero of w1,σ
n in [0, γ−1 + χ̄n]. We show

that w1,σ
n is increasing and changes sign in that interval. First, we calculate

(w1,σ
n )′(χ) = DnBi′(χ) − Ai′(χ) > 0, where we have used that Bi′(χ) > 0,

Ai′(χ) < 0, and Dn > 0. Also, w1,σ
n (0) < 0 (by Ai > 0 and (8.4)) and, working

as in section 8.1.1,

w1,σ
n (γ−1 + χ̄n) = β−1√γ[DnBi′(γ−1 + χ̄n)−Ai′(γ−1 + χ̄n)] > 0.
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This completes the proof.

The estimation Dn.
We show how we have derived D0 using the Airy functions in Appendix A and
7.4

Dn =
ΓR,n(Ai)

ΓR,n(Bi)
=

Γ(Ai, γ−1 + χ̄n)

Γ(Bi, γ−1 + χ̄n)
=

1

2

β + γ1/2(γ−1 + χ̄n)1/2

β − γ1/2(γ−1 + χ̄n)1/2
exp

(
−4

3
(γ−1 + χ̄n)3/2

)
.

Using the estimates of Lemma 7.4 we find

γ−1 + χ̄n = γ−1
(

1 + γAn + β−1γ3/2
)
.

Using Taylor’s theorem we get

(
γ−1 + χ̄n

)1/2
= γ−1/2 +

1

2

√
γAn +

γ

2β(
γ−1 + χ̄n

)3/2
= γ−3/2 +

3An
2
√
γ

+
3

2β
.

Now we can write

Dn =
1

2

β + 1 + (1/2)(γ|An|+ β−1γ3/2)

β − 1− (1/2)(γ|An|+ β−1γ3/2)
exp

(
−4

3γ3/2
+ 2
|An|√
γ
− 2

β

)
.

We can rewrite Dn like in section 6.1.1. and we get the desired result. It follows
that

|C̄n(γ)| < cnγ for some cn > 0.

8.2 The cases 0 < β < 1 and −1 < β < 0

In this section, we select DA and DB so that (8.1) becomes

w1,σ
n (χ) = Ai(χ) +DnBi(χ), with Dn = −ΓR,n(Ai)

ΓR,n(Bi)
. (8.7)

In section 8.2.1 we show that the eigenfunction w1,σ
n , n = 0, . . . , N has n zeros

in the interval [χ̄n, γ
−1 + χ̄n], then we evaluate ω0(x). In section 8.2.2 we de-

termine the profiles for each case.
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8.2.1 The eigenfunctions

The nth eigenvalue is µ1,σ
n = −γσχ̄n, while the corresponding eigenfunction

w1,σ
0 is given by (8.7). An estimation of the constant Dn may be

Dn =

(
∆2

3

2
+ Ĉn(γ)

)
exp

(
− 4

3γ3/2
+ 2
|An+1|√

γ
− 2

β

)
, (8.8)

where ∆2
3 = (1 + β)/(1− β) and |Ĉn| < c′nγ, for some c′n > 0. This estimate of

Dn is of the same type as (8.5) but with An replaced by An+1.

The eigenfunction w1,σ
n has n zeros in the interval [χ̄n, γ

−1 +
χ̄n].
The estimate (8.4) also holds here. Recalling that χ̄n is algebraically larger than
An+1, we conclude that w1,σ

n has n distinct zeros each of which is exponentially
close to one of A1, . . . , An. We show that w1,σ

n > 0 in [0, γ−1 + χ̄n] and thus has
no extra zeros. We calculate w1,σ

n (χ) = Ai(χ) +DnBi(χ). Now, Bi(χ) > 0 and
Ai(χ) > 0, for all χ ∈ [0, γ−1 + χ̄n], while Dn > 0 by (8.6). Hence, w1,σ

n > 0
and the proof is complete.

The solution ω0.
Next we examine the profile of the solution ω0 associated with w0,

ω0(x) = CIIx
1/4exp

(
β

γ3/2
x

)
cosh(θ2(x)), x ∈ [0, 1], (8.9)

where CII = (π−1/2)γ1/4e(1/2)ψ1 , |CII | < cIIγ
1/4 for some cII > 0. The func-

tion ψ1 is defined on page 54, and

θ2(x) =
2

3γ3/2

(
1− x3/2

)
−
(
|A1|√
γ
− 1

β

)
(1−

√
x)− log∆3.

We show how we derived ω0 in four steps. First, we calculate

w1,σ
n (γ−1x+ χ̄n) = Ai(γ−1x+ χ̄n) +DnBi(γ−1x+ χ̄n),

where γ−1x + χ̄n = γ−1
(
x+ γAn + β−1γ3/2

)
. Then we use (6.1) to get ω0.

Using Taylor’s Theorem we get
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(γ−1x+ χ̄n)−1/4 = γ1/4
(
x−1/4 − (1/4)x−5/4(γAn + β−1γ3/2)

)
(γ−1x+ χ̄n)3/2 = (γ−1x+ χ̄n)3/2 = γ−3/2

(
x3/2 − (3/2)x1/2(γAn + β−1γ3/2)

)
.

Step 1

Bi(γ−1x+ χ̄n) = π−1/2γ1/4x−1/4exp

(
2

3γ3/2
x3/2 +

|A1|√
γ

√
x+

√
x

β

)
.

Step 2

D0Bi(γ−1x+ χ̄n) =

(
∆2

3

2
+ Ĉ

)
π−1/2γ1/4x−1/4exp (ψ(x)) .

Rewriting the expression above we get

D0Bi(γ−1x+ χ̄n) = (1/2)(π−1/2γ1/4x−1/4)exp (ψ(x)) .

with

ψ(x) = − 4

3γ3/2
+ 2
|A1|√
γ
− 2

β
+

2

3γ3/2
x3/2 +

|A1|√
γ

√
x+

√
x

β

= − 4

3γ3/2
+

2

3γ3/2
x3/2 + 2

|A1|√
γ

+
|A1|√
γ

√
x− 2

β
+

√
x

β
+ log∆2

3.

Step 3

Ai(γ−1x+ χ̄n) = (1/2)π−1/2γ−1/4exp

(
− 2

3γ3/2
x3/2 − |A1|√

γ

√
x−
√
x

β

)
.

Step 4
To make calculations easier we write

ψ0(x) =
2

3γ3/2
x3/2 +

|A1|√
γ

√
x+

√
x

β

ψ1 = − 4

3γ3/2
+ 2
|A1|√
γ
− 2

β
+ log∆2

3

and ψ(x) = ψ0(x) + ψ1. Then
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Ai(γ−1x+ χ̄n) +D0Bi(γ−1x+ χ̄n) = (1/2)π−1/2γ1/4x−1/4
(
e−ψ0 + eψ0+ψ1

)
= π−1/2γ1/4x−1/4e(1/2)ψ1cosh (θ2(x)) ,

where θ2(x) = (1/2)(e(ψ0+(1/2)ψ1) + e(−(ψ0)+(1/2)ψ1)). Thus

w1,σ
n = CIIx

−1/4cosh(θ2(x)),

where CII = π−1/2γ1/4e(1/2)ψ1 and θ2(x) is the following expression

θ2(x) =
2

3γ3/2
(x3/2 − 1) +

|A1|√
γ

(1 +
√
x) +

1

β
(
√
x− 1) + log∆3.

Using (6.1) we find ω0(x).

8.2.2 The profiles

The profiles for 0 < β < 1, sinking species

The function ω0(x) has a spike around the point

|xβ − (β2 + |A1|γ)| < cγ2, for some c > 0. (8.10)

Figure 8.3 shows the graph of ω0(x).

The profile for −1 < β < 0, buoyant species

For all x ∈ [0, 1] ω0 > 0. To leading order we can write ω0 as

ω0 = cexp

(
β

γ3/2
x

)
cosh

(
1

γ3/2
(x2/3 − 1) +

|A1|√
γ

(1 +
√
x)

)
, where c > 0.

Thus, the function ω0(x) corresponds with a boundary layer at x = 0, see Figure
8.4.
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Figure 8.3: Sinking species The function w0(x) has a spike around the point
xβ . Here, β = 0.5 and γ = 0.01.

Figure 8.4: Buoyant species The function w0(x) corresponds to a boundary
layer at x = 0. Here, β = −0.5 and γ = 0.01.
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Chapter 9

The WKB approximation

In this section we use the WKB method to derive explicit, though asymptotic,
formulas for the eigenvalues µ1, . . . , µn of L. In section 9.1 we derive the for-
mulas for the eigenfunctions for the case a2/4 < σL, and in section 9.2 for the
case a2/4 > σU . We study the profiles and determine the structure of the phy-
toplankton patterns corresponding to the profiles. In section 9.3 we deal with
the transitional regime σL < a2/4 < σU . The structure of the phytoplankton
patterns for sinking and buoyant species are:

The case a2/4 < σL.

• Sinking species 0 < β < 1: Deep Chlorophyll Maximum.

• Buoyant species −1 < β < 0: Surface Layer.

The case a2/4 > σU .

• Sinking species β > 1: Benthic Layer.

• Buoyant species β < −1: unknown structure.

9.1 The case a2/4 < σL

In section 9.1.1 we derive the WKB formulas for the eigenvalue problem (6.2).
In section 9.1.2 we determine the boundary conditions for the WKB formulas.
We determine the eigenvalues of (4.13) in section 9.1.3 and the eigenfunctions
in section 9.1.4. In section 9.1.5. we determine the profiles for a < 0 and a > 0.

59
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9.1.1 WKB formulas for w

The eigenvalue problem (6.2) reads

εwxx = (F (x)− µ)w, with G(w, 0) = G(w, 1) = 0 (9.1)

Lemma 6.3 states that the eigenvalues µ1, . . . , µn lie in a O(ε1/3) region to the
right of zero. Thus for any 0 ≤ n ≤ N

F (x) < µn, for x ∈ [0, x̄n), and F (x) > µn, for x ∈ (x̄n, 1].

Here, x̄n corresponds to a turning point, i.e., F (x̄n) = µn, and it is given by

x̄n =
1

κ
log

1 + µn(1 + ηH)(1 + j−1
H )

1− µn(1 + ηH)(1 + j−1
H )

. (9.2)

Using Lemmas 6.3 and A.2 the eigenvalue µn may be expanded asymptotically
in powers of ε1/6 starting with O(ε1/3) terms,

µ1,σ
n = µ∗,σn+1 + Cn+1δn+1,σ

= λ∗ − λ∗,σn+1 + Cn+1ε
1/6exp

(
(−4/3)

√
σ/ε+ 2|An+1|(σ/ε)1/6

)
= ε1/3σ2/3|A′n+1,σ|+ Cn+1ε

1/6exp(νσ,ε)

= ε1/3σ2/3(An+1 + β−1ε1/6σ−1/6
n + caε

1/3σ−1/3
n ) + Cn+1ε

1/6exp(νσ,ε)

= (σ2/3An+1)ε1/3 + (β−1σ2/3)ε1/2 + (σ2/3ca)ε2/3 + Cn+1ε
1/6exp(νσ,ε)

where νσ,ε = (−4/3)
√
σ/ε+ 2|An+1|(σ/ε)1/6. From this asymptotic expansion

we see that we can write µ1,σ
n as µn =

∑∞
`=2 ε

l/6µn,`. Thus, we also find

x̄n = ε1/3σ−1
0 µn,2 + ε1/2σ−1

0 µn,3 +O(ε2/3), where σ0 = F ′(0).

First, we determine the solution in the region x ∈ (x̄n, 1], and then in the region
x ∈ [0, x̄n).

The solution in the region x ∈ (x̄n, 1].
The solution in this region, where F (x) − µn > 0, can be determined using
standard formulas,
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wn(x) = [F (x)− µn]
−1/4

[
Cae

−
∫ x
x̄n

√
(F (s)−µn)/ε ds + Cbe

∫ x
x̄n

√
(F (s)−µn)/ε ds

]
.(9.3)

Here, Ca and Cb are arbitrary constants, to leading order in ε. Using this infor-
mation and the asymptotic expansion for µn, we may determine the principal
part of the solution wn,

wn,0(x) = [F (x)]
−1/4

[
Ca,0e

−θ3(x) + Cb,0e
θ3(x)

]
, (9.4)

for arbitrary constants Ca,0 and Cb,0, and

θ3(x) =
1

ε1/2

∫ x

0

√
F (s)ds− 1

ε1/6

µn,2
2

∫ x

0

1√
F (s)

ds+ (1/3)σ−1
0 (µn,2)3/2 − µn,3

2

∫ x

0

1√
F (s)

ds.(9.5)

Before determining the solution in the region [0, x̄n), we show how θ3(x) is
evaluated. We start by evaluating

∫ x
x̄n

√
(F (s)− µn)/ε ds in (9.4). Since µn is

very small we can write
√
F (s)− µn =

√
F (s)− µn

2
1√
F (s)

,

1

ε1/2

∫ x

x̄n

√
F (s)− µnds = ε−1/2

∫ x

x̄n

√
F (s)ds− ε−1/2µn

2

∫ x

x̄n

1√
F (s)

ds

=
1

ε1/2

∫ x

0

√
F (s)ds− 1

ε1/2

∫ x̄n

0

√
F (s)ds− 1

ε1/2

µn
2

∫ x

0

1√
F (s)

ds

+
1

ε1/2

µn
2

∫ x̄n

0

1√
F (s)

ds.

We evaluate the last three terms of the integral in (9.6):

The second term
We write F (s) = sσ0. Using Taylor’s Theorem we obtain

− 1

ε1/2

∫ x̄n

0

√
sσ0ds = (ε−1/2)(2/3)σ−1

0 ε1/2(µn,2)3/2 = −(2/3)σ−1
0 (µn,2)2/3.

The third term

− 1

ε1/2

µn
2

∫ x

0

1√
F (s)

ds = − 1

ε1/6

µn,2
2

∫ x

0

1√
F (s)

ds− µn,3
2

∫ x

0

1√
F (s)

ds.
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The fourth term
Again we use F (s) = sσ0,

∫ x̄n

0

1
√
sσ0

ds = 2ε1/6σ−1
0

√
µn,2.

Multiplying this integral times ε−1/2(ε1/3µn,2) we find that the fourth term is
σ−1

0 (µn,2)3/2.

The solution in the region [0, x̄n).
To determine this solution, we change independent variable through

x = ε1/3σ
−1/3
0 (χ− χ̄n), where χ̄n = −σ1/3

0 ε−1/3x̄n = −σ−2/3
0 µn,2 −O(ε1/6) < 0,(9.6)

and expand F (x)−µn asymptotically. We recall that F (0) = 0 and F ′(0) = σ0,
so that

F (x) = F (ε1/3σ
−1/3
0 (χ− χ̄n))

= F (0) + ε1/3σ
−1/3
0 (χ− χ̄n)F ′(0)

= ε1/3σ
2/3
0 (χ− χ̄n)

= ε1/3σ
2/3
0 χ− ε1/3σ

2/3
0 (−σ−2/3

0 µn,2 −O(ε1/6))

= ε1/3σ
2/3
0 χ+O(ε1/3),

Thus

F (x)− µn = F (ε1/3σ
−1/3
0 (χ− χ̄n))− µn = ε1/3σ

2/3
0 χ. (9.7)

As a result, (9.1) becomes, to leading order, the Airy equation (wn)χχ = χwn,
hence

wn,0(χ) = Da,0Ai(χ) +Db,0Bi(χ), with χ ∈ (−σ−2/3
0 µn,2, 0]. (9.8)

9.1.2 Boundary conditions for the WKB solution

In this section we determine the coefficients Ca,0,Cb,0, Cb,0, and Cb,0 appearing
in (9.5) and (9.9). First, we determine the boundary condition for the formula
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in (9.5), then for the formula in (9.9). Using matching we find the boundary
conditions.

Boundary condition for the formula (9.5)
Formula wn,0(x) in (9.5) represents the solution in region (x̄n, 1], and thus it
must satisfy the boundary condition at x = 1, G(wn, 1) = 0. Using (6.3) we
find, to leading order,

Ca,0(a+ 2
√
σ1)e−θ3(1) + Cb,0(a− 2

√
σ1)eθ3(1) = 0, where σ1 = F (1). (9.9)

In order to find (9.10) we need to evaluate

G(w, x) = w(x)− 2
√
ε

a
wx(x),

where we write w := wn,0(x) for simplicity. Differentiating w we get

wx(x) = [F (x)]−1/4[−θ′3(x)Ca,0e
−θ3(x) + θ′5(x)Cb,0e

θ5(x)]

−(1/4)[F (x)]′[F (x)]−5/4[Ca,0e
−θ3(x) + Cb,0e

θ3(x)],

where θ′3(x) = ε−1/2 d
dx

∫ x
0

√
F (s)ds =

√
F (x). Thus

G(w, x) = [F (x)]−1/4[Ca,0e
−θ3(x) + Cb,0e

θ3(x)]

−2

a
[F (x)]−1/4[−

√
F (x)Ca,0e

−θ3(x) +
√
F (x)− µ0,0Cb,0e

θ3(x)],

and

G(wn, 1) = a[Ca,0e
−θ3(1) + Cb,0e

θ3(1)] + 2[
√
σ1Ca,0e

−θ3(1) −
√
σ1Cb,0e

θ3(1)] = 0.

Rearranging the terms gives (9.10).

Boundary condition for the formula (9.9)
The formula given in (9.9) is valid for χ ∈ (−σ−2/3

0 µn,2, 0] (equivalently, for
x ∈ [0, x̄n)), and it must therefore satisfy the boundary condition G(w, 0) = 0.
Recasting the formula for G given in (6.3) in terms of χ, we obtain to leading
order
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Da,0Ai(−σ−2/3
0 µn,2) +Db,0Bi(−σ−2/3

0 µn,2) = 0. (9.10)

Matching
We set ψ = ε−d(x − x̄), where 1/5 < d < 1/3, and recast (9.5) in terms of ψ.
We find, to leading order and for all O(1), positive values of ψ,

wn,0(x(ψ)) = ε−d/4σ
−1/4
0 ψ−1/4

[
Ca,0e

−θ4(ψ)−(1/3)σ−1
0 (µn,2)3/2

+ Cb,0e
θ4(ψ)+(1/3)σ−1

0 (µn,2)3/2
]
,

where θ4(ψ) = (2/3)ε(3d−1)/2√σ0ψ
3/2. Similarly, (9.9) yields

wn,0(x(ψ)) = ε1/12−d/4σ
−1/12
0 π−1/2ψ−1/4

[
(1/2)Da,0e

−θ4(ψ) +Db,0e
θ4(ψ)

]
.

The matching condition around the turning point gives, then

Ca,0 = ε1/12 σ
1/6
0

2
√
π
eσ

−1
0 (µn,2)3/2

Da,0 and Cb,0 = ε1/12σ
1/6
0√
π
e−σ

−1
0 (µn,2)3/2

Db,0.(9.11)

9.1.3 The eigenvalues µ0, . . . , µn

In this chapter we derive the eigenvalues of (4.13). The linear system (9.10)-
(9.12) has a nontrivial solution if and only if the determinant corresponding to
it vanishes identically,

− 2(a− 2
√
σ1)exp(θ̄3)Ai(−σ−2/3

0 µn,2) + (a+ 2
√
σ1)exp(−θ̄3)Bi(−σ−2/3

0 µn,2) = 0.

where θ̄3 = θ3(1)− σ−1
0 (µn,2)3/2. Since F (s) ≥ σLs (see (5.2)), we have

θ3(1) = ε−1/2

∫ 1

x̄n

√
F (s)ds ≥ ε−1/2

∫ 1

x̄n

√
σLsds = cε−1/2√σL,

where c = (2/3)− (x̄n)3/2, thus θ3(1) ≥ O(ε−1/2). We see that the determinant

condition reduces to Ai(−σ−2/3
0 µn,2) = 0, hence µn,2 = σ

2/3
0 An = σ

2/3
0 |An| > 0.

Thus we find for the eigenvalues of (4.13),

λn = λ∗ − ε1/3σ
2/3
0 |An|+O(ε1/2). (9.12)
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Recalling that σ0 = F ′(0) = −f ′(0) by (5.1) and Lemma 5.1, we find that the
WKB formula (9.13) coincides - up to and including terms of O(1) and O(ε1/3)
- for
(a) 0 < jH < j

(2)
H , with the rigorous lower bound for λn in Theorem 5.1,

(b) jH > 1, with the rigorous upper bound for λn in Theorem 5.1.

For the remaining values of jH , (9.13) yields a value for λn which lies in between
the rigorous bounds derived in Theorem 5.1. In that case, σL < F ′(0) < σU .

9.1.4 The eigenfunctions w0, . . . , wn

The principal part of wn is given by the formula

wn,0(x) =

{
Ai(An + ε−1/3σ

1/3
0 x), for x ∈ [0, ε1/3σ

−1/3
0 |An|),

C[F (x)]
−1/4

coshΘ(x), for x ∈ (ε1/3σ
−1/3
0 |An|, 1].

(9.13)

Here

C = ε1/12σ
1/6
0√
π

∆4e
|An|3/2−θ3(1), where ∆2

4 =
2
√
σ1 + a

2
√
σ1 − a

, (9.14)

and

Θ(x) = ε−1/2

∫ 1

x

√
F (s)ds−

(
ε−1/6σ

2/3
0 |An|

2
− σ0

a

)∫ 1

x

1√
F (s)

ds+ log∆4.(9.15)

Evaluation of wn,0(x)
Substituting

Cb,0 =
2
√
σ1 + a

2
√
σ1 − a

e−2θ3(1)Ca,0.

in (9.5) we get
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wn,0(x) = [F (x)]−1/4Ca,0

[
e−θ3(x) + ∆2

4e
−2θ3(1)eθ3(x)

]
= [F (x)]−1/4ε1/12 σ

1/6
0

2
√
π
eσ

−1
0 (µn,2)3/2

Da,0

[
e−θ3(x) + eθ3(x)+log∆2

4−2θ3(1)
]

= [F (x)]−1/4ε1/12 σ
1/6
0

2
√
π

∆4e
|An|3/2−θ3(1)Da,0

[
eθ3(x)+log∆4−θ3(1) + e−(θ3(x)+log∆4−θ3(1))

]
= C[F (x)]−1/4Da,0cosh (θ3(x) + log∆4 − θ3(1)) .

In order to calculate θ3(x)− θ3(1) we use (9.6),

θ3(x)− θ3(1) = ε−1/2

∫ x

1

√
F (s)ds−

(
ε−1/6σ

2/3
0 |An|

2
− σ0

a

)∫ x

1

1√
F (s)

ds.

where µn,2 = σ
2/3
0 |An| and µn,3 = −2σ0/a. Thus eθ3(x)+log∆4−θ3(1) can be

written as

exp

[
ε1/2

∫ x

1

√
F (s)ds−

(
ε−1/6σ

2/3
0 |An|

2
− σ0

a

)∫ x

1

1√
F (s)

ds+ log∆4

]
.

Recalling (6.1), we find

ωn,0(x) =

{
eax/2

√
εAi(An + ε−1/3σ

1/3
0 x), for x ∈ [0, ε1/3σ

−1/3
0 |An|),

C[F (x)]−1/4eax/2
√
εcoshΘ(x), for x ∈ (ε1/3σ

−1/3
0 |An|, 1].

(9.16)

9.1.5 The profiles for a2/4 < σL.

In this section we will study the function ω0,0 in (9.17) for 0 < β < 1 and for
−1 < β < 0. In order to analyse ω0,0 we will insert parameters. We choose
ηH = 0.667, jH = 0.5, and κ = 1. Let us recall from chapter 5 that

F (x) =
jH(eκx − 1)

(1 + ηH)(1 + jH)(1 + jHeκx)
.

With the chosen parameters the function F (x) becomes

F (x) =
ex − 1

5 + 2.5ex
.
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Further, σ0 = F ′(0) = 0.1333 and σ1 = F (1) = 0.1456. Since x̄0 = ε1/3σ−1
0 µ0,2 =

ε1/3σ
−1/3
0 |A0| ≈ 0.027, and θ3(1) = ε−1/2

∫ x
x̄0

√
F (s)ds, we have

θ3(1) =
1

ε1/2

∫ x

0.027

√
F (s)ds.

Since a2/4 < σL = 0.1333, we must choose 0 < a < 0.7302 for a > 0, and
−0.7302 < a < 0 for a < 0. We insert the following parameters in the function
ω0,0(x)

σ0 = 0.1333

σ1 = 0.1456

ηH = 0.667

jH = 0.5

κ = 1

ε = 2 · 10−7

With the chosen parameters the function ω0,0(x) becomes

ω0,0(x) = C

(
ex − 1

5 + 2.5ex

)−1/4

eax/2
√
εcosh (Θ(x)) ,

where

C =
ε1/12(0.1333)1/6

2
√
π

√
0.7632 + a√
0.7632− a

exp

(
(2.3381)2/3 − 2236

∫ 1

0.027

√
F (s)ds

)
, and

Θ(x) =
1

ε1/2

∫ x

1

√
F (s)ds−

(
(0.1333)2/32.3381

2ε1/6
− 0.1333

a

)∫ 1

x

1√
F (s)

ds+ ln

(√
0.7632 + a√
0.7632− a

)
.

The profile for a > 0 (or equivalently 0 < β < 1), sinking
species
Differentiating ω0,0 we find that the function has a spike around the point

xDCM = xDCM,0 +O(ε1/3) (9.17)
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Figure 9.1: Sinking species The eigenfunction ω0 corresponds to a DCM. Here
a = 0.5, σ0 = 0.1333, σ1 = 0.1456, ηH = 0.667, ε = 2·10−7, κ = 1, and jH = 0.5.

where xDCM,0 is the unique solution to F (xDCM,0) = a2/4. Thus ω0,0 corre-
sponds to a DCM, see Figure 9.1.

The profile for a < 0 (or equivalently −1 < β < 0), buoyant
species
To leading order we can write

ω0,0 = c1 e
ax
2 +

∫ x
1

√
F (s)ds − c1 e

ax
2 −

∫ x
1

√
F (s)ds.

The function ax
2 −

∫ x
1

√
F (s)ds is negative on the interval [0, 1], we can therefore

neglect the second term in the equation above. The function ax
2 +

∫ x
1

√
F (s)ds

is a descending on the interval [0, 1]. Thus, ω0,0 corresponds to a SL, see Figure
9.2.

9.2 The case a2/4 > σU

In this chapter we determine the eigenvalues and eigenfunctions for a2/4 > σU
in section 9.2.1. In section 9.2.2 we study the profiles for a > 0 and a < 0.
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Figure 9.2: Buoyant species The eigenfunction ω0 corresponds to a SL. Here
a = −0.5, σ0 = 0.1333, σ1 = 0.1456, ηH = 0.667, ε = 2 · 10−7, κ = 1, and
jH = 0.5.

9.2.1 Eigenvalues and eigenfunctions

Here, the eigenvalue problem (6.2) also has the form (9.1). Since a2/4 > σU ,
the eigenvalue µ0 is O(1) and negative. The eigenvalues µ1, . . . , µN are O(ε1/3)
and positive.
Due to the qualitative difference between µ0 and the eigenvalues of higher order,
we consider them separately.

The case 1 ≤ n ≤ N
For each such n, the eigenvalue problem (9.1) has a unique turning point x̄n
given by (9.2). The analysis in the preceding section applies here also. The
formulas for µn and ωn, 1 ≤ n ≤ N , are identical to those of the preceding
section, the only modification is that An in (9.13)-(9.16) must be replaced by
An−1. This completes the analysis for the case 1 ≤ n ≤ N .

The case n = 0
Since µ0 < 0 < F (x) for all x ∈ [0, 1], the eigenvalue problem (9.1) corresponding
to µ0 has no turning points. Thus the WKB formula (9.4) with n = 0 and x̄n
replaced by zero, is valid for all x ∈ [0, 1]. Lemmas 6.3 and A.2 suggest that µ0

may be expanded asymptotically as µ0 =
∑∞
`=0 ε

l/2µ0,`. Using this expansion,
we calculate the principal part of w0,
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w0,0(x) = [F (x)− µ0,0]−1/4
[
Ca,0e

−θ5(x) + Cb,0e
θ5(x)

]
, (9.18)

where Ca,0 and Cb,0 are arbitrary constants and

θ5(x) =
1

ε1/2

∫ x

0

√
F (s)− µ0,0ds−

µ0,1

2

∫ x

0

1√
F (s)− µ0,0

ds. (9.19)

In the WKB formula we need to determine
∫ x

0

√
F (s)− µ0,0 − ε1/2µ0,1ds. Since

ε1/2µ0,1 is very small, we use Taylor’s theorem to rewrite this integral,

∫ x

0

√
F (s)− µ0,0 − ε1/2µ0,1ds =

∫ x

0

√
F (x)− µ0,0ds−

µ0,1ε
1/2

2

∫ x

0

√
F (x)− µ0,0ds.

Multiplying the integral times ε−1/2 gives θ5(x).

The boundary conditions G(w, 0) = G(w, 1) = 0
Next recalling the boundary conditions G(w, 0) = G(w, 1) = 0, we obtain, to
leading order,

Ca,0(a+ 2
√
−µ0,0) + Cb,0(a− 2

√
−µ0,0) = 0,

Ca,0(a+ 2
√
σ1 − µ0,0)e−θ5(1) + Cb,0(a− 2

√
σ1 − µ0,0)eθ5(1) = 0,(9.20)

where we recall that σ1 = F (1). In order to find (9.21) we need to evaluate

G(w, x) = w(x)− 2
√
ε

a
wx(x),

where we write w := w0,0(x). Differentiating w0,0(x) we obtain

wx(x) = [F (x)− µ0,0]−1/4[−θ′5(x)Ca,0e
−θ5(x) + θ′5(x)Cb,0e

θ5(x)]

−(1/4)[F (x)]′[F (x)− µ0,0]−5/4[Ca,0e
−θ5(x) + Cb,0e

θ5(x)]

where θ′5(x) = ε−1/2 d
dx

∫ x
0

√
F (s)− µ0,0ds =

√
F (x)− µ0,0. Thus
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G(w, x) = [F (x)− µ0,0]−1/4[Ca,0e
−θ5(x) + Cb,0e

θ5(x)]

−2

a
[F (x)− µ0,0]−1/4[−

√
F (x)− µ0,0Ca,0e

−θ5(x) +
√
F (x)− µ0,0Cb,0e

θ5(x)].

For G(w, 0) = 0 we get

G(w, 0) = [µ0,0]−1/4[Ca,0 + Cb,0]− 2

a
[µ0,0]−1/4[−√µ0,0Ca,0 +

√
µ0,0Cb,0] = 0.

Multiplying the above expression with a[µ0,0]1/4 we get the first equation in
(9.21).

For G(w, 1) = 0 we get

G(w, 1) = [σ1 − µ0,0]−1/4[Ca,0e
−θ5(1) + Cb,0e

θ5(1)]

−2

a
[σ1 − µ0,0]−1/4[−

√
σ1 − µ0,0Ca,0e

−θ5(1) +
√
σ1 − µ0,0Cb,0e

θ5(1)]

= 0.

Multiplying the above equation with a[σ1− µ0,0]1/4 we get the second equation
in (9.21).

The eigenvalue λ0,0
Substituting

Cb,0 = −Ca,0
a+ 2

√−µ0,0

a− 2
√−µ0,0

,

in the second equation in (9.22) we get

(
−Ca,0

a+ 2
√−µ0,0

a− 2
√−µ0,0

)
(a+ 2

√
σ1 − µ0,0)e−θ5(1) + Cb,0(a− 2

√
σ1 − µ0,0)eθ5(1) = 0.

Here θ5(1) ≥ O(ε−1/2), thus we must have that a − 2
√
σ1 − µ0,0 = 0. Hence,

we find to leading order that µ0,0 = F (1)− a2/4. Using (5.4) and (6.3) we find
that

λ0,0 = f(1)− `. (9.21)
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The eigenfunction w0,0(x)
We will now evaluate w0,0(x)

w0,0(x) = 2∆5[F (x)− µ0,0]−1/4sinh(Φ(x)), x ∈ [0, 1], (9.22)

where

Φ(x) =
1

ε1/2

∫ x

0

√
F (s)− µ0,0ds−

µ0,1

2

∫ x

0

1√
F (s)− µ0,0

ds+ log∆5,

∆2
5 =

β1 +
√
β2

1 − 1

β1 −
√
β2

1 − 1
, β1 =

a

2
√
F (1)

.

We can write

Cb,0 = −Ca,0
a+ 2

√−µ0,0

a− 2
√−µ0,0

= −Ca,0
a

2
√
σ1

+ 1√
σ1

√
a2/4− σ1

a
2
√
σ1
− 1√

σ1

√
a2/4− σ1

= −Ca,0
β1 +

√
β2

1 − 1

β1 −
√
β2

1 − 1
,

thus Cb,0 = −Ca,0∆2
5. Substituting this in (9.23) we get

w0,0(x) = [F (x)− µ0,0]−1/4(−Ca,0)[eθ5(x)+log∆2
5 − e−θ5(x)]

= [F (x)− µ0,0]−1/4(−Ca,0)e(1/2)log∆2
5

[
eθ5(x)+(1/2)log∆2

5 − e−(θ5(x)+(1/2)log∆2
5)
]

= 2∆5[F (x)− µ0,0]−1/4sinh(Φ(x)),

where Φ(x) = θ5(x) + log ∆5, and we have chosen Ca,0 = −1. Recalling (6.1)
we find

ω0,0(x) = 2∆5[F (x)− µ0,0]−1/4eax/2
√
εsinh(Φ(x)), for x ∈ [0, 1].

9.2.2 The profiles for a2/4 > σU

In this section we will study ω0,0 in (9.24) and the profiles for a > 0 and a < 0.
First we insert the following parameters in ω0,0
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σ1 = 0.1456

µ0,0 = F (1)− a2/4

µ0,1 = −1

ε = 1 · 10−4.

With these parameters ω0,0(x) becomes

ω0,0(x) = 2∆5 [F (x) + 0.000324]
−1/4

exp

(
ax

2
√
ε

)
sinh (Φ(x)) ,

where

Φ(x) =
1

ε1/2

∫ x

0

√
F (s) + 0.000324 ds +

1

2

∫ x

0

1√
F (s) + 0.000324

ds + ln(∆5),

and

∆5 =

(
a

0.7632 +
√

a2

0.5824 − 1

)1/2

(
a

0.7632 −
√

a2

0.5824 − 1

)1/2
.

Here F (s) is defined as in section 9.1.3. Since a2/4 > σU , we must choose
a < −0.7632 for a < 0, and a > 0.7632 for a > 0.

The profile for a > 0 (or equivalently β > 1), sinking species
For x → 1, the function eax/2

√
ε → ∞ and is strictly increasing on [0, 1]. The

function sinh(Φ(x)) is also strictly increasing on [0, 1] and goes to infinity for
x→ 1. Thus ω0,0(x) corresponds to a BL (Figure 9.3).

The profile for a < 0 (or equivalently β < −1), buoyant
species
The function has a maximum at

F (x) = a2/4 +O(ε1/2).

The function ω0,0 takes on negative values in the beginning of the interval (Fig-
ure 9.4). Therefore we are not able to determine the structure of the phyto-
plankton pattern. Further research needs to be done in order to understand
what happens with the phytoplankton population in this case.
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Figure 9.3: Sinking species The eigenfunction ω0,0 corresponds to a BL. Here
a = 0.765, σ1 = 0.1456, µ0,1 = −1, and ε = 1 · 10−4.

Figure 9.4: Buoyant species Because the eigenfunction ω0,0 has negative val-
ues in the beginning of the interval, the structure of the phytoplankton pat-
tern can not be determined. Here, a = −0.765, σ1 = 0.1456, µ0,1 = −1, and
ε = 1 · 10−4.
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9.3 The transitional regime σL < a2/4 < σU

Equations (9.13) and (9.22) may be used to derive information for the transi-
tional regime σL < a2/4 < σU . In particular, the transition between the case
where λ0 is associated with a spike (that is, with a DCM) occurs, to leading
order, when f(1)− ` = λ∗. Recalling (5.4) we rewrite this equation as

F (1) = f(0)− f(1) = a2/4. (9.23)

As mentioned in chapter 5, this condition reduces, to leading order,

(a) to a2/4 = σU , for 0 < jH ≤ j(1)
H , and

(b) to a2/4 = σL, for jH ≥ j(2)
H .

For j
(1)
H < jH < j

(2)
H we have that σU < a2/4 < σL.
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Chapter 10

The Bifurcations

In this section we will identify the bifurcations the system (6.2) undergoes. We
use the WKB expressions for the first few eigenvalues derived in chapter 9. In
this way, we identify the regions in parameter space where the BL, DCM, and
SL steady states become stable.

We are primarily interested in the effect of environmental conditions on phyto-
plankton. In particular, of nutrient concentration and diffusion. Therefore we
choose to vary the parameters ηH = NH/NB and a = V/

√
µD. The parameter

ηH contains information about the nutrient levels and nutrient absorption by
phytoplankton. The parameter a is a measure of diffusion. The remaining four
dimensionless parameters ε, κ, jH , and ` are kept constant. In this way our
equations are simplified. For simplicity of presentation, we define the variables

ν = (1 + ηH)−1 and A = a2/4.

The separating curves in the (ν,A)−plane
The curves separating the regions in the (ν,A)−plane (Fig. 10.1) are found by
setting the expressions for λ0 in (9.13) and (9.22) equal to zero, or equal to each
other. In order to find these boundaries we must first recast (9.13) and (9.22)
in terms of the rescaled parameters.

By setting the expression for λ0 in (9.22) equal to 0, we obtain, to leading order,
the vertical line separating the regions I, II, and III from the regions IV , V ,
and V I,

ν = `(1 + eκjH).
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Figure 10.1: Bifurcation diagram in the (ν,A)-plane. The horizontal axis
corresponds to ν = (1 + ηH)−1, while the vertical one corresponds to A = a2/4.
Sinking species. In the region shaded horizontally, the trivial, zero state
stable. In the region shaded vertically , DCMs bifurcate, while BLs remain
damped. In the region shaded diagonally, BL profiles bifurcate, while DCM
profiles remain damped. Finally in the unshaded region, both profiles grow
linearly.
Buoyant species. In the region shaded horizontally, the trivial, zero state
stable. In the region shaded vertically, SLs bifurcate. The uknown structure
should be in the region shaded diagonally. Finally in the unshaded region, both
profiles grow linearly.

Next, setting the expression for λ0 in (9.13) equal to 0, we obtain, to leading
order, the diagonal line separating the regions I, II, and IV from III, IV and V,

A =
1

1 + jH
ν − `.

Setting the expressions for λ0 in (9.13) and (9.22) equal to each other, we obtain
the third line. This is the transitional regime (9.24),

A =

(
1

1 + jH
− 1

1 + eκjH

)
ν.

Now we can study the regions in Figure 10.1.

• Regions I and II.
The eigenvalue λ0 is given by (9.22) in region I, and by (9.13) (n = 0)
in region II. In either case, λ0 < 0, and hence the zero (trivial) state is
stable. This means for sinking and buoyant species that the phytoplankton
concentration is zero.
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• Region III.
The eigenvalue λ0 is given by (9.13) and is positive. All the other eigen-
values are also positive.
Sinking species: All of the eigenvalues are associated with DCMs for a > 0.
Buoyant species: All of the eigenvalues are associated with SLs for a < 0.
associated with DCMs for a > 0, and with SLs for a < 0.

• Region VI.
The eigenvalue λ0 is given by (9.22) and is positive. All the other eigen-
values are negative.
Sinking species: The only bifurcation patterns in this regime are BL pro-
files for a > 0.
Buoyant species: Since we do not know the structure of the phytoplank-
ton pattern in this case for a < 0, we can give no further information for
buoyant species in this regime.

• Regions IV and V.
The eigenvalues associated with both BL and DCM profiles are positive
in the case that a < 0. The eigenvalues associated with a SL and the
unknown structure are also positive. Thus, no further information can be
derived for the sinking and buoyant species from the linear analysis.

Since the physical region ηH > 0 corresponds to the region 0 < ν < 1, the
formulas above imply that:

1. For 0 < ` < (1 + κjH)−1:
Both BL and DCM may bifurcate, for a > 0.
A SL may bifurcate for a < 0.

2. For 0(1 + eκjH)−1 < ` < (1 + jH)−1:
Only a DCM may bifurcate for a > 0, and only a SL may bifurcate for
a < 0.

3. For ` > (1 + jH)−1, the trivial state is stable.
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Chapter 11

Assumptions and
simplifications in the model

Limitations of the study in [17] and hence also in this study, arise from the as-
sumptions and simplifications made in the phytoplankton-nutrient model. We
will now state these assumptions and limitations.

Firstly, we have the one-dimensional assumption that considers variables only in
the vertical direction. In more complex models one can include the possibility
of horizontal flow and diffusion. This can be done by allowing W and N to
vary with (x, y, z, t) and to include horizontal diffusion terms in (4.1). Although
the horizontal gradients are not accounted for in the model, the linear stability
analysis of the trivial state is essentially not influenced by this extension.

Specific formulas were assigned to the growth and light intensity functions
P (L,N) and L(z, t), this is not essential for the analysis. Also the charac-
ter of these functions is not essential for the analysis. One only needs that f(x)
is decreasing and bounded in [0, 1].

The values of ε, a, and ` in (4.9) are typical of oceanic settings [10]. These values
differ in estuary, and ε can no longer be assumed to be asymptotically small.
Phytoplankton blooms in an estuary are strongly influenced by the concentra-
tion of suspended sediment and not only occur at a certain depth z, but also at
a certain horizontal position in the estuary. Thus (4.13) must be extended to
account for such blooms.

In [10], (4.1) was extended to a model for various phytoplankton species Wi(z, t)
(i = 1, . . . , n). A stability analysis of the trivial pattern Wi ≡ 0, N ≡ NB yields
n uncoupled copies of (4.13), in which the parameters depend on the species,
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i.e. on the index i. As a consequence, the results of [17] can also be applied to
this setting where more than more species are present.



Chapter 12

Conclusion and Summary

We have analysed the model in [17] for a < 0 to determine the structure of the
phytoplankton patterns exhibited by buoyant species. The results for buoyant
species can be characterised as follows:

• If a2/4 < σL the phytoplankton pattern has the structure of a SL. For
a2/4 > σU we were not able to determine the structure because the eigen-
function ω0,0(x) in section 9.2.1 has negative values. Thus, for buoyant
species, we are not able to predict for any given value of parameters what
the structure of the phytoplankton pattern is. Future work could thus
be undertaken to determine what this structure is. Since the structures
of the phytoplankton patterns for buoyant species are different than the
ones for sinking species, we can conclude from the results that the sign
of the parameter a is very important in determining the structure of the
phytoplankton pattern.

• Region VI in the bifurcation diagram in chapter 10 remains unknown.
For buoyant species the trivial state (ω̄, η̄) bifurcates into a SL or the
structure that could not be determined. As for sinking species, also for
buoyant species the regions V and VI remain unknown.

• Having studied all the mathematical analysis in [17] for sinking and buoy-
ant species we can also conclude that all the theorems, lemmas, and defined
functions in [17] are also valid for buoyant species. Despite not knowing
the other structure, this is of great value, since now [17] can also be used
for buoyant species. As already stated before, the mathematical analysis
shows that the sign of the parameter a becomes relevant when studying
the profiles and structures of the eigenfunctions in the chapters 8 en 9. In
chapter 8, the profiles of the eigenfunctions for buoyant species are differ-
ent than the ones of sinking species. In chapter 9 we have seen that the
structures of the eigenfunctions for buoyant species are different than the
ones for sinking species.
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The findings of this study have highlighted the need for further research into
modelling the dynamics of buoyant species. Although we were not able to deter-
mine the other structure, the results illustrate that sinking and buoyant species
show different population dynamics. To obtain more insight in the dynamics of
buoyant species further study of the eigenfunction ω0(x) in section 8.1.1 and the
function ω0,0(x) in section 9.1.2 is necessary. Further research is needed to inves-
tigate why sinking and buoyant species are favoured in particular environments
and how this might effect the patterns they form under certain conditions.



Appendix A

Airy functions

We summarize the expressions of the Airy functions Ai, Bi and their derivatives,
which we will use repeatedly.

Ai(z) = (π−1/2z−1/4/2)exp
(
−(2/3)z3/2

)
, z ↑ ∞,

Ai′(z) = −(π−1/2z1/4/2)exp
(
−(2/3)z3/2

)
, z ↑ ∞.

Bi(z) = (π−1/2z−1/4)exp
(

(2/3)z3/2
)
, z ↑ ∞,

Bi′(z) = −(π−1/2z1/4)exp
(

(2/3)z3/2
)
, z ↑ ∞.

Lemma A.2. The function Γ(Ai, χ̄) defined in (5.3) has no positive roots.
For any N ∈ N, there is a ε0 > 0 such that, for all 0 < ε < ε0, Γ(Ai, χ̄) has
roots A′N,σ < . . . < A′1,σ < 0 satisfying

|A′n,σ − (An + β−1√γ)| < caγ for some ca < 0.

Here, An<0 is the n-th root of Ai, see Fig. 5.1 and β, γ are given in (7.1). For
β > 1 (equivalently, for 0 < σ < a2/4,) the function Γ(Bi, γ−1(ψ)) defined in
(5.3) has a root B0,σ > 0 satisfying

|B0,σ − (β2 − 1 + 2β−1γ3/2)| < cbγ
3, for some cb > 0.
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Proof. The fact that there exist no positive roots of Γ(Ai, χ̄) is immediate by
the fact that Ai(χ̄) > 0 and Ai′(χ̄) < 0 for all χ̄ > 0.

Next, the existence of N discrete solutions may be proved in the following way.
Let |AN | < X < |AN+1| be fixed and I1, . . . , IN be disjoint intervals around
A1, . . . , AN , respectively. It is easy to prove that the function Γ(Ai, χ̄) is O(

√
γ)

close to Ai over [−X, 0] in the norm introduced in (7.10). Thus, for all 0 < γ < γ0

(with γ0 small enough), Γ(Ai, χ̄) has N distinct roots A′1,σ ∈ I1, . . . , A′N,σ ∈ IN
in [−X, 0]. The fact that these are ordered as A′N,σ < . . . < A′1,σ follows
from AN,σ < . . . < A1,σ and the fact that the intervals I1, . . . , IN were cho-
sen to be disjoint. The bounds on A′1,σ, . . . , A

′
N,σ may be derived by writing

A′n,σ =
∑
`≥0 ε

`/6a
(`)
n,σ and substituting into the equation Γ(Ai, χ̄) = 0.

The existence of B0,σ > 0 and the bound on it may be established using the
Airy functions and their derivatives.



Appendix B

Proof of Lemma 4.2

Proof. Using definition (7.8), we calculate

Aχ̄)− Γ(Ai, χ̄) = −Γ(Ai, γ−1 + χ̄)

Γ(Bi, γ−1 + χ̄)
Γ(Bi, χ̄).

To estimate the fraction in the right member, we apply standard theory for Airy
functions, see [1]. Using the Airy functions and their derivatives from Appendix
A, we find that

sup
[X,0]

∣∣∣∣exp

(
4

3γ3/2
+

2χ̄

γ1/2

)
Γ(Ai, γ−1 + χ̄)

Γ(Bi, γ−1 + χ̄)
− 1

2

β + 1

β − 1

∣∣∣∣ < c1
√
γ,

for some c1 > 0 and γ small enough. Therefore,

sup
[X,0]

∣∣∣∣Γ(Ai, γ−1 + χ̄)

Γ(Bi, γ−1 + χ̄)

∣∣∣∣ < c2 exp

(
−4 + 6Xγ

3γ3/2

)
,

for some c2 > 0. Next, sup |Γ(Bi, χ̄)| ≤ c3, for some c3 > 0, since Bi and Bi′ are
uniformly bounded over [X, 0]. Combining these estimates, we find

sup
[X,0]

|A(χ̄)− Γ(Ai, χ̄)| < c4 exp

(
−4 + 6Xγ

3γ3/2

)
,

for some c4 > 0 and for all γ small enough.

Next we differentiate (B.1) and we calculate
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A′(χ̄)− Γ(Ai′i, χ̄) =

(
Γ(Ai, γ−1 + χ̄)Γ(Bi′, γ−1 + χ̄)

[Γ(Bi, γ−1 + χ̄)]2
− Γ(Ai′, γ−1 + χ̄)

Γ(Bi, γ−1 + χ̄)

)
Γ(Bi, χ̄)

−Γ(Ai, γ−1 + χ̄)

Γ(Bi, γ−1 + χ̄)
Γ(Bi′, χ̄).

Using Appedix A, we may bound the term in parentheses by

c′1√
γ

exp

(
−4 + 6Xγ

3

(
1

γ

)3/2
)
,

for some c′1 > 0. Next, Γ(Bi, χ̄) was uniformly bounded by a constant c3 above.
Also, the term Γ(Bi′, χ̄) may be bounded by a constant c′3, since

Γ(Bi′, χ̄) = Bi′(χ̄)− β√γBi′′(χ̄) = Bi′(χ̄)− β√γχ̄Bi(χ̄),

and the term multiplying it was bound (B.2). These inequalities yield, then,

‖A′(χ̄)−A′i(χ̄)‖[X,0] < c′2γ
−1/2exp

(
−4 + 6Xγ

3γ3/2

)
,

for some c′2 > 0 and for all γ small enough. Equation (7.11) follows now from
(B.3) and (B.4).



Appendix C

Proof of Lemma 4.3

Proof. Definition (7.9) yields

B(γ−1ψ̄)− Γ(Bi, γ−1(1 + ψ)) = −Γ(Bi, γ−1ψ̄)

Γ(Ai, γ−1ψ̄)
Γ(Ai, γ−1(1 + ψ̄)).

To estimate the right member, we work as in Appendix B. Using Appendix A,
the Airy functions and their derivatives, we obtain

sup
[ΨR,ΨL]

∣∣∣∣E(γ−1(1 + ψ̄))
Γ(Bi, γ−1ψ̄)

Γ(Ai, γ−1ψ̄)
Γ(Ai, γ−1(1 + ψ))

∣∣∣∣ < c1γ
1/4

[
E(γ−1(1 + ΨL))

E(γ−1ΨL)

]2

,

for some c1 > 0 and γ small enough.

Next, differentiating (C.1), we calculate

B′(γ−1ψ̄)− Γ′(Bi, γ−1(1 + ψ̄)) = −Γ(Bi, γ−1ψ̄)

Γ(Ai, γ−1ψ̄)
Γ(Ai′, γ−1(1 + ψ̄))

+

(
Γ(Bi, γ−1ψ̄)Γ(Ai′, γ−1ψ̄)[

Γ(Ai, γ−1ψ̄)
]2 − Γ(Bi′, γ−1ψ̄)

Γ(Ai, γ−1ψ̄)

)
Γ(Ai, γ−1(1 + ψ̄)).

Using Appendix A to estimate the right member, we find

sup
[ΨR,ΨL]

∣∣E(γ−1(1 + ψ̄))
[
B′(γ−1ψ̄)− Γ′(B〉, γ−1(1 + ψ̄))

]∣∣ < c′1γ
−1/4

[
E(γ−1(1 + ΨL))

E(γ−1ΨL)

]2

,
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for some c′1 > 0 and γ small enough.

The desired result follows from (C.2) and (C.3).
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