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1. Introduction

In number theory, arithmetic geometry and algebraic geometry, the theory
of L-functions, which is closely connected to automorphic forms, has become
a major point. The Hasse-Weil zeta function of varieties over number fields
are conjecturally products of automorphic L-functions. Through the efforts of
many people, from Eichler, Shimura, Kuga, Sato and Ihara, who studied GL2,
to Langlands, Rapoport, and Kottwitz, the final conjectural description of the
zeta function in terms of automorphic L-functions has been verified, in certain
cases. This master thesis, following very closely P. Scholze’s preprint ([30]), gives
a quick review of determining the Hasse-Weil zeta function in a special case
of some moduli schemes of elliptic curves with level-structure, via the method of
Langlands (cf.[24]) and Kottwitz (cf. [22]). We leave out some proofs, and include
some background materials that are needed. Though the result is weaker than
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that proved by Carayol, [7], it does not involve too much advanced methods. In
[7], Carayol determines the restriction of certain representation of Gal(Qp/Qp),
and shows that the L-function agree up to shift, which implies the result in this
thesis.

Recall from [10] that for a projective smooth variety X of dimension d over Q,
we can choose m > 0 such that X extends to a smooth scheme over Z[ 1

m
]. If p

is prime to m, then we may consider the good reduction Xp modulo p. In this
case, for a projective smooth variety Xp, the local factor of the Hasse-Weil zeta
function is given by

log ζ(Xp, s) =
∞∑
r=1

|Xp(Fpr)|
p−rs

r
.

It converges when Re(s) > d+ 1.
The Hasse-Weil zeta-function is then defined as a product over all finite places

of Q

ζ(X, s) =
∏
p

ζ(Xp, s).

In general, Langlands’s method is to start with a cohomological definition of
the local factor, via the semi-simple trace of the Frobenius, and nearby cycles
plays an important part in determining those factors. Then we express its loga-
rithm as a certain sum of orbital integrals, which involves both counting points
and the stabilization of the geometric side of the Arthur-Selberg trace formula.
Finally we apply the Arthur-Selberg trace formula and express the sum as a trace
of a function on automorphic representations appearing in the discrete part of
L2(G(Q)\G(A)) (in our case G = GL2). By comparison, the equalities of trace
imply a relation of Hasse-Weil zeta function and the automorphic L-functions.
The main result is as follows:

Theorem. Let m be the product of two coprime integers, both at least 3, the
Hasse-Weil zeta-function ofMm is given by

ζ(Mm, s) =
∏

π∈Πdisc(GL2(A),1)

L(π, s− 1

2
)
1
2
m(π)χ(π∞) dimπKm

f ,

where Km = {g ∈ GL2(Ẑ)|g ≡ 1 mod m}, and
∏

disc(GL2(A), 1) is the set of
automorphic representations π = πf ⊗ π∞ of GL2(A) that occur discretely in
L2(GL2(Q)R×\GL2(A)) such that π∞ has trivial central and infinitesimal charac-
ter. Here m(π) is the multiplicity of π inside L2(GL2(Q)R×\GL2(A)), χ(π∞) = 2
if π∞ is a character and χ(π∞) = −2 otherwise.

We gradually recall those concepts and skills in representations theory, global
and local harmonic analysis, and so on, mainly on GL2, and build up those results
in our case, to deduce the final result. All materials have their classic origin from
many famous lectures.
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2. Preliminaries

We give a summarizing description of moduli space with level structure in this
section. It is the foundation of what this master thesis mainly concerns about.
[11] and [19] are good references.

2.1. Elliptic curves.
In this subsection, we recall some basic facts on elliptic curves without proof.

Definition 2.1.1. An elliptic curve is a pair (E,O), where E is a curve of genus
1 and O ∈ E. For a field K, the elliptic curve E is defined over K, written E/K,
if E is defined over K as a curve and O ∈ E(K).

Proposition 2.1.2. There exists a unique operation ⊕ on E such that E is an
Abelian group.

Proof. cf. [32], chapter III, proposition 2.2. �
Theorem 2.1.3. Let E be an elliptic curve over a field k and let N be a positive
integer, denote by E[N ] the N -torsion subgroup E[N ] = ker([N ]). Then E[N ] ∼=∏
E[pep ] where N =

∏
pep. Also, E[pe] ∼= (Z/peZ)2 if p ̸= char(k). Thus

E[N ] ∼= (Z/NZ)2 if char(k) - N . On the other hand, if p = char(k), then
E[pe] ∼= Z/peZ for all e > 1 or E[pe] = {0} for all e > 1. In particular, if
char(k) = p then either E[p] ∼= Z/pZ, in which case E is called ordinary, or
E[p] = {0} and E is supersingular.

For details, see [12], theorem 8.1.2.

2.2. Moduli space with level structure in good reduction.
Together with next subsection, we recall some aspects of the moduli space of

elliptic curves with level structure (cf. [11], IV.2.) that we mainly concerns about.

Definition 2.2.1. A morphism p : E −→ S of schemes with a section e : S −→ E
is said to be an elliptic curve over S if p is proper, smooth, and all geometric fibers
are elliptic curves (with zero section given by e).

We simply say that E/S is an elliptic curve. As is well-known, an elliptic curve
is canonically a commutative group scheme over S, with e as unit section.

Definition 2.2.2. A level-m-structure on an elliptic curve E/S is an isomorphism
α of group schemes over S, from (Z/mZ)2S to E[m], where E[m] is the preimage
of (the closed subscheme) e under multiplication by m : E −→ E.

As mentioned above, for an algebraically closed field k of characteristic prime
to m, and S = Spec k, we have (noncanonically) E[m] ∼= (Z/mZ)2. But if
char(k)|m, then there is no level-m-structure and it follows that if (E/S, α) is an
elliptic curve with level-m-structure, then m is invertible on S.

Consider the functor Mm : (Schemes/Z[m−1]) −→ (Sets) by

S 7→
{

(E/S, α) elliptic curve E over S with
level-m-structure α, up to isomorphism

}
.

We give a theorem from [19] without proof.
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Theorem 2.2.3. For m > 3, the functor Mm is representable by a smooth affine
curve Mm (we write M for short later) over SpecZ[ 1

m
]. There is a projective

smooth curve M containing M as an open dense subset such that the boundary
∂M =M\M is étale over SpecZ[ 1

m
].

Proof. cf. [19]. �
2.3. Moduli space with level structure in bad reduction.

Next we extend the moduli spacesMm, defined over SpecZ[ 1
m
], to the primes

where they have bad reduction. To go quickly towards the zeta function, we omit
the proofs of the following theorems. For more details, see [19].

For any integer n > 0, and p a prime, with m > 3 prime to p, we want to
extend the Z[ 1

pm
] schemeMpnm to a scheme over SpecZ[ 1

m
].

Definition 2.3.1. A Drinfeld-level-pn-structure on an elliptic curve E/S is a pair
of sections P,Q : S −→ E[pn] such that there is an equality of Cartier divisors∑

i,j∈Z/pnZ

[iP + jQ] = E[pn].

ADrinfeld-level-pn-structure coincides with an ordinary level-pn-structure when
p is invertible on S, since in this case the group scheme E[pn] is étale over S. Hence
we have an extension of the functor Mpnm to schemes over SpecZ[ 1

m
] defined as

follows:
MΓ(pn),m : (Schemes/Z[m−1]) −→ (Sets)

S 7→
{

(E/S, (P,Q), α) elliptic curve E over S with Drinfeld-level-pn-
structure (P,Q) and level-m-structure α, up to isomorphism

}
.

Like theorem 2.2.3, we have

Theorem 2.3.2. The functor MΓ(pn),m is representable by a regular scheme
MΓ(pn),m which is an affine curve over SpecZ[ 1

m
]. The canonical map πn :

MΓ(pn),m −→ Mm is finite. Over SpecZ[ 1
pm

], it is an étale cover with Galois

group GL2(Z/pnZ).

So we have a finite Galois cover πnη : MΓ(pn),m[
1
p
] ∼= Mpnm −→ Mm[

1
p
] with

Galois group GL2(Z/pnZ).
We writeMΓ(pn) forMΓ(pn),m for short.
Also, there is a compactification.

Theorem 2.3.3. There is a smooth proper curveMΓ(pn)/Z[m−1][ζpn ] withMΓ(pn)

as an open subset such that the complement is étale over SpecZ[m−1][ζpn ] and has
a smooth neighborhood, here ζpn is a primitive pn-th root of unity.

Now, we need one more result. For any direct summand H ⊂ (Z/pnZ)2 of order
pn, write MH

Γ(pn) for the reduced subscheme of the closed subscheme of MΓ(pn)

where ∑
(i,j)∈H⊂(Z/pnZ)2

[iP + jQ] = pn[e].
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Theorem 2.3.4. For any H as above, MH
Γ(pn) is a regular divisor on MΓ(pn)

which is supported in MΓ(pn) ⊗Z Fp. Any two of them intersect exactly at the
supersingular points ofMΓ(pn) ⊗Z Fp. Also, we have

MΓ(pn) ⊗Z Fp =
∪
H

MH
Γ(pn).

3. Basics of representations

Theory of representations is a widely used basic tool. In this thesis, we will
mainly use the representations of GL2(F ) where F is a non-Archimedean local
field. As GL2(F ) is both locally profinite and reductive, we recall here the basic
knowledge of the representations of such groups.

3.1. Representations of GL2.
All details here are almost contained in [6], or alternatively, one can see [7].

Not to go far away, we merely sketch some concepts and propositions without
proof. In the following of this subsection, G = GL2(F ) unless indicated to be
others, but many results still hold for other locally profinite groups.

Proposition 3.1.1. Assume that G is locally profinite. Let ψ : G −→ C× be a
group homomorphism into C×, the following are equivalent:

(i) ψ is continuous;
(ii) the kernel of ψ is open.

If ψ satisfies these conditions and G is the union of its compact open subgroups,
then the image of ψ is contained in the unit circle |z| = 1 in C.

Definition 3.1.2. A character of a locally profinite group G is a continuous
homomorphism, and we call it unitary if its image is contained in the unit circle.

Definition 3.1.3. Assume thatG is locally profinite with a representation (π, V ),
then V is a complex vector space and π is a group homomorphismG −→ AutC(V ).
The representation (π, V ) is called smooth if for every v ∈ V , there is a compact
open subgroup K of G (depending on v) such that π(x)v = v for all x ∈ K. This
is equivalent to say that, if V K denotes the space of π(K)-fixed vectors in V , then
V =

∪
K

V K , where K ranges over the compact open subgroups of G.

Definition 3.1.4. A smooth representation (π, V ) is called admissible if the
space V K is finite dimensional, for each compact open subgroup K of G. (π, V )
is irreducible if V has no nontrivial G-stable subspace.

Proposition 3.1.5. For a representation (π, V ) of a locally profinite group G,
the following are equivalent:

(i) V is the sum of its irreducible G-subspaces;
(ii) V is the direct sum of a family of irreducible G-spaces;
(iii) any G-subspace of V has a G-stable complement in V .

Definition 3.1.6. The representation (π, V ) is called G-semisimple if it satisfies
the equivalent conditions above.
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Now we introduce the notion of induced representation.
Let G be locally profinite, with H a closed subgroups, then H is also locally

profinite. Assume that (σ,W ) is a smooth representation of H. Consider the
space X of functions f : G −→ W satisfying

(i) f(hg) = σ(h)f(g), for all h ∈ H, g ∈ G;
(ii) there is a compact open subgroup K of G (depending on f) such that

f(gx) = f(g) for g ∈ G, x ∈ K.

Definition 3.1.7. Let Σ : G −→ AutC(X), Σ(g)f : x 7→ f(xg), g, x ∈ G. Then
(Σ, X) provides a smooth representation of G, the representation of G smoothly
induced by σ, and is denoted by (Σ, X) = IndG

Hσ.

Proposition 3.1.8. The map σ 7→ IndGHσ gives a functor Rep(H) −→ Rep(G)
that is additive and exact.

There is a canonical H-homomorphism ασ : IndG
Hσ −→ W sending f to f(1).

Theorem 3.1.9 (Frobenius Reciprocity). With notions above, for a smooth rep-
resentation (σ,W ) of H and a smooth representation (π, V ) of G, the canonical
map

homG(π, Ind
G
Hσ) −→ homH(π|H , σ),
ϕ −→ ασ ◦ ϕ,

is an isomorphism. So the induction is right adjoint to restriction.

Now we introduce Schur’s lemma.

Lemma 3.1.10. If (π, V ) is an irreducible smooth representation of G, then
EndG(V ) = C.

Corollary 3.1.11. Let (π, V ) be an irreducible smooth representation of G, the
center Z of G acts on V via a character ωπ : Z −→ C× satisfying π(z)v = ωπ(z)v,
for all v ∈ V, z ∈ Z .

In the following part of this subsection, let F be a non-archimedean local field,
A =M2(F ) and G = GL2(F ), then A is (as additive group) a product of 4 copies
of F and a Haar measure is obtained by taking a (tensor) product of 4 copies of
a Haar measure on F . Let µ be a Haar measure on A.

We introduce several important closed subgroups of G. Let

B = {( a b
0 c ) ∈ G},

N = {( 1 b
0 1 ) ∈ G},

T = {( a 0
0 b ) ∈ G}.

B is called the standard Borel subgroup of G, and N is the unipotent radical of
B. T is the standard split maximal torus in G, satisfying B = T ⋉N .

Proposition 3.1.12 (Iwasawa decomposition). Let K = GL2(OF ), the unique
(up to conjugate) maximal compact subgroup of G, then G = BK, and hence
B\G is compact.
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Definition 3.1.13. Let (π, V ) be a smooth representation of G, let V (N) denotes
the subspace of V spanned by the vectors v− π(x)v for v ∈ V, x ∈ N . The space
VN = V/V (N) inherits a representation πN of B/N = T , which is also smooth.
The representation (πN , VN) is called the Jacquet module of (π, V ) at N . An
irreducible smooth representation (π, V ) of G is called cuspidal if VN is zero.

Proposition 3.1.14. Every irreducible smooth representation of G is admissible.
Every cuspidal representation of G is admissible.

Definition 3.1.15. Let (π, V ) be an irreducible cuspidal representation of G.
We say that π is unramified if there exists an unramified character ϕ ̸= 1 of F×

(i.e. ϕ is trivial on UF ) such that ϕπ ∼= π. Or equivalently, it has a vector which
is invariant under the maximal compact subgroup GL2(OF ).

Definition 3.1.16. Let 1T be the trivial character of T , the trivial character 1G
occurs in IndG

B1T , since Ind
G
Bχ has length 2 (cf. [6]), we have IndG

B1T = 1G⊕ StG
for a unique irreducible representation StG, the Steinberg representation:

0 −→ 1G −→ IndG
B1T −→ StG −→ 0.

Proposition 3.1.17. The Steinberg representation of G is square-integrable.

At the end, we introduce the normalized induced representation. We recall the
measure first.

Let C∞
c (G) be the space of functions f : G −→ C which are locally constant

and of compact support. Then G acts on C∞
c (G) by left translation λ and right

translation ρ:

λgf : x 7→ f(g−1x),

ρgf : x 7→ f(xg).

Both of the G-representations (C∞
c (G), λ), (C∞

c (G), ρ) are smooth.

Definition 3.1.18. A right Haar integral on G is a non-zero linear functional

I : C∞
c (G) −→ C

such that

(i) I(ρgf) = I(f), g ∈ G, f ∈ C∞
c (G);

(ii) I(f) > 0 for f ∈ C∞
c (G), f > 0.

A left Haar integral is defined similarly.

Proposition 3.1.19. There exists a right (resp. left) Haar integral I : C∞
c (G) −→

C. And a linear functional I ′ : C∞
c (G) −→ C is a right (resp. left) Haar integral

if and only if I ′ = cI for some constant c > 0.

Proposition 3.1.20. Let µ be a Haar measure on A. For Φ ∈ C∞
c (G), the

function x 7→ Φ(x)∥ detx∥−2 (vanishing on A\G) lies in C∞
c (A). The functional

Φ 7→
∫
A

Φ(x)∥ detx∥−2dµ(x),Φ ∈ C∞
c (G),

is a left and right Haar integral on G. In particular, G is unimodular, i.e. any
left Haar integral on G is a right Haar integral.
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Now let I be a left Haar integral on G, and S ̸= ∅ be a compact open subset
of G with ΓS be its characteristic function. Define µG(S) = I(ΓS). Then µG is
a left Haar measure on G. The relation with the integral is expressed via the
traditional notation

I(f) =

∫
G

f(g)dµG(g), f ∈ C∞
c (G).

For a left Haar measure µG on G and g ∈ G, consider the functional C∞
c (G) −→

C sending f to
∫
G
f(xg)dµG(x). This is a left Haar integral on G, hence there is

a unique δG(g) ∈ R×
+ such that

δG(g)

∫
G

f(xg)dµG(x) =

∫
G

f(x)dµG(x),

for all f ∈ C∞
c (G). δG is a homomorphism G −→ R×

+, it is called the module of
G.

If σ is a smooth representation of T , define ιGBσ = IndG
B(δ

− 1
2

B ⊗σ). This provides
another exact functor Rep(T ) −→ Rep(G), the normalized smooth induction.
Here Rep(G) is the abelian category of smooth representations of G.

3.2. Weil group.
Now we give a quick glance of Weil group, all materials are contained in [6].
Let F be a non-Archimedean local field. Denote by o the discrete valuation

ring in F , and p the maximal ideal of o. Choose a separable algebraic closure F
of F .

First we recall some features of the Galois theory of F . Let p be the character-
istic of the residue class field k = o/p. Put ΩF := Gal(F/F ), then it is a profinite
group: ΩF = lim←−Gal(E/F ), where E ranges over finite Galois extensions with

E ⊂ F .
The field F admits a unique unramified extension Fm/F of degree m such that

Fm ⊂ F . Denote by F∞ the composite of all these fields, then F∞/F is the
unique maximal unramified extension of F contained in F . Gal(Fm/F ) is cyclic
and an F -automorphism of Fm is determined by its action on the residue field
kFm
∼= Fqm . Hence there is one unique element ϕm ∈ Gal(Fm/F ) which acts on

kFm as x 7→ xq. Put Φm = ϕm
−1. Then Φm 7→ 1 gives a canonical isomorphism

Gal(Fm/F ) ∼= Z/mZ. So we have Gal(F∞/F ) ∼= lim←−m>1
Z/mZ, and a unique

element ΦF ∈ Gal(F∞/F ) which acts on Fm as Φm.

Definition 3.2.1. An element of ΩF is called a geometric Frobenius element (over
F ) if its image in Gal(F∞/F ) is ΦF , while ΦF is called the geometric Frobenius
substitution on F∞.

Put IF = Gal(F/F∞), the inertia group of F . As Ẑ ∼=
∏
ℓ

Zℓ, we have an exact

sequence

1 −→ IF −→ ΩF −→ Ẑ −→ 0.
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LetWa
F denote the inverse image in ΩF of the cyclic subgroup ⟨ΦF ⟩ of Gal(F∞/F )

generated by ΦF . ThusWa
F is the dense subgroup of ΩF generated by the Frobe-

nius elements. It is normal in ΩF and we have

1 −→ IF −→Wa
F −→ Z −→ 0.

Definition 3.2.2. The Weil group WF of F is the topological group, with un-
derlying abstract group Wa

F , satisfying

(i) IF is an open subgroup of WF ,
(ii) the topology on IF , as subspace of WF , coincides with its profinite topol-

ogy as Gal(F/F∞) ⊂ ΩF .

Then WF is locally profinite, and the identity map ιF : WF −→ Wa
F ⊂ ΩF is

a continuous injection.

Proposition 3.2.3. Let (ρ, V ) be an irreducible smooth representation of WF ,
then ρ has finite dimension.

Proposition 3.2.4. Let τ be an irreducible smooth representation of WF , then
the following are equivalent:

(i) the group τ(WF ) is finite;
(ii) τ ∼= ρ ◦ ιF , for some irreducible smooth representation ρ of ΩF ;
(iii) the character det τ has finite order.

For any irreducible smooth representation τ of WF , there is an unramified char-
acter χ of WF such that χ⊗ τ satisfies the conditions above.

Proposition 3.2.5. Let (π, V ) be a smooth representation of WF of finite di-
mension, let Φ ∈ WF be a Frobenius element. The following are equivalent:

(i) the representation ρ is semisimple;
(ii) the automorphism ρ(Φ) ∈ AutC(V ) is semisimple;
(iii) the automorphism ρ(Ψ) ∈ AutC(V ) is semisimple, for every element Ψ ∈
WF .

Here we mention the local Langlands conjecture in the case n = 2. It asserts
that the cuspidal representations of GL2(F ), where F is a non-Archimedean local
field, are in bijection with the irreducible 2-dimensional ℓ-adic representations of
WF .

3.3. The Bernstein center.
We now recall some properties of the Bernstein Center built in [8]. It is also

summarized in [30].
Let F be a local field, and G = GLn(F ), then G is unimodular (consider

dg = | det(g)|−ndag where dag denotes the additive Haar measure on Mn(F )).
With respect to the convolution ∗, H(G) = (C∞

c (G), ∗) is an associative algebra
of locally constant functions with compact support on G, called the Hecke algebra
of G (cf. [6]).

Now for a compact open subgroup K of G, and one chosen Haar measure µ,
let eK ∈ H(G) be the idempotent associated to K defined by

eK(x) =

{
µ(K)−1 if x ∈ K,

0 if x /∈ K.
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The space H(G,K) := eK ∗ H(G) ∗ eK is a sub-algebra of H(G), with unit

element eK . Denote its center by Z(G,K) and put Z(G) = lim←−Z(G,K), Ĥ(G) =
lim←−H(G,K), which is identified with the space of distributions T of G such that
T ∗eK is of compact support for all compact open subgroups (cf. [8]). Then Z(G)
is the center of Ĥ(G) and consists of the conjugation-invariant distributions in

Ĥ(G),

Let Ĝ be the set of irreducible smooth representations of G over C module

isomorphism. Then by Schur’s lemma, we have a map ϕ : Z(G) −→ Map(Ĝ,C×).

Let P be a standard parabolic subgroup and L =
k∏

i=1

GLni
the corresponding

Levi subgroup (cf. [26] or [17] more generally). Concretely, for such a G =
GLn(F ) = GL(V ), where V is an n dimensional F vector space, a flag in V is
a strictly increasing sequence of subspaces W• = {W0 ⊂ W1 ⊂ · · · ⊂ Wk = V },
and a parabolic subgroup P of G is precisely the subgroup of GL(V ) which

stabilizes the flag W•, and the Levi subgroup of P is L =
k−1∏
i=0

GL(Wi+1/Wi). Let

σ be a supercuspidal representation of L, i.e. every matrix coefficient of σ is
compactly supported modulo the center of G (cf. [29]). Now denote by Gm the
multiplicative group scheme (cf. [18]), and D = (Gm)

k. Then we have a universal
unramified character χ: L −→ Γ(D,OD) ∼= C[T±1

1 , . . . , T±1
k ] sending (gi)i=1,...,k to

k∏
i=1

T
υp(det(gi))
i . Now we get a corresponding family of representations n-IndG

P (σχ)

(the normalized induction) of G parameterized by the scheme D.
Assume W (L,D) is the subgroup of NG(L)/L consisting of those n such that

the set of representations D coincides with its conjugate via n.

Theorem 3.3.1. Fix a cuspidal representation σ of a Levi subgroup L as above.
Suppose z ∈ Z(G), then z acts by a scalar on n-IndGP (σχ0) for any character
χ0. The corresponding function on D is a W (L,D)-invariant regular function.
This induces an isomorphism of Z(G) with the algebra of regular functions on∪
(L,D)

D/W (L,D).

Proof. cf. [8], Theorem 2.13. �

4. Harmonic analysis

Along with the representation theory, harmonic analysis is another powerful
tool in number theory and arithmetic geometry. We need the following knowledge
in this thesis. R. E. Kottwitz’s lecture in [2] is the resource of the section.

4.1. Basics of integration.
For the use of orbital integrals, we recall the basics of integration here.
As mentioned before, G = GL2(F ) is locally profinite, it admits a left invariant

Haar measure dg, and dg is unique up to a positive scalar. Hence we obtains the
modulus character δG characterized by the property d(gh−1) = δG(h)dg. As G is
unimodular, we deduce that d(g−1) = dg.
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For G, integration is simple. Fix some compact open subgroupK0, then there is
a unique Haar measure dg giving K0 measure 1. For any compact open subgroup
K of G the measure of K is [K : K ∩ K0][K0 : K ∩ K0]

−1. Moreover for any
compact open subset S of G, there is a compact open subgroup K that is small
enough to assure that, S is a disjoint union of cosets gK, Hence the measure of
S is the number of such cosets times the measure of K.

For a unimodular closed subgroup H of G, there exists a Haar measure dh.
Then there is a quotient measure dg/dh on H\G characterized by the formula∫

G

f(g)dg =

∫
H\G

∫
H

f(hg)dhdg/dh,

for all f ∈ C∞
c (G).

Any function in C∞
c (H\G) lies in the image of the linear map C∞

c (G) −→
C∞

c (H\G), via f 7→ f# defined by f#(g) =
∫
H
f(hg)dh, hence the integration in

stages formula characterizes the invariant integral on H\G. Indeed, any compact
open subset ofH\G can be written as a disjoint union of ones of the formH\HgK
(for some compact open subgroup K of G), and the measure of H\HgK is given
by measdg(K)/measdh(H ∩ gKg−1), as one sees by applying integration in stages
to the characteristic function of gK.

Let F be a p-adic field and G be a connected reductive group over F .

Definition 4.1.1. Let γ ∈ G(F ), the orbital integral Oγ(f) of a function f ∈
C∞

c (G(F )) is by definition the integral

Oγ(f) :=

∫
Gγ(F )\G(F )

f(g−1γg)dġ

where dġ is a right G(F )-invariant measure on the homogeneous space over which
we are integrating.

Remark 4.1.2. Oγ depends on a choice of measure, but once the choice is made
we get a well-defined linear functional on C∞

c (G(F )).

Proposition 4.1.3. The group Gγ(F ) is unimodular, hence the measure dġ ex-
ists.

Proposition 4.1.4. The orbital integral Oγ(f) converges.

For proofs of these two lemmas, see [2], p. 407-408.

4.2. Character of representations.
First we recall that for a smooth irreducible representation π of G = GL2(F )

with F a non-Archimedean local field and f ∈ C∞
c (G), there is an operator π(f)

on the underlying vector space V of π, defined by

π(f)(v) :=

∫
G

f(g)π(g)(v)dg, v ∈ V,

with dg a fixed Haar measure on G.
By proposition 3.1.14, π is admissible, hence π(f) has finite rank and has a

trace. The character Θπ of π is the distribution on G defined by

Θπ(f) = trπ(f)
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on C∞
c (G). By a deep theorem of Harish-Chandra, the distribution Θπ can be

represented by integration against a locally constant function, still denoted Θπ,
on the set Grs of regular semisimple elements (the characteristic polynomial has
distinct roots) in G. For all f ∈ C∞

c (G), there is an equality

Θπ(f) =

∫
G

f(g)Θπ(g)dg.

The function Θπ is independent of the choice of Haar measure, and we get formally
Θπ(g) = trπ(g), though the right hand side does not make sense literally when π
is infinite dimensional.

4.3. Selberg trace formula.
We give a rough description of Selberg trace formula. Materials are contained

in [2], and [14] is also a good reference.
Let G be a locally compact, unimodular topological group, and Γ be a discrete

subgroup of G. The space Γ\G of right cosets has a right G-invariant Borel
measure. Let R be the unitary representation of G by right translation on the
corresponding Hilbert space L2(Γ\G): (R(y)ϕ)(x) = ϕ(xy), ϕ ∈ L2(Γ\G), x, y ∈
G. We study R by integrating it against a test function f ∈ Cc(G): define
R(f)ϕ(x) =

∫
G
f(y)ϕ(xy)dy, then the computation shows that

R(f)ϕ(x) =

∫
G

f(y)ϕ(xy)dy =

∫
G

f(x−1y)ϕ(y)dy =

∫
Γ\G

(
∑
γ∈Γ

f(x−1γy))ϕ(y)dy,

for ϕ ∈ L2(Γ\G), x ∈ G.
Then R(f) is an integral operator with kernel K(x, y) =

∑
γ∈Γ

f(x−1γy). The

sum here is finite since it may be taken over the intersection of the discrete group
Γ with the compact subset xsupp(f)y−1 of G.

In the special case when Γ\G is compact, the operator R(f) has two properties.
On the one hand, R decomposes discretely into irreducible representations π,
with finite multiplicities mπ. Since the kernel K(x, y) is a continuous function
on the compact space (Γ\G) × (Γ\G), hence square integrable, and R(f) is of
Hilbert-Schmidt class. Applying the spectral theorem to the compact self adjoint
operators attached to functions of the form f(x) = (g∗g∗)(x) =

∫
G
g(y)g(x−1y)dy

where g ∈ Cc(H), we obtain a spectral expansion in terms of irreducible unitary
representations π of G. On the other hand, if H is a Lie group, one can require
that f be smooth and compactly supported. Thus R(f) is an integral operator
with smooth kernel on the compact manifold Γ\G, and it is of trace class with
trR(f) =

∫
Γ\GK(x, x)dx. Now for a representatives ∆ of conjugacy classes in Γ,
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using a subscript γ to indicate the centralizer of γ, we have

tr(R(f)) =

∫
Γ\G

K(x, x)dx

=

∫
Γ\G

∑
γ∈Γ

f(x−1γx)dx

=

∫
Γ\G

∑
γ∈∆

∑
δ∈Γγ\Γ

f(x−1δ−1γδx)dx

=
∑
γ∈∆

∫
Γγ\G

f(x−1γx)dx

=
∑
γ∈∆

∫
Gγ\G

∫
Γγ\Gγ

f(x−1u−1γux)dudx

=
∑
γ∈∆

vol(Γγ\Gγ)

∫
Gγ\G

f(x−1γx)dx.

This is regarded as a geometric expansion of tr(R(f)) in terms of conjugacy classes
γ ∈ Γ. Thus we have an equality, the Selberg trace formula:∑

γ

υγOγ(f) =
∑
π

mπtr(π(f)),

where υγ = vol(Γγ\Gγ), tr(π(f)) = tr(
∫
G
f(y)π(y)dy).

We will make advantage of a special case of the Arthur-Selberg trace formula in
GL2 for the trace of Hecke operators on the L2-cohomology of locally symmetric
spaces later.

5. Advanced tools

In this part, we afford several powerful tools that will be needed later.

5.1. Crystalline cohomology.
We say a few words on crystalline cohomology in this subsection.
First we recall the Witt Vectors.
Let p be a prime number, (X0, . . . , Xn, . . . ) be a sequence of indeterminates.
The Witt polynomials are defined by

W0 = X0,

W1 = Xp
0 + pX1,

...

Wn = Xpn

0 + pXpn−1

1 + · · ·+ pnXn.
...

Let (Y0, . . . , Yn, . . . ) be another sequence of indeterminates.
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Lemma 5.1.1. For Ψ ∈ Z[X,Y ], there exists a unique sequence (ψ0, . . . , ψn, . . . )
of elements of Z[X0, . . . , Xn, . . . ;Y0, . . . , Yn, . . . ] such that

Wn(ψ0, . . . , ψn, . . . ) = Ψ(Wn(X0, . . . ),Wn(Y0, . . . ))

for n = 0, 1, 2, . . . .

Proof. cf. [31], II.6 Theorem 6. �
Denote by S0, . . . , Sn, . . . (resp. P0, . . . , Pn, . . . ) the polynomials ψ0, . . . , ψn, . . .

associated by the lemma with the polynomial Ψ(X, Y ) = X+Y (resp. Ψ(X,Y ) =
XY ). For a commutative ring A, and a = (a0, . . . , an, . . . ), b = (b0, . . . , bn, . . . )
elements of AN, define

a+ b = (S0(a, b), . . . , Sn(a, b), . . . )

ab = (P0(a, b), . . . , Pn(a, b), . . . ).

Theorem 5.1.2. The laws of composition defined above make AN into a com-
mutative unitary ring, the ring of Witt vectors with coefficients in A and denoted
W (A), elements of W (A) are called Witt vectors with coefficients in A.

Proof. cf. [31], II.6 Theorem 7. �
Now let kr = Fpr be a finite field with ring of Witt vectorsW (kr). The fraction

field Lr of W (kr) is an unramified extension of Qp and its Galois group is the
cyclic group of order r generated by the Frobenius element σ : x 7→ xp. Note that
σ acts on Witt vectors by σ(a0, a1, . . . ) = (ap0, a

p
1, . . . ).

For an abelian variety A over kr of dimension g, we have the integral isocrystal
associated to A/kr, given by the data D(A) = (H1

crys(A/W (kr)), F, V ). Here

the crystalline cohomology group H1
crys(A/W (kr)) (see [25] for details) is a free

W (kr)-module of rank 2g, equipped with a σ-linear endomorphism F (Frobenius)
and the σ−1-linear endomorphism V (Verschiebung) which induce bijections on
H1

crys(A/W (kr))⊗W (kr) Lr. We also have the identity FV = V F = p, hence the
inclusions of W (kr)-lattices

pH1
crys(A/W (kr)) ⊂ FH1

crys(A/W (kr)) ⊂ H1
crys(A/W (kr)),

pH1
crys(A/W (kr)) ⊂ V H1

crys(A/W (kr)) ⊂ H1
crys(A/W (kr)).

Let A[pn] = ker(pn : A −→ A), and A[p∞] := lim−→A[pn]. The crystalline
cohomology of A/kr is connected to the contravariant Dieudonné module of the
p-divisible group A[p∞] (cf. [5]).

The classical contravariant Dieudonné functor G 7→ D(G) establishes an exact
anti-equivalence between the category

{p-divisible groups G = lim−→Gn over kr}
and the category

{free W (kr)-modules M = lim←−M/pnM, equipped with operators F, V },

Here F and V are, σ and σ−1-linear endomorphisms respectively, inducing bijec-
tions on M ⊗W (kr) Lr.
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The crystalline cohomology of A/kr, together with the operators F and V , is
the same as the Dieudonné module of the p-divisible groupA[p∞], in the sense that
there is a canonical isomorphism H1

crys(A/W (kr)) ∼= D(A[p∞]) which respects the
endomorphisms F and V on both sides. It is a standard fact, cf. [4].

5.2. Nearby cycles.
We give a summary of nearby cycles from [2]. It is through nearby cycles to

determine the local factors (cf. [27]).
Let k be a finite or algebraically closed field, X be a scheme of finite type over

k (The following works as well if k is the fraction of a discrete valuation ring R
with finite residue field, and assume that X is finite type over R). Denote by k an
algebraic closure of k, and Xk the base change X ×k k. Denote by D

b
c(X,Qℓ) the

‘derived’ category of Qℓ-sheaves on X, which is not actually the derived category
of the category of Qℓ-sheaves in the original sense, but is obtained as a localization
of a projective limit of derived categories, under certain finiteness assumption (cf.
[21]). The category Db

c(X,Qℓ) is a triangulated category which admits the usual
functorial formalism, and which can be equipped with a natural t-structure having
as its core the category of Qℓ-sheaves. If f : X −→ Y is a morphism of schemes of
finite type over k, we have the derived functors f∗, f! : D

b
c(X,Qℓ) −→ Db

c(Y,Qℓ)
and f ∗, f ! : Db

c(Y,Qℓ) −→ Db
c(X,Qℓ). Occasionally we denote these same derived

functors by Rf∗, etc.
Let S be a spectrum of a complete discrete valuation ring, with special point

s and generic point η. Let k(s) and k(η) denote the residue fields of s and
η respectively. Choose a separable closure η of η and define the Galois group
Γ = Gal(η/η) and the inertia subgroup Γ0 = ker(Gal(η/η) −→ Gal(s/s)), where
s is the residue field of the normalization S of S in η.

Now let X denote a finite type scheme over S. The category Db
c(X ×s η,Qℓ)

is the category of sheaves F ∈ Db
c(Xs,Qℓ) together with a continuous action of

Gal(η/η) which is compatible with the action on Xs.

Definition 5.2.1. For F ∈ Db
c(Xη,Qℓ), we define the nearby cycles sheaf to be

the object in Db
c(X ×s η,Qℓ) given by RΨX(F) = i

∗
Rj∗(Fη), where i : Xs ↩→ XS

and j : Xη ↩→ XS are the closed and open immersions of the geometric special
and generic fibers of X/S, and Fη is the pull-back of F to Xη.

Theorem 5.2.2. The functors RΨ : Db
c(Xη,Qℓ) −→ Db

c(X ×s η,Qℓ) have the
following properties

(i) RΨ commutes with proper-push-forward: if f : X −→ Y is a proper
S-morphism, then the canonical base change morphism of functors to
Db

c(Y ×sη,Qℓ) is an isomorphism: RΨf∗ ∼= f∗RΨ. In particular, if X −→
S is proper there is a Gal(η/η)-equivariant isomorphism H i(Xη,Qℓ) =

H i(Xs, RΨ(Qℓ)).
(ii) Suppose f : X −→ S is finite type but not proper. Suppose that there

is a compactification j : X ↩→ X over S such that the boundary X\X
is a relative normal crossings divisor over S. Then there is a Gal(η/η)-
equivariant isomorphism H i

c(Xη,Qℓ) = H i
c(Xs, RΨ(Qℓ)).
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(iii) RΨ commutes with smooth pull-back: if p : X −→ Y is a smooth S-
morphism, then the base change morphism is an isomorphism: p∗RΨ ∼=
RΨp∗.

Proof. cf. [2], p. 619. �
5.3. Base change.

Here we recall certain facts about base change of representations and establish
a base change identity which will be used later. [23] is a good reference for base
change, and [30] builds up many results here.

Let Qpr be an unramified extension of Qp of degree r, this field carries a unique
automorphism σ lifting the Frobenius automorphism x 7→ xp on its residue field.
Furthermore, σ is a generator of Gal(Qpr/Qp). We say two elements x, y ∈
GL2(Qpr) are σ-conjugate if there exists h ∈ GL2(Qpr) such that y = h−1xσ(h).

Definition 5.3.1. For an element δ ∈ GL2(Qpr), let Nδ = δδσ · · · δσr−1
be the

norm.

Then we have

Proposition 5.3.2. The GL2(Qpr)-conjugacy class of Nδ contains an element of
GL2(Qp).

Proof. Let y = Nδ, and Qp be the algebraic closure containing Qpr . Then it
is enough check that the set of eigenvalues of y, with multiplicities, is invariant
under those σ′ ∈ Gal(Qp/Qp) with image σ ∈ Gal(Qpr/Qp). Acting with σ′ on
the set we get the eigenvalues of σ(y). Because σ(y) = δ−1yδ, we deduce the
invariance. �
Proposition 5.3.3. If Nδ and Nδ′ are conjugate, then δ and δ′ are σ-conjugate.

Proof. cf. [23], Lemma 4.2. �
Now for γ ∈ GL2(Qp), δ ∈ GL2(Qpr), define the centralizer Gγ(R) = {g ∈

GL2(R)|g−1γg = γ}, and the twisted centralizer Gδσ(R) = {h ∈ GL2(R ⊗
Qpr)|h−1δhσ = δ}.

For a function f ∈ H(GL2(Qp)), define the orbital integral

Oγ(f) =

∫
Gγ(Qp)\GL2(Qp)

f(g−1γg)dg

and for ϕ ∈ H(GL2(Qpr)), define the twisted orbital integral

TOδσ(ϕ) =

∫
Gδσ(Qp)\GL2(Qpr )

ϕ(h−1δhσ)dh.

Definition 5.3.4. The functions f ∈ H(GL2(Qp)), ϕ ∈ H(GL2(Qpr)) have match-
ing (twisted) orbital integrals (or simply ‘associated’) if the following condition
holds: for all semi-simple γ ∈ GL2(Qp), the orbital integral Oγ(f) vanishes if
γ is not a norm (i.e. conjugate to Nδ for some δ), and if γ is a norm, then
Oγ(f) = ±TOδσ(ϕ), where the sign is − if Nδ is a central element, but δ is not
σ-conjugate to a central element, and otherwise is +.
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Proposition 5.3.5. Assume δ ∈ GL2(Zpr/p
nZpr), then

Gδσ(Z/pnZ) = {h ∈ GL2(Zpr/p
nZpr)|h−1δhσ = δ}

and
GNδ(Z/pnZ) = {g ∈ GL2(Z/pnZ)|g−1Nδg = Nδ}

have the same cardinality. And σ-conjugacy classes in GL2(Zpr/p
nZpr) are mapped

bijectively via the norm to conjugacy classes in GL2(Z/pnZ).

Proof. Fix γ ∈ GL2(Z/pnZ). Clearly, the groups Zγ,p = (Z/pnZ[γ])× and Zγ,pr =
(Zpr/p

nZpr [γ])
× are commutative. With the norm map, we have a homomorphism

N : Zγ,pr −→ Zγ,p and define a homomorphism d : Zγ,pr −→ Zγ,pr via d(x) = xx−σ.
By definition H1(Gal(Qpr/Qp),Zγ,pr) = ker(N)/im(d).

Lemma 5.3.6. H1(Gal(Qpr/Qp),Zγ,pr) = 0. Thus we have an exact sequence

0 −→ Zγ,p −→ Zγ,pr
d−→ Zγ,pr

N−→ Zγ,p −→ 0.

Proof. It is not hard for the exactness at the first step. By the definition of d, it
is also clear at the second step.

Let Xi = ker(Zγ,pr −→ GL2(Zpr/p
iZpr)) for i = 0, . . . , n, this is a Gal(Qpr/Qp)-

invariant filtration on Zγ,pr . We first prove the vanishing of the cohomology for the
successive quotients. AsXi/Xi+1 is a Fpr -subvectorspace of ker(GL2(Zpr/p

i+1Zpr)
−→ GL2(Zpr/p

iZpr)) ∼= F4
pr , i > 1. As familiar, we have Gal(Qpr/Qp) ∼= Gal(Fpr/Fp).

By Lang’s lemma we have H1(Gal(Qpr/Qp),Fpr) = 0. For the case i = 0, it is
also true since the groups considered are connected. In sum, the sequence is exact
at the third step. Now by the exact sequence

0 −→ X0/X1 −→ X0/X2 −→ X1/X2 −→ 0,

and the long exact sequence for cohomology, we have H1(Gal(Qpr/Qp), X0/X2) =
0, and step by step, we finally deduce that H1(Gal(Qpr/Qp), X0/Xn) = 0, which
is as claimed.
The last surjectivity now follows from the other exactness. From above, we

now have
Zγ,pr/ ker(N) ∼= im(N),

Zγ,pr/ ker(d) ∼= im(d),

ker(d) = Zγ,p,

im(d) = ker(N).

Hence we conclude that im(N) = Zγ,p. �
Now by the lemma, for γ ∈ GL2(Z/pnZ), there exists δ ∈ Zγ,pr such that

Nδ = γ. So it suffices to prove that Gδσ(Z/pnZ) = Gγ(Z/pnZ) as sets.
On the one hand, note that δ ∈ Zpr/p

nZpr [γ], which implies directly that
Gγ(Z/pnZ) ⊂ Gδσ(Z/pnZ).
On the other hand, for x ∈ Gδσ(Z/pnZ), we have x−1δxσ = δ by definition, so

x−σi
δσ

i
xσ

i+1
= δσ

i
for i = 0, . . . , r − 1. Thus we get x−1Nδx = Nδ, i.e. γx = xγ.

So x commutes with δ ∈ Zpr/p
nZpr [γ], hence x

−1δx = δ. Combining the results,
we get x = xσ, x ∈ Gγ(Z/pnZ) and hence Gδσ(Z/pnZ) ⊂ Gγ(Z/pnZ)
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For the second part of the proposition, choose representatives γ1, . . . , γt of the
conjugacy classes in GL2(Z/pnZ), then from above there are δ1, . . . , δt satisfying
Nδi = γi, which represent different σ-conjugacy classes by the proposition 5.3.3.
By group theory, we know the size of their σ-conjugacy classes is

|GL2(Zpr/p
nZpr)|

|Gδiσ(Z/pnZ)|
=
|GL2(Zpr/p

nZpr)|
|Gγi(Z/pnZ)|

,

as a result, we deduce that

|GL2(Zpr/p
nZpr)|

|GL2(Z/pnZ)|

t∑
i=1

|GL2(Z/pnZ)|
|Gγi(Z/pnZ)|

=
|GL2(Zpr/p

nZpr)|
|GL2(Z/pnZ)|

|GL2(Z/pnZ)|

= |GL2(Zpr/p
nZpr)|.

Hence we conclude that δ1, . . . , δt are representatives of the conjugacy classes in
GL2(Zpr/p

nZpr).
�

Define the principal congruence subgroups (cf. [12]) by

Γ(pk)Qp = {g ∈ GL2(Zp)|g ≡ 1 mod pk},
Γ(pk)Qpr

= {g ∈ GL2(Zpr)|g ≡ 1 mod pk}.

Corollary 5.3.7. Assume f is conjugation-invariant locally integrable complex
valued function on GL2(Zp), then the function ϕ on GL2(Zpr) given by ϕ(δ) =
f(Nδ) is locally integrable, and (eΓ(pk)Qpr

∗ ϕ)(δ) = (eΓ(pk)Qp
∗ f)(Nδ) for all δ ∈

GL2(Zpr).

Proof. First assume simply that f is locally constant, conjugation-invariant by
Γ(pk)Qp . Then ϕ is σ-conjugation-invariant by Γ(pk)Qpr

and locally integrable.

Hence the identity follows from the proposition. In general, as Γ(pk)Qp (resp.
Γ(pk)Qpr

) give a fundamental system of open neighborhoods of 1 in GL2(Zp)
(resp. GL2(Zpr)), the corollary follows from approximating f by locally constant
functions. �

Now let π (resp. Π) be tempered representation (cf. [29], VII.2.) of GL2(Qp)
(resp. GL2(Qpr).

Definition 5.3.8. Π is called a base-change lift of π, if Π is invariant under
GL2(Qpr/Qp) and for some extension of Π to a representation of GL2(Qpr) ⋊
Gal(Qpr/Qp), tr(Ng|π) = tr((g, σ)|Π) for all g ∈ GL2(Qpr) such that the conju-
gacy class of Ng is regular semi-simple.

Remark 5.3.9. It is proved that there exists a unique base-change lift (cf. [23],
section 2).

Theorem 5.3.10. Suppose f ∈ Z(GL2(Qp)), ϕ ∈ Z(GL2(Qpr)), and for all
tempered irreducible smooth representation π of GL2(Qp) with base-change lift Π,
the scalars cf,π (resp. cΦ,Π) through which f (resp. Φ) acts on π (resp. Π) are
the same. Then f ∗h and ϕ∗h′ have matching (twisted) orbital integrals for every
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associated h ∈ C∞
c (GL2(Qp)) and h′ ∈ C∞

c (GL2(Qpr)). Moreover, eΓ(pn)Qpr
and

eΓ(pn)Qp
are associated.

Proof. As h and h′ are associated, while Π is a base-change of π, by the twisted
version of Weyl integration formula (cf. [23]), we have tr(h|π) = tr((h′, σ)|Π).
Hence tr(f ∗ h|π) = cf,πtr(h|π) = cΦ,Πtr((h

′, σ)|Π = tr((ϕ ∗ h′, σ)|Π). As proved
in [23], there exists f ′ ∈ H(GL2(Qp)) having matching (twisted) orbital integrals
with ϕ ∗ h′, we have tr((ϕ ∗ h′, σ)|Π) = tr(f ′|π). Hence for every tempered
irreducible smooth representation π of GL2(Qp), tr((f ∗h−f ′)|π) = 0. Kazhdan’s
density theorem (cf. [20], theorem 1) implies that all regular semi-simple orbital
integrals of f ∗ h− f ′ vanish. By the choice of f ′, we know f ∗ h and ϕ ∗ h′ have
matching regular semi-simple (twisted) orbital integrals. Then proposition 7.2,
[9] tells that while it is true for all regular semi-simple (twisted) orbital integrals,
it is true over all semi-simple (twisted) orbital integrals as well.

For the last part, note that by corollary 5.3.7, taking f the character of π
restricted to GL2(Zp), k = n and δ = 1, it gives that

tr(eΓ(pn)Qp
|π) = tr((eΓ(pn)Qpr

, σ)|Π).

So the rest is a repetition as above. �

5.4. Counting points over finite fields.
In this subsection, we explain the method of Langlands and Kottwitz to count

the number of points mod p of modular curve with good reduction. More details
are can be found in [30] and [10].

Let p be a prime coprime tom, r a positive integer, and E an elliptic curve over
Fpr . Define the set M(Fpr)(E) to be {x ∈ M(Fpr)|Ex is Fpr -isogeneous to E}.
Our aim is just to count its cardinality (cf. [10]).

For a prime ℓ ̸= p, we may consider the dual of the ℓ-adic Tate module,
H1

et(EF pr
,Zℓ) = HℓE. Let End(E) be the ring of endomorphisms of E defined

over Fpr , and EndQ(E) = End(E) ⊗Z Q. Let Γ = (EndQ(E))
×. The crystalline

cohomology H1
crys(E/Zpr) is a free Zpr -module of rank 2, equipped with a σ-linear

endomorphism F . Define Hp = H1
crys(E0/Zpr) ⊗Zpr

Qpr . Let Ap
f be the ring of

finite adèles of Q with trivial p-component and Ẑp ∼=
∏

ℓ ̸=p Zℓ be the integral

elements in Ap
f . Define H

p = H1
et(EFpr

,Ap
f ) =

∏
ℓ ̸=p

′H1
et(EFpr

,Qℓ).

Take any x ∈ M(Fpr)(E), and f : E −→ Ex an Fpr -isogeny, we have a

GFpr
= Gal(Fpr/Fpr)-invariant Ẑp-lattice L = f ∗(H1

et(Ex,Fpr
, Ẑp)) ⊂ Hp, an

F, pF−1-invariant Zpr -lattice Λ = f ∗(H1
crys(Ex/Zpr)) ⊂ Hp, and a GFpr

-invariant

isomorphism ϕ : (Z/mZ)2 −→ L⊗Z/mZ, corresponding to the level-m-structure.
Let Λp be the set of such (L, ϕ) and Λp be the set of Λ as above. Dividing by the
choice of f , we get a map Ψ :M(Fpr)(E) −→ Γ\Λp × Λp.

Theorem 5.4.1. The map Ψ is a bijection.

Proof. cf. [30] or [10].
�
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Fix a basis of Hp, let γ ∈ GL2(Ap
f ) be the endomorphism induced by the

geometric Frobenius Φpr on Hp and δ ∈ GL2(Qpr) be induced by the p-linear
endomorphism F on Hp: for the p-linear isomorphism σ on Hp preserving the
chosen basis, defined through F = δσ. Then γΛp = Λp and pΛp ⊂ δσΛp ⊂ Λp.
We define the centralizer

Gγ(Ap
f ) = {g ∈ GL2(Ap

f )|g
−1γg = γ}

and the twisted centralizer

Gδσ(Qp) = {h ∈ GL2(Qpr)|h−1δhσ = δ}.

Let Kp = {g ∈ GL2(Ẑp)|g ≡ 1 mod m} and Kp = GL2(Zpr). Let f p be the
characteristic function of Kp divided by its volume, ϕp,0 be the characteristic
function of Kp

(
p 0
0 1

)
Kp divided by the volume of Kp.

For f ∈ C∞
c (GL2(Ap

f )), define the orbital integral

Oγ(f) =

∫
Gγ(Ap

f )\GL2(Ap
f )

f(g−1γg)dg.

We have

Corollary 5.4.2. The cardinality ofM(Fpr)(E) is

vol(Γ\Gγ(Ap
f )×Gδσ

(Qp))Oγ(f
p)TO

δσ
(ϕp,0),

where the Haar measure on Γ gives points measure 1.

Proof. Identify the set Xp of pairs (L, ϕ) as above with GL2(Ap
f )/K

p, without
the Galois-invariance condition, and identify the set Xp of all lattices Λ with
GL2(Qpr)/Kp. If gKp ∈ Xp lies in Λp, then γgKp = gKp, so g−1γg ∈ Kp. If
hKp ∈ Xp lies in Λp, then FhKp ⊂ hKp and V hKp ⊂ hKp. Since FV = p, we
get phKp ⊂ FhKp ⊂ hKp, hence pKp ⊂ h−1δhσKp ⊂ Kp.

We have υp(det δ) = 1 because the Weil pairing gives an isomorphism of the
second exterior power of Hp with Qpr(−1). Hence we deduce that h−1δhσ ∈
Kp

(
p 0
0 1

)
Kp. So the cardinality of Γ\Λp × Λp equals to∫

Γ\GL2(Ap
f )×GL2(Qpr )

fp(g−1γg)ϕp,0(h
−1δhσ)dgdh.

which is easily checked to be vol(Γ\Gγ(Ap
f ) × G

δσ
(Qp))Oγ(f

p)TO
δσ
(ϕp,0). Now

the claim follows from the bijection of Ψ. �

Remark 5.4.3. TO
δσ
(ϕp,0) ̸= 0 wheneverM(Fpr)(E) ̸= ∅.

6. The semi-simple trace and semi-simple local factor

In this section we introduce the semi-simple trace and the semi-simple local
factor, which turn out to play a crucial role in the generalization of Hasse-Weil
local factors.
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6.1. Basics of the semi-simple trace and semi-simple local factor.
The semi-simple trace was introduced by Rapoport in [27].
Let X be a variety over a local field K with residue field Fq. Let GK be the

Galois group Gal(K/K) and IK ⊂ GK be the inertia subgroup satisfying the
exact sequence

1 −→ IK −→ GK −→ Gal(k/k) −→ 1.

Let Φq be a geometric Frobenius element. Suppose ℓ is a prime not dividing q.
To introduce the cohomological definition, we first recall briefly the étale co-

homology with compact support.

Definition 6.1.1. For a torsion sheaf F on a scheme X, with j : X −→ X
an open immersion into a complete scheme X, define the étale cohomology with
compact support H∗

c (X,F) to be Hq
c (X,F) = Hq(X, j!F), where j!F is the

extension by zero to X.

It is proved that the compactification X exists by Nagata, and the definition
is independent of the choice of the compactification.

Definition 6.1.2. The Hasse-Weil local factor of X is given by

ζ(X, s) =
2 dimX∏
i=0

det(1− Φqq
−s|H i

c(X ⊗K K,Qℓ)
IK )(−1)i+1

.

Remark 6.1.3. The monodromy conjecture for curves is proved in [28], so that
this definition, apparently depending on ℓ, is independent of ℓ.

Remark 6.1.4. In case of good reduction, IK acts trivially on all cohomology
groups, then this is simply Grothendieck’s cohomological expression of the initial
definition as a power series.

Remark 6.1.5. Recall that if σ is an endomorphism of a finite dimensional vector
space over a field of characteristic zero, then

log det(1− Tσ|V ) = −
∞∑
j=1

trσj

j
T j,

Thus the determination of the local factor is equivalent with that of the alter-
nating trace of σ∗j on the IK-invariants in the cohomology for j > 1, which is
approached through the method of vanishing cycles.

Let (π, V ) be a continuous, finite dimensional ℓ-adic representation of GK ,
where ℓ is a prime number prime to the residue characteristic of K. Let H be a
finite group, which acts on V commutatively with the action of GK . We have

Definition 6.1.6. A filtration F : 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vk = V is called
admissible if it is stable underGK×H and IK operates on the associated grF• (V ) =⊕k

i=1 Vi/Vi−1 through a finite quotient.

Lemma 6.1.7. Admissible filtration always exists.

Proof. See [30] for a complete proof. Or we can take the filtration defined by the
kernels of the powers of the logarithm of π (cf. [13], section 3.1). �
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We now define the semi-simple trace as follows.

Definition 6.1.8. For h ∈ H, and F as above, put

trss(Φr
qh|V ) = tr(Φr

qh|(grF• (V ))IK ) =
∑
i

tr(Φr
qh|grFi (V )IK ).

Proposition 6.1.9. The semi-simple trace does not depend on the admissible
filtration chosen, and in particular, the semi-simple trace is additive in short
exact sequences.

Proof. First consider the case that IK acts on V through a finite quotient. Let
F ′ be the filtration of V IK induced by F , since taking invariants under a finite
group acting on an ℓ-adic vector space is an exact functor, we have grF

′
i (V IK ) =

grFi (V )IK , hence tr(Φr
qh|V IK ) =

∑
i

tr(Φr
qh|grFi (V )IK ).

In general, two admissible filtrations admit a common refinement. As noted
above, we deduce that the semi-simple trace associated to each of the two filtra-
tions is equal to the semi-simple trace associated to the refinement.

For additivity, it is just the statement that for an endomorphism ϕ on a vector
space V with ϕ-invariant subspace W , we have tr(ϕ|V ) = tr(ϕ|W ) + tr(ϕ|V/W ).

�

This proposition allows us to define the semi-simple trace on the Grothendieck
group of GK × H, or on the derived category of finite dimensional continuous
ℓ-adic representations of GK ×H.

Let R be the category of continuous, finite dimensional Qℓ-representations of
GK ×H. For any object C of the derived category associated to R, let

trss(Φr
qh|C) =

∑
i

(−1)itrss(Φr
qh|H i(C)).

From above, it is additive in distinguished triangles (cf. [13]).
For a variety X over K, we define

Definition 6.1.10. The semi-simple local factor is defined by

log ζss(X, s) =
∑
r>1

2 dimX∑
i=0

(−1)itrss(Φr
q|H i

c(X ⊗K K,Qℓ))
q−rs

r
.

This agrees with the usual local factor if IK acts through a finite quotient and
the semi-simple local factor determines the true local factor, which is proved by
Rapoport, [27].

6.2. Nearby cycles.
We recall the definition of nearby cycles according to our case. For O ⊂ K

the ring of integers and for a scheme XO/O of finite type, write Xs, Xs, Xη and
Xη respectively for its special, geometric special, generic and geometric generic
fiber, respectively. Let XO denote the base change to the ring of integers in a
fixed algebraic closure of K. We have maps ι : Xs −→ XO and j : Xη −→ XO .
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Definition 6.2.1. For a Qℓ-sheaf F on Xη, the complex of nearby cycle sheaves
is defined to be RψF = ι∗Rj∗Fη, where Fη is the pullback of F to Xη. This is an

element of the (so-called) derived category of Qℓ-sheaves on Xs with an action of
GK that is compatible with its action on Xs.

The following two results, connect the semi-simple trace and local factor with
nearby cycles.

Theorem 6.2.2. Assume that XO/O is a scheme of finite type such that there
exists an open immersion XO ⊂ XO where XO is proper over O, with complement
D a relative normal crossings divisor (i.e. there is an open neighborhood U of D
in XO which is smooth over O, such that D is a relative normal crossings divisor
in U). Then there is a canonical GK-equivariant isomorphism

H i
c(Xη,Qℓ) ∼= H i

c(Xs, RψQℓ),

and

log ζss(Xη, s) =
∑
r>1

∑
x∈Xs(Fqr )

trss(Φqr |(RψQℓ)x)
q−rs

r
.

Proof. The first part is from theorem 5.2.2 and the rest is from the discussion in
[13], section 3. �

This is not true for X = MΓ(pn) as its divisor at infinity is not étale over
SpecZ[m−1]. However, we have the following similar theorem.

Theorem 6.2.3. There is a canonical GQp-equivariant isomorphism

H i
c(MΓ(pn),η,Qℓ) −→ H i

c(MΓ(pn),s, RψQℓ).

Also, the formula for the semi-simple local factor from theorem 6.2.2 holds.

Proof. This is the results from theorem 6.2.2 and theorem 2.3.3. For the proof,
see [30], theorem 7.11.

�

As nearby cycles relates closely to the semi-simple local factor, we calculate
the nearby cycles in the case of interest as follows.

Let XO/O be a scheme of finite type, Xηur be the base change of XO to the
maximal unramified extension Kur of K and let XOur be the base change to the
ring of integers in Kur. We have ι : Xs −→ XOur and j : Xηur −→ XOur .

With a special case of Grothendieck’s purity conjecture, in [30], Scholze gives
the following results of calculation.

Theorem 6.2.4. Let X/O be regular and flat of relative dimension 1 and suppose
that Xs is globally the union of regular divisors. Let x ∈ Xs(Fq) and let D1, . . . , Di

be the divisors passing through x. Let W1 be the i-dimensional Qℓ-vector space
with basis given by those Dt, and W2 be the kernel of the map W1 −→ Qℓ sending
all Dt to 1. Then there are canonical isomorphisms
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(ι∗Rkj∗Qℓ)x ∼=


Qℓ k = 0
W1(−1) k = 1
W2(−2) k = 2
0 else .

Proof. cf. [30], theorem 8.2.
�

Let B denote the Borel subgroup of GL2. We have associated an element
δ ∈ GL2(Qpr) to any point x ∈ M(Fpr) by looking at the action of F on the
crystalline cohomology. And the covering πn : MΓ(pn) −→ M and the sheaf
Fn = πnη∗Qℓ on the generic fibre ofMΓ(pn).

Corollary 6.2.5. Let x ∈M(Fpr) and g ∈ GL2(Zp).

(i) If x corresponds to an ordinary elliptic curve and a is the unique eigen-
value of Nδ with valuation 0, then trss(Φprg|(RψFn)x) = tr(Φprg|Vn),
where Vn is a GFpr

×GL2(Z/pnZ)-representation isomorphic to⊕
χ∈((Z/pnZ)×)∨

Ind
GL2(Z/pnZ)
B(Z/pnZ) 1� χ

as a GL2(Z/pnZ)-representation. Here Φpr acts as the scalar χ(a)−1 on

Ind
GL2(Z/pnZ)
B(Z/pnZ) 1� χ.

(ii) If x corresponds to a supersingular elliptic curve, then

trss(Φprg|(RψFn)x) = 1− tr(g|St)pr,

where St = ker(Ind
GL2(Z/pnZ)
B(Z/pnZ) 1 � 1 −→ 1) is the Steinberg representation

of GL2(Z/pnZ).

Proof. Here we omit the proof in p. 19, [30], which applies theorem 6.2.4 and
theorem 2.3.4.

�
For x ∈ M(Fpr), put (RψF∞)x = lim−→(RψFn)x, then it carries a natural

smooth action of GL2(Zp) and a commuting continuous action of GQpr
. De-

fine trss(Φprh|(RψF∞)x) for h ∈ C∞
c (GL2(Zp)) in the following way: Pick n such

that h is Γ(pn)Qp
-biinvariant and take invariants under Γ(pn)Qp

:

trss(Φprh|(RψF∞)x) := trss(Φprh|(RψFn)x).

For h ∈ C∞
c (GL2(Zp)), the value of tr

ss(Φprh|(RψF∞)x) depends only on γ = Nδ
associated to x, which leads to the following definition.

Definition 6.2.6. For γ ∈ GL2(Qp), h ∈ C∞
c (GL2(Zp)), define cr(γ, h) = 0

unless υp(det γ) = r, υp(trγ) > 0. Now assume that these conditions are fulfilled.
Then for υp(trγ) = 0, we define

cr(γ, h) =
∑

χ0∈((Z/pnZ)×)∨

tr(h|IndGL2(Z/pnZ)
B(Z/pnZ) 1� χ0)χ0(t2)

−1



HASSE-WEIL ZETA-FUNCTION IN A SPECIAL CASE 27

where t2 is the unique eigenvalue of γ with υp(t2) = 0. For υp(trγ) > 1, we take

cr(γ, h) = tr(h|1)− prtr(h|St).

That x is supersingular is equivalent to trNδ ≡ 0 mod p, so we have

trss(Φprh|(RψF∞)x) = cr(Nδ, h)

whenever δ is associated to x ∈M(Fpr) as in subsection 5.4.

6.3. The semi-simple trace of Frobenius as a twisted orbital integral.
As explained in [22], the twisted orbital integral plays an important role in

Langlands’s method of computing the Hasse-Weil zeta function. In this subsec-
tion, we give a quick sketch connecting the semi-simple trace with twisted orbital
integral, all are contained in [30].

We first need the function ϕp which has the correct twisted orbital integrals.

Lemma 6.3.1. There exists a function ϕp of the Bernstein center of GL2(Qpr)
such that for all irreducible smooth representations Π of GL2(Qpr), ϕp acts by the

scalar p
1
2 trss(Φpr |σΠ), where σΠ is the representation of the Weil group WQpr

of

Qpr with values in Qℓ associated to Π by the local Langlands correspondence.

For a representation σ ofWQpr
, the definition of the semi-simple trace of Frobe-

nius makes sense. We write σss for the associated semisimplification.

Proof. By theorem 3.3.1, it suffices to check that the corresponding function to
ϕp as in the assumption defines a regular function on D/W (L,D) for all L,D.
As we are taking the semi-simple trace, the scalar agrees for a 1-dimensional
representation Π and the corresponding twist of the Steinberg representation.
This gives a well-defined function on D/W (L,D). For L and D fixed, take Π
in the corresponding component, then the semi-simplification σss

Π decomposes as
(σ1 ⊗ χ ◦ det)⊗ · · · ⊗ (σt ⊗ χt ◦ det) for certain fixed irreducible representations
σ1, . . . , σt and varying unramified characters χ1, . . . , χt parametrized by D. So

trss(Φpr |σΠ) =
t∑

i=1

trss(Φpr |σi)χi(p), it is a regular function on D and necessarily

W (L,D)-invariant, hence descends to a regular function on D/W (L,D). �
Next we consider the function ϕp,0 = ϕp ∗ eGL2(Zpr ) ∈ H(GL2(Qpr),GL2(Zpr)).

It is compatible with the previous one, since it is showed in p. 21, [30] that

Proposition 6.3.2. The function ϕp,0 is the characteristic function of the set

GL2(Zpr)
(
p 0
0 1

)
GL2(Zpr)

divided by the volume of GL2(Zpr).

The following theorem makes connection with the semi-simple trace and twisted
orbital integral.

Theorem 6.3.3. Let δ ∈ GL2(Qpr) with semisimple norm γ ∈ GL2(Qp). If h ∈
C∞

c (GL2(Zp)) and h′ ∈ C∞
c (GL2(Zpr)) have matching (twisted) orbital integrals.

Then TOδσ(ϕp ∗ h′) = TOδσ(ϕp,0)cr(γ, h).
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Proof. Denote by f1 = ϕp ∗ h′ and f2 = ϕp,0. Let Π be the base change lift to
GL2(Qpr) of some tempered representation π of GL2(Qp). From the construc-
tion of trss(Φprh|(RψF∞)x), we can take n such that h, h′ are Γ(pn)Qp

, Γ(pn)Qpr
-

biinvariant, respectively. Then by the assumption, we have

tr((f1, σ)|Π) = p
1
2
rtr((h′, σ)|ΠΓ(pn))trss(Φpr |σΠ) = p

1
2
rtr(h|πΓ(pn))trss(ϕpr |σΠ).

Because eΓ(1)Qp and eΓ(1)Qpr
are associated by theorem 5.3.10, we have

tr((f2, σ)|Π) = p
1
2
r dimπGL2(Zp)trss(Φpr |σΠ).

Then the rest is finished by the following two lemmas. For the detailed proof,
follow p. 21-24, [30].

Lemma 6.3.4. Assume that δ =
(
t1 0
0 t2

)
with Nt1 ̸= Nt2. Then the twisted

orbital integrals TOδσ(ϕp ∗ h′) = TOδσ(ϕp,0) = 0 except in the case where, up to
exchanging t1, t2, we have υp(t1) = 1 and υp(t2) = 0. In the latter case,

TOδσ(ϕp ∗ h′) = vol(T (Zp))
−1

∑
χ0∈((Z/pnZ)×)∨

tr(h|IndGL2(Z/pnZ)
B(Z/pnZ) 1� χ0)χ0(Nt2)

−1

and

TOδσ(ϕp,0) = vol(T (Zp))
−1.

Now if δ is not σ-conjugate to an element as in the previous lemma, then the
eigenvalues of eigenvalues of Nδ have the same valuation. Let H1 = tr(h|St)
and H2 = tr(h|1) with St and 1 the Steinberg and trivial representation of
GL2(Z/pnZ) respectively. Let f = f1 + (H1p

r −H2)f2.

Lemma 6.3.5. If the eigenvalues of Nδ have the same valuation, then the twisted
orbital integral TOδσ(f) vanishes.

�
Lemma 6.3.6. For any δ ∈ GL2(Qpr) associated to an elliptic curve over Fpr ,
the norm Nδ is semisimple (i.e. diagonalizable).

Proof. cf. [30], lemma 9.8. �
With this lemma, combining theorem 6.3.3 with corollary 6.2.5, we get the

desired result.

Corollary 6.3.7. Let x ∈M(Fpr) with associated δ. Let h ∈ C∞
c (GL2(Zp)), h

′ ∈
C∞

c (GL2(Zpr)) have matching (twisted) orbital integrals. Then

TOδσ(ϕp ∗ h′) = TOδσ(ϕp,0)tr
ss(Φprh|(RψF∞)x).

By theorem 5.3.10, taking h to be the idempotent eΓ(pn)Qp
and h′ to be the

idempotent eΓ(pn)Qpr
. By remark 5.4.3, we immediately get that

Corollary 6.3.8. Let x ∈M(Fpr) with associated δ. Then

trss(Φpr |(RψFn)x) = TOδσ(ϕp ∗ eΓ(pn)Qpr
)(TOδσ(ϕp,0))

−1.
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Remark 6.3.9. The explicit determination of ϕp ∗ eΓ(pn)Qpr
is proved in [30] as

follows, which we do not need in the rest of the thesis:
For g ∈ GL2(Qpr), let k(g) be the minimal number k such that pkg has integral

entries. If υp(det g) > 1 and υp(trg) = 0, then g has a unique eigenvalue x ∈ Qpr

with υp(x) = 0; in this case we define l(g) = υp(x − 1). For n > 1, define a
function ϕp,n : GL2(Qpr) −→ C requiring that
• ϕp,n(g) = 0 except if υp(det g) = 1, υp(trg) > 0 and k(g) 6 n − 1. Assume

now that g has these properties.
• ϕp,n(g) = −1− q if υp(trg) > 1,
• ϕp,n(g) = 1− q2l(g) if υp(trg) = 0 and l(g) < n− k(g),
• ϕp,n(g) = 1 + q2(n−k(g))−1 if υp(trg) = 0 and l(g) > n− k(g).
Take the Haar measure on GL2(Qpr) such that a maximal compact subgroup

has measure pr − 1, then we have ϕp,n = ϕp ∗ eΓ(pn)Qpr
.

6.4. Lefschetz number.
In order to compute the semi-simple local factor, we will compute the Lefschetz

number
∑

x∈MΓ(pn)(Fpr )

trss(Φpr |RψFn)x), because by theorem 6.2.3,

log ζss(MΓ(pn),Qℓ) =
∑
r>1

∑
x∈M(Fpr )

trss(Φpr |(RψFn)x)
p−rs

r
.

We have just got that

trss(Φpr |(RψFn)x) = TOδσ(ϕp ∗ eΓ(pn)Qpr
)(TOδσ(ϕp,0))

−1.

Combining this with corollary 5.4.2, we actually have the following

Corollary 6.4.1.∑
x∈M(Fpr )(E)

trss(Φpr |RψFn)x) = vol(Γ\Gγ(Ap
f )×Gδσ

(Qp))Oγ(f
p)TOδσ(ϕp∗eΓ(pn)Qpr

).

Now we try to eliminate the twisted orbital integral. Let fp,r be the function
of the Bernstein center for GL2(Qp) such that for all irreducible smooth represen-

tations π of GL2(Qp), fp,r acts by the scalar p
1
2
rtrss(Φr

p|σπ). Here σp is the ℓ-adic
representation, associated to π, of the Weil group WQp with Qℓ coefficients. In
the same way as lemma 6.3.1, it can be proved that fp,r exists. From [15], if π
is tempered and Π is a base-change lift of π, then σΠ is the restriction of σπ. As
proved in [30], there is one result

Lemma 6.4.2. For any tempered irreducible smooth representation π of GL2(Qp)
with base-change lift Π, we have trss(Φr

p|σπ) = trss(Φpr |σΠ).

By this lemma, we deduce that fp,r ∗ eΓ(pn)Qp
and ϕp ∗ eΓ(pn)Qpr

satisfy the

hypothesis of theorem 5.3.10. Together with lemma 6.3.6, we get from corollary
6.4.1 the following
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Corollary 6.4.3.∑
x∈M(Fpr )(E)

trss(Φpr |RψFn)x) = ±vol(Γ\Gγ(Ap
f )×Gδσ

(Qp))Oγ(f
p)ONδ(fp,r∗eΓ(pn)Qp

).

The Honda-Tate theory allows us a further simplification of the above result.
We first recall certain facts here.

Theorem 6.4.4. Fix a finite field Fq of characteristic p.

(i) For any elliptic curve E/Fq, the action of Frobenius on H1
et(E,Qℓ) is

semisimple with characteristic polynomial pE ∈ Z[T ] independent of ℓ.
Additionally, if F acts as δσ on H1

crys(E/Zq)⊗Qq, then Nδ is semisimple
with characteristic polynomial pE.
Let γE ∈ GL2(Q) be semisimple with characteristic polynomial pE. Then

(ii) The map E 7→ γE gives a bijection between Fq-isogeny classes of elliptic
curves over Fq and conjugacy classes of semisimple elements γ ∈ GL2(Q)
with det γ = q, trγ ∈ Z which are elliptic in GL2(R), and there exists
δ ∈ GL2(Qp) such that γ is conjugate to N(δ).

(iii) Let GγE be the centralizer of γE. Then End(E)× is an inner form of GγE .
We have

(End(E)⊗Qℓ)
× ∼= GγE ⊗Qℓ, for ℓ ̸= p

(End(E)⊗Qp)
× ∼= Gδσ.

Furthermore, the algebraic group (End(E)⊗R)× is anisotropic modulo
center.

Proof. This is a combination of the fixed point formulas in étale and crystalline
cohomology, the Weil conjectures for elliptic curves and the main theorems of
[33], [16]. Refer to [5] for (i), refer to [16] for (ii), and refer to [33], [5] for (iii). �

For one isogeny class, the right-hand side of lemma 6.4.3 equals

±vol(Γ\(End(E)⊗ Af )
×)Oγ(f

p)Oγ(fp,r ∗ eΓ(pn)Qp
),

Write γ = γE ∈ GL2(Q), which is compatible with previous use of γ by part (i),
and write f for the function f p(fp,r ∗ eΓ(pn)Qp

) ∈ C∞
c (GL2(Af )).

Now we rewrite the expression above as

±vol((End(E)⊗Q)×\(End(E)⊗ Af )
×)

∫
Gγ(Af )\GL2(Af )

f(g−1γg)dg.

Theorem 6.4.5. The Lefschetz number
∑

x∈MΓ(pn)(Fpr )

trss(Φpr |RψFn)x) equals

−
∑

γ∈Z(Q)

vol(GL2(Q)\GL2(Af ))f(γ)+
∑′

vol(Gγ(Q)\Gγ(Af ))

∫
Gγ(Af )\GL2(Af )

f(g−1γg)dg.

where the second sum
∑′ is taken over γ ∈ GL2(Q)\Z (Q) semisimple conjugate

class with γ∞ elliptic.
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Proof. It is enough to check that the contributions of γ vanish where det γ ̸= pr

or trγ /∈ Z.
Assume that det γ ̸= pr. The orbital integrals of f p vanish except if det γ is a

unit away from p, hence det γ is up to sign a power of p. The orbital integrals
of fp,r ∗ eΓ(pn)Qp

vanish except if υp(det γ) = r, hence det γ = ±pr. But γ is

hyperbolic at ∞ if det γ = −pr < 0, so det γ = pr, a contradiction.
Now assume that trγ /∈ Z. If a prime ℓ ̸= p is in the denominator of trγ, then

the orbital integrals of f p vanish. The orbital integrals of fp,r∗eΓ(pn)Qp
match with

the twisted orbital integrals of ϕp ∗ eΓ(pn)Qpr
, which were computed in theorem

6.3.3. Consequently, they are nonzero only if υp(trγ) > 0, which implies that trγ
is integral, a contradiction again. �

7. The Hasse-Weil zeta-function

With the above results, now we are ready to conclude the main result. This
section is summarized from [30].

7.1. Contributions from the boundary.
Recall from section 2, let j : Mpnm −→ Mpnm be a smooth projective com-

pactification with boundary ∂Mpnm. We use a subscript Q to denote base change

to Q.

Let H∗(MpnmQ,Qℓ) =
2∑

i=0

(−1)iH i(MpnmQ,Qℓ) in the Grothendieck group of

representations of GQ×GL2(Z/pnmZ). we are interested in the semi-simple trace
of Frobenius on the cohomology groups, which will turn out to be related to the
Authur-Selberg trace formula. Similarly, put

H∗
c (MpnmQ,Qℓ) =

2∑
i=0

(−1)iH i
c(MpnmQ,Qℓ).

The long exact cohomology sequence for the short exact sequence

0 −→ j!Qℓ −→ Qℓ −→
⊕

x∈∂MpnmQ

Ql,x −→ 0

implies that H∗(MpnmQ,Qℓ) = H∗
c (MpnmQ,Qℓ) +H0(∂MpnmQ,Qℓ).

The discussions above have actually imply the semi-simple trace of Φpr on

H∗
c (MpnmQ,Qℓ) by theorem 6.4.5. We focus on the boundary here.

Lemma 7.1.1. There is a GQ ×GL2(Z/pnmZ)-equivariant bijection
∂MpnmQ

∼= {± ( 1 ∗
0 1 )}\GL2(Z/pnmZ),

where GL2(Z/pnmZ) acts on the right hand side by multiplication from the right,
and GQ acts on the right hand side by multiplication from the left through the
map

GQ −→ Gal(Q(ζpnm)/Q) ∼= (Z/pnmZ)× −→ GL2(Z/pnmZ),

the last map being given by x 7→
(
x

−1
0

0 1

)
.



32 WEIDONG ZHUANG

Proof. cf. [30]. �

P. Scholze then has proved the following

Corollary 7.1.2. The semi-simple trace of the Frobenius Φpr on H
0(∂MpnmQ,Qℓ)

is given by 1
2

∫
GL2(Ẑ)

∫
Af
f(k−1

(
1 0
0 pr

)
( 1 u
0 1 ) k)dudk. Here, for all p

′ we use the Haar

measure on Qp′ that gives Zp′ measure 1, hence the subgroup Ẑ of Af gets measure
1.

Proof. If f p(k−1
(
1 u
0 pr

)
k) ̸= 0, then pr ≡ 1 mod m, so if pr ̸≡ 1 mod m, then the

integral is identically zero. In this situation, Φpr has no fixed points on ∂MpnmQ.
Thus assuming now that pr ≡ 1 mod m, then the inertia subgroup at p groups
the points of ∂MpnmQ into packets of size pn−1(p− 1) on which Φpr acts trivially.
Therefore the semi-simple trace of Φpr is

1

pn−1(p− 1)
#({± ( 1 ∗

0 1 )}\GL2(Z/pnmZ)).

As fp(k−1
(
1 0
0 pr

)
( 1 u
0 1 ) k) = #GL2(Z/mZ)vol(GL2(Ẑp))−1 if u ≡ 0 mod m and is

0 otherwise, we deduce that∫
GL2(Ẑp)

∫
Ap
f

f p(k−1
(
1 0
0 pr

)
( 1 u
0 1 ) k)dudk = #({( 1 ∗

0 1 )}\GL2(Z/mZ)).

So we have to prove∫
GL2(Zp)

∫
Qp

(fp,r ∗ eΓ(pn)Qp
)(k−1

(
1 u
0 pr

)
k)dudk = p2n − p2n−2.

Generally for γ1 ̸= γ2 and h ∈ C∞
c (GL2(Qp)),∫

GL2(Zp)

∫
Qp

h(k−1
(
γ1 0
0 γ2

)
( 1 u
0 1 ) k)dudk

= |1− γ2
γ1
|−1
p

∫
GL2(Zp)

∫
Qp

h(k−1 ( 1 −u
0 1 )

(
γ1 0
0 γ2

)
( 1 u
0 1 ) k)dudk

= |1− γ2
γ1
|−1
p vol(T (Zp))

∫
T (Qp)\GL2(Qp)

h(g−1
(
γ1 0
0 γ2

)
g)dg,

as GL2(Qp) = B(Qp)GL2(Zp), so the left hand side of the desired equality is the
orbital integral of fp,r ∗ eΓ(pn)Qp

for γ =
(
1 0
0 pr

)
.

In our case, |1− γ2
γ1
|−1
p = |1−pr|−1

p = 1. Then it follows from the twisted orbital

integral of ϕp ∗ eΓ(pn)Qpr
which equals the orbital integral of fp,r ∗ eΓ(pn)Qp

and was

calculated in lemma 6.3.4. �

7.2. The Arthur-Selberg Trace formula.
For the final comparison in Langlands’ method, we give the special case of the

Arthur-Selberg trace formula for GL2 that will be needed. For a fully detailed
explanation, refer to [1].
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Let H i
(2) = lim−→H i

(2)(Mm(C),C) be the direct limit of the L2-cohomology of the

spacesMm(C), which is a smooth, admissible representation of GL2(Af ). Define

H∗
(2) =

2∑
i=0

(−1)iH i
(2) and for h ∈ C∞

c (GL2(Af )), let L(h) = tr(h|H∗
(2)).

Let Z ⊂ T ⊂ B ⊂ GL2 be the center, the diagonal torus and the upper
triangular matrices. For γ ∈ GL2, let Gγ be the centralizer. Put T (Q)′ = {γ =(
γ1 0
0 γ2

)
|γ1γ2 > 0, |γ1| < |γ2|}, where we adopt the real absolute value.

Theorem 7.2.1. For any h ∈ C∞
c (GL2(Af )), we have

1

2
L(h) = −

∑
γ∈Z(Q)

vol(GL2(Q))\GL2(Af ))h(γ)

+
∑′

vol(Gγ(Q)\Gγ(Af ))

∫
Gγ(Af )\GL2(Af )

h(g−1γg)dg

+
1

2

∑
γ∈T (Q)′

∫
GL2(Ẑ)

∫
Af

h(kγ ( 1 u
0 1 ) k

−1)dudk

+
1

4

∑
γ∈Z (Q)

∫
GL2(Ẑ)

∫
Af

h(kγ ( 1 u
0 1 ) k

−1)dudk.

where the sum
∑′ is taken over the same set as in theorem 6.4.5.

Proof. cf. [30] for a specialized proof. This is a special case of Theorem 6.1 of [1].
�

Let Πdisc(GL2(A), 1) denote the set of irreducible automorphic representations
π =

⊗
p6∞ πp of GL2(A) with π∞ having trivial central and infinitesimal charac-

ter, that occur discretely in L2(GL2(Q)R>0\GL2(A)). For π ∈ Πdisc(GL2(A), 1),
let m(π) be the multiplicity of π in L2(GL2(Q)R>0\GL2(A)). To deduce the
spectral expansion of L(h), we need

Lemma 7.2.2. For any i = 0, 1, 2, there is a canonical GL2(Af )-equivariant
isomorphism

H i
(2)
∼=

⊕
π∈Πdisc(GL2(A),1)

m(π)H i(gl2, SO2(R), π∞)πf .

There are the following possibilities for the representation π∞, which has trivial
central and infinitesimal character:

(i) π∞ is the trivial representation or π∞ = sgn det. Then

H i(gl2, SO2(R), π∞)) =

 C i = 0
0 i = 1
C i = 2;

(ii) π∞ is a single discrete series representation, then

H i(gl2, SO2(R), π∞)) =

 0 i = 0
C⊕ C i = 1
0 i = 2.
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Proof. It is a combination of section 2, [1] and the content in [8]. �

Denote χ(π∞) =
2∑

i=0

(−1)i dimH i(gl2, SO2(R), π∞).

Corollary 7.2.3. For h ∈ C∞
c (GL2(Af )), L(h) =

∑
π∈Πdisc(GL2(A),1)

m(π)χ(π∞)tr(h|πf ).

7.3. Hasse-Weil zeta-function from comparison.
Fix an isomorphism Qℓ

∼= C, and recall f = fp(fp,r ∗ eΓ(pn)Qp
) ∈ C∞

c (GL2(Af )),

where f p is the characteristic function of Kp divided by its volume, as in subsec-
tion 5.4, and fp,r is defined in subsection 6.4.

Theorem 7.3.1. 2trss(Φpr |H∗(MpnmQ,Qℓ)) = L(f).

Proof. Combining theorem 6.4.5, corollary 7.1.2 and theorem 7.2.1, the rest is to
show that for γ =

(
γ1 0
0 γ2

)
∈ T (Q) with γ1γ2 > 0 and |γ1| 6 |γ2|, we have∫

GL2(Ẑ)

∫
Af

f(k−1γ ( 1 u
0 1 ) k)dudk = 0

except for γ1 = 1, γ2 = pr.
As the integral is a product of local integrals, where the local one for a prime

ℓ ̸= p is only nonzero if γ ∈ GL2(Zℓ), we deduce that γ1 and γ2 are up to sign a
power of p. We now prove that∫

GL2(Zp)

∫
Qp

(fp,r ∗ eΓ(pn)Qp
)(k−1γ ( 1 u

0 1 ) k)dudk ̸= 0

only if υp(γ1) = 0 and υp(γ2) = r. Similar to the proof of corollary 7.1.2, as long
as γ1 ̸= γ2, it is up to a constant an orbital integral of fp,r∗eΓ(pn)Qp

, which we have

computed by the twisted orbital integrals of the matching function ϕp ∗ eΓ(pn)Qpr
.

Then the continuity of the integrals implies the case γ1 = γ2. We have proved
that γ1 and γ2 are up to sign a power of p, but the case γ1 = −1, γ2 = −pr also
gives 0, since no conjugate of γ will be ≡ 1 mod m. Hence the only possibility
is γ1 = 1, γ2 = pr. �

Now we are ready to compute the zeta-function of the varietiesMm, where m
is an integer which is the product of two coprime integers, both at least 3, and
we do not consider any distinguished prime.

Theorem 7.3.2. The Hasse-Weil zeta-function ofMm is given by

ζ(Mm, s) =
∏

π∈Πdisc(GL2(A),1)

L(π, s− 1

2
)
1
2
m(π)χ(π∞) dimπKm

f ,

where Km = {g ∈ GL2(Ẑ)|g ≡ 1 mod m}. χ(π∞) = 2 if π∞ is a character and
χ(π∞) = −2 otherwise.

We give the proof of P. Scholze in [30], which shows how the Langlands’s
method works by comparison of Lefschetz and Arthur-Selberg trace formula.
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Proof. By definition, we want to compute the semi-simple local factors at all
primes p. Write m = pnm′, where m′ is not divisible by p, then m′ > 3. From
theorem 7.3.1 and corollary 7.2.3, we have

2∑
i=0

(−1)itrss(Φpr |H i(Mm,Qp
,Qℓ)) =

1

2
p

1
2
r

∑
π∈Πdisc(GL2(A),1)

m(π)χ(π∞)trss(Φpr |σπp) dim πKm
f .

We also deduce that∑
i∈{0,2}

(−1)itrss(Φpr |H i(Mm,Qp
,Qℓ)) =

1

2
p

1
2
r

∑
π ∈ Πdisc(GL2(A), 1)
dimπ∞ = 1

m(π)χ(π∞)trss(Φpr |σπp) dim πKm
f .

Indeed, the sum on the right hand side gives nonzero terms only for 1-dimensional
representations π which are trivial on Km. Using χ(π∞) = 2, dim πKm

f = 1 and
m(π) = 1, the statement then reduces to class field theory, as the geometric
connected components ofMm are parameterized by the primitive m-th roots of
unity. Notice that we may replace the semi-simple trace by the usual trace on
the IQp-invariants everywhere, we then have∏
i∈{0,2}

det(1−Φpp
−s|H i(Mm,Qp

,Qℓ)
IQp ) =

∏
π ∈ Πdisc(GL2(A), 1)
dimπ∞ = 1

L(πp, s−
1

2
)
1
2
m(π)χ(π∞) dimπKm

f .

Hence by subtracting, we deduce that

−trss(Φpr |H1(Mm,Qp
,Qℓ)) =

1

2
p

1
2
r

∑
π ∈ Πdisc(GL2(A), 1)
dimπ∞ > 1

m(π)χ(π∞)trss(Φpr |σπp) dim πKm
f ,

or equivalently

detss(1− Φpp
−s|H1(Mm,Qp

,Qℓ))
−1 =

∏
π ∈ Πdisc(GL2(A), 1)
dimπ∞ > 1

L(σss
πp
, s− 1

2
)
1
2
m(π)χ(π∞) dimπKm

f ,

with the obvious definition for the semi-simple determinant. All zeroes of the left
hand side have imaginary part 0, 1

2
or 1: Indeed, if Mm,Qp had good reduction,

Weil conjectures would imply that all zeroes have imaginary part 1
2
. In general,

the semistable reduction theorem for curves together with the Rapoport-Zink
spectral sequence imply that all zeroes have imaginary part 0, 1

2
or 1. Changing

the semi-simple determinant to the usual determinant on the invariants under IQp

exactly eliminates the zeroes of imaginary part 1, by the monodromy conjecture,
proven in dimension 1 in [28]. We also see that all zeroes of the right hand side
have imaginary part 0, 1

2
or 1. Assume π gives a nontrivial contribution to the

right hand side. Then πp cannot be 1-dimensional, because otherwise π and hence
π∞ would be 1-dimensional. Hence πp is generic. Being also unitary, the L-factor
L(πp, s − 1

2
) consists again in removing all zeroes of imaginary part 1. We find
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that

det(1−Φpp
−s|H1(Mm,Qp

,Qℓ)
IQp )−1 =

∏
π ∈ Πdisc(GL2(A), 1)
dimπ∞ > 1

L(πp, s−
1

2
)
1
2
m(π)χ(π∞) dimπKm

f .

Combining the results above yields the result. �
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