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1. Introduction

A common phenomenon in the modern world is traffic congestion. Traffic
congestion is a condition on road networks that occurs as use increases. It is
characterized by longer travel times and increased vehicular queueing. This
congestion is typically more pronounced in one direction in certain time
intervals during the day; in the morning in one direction and in the late af-
ternoon in the other. Most car drivers like to know before they leave “which
road should I take to get to my destination as fast as possible?”. Also, for
distribution companies is this question important in order to deliver prod-
ucts fast and as cheap as possible.
The question of finding the shortest path or route for given static travel
times has been a central problem in optimization for several decades. For
the situation that the travel times changes over time less is known. The
topic of this thesis is to investigate how various routing problems are af-
fected by making the travel time dynamic. More specifically, we consider
time dependent algorithms for different optimization problems.
The vehicle routing problem (VRP) is the problem to determine an amount
of K vehicle routes, where a route is a tour that begins at the depot, tra-
verses a subset of the cities in a specified sequence and returns to the depot.
Each city must be assigned to exactly one of the K vehicle routes and the
total size of deliveries for cities assigned to each vehicle must not exceed
the vehicle capacity. The routes should be chosen such as to minimize the
total travel distance. Until recently the vehicle routing models relied on a
constant travel speed on every road during the whole day, but this is far
from reality because of the rush hours. Recently, the interest in the time
dependent vehicle routing models which take time into account, such that
the model can handle different travel times on the same road, has increased.
This version of the VRP models the traffic situations where congestions play
a role in a more realistic way.
A special case of the VRP is called the traveling salesman problem (TSP),
which is the case when we only have one vehicle in the VRP. Given a set of
cities and the cost of travel between each pair of them, the TSP is to find
the cheapest way of visiting all the cities precisely once and returning to the
starting point.
If we look at the problem of bringing as many vehicles from one point to an-
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other, we obtain the maximum flow problem in a network. In the minimum
cost flow problem the aim is to bring a given number of vehicles as cheaply
or as fast as possible to their destination.
A common and important question in the mentioned models is to find the
shortest path from city A to city B over time. This can be done for a given
starting time or a starting interval in which one wants to leave city A.
The outline of the thesis is as follows. In the next chapter we give some
basic mathematical definitions, notation and concepts. In Chapter 3 we
give a background of some well-known mathematical problems which we all
extend with time dependent arcs in the remaining chapters. In Chapter 4
we start with the time dependent shortest path problem. An algorithm to
solve this problem for a given starting time is given and proved. This proof
could not be found in the literature. Chapter 5 adds the element time to
network flows. The first part introduces flows over time and gives an algo-
rithm for this problem. In the second part we add congestion to the model
and describe a way to solve these problems. The time dependent traveling
salesman problem is discussed in Chapter 6. We give an iterative heuristic
to get a good tour which can be found in reasonable time. In the following
chapter we give a comprehensive literature overview about the extension of
the TDTSP the time dependent vehicle routing problem. We briefly note
a way to get a good solution for this problem. The last chapter presents
conclusions and directions for future work.
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2. Preliminaries

In this chapter we give some basic mathematical definitions, notation and
concepts.
A graph is a pair G = (V,A) where V is a finite set and A is a set of ordered
pairs of V . The elements of V are called the vertices, sometimes they are
called nodes, cities or customers. The elements of A are called the arcs and
are directed. We denote the arc from vertex i to vertex j by (i, j). If the arcs
are not directed they are called edges. The cardinality of V is |V | = n and
of A it is |A| = m. The vertices k that can be reached from i by an arc (i, k)
are called the neighbors of i. A loop is an arc (i, i). In our thesis we assume
that the considered graphs do not contain loops, nor multiple edges between
the same pair of vertices, which are parallel arcs. A path in a directed graph
G is a sequence of distinct arcs, P = (v1 → v2 → v3 · · · → vk).
On the arcs we can define a distance, a capacity or a travel time. The dis-
tance is the length of an arc. The capacities give the size or volume of the
arcs. The travel time gives the duration of traveling along the arc during
a time interval. We assume that all arc capacities, arc costs, arc lengths,
travel times, supplies and demands are non-negative and integral. If they
are rational we can multiply them with a suitable number to make them
integral.
A very common property in graphs or networks is the first in first out (FIFO)
property, also called the non-passing property. In a graph with constant
travel times the FIFO-property guarantees that if a vehicle leaves a city i
for a city j at a given time, any vehicle traveling at the same speed that
leaves city i for city j at a later time will arrive later at city j.
The triangle inequality means that for any set of distinct vertices i, j, k it
is faster (shorter) to travel directly from vertex i to vertex k than to travel
from i to j, and then from j to k. The Euclidean distance is the straight
line distance between two points i and j in the plane. If we use

∑
j , we take

the sum over all the arcs from vertex i to all its neighbors j.
If we use Θ(n) it states for a theoretical measure of the execution of an
algorithm, usually the time or memory needed, given the problem size n.
If we talk about a flow through a network we mean the amount of goods
or vehicles that are going from a given start vertex to a given end vertex.
A subset B of A is called a cut if B = δout(S) for some S ⊆ V , where
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δout(S) := δoutA (S) =set of arcs of A leaving S. An s-t cut is a cut with
s ∈ S and t ∈ S̄. The capacity u[S, S̄] of an s-t cut is the sum of the forward
arcs in the cut. The capacity of a cut is an upper bound on the maximum
amount of flow that can be sent from the vertices in S to the vertices in S̄.
A minimum cut is an s-t cut whose capacity is minimum along all s-t cuts.
With this definition there follows a theorem; the maximum flow is equal to
the minimal cut in a network. For the proof see Chapter 3.2.
The time-dependent graph is defined as GT = (V,A,W ), with V a set of
vertices, A a set of arcs and W a set of positive valued functions. The set of
functions in W are arc-duration functions wij(t) on each arc (i, j) ∈ A. The
arc-duration function, wij(t), specifies how much time it takes to travel from
vertex i to vertex j, if one departs from i at time t. In the literature wij(t)
is often called an edge-delay function. The FIFO-property in GT states that
if departing earlier from vertex i one arrives earlier at vertex j, if one travels
the same route. So it is not advantageous to delay a departure time.
In almost all cases we assume that there is no waiting time on an arc or in
a vertex needed. We assume this, because we look at road networks and we
cannot expect a car to wait in the middle of the road or at a crossing point.
The Branch and cut method is a method for solving integer linear programs,
that is, linear programming problems where some or all the unknowns are
restricted to integer values. The method is a combination of branch and
bound and cutting plane methods. When an optimal solution is obtained,
and this solution has a non-integer value for a variable that is supposed
to be integer, a cutting plane algorithm is used to find further linear con-
straints which are satisfied by all feasible integer points but violated by the
current fractional solution. This process is repeated until either an integer
solution is found or until no more cutting planes are found. After that the
branch and bound part of the algorithm is started. We say that a problem
is polynomial-time solvable, if it can be solved by a polynomial-time algo-
rithm. A polynomial-time algorithm is an algorithm that terminates after a
number of steps bounded by a polynomial in the input size. NP-hard (non-
deterministic polynomial-time-hard) is a class of problems that are at least
as hard as the hardest problems in NP. These problems cannot be solvable in
polynomial-time, unless P = NP . To understand these complexity classes
read [Gare].
A list of abbreviations is given in Appendix A.

4



3. Static paths and flows:
background and literature

In this chapter we give a background of some well-known mathematical
problems that are related to traffic networks. These problems or algorithms
do not take time into account. At first, the basic problem, finding a shortest
path in a network will be explained.

3.1 Shortest paths

Given a directed graph G = (V,A) with weights on the arc lengths, the
shortest path problem is the problem of finding a path between two vertices
s, t ∈ V such that the sum of the weights of the arcs is minimized among
all paths connecting s to t. The problem can be formulated in several ways:
find the shortest paths from a source vertex to all the other vertices in the
graph, or the other way around, from all the vertices in the graph to one
vertex, or find the shortest paths between every pair of vertices. There exist
several algorithms to solve these problems, like Dijkstra’s algorithm [Dijk] or
the Bellman-Ford algorithm [Bell][Ford]. The algorithmic approaches can be
classified into two groups: label setting and label correcting. The approaches
vary in how they update the distance labels and how they “converge” to-
ward the shortest path distances. Label setting algorithms are applicable
only to shortest path problems defined on acyclic networks with arbitrary
arc lengths and to shortest path problems with nonnegative arc lengths.
The label correcting algorithms are more general and apply to all classes of
problems. Label setting algorithms have a much better worst-case complex-
ity bound.
There are a lot of applications of the shortest path problem, for example
telecommunication, logistic management and route planning in road net-
works.
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3.2 Maximum flows in a network

A related problem is the maximum flow problem. One can find network flows
everywhere in our daily life. Some examples are telephone networks, manu-
facturing and distribution networks, for example food distribution, computer
networks, rail networks and the national highway systems. In all of these
problems the goal is to move the maximum amount of flow from one point
to another. In the study of network flow problems we learn more about such
networks and try to optimize them.
In a network flow problem we consider a graph G = (V,A). The graph G
is a network with a source vertex s, the starting point, and a sink vertex t,
the destination. Each arc in the graph has an assigned capacity, which gives
the amount of flow that can flow through the arc. The aim is to find the
maximum flow that can be sent from s to t without exceeding the given arc
capacities.

3.2.1 The maximum flow problem

Given is a graph G = (V,A) with a capacity uij for each arc (i, j) ∈ A.
Define fij as the flow through arc (i, j) and let f(x) be the value of the total
flow through the network, i.e. f(x) =

∑
j fsj −

∑
j fjs.

The problem is formulated as follows:
Maximize f(x)
Subject to∑

j fij −
∑

j fji = 0 with i 6= s, t
0 ≤ fij ≤ uij for each arc (i, j) ∈ A.
We consider the maximum flow problem subject to the following assump-
tions:

• The graph G is directed. If it is not, transform the undirected graph
into a directed graph by replacing each undirected edge by two arcs,
one in each direction.

• The network does not contain a directed path from vertex s to vertex t
composed only of infinite capacity arcs. If this is the case the maximum
flow value is unbounded.

• Whenever an arc (i, j) belongs to A, arc (j, i) also belongs to A. This
means that there are no one way roads.

The concept of residual networks plays a central role in the development
of all the maximum flow algorithms. Given a flow f , the residual capac-
ity rij of any arc (i, j) ∈ A is the maximum additional flow that can be
sent from vertex i to vertex j using the arcs (i, j) and (j, i). Consequently
rij = uij − fij + fji, the capacity of the arc (i, j) minus the flow from i to j
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plus the flow from j to i. Call G(f) the residual network, given flow fx with
x the current flow, consisting of the arcs with positive residual capacities.
The advantage of the residual network G(f) is that any path P from s to t
in G(f) gives a path, along which we can increase the flow. An augmenting
path is a directed path from s to t in the residual network with positive
residual capacity. The residual capacity of an augmenting path is the mini-
mum residual capacity of any arc in the path.
In 1956 Ford and Fulkerson [Ford1] were one of the first who described an
algorithm to solve this problem. Building the residual network and aug-
menting along an s-t path forms the core of the Ford-Fulkerson algorithm.
They suggest the use of augmenting paths to change a given flow function in
order to increase the total flow. If an arc on this path is directed from s to
t, then push flow fij ≤ rij through it. (If an arc is in the opposite direction,
then part of the flow can be returned.)

Algorithm Ford-Fulkerson
Step 0: Let G(f) := G = (V,A) and start with fij = 0, ∀(i, j) ∈ A
Step 1: Search for augmenting paths
while there is an augmenting path P from s to t in G(f) do

send a flow of value f := mini,j∈P rij in G(f) along P
augment this flow f in G(f)
construct a new residual network G(f)

end while
Step 2: If no augmenting path can be found, the algorithm terminates
return a maximal flow f with the amount of flow fij through arc (i, j).

In order to find an augmenting path for a given flow, a labeling process is
used. At first vertex s is labeled. Then we label every vertex v, that can
be reached by an augmenting path from s to v. After that vertex s is called
scanned. If t is labeled, an augmenting path from s tot t has been found.
This path is used to increase the total flow, and the procedure is repeated.
Call I the set of vertices that is labeled, if a vertex is scanned, remove it
from I. In the labeling process we call vertex i a predecessor of vertex j, if
we first labeled vertex i and can reach vertex j from vertex i. In the first
step of the following example we also give the labeling process.

Example 1. Ford-Fulkerson
Given the following graph with capacity uij on the arcs, determine the total
flow through the network.
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1. I = {s}. Vertex s is scanned and vertices 1,2 are labeled, pred(1) =
pred(2) = s.
2. I = {1, 2}. Vertex 1 is scanned and vertex 3 is labeled, pred(3) = 1.
3. I = {2, 3}. Vertex 2 is scanned and vertex 4 is labeled, pred(4) = 2.
4. I = {3, 4}. Vertex 3 is scanned and vertex t is labeled, pred(t) = 3.
Since vertex t is labeled there is a path from s→ 1→ 3→ t, with mini,j∈P rij =
min{15, 10, 20} = 10. This gives the following flow: xs1 = x13 = x3t = 10.
We get the following residual graph:
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Iteration 2
There is a path from s→ 1→ 2→ 4→ t with mini,j∈P rij = min{5, 10, 20, 5} =
5. This gives the following flow: xs1 = 15 x12 = x24 = x4t = 5. We get the
following residual graph:
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Iteration 3
There is a path from s→ 2→ 4→ 3→ t with mini,j∈P rij = min{10, 15, 10, 10} =
10. This gives the following flow: xs2 = 10 x24 = 15 x43 = 10 x3t = 15. We
get the following residual graph:
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Iteration 4
There is no path from s tot t. There is a total flow of 25 through the network,
with xs1 = 15, xs2 = 15, x12 = 5, x13 = 10, x24 = 15, x43 = 10, x3t =
20, x4t = 5.
In the last figure the thick lines give the cut.

We will now state the max-flow min-cut theorem, by Ford and Fulkerson
[Ford1]:

Theorem 1. The maximum value of the flow from a source vertex s to
a sink vertex t in a capacitated network equals the minimum capacity cut
among all s-t cuts

Proof. If the optimal value of the flow is infinite, it is not hard to see that
there must exist a directed path P from s to t, such that every arc in P has
infinite capacity. For every cut S, there is an arc (i, j) belonging to path P
such that i ∈ S and j /∈ S. Since that arc has infinite capacity, we conclude
that u[S, S̄] = ∞. Since this is true for every cut, we conclude that the
minimal cut capacity is infinite and equal to the maximum flow value.
Suppose now that the optimal value, denoted by f∗, is finite. (This implies
that there exists an optimal solution, that is, a flow whose value is f∗.)
Let us apply the Ford-Fulkerson algorithm, starting with an optimal flow
and the corresponding residual graph. Due to optimality of the initial flow,
no flow augmentation is possible, and the algorithm terminates at the first
iteration. Let S be the set of labeled vertices at termination. Since the
search for an augmenting path starts by labeling s, we have s ∈ S. On the
other hand, since no augmenting path was found, t is not labeled i.e. t ∈ S̄
where S̄ is the complement of S. Therefore the set (S, S̄) is a cut. For
every arc (i, j) ∈ A, with i ∈ S and j /∈ S we must have fij = uij , otherwise
vertices j would have been labeled by the labeling algorithm. Thus the total
amount of flow that crosses the set (S, S̄) is equal to u[S, S̄], so u[S, S̄] = f∗.
It follows that u[S, S̄] is the minimum cut capacity and it is equal to the
value of the maximum flow.

Since this theorem relates the optimal values of a minimization and a max-
imization problem, it is a duality theorem. More information can be found
in [Bert].
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3.2.2 The minimal cost flow problem

The minimal cost flow problem determines a least cost flow through the
network that satisfies demands at the vertices from available supplies at
vertices. Let G = (V,A) be a directed graph where each arc (i, j) ∈ A has a
cost cij per unit flow on the arc. Each arc (i, j) also has a capacity uij that
denotes the maximum amount of flow on the arc. Associated with each ver-
tex i ∈ V is an integer number b(i) representing its supply, b(i) > 0, and its
demand, b(i) < 0. The problem has a feasible solution when

∑n
i=1 b(i) = 0.

If the (starting) problem does not satisfies this requirement dummy vertices
are introduces.
The minimum cost flow problem is an optimization model formulated as
follows:
Minimize

∑
(i,j)∈A cijxij

subject to
∑

j xij −
∑

j xji = b(i) for all i ∈ V,
0 ≤ xij ≤ uij for all (i, j) ∈ A.
For more information about network flows and its variations see the book
Network Flows [Ahuj].

3.3 The traveling salesman problem

The problem of finding the shortest path that goes through every vertex
of the graph exactly once, and returns to the start, is called the traveling
salesman problem (TSP). The TSP is NP-hard. If the conjecture P 6= NP is
true, then a polynomial-time algorithm for solving the TSP does not exist,
which implies that the worst-case running time for any algorithm for TSP
increases exponentially with the number of vertices in the graph. Some
instances with only hundreds of vertices could take many CPU (central pro-
cessing unit) years to solve exactly. So, this is another kind of problem
compared to the shortest path problem and maximum flow problem, which
can be solved in polynomial-time.
Since the 1950’s and 1960’s the popularity of the problem has increased,
because it plays a central role in logistics and also in algorithm development
in combinatorial optimization. Danzig, Fulkerson and Johnson introduced
in 1954 [Dan2] an integer linear programming formulation and solved the
problem for 49 vertices (cities) with a cutting plane method. In the 1970’s
and 1980’s it was possible to solve instances with up to 2392 vertices using
cutting planes and branch and bound. The largest instance solved to opti-
mality, has 85900 vertices (cities) and was solved in 2006 [Appl].
An often used heuristic to find good feasible solutions to the TSP is the
nearest neighbor heuristic (NNH). The running time for this heuristic is
O(n2) and if the triangle inequality holds the worst-case solution value is
Θ(logn) times the optimal solution, with n being the number of vertices.
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Christofides [Chri] developed an approximation algorithm that for any in-
stance satisfying the triangle inequality produces a feasible solution with
value less than or equal to 3

2 times the optimal value. This is the best ap-
proximation algorithm known for this variant of the TSP. If the lengths of
the arcs represent Euclidean distances then the best approximation algo-
rithm is a (1 + 1

ε )-algorithm with ε > 1 [Aror].
In the asymmetric TSP, the distance between two vertices in the underlying
network is not necessary the same in both directions. When the triangle in-
equality holds, the best approximation ratio known is obtained by Asadpour
et al. and gives a solution within a factor O(log n/log log n) of the optimum
with high probability [Asad]. If no triangle inequality is imposed, there is
no polynomial-time algorithm with constant approximation guarantee, for
the asymmetric TSP. For more information about the TSP see [Appl2] or
www.tsp.gatech.edu.

3.4 The vehicle routing problem

When the TSP is expanded with more than one route, it is called the vehicle
routing problem (VRP). The VRP plays a vital role in distribution and
logistics. We all make use of the system around us with routed messages,
goods or people from one place to another. In the modern world we need
vehicle routing to structure and find the optimal routes. The VRP is the
problem of finding a set of shortest routes with a minimal cost for a fleet
of vehicles. The set of vertices (costumers) is divided into subsets, such
that each subset is serviced by one vehicle. Each vehicle starts and ends
at the depot. In the basic problem it is assumed that each vehicle has the
same fixed capacity. The sum of the demands of the visited customers on
a route must not exceed the capacity of the vehicle. The problem has been
analyzed extensively in the literature. Since the problem is NP-hard it is
unlikely that a polynomial-time algorithm will be developed for determining
its optimal solution. Consequently a great deal of work has been devoted to
the development of heuristic algorithms.
Below we present several variations of the VRP.

• The VRP with time windows (VRPTW). Each customer must be vis-
ited within its own given time window. The depot also has its own
time window. The time windows are defined as an interval in which
the vehicle is allowed to arrive and depart at each customer (vertex).
The costumers can have soft or hard time windows. When there are
hard time windows there is a strict lower and upper bound. If the ve-
hicle arrives before the lower bound, waiting time has to be taken into
account. If it arrives too late the problem becomes infeasible. If there
are soft time windows a vehicle can arrive before the lower bound or
after the upper bound. If the vehicle is too early it has to wait, which
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incurs cost. If it is too late it gets a penalty for lateness.

• There are a lot of different vehicles possible. The vehicle fleet can be
heterogeneous, with each vehicle k having a different capacity bk. It
is also possible to have multiple capacity constraints. For example if
there are both weight and volume restrictions.

• A vehicle may be capable of making more than one trip within a
planning period, or a vehicle may both deliver and pick up products.

• There may be multiple depots with each vehicle assigned to a partic-
ular depot. Then the problem can be split into small VRPs with one
depot.

• In the on-line VRP not all the customers are known at the start of the
route. At every costumer, the vehicle has to calculate a new route.

3.4.1 Solution methods for the vehicle routing problem

Huge research efforts have been devoted to studying the VRP since 1959
when Dantzig and Ramser [Dant] first described the problem mathemat-
ically. Many exact methods have been used to solve the VRP, such as
algorithms based on linear programming techniques. Besides that, to find
good feasible solutions for large-scale VRPs by heuristic techniques have
received wide interests. The simple heuristics can be grouped into three
categories: route building heuristics, route improvement heuristics, and two-
phase methods.
Route buildings heuristics select arcs sequentially until a feasible solution
has been created. For example start with a solution in which every city is
supplied individually by a separate vehicle. This is a very expensive solu-
tion and if there are not enough vehicles it gives an infeasible solution. By
combining any two of these routes, we would use one vehicle less and also
reduce distance. Arcs are chosen based on some distance minimization cri-
terion subject to the restriction that the selection does not create a violation
of vehicle capacity constraints.
A route improvement heuristic begins with a set of arcs S ⊆ A that consti-
tutes a feasible schedule and seeks an interchange of a set S1 ⊂ S with a set
S2 ⊂ A− S that reduces distance while maintaining feasibility.
Two-phase methods first assign cities to vehicles without specifying the se-
quence in which they are to be visited. Second, the routes are obtained for
each vehicle using some TSP algorithm. An example is the ’Sweep’ algo-
rithm which is only applicable to problems in which cities are located at
points in the plane and cij is the Euclidean distance. The cities are repre-
sented in a system with the origin at the depot. A city is chosen at random
and the ray from the origin through the city is swept either clockwise or
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counterclockwise. Cities are assigned to a given vehicle as they are swept,
until further assignments of cities would exceed the capacity of that vehicle.
Another class of heuristics are mathematical programming based heuristics,
which are very different in character from the simple heuristics. This line of
research began in the mid to late 70’s when a number of researchers began
to apply the machinery of mathematical programming to the VRP. For more
information about the VRP see [Ball].
Recently, VRP exact algorithms have been based on either branch-and-cut
or Lagrangian relaxation/column generation. Fukasawa et al. [Fuka] de-
scribed in 2006 an algorithm that combines both approaches, which works
over the intersection of two polytopes. The methode of Fukasawa et al. is
equivalent to a linear program with exponentially many variables and con-
straints that can lead to lower bounds that are superior to those given by
previous methods. Their branch-and-cut-and-price algorithm can solve, to
optimality, all instances known from the literature with up to 135 vertices.
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4. Time dependent shortest
paths

Due to the increasing interest in dynamic management of transportation
systems, it is important to find shortest paths where the weights (or delays)
associated with arcs dynamically change over time. If real-time traffic infor-
mation is available and the standard traffic patterns are known with high
probability, it becomes possible to provide users with better services, such
as “how to travel from one city to another city as fast as possible”, by taking
rush hour congestion into consideration.
To formulate this problem mathematically we need the definition of a time-
dependent graph. A time-dependent graph is defined as GT (V,A,W ) with
V a set of vertices, A a set of arcs and W a set of positive valued functions.
For every arc (i, j) ∈ A, there is an arc-duration function wij(t) ∈W , where
t is a time variable in a time domain T . The function wij(t) specifies how
much time it takes to travel from vertex i to vertex j, if departing i at time
t. There are different ways to define the arc duration function. It can be
defined to be continuous, or stochastic, or to be the speed of an arc that
depends on a time interval. From now on we call the source vertex vs and
the sink vertex vd, because we need t to indicate time.

Example 2. Time-dependent graphs
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Given the graph above, with arc lengths like described in previous chapters.
We see that the shortest path from vs to vd is the path vs → vd. Now we
introduce a time dependent arc (1, vd) and give the duration to travel through
the arc if we leave from vertex 1 somewhere in the time interval [0, 5]. So
the length of (1, vd) is no longer 3, it is 4 in the interval [0, 2) and 1 in [2, 5].
If we start at t = 1 and take the path vs → 1 → vd, the length of our path
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is 2. This is the fastest way to travel from vertex vs to vertex vd if we take
time into account.

We assume that the time dependent graph satisfies the FIFO-property on
the arcs. The FIFO-property in GT states that if departing earlier from
vertex i one arrives earlier at vertex j, if one travels the same route. So it
is not advantageous to delay a departure time. For the time dependent arcs
this mean that every arc (i, j) has the FIFO-property, if
∀ t∆ ≥ 0 : wij(ti) ≤ t∆ + wij(ti + t∆)
or ti + wij(ti) ≤ tj + wij(tj) for ti ≤ tj
Where ti is the departure time at vertex i and t∆ a small time interval.
It is also possible to transform a non-FIFO time dependent graph into a
time dependent graph with FIFO-property on the arcs by inserting some
waiting time on each vertex in the optimal shortest path.

Example 3. From non-FIFO to FIFO
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Suppose that the durations on arcs (vs, 1), (vs, 2), (1, 2) and (1, vd) are con-
stant over time, and are given in the graph above. The duration on arc
(2, vd) is equal to 10 in interval [0, 9] and and equal to 5 in interval (9, 20].
Assume we start at t = 0. At t = 2 we arrive at vertex 1. We leave vertex
1 at t = 2 and arrive at vertex 2 at t = 7. This looks like the fastest path
to follow. When we leave vertex 2 at time t = 7 we arrive at vertex vd at
t = 17.
If we left vertex 2 at t = 10 (so we came from arc (vs, 2)) we would arrived
at vertex vd at t = 15. This means that if we leave vertex 2 later we will
arrive earlier on vertex 2. This is a non-FIFO graph.
To make the FIFO-property hold, we introduce a waiting time. In this ex-
ample you can see that if you travel through vertex 1 (which is the quickest
way to go to vertex 2) it is faster path to wait a time period of 3 at vertex 2.

For all the functions w
′
ij(t) in the non-FIFO graph G

′
T we define wij(t) to

construct a FIFO graph GT .
wij(t) = ∆ij(t) + w

′
ij(t+ ∆ij(t)) = min0≤t∆≤td−t{t∆ + w

′
ij(t+ t∆)}

Here tt is the end time, ∆ij(t) is the minimal waiting time required at vertex
i to go to vertex j, to make the graph satisfy FIFO and t∆ all the possible
time intervals to wait. Since the starting time interval T is a closed interval,
wij(t) and ∆ij(t) are well defined. If there are multiple possible values of
t∆ to minimize t∆ + w

′
ij(t + t∆), we select any of them as ∆ij(t). It also

satisfies to keep the slope of the arc duration functions between 1 and −1.
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4.1 A shortest path algorithm for a given starting
time

Given a source vs and a starting time ts, we look for the shortest paths
and minimum delays between vs and all other vertices for that starting
time. In 1969 Dreyfus [Drey] already noted that there exist straightforward
extensions to such algorithms as Dijkstra [Dijk] or Ford [Ford3]. We will
give the algorithm described in Orda and Rom [Orda], which is a so-called
labeling algorithm. Each vertex is labeled by the earliest possible arrival
time at that vertex, calculated with the given starting time at the source.
The vertices get temporary labels Yk and permanent labels Xk (NULL
indicating the vertex is not permanently labeled). A temporal label gives
the length of the shortest path to vertex k, that we found until then. A
permanent label gives the length of the shortest path to get to that vertex.
The algorithm also saves the predecessor pred(k) for all permanent labeled
vertices k, so the vertices that are visited on the shortest path can be found
effectively. The input is a time dependent graph with functions wij(t) and
a given starting time ts.

Algorithm Time dependent shortest path with a given start time
Step 0: Initialization
Xs = ts; pred(s) = 0; ∀k 6= s Yk =∞, Xk = NULL, pred(k) = 0; j = s;
Step 1:
for all k : (j, k) ∈ A for which Xk = NULL do

a:
Yk = min{Yk, Xj + wjk(Xj)}
b:
if Yk changed in Step 1a then

Set pred(k) = j
end if

end for
Step 2:
if all vertices have no null X-value then

Stop
else if l is a vertex for which Xl = NULL and such that Yl ≤ Yk ∀k for
which Xk = NULL then

Set Xl = Yl, j = l and proceed with Step 1.
end if

The main difference between a conventional shortest path algorithm and the
algorithm above is the calculation of wjk(Xj) in step 1a. In this step we
take the path with the shortest length in time. Because the starting time
and the functions wij(t) are given, we can calculate wjk(Xj) for every Xj .
Then it is just the length of the arc, and with a proof similar to Dijkstra’s
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algorithm the correctness is proven. The algorithm terminates after O(|V |2)
operations. Each path from vs to any vertex j is a shortest path for starting
time ts whose duration is given by Xj − ts. In the literature we could not
find a correctness proof of this algorithm so we give our own proof, inspired
by the proof of Dijkstra’s algorithm.

Theorem 2. The algorithm terminates after O(|V 2|) operations. After ex-
ecution, each path from vs to any vertex j is a shortest path from starting
time ts whose delay is given by Xj − ts.

Proof. Let u be the vertex which gave v its present label Yv; namely, Xu +
wuv(tu) = Yv, with wuv(tu) a fixed length (duration) of the path from u to
v. After this assignment took place, u did not change its label, since we
have chosen u because it has a permanent label. It is not possible that if
departing later from vertex u one arrives earlier at vertex v, if one travels
the same route, because of the FIFO-property. Next, find the vertex which
gave u its final label Yu with pred(u), and repeating this backward search,
we trace a path from vs to v whose length is exactly Yv. The backward
search finds, in every step, a vertex that has obtained a permanent label at
a previous step, and therefore no vertex on this path can occur more than
once; it can only terminate in vs, which has been assigned its label in Step
0.
Let us look at the complexity of the algorithm. Let Y ⊆ V be the set of
vertices with a temporary label. In Step 1a one considers each arc connected
to vertex j exactly once. Thus it uses, at most, O(|A|) time. Since we have
no loops or parallel arcs, |A| ≤ |V | × (|V | − 1) ≤ |V |2. Step 1b is of O(1)
and is repeated |V | times. In Step 2 the minimum label of the elements of
Y has to be found. At the start of the algorithm Y consists of all vertices,
Y = V , and then the cardinality of Y decreases by one each time. This can
be done in |Y | − 1 comparisons and the search is repeated |V | times. Thus
the total time spent in Step 2 is O(|V |2). Thus, the whole algorithm is of
O(|V |2) complexity.

Example 4. Shortest path for a given starting time

Given the following graph with the arc duration functions that are shown
in the graphics below.
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To find the shortest path in time for start time 2 we use the algorithm above.
Iteration 1.
0. Xs = ts = 2 pred(s) = 0 ∀k 6= s Yk =∞ Xk = NULL pred(k) = 0 j = s
1a. k = {1, 2}
Y1 = min{∞, Xs + ws1(Xs)} = min{∞, 2 + ws1(2)} = min{∞, 2 + 5} = 7
Y2 = min{∞, Xs + ws2(Xs)} = min{∞, 2 + ws2(2)} = min{∞, 2 + 8} = 10
1b. pred(1) = s pred(2) = s
2. l = 1 X1 = 7 j = 1
Iteration 2.
1a. k = {t, 2}
Yd = min{∞, X1 + w1d(X1)} = min{∞, 7 + w1d(7)} = min{∞, 7 + 8} = 15
Y2 = min{10, X1 + w12(X1)} = min{10, 7 + w12(7)} = min{10, 7 + 2} = 9
1b. pred(d) = 1 pred(2) = 1
2. l = 2 X2 = 9 j = 2
Iteration 3.
1a. k = {d}
Yd = min{15, X2 + w2d(X1)} = min{15, 9 + w2d(9)} = min{15, 9 + 5} = 14
1b. pred(t) = 2
2. l = t Xt = 14 j = d
So we found a shortest path s→ 1→ 2→ d of length 14.

4.2 A shortest path algorithm for a given starting
interval

Recently Ding, Xu Yu, and Qin (2009)[Ding] described an algorithm to find
time-dependent shortest paths (TDSP) over large graphs. They studied
how to answer queries of finding the best departure time that minimizes the
total travel time from one place to another, over a road network, where the
traffic conditions dynamically change over time. The problem is to find the
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optimal path with the minimal travel time from a source vs to a destination
vd, over a time-dependent graph, when the starting time can be selected
from a user-given starting time interval T . In the time-dependent graph the
functions wij(t) are piece-wise linear functions on the arcs (see Example 4).
The function gi(t) represents the vs to vi earliest arrival time function. They
use a user specified query, where the user is asked to select the minimum
travel time path, from vs to vd, with the best departure time from a time
interval T . They consider FIFO time-dependent graphs, as well as general
time-dependent graphs. First the authors focus on finding an answer in a
FIFO time dependent directed graph GT , where no waiting time is needed
in optimal solutions. They propose a Dijkstra based algorithm to find the
optimal solution which consists of two steps.
First it uses the algorithm TimeRefinement that computes for every vertex
vi ∈ V the earliest arrival time function {gi(t)|vi ∈ V }, when departing from
vs at any starting time t ∈ T . The input is a time dependent graph GT , a
user specified query and starting time interval T = [ts, td].

TimeRefinement(GT (V,A,W ), vs, vd, T )
gs(t) = t for t ∈ T ; τs = ts;
for each vi 6= vs do
gi(t) =∞ for t ∈ T ; τi = ts;

end for
Let Q be a priority queue initially containing pairs (τi, gi(t)), for all ver-
tices vi ∈ V , ordered by gi(τi) in ascending order;
while |Q| ≥ 2 do

(τi, gi(t)) = dequeue(Q);
(τk, gk(t)) = head(Q);
update(Q, (τj , gj(t)));

end while
τi = τ ′i ;
if τi ≥ td then

if vi = vd then
return {gi(t)|vi ∈ V }

else
enqueue(Q, (τi, gi(t)));

end if
end if
return {gi(t)|vi ∈ V }.

Here Q is the query. The operation dequeue(Q) dequeues the top pair from
Q, head(Q) retrieves a new top pair in the queue and at enqueue(Q) the
pair that was dequeued is placed back if it has not been well refined in the
entire starting time interval.
In the second step the algorithm PathSelection selects one of the paths
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from vs to vd that matches the optimal travel time. The input is the time-
dependent graph GT , the set of earliest arrival-time functions gi(t), com-
puted from TimeRefinement, for all vertices vi ∈ V , source vs, destination
vd and the optimal starting time t∗.

PathSelection(GT (V,A,W ), {gi(t)}, vs, vd, t∗)
vj = vd;
p∗ = ∅;
while vj 6= vs do

for each (vi, vj) ∈ A do
if gi(t∗) + wi,j(gi(t∗)) = gj(t∗) then
vj = vi

end if
end for
p∗ = (vi, vj)× p∗;

end while
return p∗;

For a technical description of the algorithms, an example and the correctness
proofs, see the article by Ding et al. It is shown that the time complexity
is O((nlogn + m)α(T )), where α(T ) is the cost required for each function
operation. This α(T ) is possibly unbounded because it depends on the rel-
ative values of arrival time functions. For an unbounded instance see [Dehn].

4.2.1 Time functions with time intervals

Sung et al. [Sung] presented a flow speed model where the flow speed of each
arc depends on the time intervals. To satisfy the FIFO-property the flow
speed of each arc and not the travel time changes as the interval changes.
They use a Dijkstra label setting shortest path based algorithm.
Consider a network G = (V,A) and let lij be the non-negative length of
the arc (i, j). Divide the time horizon into the following time intervals;
[fk, fk+1), k = 0, 1, 2, . . . ,K − 1. Let vk(ij)

be the non-negative flow speed in
time interval [fk, fk+1) on arc (i, j). Define a value ti = minj 6=i{T (ti, (i, j))}
where T (ti, (i, j)) is the arrival time at vertex j starting from vertex i at
time ti. In the algorithm, the travel time of each arc is calculated according
to the flow speed at the time of passing the arc. They only insert a function
calculating the arrival time at the next connecting vertex of the current
vertex in the Dijkstra algorithm.
Let pred(i) be the predecessor vertex of i and let A(i) be the set of all arcs
connected to i. The set of vertices which are not scanned is given by U and
S is the set of scanned vertices. Then the combined Dijkstra’s label setting
algorithm is described as follows:
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Algorithm modified Dijkstra
S := ∅; U := V
ti =∞ for each vertex i ∈ V
ts = 0 and pred(s) = 0
while |S| < n do

let i ∈ U be a vertex for which ti = min{tj : j ∈ U}
S := S ∪ {i}
U := U − {i}
for each(i, j) ∈ A(i) do

if tj > Arrivaltime(ti, (i, j)) then
tj := Arrivaltime(ti, (i, j)) and pred(j) := i

end if
end for

end while
Let Arrivaltime(ti, (i, j)) be the arrival time at vertex j starting from vertex
i at time ti. The function that calculates the arrival time is the following
function:

Arrivaltime(ti, (i, j))
Arclength := lij
let k ∈ {0, 1, 2, . . . ,K} be an index for which fk(i,j)

≤ ti < fk+1(i,j)

Arclength := Arclength− vk(i,j)
× (fk+1(i,j)

− ti)
while Arclength > 0 do
k := k + 1
Arclength := Arclength− vk(i,j)

× (fk+1(i,j)
− fk(i,j)

)
end while
Arrivaltime(ti, (i, j)) := fk+1(i,j)

+Arclength/vk(i,j)

return
The computational complexity of the original Dijkstra’s algorithm is O(n2 +
m), where n are the number of vertices in the network en m the number
of arcs. For the modified algorithm it gives O(n2 + mK), where K is the
maximum number of time intervals scanned in Arrivaltime.
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5. Time dependent flows

5.1 Network flows over time

Flow variation over time is an important feature in network flow problems
arising in various applications, an example is road traffic control. Traffic
flows have two important features that make them difficult, namely conges-
tion and time. Congestion captures the fact that travel times increase with
the amount of flow on the roads and time refers to the movement of cars
along a path as a flow over time. These aspects are not captured by the
classic static networks.
Network flows over time include a temporal dimension and therefore provide
a more realistic modeling tool for numerous real world applications. We will
concentrate on flows over time (also called “dynamic flows” in the literature)
with finite time horizon and constant capacities and constant transit times
in a continuous or discrete time model. Here the flow requires a certain
amount of time to travel through each arc. So not only the amount of flow
is taken into account, also the time it takes to travel through the network.

5.2 Ford and Fulkerson

Ford and Fulkerson first introduced the notion of flows over time and con-
structed in 1958 [Ford2] an algorithm to find a maximal dynamic flow from
a static flow. The problem is to find the maximal amount of flow that can be
transported from one vertex to another in a given number T of time periods,
and to determine along which arcs the flow is sent in order to achieve this
maximum. In the article by Ford and Fulkerson there is a computationally
efficient algorithm for solving this dynamic linear programming problem pre-
sented. They also give an extensive example on how to use their algorithm.
We will give the problem definition and their algorithm. Let G = (V,A)
be a directed graph with a source vertex vs ∈ V and a sink vertex vd ∈ V .
Each arc (i, j) ∈ A has a capacity uij and a transit time tij . If the graph
includes costs, each arc also has a cost coefficient. The total number of time
periods, is specified by T . Let v(T ) denote the total amount of flow that
leaves the source and enters the sink during the T periods. Let δ+(v) and
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δ−(v) denote respectively, the set of arcs (i, j) ∈ A leaving vertex v and
entering vertex v.
A (static) network flow x assigns a non-negative flow value xij to each
arc (i, j) ∈ A. The flow is feasible if it respects the capacity constraints:
0 ≤ xij ≤ uij . An s-d flow x satisfies flow conservation at each vertex
v ∈ V \{vs, vd}, that is,

∑
(i,j)∈δ−(v) xij −

∑
(i,j)∈δ+(v) xij = 0.

5.2.1 The algorithm from Ford and Fulkerson

The algorithm from Ford and Fulkerson [Ford2] constructs a static flow and
is essentially a primal dual method for a capacitated transshipment problem.
The algorithm is an iterative process that has as final output an integral
static flow xij , together with a set of integers π(i) for each vertex i in V .
π(i) is the so-called vertex potential and gives the travel time, with respect
to transit times of arcs, from vs to vertex i. After augmenting flow along the
shortest s-d path P k in Gxk , πk(i) is still feasible and k gives the iteration
number. Here Gxk is the residual network with flow xk. This implies that
the shortest path distances have not been decreased. All the π(i) have to
satisfy the following constraints:

π(s) = 0, π(t) = T + 1, π(i) ≥ 0 (5.1)

π(i) + tij > π(j) for xij = 0 (5.2)

π(i) + tij < π(j) for xij = uij (5.3)

To start the algorithm take all xij = 0 and all π(i) = 0.
Arcs (i, j) for which π(i) + tij = π(j) will be called admissible arcs. Note
that at most one member of the pair (i, j), (j, i) will be admissible. During
the algorithm a vertex is either unlabeled, or labeled but unscanned, or
labeled and scanned. If a vertex gets a label like [v±k , h], the label says that
vertex vk is the predecessor of this vertex and it is possible to send a flow
with value h to this vertex. The position of the ± gives the direction of the
flow, a + if it is directed from vs to vd and − if the flow is directed in the
opposite direction. A vertex is scanned if all the labels of its neighbors are
updated. Start with all vertices unlabeled.

Algorithm Ford and Fulkerson with time

Step 1: Give vs the label [v+
d ,∞], and consider vs as unscanned.

Step 2: Select any labeled, unscanned vertex vi, suppose it is labeled [v±k , h].

a: To all vertices vj that are unlabeled and such that (i, j) is admissible
and xij < uij assign the label [v+

i ,min(h, uij − xij)]. All vj are
now labeled and unscanned.
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b: To all vertices vj that are now unlabeled and such that (j, i) is
admissible and xji > 0 assign the label [v−i ,min(h, xji)]. Such vj
are now labeled and unscanned.

c: Now define vi to be labeled and scanned.

Repeat this step until the sink vd is labeled and unscanned, or until
no more labels can be assigned. In the former case go to Step 3. In
the latter case, let the present flow be denoted by the new name x

′
ij ,

and go to Step 4.

Step 3: Update the flow.

a: If vd is labeled [v+
k , h] replace xkd by xkd + h.

b: If vd is labeled [v−k , h] replace xkd by xkd − h.

c: Go to vertex vk and treat it the same way as vertex vd.

Repeat until vs is reached. Now the replacement process is stopped.
This process alters the flow along a path from vd to vs.
Discard all labels and return to Step 2 with the new flow.

Step 4: Define π
′
(i) by

π
′
(i) =

{
π(i) if vi is labeled;
π(i) + 1 if vi is unlabeled.

Repeat the algorithm, starting with x
′
ij and π

′
(i) and continuing until

the value of π(t) has been increased to T + 1.

Example 5. Ford and Fulkerson with time
Given the following graph with capacity uij and time tij on the arcs, deter-
mine the total flow through the network.
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Take for the time period T = [0, 8] and start with π(i) = 0.
Iteration 1
a Label vs : [v+

d ,∞]
b There are no admissible arcs. vd has no label.
d π(vs) = 0, π(i) = 1 for i 6= vs

Iteration 2
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a Label vs : [v+
d ,∞]

b Label v2 : [v+
s , 20]. vd has no label.

d π(vs) = 0, π(2) = 1, π(i) = 2 for i 6= vs, 2

Iteration 3
a Label vs : [v+

d ,∞]
b Label v1 : [v+

s , 20]. vd has no label.
d π(vs) = 0, π(2) = 1, π(1) = 2, π(i) = 3 for i 6= vs, 1, 2

Iteration 4
a Label vs : [v+

d ,∞]
b Label v3 : [v+

s , 20]. vd has no label.
d π(vs) = 0, π(2) = 1, π(1) = 2, π(3) = 3, π(i) = 4 for i 6= vs, 1, 2, 3

Iteration 5
a Label vs : [v+

d ,∞]
b Label v4 : [v+

1 , 20] and v5 : [v+
2 , 20]. vd has no label.

d π(vs) = 0, π(2) = 1, π(1) = 2, π(3) = 3, π(4) = π(5) = 4, π(vd) = 5

Iteration 6
a Label vs : [v+

d ,∞]
b No new labels can be added. vd has no label.
d π(vs) = 0, π(2) = 1, π(1) = 2, π(3) = 3, π(4) = π(5) = 4, π(vd) = 6

Iteration 7
a Label vs : [v+

d ,∞]
b Label vd : [v+

4 , 10]. vd has a label
c There is a path from vertex vs to vd. This gives x4d = x14 = xs1 = 10.
The arc (4, vd) is the cut. We delete all the labels.
a Label vs : [v+

d ,∞]
b Label v2 : [v+

s , 20], v1 : [v+
s , 10], v3 : [v+

s , 20], v4 : [v+
1 , 10] and v5 : [v+

2 , 20].
vd has no label.
d π(vs) = 0, π(2) = 1, π(1) = 2, π(3) = 3, π(4) = π(5) = 4, π(vd) = 7

Iteration 8
a Label vs : [v+

d ,∞]
b Label vd : [v+

5 , 20]. vd has a label
c There is a path from vertex vs to vd. This gives x5d = x25 = xs2 = 20.
There are no arcs used from the first path so we can send another flow
through that path which starts 1 time period later. The arcs (4, vd), (vs, 2)
and (2, 5) form a cut. We delete all the labels.
a Label vs : [v+

d ,∞]
b Label v1 : [v+

s , 10], v3 : [v+
s , 20] and v4 : [v+

1 , 10]. vd has no label.
d π(vs) = 0, π(2) = 2, π(1) = 2, π(3) = 3, π(4) = 4, π(5) = 5, π(vd) = 8
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Iteration 9
a Label vs : [v+

d ,∞]
b Label v2 : [v+

1 , 10], v5 : [v+
3 , 10] and vd : [v+

5 , 10]. vd has a label
c There is a path from vertex vs to vd. This gives x5d = 30, x35 = 10, xs3 =
10. There are no arcs used from the first path so we can send another
flow through that path which starts 1 time period later. It is also possi-
ble to send a flow through the path (vs, 2, 5, vd) one period later. The arcs
(4, vd), (vs, 2), (2, 5), (3, 5) and (5, vd) form a cut. We delete all the labels.
a Label vs : [v+

d ,∞]
b Label v1 : [v+

s , 10], v2 : [v+
1 , 10], v3 : [v+

s , 10] and v4 : [v+
1 , 10]. vd has no

label.
d π(vs) = 0, π(2) = 2, π(1) = 2, π(3) = 3, π(4) = 4, π(5) = 6, π(vd) = 9
π(vd) = 9 = T + 1 so stop.
We found the following flow:
- Path (vs, 1, 4, vd) with flow 10 which can be sent three times in the time
interval, so the total flow through this path is 30.
- Path (vs, 2, 5, vd) with a flow value of 20 and the flow can be sent two times
in the time interval, so the total flow through this path is 40.
- Path (vs, 3, 5, vd) with a flow value of 10 and this path can be sent one time
in the time period.
This gives a total flow in T = [0, 8] of 80.

For more information about network flows over time M. Skutella wrote an
introduction to network flows over time (2008) [Skut].

5.3 Flows over time with flow dependent transit
times

In the model from Ford and Fulkerson there are discrete time steps used.
The arcs have constant time durations, so they do not take congestion into
account. If we look at networks with congestion without the transit times
and capacity restrictions but full information about the traffic situation,
users will try to choose a fastest route and achieve a so-called user equi-
librium. In this equilibrium no driver can get a faster route through the
network if everybody else stays with their current route. So it has a certain
fairness, since all users of the same origin-destination pair have the same
travel time. Therefore, it has been used as a reasonable solution to the
static traffic problem with congestion. This equilibrium is often not the
best solution to get everybody at their destination as fast as possible. The
system optimum provides the best possible solution but it may have longer
routes for some users and thus misses fairness. A way to find a solution that
lies inbetween these solutions, is to use only roads closely around the road
with the most congestion. Fore more information about this problem see
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Köhler, Möhring and Skutella’s article about traffic networks and flows over
time [Kohl].
Now we will look at networks where the duration of an arc changes over
time. The field of flows over time with flow dependent transit times has at-
tracted attention only in the last couple of years. One reason for this seems
to be the lack of well defined models for this kind of flows, which is due to
the more complicated setting. There are hardly any algorithmic techniques
known which are capable of providing reasonable solutions even for networks
of small size.
One problem is how to define the transit time functions. Often they rely
on relatively simple functions which are simplifications of the actual flow.
Another problem is the definition of the transit time and flow on a particular
arc. Do we take the flow at the beginning of the arc, at the moment that the
flow enters the arc or is the total amount of flow that is on the arc consid-
ered? With congestion these two values could be different. Again, we take
the FIFO-property into account, overtaking of flow units is not permitted.
A model that shows that there is at least a good temporally repeated flow
for this problem was suggested by Köhler and Skutella [Koh2]. It is inspired
by the earlier mentioned result of Ford an Fulkerson.
Another way to model this problem is based on the time-expanded network.
This network contains one copy of the subgraph based on the vertices that
can be reached in each discrete time step. So there are time layers created.
A discrete time flow over time in the given network can be interpreted as
a static flow in the corresponding time expanded network. One can apply
the algorithms developed for static networks flows to this generalized time-
expanded network. The underlying assumption for this approach is that at
any moment of time the transit time on an arc only depends on the cur-
rent rate of inflow into that arc. However, when considering large networks
this model is not applicable because the time-expanded network will grow
enormously.
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6. Time dependent traveling
salesman problem

The time dependent traveling salesman problem (TDTSP) is a generaliza-
tion of the TSP where the travel time (cost) between two cities depends on
the moment of the day the arc is traveled.
According to Picard and Queyranne (1978) [Pica] the TDTSP was intro-
duced by Fox (1973), where it was illustrated with examples from the brew-
ing industry. Several linear integer programming formulations were pre-
sented in that work but none was found to lead to a tractable solution
scheme. The paper of Picard and Queyranne (1978) can be considered as
one of the basic works about the TDTSP. It presents the first practically
effective method for solving TDTSPs with up to 20 vertices. This method is
based on shortest path computations, dynamic programming and a branch
and bound algorithm. The travel time between two vertices depends on the
position of the vertices in the sequence of the tour. Their model is still one
of the few exact models proposed in the literature.
Malandraki and Daskin (1992) [Mala] described the problem as a special
case of the TDVRP, where they treated the time function as a step func-
tion. In the next chapter we describe their approach. In 1996 Malandraki
and Dial [Mal2] proposed a restricted dynamic programming heuristic (a
generalization of the NNH). The heuristic lets the user choose some middle
ground between the optimal dynamic programming algorithm and the NNH.
This means that only a user-specified number of partial tours is allowed at
each stage. Their heuristic gives a good solution for problems of more than
200 vertices. Vander Wiel and Sahinidis [Vand] developed a branch and
cut algorithm and applied a Benders decomposition to the problem in order
to speed up lower bound calculation and solved the TDTSP. They solved
instances having up to 18 nodes to optimality, by embedding their bound in
a branch-and-bound algorithm.
In 2008 Bigras et al. [Bigr] also presented an exact solution method for the
TDTSP. They show how integer programming formulations of the TDTSP
can be extended to single machine scheduling problems with sequence de-
pendent setup times. Several integer programming formulations of varying
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size and strength are introduced. There is an exact branch and bound algo-
rithm proposed that is able to solve instances up to 45 vertices.
A more recent research by Miranda-Bront et al. (2010) [Mira] considers the
models presented in Picard and Queyranne and Vander Wiel and Sahinidis.
Both polytopes are analyzed and families of valid inequalities for both mod-
els are derived. They present computational results for a branch and cut
algorithm that uses these inequalities. The results show that their algorithm
seems very efficient compared to known algorithms.

6.1 A heuristic algorithm for TDTSP

Many companies deliver products daily and/or weekly to their costumers.
To visit all their customers in an optimal way taking rush hours into account,
we advice to use the branch and bound algorithm from Bigras et al. If there
are about 25 customers or more it would be faster to use a heuristic, but
then no guarantee of optimality can be given. We give a nearest neighbor
heuristic that could be used for a problem with time-dependent travel times.
Given is a time-dependent graph GT = (V,A,W ), with V = {s, 1, 2 . . . , n}
the set of vertices (customers), where vs = s, n are the depot. The set of
piece-wise continuous functions in W are arc duration functions wij(t) on
each arc (i, j) ∈ A. The vertices have to be visited within a given time
horizon T and ts is the starting time for the tour.
In the heuristic we present below, the last vertex of the (sub)route is defined
by l, Q is the set of unvisited vertices and R is an ordered set and gives the
(sub)route.

NNH algorithm for the TDTSP
Step 0:
Start at the depot and take l = vs at time ts with Q = {1, 2, . . . , n − 1}
and R = {vs}.
Step 1:
while Q 6= ∅ do

Compute the arrival time at every possible neighbor of l in Q and find
a vertex j with the shortest travel time.
Mark l as visited and take l = j, Q := Q− j and R := R∪ {j}.

end while
Step 2:
If Q = ∅, take the route R which gives a path through all the vertices and
add the travel time from the last vertex to the depot.

In Step 1 it is possible to compute all travel times because the starting time
for the tour is known. We know the exact time we leave from the vertex l
and the function wij(t) gives the time we arrive at vertex j. The complexity
of the NNH is O(n2).
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One disadvantage of this heuristic is that the travel time between the last
customer and the depot could be very long. For the TSP the tour can be
improved by an iterative process. Often 2-opt or k-opt are used, this means
that in each step two or k arcs will be removed. The fragments will be
reconnected by two or k new arcs, such that a new (and shorter) tour is
created. If we apply this iterative process on the TDTSP it is possible that
more arcs have to be changed because the arrival times will have changed.
Consider an example in which we remove arc (k, l) and arc (p, q). Suppose
that (k, l) is the first arc in the tour and that it would give a shorter tour if
we submit arc (k, p). Then we have to calculate all the other arcs in the tour
because the arrival times at vertices p, l, q, r have changed. See the figure
below:
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This shows that if an iterative process is applied after the NNH for the
TDTSP, all the arcs have to be recalculated for the new tour. With these
findings we see that it has no influence how many arcs are removed, so 2-opt
could be a good process to use. Another way to improve the tour from the
NNH is choosing in each step a different vertex after visiting the depot. We
apply this method n − 1 times, for all the vertices except the depot, and
choose the tour with the shortest travel time. In this case we know that the
very long last arc will be chosen in one tour first and might be shorter.
This method gives the following heuristic algorithm for the TDTSP with
order O(n3)

Iterative NNH algorithm for the TDTSP
Step 0:
Start at the depot l = vs at time ts with Q = {1, 2, . . . , n− 1}, k = 1 and
R = {vs}.
Step 1:
First choose the arc (vs, k). tk is the new starting time, mark vs as visited
and take l = k, Q := Q− k and R := R∪ {k}
Step 2:
while Q 6= ∅ do

Compute the arrival time at every possible neighbor of l in Q and find
a vertex j with the shortest travel time.
Mark l as visited and take l = j, Q := Q− j and R := R∪ {j}.

end while
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Step 3:
If Q = ∅, take the route R which gives a path through all the vertices and
add the travel time from the last vertex to the depot to get tour Rk with
time T − ts.
Step 4:
Take k = k + 1 and repeat Step 1-4 until k = n− 1, then go to Step 5.
Step 5:
Return the tour with minimal time T − ts.

6.1.1 Quality of the heuristic

A heuristic gives hopefully a good feasible solution for a problem, but they
give in general not the optimal solution. That is why one would like to know
a priori how good the solution of a heuristic is. The quality of a heuristic
H, given by q(H), is defined by the worst-case solution of the heuristic.
Let H(I) be the worst-case solution of the heuristic, for instance I and let
O(I) be the optimal solution of the instance. In the case of a minimization
problem we have that H(I) ≥ O(I). The quality of heuristic H is defined
as q(H) = supP

H(I)
O(I) .

In most cases the optimal solution of an instance is not known, but there is a
lower bound L(I). The lower bound can be computed from the integer linear
programing formulation of the problem. We give the formulation given by
Bigras et al. [Bigr].
Let G = (V,A) be a directed graph with the vertex set V = 1, ..., n. For
each arc (i, j) ∈ A, the cost ctij of traveling on the arc at period t is known,
where t = 1, 2, . . . , T . If the decision variable xtij = 1 the arc (i, j) is traveled
starting from vertex i in time period t. The TDTSP can be formulated as
follows:

min
n∑
i=1

n∑
j=1

T∑
t=1

ctijx
t
ij (6.1)

s.t.
n∑
i=1

n∑
j=1

xtij = 1, t = 1, . . . , T (6.2)

∑
(1,j)∈A

x1
1j = 1 (6.3)

∑
(i,1)∈A

xTi1 = 1 (6.4)

∑
(i,j)∈A

xtij −
∑

(i,j)∈A

xt+1
ij = 0, t = 2, . . . , n− 1, j = 1, . . . , n (6.5)

xtij ∈ {0, 1} , i = 1, . . . , n, j = 1, . . . , n, t = 1, . . . , n (6.6)
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Constraint (6.2) gives that each vertex i is assigned to exactly one other
vertex j. Constraint (6.3) and (6.4) imply that the depot is left from vs at
t = 1 and returned to vs at t = n. Constraint (6.5) makes sure that if one
enters a vertex one also will leave the vertex.
The solution of this linear programming formulation gives us the lower bound
L(I) for an given instance. So we have L(I) ≤ O(I) ≤ H(I).
In the previous section we gave two algorithms, take H1(I) the worst-case
solution of the first for NNH the TDTSP for an given instance I and H2(I)
the worst-case solution of the iterative NNH for the TDTSP for the same
instance. We know that the solution of the second heuristic is at least the
same or better than the first one so H2(I) ≤ (H1(I) and L(I) ≤ O(I) ≤
H2(I) ≤ H1(I). We can calculate the gap between lower bound and the
value of a feasible solution obtained by the heuristic. This gap measure is
an upper bound of the difference between the value of the solution of the
heuristic and an optimal solution.
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7. Time dependent vehicle
routing problem

Most of the models for the VRP that are described in the literature, like
we noted in chapter 3.4, assume constant travel times. Clearly, ignoring
the fact that the travel time between two customers does not depend only
on the distance traveled, but also on the time of the day, has impact on
the application of these models to real-world problems. The time dependent
vehicle routing problem (TDVRP) has the same variants as the VRP but
here the travel times depend on the time of day. The TDVRP has seldom
been studied because they are harder to model and more difficult to solve
than the VRP. We give a comprehensive overview about the literature we
found on TDVRPs.

7.1 Literature

Malandraki and Daskin (1992) [Mala] were the first to formulate the TD-
VRP. They used a mixed integer linear programming formulation. In the
formulation of the problem an n × n time dependent matrix C(t) = cij(ti)
was used, which gives the travel times on an arc (i, j) ∈ A as a function of
the time t. In this matrix, cij(ti) is a step function of the time of the day
with ti at vertex i. Each arc (i, j) is replaced by Mij parallel arcs, where
Mij) is the number of distinct time intervals considered in the step function
cij(ti). The depot is expanded by K vertices (n+ 1, . . . , n+K) correspond-
ing to returning depot vertices for each of the K vehicles. The aim is to
minimize the total routing time (travel time plus service time plus waiting
time). The following constraints are used:
K = number of vehicles
n = number of vertices including the depot
M = number of time intervals considered for each arc
cmij = travel time from vertex i to j if starting at i during time interval m;
cmii =∞ ∀i,m
ci = service time at vertex im; ci = 0 at the depot
Tmij = upper bound for time interval m for arc (i, j)
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t = the starting time from the depots
bk = weight capacity of vehicle k
di = weight to be collected at customer i
B1, B2 = a large number
B = maxkbk = capacity of large vehicle
Li = earliest time that the salesman can arrive at vertex i
Ui = latest time that the salesman can arrive at vertex i
tj = departure time of any vehicle from vertex j
wj ≥ weight that carried by a vehicle when departing from vertex j
xmij is a decision variable and is 1 if any vehicle travels directly from vertex
i to vertex j starting from i during time interval m ans is 0 otherwise.
The TDVRP may be formulated as follows:

min
K∑
k=1

tn+k (7.1)

s.t.
n∑
i=1

M∑
m=1

xmij = 1, j = 2, . . . , n+K (7.2)

n+K∑
j=2

M∑
m=1

xmij = 1 , i = 2, . . . , n, (7.3)

n∑
j=2

M∑
m=1

xmij = K (7.4)

t1 = t (7.5)
tj − ti −B1x

m
ij ≥ cmij + cj −B1 (7.6)

ti +B2x
m
ij ≤ Tmij +B2 (7.7)

ti − Tm−1
ij xmij ≥ 0 (7.8)

for 7.6, 7.7, 7.8 (i = 1, . . . , n; j = 2, . . . , n+K; i 6= j; m = 1, . . . ,M)
Li + ci ≤ ti ≤ Ui + ci , i = 1, . . . , n+K (7.9)

wj − wi −B
M∑
m=1

xmij ≥ dj −B (i = 1, . . . , n; j = 2, . . . , n+K; i 6= j)

(7.10)

w1 = 0 (7.11)
wn+k ≤ bk (k = 1, . . . ,K) (7.12)
xmij ∈ {0, 1} ∀i, j,m (7.13)

ti ≥ 0, wi ≥ 0 ∀i (7.14)

In the formulation of the problem, waiting at a vertex is allowed. Con-
straints (7.2) to (7.4) ensure that each customer is visited exactly once and
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that exactly K vehicles are used. Constraints (7.6) compute the departure
time at vertex j. The objective function (7.1) ensures that this constraint
is applied with equality when xmij = 1 except in cases where waiting at j
decreases the objective function value. The temporal constraints (7.7) and
(7.8) ensure that the proper parallel arc m is chosen between vertices i and
j according to the departure time from i. We want to model the following
constraints: if xmij = 1 then Tm−1

ij ≤ ti ≤ Tmij ∀i, j,m. This means that ti
belongs to the time interval m defined by the above inequalities if the arc
used corresponds to the same time interval m. We can set the large number
B2 equal to the latest possible return time of a vehicle. Constraints (7.9)
impose the time windows that are defined in terms of the arrival times at
the vertices. Constraints (7.10) to (7.12) impose the capacity restrictions.
Constraint (7.11) states that all vehicles leave the depot empty. Constraint
(7.10) ensure that the weight carried by the vehicle leaving customer j is
at least equal to the weight when leaving the previously visited customer i
plus the weight of the commodity picked up. Constraint (7.12) ensure that
the capacity of each vehicle is not exceeded.
The problem does not take the FIFO-property into account. In the article,
heuristics are given for the TDTSP and TDVRP without time windows. The
algorithms are based on the nearest neighbor (greedy) heuristic (NNH) for
the traveling salesman problem. For the TDVRP a heuristic sequential route
construction is given. A new vehicle is only introduced when no customer
can be assigned using the current vehicle(s). In this case the worst runtime
performance is bounded by O(n2M). Another heuristic, simultaneous route
construction, is given. In this heuristic, a new vehicle is introduced, at any
state of the algorithm, when this leads to the use of the shortest arc that
does not violate the temporal requirements and the capacity of the vehicle.
A solution can be obtained in O(n2KM) time, with K being the number
of vehicles. When the total capacity is much larger than the total demand,
then one should avoid using this algorithm. In addition, a cutting plane
heuristic algorithm for the TDTSP with a given starting time from the de-
pot, and without time windows, is briefly discussed. The algorithms are
tested on randomly generated problems with 10 to 25 vertices. The travel
times are represented by step functions of two or three time periods per
arc on average. The NNH requires very low computing times. The cutting
plane algorithm is much more computationally expensive and solves only
small problems but finds a solution better than, or at least as good as the
solution obtained by the NNH in two of the three problems tested.
In 2003 Ichoua, Gendreau and Potvin [Icho] proposed a tabu search solu-
tion method in order to heuristically solve TDVRPs with soft time windows
and which guarantees the FIFO-property. Like Malandraki and Daskin, this
model uses a time-dependent matrix C(t), with p different time periods. The
speed of the vehicle changes when the boundary between two consecutive
time periods is crossed. Because the travel speed is a step function, the
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travel time is a piece-wise continuous function over time. The objective is
to minimize a weighted sum of total distance traveled and total lateness over
all customers. The algorithm uses parallel tabu search developed by Taillard
(1997). The method is tested using Solomon’s 100 customer problems. In
these problems customer locations are generated randomly and uniformly
within a [0, 100]2 square. The experiments were performed to evaluate the
model in a static and dynamic environment. Three time periods and three
types of time dependent arcs are studied. The results of their experiments
show that the time-dependent model provides very significant improvements
to the objective value over the model with fixed travel times, thus indicating
the usefulness of additional information about the problem.
Fleischmann, Gietz and Gnutzmann (2004) [Flei] use traffic information of
Berlin to see whether they could improve vehicle routing and scheduling.
They present a general framework for the implementation of time-varying
travel times in various vehicle routing algorithms that were already proposed
in the literature. The goal was to minimize the number of vehicles and total
travel time. Computational tests based on the traffic in Berlin shows that
the use of constant average travel times can lead to significant underestima-
tion of the actual total travel times.
More recently, Van Woensel, Kerbache, Peremans, and Vandaele (2008)
[Woen] used a tabu search algorithm to heuristically solve the TDVRP.
They used approximations based on queuing theory to determine the travel
speeds. The objective is to find the minimum cost vehicle routes. Three
different speed approaches are compared: no speed effects, three time pe-
riods (morning, mid-day and evening) and a queuing model with 144 time
intervals. A dataset with real-life observations is used as input. For each
of the three speed approaches there are solutions generated using the tabu
search heuristic. These solutions are re-evaluated using a different valida-
tion dataset for a different comparable day. The results show that the total
travel time can be improved significantly, when explicitly taking congestion
into account during the optimization. Additionally the authors found that a
higher number of time zones improves the solution quality. Another finding
is that adapting a starting time for a solution has significant effects on the
obtained solution quality. The extra computing time for large data sets is
significant but is worthwhile because the solution quality is improved.
Soler, Albiach and Mart́ınez (2008) [Sole] use a different approach because
they transform the TDVRP with time windows through several steps into an
asymmetric capacitated VRP, a well-known routing problem. This problem
can be solved optimally and heuristically with known codes. The aim is to
minimize the sum of the costs of the different routes given that the travers-
ing arc times satisfy the FIFO-property. They provide a way to optimally
solve the problem, at least for small size instances (due to its complexity).
An alternative way is described by Donati et al. (2008) [Dona]. The al-
gorithm that is used, is based on the ant colony system and local search
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procedures. The algorithm is named MACS-VRPTW. They describe a TD-
VRP with delivery time windows. The basic idea of ant colony optimization
is to use a positive feedback mechanism to reinforce those parts that belong
to a good solution, while discarding those that belong to poor solutions.
This is done with the possibility to temporally store this information so
that it will be locally available to all the individuals. They combine two al-
gorithms, one to optimize the number of vehicles and one for optimizing the
total travel time. The algorithms are supported by local search procedures
that store and update the slack times or feasible delays. The algorithms
are tested using some variations of the Solomon problems and on a real-life
network in Padua, Italy.
Last year Figliozzi (2009) [Figl] presented a new solution approach, an it-
erative route construction and improvement algorithm (IRCI), for the TD-
VRP with hard and soft time windows. The improvements are obtained at
a route level and do not rely on any type of local improvement procedure.
The solution algorithms can handle constant speed at time-dependent speed
problems. A new formulation for the TDVRP with soft and hard time win-
dows is presented. The travel speed in any arc is a positive and continuous
function of time, which guarantees the FIFO-property. The travel times
may be asymmetric and waiting time at a customer is allowed. The pri-
mary objective function is the minimization of the number of routes; the
optimal number of routes is unknown. A secondary objective is the min-
imization of the total time or distance. The solution method to minimize
fleet size is divided into two phases and heuristics: route construction and
route improvement. For the construction heuristic a route building heuristic
is presented which will be repeatedly executed. The route building heuristic
is a generalized nearest neighbor heuristic. Similarly the route construction
heuristic is repeatedly executed during the improvement heuristic. For any
given route a dynamic programming approach can be used to determine the
optimal service start times for customers. The performance of the IRCI
was tested on the Solomon instances with constant travel speed and on a
time dependent variant. The IRCI is faster than the methods presented
by Donati et al. (2008) but in terms of solution quality the solutions are
about 4% less than the best results ever obtained by the Solomon instances.
For the time dependent cases the author did not find similar results, so a
comparison was not possible.

7.2 A heuristic for the TDVRP

In 2008 Soler et al. described an idea to solve the TDVRP optimally, by
transforming it into an asymmetric capacitated VRP. The consequences of
their approach is that the asymmetric capacitated VRP is still a hard prob-
lem to solve. These transformations will make the problem size blow up. It
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would only be possible to do this for small instances. The article is overall
theoretical, and to the best of our knowledge, no computational experiments
using this approach have been reported so far. To find an optimal solution
for the TDVRP is not yet a realistic option for real-world instances.
We give an approach for a heuristic based on the heuristic for the TDTSP
we presented in Chapter 6.1. The TDVRP can be seen as the problem of
solving the TDTSP for each vehicle, if the customers are divided through
out the vehicles. In Chapter 3.4.1 we have seen that the customers can be
divided with a sweep method, which seems to be a good idea. The problem
in the time dependent case is that some vehicles could have routes involv-
ing heavy congestion. It is thus very important to divide the customers in
a “good” way over the vehicles. We try to divide the customers in three
groups, the customers with less rush hour traffic in the morning or mid-day
or evening. If there is a congestion in one way from customer i to j, we
advice to place customer i in a later time period than customer j, so the
congestion can be avoided. When the selection is made the algorithm in
chapter 6.1 can be applied to each separate vehicle.
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8. Conclusion

In this master thesis we have studied optimization problems in networks
with time dependent arcs. The aim is to describe real world problems in a
more realistic way than the optimization problems with constant arcs.
First we looked at the time dependent shortest path problem. We gave an
algorithm for this problem where the starting time is known and holds the
FIFO-property. The algorithm is based on the Dijkstra algorithm for the
shortest path problem. We gave a proof of the algorithm because it could
not be found in the literature. If the starting point of the time dependent
shortest path has to lie in a given starting time interval, there are two ap-
proaches given to handle this question. For both methods the complexity of
the algorithm could be unbounded because it depends on the arrival time
functions or the number of time intervals which can be exponential.
Secondly, time dependent flows are examined. The first algorithm ever to
find a maximal flow over time, by Ford and Fulkerson, is given. To also take
congestion into account, a time-expanded network that contains time layers
is explained. On this network an algorithm for a static flow can be applied.
The time-expanded network grows with the number of time intervals so it
could get very large.
Another problem we studied is the time dependent extension of the trav-
eling salesman problem. We gave a nearest neighbor heuristic to achieve a
tour for a given starting time. The NNH could give a much different tour
from the optimal solution, that is why we improve the tour by iteratively
applying the NNH. There will be n − 1 tours calculated and the shortest
tour in time is chosen.
Finally, the time dependent vehicle routing problem is discussed by giving a
comprehensive literature overview and suggestions for solving the problem.
There is almost no information known to derive an optimal solution. Last
year Figliozzi described a heuristic for this problem and gave some results.
To evaluate this heuristic theoretically and computationally seems an in-
teresting avenue for future research. We like to recommend this for future
research. Furthermore, it would be interesting to look at the time windows
of the TDVRP and to study the problems from this thesis for a given start-
ing time interval and see if it is possible to formulate polynomial heuristics
that could produce good-quality solutions for realistic instances.
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Appendix A

FIFO: First In First Out
NNH: Nearest Neighbor Heuristic TDSP: Time Dependent Shortest Path
TDTSP: Time Dependent Traveling Salesman Problem
TDVRP: Time Dependent Vehicle Routing Problem
TSP: Traveling Salesman Problem
VRP: Vehicle Routing Problem
VRPTW: Vehicle Routing Problem with Time Windows
IRCI: Iterative Route Construction and Improvement algorithm
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