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1 Introduction

In this paper, we want to reconstruct a cubic surface starting from some combinatorial
data of it. But what ”reconstruction” means precisely? For a general situation, it consists
of the following problem.

Fix a generic geometric object. We do not know this object, but we know only partial information
about it (expressible in an abstract, combinatorial way). Our purpose is to get back all the
information about that geometric object, using only the combinatorial data that we have. The first
(obvious) request is that we can actually get the partial information we need from the knowledge
of the geometric object, of course. But mainly we want to construct a procedure that permit us
to construct uniquely an object, of the same type as the original one, and we would like that this
construction leads to an object that is isomorphic to the object we are started with. The problem
of reconstruction investigates in how much information we need to do this, and in which cases
we are able to do this. In other words, we would like to find the (combinatorial) constraints that
characterize that object.

We are interested in cubic surfaces. The combinatorial data we are starting with consist
more or less of the rational points, of the plane sections and of a ternary relation that states
when three points are collinear. Our aim is to construct a way to get from these constraints
a cubic surface that is isomorphic to the initial one. This construction does not work for
any cubic surface, for example it will fails for ruled cubic surfaces. We refer to the section
5 in the end of this paper for a precise statement of these ideas, into some theorems.

In chapter 2, we will introduce some general facts on cubic curves. In particular, we
will show that we can give to the set of the smooth rational points a structure of abelian
group, and we will analyze this structure, especially for the singular cubics.

In chapter 3, we will do the following: first we will show how we can reconstruct a
projective line; later on we will analyze how starting with a (Cm,Ca)-configuration we are
able to find the ground field of the cubic surface; finally we will reconstruct the whole
surface from a tetrahedral configuration.

In chapter 4, we translate all the geometric constructions of the previous chapter in a
combinatorial way, and we raffine our construction using pencils of plane sections.

In chapter 5, we finally state the main theorem, divided into some statements, that
sums up all what we have done in chapter 3 and in chapter 4.



2 Symmetric quasigroups and singular cubic curves

If we have any irreducible (plane) cubic curve, it is possible to give a structure of abelian
group to it. In this chapter, we intend to analyze this structure, especially for cubics that
are singular and whose singularity is defined over K, the definition field.

More generally, we will show that the smooth part of an (irreducible) cubic curve
forms algebraically an abelian symmetric quasigroup. We will see then that choosing one
smooth (K-rational) point makes it into an abelian group.

2.1 Symmetric quasigroups

We start saying what a symmetric quasigroup is. We can define it equivalently in the
following two ways:

Definition 2.1 (Symmetric quasigroup - geometric definition). Let S be a nonempty set and
consider L a subset of the cartesian product S × S × S. We will call the pair (S,L) a symmetric
quasigroup if the two following properties hold:

(i) L is invariant under permutations of factors S.

(ii) For all p, q ∈ S, there exists a unique r ∈ S such that (p, q, r) ∈ L.

Definition 2.2 (Symmetric quasigroup - algebraic definition). Let S be a nonempty set and
◦ : S × S → S a binary composition law on S. Then (S, ◦) is called a symmetric quasigroup if
the two following properties hold for all p, q ∈ S:

(a) p ◦ q = q ◦ p.

(b) p ◦
(
p ◦ q

)
= q.

We will now show that this two definitions, the geometric and the algebraic one, are
equivalent.

Proof. We will prove it in the following sense:

1. Starting from a symmetric quasigroup (S,L) as in definition 2.1, by denoting

◦ : S × S→ S the function defined through the property
(
p, q, p ◦ q

)
∈ L,

we obtain a symmetric quasigroup (S, ◦) as in definition 2.2.

2. Starting from a symmetric quasigroup (S, ◦) as in definition 2.2, we denote

L B
{(

p, q, p ◦ q
)

: p, q ∈ S
}
,

and we obtain a symmetric quasigroup (S,L) as in definition 2.1.



We pass now to prove each point.

1. Consider the couple (S,L) satisfying the properties (i) and (ii) of definition 2.1, we
define ◦ as above. Using the condition (ii), we have that ◦ is well defined. What it
remains to prove is that ◦ satisfies the properties (a) and (b) of definition 2.2.

(a) Using the definition of ◦, we get that (p, q, p ◦ q) belongs to L, and hence, by (i),
also (q, p, p◦ q) belongs to L. This means that p◦ q = q◦p, thanks to the property
of unicity in the condition (ii).

(b) Again we have that (p, q, p ◦ q) belongs to L, and hence, by (i), also (p, p ◦ q, q)
belongs to L. This implies that q = p ◦ (p ◦ q), using the unicity property in
condition (ii).

2. Consider (S, ◦) satisfying the properties (a) and (b) of definition 2.2. We have to check
that L defined above satisfies (i) and (ii) of definition 2.1.

(ii) The property (ii) follows directly by the definition of L. Fix p, q ∈ L. Then
(p, q, p ◦ q) belongs to L, and this element p ◦ q is unique with this property.

(i) We have to prove that L remains stable under permutation. This means the
following statement: if (p1, p2, p3) are in L, then (pσ(1), pσ(2), pσ(3)) belongs to L too,
for any permutation σ in the symmetric group S3. Equivalently, if p3 = p1 ◦ p2,
then we must have that pσ(3) = pσ(1) ◦ pσ(2). We need to prove this only on a
pair of generators of S3, i.e. the two permutations (12) and (123). Assume
then p3 = p1 ◦ p2. If σ = (12), we have to show that p3 = p2 ◦ p1, equivalently
p1 ◦ p2 = p2 ◦ p1, which is true by (a). If instead σ = (123), the claim becomes
p1 = p2 ◦ p3; using the property (a), this is equivalent to p1 = p2 ◦ (p2 ◦ p1), which
is true by (b).

�

Now we want to say what an abelian quasigroup is. To do this we need the following
definitions.

Definition 2.3. Let S be a symmetric quasigroup. For each p ∈ S, we define the following
automorphism:

tp : S −→ S
q 7−→ p ◦ q

This map is an involution, i.e. t2
p = idS (this holds using the property (b) of definition 2.2 of a

symmetric quasigroup).
We define then

Γ B 〈{tp : p ∈ S}〉

where with the brackets 〈〉we mean the group generated inside Aut(S), the group of automorphisms
of S, with composition of functions as multiplication.



We finally define Γ0 the subgroup of Γ consisting of elements that can be written as products
of an even number of involutions tp.

Definition 2.4. We say that a symmetric quasigroup (S, ◦) is abelian, if the group Γ0 defined
above is abelian.

There are some equivalent useful definitions of an abelian symmetric quasigroup.
Before stating them, it’s nice to have the following lemma.

Lemma 2.5. Let S be a symmetric quasigroup. Assume that we have a group law · on S, with unit
element u. Assume furthermore that this group law is commutative. Then these three properties
are equivalent:

(a) For all p, q ∈ S, we have p · q = u ◦ (p ◦ q).

(b) For all p, q ∈ S, we have p ◦ q = (u ◦ u) · p−1
· q−1.

(c) The evaluation map ϕu : Γ0
→ S, defined by sending γ 7→ γ(u), is a group isomorphism.

Proof.

a⇒ b It is clear that it is equivalent to show that (p◦q)·q·p = u◦u. Using the hypothesis and
the properties of symmetric quasigroup, we have that (p◦q)·q·p =

(
u ◦ ((p ◦ q) ◦ q)

)
·p =

(u ◦ p) · p = u ◦ ((u ◦ p) ◦ p) = u ◦ u.

b⇒ c We first see that, for all p, q, s ∈ S we have

tptq(s) = (p−1q)s

Indeed, using the hypothesis, we have that

tptq(s) = tp
(
q ◦ s

)
= tp

(
(u ◦ u) · q−1

· s−1
)

= (u ◦ u) · p−1
·

(
(u ◦ u) · q−1

· s−1
)−1

=

= (u ◦ u) · p−1
· s · q · (u ◦ u)−1 = (p−1

· q) · s,

using the commutativity.

For each p ∈ S, we can then define

τp B tutp

Observe that they are translations, because for any s ∈ S we have τp(s) = tutp(s) =
u−1
· p · s = p · s.

Using this definition, we obtain that Γ0 consists only of these kind of elements:

Γ0 = {τs : s ∈ S}



Indeed, any even product of our involutions can be rewritten as an element τs for a
suitable s ∈ S. This is clear from these two facts: first we have that tptq = tutp−1q = τp−1q;
secondly we have that τpτq = τpq, simply because these elements are translations.

After these general observations, we can define a map ϕu : Γ0
→ S sending τp 7→

τp(u) = p · u = p. Moreover ϕ becomes a group isomorphism from Γ0 to S. Indeed,
ϕ is surjective because, fixed p ∈ S, we have that ϕ(τp) = τp(u) = p; it is a group
homomorphism because ϕ(τpτq) = ϕ(τpq) = τpq(u) = pq = τp(u)τq(u). Finally, it is
injective because, if ϕ(τp) = u, then τp(u) = u, that means p = u, as just seen.

c⇒ a We first observe that p = u◦ (p◦u) = tutp(u). Hence, using the group homomorphism
property of ϕ, we get for any p, q ∈ S the following:

pq = tutp(u)tutq(u) = tutptutq(u) = u ◦
(
p ◦ (u ◦ (q ◦ u))

)
= u ◦ (p ◦ q)

�

We are now ready to state the equivalent definitions of an abelian symmetric quasi-
group. Notice that the choice of an element transforms the abelian symmetric quasigroup
into an abelian group.

Theorem 2.6 (Abelian Symmetric Quasigroup - equivalent definitions). Consider a sym-
metric quasigroup (S, ◦). The following conditions are equivalent:

(i) S is an abelian symmetric quasigroup. By definition that Γ0 is abelian.

(ii) For some element u ∈ S, there exists a structure of an abelian group on S with the three
equivalent properties of lemma 2.5: the group law is defined by pq B u ◦ (p ◦ q) and it has
u as unit element; the law is induced by the bijection ϕu : Γ0

→ S where γ 7→ γ(u); and
furthermore we have that p ◦ q = (u ◦ u)p−1q−1, for all p, q ∈ S.

(iii) For all u ∈ S, we have an abelian group law on S as in (ii).

(iv) For all p, q, r ∈ S, it holds (tptqtr)2 = id.

Furthermore, any such abelian group law, obtained once fixed an element of S, differs from the
others by a translation. With this, we mean that, fixed two such abelian group laws on S, say ·
(with unit element e) and ∗ (with unit element u), the following diagram is commutative:

S × S ·

−→ S
ψu×ψu↓ ↓ψu

S × S ∗

−→ S

where ψu : s 7→ u · s.

Proof.



i⇒ ii Suppose Γ0 abelian and, for fixed u, define pq B u ◦ (p ◦ q). We will prove that
this yields an abelian group law, and then the claim (ii) will follow using lemma 2.5.
Consider p, q, r ∈ S. The commutativity holds because pq = u◦(p◦q) = u◦(q◦p) = qp.
The unit element is u because up = u ◦ (u ◦ p) = p. The inverse of p is

p−1 B (u ◦ u) ◦ p

because pp−1 = u ◦ (p ◦ (p ◦ (u ◦ u))) = u ◦ (u ◦ u) = u. These properties hold for any
symmetric quasigroup. What only remains to prove is the associativity: we have

(pq)r = u ◦ (pq ◦ r) = u ◦ (r ◦ pq) = u ◦ (r ◦ (u ◦ (p ◦ q))) = tutrtutp(q)

and

p(qr) = u ◦ (p ◦ qr) = u ◦ (p ◦ (u ◦ (q ◦ r))) = u ◦ (p ◦ (u ◦ (r ◦ q))) = tutptutr(q)

We use now the hypothesis to conclude that the two expressions are the same,
because tutr and tutp are elements of Γ0 and hence commute.

ii⇒ iii Suppose that (S, ·) is our abelian group with unit element e and properties as in (ii).
Fix u ∈ S. Define the following map:

ψu : S −→ S
s 7−→ u · s

This is clearly a bijection of S that sends e into u. It follows that ψu defines on S
another abelian group law, with unit element u, that we will denote by ∗. Precisely
we define

p ∗ q B ψu

(
ψ−1

u (p) · ψ−1
u (q)

)
= ψu(u−1pu−1q) = u−1pq

where we write with p−1 the inverse of p with respect to the law ·. What we only
need is to prove one of the equivalent conditions of lemma 2.5 for ∗, knowing that ·
has those properties. In this way we can conclude that also the group law ∗ has the
desired properties.

We choose to prove the property (c) of lemma 2.5. We know by hypothesis that
ϕe : Γ0

→ (S, ·) is a group isomorphism. We have to show that ϕu : Γ0
→ (S, ∗)

is a group isomorphism too. Now ψu : (S, ·) → (S, ∗) is a group isomorphism, by
definition of ∗ and because it is a translation. Hence the composition of group
isomorphisms ψu ◦ ϕe : Γ0

→ (S, ∗) is again a group isomorphism.fha We have only
to prove now that

ϕu = ψu ◦ ϕe

to conclude. Fix then an element γ ∈ Γ0. We can write it as γ = τp for some p ∈ S, as
in the proof of lemma 2.5. Hence we have that ψu ◦ ϕe(τp) = u · τp(e) = u · p = p · u =
e ◦ (p ◦ u) = tetp(u) = τp(u) = ϕu(τp). This shows the identity we need to conclude.



iii⇒ i We have to show that Γ0 is abelian. Using lemma 2.5, part (c), the groups Γ0 and S
are isomorphic once we have fixed an element in S. All of the group laws on S that
we have obtained in this way are abelian, and hence also Γ0 has to be it.

i⇒ iv Suppose that Γ0 is abelian and recall that t2
p = id. Then we have:

(tptqtr)(tptqtr) = (tptq)(trtp)(tqtr) = (tptq)(tqtr)(trtp) = tptp = id

iv⇒ i Our assumption is that (tptqtr)2 = id, equivalently (tptqtr)−1 = tptqtr, i.e. trtqtp = tptqtr.
We know by the proof of lemma 2.5 that Γ0 =

{
tptq : p, q ∈ S

}
. Hence, to prove the

abelianity of Γ0, it is enough to prove the following: (tptq)(trts) = (trts)(tptq) for any
p, q, r, s ∈ S. This is equivalent to

(tptqtrts)(trtstptq)−1 = id

Hence using the hypothesis (tptqtr)−1 = tptqtr, we get (tptqtrts)(trtstptq)−1 = (tptqtrts)(tqtptstr) =
(tptqtr)−1(tstqtp)−1tstr = trtq(tptp)tq(tsts)tr = id. This proves the commutativity of the
multiplication on Γ0.

�

2.2 Group law on cubic curves

We want now to give to the smooth K-rational points of an irreducible cubic curve the
structure of an abelian symmetric quasigroup.

Let K be a field, C ⊂ P2
K an absolutely irreducible plane cubic curve defined over K.

Denote by S B Csm(K) ⊂ C(K) the set of nonsingular K-points of C. Assume that this set is
not empty. We define the collinearity relation L in the following way:

(p, q, r) ∈ L⇔ p + q + r is the intersection cycle of C with a K-line

We claim that (S,L) is an abelian symmetric quasigroup.

Proof. We start to prove that (S,L) is a symmetric quasigroup in the sense of definition 2.1:
clearly any permutation of (p, q, r) ∈ L stays in L, just because we can permute the terms
of the intersection cycle p + q + r without making any changes; furthermore, given p, q ∈ S,
there exists only one r ∈ S such that (p, q, r) belongs to L, because the intersection cycle of a
cubic plane curve with a K-line gives exactly three points counted with multiplicity (Bezout
theorem). We don’t have any problem in the singular point because it has multiplicity 2,
so any K-line passing through two (maybe equal) nonsingular points cannot pass through
the singular one (by Bezout).

We have proved that (S,L) is a symmetric quasigroup. Hence it is defined a binary
composition law ◦ on S through the formula p ◦ q = r ⇔ (p, q, r) ∈ L. It remains to check
that (S, ◦) is also an abelian quasigroup.



By theorem 2.6, we can fix u ∈ S, and prove that the operation defined by pq B u◦(p◦q)
is a commutative group law. The commutativity, the existence of the unit element and of
the inverse holds for any symmetric quasigroup, as showed in the first part of the proof of
theorem 2.6. The only thing we need then to prove is the associativity: for any p, q, r ∈ S, it
must hold (pq)r = p(qr), or in other words u◦ (pq◦r) = u◦ (p◦qr), equivalently pq◦r = p◦qr
(applying u◦ to both sides).

Fix then p, q, r, any three points of S. We don’t make any assumption on these points:
some or all of them can be equal with each other or with u. Notice that, for any two points
p1, p2 belonging to S = Csm(K), there is a unique K-line that passes through p1, p2, p1 ◦ p2,
even if p1 = p2. In this case, the line is the tangent line of C at p1 (that has to be defined
over K). Hence, we can define the cubic curve C1 consisting of the following three lines:
the line that passes through the points p, q, p ◦ q, the line that passes through u, q ◦ r, qr and
the line that passes through r, pq, r ◦ pq. It is a reducible cubic curve defined over K. It can
happen that some (or all) of the lines are the same, in which case we simply consider that
line as a double (triple) line. Then C and C1 determine a pencil of plane cubic curves: each
cubic of this pencil passes through the nine points

p, q, p ◦ q,u, q ◦ r, qr, r, pq, r ◦ pq

obtained intersecting C with C1, and counted with multiplicity.
This means that the space of cubics obtained imposing the linear conditions of passage

through those nine points contains, as a subspace, the space of the cubics belonging to
our pencil. Now the dimension of the space of cubic forms is 9 (there are 10 coefficients
in a cubic polynomial, but we can scale freely by an invertible element of K) and the
dimension of the space of cubics in our pencil is clearly 1, hence there can be at most
8 = 9 − 1 independent linear conditions on the cubics. We will indeed show that any
cubic passing through eight of our points belong to the pencil of cubic, equivalently that
the dimension of the two spaces are the same. Denote by d the dimension of the space of
cubics obtained imposing the passage through eight of the nine points considered above.
We know that d ≥ 1. The effect of adding one linear condition to a space of cubics is to
decrease its dimension by 1, but only if it is independent. We can then impose to our space
of cubics passing through 8 points (we consider for instance p, q, p ◦ q,u, q ◦ r, qr, r, pq) to
pass also in the point of intersection between the line that contains p, q, p ◦ q and the line
that contains u, q ◦ r, qr. By Bezout, any such cubic must contain all these two lines, and
hence it must contain also another line, that is precisely the one passing through r, pq, r◦pq.
Hence this space consists only by one cubic (exactly C1), and hence has dimension 0. This
implies that we must have d − 1 = 0, and so d = 1.

Now that we have proved that any cubic that contains p, q, p ◦ q,u, q ◦ r, qr, r belongs to
our pencil of cubics. Consider then another reducible cubic, that we will call C2, consisting
of the following three K-lines: the line that passes through the points q, r, q◦ r, the line that
passes through u, p ◦ q, pq and the line that passes through p, qr, p ◦ qr. For what just done,
it belongs to the pencil, and, due to the fact that any two cubics of the pencil intersect in
the points p, q, p◦q,u, q◦ r, qr, r, r◦pq, while C and C2 intersect in p, q, p◦q,u, q◦ r, qr, r, p◦qr,



then it has to be that p ◦ qr = r ◦ pq. This implies the associativity. �

This proves in particular that the choice of a smooth K-rational point transforms the
cubic into an abelian quasigroup.

2.2.1 Cubic curves with a K-rational singular point

In what we will do in chapter 3 and 4, we are interested in the type of group that a singular
cubic curve with K-rational singular point can assume.

Consider then an absolutely irreducible cubic curve, defined over a field K, in the
Weierstrass model

C : zy2 + a1xyz + a3yz2 = x3 + a2x2z + a4xz2 + a6z3

with ai ∈ K. Take u B [0 : 1 : 0], the neutral element of our group law on Csm(K). Suppose
that C is singular and that the (unique) singular point is defined over K (this is always
true for fields of characteristic different from 2 and 3, and for perfect fields). It is easy to
show that this point can never be u. Because the singular point has coordinates in K, we
can move it in the origin of our plane, namely in [0 : 0 : 1]. We get the following equation
for C:

zy2 + bxyz + cx2z = x3

with b B a1, c B −a2.
The group structure varies with the kind of tangents that the singular point has.

Recall that we obtain the tangent cone at P moving this point in the origin of some
system of affine equations, and then taking, from the affine equation, the terms of lowest
degree.

In our situation, the notion of tangent cone at the singular point p = [p1, p2, p3] coincides
by the notion of the polar at p defined by

3∑
i=1

pi
∂ f
∂xi

(x1, x2, x3) = 0

where f is the equation of our cubic curve (or more generally of an hypersurface). See
lemma 3.6 for the details.

In our case then, the tangent cone at the singular point [0 : 0 : 1] satisfies the equation

y2 + bxy + cx2 = 0

It’s not hard to see that, if we define s1, s2 as the two roots in K̄ of the polynomial
t2 + bx + c, we have y2 + bxy + cx2 = (y − s1x)(y − s2x), . Hence the splitting behaviour into
lines of y2 + bxy + cx2 = 0 over K, depends exactly on what kind of roots t2 + bx + c has.
Precisely the following cases can happen:



Definition 2.7. 1. C is of multiplicative type: t2 + at + b has two distinct solutions in K, the
tangent cone consists of two distinct lines defined over K.

2. C is of additive type: t2 + at + b has one double root in K, the tangent cone consists of one
double line defined over K.

3. C is of twisted type: t2 + at + b is irreducible over K. In particular:

3a) C is of twisted multiplicative type: t2 + at + b has two distinct solutions in some
quadratic extension of K but not in K. This means that the tangent cone consists of two
distinct lines that are defined in some quadratic extension of K, but not in K.

3b) C is of twisted additive type: t2 + at + b has one double solution in some quadratic
extension of K but not in K. This means that the tangent cone consists of a double
line that is defined in some quadratic extension of K, but not in K. This case can only
happen in characteristic 2 (and furthermore the field has not to be perfect, in particular
not finite).

We will now specify some possibilities that can happen, concerning the above defini-
tion.

• If char(K) , 2, we can obtain the solutions of t2 + at + b (in some quadratic extension
of K) using the resolutive formula for quadratic equations:

t1,2 =
−a ±

√

a2 − 4b
2

If there are two distinct solutions, and one of them is in K, then also the other belongs
to K, because

√
∆

2 = t1 −
a
2 belongs to K, where ∆ = a2

− 4b.

If instead we have a double root, then it has to be t = − a
2 , and so it must live in K.

This implies that in characteristic different from 2 the twisted additive case cannot
happen.

• If char(K) = 2, the polynomial t2 + at + b has two distinct roots (in its splitting field
over K) if and only if a , 0.

Indeed, let t̄ a root of t2 + at + b. Then t̄ + a is the other solution of the polynomial:

(t + t̄)(t + t̄ + a) = (t + t̄)2 + a(t + t̄) = t2 + t̄2 + at + at̄ = t2 + at + b

The two solutions are distinct if and only if a , 0. Furthermore, they belong to the
same quadratic extension of K.

The following theorem is the main result of this section.

Theorem 2.8 (group structures on Csm(K)). Let C be an irreducible singular cubic curve, defined
over a field K. Assume that the singular point of C is defined over K. Denote as usual by Γ0 the
abelian group associated with the symmetric quasigroup Csm(K).



1. If C is of multiplicative type, Γ0 is isomorphic to K×.

2. If C is of additive type, Γ0 is isomorphic to K+.

3. If C is of twisted multiplicative type, Γ0 is isomorphic to the group of elements of norm 1 of
some quadratic extension of K (it is a subgroup of the multiplicative group of that extension).

4. If C is of twisted additive type (that implies char(K) = 2), Γ0 is isomorphic to{
(α, β) ∈ K2 : α2 = β + bβ2

}
.

Proof. Recall that we have seen that we have a group isomorphism of Γ0
→ Csm(K) once

we have fixed an element u (and hence a group law) on Csm(K).
We start then from a cubic curve C of equation x3 = (y2 +axy+bx2)z: it has the singular

point in the origin [0 : 0 : 1], and also only the point u = [0 : 1 : 0] lies on the line at infinity
z = 0 (observe that this u is a flex point: u = u ◦ u, because z = 0 is its tangent).

First, we define the following map:

P1(K)\
{
[1 : m̄] : m̄2 + am̄ + b = 0

}
−→ Csm(K)

[λ : m] 7−→
[
(m2 + amλ + bλ2)λ : (m2 + amλ + bλ2)m : λ3]

This correspondence is obtained intersecting the smooth points Csm(K) of our cubic
curve, with the pencil of projective lines over K through the singular point, namely the
lines λy = mx, with λ,m ∈ K not both zero. Each line (except the tangents at the singular
points) determines exactly one point on Csm(K), using Bezout’s theorem. We obtain then
the above correspondence between the set of projective lines through the origin (written
as points of a P1(K)), with the smooth points of the cubic.

By this observation, it is then clear that the inverse of this map has to be:

Csm(K) −→ P1(K)\
{
[1 : m̄] : m̄2 + am̄ + b = 0

}[
x : y : z

]
7−→

[
x : y

]
We will now formally show that the two maps are bijections, one the inverse of the

other. Indeed,[
x : y : z

]
7−→

[
x : y

]
7−→

[
(y2 + axy + bx2)x : (y2 + axy + bx2)y : x3

]
=

=
[
(y2 + axy + bx2)x : (y2 + axy + bx2)y : (y2 + axy + bx2)z

]
=

[
x : y : z

]
and

[λ : m] 7−→
[
(m2 + amλ + bλ2)λ : (m2 + amλ + bλ2)m : λ3

]
7−→

7−→

[
(m2 + amλ + bλ2)λ : (m2 + amλ + bλ2)m

]
= [λ : m]

We have obtained a well defined bijection from Csm(K) toP1(K)\
{
[1 : m̄] : m̄2 + am̄ + b = 0

}
.



Observation. In the particular case of K = Fq finite field, from this map, we directly obtain
the number of K-rational smooth points of our singular cubic curve:

• if C is of multiplicative type, we get

#(Csm(K)) = #(P1(K)) − #
(
{[1 : m̄] : m̄2 + am̄ + b = 0}

)
= (q + 1) − 2 = q − 1

• if C is of additive type, we get

#(Csm(K)) = #(P1(K)) − #
(
{[1 : m̄] : m̄2 + am̄ + b = 0}

)
= (q + 1) − 1 = q

• if C is of twisted type, we get

#(Csm(K)) = #(P1(K)) − #
(
{[1 : m̄] : m̄2 + am̄ + b = 0}

)
= (q + 1) − 0 = q + 1

Now we will see what happens in each case.

1. Suppose C of multiplicative type: then there are s1, s2 ∈ K two distinct zeroes of the
equation t2 + at + b = 0. Notice that [1 : s1], [1 : s2] represent the inclinations of
the two tangents at the singular point. With these assumptions, we can write the
equation of C as

x3 = (y − s1x)(y − s2x)z

We have already seen that we have a bijection between Csm(K) andP1
\ {[1 : s1], [1 : s2]}.

To define a (group) isomorphism between Csm(K) and K×, we continue defining an-
other map:

P1
\ {[1 : s1], [1 : s2]} −→ K×

[λ : m] 7−→ m−s1λ
m−s2λ

The meaning of this is, sort of speaking, to move one of the problematic tangent
to infinity, and the other to 0. This map is clearly a bijection (it comes from a
projectivity).

It remains only to prove that the composition of the two maps

ψ : Csm(K) −→ K×[
x : y : z

]
7−→

y−s1x
y−s2x

is now a group isomorphism. Recall that the unit element of the group law over
Csm(K) is u = [0 : 1 : 0]. Writing the group law additively, and using the fact that
u = u ◦ u and −p B (u ◦ u) ◦ p = u ◦ p, then by definition p + q B u ◦ (p ◦ q) = −(p ◦ q).
So the definition of the group law becomes equivalent to

p + q + (p ◦ q) = u



Hence, to prove that ψ is a group homomorphism, it is enough to prove that
ψ(p)ψ(q)ψ(p ◦ q) = ψ(u), for any p, q ∈ Csm(K).

Observe that ψ(u) = ψ ([0 : 1 : 0]) = 1. It is then sufficient to show that, fixed any line
not containing the singular point, and called p, q, r the three points of intersection of
it with the cubic curve, we have always that

ψ(p)ψ(q)ψ(r) = 1

To do that, we can change the variables y 7→ y − s2x. This gives in the new variables
the equation of the cubic

x3 = (y − sx)yz

where s B s1 − s2 , 0, and now

ψ
(
[x : y : z]

)
=

y − sx
y

Furthermore the coordinates of the singular point and of the point at infinity are not
changed. Now we don’t have nonsingular points on the line y = 0, so we can pass
to the affine coordinate system obtained sending that line to infinity: we get that the
lines z = αx + β, with β , 0, are all the lines that intersect the cubic curve but that
do not contain the singular point. The affine equation of the curve has now become
x3 = (1 − sx)z and ψ ([x : 1 : z]) = 1 − sx .

We want to show that, for the three points of intersection of the line z = αx + β with
the cubic curve, that are pi = [xi : 1 : αxi +β] such that x3

i = (1−sxi)(αxi +β) (i = 1, 2, 3),
we have that

ψ(p1)ψ(p2)ψ(p3) = 1

equivalently
(1 − sx1)(1 − sx2)(1 − sx3) = 1

Observing that the xi are solution of x3 = (1− sx)(αx + β) = −sαx2 + (α− sβ)x + β, then

x1x2x3 = β x1x2 + x1x3 + x2x3 = sα − β x1 + x2 + x3 = −sα

We get

(1 − sx1)(1 − sx2)(1 − sx3) = 1 − s(x1 + x2 + x3) + s2(x1x2 + x1x3 + x2x3) − s3x1x2x3 =

= 1 − s(−sα) + s2(sβ − α) − s3β = 1 + s2(α − α) + s3(β − β) = 1

as wanted.

We have proved that ψ is a group isomorphism between Csm(K) and K×.



2. Suppose C of additive type: then there exists s ∈ K the unique zero of the equation
t2 + at + b = 0. Notice that [1 : s] represents the inclination of the double tangent at
the cusp. With these assumptions, we can write the equation of C as

x3 = (y − sx)2

We have already seen that we have a bijection between Csm(K) and P1
\ {[1 : s]}. To

define a (group) isomorphism between Csm(K) and K+, we continue defining another
map:

P1
\ {[1 : s]} −→ K+

[λ : m] 7−→ λ
m−sλ

Sort of speaking, we have moved the inclination of the tangent to infinity. This map
is clearly a bijection (it comes from a projectivity).

It remains only to prove that the composition of the two maps

ϕ : Csm(K) −→ K+[
x : y : z

]
7−→

x
y−sx

is now a group isomorphism. As before, it is enough to prove that ϕ(p) +ϕ(q) +ϕ(p◦
q) = ϕ(u), for any p, q ∈ Csm(K). Observe that now ϕ(u) = ϕ ([0 : 1 : 0]) = 0. So it is
sufficient to show that, fixed any line not containing the singular point, if we call
p, q, r the three points of intersection of it with the cubic curve, we have

ϕ(p) + ϕ(q) + ϕ(r) = 0

To do that, we can change the variables as y 7→ y − sx. This gives, in the new
variables, the equation of the cubic curve

x3 = y2z

and now
ϕ

(
[x : y : z]

)
=

x
y

Furthermore the coordinates of the singular point and of the point at infinity are not
changed. Now we don’t have smooth points on the line y = 0, so we can pass to the
affine coordinate system obtained sending that line at infinity: we get that the lines
z = αx + β, with β , 0, are all the lines that intersect the cubic curve but that do not
contain the singular point. The affine equation of the curve has now become x3 = z
and ϕ ([x : 1 : z]) = x .

We want to show that, for the three points of intersection of the line z = αx + β with
the cubic curve, that precisely are pi = [xi : 1 : αxi + β] such that x3

i = (1− sxi)(αxi + β)
(i = 1, 2, 3), we have that

x1 + x2 + x3 = 0



This follows because x3 = (αx + β) has no term of second degree.

We have proved that ϕ is a group isomorphism between Csm(K) and K+.

3. Suppose C of twisted multiplicative type: there are no solutions in K of t2 +at+b = 0,
but there are two distinct solution s1, s2 in some quadratic extension of K.

Define L B K(s1, s2) = K(s1), the quadratic extension of K that is also the splitting
field of our polynomial. Over L our cubic curve is of multiplicative type, hence
we can use the point 1., to get an isomorphism ψ : Csm(L) � L×. This implies that
Csm(K) � ψ(Csm(K)) ⊆ L×. We will now see that

ψ(Csm(K)) =
{
l ∈ L× : NL/K(l) = 1

}
where NL/K indicates the Galois norm of L over K.

One side of the inclusion is easy:

NL/K
(
ψ([x : y : z])

)
= NL/K

(
y − s1x
y − s2x

)
=

y − s1x
y − s2x

· σ

(
y − s1x
y − s2x

)
=

y − s1x
y − s2x

y − s2x
y − s1x

= 1

where σ is the K-automorphism of L that exchanges s1 and s2.

Viceversa, notice that the inverse of the map ψ is the map

ψ−1 : L× −→ Csm(L)
u 7−→

[
(s1 − s2)2u(1 − u) : (s1 − s2)2u(s1 − s2u) : (1 − u)3]

If u = 1, then ψ−1(1) = [0 : 1 : 0]. If not, we can write

ψ−1(u) =

[
(s1 − s2)2 u

(1 − u)2 : (s1 − s2)2 u
(1 − s)2

s1 − s2u
1 − u

: 1
]

Take then u an element of L× of norm 1, precisely u = a + bs1 ∈ L× = K(s1)× is such
that NL/K(u) = u · σ(u) = 1. First, observe that (s1 − s2)2 = a2

− 4b ∈ K. Secondly, we
have

u
(1 − u)2 =

u
1 − 2u + u2 =

u
uσ(u) − 2u + u2 =

1
σ(u) + u − 2

∈ K

because u + σ(u) = TraceL/K(u) ∈ K. Finally,

s1 − s2u
1 − u

=
(s1 − s2u)(1 − σ(u)

(1 − u)(1 − σ(u)
=

s1 − s2u − s1σ(u) + s2uσ(u)
N(1 − u)

=

=
s1 + s2 − (s2u) − (σ(s2u)

N(1 − u)
=
−b − Trace(s2u)

N(1 − u)
∈ K

Hence ψ−1(u) ∈ Csm(K) for u ∈ L× of norm 1, and we have proved that:

Csm(K) �
{
l ∈ L× : NL/K(l) = 1

}
⊂ L×



4. Suppose C of twisted additive type: the characteristic of K has to be 2, our polynomial
has to be t2 + b = 0 and is irreducible over K. It has a unique solution s in some
quadratic extension of K. Precisely s < K is such that s2 = b.

Define then L B K(s).

Over L our cubic curve is of additive type: we can then use the point 2., to get an
isomorphism ϕ : Csm(L) � L+. This implies that Csm(K) � ϕ(Csm(K)) ⊆ L+. We will
now see that

ϕ(Csm(K)) =
{
l = α + βs ∈ L : α2 = β + bβ2

}
One side of the inclusion is easy: consider [x : y : z] ∈ Csm(K); we have

ϕ([x : y : z] =
x

y + sx
=

x(y + sx)
y2 + bx2 =

xy
y2 + bx2 + s

x2

y2 + bx2

We can defineα B xy
y2+bx2 and β B x2

y2+bx2 . If we writeγ B x
y+sx , we have that y

y+sx = 1+sγ
and we get

α = γ(1 + sγ) and β = γ2

We obtain
α2 + β + bβ2 = γ2 + bγ4 + γ2 + bγ4 = 0

what we want.

For the converse, it is easy to check that the inverse of ϕ is the following map:

L+
−→ Csm(L)

u 7−→ [u : 1 + su : u3]

Suppose u = α + sβ, with α, β ∈ K, and α2 + bβ2 = (α + sβ)2 = β. Then

ϕ−1(u) = ϕ−1(α + sβ) = [α + sβ : 1 + s(α + sβ) : (α + sβ)3] =

=

[
1 :

α + sβ + s(α + sβ)2

(α + sβ)(α + sβ)
: (α + sβ)2

]
=

[
1 :

α
β

: β
]
∈ Csm(K)

as wanted.

�



3 Geometric Reconstruction of Cubic Surfaces

In the first part of this chapter, we will see a procedure to reconstruct a projective line,
with its ground field K. We pass then to analyze the geometric reconstruction of a cubic
surface. To do this we will need a (Cm,Ca)-configuration. We will explain precisely, in
section 3.2, what this configuration is, but mainly it consists of two K-rational points of a
cubic surface with their respective tangent plane sections, one of multiplicative type and
the other one of additive type. The existence of this configuration allows us to reconstruct
the field K (using a particular projective line). At the same time, if we have also two other
K-rational points with respective tangent plane sections of additive or multiplicative type
(i.e. in total a tetrahedral configuration), we can reconstruct uniquely our cubic surface,
up to linear transformation.

3.1 Geometric reconstruction of a projective line

In this section, we will start from a geometric projective line. In the first construction,
we will get from it the combinatorial data that we will need for the reconstruction. Then
we will show explicitly how we can reconstruct our projective line starting from these
combinatorial constraints.

Definition 3.1 (Geometric Projective Lines). Let K be a field with cardinality ≥ 4. Define
H B P1(K), that hence must contain at least 5 points. Choose five distinct points

0a,∞a, 0m, 1m,∞m ∈ P
1(K)

We will call the data
(
K,P1(K), {0a,∞a, 0m, 1m,∞m}

)
a geometric projective line.

We will get now the combinatorial data we will need.
Construction 1. We can give to the set A B H\{∞a} a structure of abelian group. It is
enough to choose an affine coordinate xa on P1(K) such that it has zero in 0a and infinite
in∞a. Precisely, we have a coordinate:

xa : A ∪ {∞a} −→ K ∪ {∞}
0a 7−→ 0
∞a 7−→ ∞

Such a map is fixed, once we fix the point of A that is sent to 1 in K. This point has to be
different from 0a and ∞a. Using this coordinate, we define an additive group law on A
transporting the addition on K+. Namely, for any two points p, q ∈ A, we define

p +A q B x−1
a

(
xa(p) + xa(q)

)
where here + is the addition in K. Furthermore, we will extend the group law of A on a
partial law on A ∪ {∞a}, setting for any q ∈ A

q ±A∞a B ∞a



Similarly we can give to the set M B H\{0m,∞m} a structure of abelian group. It is
enough to choose an affine coordinate xm on P1(K) such that it has zero in 0m, infinite in
∞m and one in 1m. Precisely, we have a unique such coordinate:

xm : M ∪ {0m,∞m} −→ K× ∪ {0,∞}
0m 7−→ 0
∞m 7−→ ∞

1m 7−→ 1

Using this coordinate, we define a multiplicative group law on M transporting the multi-
plication on K×. Namely, for any two points p, q ∈M, we define

p ·M q B x−1
m

(
xm(p) · xm(q)

)
where here · is the multiplication in K×. Furthermore we will extend the group law of M
to a partial law on M ∪ {0m,∞m} setting for any p ∈M

p ·M 0m B 0m, p ·M∞m B ∞m, iM(0m) B ∞m, iM(∞m) B 0m

where we denote with iM the inversion on (M, ·M).
Finally we have a well defined bijection

µ : M ∪ {0m,∞m} −→ A ∪ {∞a}

that we can simply suppose to be the identity map µ = id on H = P1(K).

Observation. To a geometric projective line
(
K,P1(K), {0a,∞a, 0m, 1m,∞m}

)
are always at-

tached in a unique way the coordinate xm : M ∪ {0m,∞m} → K ∪ {∞} and a class of coordi-
nates xa : A ∪ {∞a} → K ∪ {∞} that varies up to which point is sent into 1. It is enough to
act as in the construction above.

Observation. Given any bijection µ as above, it is always possible to reconduct ourselves
to the case where µ becomes the identity, in the sense that, if this is not the case, we can
suitably change the coordinate on M to reconduct ourselves in the desired situation.

To do this we will proceed in the following way: we start from the two abelian groups
(M, ·M) and (A,+A), and we have also a bijection µ : M ∪ {0m,∞m} → A ∪ {∞a}. We define
the set M′ B µ(M) and the points 0′m B µ(0m) and ∞′m B µ(∞m). It then holds that
M′
∪ {0′m,∞′m} = A ∪ {∞a}. We will put on M′ the multiplication induced by M: namely,

for any p′, q′ ∈ M′, we define p′ ·M′ q′ B µ
(
µ−1(p′) ·M µ−1(q′)

)
. This is equivalent to give to

M′ the multiplication induced by K× using the affine coordinate x′m B xm ◦ µ−1. Indeed
by definition p′ ·M′ q′ = µ ◦ x−1

m

(
xm ◦ µ−1(p′) · xm ◦ µ−1(q′)

)
= x′−1

m
(
x′m(p′) · x′m(q′)

)
. Hence we

have the following commutative diagram:

M ∪ {0m,∞m}
µ
−→ M′

∪ {0′m,∞′m}
id
−→ A ∪ {∞a}

xm ↘ ↓ x′m ↓ xa

K ∪ {∞} K ∪ {∞}



Hence we can always assume thatµ is the identity, with a suitable change of coordinate.

We will now state the lemma that sums up the procedure of reconstructing our pro-
jective line, together with the field of definition K.

Lemma 3.2 (Reconstruction of Projective Lines). Consider the data
(
M,A, µ, {0a,∞a, 0m, 1m,∞m}

)
that are obtained from a geometric projective line H = P1(K) as in construction 1. Here µ = id.
We can define a map

ν : M ∪ {0m,∞m} −→ A ∪ {∞a}

as follows:

1. Define ν0 B id.

2. Fix ζ ∈ A\{0a, 0m −A∞m}. Then for p ∈M ∪ {0m,∞m}, we define

ν1(p) B ∞a ·M iM(∞m −A ζ) ·M (p −A ζ)

Now we have that ν1(∞m) = ∞a.

3. For p ∈M ∪ {0m,∞m}, define

ν2(p) B ν1(p) −A ν1(0m)

Now we still have that ν2(∞m) = ∞a and furthermore ν2(0m) = 0a.

4. For p ∈M ∪ {0m,∞m}, define

ν(p) = ν3(p) B ν2(ν−1
2 (1a) ·M p)

where 1a is an element of A\{0a} and precisely, for any q ∈ A∪{∞a}, ν−1
2 (q) = (q+Aν1(0m)) ·M

(∞m −M ζ) ·M iM(∞a) +A ζ.

Then ν is a well defined bijection, and it is such that

ν(0m) = 0a and ν(∞m) = ∞a

Using this bijection ν, (M, ·M) induces on the set A\{0a} the structure of a multiplicative abelian
group: by definition we put

p ∗M q B ν (νp
·M ν

q)

for any p, q ∈ A. We obtain then that A = H\{∞}, where ∞ B ν(∞m) = ∞a is a field, with zero
0 B ν(0m) = 0a and unity 1 B ν(1m).

Furthermore H\{∞} � K as fields through xa (restricted to A). We get then our line back:

P1(H\{∞}) � P1(K).



Proof. Observe that ν is always a well defined bijection, because it is the composition of
translations by elements of M with the product ·M, and of translations by elements of A
using the sum +A (here we use the assumptions over ζ, to exclude the case of translations
by improper elements, that are the constant map and hence not bijective).

In the geometric case we are considering, we can consider the fractional linear trans-
formation, automorphisms of K ∪ {∞}, defined by the formula

fi B xa ◦ νi ◦ x−1
m

for each i we have considered.
Hence, for each i, we have the following commutative diagram:

M ∪ {0m,∞m}
νi
−→ A ∪ {∞a}

xm ↓ ↓ xa

K ∪ {∞}
fi
−→ K ∪ {∞}

Now f0 is a fractional linear transformation with no specific properties; f1 sends ∞ to ∞,
hence it has the form x 7→ ax + b for some a, b ∈ K, a , 0; f2 sends∞ to∞ and 0 to 0, hence
it has the form x 7→ ax for some a ∈ K×; finally f3 sends ∞ to ∞, 0 to 0 and 1 to 1, hence
f3 is the identity on K ∪ {∞}. All these facts follow from the definition of fi and from the
properties of vi: for example, f1(∞) = f1(xm(∞m)) = xa ◦ ν1(∞m) = xa(∞a) = ∞.

Now f3 = xa ◦ ν ◦ x−1
m , hence we have that our ν is indeed the change of coordinates:

ν = x−1
a ◦ xm

We define on (A,+A) the multiplication ∗M induced by M through ν: by definition we
have

p ∗M q B ν
(
ν−1
·M ν

−1
)

for any p, q ∈ A. The coordinate xa already defined induces a group isomorphism from
(A,+A) to K+, by definition of +A. We will prove that it is also a field isomorphism from
(A,+a, ∗m) to K. Indeed, fix p, q ∈ A. We get, recalling also the definition of ·M,

xa(p ∗M q) = xa ◦ ν(ν−1(p) ·M ν−1(q)) = xa ◦ ν ◦ x−1
m

(
xm ◦ ν

−1(p) · xm ◦ ν
−1(q)

)
= xa(p) · xa(q)

We have proved that (A,+a, ∗M) is a field isomorphic to the field K. �

Observation. We can rephrase lemma 3.2 in the case that µ , id. What we only have to do
is substituting (M, ·M) with (M′, ·M′), the respective points and the respective coordinate, as
observed before the lemma, and in each step considering νi◦µ instead of νi only. Precisely:

1. ν0 B µ.

2. Fixed ζ ∈ A\{0a, µ(0m) −A µ(∞m)}, for p ∈M ∪ {0m,∞m},

ν1(p) B µ
(
µ−1(∞a) ·M iM(µ−1(µ(∞m) −A ζ)) ·M µ−1(µ(p) −A ζ)

)



3. For p ∈M ∪ {0m,∞m}, define

ν2(p) B ν1(p) −A ν1(µ(0m))

4. For p ∈M ∪ {0m,∞m}, define

ν(p) = ν3(p) B ν2(ν−1
2 (1a) ·M p)

where 1a is an element of A\{0a} and precisely, for any q ∈ A ∪ {∞a}, we have
ν−1

2 (q) = µ−1
(
µ
(
µ−1(q +A ν1(0m)) ·M µ−1(µ(∞m) −A ζ) ·M iM(µ−1(∞a))

)
+A ζ

)
.

Notice also that the fis are not changed: what does change is the coordinate xm instead.

M ∪ {0m,∞m}
µ
−→ M′

∪ {0′m,∞′m}
νi
−→ A ∪ {∞a}

xm ↘ ↓ x′m ↓ xa

K ∪ {∞}
fi
−→ K ∪ {in f ty}

So it is still true that the fis remains fractional linear transformations.

3.2 (Cm,Ca)-configurations

We will now define the main tool for the reconstruction of cubic surfaces.

Definition 3.3. We call a (Cm,Ca)-configuration the following family of subschemes in P3
K:

• Two distinct K-points pm, pa ∈ P3(K);

• Two distinct K-planes Pm,Pa ⊂ P3 such that Pm contains pm but not pa, and Pa contains pa

but not pm;

• Two geometrically irreducible cubic curves Cm,Ca, defined over K, and such that:

1. Cm ⊂ Pm is of multiplicative type with pm ∈ Cm(K) as its singular double point (its
node);

2. Ca ⊂ Pa is of additive type with pa ∈ Ca(K) as its singular double point (its cusp);

Furthermore we will call:

• l B Pm ∩ Pa the intersection line of our two planes;

• 0m,∞m the intersection points of the two tangents to Cm at pm with the line l;

• ∞a the intersection point of the tangent to Ca at pa with the line l.

We will assume that the three points 0m,∞m,∞a are distinct.



Definition 3.4. A (Cm,Ca)-configuration is tangent to some (irreducible) cubic surface V if we
add the assumptions that:

• Pm is the tangent plane to the surface at pm, and Cm is the cubic curve obtained intersecting
Pm and V;

• Pa is the tangent plane to V at pa, and Ca is the cubic curve obtained intersecting Pa and V.

3.2.1 (Cm,Ca)-configurations from cubic surfaces

We will analyze now which points of a cubic surface V = Z(F) are of multiplicative type
and which are of additive type. For a nonsingular K-point p = (p1, ..., p4) in V(K), we
would like to define a quantity ∆(p) that stores the information about the tangents at p as a
singular point on its tangent section. To do this we start defining the following geometric
object.

Definition 3.5. Consider a smooth point p = (p1, ..., p4) in V(K). We start defining a quadratic
surface, called the polar at p, with the following equation:

Pp(x1, ..., x4) :
4∑

i=1

pi
∂
∂xi

F(x1, ..., x4) = 0

Observe that a point q = (q1, ..., q4) belongs to Pp if and only if
∑4

i=1
∂
∂xi

F(q1, ..., q4)pi = 0,
that means that p belongs to the tangent plane at q. Furthermore all the singular point of
the cubic surface belong to Pp for any p.

We will need the following two lemmas:

Lemma 3.6. Let S be a singular cubic hypersurface with an isolated singularity in the point P.
Then the polar at P and the tangent cone at P have the same equation.

Proof. We will do this for simplicity for plane cubic curves. Let F a form of degree three
that defines a cubic curve C. We can suppose that it has singular point in the origin
[0 : 0 : 1]. Hence C has equation k1x3 + k2x3 + z2(λx + µy) + z(ax2 + by2). Furthermore
λ = µ = 0 because ∂F

∂x |P = ∂F
∂y |P = 0. Hence in affine coordinates F = ax2 + by2 + k1x3 + k2y3,

so the tangent cone at P is, by definition, ax2 + by2 = 0, the same equation for the polar at
P = [0 : 0 : 1].

Notice that, for a generic hypersurface of degree three, we act exactly in the same way:
we pass to affine coordinate with the singular point in the origin, the term of degree 2 in the
variable z disappears imposing that the (other) partial derivatives are zero in the singular
point, hence the tangent cone at P and the polar at P will have the same equation. �

Lemma 3.7. An irreducible quadric is singular (degenerate) if and only if one (and then all) of its
points has tangent section consisting of a double line.



Proof. Suppose we have an irreducible quadric with singular point s. We can assume that
the singular point has coordinates [0 : 0 : 0 : 1], and that there is another point p with
coordinates [0 : 0 : 1 : 0], so the equation of the quadric has the shape αx2 + βy2 + axy +
bxz + cyz. The tangent plane at p is then βx + γy = 0, so if we intersect it with the quadric
we get the double line x2 = 0 on that plane (or the whole plane, which we have supposed
that is not possible).

Viceversa, consider a point p of the quadric. We can suppose that it has coordinates
p = [0 : 0 : 0 : 1] and that the tangent plane is w = 0. Suppose also that the intersection of
the tangent plane with the quadric is a double line, i.e. αx2 + βy2 + γz2 + axy + bxz + cyz =
(λx + µy + νz)2 = l(x, y, z)2. So the equation of the quadric is l2 + w(dx + ey + f z) = 0. So
the derivatives are

(
2l(x, y, z)a 2l(x, y, z)b 2l(x, y, z)c dx + ey + f z

)
. If d = e = f , quadric is

a double line. If not, we get a singular point intersecting the line dx + ey + f z = 0 with
l(x, y, z) = 0, that lies on the same plane. �

This two lemmas implies that:

Theorem 3.8. Consider a smooth K-rational point p = (p1, ..., p4) of an irreducible cubic surface
V. Then the tangent cone at p in the tangent plane consists of two distinct lines if and only if the
polar quadric is non-degenerate; the tangent cone at p in the tangent plane consists of one double
line if and only if the polar quadric is degenerate.

Proof. Consider the singular cubic curve C that is the tangent section at p with V. In the
tangent plane, C has a tangent cone in the singular point that is precisely the polar quadric
Pp intersected with the tangent plane. It is a reducible conic consisting of two (maybe
equal) lines, so it is the tangent section at p of the polar Pp. By the second lemma above,
the polar is then degenerate if and only if the tangent cone at p to the tangent section C in
V consists of one double line. �

Observation. If p as above do not line on a line in V, then it has tangent section of multi-
plicative type if and only if the polar quadric at p is non-degenerate, it has tangent section
of additive type if and only if the polar quadric at p is degenerate.

We will adopt two different approaches, depending on the characteristic of the ground
field K.

• We suppose first that the characteristic of the field is different from 2.

In this case, to any quadric
∑4

i≤ j=1 ai jxix j is associated a 4x4 symmetric matrix P in
a way that we can write the equation defining the surface in the following way:
F(x1, ..., x4) = (x1x2x3x4)P(x1x2x3x4). This matrix is precisely

P =


a11

a12
2

a13
2

a14
2a12

2 a22
a23
2

a24
2a13

2
a23
2 a33

a34
2a14

2
a24
2

a34
2 a44





Recall that the quadric associated to that matrix is degenerate if and only if the
determinant of P is 0.

Hence from the polar Pp at the point p = (p1, ..., p4) we can construct a matrix with
entries that depends linearly from the coefficients p1, ..., p4. We will call then ∆(p) ∈ K
the determinant of the matrix associated to the polar at p. It is a form of degree 4 in
the variables (p1, ..., p4).

We have then that,

– ∆(p) , 0 if and only if the tangent section at p to the cubic surface V is of (maybe
twisted) multiplicative type, or is reducible containing two distinct lines that
intersect in p.

– ∆(p) = 0 if and only if the tangent section at p to the cubic surface V is of addivite
type, or is reducible containing one double line that passes through p.

So the points of additive types are contained in the intersection between the quadric
∆(x1, ..., x4) = 0 and our cubic surface. In particular, they are contained in a Zarinski
closed subset of V.

• Suppose now that the characteristic of K is 2, so we cannot act as above. However, to a
quadric over a field of characteristic two, defined by a quadratic form Q(x1, ..., x4) = 0
is associated a bilinear form B(v,w) B F(v+w)−F(v)−F(w), where v,w ∈ K4. (Observe
that if characteristic is different then 2, B(v, v) = F(2v)−2F(v) = 4F(v)−2F(v) = 2F(v)).
To this bilinear form, it exists a matrix R such that B(v,w) = vtRw. Here we have

R =


0 a12 a13 a14

a12 0 a23 a24

a13 a23 0 a34

a14 a24 a34 0


if we write Q(x1, ..., x4) =

∑4
i≤ j=1 ai jxix j.

We will prove the following lemma.

Lemma 3.9. A quadric (in P3
K) defined by a quadratic equation Q(x1, ..., x4) = 0 is singular

if and only if Rv = 0 for some K-point v of the quadric.

Proof. The quadric is singular if and only if it exists a point v = (v1, ..., v4) of the
quadric such that ∂Q

∂xi
|p = 0 for i = 1, ..., 4. This last condition in characteristic two is

equivalant to
∑4

j,i, j=1 ai jv j for i = 1, ..., 4, and this is equivalent in saying that Rv = 0.
This gives the proof. �

We will show that, in characteristic two, every quadric that is a polar to a point p of
an irreducible cubic surface is singular.



Theorem 3.10. Over a field of characteristic 2, for any smooth point p of an irreducible
cubic curve V, we have always that the tangent section at p is of (maybe twisted) addivite
type, or is reducible containing one double line that passes through p.

Proof. We will show that, if R is the matrix associated to the quadricPp, then det(R) =
0. Once proved this, lemma 3.9 will state that a quadric is singular if and only if has
a K-rational point, hence it has to be singular because p belongs to it.

So, it remains to prove that det(R) = 0. It is a straightforward calculation. Using
Laplace expansion on the first row, we get for a general R coming from any quadric:

det(R) = a2
12a2

34 − a12a23a34a14 − a12a13a34a24 + a2
13a2

24 − a13a14a23a24 − a13a24a34a12+

+a2
14a2

23 − a14a12a23a34 − a14a13a24a23 = a2
12a2

34 + a2
13a2

24 + a2
14a2

23 =

= (a12a34 + a13a24 + a14a23)2

If now we suppose that the quadric is a polar at some point p = (p1, ..., p4) to a cubic
surface V, ai j is the coefficient of xix j of the polar. We can obtain this monomials of
the polar only from deriving things of the type xix jxk in the equation of the cubic
surface, because we obtain zero when we derive things like x2

i x j in xi in characteristic
2. If we take {i, j, k, l} = {1, 2, 3, 4}, and we define λi the coefficient of the monomial
x jxkxl in the equation of the cubic surface, then we get that

ai j = λkpl + λlpk

So ai jakl = λkλiplp j + λkλ jplp j + λlλipkp j + λlλ jpkp j. And if we sum up the terms that
we will need in the expression of our discriminant a12a34 + a13a24 + a14a23 we see
that each of the possible terms λiλ jpkp j appear twice in that formula, so we get that
a12a34 + a13a24 + a14a23 = 0 and so

det(R) = (a12a34 + a13a24 + a14a23)2 = 0

what we wanted. �

3.2.2 Reconstruction of the configuration

We want now to reconstruct this (Cm,Ca)-configuration, up to isomorphism. To do this
we only need two 0-cycles on l: the three points of intersection of l with Cm and the three
points of intersection of l with Ca. We have to suppose that these points are defined over
K.

We can choose projective coordinates over K on Pm; we will call them [x : y : z] and
impose that l has the equation z = 0, thinking it as the line at infinity. Furthermore we
can assume that the singular K-point pm of our cubic curve has coordinate [0 : 0 : 1]. This



implies that the coefficient of the monomials in the equation of our cubic z3, xz2, yz2 are
zero. Hence our cubic has an equation of this form: zg2(x, y) + g3(x, y) = 0, where gn is
some form of degree n (n = 2, 3). We can observe also that the tangents at the singular
point [0 : 0 : 1] are defined by g2(x, y) = 0. We finally suppose that these tangents are
exactly x = 0 and y = 0 obtaining an equation of Cm of the form

xyz + g3(x, y) = 0

We can do the same for Ca, choosing projective coordinates over K on Pa such that l
has equation z′ = 0 and the point pa has coordinate [0 : 0 : 1]. We suppose now instead
that the tangent is x′ = 0 obtaining an equation of Ca of the form

y′2z′ + g′3(x′, y′) = 0

In both equations, giving the three points of intersection Cm ∩ l, respectively Ca ∩ l, is
the same as determining the cubic form g3, resp. g′3. This gives g3(x, y) up to a nonzero
scalar factor of K, in the equation of our cubic curve. But z is defined up to multiplication
by constants from K×, then Cm and Ca are defined by the two equations we have obtained,
up to isomorphism. We have showed that, using the two 0-cycles of intersection allows
us to reconstruct the configuration up to isomorphism.
Observation. If a (Cm,Ca)-configuration is tangent to some cubic surface, then the two
0-cycles coincide: we have only the three point of intersection of l with the surface.

3.3 Geometric reconstruction of K from a (Cm,Ca)-configuration

Consider now a (Cm,Ca)-configuration. We would like to reconstruct the ground field K.
Denote by M B Cm,sm(K) and by A B Ca,sm(K) the sets of smooth points of the two cubic
curves, and give to them respectively the two group structures that are obtained choosing
a base point, that we will call 1m and 0a respectively, as done in section 2.2. We will then
define the following two bijections:

• Consider C̃m the normalization of Cm. Notice that we have already seen its construc-
tion in the proof of lemma 2.8. We define the map α : C̃m(K)→ l(K), that sends each
smooth K-point q of Cm to the point obtained intersecting l with the K-line passing
through q and pm, and sending the two K-points of C̃m that lie over pm to the two
points obtained intersecting l with the two tangent lines at pm. This is clearly a
bijection.

• We define the map β : Ca(K)→ l(K), sending each smooth K-point q of Ca to the point
obtained intersecting l with the K-line passing through q and pa, and sending the pa

to the point obtained intersecting l with the tangent at pa. This is clearly a bijection.

If we call 0m and∞m the images through α of the two points over pm, and∞a the image
of pa through β, then we have a bijection

µ B β−1
◦ α : M ∪ {0m,∞m} → A ∪ {∞a}



This gives to (M,A, µ), through the projective line l, the combinatorial data that we need to
reconstruct the ground field K, as done in the reconstructing lemma 3.2. Hence we have
reconstructed isomorphic versions of the field K and of the projective line l.

3.4 Geometric reconstruction of the cubic surface V

If we add to a (Cm,Ca)-configuration two other tangent plane sections of either additive
or multiplicative type, we can reconstruct uniquely our cubic surface. In this section, we
will explain how. We need a definition first.

Definition 3.11. We call a tetrahedral configuration the following family of subschemes in P3
K:

• four distinct K-points p1, p2, p3, p4 ∈ P3(K);

• four distinct K-planes P1,P2,P3,P4 ⊂ P3 with the property that Pi contains pi but not p j

with j , i (this for each i = 1, 2, 3, 4);

• four geometrically irreducible cubic curves C1,C2,C3,C4, defined over K, with the property
that Ci ⊂ Pi is of multiplicative type or is of additive type, with singular point in pi ∈

Ci(K) (this for each i = 1, 2, 3, 4). Furthermore we assume that at least one of them is of
multiplicative type, and at least another one is of additive type.

Definition 3.12. Consider now an irreducible cubic surface V defined over K. We say that the
tetrahedral configuration (pi,Ci,Pi)i=1,...,4 is tangent to V if:

• V(K) contains the four points p1, p2, p3, p4;

• P1,P2,P3,P4 are the tangent planes to V at p1, p2, p3, p4 (respectively);

• C1,C2,C3,C4 are the tangent sections Ci = Pi ∩ V (this for each i).

We will now describe how actual reconstruction works.

Construction 2 (Reconstruction of the surface). Consider an irreducible cubic surface V,
defined over K, a field with more than four elements. Our starting point is a tetrahedral
configuration (pi,Ci,Pi)i=1,...,4 that is tangent to V. Knowing this configuration, we want to
reconstruct our surface back.

We start choosing a suitable system of coordinates x1, ..., x4 overP3
K, in such a way that

the equation of each plane Pi is xi = 0. We know that V is a cubic surface in P3, so it is
defined by an equation F(x1, ..., x4) = 0, where F is a cubic form with coefficients in K. We
can also write for each i = 1, ..., 4

F(x1, ..., x4) = f (i)
3 (x j : j , i) + xih

(i)
2 (x1, ..., x4)

where f (i)
3 is a form of degree 3 and h(i)

3 is a form of degree two. Observe that, from this
formula, we could easily obtain the equation of the tangent section Ci: it is enough to



intersect the tangent plane xi = 0 with the surface F = 0 where F is written as above. So Ci

has equation f (i)
3 (x j : j , i) = 0 (inside the plane Pi).

Conversely, if we know the equation of Ci, we know the polynomial f (i)
3 (x j : j , i), up

to a scalar factor.
We can go further. We can also write h(i)

2 (x1, ..., x4) = g(k)
2 (x j , k) + xkh

(k)
1 (x1, ..., x4) and

h(k)
1 (x1, ..., x4) = g(l)

1 (x j , l) + g(l)
0 xl, where the pedices in the expressions hn and gn indicate

that they are forms of degree n over K. We then obtain the following formula for F:

F(x1, ..., x4) = f (i)
3 (x j : j , i) + xig

(k)
2 (x j : j , k) + xixkg(l)

1 (x j : j , l) + g(l)
0 xixkxl

for any i, k, l = 1, ..., 4.
Observe also that we have f (k)

3 (x j : j , k) =
(

f (i)
3 (x j : j , i, xk = 0)

)
+ xig

(k)
2 (x j : j , k) inter-

secting with xk = 0, and we have f (l)
3 (x j : j , l) =

(
f (i)
3 (x j : j , i, xl = 0) + xig

(k)
2 (x j : j , k, xl = 0)

)
+

xixkg(l)
1 (x j : j , l). intersecting with xl = 0.

If we know these four polynomials f (1)
3 (xi : j , 1), ..., f (4)

3 (xi : j , 4), we can then recon-
struct the polynomial F in the following way:

1. Fix i. Start considering f (i)
3 (x j : j , i).

2. Consider k , i. Add to the previous polynomial the expression xig
(k)
2 (x j : j , k), using

the formula of f (k)
3 (x j : j , k) written before.

3. Take l , i, k. Add xixkg(l)
1 (x j : j , l) to what we just obtained, using the expression of

f (l)
3 (x j : j , l) written before.

4. It remains t , i, k, l. Add to all the expression the term g(l)
0 xixkxl if is present in

f (t)
3 (x j : j , t).

For how we have reconstructed F, we know that it is the right one.

But we do not have the polynomials f (i)
3 (x j : j , i); what we have are the equations

of the Ci: to get them it is enough to consider two tangent sections of the configuration
of different types, reconstruct the projective line between them (the line of intersection of
the two tangent planes) as done in 3.3, in order to be able to reconstruct the two equations
acting as in section 3.2.2.

Hence we have f (i)
3 (x j : j , i) up to nonzero element of K. Because we do not know this

scalar, some ambiguities can arise in reconstructing our surface V. However, under certain
conditions, we can reconstruct V uniquely. Precisely, if there is a common monomial with
nonzero coefficient two equations of the tangent section of the configuration, then we
can multiply one of the two expressions with a nonzero scalar in order to have the same
constant in front of that monomial. If we can do this for all the expressions, then we
can reconstruct V uniquely: we can glue correctly the equations of the Ci because we can
’connect’ the four equations with those common monomials.



We will now state this in a more formal way making use of a graph G with four vertices
(1, ..., 4). We will say that two (distinct) vertices i and j are connected by an edge if there
exists a cubic monomial that has nonzero coefficient in both f (i)

3 and f ( j)
3 . The only possible

monomials that can achieve this result are those in the variables (xk : k , i, j). We have
to choose an ordered set {i, k, l, t} of vertices such that each element is connected by an
edge to the previous and to the following one (all the elements are distinct). So, using this
ordered set, we act as in the points 1), ..., 4) above. Since there exists an edge connecting the
previous and the following equations of our configuration, the same monomial is present
in the two equations, hence it is enough to multiply one of them by a nonzero scalar to
get the same coefficient as the other one. In this way, there is a unique way to reconstruct
the equation F.

The condition to reconstruct uniquely and without ambiguities F, up to a nonzero
scalar factor, i.e. the existence of that ordered set, is then clear to be equivalent to the
fact that G is connected. If so, we can glue in a unique way all the four equations of the
tetrahedral configuration to get our F back.

We have proved that:

Proposition 3.13. A tetrahedral configuration, tangent to an irreducible cubic surface V and with
connected graph G, allows us to reconstruct uniquely the equation of V, up to isomorphism.

Example. We will show this procedure now in an example. Suppose we have obtained the
following tangent sections:{

x1 = 0
x3

4 = x2
2x4 + x2

2x3 +
√

2x2x3x4{
x2 = 0
x1x2

3 − x3
4 + 3x2

1x4 − 2x3
1 = 0{

x3 = 0
x3

4 − 3x2
1x4 + 2x3

1 = x2
2x4{

x4 = 0
2x3

1 = x2
2x3 + x1x2

3

1. We start writing: f (1)
3 (x2, x3, x4) = x3

4 − x2
2x4 − x2

2x3 −
√

2x2x3x4.

2. We rescale multiplying by −1 and add the monomials of f (2)
3 that do not appear

already: x3
4 − x2

2x4 − x2
2x3 −

√
2x2x3x4 − 3x2

1x4 + 2x3
1 − x1x2

3.

3. All monomials of f (3)
3 appears already: x3

4−x2
2x4−x2

2x3−
√

2x2x3x4−3x2
1x4 + 2x3

1−x1x2
3.

4. All monomials of f (3)
3 appears already. The equation of the cubic surface is finally:



x3
4 − x2

2x4 − x2
2x3 −

√
2x2x3x4 − 3x2

1x4 + 2x3
1 − x1x2

3.

This results holds for more general ’configurations’:

Proposition 3.14. Consider a configuration made of four K-planes P1, ...,P4 and four irreducible
cubic curves C1, ...,C4 over them, with given equations. Set li j B Pi ∩ P j the line of intersection of
the two planes.

If we suppose that Ci ∩ li j = C j ∩ li j for any i, j = 1, ..., 4, then we can uniquely construct a
cubic surface V, such that V ∩ Pi = Ci.

Furthermore, if the cubic Ci is singular, then the plane Pi is tangent to V.

Proof. Without loss of generality we can assume that Pi is the coordinate plane defined by
the equation xi = 0. We will use the following:

Lemma 3.15. The fact that C1, ...,C4 are irreducible cubic curves, implies that the graph G of the
configuration is connected.

Proof. We will prove this by absurd: suppose then that the graph G is not connected. Two
situations can occur:

• One of the vertices of G is not connected to anything: we can and will suppose that
this vertex is 4. We will analyze now the expression of f (4)

3 (x1, x2, x3). Saying that 4
is not connected in G means that, if we consider the monomials xl

1xm
2 , xl

1xm
3 , xl

2xm
3 of

degree 3 for suitable l,m ∈ Z≥0, they don’t have nonzero coefficient in f (4)
3 (x1, x2, x3),

and because x4 doesn’t appear in this expression, the only possibility is that

f (4)
3 (x1, x2, x3) = λx1x2x3

with λ ∈ K×. Hence the equation of C4 is λx1x2x3 = 0 for some λ ∈ K×. This means
that C4 is a reducible cubic curve, which is not possible.

• Every vertex of G is connected to another one, but only one and not more. We
can assume that 1 is connected to 2, 3 is connected to 4 and there are no other
segments that could connect them. Consider again f (4)

3 (x1, x2, x3). Saying that
4 is not connected to 1 nor 2, means that the degree-3 monomials xl

2xm
3 , xl

1xm
3

don’t have nonzero coefficient in f (4)
3 (x1, x2, x3), for any suitable l,m ∈ Z≥0. Hence

f (4)
3 (x1, x2, x3) = δx1x2x3 + h(4)(x1, x2) where δ ∈ K and h(4) is a cubic form of degree 3

in the variables x1,x2. We can use the same reasoning as in the previous point, to get
that f (1)

3 (x2, x3, x4) = αx2x3x4 + h(1)(x3, x4), f (2)
3 (x1, x2, x3) = βx1x3x4 + h(2)(x3, x4), where

α, β ∈ K and h(1), h(2) are two cubic forms of degree 3 in the variables x3,x4. From the
expression of f (1)

3 we see that x3
2 doesn’t appear in f (4)

3 ; from the expression of f (2)
3 we

see that x3
1 doesn’t appear in f (4)

3 , hence

f (4)
3 (x1, x2, x3) = δx1x2x3 + ax2

1x2 + bx1x2
2

with a, b ∈ K. The equation of C4 is then δx1x2(x3 + ax1 + bx2) hence C4 is a reducible
cubic curve, which is not possible.



�

So, we have showed that G is connected. However, if we try to construct the equation
of a cubic surface with four given plane sections as in construction 2, another problem can
occur. Indeed, we can patch the four equation in a unique way thanks to the connectedness
of G, but only once we have fixed an order of patching: some of the monomials can be
left out. For example, if we have started writing f (1)

3 (x2, x3, x4) = x3
2 − x2

3x4 and we have
that f (2)

3 (x1, x3, x4) = x3
1 − x2

3x4 + x3
3, then we will get the intermediate expression for F that

is x3
2 − x2

3x4 + x3
1, but the monomial x3

3 do not appear and could never do.
We will show now that this is avoided when we make the assumption that Ci ∩ li j =

C j ∩ li j for any i, j = 1, ..., 4. Indeed, now li j has equation xi = 0 ∧ x j = 0, so the condition
is equivalent to the fact that the monomials in the two other variables have the same
coefficients (after rescaling). This implies that all the monomials in one or two variable
can be patch together. It remains the problem of monomials in three variable, but it is not:
these monomials can only appear in one of the four expressions f (i)

3 (x j : j , i), hence they
have to be written in the final equation of F.

Hence this assumption assures that the constructed surface V is such that V ∩ Pi = Ci,
and also that the construction is independent by the choice of the order of our actions.

Finally, the only possibility for a section of a cubic surface that is an irreducible singular
cubic is that it was obtained by intersecting V with a tangent plane. �

Corollary 3.16. A tetrahedral configuration, tangent to an irreducible cubic surface V, allows us
to reconstruct uniquely the equation of V, up to isomorphism.

Proof. By the lemma in the proof, a tetrahedral configuration has graph G connected.
So we can take off this hypothesis in proposition 3.13. Notice also that we use the
singularity of the cubics only to reconstruct the lines li j, in order to get the equations of
the configuration. �



4 Combinatorial Reconstruction of Cubic Surfaces

In this chapter, we will rephrase all the geometric constructions of chapter 3 in a combi-
natorial language, doing some refinements in particular in the reconstruction of K.

4.1 Combinatorial Projective Line

We now store in the following definition, the combinatorial data that we need to recon-
struct a projective line, and that we can obtain through the construction 1 of chapter
3.

Definition 4.1 (Combinatorial projective line). Consider an abstract set H, with five elements
in it denoted as

0a,∞a, 0m, 1m,∞m

Suppose that A = H\{∞a} has a structure of (additive) abelian group with unit element 0a, and
M = H\{0m,∞m} has a (multiplicative) abelian group structure with unit element 1m, and with
inversion map i : M→M. Furthermore suppose that we have a bijection

µ : M ∪ {0m,∞m} → A ∪ {∞a}

connecting the two sets. We extend the group law of M in a partial one on M ∪ {0m,∞m} putting,
for any p ∈M,

p · 0m B 0m, p · ∞m B ∞m, i(0m) B ∞m, i(∞m) B 0m

In a similar way we extend the group law of A in a partial one on A∪ {∞a} putting, for any q ∈ A,

q ±∞a B ∞a

We call the data
(
A,M, µ, {0a,∞a, 0m, 1m,∞m}

)
a combinatorial projective line if furthermore

the resulting bijection ν, obtained using lemma 3.2 (see also the observation after it), gives to A
a structure of a field, with sum the sum on A and with multiplication the multiplication of M
induced on A\{0a} using ν: we set

p ∗M q B ν (νp
·M ν

q)

for any p, q ∈ A.

The following lemma states that from these combinatorial data we can construct
uniquely a geometric projective line, while lemma 3.2 states that, if these data comes from
a geometric projective line, then we have constructed exactly that line.

Lemma 4.2. Consider a combinatorial projective line
(
A,M, µ, {0a,∞a, 0m, 1m,∞m}

)
. Recall that

in oarticular the set A with its own addition and multiplication induced from M through ν is a
field, where ν : M ∪ {0m,∞m} −→ A ∪ {∞a} is the bijection of lemma 3.2. Then we get a natural
identification

A ∪ {∞a} = P
1(A).



4.2 Combinatorial Cubic Surfaces

We will now define the combinatorial equivalent of a geometric cubic surface (precisely
the combinatorial equivalent of the smooth part of its K-rational points).

Definition 4.3. A combinatorial cubic surface is a non-empty set S with the following two
structures:

• A symmetric ternary relationL ⊂ S3 that we will call collinearity. Three elements p, q, r ∈ S
are collinear if (p, q, r) ∈ L.

• A collection P of subsets of S whose elements we will call plane sections.

Furthermore we assume that (S,L,P) satisfies the following axioms:

1. Collinearity axioms.

(i) For any p, q ∈ S, there exists an element r ∈ S such that (p, q, r) ∈ L.
(ii) We will call a triple (p, q, r) ∈ L strictly collinear if r is uniquely determined by p and

q and all the three elements are dinstict. Furthermore we will denote by Ls the subset
of L that consists of all the triples that are strictly collinear. We assume that this set Ls

is a symmetric ternary relation (the unicity property has to be respected by symmetries
in L).

(iii) Consider two distinct elements p, q ∈ S and suppose that there exist two elements
r1 , r2 in S satisfying (p, q, r1) ∈ L and (p, q, r2) ∈ L. With these assumptions, we will
call a line in S the set of all such r’s: precisely l = l(p, q) B {r ∈ S : (p, q, r) ∈ L}.
Furthermore, we assume that l3

⊂ L: this means that any three points of l are collinear.

2. Plane sections axioms.

(i) For any p ∈ S, we will call the set Cp B {q ∈ S : (p, p, q) ∈ L} a tangent plane section
and we assume any such Cp belongs to P.

(ii) Composition axiom.
– Consider C ∈ P a plane section that is not a tangent one and that does not contain

any line in S. Then, if we denote LC B {(p, q, r) ∈ L : p, q, r ∈ C} the ternary
relation induced by L on C, the couple (C,LC) is an abelian symmetric quasigroup.

– Consider Cp ∈ P a tangent plane section that does not contain any line in S and
denote C0

p B Cp\{p}. Then, if we denote LC0
p
B {(p, q, r) ∈ L : p, q, r ∈ C0

p} the
ternary relation induced by L on C0

p, the couple (C0
p,LC0

p
) is an abelian symmetric

quasigroup.
(iii) Fix λ B (p, q, r) ∈ L where at least two of the points p, q, r are distinct. We will call a

pencil of plane sections the following subset of P:

Πλ B {C ∈ P : p, q, r ∈ C}

We assume the two following properties:



– If λ = (p, q, r) do not lie on a line in S, then

S\{p, q, r} =
∐
C∈Πλ

(C\{p, q, r})

– If λ = (p, q, r) belongs to a line l in S, then

S\l =
∐
C∈Πλ

(C\l)

4.2.1 Combinatorial cubic surfaces of geometric origin

We start from a field K and from an irreducible cubic surface V defined over it.

Proposition 4.4. We will give the following definitions:

• Denote by S B Vsm(K) the set of nonsingular K-points of V.

• Define the symmetric ternary relation L in this way: (p, q, r) ∈ L if and only if p + q + r is
the complete intersection cycle of V with a K-line in P3 or if p, q, r lie on a K-line contained
in V(K).

• All the elements of P are obtained in the following way. Consider a K-plane P ⊂ P3 that
contains two distinct K-points of S, or that is tangent to a K-point of S, or contains one of the
tangent lines to the singular point of a tangent section, that belongs to S. Then C B P(K)∩S
is an element of P.

Then (S,L,P) is a combinatorial cubic surface.

Proof. It is clear that all the Collinearity axioms and Plane section axiom (iii) hold for all
the smooth points of a cubic surface (mainly by Bezout). It is also clear that if a point
is non-singular, the definition of its tangent section of Plane section axiom (i) is the right
one. Finally, in Plane section axiom (ii), we assume that the plane sections do not contain
any line, hence they are irreducible cubic curves, singular if the plane was tangent, hence
their smooth points forms a symmetric quasigroup as in section 2.2. �

Observation. Also ruled cubic surfaces are combinatorial cubic surfaces, but observe that
Plane section axiom (ii) does not make any request for them.

4.3 Combinatorial (Cm,Ca)-configurations

Now we will define the combinatorial equivalent of a (Cm,Ca)-configuration.

Definition 4.5. Consider (S,L,P) a combinatorial cubic surface. Suppose we have the following
data:



• Two distinct elements pm, pa ∈ S, that are not lying on a line in S.

• The two respective tangent plane sections Cpm ,Cpa ∈ P.

Let r ∈ S be the unique element of S such that λ B (pa, pm, r) ∈ L, and denote by Πλ the respective
pencil of plane sections. Define C0

pm
B Cpm\{pm} and C0

pa
B Cpa\{pa}.

Furthermore consider the binary relation R ⊂ Cpa × Cpm , where by definition we have, for
p ∈ C0

pm
and q ∈ C0

pa
, that (p, q) ∈ R if and only if there exists a plane section P ∈ Πλ with p, q ∈ P,

that (pa, q) ∈ R if and only if (p, q) < R for all p ∈ C0
pa

, and that (p, pm) ∈ R if and only if (p, q) < R
for all q ∈ C0

pm
.

We will then call (pm, pa,Cpm ,Cpa) a (Cm,Ca)-configuration if the following conditions are
satisfied:

(i) R is a graph of some functionρ : Cpa → Cpm which is bijective except in two points that are both
sent to pm. We will call these two points 0m and∞m (they are such thatρ(0m) = ρ(∞m) = pm).
Let∞a B ρ(pa). Assume also that 0m,∞m , pa and∞a , pm, in other words, 0m,∞m ∈ C0

pa

and∞a ∈ C0
pm

.

(ii) Denote A B C0
pa

and M B C0
pm

and choose two points 0a ∈ A and 1m ∈ M. By the
composition axiom of our combinatorial cubic surface, we can give to A and to M the
structure of abelian groups, choosing respectively 0a and 1m as the zero and the one of the
group laws. Define µ : M ∪ {0m,∞m} → A ∪ {∞a} as the bijection that is ρ−1 on M and on
0m and∞m is the identity of A (restricted to those two points).

(iii) Finally assume that Cpm ∩ Cpa consists of three distinct points.

4.4 Combinatorial Tetrahedral Configurations

Finally we define the combinatorial equivalent of a geometric tetrahedral configuration.

Definition 4.6. Consider (S,L,P) a combinatorial cubic surface. Suppose we have the following
data:

• Four distinct elements p1, p2, p3, p4 ∈ S that pairwise do not lie on a line in S.

• The four respective tangent plane sections Cp1 ,Cp2 ,Cp3 ,Cp4 ∈ P, which have attached to
them a fixed label of being ”multiplicative” or of being ”additive”, and furthermore they
cannot have all the same label.

For any pi, p j with i , j, we have the following. Let ri j ∈ S be the unique element of S such
that λi j B (pi, p j, ri j) ∈ L, and denote by Πλi j the respective pencil of plane sections. Define
C0

pi
B Cpi\{pi} and C0

p j
B Cp j\{p j}.

Furthermore consider the binary relation Ri j ⊂ Cpi × Cp j , where by definition we have, for
p ∈ C0

pi
and q ∈ C0

p j
, that (p, q) ∈ Ri j if and only if there exists P ∈ Πλi j with p, q ∈ P, that



(pi, q) ∈ Ri j if and only if (p, q) < Ri j for all p ∈ C0
pi

, and that (p, p j) ∈ Ri j if and only if (p, q) < Ri j

for all q ∈ C0
p j

.
We will then call (p1, p2, p3, p4,Cp1 ,Cp2 ,Cp3 ,Cp4) a combinatorial tetrahedral configuration

if the following conditions are satisfied:

(i) Ri j|C0
pi
×C0

pj
is a graph of some function ρi j : C0

pi
→ C0

p j
that is bijective. Furthermore, we define

the improper points of Cpi , one improper point if Cpi is additive and two if it is multiplicative,
in the following way: they are the (one or two) points of Cp j that are in relation with pi in
the sense of Ri j. In the same way, we also define the improper points of Cp j : one if Cp j is
additive, two if it is multiplicative. So they are the points of Cpi that are in relation with p j

in the sense of Ri j.

(ii) Now, using the composition axiom on our combinatorial cubic surface, we can give to C0
pi

and to C0
p j

the structure of abelian groups, choosing one element in each set to become the
neutral element. Define then µi j : C0

pi
∪ {its improper points} → C0

p j
∪ {its improper points}

as the bijection, that is ρ on C0
pi

and the identity on the improper points of Cpi (identity on
Cp j restrected too those points.

(iii) Finally assume that Cpi ∩ Cp j consists of three pairwise distinct points.

It is obvious that a combinatorial tetrahedral configuration contains in itself a combi-
natorial (Cm,Ca)-configuration.



5 Reconstruction Theorems

In the previous chapter, we have given all the definitions that we will need now, definitions
that store the combinatorial information required for the reconstruction.

The lemma of section 5.1 shows how we can construct a field K and a cubic surface
V in a unique way using the given combinatorial data. The theorem of section 5.2
shows that the construction explained in the lemma has the properties that are needed
for reconstruction: so the first part shows how we can derive the combinatorial data we
need from our starting geometric objects. The second part states that if we do derive this
combinatorial data from a cubic surface and then we apply the construction in the lemma,
we get a field K′ and a surface V′ that are isomorphic to the original field K and to the
original surface V.

5.1 Construction of a geometric cubic surface from combinatorial data

Lemma 5.1 (Part 1 - Construction of the ground field). Suppose that we are given a combina-
torial cubic surface and a combinatorial (Cm,Ca)-configuration in it.

If the data
(
A,M, µ, {0a,∞a, 0m, 1m,∞m}

)
, that we can get from the definition of combinatorial

(Cm,Ca)-configuration, yields a structure of combinatorial projective line, then we can use lemma
3.2 to construct a field K, together with a geometric projective line P1(K).

Proof. This lemma is tautological. It follows directly from the definition of a combinatorial
projective line. �

Observe that now we do not need any more the line of intersection of the two planes
of the configuration, but we use the pencil of plane sections between our two points to get
a bijection between the two singular curves, to represent a combinatorial projective line.

Lemma 5.2 (Part 2 - Construction of the cubic surface). Suppose that we are given a combi-
natorial cubic surface and a combinatorial tetrahedral configuration. Assume that each tangent
plane section defines, together with a section of the other type in the configuration, a combinatorial
projective line as in the previous lemma.

If the graph G of the configuration is connected, then we can uniquely construct a cubic surface
V.

Proof. The first assumption guarantees the reconstruction of the configuration as in section
3.2.2 (and a bit also in construction 2). Then we can look at theorem 3.14: G is connected
by hypothesis, and the other assumption of the theorem is true by (iii) in the definition of
a combinatorial tetrahedral configuration. So a cubic surface V can always be uniquely
constructed in this way. �



5.2 Reconstruction of the cubic surface

Theorem 5.3 (Part 1 - Combinatorial data from a geometric cubic surface). We start from a
field K with more than four points and from an irreducible cubic surface V defined over it.

If there exists a geometric (Cm,Ca)-configuration or a geometric (tangent) tetrahedral configu-
ration, over K, such that every three points of intersection between the tangent sections are defined
over K, then we can derive a combinatorial (Cm,Ca)-configuration or a combinatorial tetrahedral
configuration.

Proof. As done in section 4.2.1, we have that (Vsm(K),L,P) is a combinatorial cubic surface.
If we have a geometric (Cm,Ca)-configuration or a geometric (tangent) tetrahedral configu-
ration as above, then it is straightforward that the definitions given in section 4.2.1 lead to
a combinatorial (Cm,Ca)-configuration and to a combinatorial tetrahedral configuration.
Observe that condition (iii) in the definition of a combinatorial (Cm,Ca)-configuration and
of a combinatorial tetrahedral configuration requires that each three points of intersection
between the sections are K-rational. �

Observation. We can slightly improve this statement, if these geometric configurations are
not defined over K but they are defined over the algebraic closure of K. Then it exists a
finite extension of K, over which the geometric and then the combinatorial configurations
exists.

We can further observe that there exists some irreducible cubic surfaces that do not
have these geometric configuration even on the algebraic closure of K. It is the case of
ruled cubic surfaces: each tangent section contains a K-line, and then it is a reducible
cubic, neither of multiplicative, nor additive type.

Furthermore, for fields of characteristic 2, reconstruction is never possible, because
there never exist points of multiplicative types in this situation (look at theorem 3.10).

Theorem 5.4 (Part 2 - Combinatorial Reconstruction of Cubic Surfaces). Consider a field
K with more than four elements and an irreducible cubic surface V defined over it. Suppose we
are given a combinatorial (Cm,Ca)-configuration and a combinatorial tetrahedral configuration of
geometric origin, i.e. that can be obtained as in Part 1 of the Theorem. (This is possible if and only
if such configurations do exists.)

Then it is possible to uniquely construct a field K′ and a cubic surface V′, as in the construction
lemma of the previous section (section 5.1). Furthermore we have a natural identification between
the fields K′ and K and between the cubic surfaces V′ and V.

Proof. For the part regarding the ground field K, it follows directly from what we have
done for the projective lines (sections 3.1 and 4.1)). For what concerning the cubic sur-
face, from the combinatorial data of geometric origin, we can construct uniquely a cubic
surface, as in the second part of the lemma of the previous section 5.1, because the graph



G has to be connected (theorem 3.13) and because a (Cm,Ca)-configuration do define a ge-
ometric projective line. This surface V′ is tangent to the given (reconstructed) tetrahedral
configuration, as in theorem 3.14. Hence V′ has to be isomorphic to V, the cubic surface
we started with. This ends the proof. �
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