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Abstract

Robustness is the ability of a network to continue performing well when it is subject to failures
or attacks. In this thesis we survey robustness measures on simple, undirected and unweighted
graphs, network failures being interpreted as vertex or edge deletions. We study graph mea-
sures based on connectivity, distance, betweenness and clustering. Besides these, reliability
polynomials and measures based on the Laplacian eigenvalues are considered.

In addition to surveying existing measures, we propose a new robustness measure, the nor-
malized effective resistance, which is derived from the total effective resistance. Total effective
resistance is — within the field of electric circuit analysis — defined as the sum of the pairwise
effective resistances over all pairs of vertices. The strength of this measure lies in the fact that
all (not necessarily disjoint) paths are considered, in other words, the more backup possibilities,
the larger the normalized effective resistance and the larger the robustness. A chapter is dedi-
cated to optimizing the normalized effective resistance, first for graphs with a fixed number of
vertices and diameter, and second for the addition of an edge to a given graph.

For all of the measures described above we evaluate the effectiveness as a measure of network
robustness. The discussion and comparison of robustness measures is illustrated by a number
of examples. Where possible we make extensions to weighted graphs and for all statements we
provide either an elaboration of the original proof, or — when a rigorous proof is not available —
we provide one ourselves.

Keywords: network robustness; graph measures; Laplacian eigenvalues; graph spectrum; effec-
tive resistance; optimization

AMS classification: 05C50; 05C81; 05C90; 94C05; 94C15
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Chapter 1

Introduction

1.1 The motivation for studying network robustness

As we live in a highly networked world, where vital facilities such as hospitals and fire brigades
depend on a large amount of networks of different kinds, it is of highest importance that these
networks are robust. Think of the consequences if for example telecommunication systems,
power grids, water supplies, or road networks are malfunctioning. But what do we mean by
network robustness? Let us start by giving a working definition.

Definition 1.1 Robustness is the ability of a network to continue performing well when it is
subject to failures or attacks.

In order to decide whether a given network is robust, a way to quantitatively measure network
robustness is needed. In other words, we would like to measure the impact of failures on
the functionality of the network. During the past years a lot of robustness measures have been
proposed [32], but scientists do not agree on which one to use, therefore the quest for robustness
measures continues. Intuitively robustness is all about back-up possibilities [30], or alternative
paths [42], but it remains a challenge to capture these concepts in a mathematical formula.

In short, network robustness research aims at finding a method for quantifying network
robustness. Once such a measure has been established, we will be able to compare networks, to
improve existing networks and to design robust networks.

1.2 The field of network robustness research

Network robustness research is carried out by scientists with different backgrounds, like mathe-
matics, physics, computer science and biology [30]. As a result, quite a lot of different approaches
to capture the robustness properties of a network have been undertaken [38]. All of these ap-
proached are based on the analysis of the underlying graph — consisting of a set of vertices
connected by edges — of a network. We will use the words vertices and edges used in graph
theory instead of the words nodes and links as these concepts are usually called in network
theory.

One of these approaches is the study of percolation theory [7, 9, 35], which takes place
within the field of complex networks. The scope of complex network theory is to analyze the
properties of large networks (such as the so-called ‘scale-free’ and ‘small-world’ properties) and
to define models that are able to describe real-world networks [1, 5, 13, 25]. In percolation theory
robustness is interpreted as the ability to keep most of the vertices connected after deletion of
some vertices (and the edges adjacent to them) or some edges. Percolation is especially adapted
as a tool to determine the robustness of large networks like the Internet, because the results are
valid for random graphs with a number of vertices growing to infinity.

1



2 CHAPTER 1. INTRODUCTION

We have focused on the study of measures (also called graph metrics) on finite, deterministic
graphs. For a review of these measures see for example [5, 13, 12]. The graph measures
considered in these review papers are topological measures, indicating that they describe the
network topology (the geografical design consisting of vertices, which may be connected by
edges), neglecting any processes running on top of the network.

Spectral graph theory [11] is another field of research used in network robustness studies
[19] and applied in this thesis. It is the study of the eigenvalues of several matrices (like the
adjacency matrix and the Laplacian) associated to a graph.

1.3 The aim of this research

In this thesis we are looking for a quantitative measure, that is intuitively clear to measure
network robustness, easy to calculate, and applicable to all kinds of simple (without loops or
multiple edges), undirected and connected graphs. The restriction to simple and connected
graphs do not exclude any real-world networks, because we only speak about a network when
the underlying graph is connected, and multiple edges can be replaced by one edge with a
weight equal to the sum of the original edge weights. Although we focus on topological robust-
ness measures, we consider both weighted and unweighted graphs. This leads to the following
research question.

Research question What is the best way to measure the robustness of simple, undirected,
connected and possibly weighted graphs?

We try to answer this question by reviewing existing graph measures possibly useful for mea-
suring robustness and by comparing these measures. Furthermore, we compare them with the
new measure we propose, the normalized effective resistance, a graph measure that is both
informative and computationally tractable. A review of the normalized effective resistance and
its properties, as well as its optimization for several optimization criteria is part of this thesis.
Concretely, we aim at answering the following questions:

Secondary research questions

• Which graph measures have been proposed for measuring network robustness?

• Which other existing graph measures are suited for measuring network robustness?

• Which new measures can be defined for measuring network robustness?

• What are the properties of the above mentioned measures?

– Which values can be obtained by the measure?

– How does the measure change when edges are added or deleted?

– Which graphs are optimal for this measure (for some given optimization criteria)?

• What graph properties do the measures capture, are these important for network robust-
ness?

1.4 Thesis outline

Chapter 2 contains a review and a discussion of some classical graph measures. Sections 2.1
untill 2.4 consider a broad range of classical graph measures from complex network theory. The
central question is whether these measures, which are not specifically introduced as network
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robustness measures, could be used to determine the robustness properties of a graph. The
subject of Section 2.5 is the reliability polynomial, which represents a classical method to
measure network robustness. Section 2.6 compares the measures treated in this chapter by
means of a few example graphs.

Chapter 3 is about spectral theory and measures based on the eigenvalues of matrices associ-
ated to graphs (called spectral measures). The first section, Section 3.1, gives an introduction to
the Laplacian matrix and its eigenvalues. In section 3.2 the second smallest Laplacian eigenvalue
(also called algebraic connectivity) is discussed, because it has been proposed as a robustness
measure. The discussion of this eigenvalue is followed by an exposition of a few other spectral
measures, which also have been proposed as measures for robustness.

In Chapter 4 a new robustness measure, based on the notion of effective resistance in electri-
cal circuits, is proposed. Section 4.1 treats the relation between the pairwise effective resistance
and the robustness of the connection between two vertices. In Section 4.2 a formal definition
of the pairwise effective resistance and the total effective resistance are given, as well as expres-
sions of both in terms of the Laplacian. The basic properties of the pairwise effective resistance
and the total effective resistance (the sum of the pairwise effective resistances over all pairs of
vertices) are described in Section 4.3. In the next section, Section 4.4, an analysis of random
walks on graphs is developed in order to derive some alternative expressions for the pairwise
and total effective resistance. Section 4.5 discusses some examples and the final section (Section
4.6) contains the arguments for the introduction of the normalized effective resistance (which is
proportional to the inverse total effective resistance) as a new measure for network robustness.

Chapter 5 is dedicated to the maximization of the normalized effective resistance in order
to be able to design robust networks and to improve existing networks. The first optimization
criteria to be considered are a fixed number of vertices and a fixed largest distance in the graph.
Section 5.1 gives a characterization of the class of graphs containing the optimal graphs for
these criteria and discusses the results of exhaustive search on this class. The optimization of
an approximation of the normalized effective resistance, by using only a part of the Laplacian
eigenvalues, is the subject of Section 5.2. Chapter 5 is concluded by a section (Section 5.3)
on the optimal way to add an edge to a graph, which clearly is a relevant problem when the
robustness of real-world networks is considered.
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Chapter 2

Classical graph measures

In the past decades, numerous measures have been introduced to characterize graphs. In this
chapter we treat these classical graph measures that are intuitively relevant for evaluating the
robustness of a network. Unless differently stated, by a graph G = (V,E) we mean a simple,
undirected, connected and unweighted graph, with |V | = n vertices and |E| = m edges. We
also explore the possibilities to adapt these measures in order to measure weighted graphs or
to take the traffic of the network into account. Each section describes and discusses a specific
graph measure or a class of measures. Section 2.6 contains a comparison and evaluation of the
measures treated in this chapter.

2.1 Connectivity

Apart from the classical binary connectivity measure κ, which distinguishes connected graphs
(κ = 1) having paths between all pairs of vertices and unconnected graphs (κ = 0) for which
at least one pair of vertices lacks a connecting path, two more connectivity measures have been
defined: vertex and edge connectivity.

The vertex connectivity κv of an incomplete graph is the minimal number of vertices to be
removed in order to disconnect it. The number of edges that need to be removed to disconnect
the graph is called the edge connectivity κe. It is easy to see that κv ≤ κe ≤ δmin, where δmin is
the minimum degree of the vertices. For a complete graph Kn the vertex connectivity cannot
be determined by the definition above, because it cannot be disconnected by deleting vertices.
In order for the inequality κv ≤ κe ≤ δmin to hold also in the case of a complete graph, its
vertex connectivity is defined to be κv = n− 1.

It seems natural to say that the higher the vertex or edge connectivity of a graph, the more
robust it is. However, these connectivity measures do not take into account the importance
of the deleted vertices or edges. A graph broken into disconnected components, might still be
functioning well, if there is a small amount of traffic among the components. Therefore two
graphs with the same vertex or edge connectivity may not be equally robust.

2.2 Distance

Let the distance dij be the length of the shortest path between vertices i and j. The maximum
dmax over these distances is called the diameter and the average over all pairs is denoted by d̄,

d̄ =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

dij . (2.1)

The length of a path in an unweighted graph is equal to the number of edges it consists of. If
the edge weights in a weighted graph denote the length of the edge, then the length of a path

5



6 CHAPTER 2. CLASSICAL GRAPH MEASURES

is the sum of the weights of its edges. The meaning of the diameter and the average distance
as robustness measures follows from the fact that the shorter a path, the less vulnerable it is.
Nevertheless, the vulnerability of a path can be compensated by adding back-up paths, which
are not considered by the two measures. This clearly is a disadvantage. The average distance is
more sensible than the diameter, as the first is strictly decreasing when edges are added, while
the latter may remain equal while adding edges.

The presence of frequently used paths that are long and thus vulnerable decreases the
robustness of a network. On the other hand, a long path that is less frequently used almost
does not negatively affect the overall robustness. If for a network the traffic matrix T is given,
with entries Tij = tij that denote the amount of traffic between vertices i and j, then we define
a new measure based on the concept of graph distance as

d̄T =
1∑n

i=1

∑n
j=i+1 tij

n∑
i=1

n∑
j=i+1

tijdij .

In the comparison of robustness measures at the end of this chapter the unweighted variants
of the measures are considered, as not all of the measures in this chapter have a weighted
counterpart. We will, however, define a weighted variants when possible.

2.3 Betweenness

The betweenness denotes the number of shortest paths between pairs of vertices, passing through
a vertex or edge x. If there exists more than one shortest path between two vertices, then each
of these k paths is counted 1/k times. The formal definition of the betweenness of a vertex or
an edge x is

bx =

n∑
i=1

n∑
j=i+1

nij(x)

nij
,

where nij(x) is the number of shortest paths between i and j passing through x and nij is the
total number of shortest paths between i and j. The vertex betweenness is sometimes called
betweenness centrality, because it has been introduced to determine the vertices that occupy
central positions in the network [16].

Betweenness can be used when a graph is given, but traffic flows are not known. Suppose
there is one unit of traffic between all pairs of vertices and traffic travels by shortest paths
(dividing the load if there is more than one shortest path), then the load of a vertex/edge is
given by its betweenness. Hence, if the actual vertex/edge loads are known, it makes no sense
to calculate the betweenness. If the traffic matrix is known, we define a new version of the
betweenness for a vertex or node x as follows.

bx =
n∑
i=1

n∑
j=i+1

tij
nij(x)

nij
,

where tij , nij(x) and nij are defined as before.
Deleting vertices or edges with a higher load can have more impact than deleting others.

Betweenness can therefore help to identify bottlenecks and give a tool to improve the robustness
of a network. However, the existence of alternative paths for network elements with a high load
is not considered. Betweenness is thus again a measure based on shortest paths only.

The betweenness can be easily extended to weighted networks where the edge weights give
the distances between vertices. Only the shortest paths will change, not the betweenness for-
mula. Newman used the weighted vertex betweenness to identify the most important persons
in a social network (a network of collaborating scientists). In his model the edge weight corre-
sponds to the inverse strength of the relation of two scientists instead of the physical distances
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between them [24]. It seems reasonable to believe that communication in social network does
not follow the shortest path in physical distance, but is especially passed by people having
strong relations.

It is not very useful to calculate the average vertex b̄v or edge betweenness b̄e, since they
are linear functions of the average vertex distance. The following equalities were found in [36]
after we derived them. They can easily be adapted in order to show that b̄Tv and b̄Te are linear
functions of d̄T .

b̄v =
1

n

n∑
v=1

bv =
1

n

n∑
v=1

n∑
i=1

n∑
j=i+1

nij(v)

nij
=

1

n

n∑
i=1

n∑
j=i+1

1

nij

n∑
v=1

nij(v)

=
1

n

n∑
i=1

n∑
j=i+1

1

nij
nij(dij + 1) =

1

2
(n− 1)(d̄+ 1),

b̄e =
1

m

m∑
e=1

be =
1

m

m∑
e=1

n∑
i=1

n∑
j=i+1

nij(e)

nij
=

1

m

n∑
i=1

n∑
j=i+1

1

nij

m∑
e=1

nij(e)

=
1

m

n∑
i=1

n∑
j=i+1

1

nij
nijdij =

n(n− 1)

2m
d̄.

As a consequence of these linear relations, the average distance and the average vertex between-
ness will always indicate the same graph as most robust when comparing the robustness of two
graphs, provided the graphs have the same number of vertices. The same holds for the three
measures (average distance, average vertex betweenness and average edge betweenness) when
the number of vertices and edges of the graphs are equal.

However, we might consider the variance of the vertex or edge betweenness, and investigate
whether the network robustness decreases with an increasing variance (and a fixed expectation).
As there are no papers known to treat the betweenness variance, it may be considered as a topic
for future research.

5
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41
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41
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41
2
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(a) Graph with maximum edge betweenness of 5

2
21
2

31
2

51
2

31
2

5

3

(b) Graph with maximum edge betweenness of 5 1
2

Figure 2.1. The maximum edge betweenness can increase when an edge is added. The betweenness of
each edge is given in the graphs.

Sydney et al. have proposed a robustness measure based on the maximum edge betweenness
bmax
e and its behavior as vertices are removed, because this maximum determines the bandwidth

that can be assigned to each flow [32]. The maximum edge betweenness has a problem though;
it can increase while an edge is added. The reason is that flows are assumed to always choose
the shortest path. See Figure 2.1 for an example.
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2.4 Clustering

The presence of triangles is captured by the clustering coefficient , which compares the number
of triangles to the number of connected triples. The clustering coefficient gives the portion
of vertices j, k sharing a neighbor i that are also neighbors themselves (which means that the
edge (j, k) is present, see Figure 2.2). The clustering coefficient ci of a vertex i is defined as
the number of edges among neighbors of i divided by δi(δi − 1)/2, the total possible number of
edges among its neighbors. The overall clustering coefficient of a graph is the average over the
clustering coefficients of the vertices. This definition gives

C =
1

n

∑
i∈V ;δi>1

ci =
1

n

∑
i∈V ;δi>1

2

δi(δi − 1)
ei =

1

n

∑
i∈V ;δi>1

1

δi(δi − 1)

n∑
j=1

n∑
k=1

aijajkaki =
1

n

∑
i∈V ;δi>1

1

δi(δi − 1)

(
A3
)
ii
,

with ev the number of edges among neighbors of v, and aij the ij-th element of the adjacency
matrix A.

i

j k

Figure 2.2. Vertices j, k sharing a neighbor i may or may not be neighbors themselves.

Although the clustering coefficient was originally designed for social networks, in which it mea-
sures the probability that two friends of a person are friends of each other too, it can also be
used to measure robustness in other types of networks. A high clustering coefficient indicates
high robustness, because the number of alternative paths grows with the number of triangles.

Several people have given weighted versions of the clustering coefficient, to account for the
fact that some edges are more essential than others. The definition of Barrat et al. is easy to
work with [4].

CW =
1

n

∑
i∈V ;δi>1

1

si(δi − 1)

n∑
j=1

n∑
k=1

aijajkaki
wij + wki

2
,

where wij denotes the weight of an edge (i, j) and si the so-called strength of a vertex i, which
equals the sum of the weights of the edges adjacent to it. The advantage of this definition is
that the values lie between zero (no triangles) and one (every two adjacent edges are part of
a triangle), and it gives back the original definition when all weights are equal to one. Other
definitions can be found in [27] and [26].

2.5 Reliability polynomials

Although the reliability polynomial is not part of the standard set of graph measures, we treat
it in this chapter, because it is a classical way to quantify network robustness. We start this
section by giving the definition of a reliability polynomial as stated by Moore and Shannon in
[23].

Definition 2.1 The reliability polynomial Rel(G) of a graph G is equal to the probability that
the graph is connected when each edge is (independently of the others) present with probability
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p = 1− q, in other words

Rel(G) =
m∑
i=0

Fi(1− p)ipm−i,

when Fi denotes the number of sets of i edges whose removal leaves G connected.

Reliability polynomials are an intuitive way to measure network robustness, although it is
difficult to decide what value we should assign to p. The robustness evaluation of graphs
depends on the value of p; pairs of graphs for which the reliability polynomial of the first graph
is larger for small p, while the reliability polynomial of the second is larger for large p, are
known [20]. There even exist pairs of graphs with reliability polynomials that cross twice [10].
It seems reasonable to consider p to be close to one, because in real-world networks edge failures
are scarce.

(a) Graph G1 with κe(G1) = 1 and Rel(G1) =
1− q + o (q) for q → 0

(b) Graph G2 with κe(G2) = 2 and Rel(G2) =
1− 4q2 + o

(
q2
)
for q → 0

Figure 2.3. Two graphs for which the reliability polynomial and the edge connectivity give the same
evaluation on robustness

In [38] the graphs of Figure 2.3 have been given. The authors have pointed out that the edge
connectivity of the second graph is higher and, for p close enough to one, also the reliability
polynomial of the second graph is greater than the reliability polynomial of the first graph. We
show that the edge connectivity and the reliability polynomial for p close to one always give the
same evaluation on robustness. This theorem turned out to be known already to Moore and
Shannon in 1956 [23].

Theorem 2.1 (Moore and Shannon, 1956) The relation between the reliability polynomial
Rel(G) of a graph G and the edge connectivity κe(G) satisfies the following two properties

1. If κe(G1) < κe(G2), then for p close enough to one we have Rel(G1) < Rel(G2). This
means that the reliability polynomial for p close to one and the edge connectivity give the
same evaluation on network robustness.

2. Let s(G) be the number of subsets of κe(G) edges whose removal disconnects G. If
κe(G1) = κe(G2) and s(G1) > s(G2) then for p close enough to one we have Rel(G1) <
Rel(G2).

Proof We give a proof of our own. Note that Fi =
(
m
i

)
for i < κe(G) and Fκe(G) =

(
m

κe(G)

)
−

s(G). Replacing p by 1− q in the definition of a reliability polynomial leads to

Rel(G) =
m∑
i=0

Fiq
i(1− q)m−i

=

κe(G)−1∑
i=0

(
m

i

)
qi(1− q)m−i +

((
m

κe(G)

)
− s(G)

)
qκe(G)(1− q)m−κe(G) + o

(
qκe(G)

)
= 1− s(G)qκe(G) + o

(
qκe(G)

)
.
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In the last equality we have used the binomial theorem

m∑
i=0

(
m

i

)
qi(1− q)m−i = 1.

The two statements now follow directly. 2

Remark that a reliability polynomial can also be defined for vertex deletion instead of edge
deletion. In that case the reliability polynomial for p close to one and the vertex connectivity
give the same robustness evaluation.

2.6 Comparison of some classical graph measures

In this section we compare the classical graph measures described above. We have calculated
them for the example graphs with four vertices depicted in Figure 2.4. The results are given in
Table 2.1 and Figure 2.5.

(a) Complete graph K4 (b) Cycle graph C4 (c) Star graph S4 (d) Path graph P4 (e) Empty graph O4

Figure 2.4. Examples of graphs with four vertices

m κ δmin κv κe dmax d̄ bmax
e b̄e C Rel

K4 6 1 3 3 3 1 1 1 1 1 −6p6 + 24p5 − 33p4 + 16p3

C4 4 1 2 2 2 2 11
3 2 2 0 −3p4 + 4p3

S4 3 1 1 1 1 2 11
2 3 3 0 p3

P4 3 1 1 1 1 3 12
3 4 31

3 0 p3

O4 0 0 0 0 0 ∞ ∞ - - 0 0

Table 2.1. The values of some graph measures for the five graphs of Figure 2.4

Our intuition says that the graphs are ordered by decreasing robustness. The robustness eval-
uations of the measures of Table 2.1 correspond to this intuition. Although not all of them
can distinguish all graphs, all of the measures would say that the graphs are indeed in order of
decreasing robustness.

By analyzing the values in the table we come to the conclusion that the clustering coefficient
and the connectedness are poor robustness measures. Also the other two connectivity measures,
the diameter and the reliability polynomial cannot distinguish all graphs. The connectivity
measures and the reliability polynomial are constant on the set of trees. The maximum edge
betweenness performs well in this example, but has been proved to fail in other situations
like that of Figure 2.1. The average distance and the average betweenness — which have
been shown to always classify the graphs in the same order — seem to be the best robustness
measures. Nevertheless, also the average distance and betweenness have a disadvantage, since
they consider only the shortest paths in a graph while for the robustness of a network also the
longer alternative paths are important.
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Figure 2.5. Graphs of reliability polynomials for the five graphs of Figure 2.4.
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Chapter 3

Spectral graph measures

Networks can be represented by graphs. These graphs can be studied directly, as we have done
in the previous chapters, but also by looking at the matrices associated to a graph. Several
robustness measures based on the eigenvalues of the adjacency matrix or the Laplacian have
been proposed. Section 3.1 gives some properties of the Laplacian and its eigenvalues. Section
3.2 discusses the second smallest Laplacian eigenvalue. In the last section of this chapter some
other spectral measures — proposed as a measure for network robustness — are treated.

3.1 The Laplacian and its eigenvalues

The adjacency matrix A, which has a one at position i, j when an edge (i, j) is present and is zero
elsewhere, gives the most intuitive matrix description of a simple undirected graph G = (V,E).
Another matrix associated to a graph is the Laplacian.

Definition 3.1 The Laplacian L is the difference ∆− A of the degree matrix ∆ (the diagonal
matrix with Dii = δi) and the adjacency matrix, i.e.

Lij =


δi if i = j

−1 if (i, j) ∈ E
0 otherwise

.

Both the adjacency matrix and the Laplacian fully characterize the graph; when one of these
matrices is given, the original graph can be reconstructed. For a graph with non-negative
edge weights wij , the analogue of the adjacency matrix is the matrix of weights W = (wij), the
weighted Laplacian is LW = S−W, where S is the diagonal matrix of strengths, with elements
Sii = si. To summarize, the elements of the weighted Laplacian are given by

LWij =


si =

∑
j wij if i = j

−wij if (i, j) ∈ E
0 otherwise

,

which shows that the row sums of LW are zero, just as for the unweighted Laplacian, such
that the all-one vector is an eigenvector for eigenvalue 0. The following theorem is true for the
unweighted as well as the weighted version of the Laplacian.

Theorem 3.1 For the Laplacian of a graph G = (V,E), the multiplicity of the eigenvalue zero
corresponds to the number of connected components of G.

13
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Proof The following proof is our own. Because L and LW are symmetric matrices, the al-
gebraic multiplicity and the geometric multiplicity are equal. We can therefore use the term
‘multiplicity’ for both. We only prove the theorem for the weighted Laplacian, as the ordinary
Laplacian is a special case of it (where the weights are either zero or one).

For every connected component C, the vector yC — all vectors are column vectors — with
yi = 1 if vertex i is part of the component C and yi = 0 otherwise, is an eigenvector for
eigenvalue 0, since LWyC = 0 (the all-zero vector). Furthermore, the set of these eigenvectors is
linearly independent. It is now enough to show that all eigenvectors for eigenvalue 0 are linear
combinations of these eigenvectors.

Suppose x is an eigenvector corresponding to eigenvalue 0, then we have for all i ∈ V

xi

n∑
j=1

wij =
n∑
j=1

xjwij . (3.1)

This can only hold if xi = xj when i, j are part of the same component, for the following
reasoning. Let C be an arbitrary component and let i be such that xi = maxj∈C xj then∑n

j=1 xiwij ≥
∑n

j=1 xjwij . In order to have the requested equality (3.1), it is necessary that
xi = xj for all neighbors j of i. Similarly, we see that xj = xk for a neighbor k of j. Contin-
uing this argument leads to the conclusion that all eigenvectors x have xi = xj when i, j are
members of the same connected component, thus all eigenvectors corresponding to eigenvalue
0 are linear combinations of the vectors yC . 2

The Laplacian is positive semidefinite, since we can find a B such that L = BTB as follows.
Convert G in a directed graph by choosing an arbitrary direction for each edge, let B be the
edge-vertex incidence matrix , i.e. for an arc a and a vertex i:

Bai =


1 if a = (i, j) for some j

−1 if a = (j, i) for some j

0 otherwise

.

Because the Laplacian is symmetric, positive semidefinite and the rows sum up to 0, its eigen-
values are real, non-negative and the smallest eigenvalue is zero. Hence, we can order the
eigenvalues and denote them as λi for i = 1, . . . , n = |V | such that 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.
The vector with elements λi is denoted by λ.

The weighted Laplacian has the same nice properties of symmetry, positive semidefiniteness,
and zero row sums. Hence, we denote the eigenvalues as λW1 , . . . , λ

W
n . To show that the weighted

Laplacian is positive semidefinite we convert G again in a directed graph and define BW as

BWai =


√
wij if a = (i, j) for some j

−√wij if a = (j, i) for some j

0 otherwise

,

which satisfies LW =
(
BW
)T

BW .
We show that the Laplacian eigenvalues do not decrease when an edge is added or an edge

weight is increased. Before we come to this theorem we need to state the following characteri-
zation of the eigenvalues of a symmetric (or Hermitian) matrix.

Theorem 3.2 (Courant-Fisher or min-max principle) Let µ1 ≤ . . . ≤ µn be the eigen-
values of the symmetric matrix M, the next equality holds for the k-th smallest eigenvalue

µk = min
Sk

max
x6=0
x∈Sk

〈Mx,x〉
〈x,x〉

, (3.2)

where Sk is a k-dimensional subset of Rn.
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Proof We reproduce the proof of [41]. Let {u1, . . . ,un} be an orthogonal set of eigenvectors
corresponding to the eigenvalues µ1, . . . , µn respectively. We start by showing that, for all
subspaces Sk ⊂ Rn with dim(Sk) = k, there is a x ∈ Sk, x 6= 0 such that

〈Mx,x〉
〈x,x〉

≥ µk. (3.3)

We have Sk ∩ sp{uk, . . . ,un} 6= ∅, because of the dimensions of both spaces. Choose a vector
in the intersection, say x =

∑n
i=k aiui, it satisfies (3.3):

〈Mx,x〉
〈x,x〉

=
〈M
∑n

i=k aiui,
∑n

i=k aiui〉
〈
∑n

i=k aiui,
∑n

i=k aiui〉

=

∑n
i=k

∑n
j=k 〈Maiui, ajuj〉∑n

i=k

∑n
j=k 〈aiui, ajuj〉

=

∑n
i=k

∑n
j=k µi 〈aiui, ajuj〉∑n

i=k

∑n
j=k 〈aiui, ajuj〉

=

∑n
i=k µi 〈aiui, aiui〉∑n
i=k 〈aiui, aiui〉

≥ µk
∑n

i=k 〈aiui, aiui〉∑n
i=k 〈aiui, aiui〉

= µk,

where we have used that the eigenvectors are orthogonal, such that 〈aiui, ajuj〉 = 0 for i 6= j.
As a consequence of (3.3), it holds that

inf
Sk

max
x6=0
x∈Sk

〈Mx,x〉
〈x,x〉

≥ µk.

On the other hand, for Sk = sp{u1, . . . ,uk} we have

max
x6=0
x∈Sk

〈Mx,x〉
〈x,x〉

=
〈Muk,uk〉
〈uk,uk〉

= µk,

which together imply (3.2). 2

Inserting LW for M and λWk for µk gives us alternative expressions for the Laplacian eigenval-
ues. The Courant-Fisher principle allows for developing a monotonicity theorem for Laplacian
eigenvalues, which is a consequence of Weyl’s theorem [18].

Theorem 3.3 (Weyl) Let a graph G be given and let G′ be obtained by increasing the weight
of an edge, the Laplacian eigenvalues of the new graph satisfy

λWk (G′) ≥ λWk (G).

This means that increasing edge weights does not decrease the Laplacian eigenvalues.

Proof The proof follows from the proof of Weyl’s theorem [18]. Suppose weight wij of edge

(i, j) is increased by an amount a. For the matrix K = a (ei − ej) (ei − ej)T , with ei the i-th
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unit vector, we find by Theorem 3.2

λWk (G′) = min
Sk

max
x6=0
x∈Sk

〈
LW (G′)x,x

〉
〈x,x〉

= min
Sk

max
x6=0
x∈Sk

〈(
LW (G) + K

)
x,x

〉
〈x,x〉

= min
Sk

max
x6=0
x∈Sk

〈
LW (G)x,x

〉
+ 〈Kx,x〉

〈x,x〉

≥ min
Sk

max
x6=0
x∈Sk

〈
LW (G)x,x

〉
〈x,x〉

= λWk (G),

where we have used that A is positive semidefinite. 2

By increasing a weight wij = 0 by a = 1 we find the following corollary.

Corollary 3.4 Adding an edge does not decrease the Laplacian eigenvalues.

The next theorem gives the Laplacian spectrum of a complement graph.

Theorem 3.5 Let Ḡ be the complement of graph G, that is the graph containing the same
vertex set as G and all possible edges except for those of G. The Laplacian eigenvalues of Ḡ are
λW1 (Ḡ) = 0 and

λWi (Ḡ) = n− λWn−i+2(G), for i = 2, . . . n.

Proof We have provided a proof ourselves. Since the Laplacian is symmetric, it has an
orthogonal basis of eigenvectors. Let ui(G) be an eigenvector corresponding to eigenvalue
λWi (G) (i > 1), then ui(G) is orthogonal to 1 (the all-one vector). Using that LW (G)+LW (Ḡ) =
nI− J (with I the identity matrix and J the all-one matrix), we find for i = 2, . . . n

LW (Ḡ)un−i+2(G) =
(
nI− J− LW (G)

)
un−i+2(G) =

(
n− λWn−i+2(G)

)
un−i+2.

2

To conclude this section, we give a theorem characterizing the Laplacian spectrum of a graph
consisting of several components.

Theorem 3.6 Our proof only contains one line. Let G be the disjoint union of graphs G1 and
G2, then the spectrum of G is the union of the spectra of G1 and G2.

Proof Take eigenvectors of G1 and G2 and add zeros at the positions corresponding to the
other subgraph, then these vectors are independent eigenvectors of G (corresponding to the
same eigenvalue as before). 2

3.2 Algebraic connectivity

The second smallest Laplacian eigenvalue is believed to measure the connectivity of a graph;
the larger λ2, the more difficult it is to cut the graph into unconnected components. This belief
is suggested by two results (Corollary 3.7 and Theorem 3.9) we encounter in this section. The
second smallest Laplacian eigenvalue is also related to a lot of other graph characteristics. For
a survey of its properties and its applications see [22].
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Definition 3.2 The second smallest eigenvalue λ2 of the Laplacian is called the algebraic con-
nectivity .

The first result is a corollary of Theorem 3.1, it therefore also holds for the second eigenvalue
of the weighted Laplacian.

Corollary 3.7 to Theorem 3.1 The algebraic connectivity is equal to zero if and only if the
graph is unconnected.

Miroslav Fiedler first underlined the importance of λ2 (in his paper of 1973 [15]) and gave it
the name algebraic connectivity, which is probably inspired by the previous corollary. A second
reason for Fiedler to call the second (unweighted) Laplacian eigenvalue algebraic connectivity
might have been that it is bounded above by the vertex connectivity. To prove this, we need
the next lemma.

Lemma 3.8 (Fiedler, 1973) Removing k vertices, reduces the algebraic connectivity by at
most k. More formally, let G be a given graph and Gk a graph obtained by deleting k vertices
from G, then

λ2(Gk) ≥ λ2(G)− k. (3.4)

Proof We present the original proof of [15]. It is enough to prove equation (3.4) for k = 1,
that is to prove that removing a vertex decreases λ2 by at most one. The general case is then
shown by induction on the number of deleted vertices. Without loss of generality we may say
that G1 has been obtained by deleting vertex n (otherwise we rename the vertices). Let us add
to G all missing edges incident from this vertex n and call the resulting graph G′. Now we have

L(G′) =

(
L(G1) + I −1
−1T n− 1

)
.

Let u2 be an eigenvector corresponding to the algebraic connectivity of G1. Because of the
orthogonality of the eigenvectors 1 (for eigenvalue λ1(G1)) and u2 (for eigenvalue λ2(G1)), we
have

L(G′)

(
u2

0

)
=

(
L(G1)u2 + u2

−1Tu2

)
= (λ2(G1) + 1)

(
u2

0

)
,

and (λ2(G1) + 1) is a non-zero eigenvalue of G′. We can conclude that λ2(G
′) ≤ λ2(G1) + 1.

Now, by Theorem 3.4:

λ2(G) ≤ λ2(G′) ≤ λ2(G1) + 1,

which completes the proof. 2

Fiedler’s most important theorem is a direct consequence of this lemma.

Theorem 3.9 (Fiedler, 1973) The algebraic connectivity of an incomplete graph is not greater
than the vertex connectivity:

λ2 ≤ κv ≤ κe ≤ δmin.

Proof The proof of Fiedler [15] is given. For an incomplete graph G let Gκv be the graph
obtained by deleting the κv vertices needed to disconnect G (for a complete graph such vertices
do not exist). Lemma 3.8 and Corollary 3.7 give λ2(G) − κv ≤ λ2(Gκv) = 0, which directly
proves the theorem. 2
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For a complete graph Kn, we have λ1 = 0, λ2 = · · ·λn = n, because the vectors uj = e1 − ej
for j 6= 1, are n− 1 linearly independent eigenvectors corresponding to the eigenvalue n. As a
consequence, the last theorem does not hold for a complete graph Kn, its algebraic connectivity
is n, while the vertex connectivity is defined to be n − 1. The algebraic connectivity of the
example graphs of Section 2.6 are

λ2(K4) = 4, λ2(C4) = 2, λ2(S4) = 1, λ2(P4) ≈ 0.59, λ2(O4) = 0.

Jamaković describes in [19] the relation between algebraic connectivity and graph robustness.
She states that ‘the algebraic connectivity increases with the increasing node and the link
connectivity. This means that the larger the algebraic connectivity, the larger the number of
node- or link-disjoint paths. The algebraic connectivity measures the extent to which it is
difficult to cut the network into independent components and is therefore a quantifier of the
robustness in complex networks.’ A lot of research is being done on the algebraic connectivity
and many researchers believe in its importance for network connectivity. Bollobás even writes
in [6]: ‘The second smallest eigenvalue of the Laplacian is far from trivial: in fact, it is difficult
to overemphasize its importance.’

Nevertheless, some criticisms can be found in the literature. Baras and Hovareshti [3] remark
that the algebraic connectivity is not always strictly increasing when an edge is added. Figure
3.1 shows their example. Another problem of the algebraic connectivity is that the arguments
for its proposal as a measure for network robustness are rather weak, since they are only based
on the fact that it is bounded above by the vertex connectivity (Theorem 3.9).

(a) λ = (0, 2, 2, 4) (b) λ = (0, 2, 4, 4)

Figure 3.1. Two graphs with identical algebraic connectivity

3.3 Other spectral measures

Several authors argue to use measures based on all Laplacian eigenvalues instead of using the
second smallest eigenvalue only. Considering the problem of the strict increasingness, we show
that it is not enough to consider the first k (with k a fixed number) Laplacian eigenvalues,
because the star graph (Figure 3.2) gives an example of a graph where the first n−2 eigenvalues
stay equal when adding an edge.

(a) λ = 0, 1, 1, 1, 1, 1, 7 (b) λ = 0, 1, 1, 1, 1, 3, 7

Figure 3.2. Only the second last Laplacian eigenvalue changes when an edge is added to a star graph.
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Theorem 3.10 Adding an edge does not necessarily affect the first n−2 Laplacian eigenvalues,
because:

1. The star graph Sn with n vertices has Laplacian spectrum λ = (0, 1, . . . , 1, 1, n);

2. Adding an edge gives the graph S∗n with Laplacian spectrum λ = (0, 1, . . . , 1, 3, n).

Proof

1. We consider the complement of Sn, it consists of a clique of size n − 1 and an isolated
vertex and hence has spectrum λ = (0, 0, n − 1, . . . , n − 1). We have used Theorem
3.1, Theorem 3.6 and the spectrum of the complete graph determined in the discussion
following Theorem 3.9. Now, using Theorem 3.5 gives the desired result.

2. The complement of S∗n consists a clique of size n − 1 missing an edge and an isolated
vertex. The complement of the clique minus the edge has one edge and n − 3 isolated
vertices; its spectrum is (0, . . . , 0, 2). The clique minus the edge thus has spectrum (0, n−
3, n − 1, . . . , n − 1). It follows that the spectrum of the complement of S∗n is (0, 0, n −
3, n− 1, . . . , n− 1) and that of S∗n is (0, 1, . . . , 1, 3, n). 2

Baras and Hovareshti suggest the number of spanning trees (a spanning tree is a subgraph
containing n−1 edges and no cycles) as an indicator of network robustness [3]. It is a consequence
of Kirchhoff’s matrix-tree theorem that the number of spanning trees can be written as a
function of the unweighted Laplacian eigenvalues.

Theorem 3.11 The number of spanning trees ξ(G) in a graph G with Laplacian L and Lapla-
cian eigenvalues λ1, λ2, . . . , λn is

ξ(G) =
1

n

n∏
i=2

λi.

Proof We work out the proof outline of [37]. The matrix-tree theorem of Kirchhoff states that
all cofactors of the Laplacian of a graph G are equal to the number of spanning trees of G. The
characteristic polynomial det(L− xI) = c0 + c1x+ c2x

2 · · ·+ cn−1x
n−1 + (−x)n of the Laplacian

satisfies

det(L− xI) = c0 + c1x+ c2x
2 · · ·+ cn−1x

n−1 + (−x)n

= (λ1 − x)(λ2 − x) · · · (λn − x)

= det


δ1 − x −a12 · · · −a1n
−a21 δ2 − x · · · −a2n

...
...

. . .
...

−an1 −an2 · · · δn − x

 ,

with λi the i − th Laplacian eigenvalue. Using this and the fact that λ1 = 0 we find two
equivalent expressions for the second coefficient of the characteristic polynomial

c1 = −λ2 · · ·λn

= −det


δ2 −a23 · · · −a2n
−a32 δ3 · · · −a3n

...
...

. . .
...

−an2 −an3 · · · δn

− det


δ1 −a13 · · · −a1n
−a31 δ3 · · · −a3n

...
...

. . .
...

−an1 −an3 · · · δn

− · · ·

− det


δ1 −a12 · · · −a1n−1
−a21 δ2 · · · −a2n−1

...
...

. . .
...

−an−1 1 −an−1 2 · · · δn−1

 .
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All n determinants in the last expression are cofactors of L, thus c1 = −λ2 · · ·λn equals −n
times ξ(G), which completes the proof. 2

According to the next theorem [10] the number of spanning trees gives the same judgment about
the robustness of a network as the reliability polynomial gives when p goes to zero.

Theorem 3.12 The reliability polynomial of a graph G satisfies

Rel(G) = ξ(G)pn−1 + o
(
pn−1

)
,

for p→ 0.

Proof The next proof is our own. Let Fi be defined as in Section 2.5. Since connected graphs
have at least n − 1 edges we have Fi = 0 for i > m − n + 1 and since a connected graph with
n− 1 edges is a tree we have Fm−n+1 = ξ(G). As a consequence the following relation holds.

Rel(G) =
m∑
i=0

Fi(1− p)ipm−i

=

m−n∑
i=0

(
Fi(1− p)ipm−i

)
+ ξ(G)(1− p)m−n+1pn−1 = ξ(G)pn−1 + o

(
pn−1

)
.

2

Since in real-world networks failures are scarce, it is reasonable to assume p to be close to one.
As the number of spanning trees corresponds to the reliability polynomial for ‘p close to zero’,
it does not seem to be a good robustness measure.

For the sake of completeness we mention that Tizghadam and Leon-Garcia have proposed a
robustness measure [33]— called network criticality — based on the random walk betweenness,
which they define as the number of visits to a vertex k in a random walk starting in an arbitrary
vertex i and ending in an arbitrary vertex j. We further explore this measure in Section 4.4
and show that the network criticality is also a function of the Laplacian eigenvalues.



Chapter 4

Effective resistance

In this chapter, we argue that the normalized effective resistance is a good measure for network
robustness. The normalized total effective resistance is proportional to the inverse total effective
resistance, which is defined as the sum of the pairwise effective resistances over all pairs of
vertices. The choice of this measure is inspired by the excellent paper of Klein and Randić
[21]. The main contribution of their paper is the proof that the total effective resistance can be
written in terms of the Laplacian eigenvalues.

We start — in Section 4.1 — with an informal discussion of the pairwise effective resistance
and the relation with network robustness. Section 4.2 gives a formal definition of the pairwise
and total effective resistance and concentrates on the expressions in terms of the Laplacian.
In Section 4.3 some additional properties of the (total) effective resistance are explored. The
analysis of random walks on graphs in Section 4.4 allows us to derive more expressions for the
(total) effective resistance. This chapter is concluded by a section containing some examples
giving an idea of the values the effective resistance can obtain, Section 4.5, and a discussion on
the normalized effective resistance and network robustness, Section 4.6.

4.1 Pairwise effective resistance and network robustness

To determine the effective resistance, the (simple, undirected and connected) graph is seen as
an electrical circuit, where a edge (i, j) corresponds to a resistor of rij = 1 Ohm. For each pair
of vertices the pairwise effective resistance between these vertices — the resistance of the total
system when a voltage source is connected across them — can be calculated. The calculation
of the effective resistance between two vertices of an electrical circuit can easily be done by
the well-known series and parallel manipulations. Two resistors with resistances r1, r2 in series
can be replaced by one resistor with resistance r1 + r2. If the two resistors are connected in

parallel, then they can be replaced by a resistor with resistance
(
r−11 + r−12

)−1
. The method is

illustrated in Figure 4.1.

a br1 r2
Rab = r1 + r2

(a) Resistors in series

a b
r2

r1
Rab = 1

1
r1

+ 1
r2

(b) Resistors in parallel

Figure 4.1. Calculating the effective resistance between a and b

In Figure 4.2 we have calculated the effective resistance between two vertices a and b in a few
small networks. We see that every new path diminishes the effective resistance, but short paths
cause a larger decrease than long paths, thus both the number of paths between two vertices

21
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and their lengths (number of edges in the path) are taken into account. Having n parallel paths
of length l leads to an effective resistance of l/n. It follows that adding the first extra edge has
a big impact (it reduces the effective resistance by a factor two), but the more edges we add,
the smaller the difference between the old and the new effective resistance. This agrees with our
intuition that having a few backup paths improves the connectivity, but adding more backup
paths when there already are many, does not lead to any significant further improvement.

a b Rab = 3
(a)

a b Rab = 1
(b)

a b Rab = 2
3

(c)

a b
Rab = 1

2
(d)

a b
Rab = 1

3
(e)

a b
Rab = 1

4
(f)

Figure 4.2. Some networks ordered by increasing robustness of the connection between a and b, and
the effective resistance between a and b

When the edge weights represent a distance, then the corresponding resistor has to be assigned
a resistance of the same value, in order for short paths to still cause a smaller effective resistance
than long paths. When the edge weights represent their conductance, then the resistance of
each resistor is given by the inverse edge weight, such that edges in parallel increase the effective
conductance, while edges in series decrease it. The effective resistance has been proposed to
measure the distance in social networks too, that is, the difficulty a message — sent by a
particular person in the network — has in reaching another person [21]. In this case the
edge weights correspond to the strength of a relation, the stronger this relation the easier the
communication, thus the resistances again need to be equal to the inverse edge weight.

4.2 Calculating the effective resistance by the Laplacian

The series and parallel manipulations mentioned in the previous section follow from two impor-
tant laws of electrical circuit analysis, Kirchhoff’s circuit laws — which is indeed the Kirchhoff
from the matrix-tree theorem. Let a voltage source be connected between vertices a and b and
let Y > 0 be the net current out of source a and into sink b. Then Kirchhoff’s current law
states that the current yij between vertices i and j (where yij = −yji) must satisfy

∑
j∈N(i)

yij =


Y if i = a

−Y if i = b

0 otherwise,

(4.1)

with N(i) the neighborhood of i, that is, the set of vertices adjacent to vertex i. This first
law expresses that the total flow into a vertex equals the total flow out of it. The second law,
Kirchhoff’s circuital law , says that for every cycle C in the network∑

(i,j)∈C

yijrij = 0,
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where the edges (i, j) are ordered around the cycle. This law is equivalent to saying that to any
vertex i there may be associated a potential vi, such that for all edges (i, j)

yijrij = vi − vj , (4.2)

which is called Ohm’s law . Note that y and v depend on the net current Y and on the pair
(a, b) which specifies the position of the voltage source.

Definition 4.1 The effective resistance is defined as

Rab =
va − vb
Y

.

In the next theorem we see by construction that given a (simple, undirected and connected)
graph G with edge resistances rij and given a source-sink pair (a, b), the effective resistance
Rab exists and is uniquely defined. It is shown that Rab does not depend on the net current Y .
The proof of the theorem shows that given the graph, edge resistances and net current, there
always exist currents y and potentials v satisfying Kirchhoff’s law (4.1) and Ohm’s law (4.2),
the vector of potentials v is uniquely defined up to a constant vector by these equations and
the currents y are unique.

When rij is defined as 1/wij , then the effective resistance can be calculated by making use
of a pseudoinverse of the (weighted) Laplacian. The Laplacian cannot be inverted directly,
because it has a zero discriminant, since one of the eigenvalues is equal to zero. However, if
we restrict the linear transformation to the subspace orthogonal to the null space sp{1}, the
matrix can be inverted, because the image of (sp{1})⊥ (the subspace perpendicular to sp{1})
is the subspace (sp{1})⊥ itself. This is a consequence of the fact that symmetric matrices have

an orthogonal basis of eigenvectors. Let
(
LW
)+

be the matrix that on (sp{1})⊥ corresponds to
this inverse and on sp{1} to the zero map. In other words, we have:

Definition 4.2 The Laplacian pseudoinverse
(
LW
)+

is defined as the unique matrix satisfying(
LW
)+

1 = 0

and for every w ⊥ 1 (
LW
)+
w = v such that LWv = w and v ⊥ 1

The definition above is a specific case of the Moore-Penrose pseudoinverse for general m × n-
matrices (see for example [31]). It is not known who first proved the following important
theorem, but the result has been known at least since the sixties of last century, because it
appears in [29].

Theorem 4.1 When the resistance of edge (i, j) is defined as the inverse edge weight (i.e. edge
weights refer to conductances), then the effective resistance Rab between vertices a and b satisfies

Rab = (ea − eb)T
(
LW
)+

(ea − eb) = (LW )+aa − 2(LW )+ab + (LW )+bb.

Proof We give the proof that can be found in [21]. Substituting equation (4.2) into equation
(4.1) gives for all vertices i

∑
j∈N(i)

wij (vi − vj) =
∑
j∈N(i)

vi − vj
rij

=


Y if i = a

−Y if i = b

0 otherwise,
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or, equivalently,

sivi −
n∑
j=1

wijvj =


Y if i = a

−Y if i = b

0 otherwise.

In vector notation this equation can be written as

LWv = (S−W)v = Y (ea − eb). (4.3)

Since the vector at the right hand side is perpendicular to 1, this equation can be inverted by
the pseudoinverse, finding the vector v in (sp{1})⊥ that satisfies it. The set of all solutions to
equation (4.3) is {

v = Y
((

LW
)+

(ea − eb) + c1
)
, c ∈ R

}
,

thus the vector of potentials is uniquely defined up to a constant vector. The potential difference
between an arbitrary pair (i, j) is now unique and given by

vi − vj = (ei − ej)T v = Y (ei − ej)T
(
LW
)+

(ea − eb).

The current yij for an edge (i, j) is uniquely defined as vi − vj and the effective resistance
between (a, b) is unique and satisfies

Rab =
va − vb
Y

= (ea − eb)T
(
LW
)+

(ea − eb) = (LW )+aa − 2(LW )+ab + (LW )+bb,

which does not depend on the net current Y . The last step follows from the symmetry of (LW )+,
which is a consequence of the fact that (LW )+ is orthogonally diagonizable, i.e. there exist an
orthogonal matrix U (with UT = U−1) and a diagonal matrix D such that (LW )+ = UDUT . 2

Now we have seen that the effective resistance is well defined, we can give a definition of the
total effective resistance.

Definition 4.3 The total effective resistance Rtot is the sum of the effective resistances over
all pairs of vertices:

Rtot =

n∑
i=1

n∑
j=i+1

Rij .

In the literature the total effective resistance is also called Kirchhoff index. It can be written
as a function of the non-zero Laplacian eigenvalues. This is a result of Klein and Randić ([21]).

Theorem 4.2 (Klein and Randić, 1993) The total effective resistance Rtot satisfies

Rtot = n

n∑
i=2

1

λWi
.
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Proof We reproduce the original proof. Using that Rii = 0 and Rij = Rji (which follow from
4.1), the total effective resistance can be written as

Rtot =
n∑
i=1

n∑
j=i+1

Rij

=
1

2

n∑
i=1

n∑
j=1

Rij

=
1

2

n∑
i=1

n∑
j=1

(
(LW )+ii − 2(LW )+ij + (LW )+jj

)
= n

n∑
i=1

(LW )+ii − 1T (LW )+1

= n tr
(
(LW )+

)
,

The last equality follows from the fact that (LW )+ on sp{1} corresponds to the zero map. Since
the Laplacian is symmetric, it has an orthonormal basis of eigenvectors. Let U be the matrix
that has these eigenvectors as its columns (the i-th column being the eigenvector corresponding
to eigenvalue λWi ) and let D be given by

D =


0 0 · · · 0
0 λW2 · · · 0
...

...
. . .

...
0 0 · · · λWn

 ,

then the Laplacian satisfies LW = UDU−1 = UDUT . In other words LW is given by D when all
vectors are written with respect to the orthogonal basis of eigenvectors. The pseudoinverse of
LW with respect to this basis is

D+ =


0 0 · · · 0

0
(
λW2
)−1 · · · 0

...
...

. . .
...

0 0 · · ·
(
λWn
)−1


and satisfies (LW )+ = UD+U−1 = UD+UT . Because similar matrices have the same eigenvalues,

the eigenvalues of (LW )+ are 0,
(
λW2
)−1

, . . . ,
(
λWn
)−1

and we can conclude that

Rtot = n tr
((

LW
)+)

= n tr
(
D+
)

= n

n∑
i=2

1

λWi
,

because similar matrices also have the same trace. 2

The former theorem allows us to derive bounds on Rtot in terms of λW2 .

Corollary 4.3 The total effective resistance Rtot can be bounded by functions of λW2 in the
following way

n

λW2
≤ Rtot ≤ n(n− 1)

λW2
.

With this bounds we conclude this section on the relation between effective resistance and the
Laplacian. In the next section we discover some properties of the effective resistance.
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4.3 Properties of the effective resistance

The effective resistance has been called resistance distance by Klein and Randić [21]. It is not
difficult to see that the effective resistance R is indeed a distance function.

Theorem 4.4 (Klein and Randić, 1993) The effective resistance R is a metric (distance
function).

Proof The proof is of Klein and Randić [21].

1. We use the result of Theorem 4.1. We have Rij = 0 if and only if i = j, because ei − ej
is in the null space of

(
LW
)+

— which corresponds to sp{1} — if and only if i = j. The

fact that the pseudoinverse of the Laplacian has eigenvalues 0,
(
λW2
)−1

, . . . ,
(
λWn
)−1

(see
the proof of Theorem 4.2 for more explanation) and thus is positive semidefinite, leads to
Rij ≥ 0.

2. Since the pseudoinverse is symmetric, we have Rij = Rji.

3. We show that the triangle inequality holds as well. Consider first a situation where a
voltage source is connected between vertices a and b. Suppose the current yab and the
potential vab satisfy Kirchhoff’s circuital law (4.1) and Ohm’s law (4.2). Then consider the
situation in which vertex b is the source and vertex c the sink. Assume that the current
ybc and the potential vbc satisfy (4.1) and (4.2) in this situation. Let the net current into
the network be Y in both cases. Now, define a current yac = yab + ybc and a potential
vac = vab + vbc. It is clear that (4.1) and (4.2) hold for the current yac and the potential
vac in the case that a voltage source is connected between a and c, with net current Y .

We have

Y Rac = vaca − vacc = (vaba − vabc ) + (vbca − vbcc ) ≤ (vaba − vabb ) + (vbcb − vbcc ) = Y Rab + Y Rbc,

where the inequalities vabc ≥ vabb and vbca ≤ vbcb are a consequence of the following. We will
show that for a source a and a potential v it holds that va ≥ vi for all vertices i. It follows
from Ohm’s law that the vertex with the largest potential can only have outgoing currents
(we say vertex v has an outgoing current to vertex w if the current yvw is positive). Now
it is clear that no vertex can have a higher potential than the source, because there would
be a net current out such a vertex (by the connectivity of the network), which is only
possible for the source. Likewise for a sink b we have for the potential vb ≤ vi for all i.

The triangle inequality is now a direct consequence:

Rac ≤ Rab +Rbc.

2

In the rest of this section we give some more (probably previously known) results, which are
described by Klein and Randić [21]. Proof were not provided in [21], so we have provided them
ourselves.

Theorem 4.5 The effective resistance R is a non-increasing function of the edge weights.

Proof Since by Weyl’s theorem (Theorem 3.3) the Laplacian eigenvalues do not decrease when
edge weights are increased, the expression

n∑
i=2

x2
i

λWi
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is non-increasing in the edge weights for any x ∈ Rn. By choosing x = UT (ea − eb), with U
the orthogonal matrix of eigenvectors corresponding to the Laplacian eigenvalues, we can now
conclude that

Rab = (ea − eb)T
(
LW
)+

(ea − eb)

= (ea − eb)T U


0 0 · · · 0

0
(
λW2
)−1 · · · 0

...
...

. . .
...

0 0 · · ·
(
λWn
)−1
UT (ea − eb)

= xT


0 0 · · · 0

0
(
λW2
)−1 · · · 0

...
...

. . .
...

0 0 · · ·
(
λWn
)−1
x

=
n∑
i=2

x2
i

λWi

is non-increasing in the edge weights. 2

The following corollary follows directly from the last theorem.

Corollary 4.6 The effective resistance R does not increase when edges are added.

Before we continue, we state and prove a useful lemma, which is our own formalization of the
well-known rule for resistors in parallel.

Lemma 4.7 Suppose a graph G that does not contain the edge (a, b) is given, and suppose the
effective resistance between a and b is Rab. Adding edge (a, b) with resistance rab gives a effective
resistance of

R′ab =
1

1
rab

+ 1
Rab

in the new graph G′.

Proof Let the net current Y , potentials v and currents y be given such that they satisfy
Kirchhoff’s law (4.1) and Ohm’s law (4.2) for the original graph G with source a and sink b.
Now, for graph G′ with source a and sink b define yab = (va− vb)/rab, Y ′ = yab + Y and let the
other potentials and currents be as before, then the net current Y ′, potentials v and currents y
satisfy Kirchhoff’s and Ohm’s laws. The effective resistance R′ab in G′ is

R′ab =
va − vb
Y ′

=
va − vb
yab + Y

=
va − vb

va−vb
rab

+ va−vb
Rab

=
1

1
rab

+ 1
Rab

.

2

The next theorem was not described by Klein and Randić [21], but is an interesting consequence
of Theorem 4.5.

Theorem 4.8 The total effective resistance strictly decreases when edges are added or weights
are increased.

Proof Suppose edge weight wij is increased or edge (i, j) is added. It is enough to show that
Rij strictly decreases, since effective resistances between other pairs do not increase because of
Theorem 4.5. The strict decreasingness of Rij is a direct consequence of Lemma 4.7. 2
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Theorem 4.9 For the effective resistance R and the ordinary (shortest-path) distance d (where
the length of an edge (i, j) corresponds to the edge resistance rij) we have for a pair of vertices
a, b:

1. if there is only one path between a and b, then Rab = dab,

2. otherwise, Rab < dab.

Proof

1. If there is only one path (say P ) between a and b, then yij = Y for all edges (i, j) on this
path (due to (4.1)) and vi − vj = Y rij . It follows that

Rab =
va − vb
Y

=
∑

(i,j)∈P

vi − vj
Y

=
∑

(i,j)∈P

rij = dab.

2. Suppose a path between a and b is added, we show that now Rab < dab. The added path
may use a part of P , call this part P1. Consider the rest of P and the rest of the new
path, call the shortest of these P2 and the other P3 (see Figure 4.3). Now, the current
through each edge of P1 is Y and the current through P2 and P3 is equal for every edge
of the same path, say Y2 and Y3 respectively. Because of (4.1) and (4.2) we have that
Y2 + Y3 = Y and Y2, Y3 > 0, which gives Y2 < Y . Finally, we find

Rab =
va − vb
Y

=
∑

(i,j)∈P1

vi − vj
Y

+
∑

(i,j)∈P2

vi − vj
Y

<
∑

(i,j)∈P1

vi − vj
Y

+
∑

(i,j)∈P2

vi − vj
Y2

=
∑

(i,j)∈P1

rij +
∑

(i,j)∈P2

rij = dab. (4.4)

The rest follows from Corollary 4.6.

2

a b
P1 P2 P1

P3

Figure 4.3. The effective resistance Rab is smaller than the distance dab, when there is more than one
path between a and b.

In a tree there is a unique path between every pair of vertices. Therefore the following corollary
holds.

Corollary 4.10 The effective resistance and the ordinary distance correspond on a tree, that
is, in a tree we have for every pair of vertices i, j:

Rij = dij .
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4.4 A random walk analogy

Let a random walk on the undirected graph with edge weights wji = wij = 1/rij be given by
the transition probabilities pij = wij/si. The stationary probability of vertex i — that is, the
probability the random walk is in i in the long run — is πi = si/

∑n
i=1 si, because this π satisfies

the global balance equations πj =
∑n

i=1 πipij . We consider the expected commute time between
two vertices a and b in this random walk. This is the expected number of transitions needed
to go from a to b and back. A theorem from Chandra et al. [8] gives a relation between the
average commute time and the effective resistance in the same graph. Before we come to this
theorem, we state a lemma.

Lemma 4.11 Let a graph G with edge weights wij be given. Define a random walk on G by
the transition probabilities pij = wij/si. Let Tab be the hitting time from vertex a to vertex b
(number of transitions to reach vertex b starting in a). The following relation holds

P
(
Tab < T+

aa

)
=

1

πa

(
E (Tab) + E (Tba)

) for a 6= b, (4.5)

where T+
aa denotes the first return time (number of transition needed to return) to a.

Proof We give the proof of Aldous and Fill [2]. The renewal theorem (see e.g. [28]) with cycle
length S gives

πa =
E(time in a during one cycle)

E(S)
. (4.6)

If we take the cycle length to be ‘the time of the first return to b after visiting a’, equation (4.6)
becomes

πa =
E(Bbaa) + E(Baab)

E(Tab) + E(Tba)
=

E(Baab)

E(Tab) + E(Tba)
, (4.7)

with Bavb the number of visits to vertex v in between the start of the random walk in a and
the stop in b, including vertex a but excluding vertex b.

For the random walk starting in a, the number of visits Baab to a (including the start in a)
before arriving in b has a geometric distribution with probability of success p = P(T+

aa < Tab).
The expectation of this geometric distribution is

E(Baab) =
1

p
=

1

P(T+
aa < Tab)

.

Together with (4.7) this gives the desired result. 2

Theorem 4.12 (Chandra et al., 1989) Let a graph G with edge weights wij be given. First,
define an electrical circuit by setting rij = 1/wij. Second, define a random walk on G by the
transition probabilities pij = wij/si. It holds that

Rab =
1∑n
i=1 si

(E(Tab) + E(Tba)) for all a, b ∈ V.

Proof The proof given is inspired by Chapter 3, Section 3 of the book in preparation by
Aldous and Fill [2]. The theorem is clearly true for a = b. Suppose now that a 6= b. It follows
from Lemma 4.11 that

1∑n
i=1 si

(E(Tab) + E(Tba)) =
1

saP(Tab < T+
aa)

,



30 CHAPTER 4. EFFECTIVE RESISTANCE

it thus suffices to show that

Rab =
1

saP(Tab < T+
aa)

.

Let vi = P(Tia < Tib), yij = wij(vi − vj) and Y = saP(Tab < T+
aa). We prove that v, y and

Y satisfy Kirchhoff’s current law (equation (4.1)). Ohm’s law (equation (4.2)) has clearly been
fulfilled. We get the following three equations:

∑
j∈N(a)

yaj =
∑

j∈N(a)

waj(va − vj) =
∑

j∈N(a)

waj

(
P(Taa < Tab)−P(Tja < Tjb)

)
=

∑
j∈N(a)

wajP(Tjb < Tja) = sa
∑
j∈V

pajP(Tjb < Tja) = saP(Tab < T+
aa) = Y,

∑
j∈N(i)

yij =
∑
j∈N(i)

wij(vi − vj) =
∑
j∈N(i)

wij

(
P(Tia < Tib)−P(Tja < Tjb)

)
= siP(Tia < Tib)−

∑
j∈N(i)

wijP(Tja < Tjb) = siP(Tia < Tib)− si
∑
j∈V

pijP(Tja < Tjb)

= siP(Tia < Tib)− siP(Tia < Tib) = 0,∑
j∈N(b)

ybj =
∑

j∈N(b)

wbj(vb − vj) =
∑

j∈N(b)

wbj

(
P(Tba < Tbb)−P(Tja < Tjb)

)
= −

∑
j∈N(b)

wbjP(Tja < Tjb) = −sb
∑
j∈V

pbjP(Tja < Tjb) = −sbP(Tba < T+
bb )

= −saP(Tab < T+
aa) = −Y,

where we have used the law of total probability three times. The second last equality follows
from (4.5). As a result we have

Rab =
va − vb
Y

=
P(Taa < Tab)−P(Tba < Tbb)

Y
=

1

Y
=

1

saP(Tab < T+
aa)

.

2

The effective resistance is proportional to the expected commute time, which implies that the
total effective resistance is proportional to the expected hitting time averaged over all pairs of
vertices.

Corollary 4.13 We have

Rtot =
1∑n
i=1 si

n∑
i=1

n∑
j=1

E(Tij).

The number of visits to vertex v in a random walk starting in a, going to b, and back to a, is
also related to the expected commute time. This relation is given in a theorem that is easy to
prove, but has not been found in the literature. For the proof we need the following lemma.

Lemma 4.14 Let Bavb be the number of visits to vertex v in between the start of the random
walk in a and the stop in b, including vertex a but excluding vertex b. Then Bavb is given by

E(Bavb) = πv

(
E(Tab) + E(Tbv)−E(Tav)

)
for a 6= b.
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Proof The proof can be found in [2]. The case a 6= v = b is trivial and the case a = v 6= b
corresponds to equation (4.7). For the case that a, b, v are distinct, let us use the renewal
theorem (4.6) with cycle length S equal to ‘the time of the first return to a after visiting b and
v (in that order)’. It gives

πv =
E(Bavb) + E(Bbvv) + E(Bvva)

E(Tab) + E(Tbv) + E(Tva)
=

E(Bavb) + E(Bvva)

E(Tab) + E(Tbv) + E(Tva)

or, equivalently

πv

(
E(Tab) + E(Tbv) + E(Tva)

)
= E(Bavb) + E(Bvva) (4.8)

Equation (4.7) becomes

πv =
E(Bvva)

E(Tva) + E(Tav)
,

when a is substituted by v, and b by a. If we now subtract

πv

(
E(Tva) + E(Tav)

)
= E(Bvva)

from (4.8) we find

πv

(
E(Tab) + E(Tbv)−E(Tav)

)
= E(Bavb).

2

Theorem 4.15 Let Bavb be as before. The expression

E(Bavb) + E(Bbva) = πv

(
E(Tab) + E(Tba)

)
holds true.

Proof The theorem is clearly true for a = b. Suppose now that a 6= b. Adding the expressions
for E(Bavb) and E(Bbva) in Lemma 4.14, directly leads to the desired result. 2

This theorem gives us an easy alternative way to prove that the network criticality — proposed
as a robustness measure by Tizghadam and Leon-Garcia [33] — is equal to two times the total
effective resistance. Tizghadam and Leon-Garcia define the random walk betweenness Bv of
vertex v as

Bv =

n∑
i=1

n∑
j=1

E(Bivj)

and the network criticality as

τ = 2
Bv
sv
,

which turns out to be independent of the vertex v.

Theorem 4.16 The network criticality τ satisfies

τ = 2Rtot.

Proof We use Corollary 4.13 and Theorem 4.15 to find

1

2
τ =

Bv
sv

=
1

sv

n∑
i=1

n∑
j=i+1

(
E(Bivj) + E(Bjvi)

)
=

1

sv

n∑
i=1

n∑
j=i+1

πv (E(Tij) + E(Tji))

=
1∑n
i=1 si

n∑
i=1

n∑
j=i+1

(E(Tij) + E(Tji)) = Rtot.
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2

Summing the relation

svR
tot =

n∑
i=1

n∑
j=1

E(Bivj)

over all vertices v gives an alternative proof of Corollary 4.13.
The random walk analysis discussed in this section allows us to derive new expressions for

the total effective resistance, which lead to a new method for approximating the total effective
resistance [14].

4.5 Examples of graphs and their total effective resistance

If the network is not connected, the effective resistance can be calculated between vertices within
the same component, but not between vertices in different components, like the ordinary (short-
est path) distance. The total effective resistance is said to be equal to infinity for unconnected
graphs.

As a consequence of Corollary 4.8, the minimum total effective resistance is reached by the
complete graph Kn. By Theorem 4.2 and the eigenvalues of Kn given in the discussion following
Theorem 3.9 we have

Rtot(Kn) = n− 1.

Among the connected graphs, the path graph has maximum total effective resistance. Theorem
4.9 shows that the connected graph with maximum total effective resistance must be the tree
with maximum average distance. The path graph Pn clearly has maximum average distance of
all trees with n vertices. We have

Rtot(Pn) =

n∑
i=1

n∑
j=i+1

dij = (1 + · · ·+ n− 1) + (1 + · · ·+ n− 2) + · · ·+ (1 + 2) + 1

=
n−1∑
i=1

n−i∑
j=1

j =

n−1∑
i=1

i(i+ 1)

2
=

1

6
(n− 1)n(n+ 1),

where we have used that
∑n

i=1 i = 1
2n(n+ 1) and

∑n
i=1 i

2 = 1
6n(n+ 1)(2n+ 1).

The tree with minimum total effective resistance, that is with minimum average distance,
is the star graph Sn. Its total effective resistance is

Rtot(Sn) =
n∑
i=1

n∑
j=i+1

dij = (n− 1) · 1 +
1

2
(n− 1)(n− 2) · 2 = (n− 1)2.

See Figure 2.4 for examples of the complete, path and star graphs mentioned in this section.
The values of the total effective resistance for the small examples in this figure (Section 2.6) are

Rtot(K4) = 3, Rtot(C4) = 5, Rtot(S4) = 9, Rtot(P4) = 10, Rtot(O4) =∞.

Figure 4.4 shows two different graphs with the same number of vertices and edges, having the
same value for the total effective resistance [40]. As none of the graphs is intuitively more robust
than the other, it is no problem that the total effective resistance is not able to discriminate
these graphs. It is interesting to note that these graphs also have the same reliability polynomial
and the same average distance.
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(a) Graph G1 with Rtot(G1) = 64 (b) Graph G2 with Rtot(G2) = 64

Figure 4.4. Two graphs with the same total effective resistance

Let us carry out a comparison between the total effective resistance, the algebraic connectivity
and the reliability polynomial (for ‘p close to one’) as robustness measures. We show that they
capture different graph properties, because for each pair of these measures there is a pair of
graphs such that the first measure indicates one graph as the most robust, while the other
measure chooses the other graph.

Recall the example of [38] shown in Figure 2.3. The authors have pointed out that the
algebraic connectivity and the reliability polynomial for ‘p close to one’ (or ‘q = 1 − p close
to zero’) give different robustness evaluations. The values of the three measures for these two
graphs are

Rtot(G1) ≈ 21.67 Rtot(G2) = 21.5

λ2(G1) ≈ 0.63 λ2(G2) ≈ 0.59

Rel(G1) = 1− q + o (q) for q → 0 Rel(G2) = 1− 4q2 + o
(
q2
)

for q → 0.

The total effective resistance and the reliability polynomial point at the first graph, while the
algebraic connectivity indicates that the second graph is more robust.

(a) Graph G1 with Rtot(G1) = 10 and
Rel(G1) = 1 + o (q) for q → 0

(b) Graph G2 with Rtot(G2) = 8.5 and
Rel(G2) = 1− q + o (q) for q → 0

Figure 4.5. Two graphs for which the reliability polynomial and the total effective resistance give a
different evaluation of robustness

Figure 4.5 shows two graphs for which the total effective resistance and the reliability polynomial
give different robustness evaluations; the reliability polynomial would indicate graph G1 as most
robust, but the total effective resistance is lower for G2.

4.6 Normalized effective resistance

We believe that the inverse total effective resistance is a good measure for network robustness;
the smaller the total effective resistance the more robust the network. We therefore define the
normalized (inverse total) effective resistance, which we propose as a measure for robustness.
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Definition 4.4 The normalized effective resistance is defined as

Rnorm =
n− 1

Rtot
=

n− 1

n
∑n

i=2
1
λi

∈ [0, 1].

The advantage of the normalized effective resistance over the total effective resistance is that
a large value indicates a robust network. Furthermore the values lie in the interval [0, 1]. It
is minimal (zero) for unconnected graphs and maximal (one) for complete graphs. Therefore
a normalized effective resistance close to one indicates a robust network. We now present the
arguments for our proposal of the normalized effective resistance as a measure for network
robustness.

First, the total effective resistance is the sum of pairwise effective resistances, which in
Section 4.1 we have argued to measure the robustness of the connection between two vertices.
The key notion is that pairwise effective resistance takes both the number of (not necessarily
disjoint) paths between two vertices and their length into account, therefore the normalized
effective resistance considers both the number of back-up paths as well as their quality.

Second, it is a consequence of Theorem 4.8 that the normalized effective resistance strictly
increases when edges are added or edge weights are increased. Algebraic connectivity for ex-
ample does not show this strict increasingness. Moreover, for the simple examples in Section
4.5 the normalized effective resistance gives the same evaluation of robustness as does our in-
tuition. Complete graphs are most robust, unconnected graphs least, trees are the least robust
connected graphs, star graphs are the most robust trees, and path graphs the least robust trees.

The third reason is the analogy with random walks; the smaller the effective resistance
between vertices a and b, the greater the normalized effective resistance and the smaller the
expected duration of a random walk from a to b and back (see Theorem 4.12). Short random
walks suffer little from vertex or edge failures, and thus indicate a robust network. In addition,
the random walk analogy shows that the robustness measure defined in [33] is equal to two
times the total effective resistance (Theorem 4.16). Since both measures have been proposed
independently and by different reasonings, it gives a strong indication that the normalized
effective resistance is indeed a useful robustness measure.

For the normalized effective resistance, the bounds of Corollary 4.3 become

1

n
λW2 ≤ Rnorm ≤ n− 1

n
λW2 < λW2 .

The algebraic connectivity can thus be used to approximate the robustness of a network.



Chapter 5

Optimization of the normalized
effective resistance

In this chapter graphs are optimized in order to maximize the normalized effective resistance.
In each section different conditions have been chosen. Section 5.1 treats the maximization of
the normalized effective resistance for graphs with a given number of vertices and diameter.
In this section we first characterize the class of graphs, wherein the optimal graph must lie.
Afterwards we present some results found by exhaustive search on that class of graphs. Section
5.2 considers the question how many eigenvalues are needed in order to find the same optimal
graph as for the effective graph resistance. The topic of the last Section 5.3 is the optimal
addition of an edge.

5.1 Graphs with a fixed number of vertices and diameter

Definition 5.1 The clique chain G (n1, n2, . . . , ndmax , ndmax+1) is a graph obtained from the
path graph Pdmax+1 by replacing the i-th vertex by a clique (subset of vertices which are fully
interconnected by edges) of size ni, such that vertices in distinct cliques are adjacent if and only
if the corresponding original vertices in the path graph are adjacent.

For examples of such graphs see Figure 5.2, where the graphs G(1, 2, 2, 1, 1) and G(1, 1, 3, 1, 1)
have been drawn.

In [34] Van Dam has shown that the class of graphs G (n1 = 1, n2, . . . , ndmax , ndmax+1 = 1)
with

∑dmax+1
i=1 ni = n contains a graph with maximum spectral radius (largest eigenvalue of

the adjacency matrix) for fixed number of vertices n and a fixed diameter dmax. In [39] it has
been shown that also graphs with largest algebraic connectivity, maximum number of links and
largest average distance, for fixed n and dmax, are obtained within this class. It is easy to see
that the same class contains graphs with maximum vertex or edge connectivity and average
vertex or edge betweenness for fixed n and dmax as well. We show that the same holds for the
normalized effective resistance.

The following theorem is the key to the proof of the statements above. It is easy to verify,
see [39].

Theorem 5.1 Any graph with n vertices and diameter dmax is a subgraph of at least one graph
in the class G (n1 = 1, n2, . . . , ndmax , ndmax+1 = 1) with

∑dmax+1
i=1 ni = n.

Using this theorem and Theorem 4.8 we find the next corollary.

Corollary 5.2 The maximum normalized effective resistance for fixed n and dmax is equal to
the maximum normalized effective resistance achieved within the class of the graphs G(n1 =
1, n2, . . . , ndmax , ndmax+1 = 1) with

∑dmax+1
i=1 ni = n.

35
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In [14] we have derived a general formula for the total effective resistance of clique chains. This
formula allowed us to analytically compute optimal graphs for a given number of vertices and
given diameter dmax ≤ 3. For larger diameters we have written a Matlab program (see Section
B.1) to find graphs that maximize the normalized effective resistance for some fixed values of
n and dmax. The goal of the optimization is to be able to design robust networks when the size
of the network (in terms of number of vertices and diameter) is given. The results — which
can be found in Table A.1 and Figure 5.1 — are obtained by exhaustive search on the class of
clique chains. The same results for the algebraic connectivity are given in [39].

Figure 5.1. The optimal value of the normalized effective resistance for some values of n and dmax

We see that for the algebraic connectivity and the normalized effective resistance there exist
different optimal graphs. For example for n = 7 and dmax = 4 the graph with cliques of sizes
(1, 2, 2, 1, 1) maximizes the normalized effective resistance, while the graph with clique sizes
(1, 1, 3, 1, 1) maximizes the algebraic connectivity. See Figure 5.2.

(a) Graph with λ2 ≈ 0.68, Rnorm ≈ 0.30 (b) Graph with λ2 ≈ 0.70, Rnorm ≈ 0.28

Figure 5.2. For n = 7 and dmax = 4, λ2 and Rnorm give different optimal graphs.

For both the algebraic connectivity and the normalized effective resistance the optimum is
generally achieved for clique graphs with a symmetric sequence of clique sizes. Surprisingly
there are a few counterexamples. Regarding the normalized effective resistance, for n = 100,
dmax = 7 we found the optimal graph with clique sizes (1, 6, 17, 28, 27, 15, 5, 1). While optimizing
the algebraic connectivity for n = 122 and dmax = 7 we found that the graph with clique sizes
(1, 11, 20, 29, 28, 21, 11, 1) is optimal.

The optimization has shown that in general the clique sizes of the optimal graphs for both
measures are larger for cliques closer to the middle. However for the algebraic connectivity there
is an example that does not have this structure; the graph with clique sizes (1, 2, 3, 5, 4, 5, 3, 2, 1)
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is optimal for n = 26 and dmax = 8.

5.2 An approximation of the normalized effective resistance

The algebraic connectivity has been shown to provide bounds for the normalized effective resis-
tance. In this section we try to answer the question how many Laplacian eigenvalues are needed
in order to find the same optimal graph as for the normalized effective resistance.

The sum
k − 1

n
∑k

i=2
1
λi

∈ [0, 1]

with k < n is an approximation of the normalized effective resistance by using k − 1 non-zero
eigenvalues instead of all n − 1 of them. We have optimized this value to find out how many
eigenvalues are needed in order to find the same optimal graph as for the normalized effective
resistance. For the results see Table 5.1 and for the program Section B.2.

n = 26 n = 50 n = 100 n = 122

dmax = 2 k = 2 k = 2 k = 2 k = 2
dmax = 3 k = 2 k = 2 k = 2 k = 2
dmax = 4 k = 15 k = 23 k = 36 k = 42
dmax = 5 k = 14 k = 32 k = 93 k = 107

Table 5.1. Minimal number k such that the graph that maximizes (k−1)/(n
∑k
i=2

1
λi

) maximizes Rnorm

as well

In general, for increasing k, the optimal graphs have an increasing number of vertices in the
cliques in the middle, but a few surprising counterexamples have been found. For example, for
n = 26, and dmax = 4 (see Table A.2, Appendix A) we have that for k = 2 (which corresponds
to λ2/n) the graph with cliques sizes (1, 7, 10, 7, 1) is optimal. For k = 3, 4, 5, 6 is the graph with
clique sizes (1, 8, 8, 8, 1) optimal. The graph with clique sizes (1, 7, 10, 7, 1) is again optimal for
k = 7, . . . , 12.

5.3 Expanding the graph with an edge

For application purposes it is interesting to know which edge has to be added in order to optimize
the effective resistance, because it can help improving existing networks. The following example
demonstrates that the edge that causes the largest increase in the normal effective resistance,
may not causes the largest increase in the algebraic connectivity.

1 2 3

4 5

(a) Rnorm ≈ 0.22 and λ2 ≈ 0.52

1 2 3

4 5

(b) Rnorm ≈ 0.35 and λ2 ≈ 0.83

1 2 3

4 5

(c) Rnorm ≈ 0.32 and λ2 = 1

Figure 5.3. Adding the edge (4, 5) is optimal for Rnorm, adding (2, 4) is optimal for λ2.

A first hypothesis is that it is optimal to add the edge (i, j) for which Rij is maximal. Unfor-
tunately, the example in Figure 5.4 shows that this is not always the case. The corresponding
matrix of effective resistances is:
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R =



0 5
8

5
8 1 13

8
21
8

5
8 0 1

2
5
8

3
2

5
2

5
8

1
2 0 5

8 1 2

1 5
8

5
8 0 13

8
21
8

13
8

3
2 1 13

8 0 1
21
8

5
2 2 21

8 1 0


.

We see that the pairs (1, 6) and (4, 6) have the largest effective resistance. Nevertheless, edge
(2, 6) is the best edge to add.

1

2

3

4

5

6

(a) Graph with Rnorm ≈ 0.244

1

2

3

4

5

6

(b) Graph with Rnorm ≈ 0.398

1

2

3

4

5

6

(c) Graph with Rnorm ≈ 0.402

Figure 5.4. Adding the edge (4, 6) is not optimal, although R46 gives the maximum effective resistance.

In this counterexample the best edge to add is not the one with maximum pairwise effective
resistance, but the one between vertices that lay furthest apart. However, it can neither been
demonstrated that the edge (i, j) for which the distance dij is maximal always is the best edge
to add, because the graph in Figure 5.5 gives again a counterexample. The distance matrix
corresponding to the graph in Figure 5.5(a) is:

D =



0 1 1 1 2 2 2
1 0 1 2 1 2 3
1 1 0 1 2 1 2
1 2 1 0 2 1 1
2 1 2 2 0 1 2
2 2 1 1 1 0 1
2 3 2 1 2 1 0


.

Although the distance is maximal between vertices 2 and 7, it is optimal to add edge (5, 7).

1

2
3

4

5 6 7

(a) Graph with Rnorm ≈ 0.403

1

2
3

4

5 6 7

(b) Graph with Rnorm ≈ 0.478

1

2
3

4

5 6 7

(c) Graph with Rnorm ≈ 0.482

Figure 5.5. Adding the edge (2, 7) is not optimal, although d27 gives the maximum distance.
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The question which edge to add in order to maximize the normalized effective resistance, is still
open.
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Chapter 6

Conclusion

6.1 Discussion of the results

The goal of our research was to find a way to quantitatively measure network robustness. More
specifically we aimed at answering the following question.

Research question What is the best way to measure the robustness of simple, undirected,
connected and possibly weighted graphs?

Let us answer this question by discussing the other questions stated in the introduction and
repeated here.

• Which graph measures have been proposed for measuring network robustness?

• Which other existing graph measures are suited for measuring network robustness?

• Which new measures can be defined for measuring network robustness?

• What are the properties of the above mentioned measures?

– Which values can be obtained by the measure?

– How does the measure change when edges are added or deleted?

– Which graphs are optimal for this measure (for some given optimization criteria)?

• What graph properties do the measures capture, are these important for network robust-
ness?

We started by reviewing some traditional graph measures from complex network theory: con-
nectivity, vertex connectivity, edge connectivity, average distance, diameter, average vertex
betweenness, average edge betweenness, maximum edge betweenness and the clustering coef-
ficient. All connectivity measures, the diameter and the clustering coefficient may stay equal
when an edge is added, while the network becomes more robust. The maximum edge between-
ness may even increase — and thus indicate that the network becomes less robust — when
adding an edge. The remaining measures (average distance, average vertex betweenness, aver-
age edge betweenness) qualify better as a measure for robustness, but have been shown to be
linear functions of each other (for a given number of vertices).

We continued our research by the inspection of a number of measures specifically proposed
for measuring network robustness: the reliability polynomial, algebraic connectivity and the
number of spanning trees. Among these, the reliability polynomial most clearly captures the
robustness properties of the graph, while the meaning of the algebraic connectivity as a measure
for network robustness is the least intuitive. Beside the fact that it is not clear which properties

41
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of the graph the algebraic connectivity expresses, it is also a disadvantage that it does not
always strictly increase when adding an edge. The reliability polynomial is a function of p, the
failure probability of an edge being 1−p. The robustness evaluation of this measure depends on
the choice of p (robustness polynomials of different graphs may intersect each other). The case
‘p close to zero’ corresponds to measuring the number of spanning trees, which as a consequence
is not a good measure since in real-world networks failures are supposed to be scarce. Therefore
the reliability polynomial ‘for p close to one’ seems a better measure. Nevertheless this case
corresponds to the edge connectivity, which has been qualified as a poor robustness measure.

To summarize, the requirement that a robustness measure must be strictly increasing when
an edge is added, excludes most of the measures mentioned above, except for the average distance
(and average betweenness), the reliability polynomial for ‘p close to zero’ and the number of
spanning trees. The latter two measures are related and give the probability that the graph is
connected when an edge is removed with large probability, which is a graph property that is
not compatible with the fact that failures in real-world networks are scarce. Since the average
distance measures the length of the average shortest path between a pair of vertices and does
not take the number and length of alternative paths into account, we proposed a new measure
for network robustness.

This new measure for network robustness, the normalized effective resistance, has been
shown to be zero for unconnected graphs and one for complete graphs. We consider the normal-
ized effective resistance to be a good measure for network robustness for a few reasons. First,
the normalized effective resistance considers all paths between two vertices as it increases with
the number of paths and decreases when the path lengths are increasing. Second, it strictly
increases with the addition of an edge. Third, the larger the normalized effective resistance, the
shorter the average random walk between two vertices and the less impact failures have.

The normalized effective resistance can be approximated by the algebraic connectivity, but
the optimization in Chapter 5 show that using the algebraic connectivity instead of the nor-
malized effective resistance may lead to different optimal graphs when the number of vertices
and the diameter are fixed, and also to the addition of another optimal edge. In Section 5.2 we
have shown that it is not possible to use a smaller number than the n − 1 non-zero Laplacian
eigenvalues and still find the right optimal graphs.

6.2 The contribution of this thesis

With this thesis we have contributed to the study of network robustness with as a main goal
finding a measure for network robustness — such that the robustness of real-world networks
can be evaluated, compared and improved. The contribution of this thesis consists of an exten-
sive survey on robustness measures, the proposal of an functional robustness measure and the
optimization of this measure.

The survey of measures (Chapter 2 and Chapter 3) includes a review of more than ten graph
measures, their properties and a discussion of their functionality as a robustness measure. Where
possible variants of these measures have been proposed where edge weights or traffic matrices are
taken into account. Moreover, a complete overview of the characteristics of the Laplacian and its
eigenvalues has been given as an introduction to spectral measures. The survey on robustness
measures includes a substantial amount of examples and rigorous proofs of all results. For
Theorem 2.1, Theorem 3.1, Theorem 3.5, Theorem 3.6 and Theorem 3.12 no earlier proofs were
found and other proofs have been elaborated into more detail. New results are: the fact that
the maximum edge betweenness may increase when adding an edge (Section 2.3) and Theorem
3.10 on the behavior of the Laplacian spectrum when an edge is added to the star graph.

We have argued that the normalized effective resistance is a highly valuable measure for
robustness in Chapter 4. The proposal of this measure is preceded by an introduction of the
pairwise and the total effective resistance. In addition, their relation with the Laplacian and
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random walks has been explained. Some new results (Theorem 4.8 on the decreasingness of
the total effective resistance when edges are added and Theorem 4.15 on the relation between
the number of visits in a random walk and the pairwise effective resistance) have been proved,
proofs of Theorem 4.5 and Theorem 4.9 have been provided, and a new proof of Theorem 4.16
has been developed.

Chapter 5 forms a first step towards the optimization of networks with respect to their
robustness. Section 5.1 and Section 5.2 concentrated on the design of robust networks, while
Section 5.3 aimed at improving the robustness of existing networks. An interesting result is the
finding of asymmetric optimal graphs when maximizing the normalized effective resistance for
graphs with a given number of vertices and a given diameter.

6.3 Further research

We wrote a survey on robustness measures on weighted and unweighted graphs. A logical next
step is to look for robustness measures on directed graphs or to include traffic matrices and
edge capacities (bounds on the load of an edge). As mentioned in Section 2.3 the betweenness
variance may be considered as a new graph measure.

Further research on the normalized effective resistance may also focus on the generalization
to directed graphs and graphs with traffic matrices and capacities. It may as well concentrate on
the comparison of the computation time of algorithms for determining the normalized effective
resistance.

Concerning the maximization of the normalized effective resistance we would like to ana-
lytically compute the optimal graphs of Section 5.1 or at least finding an explanation for the
presence of asymmetric optimal graphs. The problem of finding an algorithm for determining
the edge that increases the normalized effective resistance most, without having to try all possi-
ble edges is still open. Optimization for other optimization criteria, for example a fixed number
of vertices and edges, might be interesting as well. Furthermore, research should be done to
verify whether real-world graphs exist that have the same structure as the optimal graphs in
Section 5.1.
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Appendix A

Tables with optimization results

The tables referred to in Section 5.1 and Section 5.2 can be found in this appendix.

n = 26 Rnorm n1 n2 n3 n4 n5 n6 n7 n8
dmax = 2 0.9967 1 24 1
dmax = 3 0.8859 1 12 12 1
dmax = 4 0.6644 1 6 12 6 1
dmax = 5 0.4817 1 4 8 8 4 1
dmax = 6 0.3557 1 3 6 6 6 3 1
dmax = 7 0.2678 1 3 4 5 5 4 3 1

n = 50 Rnorm n1 n2 n3 n4 n5 n6 n7 n8
dmax = 2 0.9992 1 48 1
dmax = 3 0.9404 1 24 24 1
dmax = 4 0.7653 1 9 29 10 1
dmax = 5 0.5812 1 6 18 18 6 1
dmax = 6 0.4454 1 5 11 15 12 5 1
dmax = 7 0.3516 1 4 9 11 11 9 4 1

n = 100 Rnorm n1 n2 n3 n4 n5 n6 n7 n8
dmax = 2 0.9998 1 98 1
dmax = 3 0.9701 1 49 49 1
dmax = 4 0.8425 1 16 67 15 1
dmax = 5 0.6684 1 8 41 41 8 1
dmax = 6 0.5226 1 6 22 41 23 6 1
dmax = 7 0.4175 1 6 17 28 27 15 5 1

n = 122 Rnorm n1 n2 n3 n4 n5 n6 n7 n8
dmax = 2 0.9999 1 120 1
dmax = 3 0.9755 1 60 60 1
dmax = 4 0.8601 1 18 84 18 1
dmax = 5 0.6910 1 9 51 51 9 1
dmax = 6 0.5430 1 7 27 51 28 7 1
dmax = 7 0.4347 1 6 19 35 35 19 6 1

Table A.1. Graphs that maximize the normalized total effective resistance for given n, dmax
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n = 26, dmax = 4 n
∑k

i=2
1
λi

n1 n2 n3 n4 n5
k = 2 4.57 1 7 10 7 1
k = 3 7.68 1 8 8 8 1
k = 4 9.97 1 8 8 8 1
k = 5 11.50 1 8 8 8 1
k = 6 13.03 1 8 8 8 1
k = 7 14.53 1 7 10 7 1
k = 8 15.98 1 7 10 7 1
k = 9 17.42 1 7 10 7 1
k = 10 18.87 1 7 10 7 1
k = 11 20.31 1 7 10 7 1
k = 12 21.76 1 7 10 7 1
k = 13 23.20 1 7 10 7 1
k = 14 24.63 1 7 11 6 1
k = 15 25.74 1 6 12 6 1
k = 16 26.82 1 6 12 6 1
k = 17 27.91 1 6 12 6 1
k = 18 28.99 1 6 12 6 1
k = 19 30.08 1 6 12 6 1
k = 20 31.16 1 6 12 6 1
k = 21 32.24 1 6 12 6 1
k = 22 33.32 1 6 12 6 1
k = 23 34.41 1 6 12 6 1
k = 24 35.49 1 6 12 6 1
k = 25 36.57 1 6 12 6 1
k = 26 37.63 1 6 12 6 1

Table A.2. Graphs that maximize (k − 1)/(n
∑k
i=2

1
λi

) for n = 26, dmax = 4



Appendix B

Matlab codes for the optimization of
the normalized effective resistance

This appendix contains the Matlab M-files used for the optimization of the normalized effective
resistance in Chapter 5.

B.1 Graphs with a fixed number of vertices and diameter

We start by giving the M-files used for Section 5.1. The following function calculates the
normalized effective resistance and the algebraic connectivity, given the adjacency matrix of a
graph.

function [R,A]=resistance_and_connectivity(G)

%calculates the normalized effective resistance R

%and the algebraic connectivity A, given an adjacency matrix G

n=length(G); %number of vertices

d=sum(G,1); %vector of vertex degrees

L=-G+diag(d); %Laplacian

eigen=sort(eig(L)); %vector of Laplacian eigenvalues

R=0;

A=0;

if (n~=1)&&(eigen(2)>0)

A=eigen(2);

for i=2:n

R=R+n/eigen(i);

end

R=(n-1)/R;

end

The following function constructs all possible clique chains with a given number of vertices and
diameter, it returns the optimal values and graphs for the normalized effective resistance and
the algebraic connectivity. It uses the former function.

function[x,eff_opt,m_opt,alg_opt,m_opt2]

=increasing_numbers(max,total_number,number,x,eff_opt,m_opt,alg_opt,m_opt2)

%gives sets of ‘total_number’ increasing integers

47



48 APPENDIX B. MATLAB CODES

%starting with an amount of ‘number’ integers given in ‘x’

%the last integer is ‘max’

%first part of increasing numbers

if number==total_number-1

x(total_number)=max;

%gives a partition m of ‘max’+1 of size ‘total_number’+1

%where the first and last integers are 1

x2=[0,x,max+1];

for j=1:length(x2)-1

m(j)=x2(j+1)-x2(j);

end

%gives the adjacency matrix of a clique chain with cliques sizes

%given by the partition m

%cliques sizes given by the partition m

for j=1:total_number+1

if j>1

A(x2(j)+1:x2(j+1),x2(j-1)+1:x2(j))=ones(m(j),m(j-1));

A(x2(j-1)+1:x2(j),x2(j)+1:x2(j+1))=ones(m(j-1),m(j));

end

A(x2(j)+1:x2(j+1),x2(j)+1:x2(j+1))

=triu(ones(m(j)),1)+triu(ones(m(j)),1)’;

end

%calculates the algebraic connectivity,

%the effective resistance and finds the optima

[eff,alg]=resistance_and_connectivity(A);

if eff>eff_opt

eff_opt=eff;

m_opt=m;

end

if alg>alg_opt

alg_opt=alg;

m_opt2=m;

end

%final part of increasing_numbers

else

number=number+1;

for i=x(number-1)+1:max-total_number+number

x(number)=i;

[x,eff_opt,m_opt,alg_opt,m_opt2]=increasing_numbers

(max,total_number,number,x,eff_opt,m_opt,alg_opt,m_opt2);

end

end

end

The following M-file produces the output used in Table A.1, making use of the last function.

%finds the graphs with given number of vertices and diameter that optimize
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%the algebraic connectivity or the total ER (effective resistance)

clc;

clear all;

%open output file

fid = fopen(’optimize_eff_resist.txt’, ’wt’);

fprintf(fid, ’The graphs that optimize the algebraic connectivity and

the total effective resistance for given number of nodes and diameter’);

fclose(fid);

for N=[26,50,100,122]

for D=2:7

eff_opt=0; %optimal value of the total ER

m_opt=0; %optimal graph for the total ER

alg_opt=0; %optimal value of the alg. con.

m_opt2=0; %optimal graph for the alg. con.

[x,eff_opt,m_opt,alg_opt,m_opt2]

=increasing_numbers(N-1,D,1,1,eff_opt,m_opt,alg_opt,m_opt2);

%print optimal values and graphs in output file

fid = fopen(’optimize_eff_resist.txt’, ’at’);

fprintf(fid, ’\n\nN: %d, D: %d’, N, D);

fprintf(fid, ’\nalg_opt: %6.4f, G:’, alg_opt);

fprintf(fid, ’ %d’, m_opt2);

fprintf(fid, ’\neff_opt: %6.4f, G:’, eff_opt);

fprintf(fid, ’ %d’, m_opt);

fclose(fid);

end

end

B.2 An approximation of the normalized effective resistance

The M-files used in Section 5.2 are very similar to those of Section 5.1. We only give the function
that calculates the approximations of the normalized effective resistance. The other two M-files
are adaptions of the last two files of the former section, where the normalized effective resistance
is replaced by a vector of approximations.

function [until_eigenvalue]=all_eigenvalues(G)

%calculates 1 over the sum of k inverse eigenvalues (for k<=n) and

%normalizes

%until_eigenvalue(k-1) gives 1 over the sum of inverse eigenvalue 2

%till eigenvalue k multiplied by (k-1)/n

n=length(G);

d=degree(G);

L=-G+diag(d);

eigen=sort(eig(L));
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until_eigenvalue=zeros(1,n);

if eigen(2)>0

for i=2:n

until_eigenvalue(i)=until_eigenvalue(i-1)+1./eigen(i);

end

until_eigenvalue(1)=[];

for i=1:n-1

until_eigenvalue(i)=i/(n*until_eigenvalue(i));

end

end

end

B.3 Expanding the graph with an edge

For Section 5.3 we have used the following function, which determines which edge has to be
added in order to maximize the normalized effective resistance.

function [e_opt,e_opt2]=add_best_edge(G)

%gives the edge that optimizes the total eff resistance when added

%and the same for the algebraic connectivity

eff_opt=0;

e_opt=[];

alg_opt=0;

e_opt2=[];

n=length(G);

for i=1:n

for j=i+1:n

if G(i,j)==0

G2=G;

G2(i,j)=1;

G2(j,i)=1;

[eff,alg]=resistance_and_connectivity(G2);

if eff>eff_opt

eff_opt=eff;

e_opt=[i,j];

end

if alg>alg_opt

alg_opt=alg;

e_opt2=[i,j];

end

end

end

end

end
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The following program determines whether the best edge to add is the edge with largest distance.
The other programs used in Section 5.3 are variants of this progam. It uses the functions
‘components’ and ‘all shortest paths’ which can be found in [17] and the function ‘ER’ given
below.

clc

n=7;

for i=1:100

G=ER(n,.5); %generation of a random graph with n vertices

if (sum(sum(G))~=(n^2-n)) %we cannot add an edge to a complete graph

if (components(sparse(G))==ones(n,1)) %the graph must be connected

[e_opt_eff,e_opt_alg]=add_best_edge(G);

D=all_shortest_paths(sparse(G));

if D(e_opt_eff(1),e_opt_eff(2))~=max(max(D))

Gfout=G %a counterexample

e_opt_eff %best edge to add

D %distance matrix

end

end

end

end

%Generates a random graph with n vertices and edge prob. p

function G=ER(n,p)

G=zeros(n);

for i=1:n

for j=i+1:n

if rand<p

G(i,j)=1;

G(j,i)=1;

end

end

end

end
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[4] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani. The architecture of
complex weighted networks. Proceedings of the National Academy of Sciences of the United
States of America, 101(3747), 2004.

[5] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwanga. Complex networks:
structure and dynamics. Physics Reports, 424:175–308, 2006.

[6] B. Bollobás. Modern graph theory, volume 184 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 1998.

[7] D.S. Callaway, M.E.J. Newman, S.H. Strogatz, and D.J. Watts. Network robustness and
fragility: percolation on random graphs. Physical Review Letters, 85:5468–5471, 2000.

[8] A.K. Chandra, P. Raghavan, W.L. Ruzzo, R. Smolensky, and P. Tiwari. The electrical
resistance of a graph captures its commute and cover times. In Proceedings of the twenty-
first annual ACM symposium on Theory of computing, pages 574–586, Seattle, 1989. ACM
Press.

[9] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin. Resilience of the internet to random
breakdowns. Physical review letters, 85(21), 2000.

[10] C.J. Colbourn, D.D. Harms, and W.J. Myrvold. Reliability polynomials can cross twice.
Journal of the Franklin Institute, 330(3):629–633, 1993.
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