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1 Introduction

We start this master thesis by looking at card shuffles, in particular the top-to-random shuffle,
which will be discussed in detail in section 3. Via coupling we can prove that for an n-card
deck the distance to a uniform configuration of the deck in the limit as n→∞ is reached after
approximately n log n + cn shuffles, with c a large constant. In other words, after n log n + cn
top-to-random shuffles the deck is thoroughly shuffled. We also prove that if we only apply
n log n − cn top-to-random shuffles to the n-card deck, then the shuffled cards still closely
resemble the original configuration. So the configuration drops from “being close to the original
configuration” to“close to uniform” at approximately n log n shuffles with a width of order n.
This drop is called cutoff and forms one of the subjects of this master thesis. A question we

would like to answer is: What conditions do we need on the state space and on the transition
kernel of a Markov chain so that it shows cutoff? To answer this question we start by searching
for other examples. Diaconis has done a lot of work in this area, see; [4], [5] and [6]. He gives
an explanation for the cutoff phenomenon, discusses the top-to-random shuffle and the riffle
shuffle and applies his theory about cutoff to a series of other problems. The preliminaries to
this phenomenon and a description of what cutoff exactly is in a mathematical sense is given
in section 2. The top-to-random and the riffle shuffle are discussed in detail in section 3 and
another explanation of cutoff via eigenvalues and eigenvectors is given in section 4.

The second subject of this master thesis is called metastability, which is in complete contrast
with cutoff. In cutoff, the Markov chain starts from a given state and stays in the vicinity of
this state until after a specific amount of time it becomes uniformly distributed over the whole
state space. But if the Markov chain has a metastable state, i.e., a deep well, then after an
exponentially distributed time, it will climb out of this well and move on to a deeper well. As
the name “well” suggests, it is easy to fall in but hard to climb out. If a Markov chain sits
in a metastable state consisting of a local minimum, it has to climb out of this “well” before
it can topple into a deeper well concentrated around the global minimum, which will take an
exponentially distributed time and therefor is not sharp as in cutoff.
As for cutoff we would like to answer the question: What conditions do we need on the state

space and on the transition kernel of a Markov chain so that it shows metastability? Again
we start by looking at an example. In section 5 we will study an example of an one dimen-
sional random walk in a double well. After that we will discuss some real-world examples where
metastability plays a key role, namely the Glauber and Kawasaki dynamics, which we will dis-
cuss in section 6 and in section 7. In these sections we will explain how these dynamics work by
explaining the ideas behind the theorems stated in [3].

Finally, in the last part of this thesis, part III, we will give some insight on how the cutoff and
metastability are linked.
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Part I

The Cutoff Phenomena
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2 Prelimenaries

Definition 2.1 The total variation distance between two distributions λ and µ on the same
state space Ω is defined as

‖µ− λ‖TV = max
A⊂Ω
|µ(A)− λ(A)|.

The total variation distance is a natural way to quantify how much two distributions differ from
each other. There are many other definitions, that serve the same purpose. From basic Markov
theory we know that if we have an irreducible and aperiodic Markov chain on a finite state space
Ω with transition kernel P , then

lim
t→∞

P t(x, ·) = π(·) ∀x ∈ Ω,

where π denotes the stationary distribution and t runs through the integers N0.
In terms of the total variation distance this becomes the following theorem

Theorem 2.2 (Markov Chain Convergence Theorem) Suppose that P is an irreducible
and aperiodic transition kernel, with stationary distribution π. Then there exists constants
α ∈ (0, 1) and C ∈ (0,∞) such that

max
x∈Ω

∥∥P t(x, ·)− π∥∥
TV
≤ Cαt ∀t ∈ N0.

We speak of a cutoff phenomenon when the total variation distance drops from being close to
1 to being close to 0 within a time interval, whose width is small compared to the location of
its center. Notice that the Markov chain convergence theorem (MCCT) above does not yet give
sharp bounds for this phenomenon.

Before we go into further detail we need to standardize some notation. First define the maximal
distance between P t(x, ·) and π as

d(t) := max
x∈Ω

∥∥P t(x, ·)− π∥∥
TV

.

For ε ∈ (0, 1) we define the mixing time as

tmix(ε) := min{t : d(t) ≤ ε},

and we take
tmix := tmix(1/4).

With this definition we can define the cutoff phenomenon.

Definition 2.3 Suppose we have a sequence of Markov chains indexed by n ∈ N with corre-

sponding mixing times t
(n)
mix(ε). This sequence has a cutoff if, for all ε > 0 we have,

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1.

In terms of the total variation distance to stationarity we have the following characterization
of the cutoff phenomenon.

Corollary 2.4 Let t
(n)
mix and dn be the mixing time and distance to stationary, respectively, for

the n-th chain in a sequence of Markov chains. The sequence has a cutoff if and only if

lim
n→∞

dn(ct
(n)
mix) =

{
1 if 0 < c < 1,
0 if c > 1.

Such a sequence of mixing times are also called the threshold times of a sequence of Markov

chains. Furthermore remark that we can replace t
(n)
mix with t

(n)
mix(ε) and ε ∈ (0, 1/2). 1

1The proofs of Theorem 2.2 and Corollary 2.4 can be found in [7].
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3 Random shuffles

One of the examples where the cutoff phenomenon occurs is in card shuffles. In this section
we will discuss two shuffles, the top-to-random shuffle and the riffle-shuffle. Before going to the
details we first need some definitions.

Definition 3.1 We call a stopping time τ , possibly depending on the starting position x, a
strong uniform time with respect to a Markov chain X = (Xt)t∈N0 on Ω with stationary distri-
bution π if

Px(τ = t, Xτ = y) = Px(τ = t)π(y) ∀t ∈ N0, y ∈ Ω.

Now we can state a lemma that gives an upper bound for the distance between the Markov
chain and its stationary distribution.

Lemma 3.2 Let X = (Xt)t∈N0 be an irreducible and aperiodic Markov chain on Ω with station-
ary distribution π. If τ is a strong uniform time for X. Then

d(t) = max
x∈Ω
‖Px(Xt ∈ ·)− π(·)‖TV ≤ max

x∈Ω
Px(τ > t) ∀t ∈ N0.

Proof: For t ∈ N0, x ∈ Ω and A ⊂ Ω we have

Px(Xt ∈ A) = Px(Xt ∈ A, τ > t) +
∑
i≤t

Px(Xt ∈ A, τ = i),

= Px(Xt ∈ A|τ > t)Px(τ > t) + π(A)
∑
i≤t

Px(τ = i),

= {Px(Xt ∈ A|τ > t)− π(A)}Px(τ > t) + π(A).

Since |Px(Xt ∈ A|τ > t)− π(A)| ≤ 1 the claim follows by taking the maximum over A ⊂ Ω and
using the definition of d(t).

�

3.1 Top-to-random shuffle

Consider a deck of n cards, labeled 1, 2, . . . , n. An arrangement of the deck is an element from
the group of permutations on n elements, denoted as Sn, also called the symmetric group. The
top card is represented by the first element of the arrangement and the bottom card by the last.
A shuffle of the deck is represented by applying to the deck a permutation drawn from Sn. A
random shuffle is a shuffle applied to the deck drawn according to some probability distribution
on Sn. Repeatedly shuffling the deck according to one distribution, say µ, is equivalent to
running a random walk on Sn, with independent increments according to µ. If the support of µ
is equal to Sn and µ(id) > 0, where id denotes the identity permutation, then this random walk
is irreducible and aperiodic. Furthermore, the stationary distribution π is uniform on Sn.
In the top-to-random shuffle we take the top card of the deck and insert it back into the deck

randomly, i.e., uniformly at any of the n locations including the top position itself. The cards
above the chosen position all move upward by one position. We need about n log n shuffles to
get the deck close to random. To show why, we follow the bottom card of the deck. Let τ1 be
the first time that a card is inserted below the original bottom card. Since the probability that
a shuffle puts a card at the bottom is equal to 1/n, this happens after approximately n shuffles.
Next, let τ2 be the first time after τ1 that a second card is placed below the original bottom
card. This happens with probability 2/n, so it takes approximately n/2 more shuffles. The two
cards under the original bottom card are equally likely to be in any order. In a similar way we
can define times τ1 < τ2 < . . . < τn−1.
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At time τn−1 the card originally from the bottom comes on top. By induction it follows that
the bottom n−1 cards are equally likely to be in any of the (n−1)! possible arrangements. One
final shuffle, at time τn = τn−1 + 1, puts the original bottom card back into the deck randomly
at one of the n positions. Hence the deck is equally likely to be in any of the n! arrangements
in Sn at time τn.
When the original bottom card is at position i it takes approximately n/i shuffles to place a

card below it. Hence we have that
E(τi − τi−1) =

n

i

and since τn =
∑n

i=1(τi − τi−1), with τ0 = 0, we have

E(τn) = E

(
n∑
i=1

(τi − τi−1)

)
=

n∑
i=1

E(τi − τi−1)

=
n∑
i=1

n

i
∼ n log n as n→∞.

Remark that τn is strong uniform time. The next theorem makes the cutoff precise.

Theorem 3.3 For the top-to-random shuffle and any ε > 0, there exists a constant α0 such
that
(i) dn(n log n+ cn) ≤ e−c for c ≥ 0, n ≥ 2.

(ii) dn(n log n− αn) ≥ 1− ε for α > α0.

To prove Theorem 3.3 we will compare the top-to-random shuffle with an auxiliary random
variable Vn, which represents the number of draws needed to draw all n balls, with replacement,
at least once from an urn that contains n balls. For i = 0, 1 . . . , n, let Vi denote the first time,
i.e., the number of draws needed, until i distinct balls have been drawn. Remark that

τi − τi−1
D
=Vn−(i−1) − Vn−i

D
= Geo

(
i

n

)
, i = 1, . . . , n,

are independent and that

τn =

n∑
i=1

(τi − τi−1)
D
=

n∑
i=1

(Vn−(i−1) − Vn−i) = Vn.

Proof of Theorem 3.3 Label the balls 1, . . . , n and let Ai be the event that ball i is not
drawn in the first n log n+ cn draws. Then

P(τn > n log n+ cn) = P(Vn > n log n+ cn)

= P(∪ni=1Ai) ≤
n∑
i=1

P(Ai)

= n(1− 1

n
)n logn+cn

≤ ne− logn−c = e−c,

where the second inequality follows from the fact that 1− x ≤ e−x for 0 < x ≤ 1. Since τn is a
strong stationary time, we can combine this result with Lemma 3.2 to get Theorem 3.3(i).
To prove Theorem 3.3(ii) assume that the original deck is in the arrangement id and consider

the events

Bj := {the original bottom j cards are in their original relative order}, j = 1, . . . , n.

11



Let τ ′j denote the number of shuffles required to move the jth card from the bottom to the top,
and let τji denote the number of shuffles required to put i cards below the jth card. Since

τj(i+1) − τji
D
= Geo((i+ j)/n)

we have

τ ′j =

n−j−1∑
i=0

(τj(i+1) − τji)
D
=

n−1∑
i=j

(Vn−(i−1) − Vn−i).

Since E(Vn−(i−1) − Vn−i) = n/i and Var(Vn−(i−1) − Vn−i) = (n2(1− i/n))/i2 < n2/i2 we have

E(τ ′j) = E

n−1∑
i=j

(Vn−i − Vn−(i+1))


=

n−1∑
i=j

E(Vn−i − Vn−(i+1))

=
n−1∑
i=j

n

i
≥ n(log n− log j − 1)

and

Var(τ ′j) =
n−1∑
i=j

n2

i2
<

n2

j − 1
, j ≥ 2.

Combining these bounds with Chebyshev’s inequality we get

P(τ ′j < n log n− αn) ≤ P(τ ′j − E(τ ′j) < −n(α− log j − 1))

≤ P(|τ ′j − E(τ ′j)| > n(α− log j − 1))

≤
Var(τ ′j)

n2(α− log j − 1)2

<
1

(j − 1)(α− log j − 1)2

≤ 1

j − 1
, α ≥ log j + 2.

Take tn(α) = n log n− αn. Then

P(Xtn(α) ∈ Bj) ≥ P(τ ′j ≥ tn(α)) = 1− P(τ ′j < tn(α)) > 1− 1

j − 1
.

Together with the observation that π(Bj) = 1/j! ≤ 1/(j − 1), we get

dn(tn(α)) =
∥∥P(Xtn(α) ∈ ·)− π(·)

∥∥
TV
≥ P(Xtn(α) ∈ Bj)− π(Bj) > 1− 2

j − 1
.

Now take j = eα−2, so that n ≥ eα−2, and define

g(α) :=
2

eα−2 − 1
.

Then for all ε > 0 there exists an α0 := α0(ε) with g(α0) = 1− ε. Hence, for all α ≥ α0 we have

dn(n log n− αn) > g(α) ≥ 1− ε,

which proves Theorem 3.3.(ii).

�

Combining Theorem 3.3 with Corollary 2.4 we see that the top-to-random shuffle has a cutoff
with threshold time tnmix = n log n, n ∈ N0.
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3.2 GSR-shuffle

The shuffle most commonly used by card players is called the riffle shuffle, where the dealer cuts
the deck into two packets and then riffles them together. Such a shuffle can be modeled math-
ematically relatively easy. First note that the sizes off the two packets can vary. Furthermore,
since most dealers are not professionals, the dealer drops a varying number of cards from each
stack until the cards form a whole deck again. Together Gilbert and Shannon gave a mathe-
matical description of this shuffle in 1955 and so did Reeds, independently 1981. Henceforth we
shall call this shuffle the GSR-shuffle, modeled as follows:
Let M be a binomial(n, 1/2) random variable. Split the deck into the top M cards, say the left

packet, and the bottom n −M cards, the right packet. Drop cards one by one either from the
left or the right packet, until all cards form a single packet again. A card from the left packet
is dropped with probability A/(A+B) and from the right packet with probability B/(A+B),
where A and B denote the size of the left, respectively, the right packet before each drop.

As for the top-to-random shuffle we can model a sequence of riffle-shuffles as a Markov chain
X = (Xt)t∈N0 on the group of permutations Sn. Start from X0 = id and choose σ ∈ Sn with
probability,

Pid(Xt = σ(Xt−1)) =


(n+ 1)/2n , if σ = id
1/2n , if σ contains exactly two rising sequences
0 , otherwise

,

where a rising sequence is a maximal set of consecutive cards that occur in their original relative
order. Dave Bayer and Persi Diaconis [6] showed in 1992, that the GSR-shuffle has a cutoff at
tnmix = (3/2) log n. In particular they proved the following theorem.

Theorem 3.4 If n cards are shuffled t times with t = (3/2) log2(nc), then for large n

dn(t) = ‖P(Xt ∈ ·)− π(·)‖TV = 1− 2Φ

(
− 1

4c
√

3

)
+O

(
1

n1/4

)
with

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt.

The function 1− 2Φ
(
− 1

4c
√

3

)
has the following asymptotic behavior:

1− 2Φ

(
− 1

4c
√

3

)
∼ 1

2c
√

6π
as c→∞,

1− 2Φ

(
− 1

4c
√

3

)
∼ 1− 4c

√
3√

2π
exp

{
−1

2

(
− 1

4c
√

3

)2
}

as c→ 0.

Since the drop has a width of order 1 around (3/2) log2 n, the GSR-shuffle has a cutoff.

The proof of Theorem 3.4 is beyond the scope of this thesis, since it is highly technical and
uses a fair amount of advanced group theory. We will, however, highlight the most important
definitions, lemma’s and ideas needed to complete it.
First of all, the GSR-shuffle is a special case of a more general form of a riffle shuffle. In the

general case we perform an a-shuffle, which is done as follows. Divide the deck into a packets,
packets may be empty, and then interleaving them together. Each card at the bottom of a
packet is being dropped with probability Ai/A, where Ai stands for the number of cards in
packet i = 1, . . . , a before a card is being dropped and A =

∑a
i=1Ai. The following descriptions

of the a-shuffle plays an important role:
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Geometric description
Place n points, x1 < x2 < · · · < xn, representing the cards, uniformly and independently on
the line (0,1). For a positive integer a, the map a 7→ ax (mod 1) maps [0, 1] onto itself and
preserves measure. This map rearranges the points xi, which represents an a-shuffle, and so
gives a probability measure on the symmetric group.

Entropy description
All possible ways of cutting the deck into a packets and the subsequent interleaving of the
packets are equally likely. Empty packets are allowed.

Inverse description
All possible ways of pulling a deck back apart into a packets are equally likely. Empty
packets are allowed. This shuffle is generated by labeling all the cards independently and
uniformly with a number 0, 1, . . . , a − 1, pulling the cards out of the deck into a packets
while respecting there relative ordering, and reassembling the deck by putting the packets
on top of each other, such that the cards labeled with a 0 come on top, followed by the
cards labeled with a 1, etc., until the cards labeled with a a− 1 make up the last cards.

Sequential description
Choose integers j1, j2, . . . , ja such that

∑a
i=1 ji = n according to the multinomial distribution

P(j1, j2, . . . , ja) =

(
n

j1j2 . . . ja

)
1

an
.

Given ji, cut off the top j1 cards, the next j2 cards and so on, producing a or fewer packets.
Shuffle the first two packets together by a GSR-shuffle. Shuffle this combined packet with
the next and so on, until we have one packet.

The next lemma links these descriptions together.

Lemma 3.5 The four descriptions above generate the same permutation distribution. Moreover,
in each model an a-shuffle followed by an b-shuffle is equivalent to an ab-shuffle.

The permutation distribution above is also called the GSR measure.

Theorem 3.6 The probability that an a-shuffle will result in the permutation σ is(
a+n−r
n

)
an

,

where r is the number of rising sequences in σ.

Corollary 3.7 If a deck of n cards is given a sequence of m shuffles of types a1, . . . , am, then
the probability that the deck is in the arrangement σ is given by(

a+n−r
n

)
an

,

where a = a1 × a2 × · · · × am and r is the number of rising sequences in σ.

Corollary 3.8 Let a Markov chain on the symmetric group begin at the identity and proceed
by successive independent a-shuffles chosen from the GSR measure. Then R(σ), the number of
rising sequences, forms a Markov chain.

With these results we can state the two propositions that form the body of the proof of Theorem
3.4. The first one decomposes the GSR-measure into an exponential form, such that we can
bound the probability of a permutation σ with r rising sequences by 1/n!. This is crucial, since
it determines on which set the total variation is achieved.

14



Proposition 3.9 Let Qm(r) =
(

2m+n−r
n

)
/2mn be the probability of a permutation with r rising

sequences after m shuffles drawn from the GSR-distribution. Let r = n/2 + h, with −n/2 + 1 ≤
h ≤ n/2. Let m = log2(n3/2c) with 0 < c <∞ fixed. Then

Qm(r) =
1

n!
exp

{
1

c
√
n

(
−h+

1

2
+O

(
h

n

))
− 1

24c2
− 1

2

(
h

cn

)2

+O
(

1

n

)}
.

Proposition 3.10 With the same notation as in Proposition 3.9, let h∗ be an integer such that
Qm(n/2 + h) ≥ 1/n! if and only if h ≤ h∗. Then, for any fixed c, as n→∞

h∗ = −−
√
n

24c2
+

1

12c2
+B +O

(
1√
n

)
,

where −1 ≤ B ≤ 1.

Via the definition of total variation and the decomposition of the GSR-measure, Proposition
3.9, gives the following equation for the total variation,

dn(t) =
∥∥Qt − π∥∥

TV
= max

A⊂{0,1,...,r}
{Qt(A)− π(A)} =

∑
−n/2<h≤h∗

Rnh

(
Qt
(n

2
+ h
)
− 1

n!

)
,

where Rnh stands for the number of permutations in Sn with h+n/2 rising sequences. This gives
the right bound thanks to Proposition 3.10. Use of the central limit theorem and a standard
large deviation bound, combined with a lot of calculus, finally completes the proof of Theorem
3.4.
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4 Bounds on total variation

To explain when cutoff happens we will look at the eigenvalues and eigenfunctions (or eigenvec-
tors) of the transition kernel of the Markov chain that we are examining. With these we can
find other means to bound the total variation distance and the mixing times. In order to do so,
we need the separation distance which is defined as

s(t) := max
x∈Ω

sx(t), with sx(t) := max
y∈Ω

[
1− Px(Xt = y)

π(y)

]
We have the following Lemma.

Lemma 4.1 Let X = (Xt)t∈N0 be an irreducible Markov chain with strong stationary time τ .
Then

‖Px(Xt ∈ ·)− π(·)‖TV ≤ sx(t) ≤ Px(τ > t).

Proof. To prove the first inequality, we fix x ∈ Ω and estimate

‖Px(Xt ∈ ·)− π(·)‖TV =
∑
y ∈ Ω

Px(Xt = y) ≤ π(y)

(π(y)− Px(Xt = y))

=
∑
y ∈ Ω

Px(Xt = y) ≤ π(y)

π(y)

(
1− Px(Xt = y)

π(y)

)

≤ max
y∈Ω

[
1− Px(Xt = y)

π(y)

]
= sx(t).

To prove the second inequality, we fix x, y ∈ Ω and make use of the fact that

Px(Xt = y) = Px(Xt = y, τ > t) + Px(Xt = y, τ ≤ t),

to get

1− Px(Xt = y)

π(y)
≤ 1− Px(Xt = y, τ ≤ t)

π(y)
= 1− Px(τ ≤ t)π(y)

π(y)
= Px(τ > t).

�

Let 〈·, ·〉 denote the inner product on RΩ, which is given by 〈f, g〉 =
∑

x∈Ω f(x)g(x). Since
we will be working with Markov chains with a stationary distribution, we also need a weighted
inner product on RΩ given by 〈f, g〉π =

∑
x∈Ω f(x)g(x)π(x). The use of this weighted inner

product will become clear in the proof of the following lemma.

Lemma 4.2 Given an irreducible and reversible Markov chain X with transition kernel P , the
following holds

(i) The inner product space (RΩ, 〈·, ·〉π) has an orthonormal basis of real-valued eigenfunctions
{fj}nj=1 corresponding to real eigenvalues {λj}nj=1, with n = |Ω|, ordered as λ1 ≥ λ2 ≥
· · · ≥ λn.

(ii) The matrix P can be decomposed as

P t(x, y)

π(y)
=

Px(Xt = y)

π(y)
=

n∑
j=1

fj(x)fj(y)λtj .
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(iii) The eigenfunction f1 corresponding to the eigenvalue λ1 = 1 can be taken to be the constant
vector 1, so that

P t(x, y)

π(y)
=

Px(Xt = y)

π(y)
= 1 +

|Ω|∑
j=2

fj(x)fj(y)λtj . (4.1)

Proof.2 (i): Given a reversible Markov chain X with transition kernel P , recall that

π(x)P (x, y) = π(y)P (y, x), x, y ∈ Ω.

Let Dπ be a diagonal matrix such that Dπ(x, x) = π(x) and Dπ(x, y) = 0 if x 6= y, and take

A = D
1/2
π PD

−1/2
π , so that A(x, y) =

√
π(x)/

√
π(y)P (x, y) for all x, y ∈ Ω. Since

A(x, y) =

√
π(x)√
π(y)

P (x, y) =
π(x)√
π(x)π(y)

P (x, y)

=
π(y)√
π(x)π(y)

P (y, x) =

√
π(y)√
π(x)

P (y, x) = A(y, x),

A is a symmetric matrix and so by the spectral theory for symmetric matrices we know that
A has real-valued eigenfunctions, say {ϕj}nj=1, corresponding to real-valued eigenvalues, say

{λj}nj=1, which form an orthonormal basis, say B, for the inner product space (RΩ, 〈·, ·〉). Take

fj = D
−1/2
π ϕj for j = 1, . . . , n. Then,

Pfj = PD−1/2
π ϕj = D−1/2

π AD1/2
π D−1/2

π ϕj = D−1/2
π Aϕj = λjD

−1/2
π ϕj = λjfj .

Let δi,j : B×B → {0, 1} denote the Dirac delta function, i.e. δi,j(ϕi, ϕj) = 1 if and only if i = j.
Since the original eigenfunctions of A are orthonormal in (RΩ, 〈·, ·〉), we have

δi,j(ϕi, ϕj) = 〈ϕi, ϕj〉 = 〈D1/2
π fi, D

1/2
π fj〉

=
∑
x∈Ω

√
π(x)fi(x)

√
π(x)fj(x)

=
∑
x∈Ω

fi(x)fj(x)π(x) = 〈fi, fj〉π.

Thus the inner product space (RΩ, 〈·, ·〉π) has a real-valued orthonormal basis {fj}nj=1 with
corresponding eigenvalues {λj}nj=1.
(ii). Remark that

√
π is an eigenfunction of A with corresponding eigenvalue λ1 = 1, since

(√
πA
)

(x) =
∑
y∈Ω

√
π(y)

√
π(y)√
π(x)

P (y, x) =
∑
y∈Ω

π(y)√
π(x)

P (y, x)

=
∑
y∈Ω

√
π(x)P (x, y) =

√
π(x).

This implies that D
−1/2
π
√
π = 1 is an eigenvector of P . Let δy be the following function

δy(x) =

{
1, if x = y,
0, if x 6= y.

2See [7], for the original proof.
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In the inner product space, (RΩ, 〈·, ·〉π) with orthonormal bases {fj}nj=1, we can decompose this
function in the following way:

δy =

n∑
j=1

〈δy, fj〉πfj =

n∑
j=1

[∑
x∈Ω

δy(x)fj(x)π(x)

]
fj =

n∑
j=1

π(y)fj(y)fj .

Using this result, we get

P t(x, y) =
(
P tδy

)
(x) =

 n∑
j=1

π(y)fj(y)P tfj

 (x) =
n∑
j=1

π(y)fj(y)λtjfj(x),

and thus we have that

P t(x, y)

π(y)
=

n∑
j=1

fj(x)fj(y)λtj .

(iii). From the fact that f1 = 1, we get

P t(x, y)

π(y)
= 1 +

|Ω|∑
j=2

fj(x)fj(y)λtj .

�

We need to state one more definition before we can state the next theorem. For p ≥ 0, the
weighted `p(π)-norm on RΩ is defined as

‖f‖π,p :=

[∑
x∈Ω

|f(x)|p π(x)

]1/p

.

Note that for p = 2, ‖f‖2 =
√
〈f, f〉π.

Theorem 4.3 Let X be a Markov chain with a reversible transition kernel P with eigenvalues
λ1 = 1 ≥ λ2 ≥ . . . λn ≥ −1 corresponding to the eigenfunctions {fj}nj=1 and orthonormal with
respect to the inner product 〈·, ·〉π. Then

4 ‖Px(Xt ∈ ·)− π(·)‖2TV ≤
∥∥∥∥Px(Xt ∈ ·)

π(·)
− 1

∥∥∥∥2

2

=

|Ω|∑
j=2

fj(x)2λ2t
j .

Furthermore if the chain X is also transitive then we have

4 ‖Px(Xt ∈ ·)− π(·)‖2TV ≤
|Ω|∑
j=2

λ2t
j .

Proof: Using Lemma 4.2.(iii) we get∥∥∥∥Px(Xt ∈ ·)
π(·)

− 1

∥∥∥∥2

2

=

∥∥∥∥∥∥
|Ω|∑
j=2

λtjfj(x)fj

∥∥∥∥∥∥
2

2

= 〈
|Ω|∑
j=2

λtjfj(x)fj ,

|Ω|∑
j=2

λtjfj(x)fj〉π

=

|Ω|∑
j=2

fj(x)2λ2t
j . (4.2)
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Furthermore, using the fact that ‖µ− ν‖TV = 1
2

∑
x∈Ω |µ(x)− ν(x)| we get

‖Px(Xt ∈ ·)− π(·)‖TV =
1

2

∑
y∈Ω

∣∣∣∣Px(Xt = y)

π(y)
− 1

∣∣∣∣π(y)

=
1

2

∥∥∥∥Px(Xt ∈ ·)
π(·)

− 1

∥∥∥∥
1

.

Since p 7→ ‖f‖p is non-decreasing, we get

4 ‖Px(Xt ∈ ·)− π(·)‖2TV =

∥∥∥∥Px(Xt ∈ ·)
π(·)

− 1

∥∥∥∥2

1

≤
∥∥∥∥Px(Xt ∈ ·)

π(·)
− 1

∥∥∥∥2

2

Combine both estimates to give the first bound.
If the chain is also transitive, then for each pair (x, y) ∈ Ω2 there exists a bijection ϕ(x,y) : Ω 7→

Ω, such that ϕ(x) = y and P (z, w) = P (ϕ(z), ϕ(w)) for all z, w ∈ Ω. Since the chain is also
reversible we have that π is uniform on Ω. From this it follows that the left-hand site of (4.2)
does not depend on x. So for any x0 ∈ Ω we have∥∥∥∥Px0(Xt ∈ ·)

π(·)
− 1

∥∥∥∥2

2

=

|Ω|∑
j=2

fj(x)2λ2t
j .

Summing over x on both sites then gives

|Ω|
∥∥∥∥Px0(Xt ∈ ·)

π(·)
− 1

∥∥∥∥2

2

= |Ω|
∑
x∈Ω

π(x)

|Ω|∑
j=2

fj(x)2λ2t
j


= |Ω|

|Ω|∑
j=2

(∑
x∈Ω

fj(x)2π(x)

)
λ2t
j = |Ω|

|Ω|∑
j=2

λ2t
j .

Dividing both sites with |Ω| gives the second result

�

4.1 Example without cutoff

Let us look at the lazy random walk X = (Xt)t∈N0 on the integers modulo n, starting at X0 = 0.
Where at each unit of time the walker can take one step up, one step down or stand still with
equal probability, this yields the following transition kernel

P (i, j) =


1/3 if j = i+ 1 mod n,
1/3 if j = i− 1 mod n,
1/3 if j = i,

0 else,

∀i, j ∈ Zn.

This random walk can be viewed as a lazy random walk on the n-element cyclic group. It is
immediate that this random walk is irreducible and reversible and so the stationary distribution
is uniform. We will use this representation to find the eigenvalues and eigenfunctions of the
transition kernel. With those we can apply Theorem 4.3 to find an upper bound on the total
variation time. A lower bound will be given by comparing this walk with a lazy random walk
on the integers. From these bounds it will be clear that the lazy random walk on the integers
modulo n does not have a cutoff.
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Lemma 4.4 For the lazy random walk X = (Xt)t∈No on the integers modulo n, we have the
following upper bound on the total variation distance

d

(
3

4π2
cn2

)
≤ e−c c > 0.

Proof. Let ω = e2πi/n and let Wn = {ω, ω2, . . . , ωn−1, 1} be the set of n-th roots of unity which
form a n-gon inscribed in the unit circle. Remark that (Wn, ·), with · denoting the multiplication,
is the n-cyclic group since

ωj · ωk = ωj+k = ωj+k mod n,

and the group is generated by ω. Now remark that for all eigenfunctions f with corresponding
eigenvalue λ the following must hold

λf(ωk) = Pf(ωk) =
f(ωk−1) + f(ωk) + f(ωk+1)

3
.

Fix k and for j = 0, 1, . . . , n− 1 define fj(ω
k) = ωjk. Then

λjfj(ω
k) =

fj(ω
k−1) + fj(ω

k) + fj(ω
k+1)

3

=
ωjk−j + ωjk + ωjk+j

3

= ωjk
1 + ωj + ω−j

3

= fj(ω
k)

1 + ωj + ω−j

3
.

So for j = 0, 1, . . . , n− 1, fj is an eigenfunction for P with corresponding eigenvalue

λj =
1

3

(
1 + ωj + ω−j

)
=

1

3
(1 + 2 cos(2πj/n)) .

Note that λ1 > 1 − 4π2/3n2 ≥ λi, with i = 2, . . . , n − 1 and that fj is bounded for all j. By
Theorem 4.3 we therefor get

‖Px(Xt ∈ ·)− π(·)‖TV ≤
1

2

√√√√n−1∑
j=1

fj(x)2λ2t
j <

1

2
λt1

√√√√n−1∑
j=1

fj(x)2

︸ ︷︷ ︸
≤1

≤ 1

2
λt1.

Looking only at the lead term and letting n grow, as Diaconis suggest in [4], we get

‖Px(Xt ∈ ·)− π(·)‖TV ≤
1

2

(
1− 4π2

3n2

)t
≤ 1

2
e−

4π2

3n2 t.

If t = 3
4π2 cn

2 then this tends to e−c.

�

So we can conclude that the mixing time, tmix, for the lazy random walk on the integers modulo
n is of the order n2. The next lemma shows that the the lower bound of the total variation
distance is also of the order n2.

Lemma 4.5 For the lazy random walk X = (Xt)t∈No on the integers modulo n, there exist a
α0 > 0, so that for the total variation distance the following holds

d
(
αn2

)
≥ 1/4 ∀α < α0.
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Proof. To prove this statement we shall couple X = (Xt)t∈N0 to S = (St)t∈N0 , the same lazy
random walk on the integers without the modulo count, starting from S0 = 0 until time τ , with

τ := min{t : |St| = bn/2c}.

For St we have

E(St) = 0 Var(St) =
2

3
t. (4.3)

Using (4.3) and the Chebyshev’s inequality we find

P

(
sup
t≤αn2

|Xt| > n/4

)
= P

(
sup
t≤αn2

|St| > n/4

)
≤ P(|St| > n/4)

= P(|Sαn2 − E(Sαn2)| > n/4− E(Sαn2))

≤ 16
Var(Sαn2)

n2
=

32α

3
.

For α ≤ α0 = 3/128, we have P(supt≤αn2 |Xt| > n/2) ≤ 1/4. If we now take A := {k : |k| ≥ n/4},
i.e. the set of integers between −n/2 and n/2, such that the absolute value is greater or equal
to n/2, then π(A) ≥ 1/2. So

‖P(Xαn2 ∈ ·)− π(·)‖TV ≥ |π(A)− P(Xαn2 ∈ A)|

≥ π(A)− P(Xαn2 > n/4) ≥ 1

4
.

�

Intuitively it is clear that the lazy random walk on the integers modulo n does not have a
cutoff phenomena. This also follows directly from corollary 2.4, since the requirements do not
hold for all c as we have shown in the previous lemma’s.

4.2 Example with cutoff

Let us look at the Ehrenfest Urn introduced by P. and T. Ehrenfest. In this model we look at
two urns and n balls. Initially all balls are in urn 2. At each unit of time one of the n balls is
chosen uniformly, via a Bernoulli distribution with p = 1/2, the ball is placed in either urn 1 or
in urn 2. It is intuitively clear that after some amount of time any ball is equally likely to be in
any of the two urns. Now, the state of this Markov chain is determined by the number of balls
in urn 1. So we get a lazy random walk on the set {0, 1, . . . , n} with the following transition
probabilities:

P (i, j) =


1
2
n−i
n if j = i+ 1,

1
2 if j = i,

1
2
i
n if j = i− 1,

for i ∈ {0, 1 . . . , n}.

The stationary distribution of this model is the binomial distribution with parameters n and
p = 1/2. To evaluate the eigenfunctions and eigenvalues we will look at the lazy random
walk on the n-dimensional hypercube. This is a random walk X = (Xt)t∈N0 on the set Ω =
Zn2 = {0, 1}n starting from the point X0 = (0, 0, . . . , 0), with increments (0, 0, . . . , 0), e1 =
(1, 0, . . . , 0), . . . , en(0, 0, . . . , 1), such that

P(Xt+1 = Xt) =
1

2
and P(Xt+1 = Xt + ei) =

1

2n
for all i ∈ {1, . . . , n}.

Let W (x) =
∑n

i=1 xi denote the Hamming weight of x = (x1, x2, . . . , xn) ∈ Zn2 . Then it is not
difficult to see that the Ehrenfest random walk is a projection of the lazy random walk on the
n-dimensional hypercube. First we will give the lower bound on the total variation distance,
then the upper bound and finally we will show that the total variation of the Ehrenfest Urn
walk and the lazy random walk on the n dimensional hypercube are indeed the same.
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Proposition 4.6 Let µ and ν be two probability distributions on Ω, and let f be a real-valued
function on Ω. If

|Eµ(f)− Eν(f)| ≥ rσ, (4.4)

where σ2 = (Varµ(f) + Varν(f))/2, then

‖µ− ν‖TV ≥ 1− 4

4 + r2
.

Lemma 4.7 Consider the coupon collecting problem with n distinct coupon types, and let Ij(t) be
the indicator of the event that the j-th coupon has not been collected by time t. Let Rt =

∑n
j Ij(t)

be the number of coupon types not collected by time t. The random variables Ij(t) are negatively
correlated, with p = (1− 1/n)t for t ≥ 0

E(Rt) = np, Var(Rt) ≤ np(1− p).

With these we can state the lower bound. 3

Proposition 4.8 For the lazy random walk on the n-dimensional hypercube

d

(
1

2
n log n− αn

)
≥ 1− 4e−2α+1.

Proof. Let X be as defined above and let W be the Hamming weight function. We will
use Proposition 4.6 to bound the total variation of the lazy random walk on the n-dimensional
hypercube from below. Since X is a reversible and transitive random walk, we know that π is
uniform on Zn2 . Under π the random variable W := W (X) is binomial with parameters n and
p = 1/2 and thus

Eπ(Wt) =
n

2
Varπ(Wt) =

n

4
. (4.5)

Now let Rt be the number of coordinates that where not updated at time t. When starting from
0 the conditional distribution of Wt given Rt is binomial with parameters n− Rt and p = 1/2.
So

E0(Wt|Rt) =
n−Rt

2
Var0(Wt|Rt) =

n−Rt
4

,

and using Lemma 4.7 we get

E0(Wt) = E (E0(W |Rt)) =
n− E0(Rt)

2
=
n

2

(
1−

(
1− 1

n

)t)
. (4.6)

Using the identity
Var(Y ) = Var(E(Y |Z)) + E(Var(Y |Z)),

we get

Var0(Wt) = Var0(E0(Wt|Rt)) + E0(Var0(Wt|Rt))

= Var0

(
n−Rt

2

)
+ E0

(
n−Rt

4

)
=
n

4
+

1

4
(Var0(Rt)− E0(Rt)) ≤

n

4
,

3The proofs of proposition 4.6 and lemma 4.7 can be found in [7]
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where the last inequality follows from the fact that Ij(t) are negatively related so that E(Rt) ≥
Var(Rt). Take

σ =
√

max{Varπ(Wt),Var0(Wt)} =

√
n

2
.

Then, by (4.5) and (4.6), we get

|E0(Wt)− Eπ(Wt)| =

∣∣∣∣∣n2
(

1−
(

1− 1

n

)t)
− n

2

∣∣∣∣∣
=
n

2

(
1− 1

n

)t
= σ
√
n

(
1− 1

n

)t
= σet log(1− 1

n)+ 1
2

logn.

Using the fact that log (1− x) ≤ −x− x2 for 0 ≤ x ≤ 1/2, we get

≥ σe−
t
n(n+1

n )+ 1
2

logn.

Applying Proposition 4.6 with r = e−
t
n(n+1

n )+ 1
2

logn, we obtain

‖P0(Xt ∈ ·)− π(·)‖TV ≥ 1− 4

4 + e−
2t
n (n+1

n )+ 1
2

logn

≥ 1− 4e
2t
n (n+1

n )−logn.

For α ≤ n log n we have

(n+ 1)

(
1

2
n log n− αn

)
≤ n

(
1

2
n log n− αn

)
+

1

2
n2.

If we take

tn =
n

n+ 1

(
1

2
n log n−

(
α− 1

2

)
n

)
,

then

tn >
1

2
n log n− αn.

So
d (tn) = ‖P0(Xtn ∈ ·)− π(·)‖TV ≥ 1− 4e−2α+1.

�

To prove the upper bound we will look at the eigenvalues and eigenfunctions of the random walk
on the n-dimensional hypercube. For this purpose we will look at the product of n irreducible
Markov chains. For j = 1, 2, . . . , n, let Pj be an irreducible transition matrix on the state space
Ωj , with stationary distribution πj . In the next lemma we look at the product Markov chain on

Ω̃ := Ω1 × Ω2 × · · · × Ωn. The chain selects a coordinate i according to some distribution w on
{1, 2, . . . , n} and then only moves according to Pi on the coordinate i. Let x = (x1, x2, . . . , xn) ∈
Ω̃. Then the transition matrix P̃ of this chain is defined as

P̃ (x,y) :=
n∑
j=1

Pj(xj , yj)

n∏
i=1
i6=j

1{xi=yi}.

Lemma 4.9 For j = 1, 2, . . . , n, let Pj be an irreducible transition matrix on the state space

Ωj, with stationary distribution πj. Let P̃ be the transition kernel on Ω̃ as defined above. Then
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(i) The function ϕ := ϕ(1) ⊗ . . . ⊗ ϕ(n) is an eigenfunction of the transition matrix P̃ , with
eigenvalue

∑n
j=1wjλ

(j).

(ii) Suppose that for each j, Bj is an orthogonal basis in `2(πj). Then the collection

B̃ :=


n⊗
j=1

ϕ(j) : ϕ(j) ∈ Bj ; j = 1, . . . , n

 ,

is a basis for `2(π1 × · · · × πn).

We will now start to look at the lazy random walk on the n-dimensional hypercube and will
use Lemma 4.9 to determine its eigenfunctions and its eigenvalues. For every j = 1, 2, . . . , n we
have the transition kernel

Pj =
1

2

(
1 1
1 1

)
.

Straightforward computations show that Pj has eigenvalues λ
(j)
0 = 1 and λ

(j)
1 = 0 with cor-

responding eigenfunctions ϕ
(j)
0 = (1/

√
2)(1, 1)t and ϕ

(j)
1 = (1/

√
2)(1,−1)t. By Lemma 4.9 it

is clear that the lazy random walk on the n-dimensional hypercube has 2n eigenvalues and
eigenfunctions. Which can be labeled by J ∈ Zn2 as follows

λJ =
n∑
i=1

π(i)λ
(i)
Ji

=
1

n

n∑
i=1

1{Ji=0} =
n−W (J)

n
and ϕJ =

n⊗
i=1

ϕ
(i)
Ji
.

Note that the eigenfunctions ϕj correspond to the Jth columns of the Hadamard matrix H2n

and thus form an orthonormal basis for P̃ .

Proposition 4.10 For the lazy random walk on the n-dimensional hypercube

d

(
1

2
n log n+ αn

)
≤ 1√

2
e−α.

Proof. Remark that the lazy random walk on the n-dimensional hypercube is transitive. Using
Theorem 4.3 with the eigenvalues we have found above, we therefor have

4 ‖P0(Xt ∈ ·)− π(·)‖2TV ≤
∑

J∈Zn2 \{0}

λ2t
J =

n∑
j=1

(
1− j

n

)2t(n
j

)
≤

n∑
j=1

e−2jt/n

(
n

j

)
= (1− e−2t/n)n − 1.

Taking t = 1
2n log n+ αn, we get

4 ‖P0(Xt ∈ ·)− π(·)‖2TV ≤
(

1− 1

n
e−2α

)
− 1 ≤ ee−2α − 1 ≤ 2e−2α.

Dividing by 4 and taking the square on both sides, we get

‖P0(Xt ∈ ·)− π(·)‖TV ≤
1√
2
e−α.

�

Now it remains to prove that the total variation of the Ehrenfest Urn is the same as the total
variation of the lazy random walk on the n-dimensional hypercube.
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Theorem 4.11 Let (Xt)t∈N0 be the lazy random walk on the n-dimensional hypercube with
stationary distribution π and let (Wt)t∈N0 be the Ehrenfest urn walk with stationary distribution
πW . Then

‖Xt − π‖TV = ‖Wt − πW ‖TV .

Proof. Let W be the Hamming weight function as defined above and for w ∈ {1, . . . , n} let
Ωw := {x ∈ Zn2 : W (x) = w} be the set of all x ∈ Zn2 with w bits set to one. Remark that for all
x, y ∈ Ωw, P0(Xt = x) = P0(Xt = y) and π(x) = π(y), so that

∑
x∈Ωw

|P0(Xt = x)− π(x)| =

∣∣∣∣∣ ∑
x∈Ωw

P0(Xt = x)− π(x)

∣∣∣∣∣ = |P0(Wt = w)− πW (w)| .

Summing over w ∈ {0, 1, . . . , n} and dividing by 2, we obtain

‖Xt − π‖TV = ‖Wt − πW ‖TV .

�

So the Ehrenfest Urn has a cutoff at 1
2n log n with of a size of factor n. We have proven this

via the eigenvalues of the lazy random walk on the n-dimensional hypercube.
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Part II

Metastability
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5 1-Dimensional Example of Metastability

In this part of the thesis we will explain what metastability is by looking at some non-equilibrium
phenomena studied in physics. Experiments done to study these phenomena are theoretically
backed up by calculations done on simplified mathematical models. As a warmup we will look
at a 1-dimensional Random Walk (1dRW) that shows metastable behavior. Theorems for this
simple example carry over to more complex higher-dimensional models. Though the latter are
a lot harder to handle, the basic ideas are the same.

Consider a thermodynamic system in equilibrium at a point P in phase space, which is typ-
ically determined by parameters such as temperature, pressure, density and external fields. In
equilibrium, the system is stable and has a low energy level. Due to external influences, such
as a change in the phase-space parameters, the parameters at point P can shift to a point
P ′ 6= P . If the change is gradual and sufficient energy is put into the system, it will gradually
move towards its new equilibrium P ′. However if the change is (almost) instantaneous and a
small amount of energy is put into the system, then the system stays in the old equilibrium P
for a long time, which we now call a metastable state, before it moves to the new equilibrium
P ′ under the influence of random fluctuations. Since the system has to overcome some energy
barrier when making this transition, it takes a long time for the random fluctuations to achieve
the crossover.
The transition only occurs after the system creates a sufficiently large droplet of the new phase

inside the old phase, called the “critical droplet”. This droplet is created by the system in
a manner that requires the minimal amount of energy possible, which is in contrast with an
immediate transition that requires high amounts of energy.
This phenomenon occurs in the following examples:

(1) a wrongly magnetized ferromagnet,
(2) a supersaturated gas.
The ferromagnet will be discussed in section 6, the supersaturated gas, in section 7. Now we
will first discuss the toy-example of a 1dRW.

X

H

Γ

δ

1 2 n− 1 n

Figure 1: Hamiltonian for a 1d-RW on a double well.

Let X = (Xt)t∈N be a random walk on the state space Ω = {0, 1, . . . , n} that is reversible with
respect to the Gibbs measure µ, given by

µ(x) =
e−βH(x)

Z
, x ∈ Ω,

where Z =
∑

x∈Ω e
−βH(x) and where H is the Hamiltonian for the double-well model as shown

in figure 1. The Hamiltonian gives the energy level for each element x ∈ Ω for the double-well
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model. The following transition probabilities for the random walk are given by the Metropolis
rule

P (x, y) =


1
2e
−β[H(y)−H(x)]+ if |x− y| = 1,

0 if |x− y| > 1,

1−
∑

y:|x−y|=1
1
2e
−β[H(y)−H(x)]+ if x = y,

where we put H(−1) = H(n + 1) = ∞, to ensure that the random walk stays in Ω, and
[f(x)]+ = max{f(x), 0}. We can think of β as the inverse of the temperature. If the temperature
is low, i.e., near the absolute 0-temperature, then β is large and transitions against the drift are
unlikely. On the other hand, at high temperatures transitions become more likely as we expect
an easy motion.
If we take a closer look at the measure µ, then we see that it is concentrated on the state of

minimal energy, state n. After a very long time the Markov chain will be in this state with
a probability converging to one as β tends to infinity. The other states have a weight that is
exponentially smaller in β, of which the state 1 has the largest weight. This state is the local
minimum and will play the metastable part is this example.
As β → ∞, the 1d-RW closely resembles the 1d-RW at zero temperature, with absorbing

states 1 and n. Let X0 = (X0
t )t∈N denote this random walk, which has the following transition

probabilities:

P (0)(0, 1) = P (0)(1, 1) = P (0)(n, n) = 1,

P (0)(1, n− 1) = P (0)(1, 0) = P (0)(1, 2) = 0,

P (0)(i, i− 1) = P (0)(i, i) = 1/2, for i = 2, . . . , n− 2,

P (0)(n− 1, n− 2) = P (0)(n− 1, n) = 1/2,

where P (0)(x, y) stands for the transition probability from x to y at zero temperature. The state
n− 1 obviously represents a saddle point, and the states 1 and n are absorbing. When we run
X0, it has a drift towards 1 at any state x ∈ [1, n−1] and a drift to the right at state 0, towards
1 and at state n− 1 towards n. This can be used to give certain lower bounds for hitting times
needed later on.
The following theorem gives some insight on the behavior of the 1d-RW.

Theorem 5.1 (1) Uniformly in x ∈ Ω,

Px(τ{1,n} > eεβ) = SES, ∀ε > 0,

where SES means super exponentially small in β. Moreover, for any x < n− 1,

lim
β→∞

Px(τ1 < τn) = 1.

(2) If Γ = H(n− 1)−H(1) uniformly in x < n− 1,

lim
β→∞

Px(eβ(Γ−ε) < τn < eβ(Γ+ε)) = 1, ∀ε > 0.

(3) For any x < n− 1,

lim
β→∞

1

β
lnEx(τn) = Γ.

(4) Let τ{0,n−1} be the first exit time from the interval [1, n−2]. Then for any x in this interval,

Px(Xτ{0,n−1} = 0) ≤ eβ[H(0)−H(n−1)−ε], ∀ε > 0.
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(5) For any x < n− 1,
lim
β→∞

Px(τn > tEx(τn)) = e−t.

Proof: For the proofs of (1)-(5) we need the following abbreviation: δ := H(2)−H(1).
(1) Let {φt(x)}t∈N be a sequence given by

φt(x) = max{x− t, 1} if x = 2, . . . , n− 1,
φt(x) = x if x = 1, n,
φt(0) = min{t, 1}.

Note that this sequence follows a decreasing path, with respect to the energy, as in the
0-temperature walk. The transitions x→ x are taken out and the path moves from n− 1 to
n− 2 instead of also having probability 1/2 to move to n. Now, consider the set Dn, the set
of all decreasing paths (with respect to the energy) starting from any x ∈ Ω and following
the decreasing sequence {φt(x)}t∈N for n time steps and hence reaching the absorbing states
1 or n, i.e.,

Dn := {Xt = φt(X0) for t = 0, 1, . . . , n}.

Remark that
Px({X0, X1, . . . , Xn} ∈ Dn) ≥ 2−n,

since the transition probabilities P (i, i − 1), i = 2, . . . , n − 1, P (1, 1), P (0, 1) and P (n, n)
are all ≥ 1/2.
The probability that we need more then eεβ steps to reach either state 1 or n can be
bounded from above by the probability that in eεβ/n intervals of length n each interval is
not an element of Dn. So

Px(τ{1,n} > eεβ) ≤ (1− Px({X0, X1, . . . , Xn} ∈ Dn))
eεβ

n

≤ (1− 2−n)
eεβ

n ≤ exp

[
−2−n

eδβ

n

]
= SES.

For the second statement, consider a gambler who at each bet makes by one unit a bet
and increases his fortune by one unit with probability p and decreases his fortune with
probability q = 1− p. The gambler starts with a fortune k and he stops betting when he is
either broke or reaches a fixed fortune N . We can view this as a random walk S = (St)t∈N
on Z, with increments ±1. We have that P(St+1−St = 1|S0, . . . , St) = p and P(St+1−St =
−1|S0, . . . , St) = 1− p = q. We will use martingales to compute the following probability

Pk(τ0 < τn), k = 0, . . . , N,

i.e., is the probability that the gambler goes bankrupt before attaining a fortune of N units.
Let M = (Mt)t∈N, with Mt = (q/p)St . M is clearly adapted to the natural filtration {Ft}t∈N,
with Ft = σ(S0, . . . , St). Furthermore E(|Mt|) <∞ for all t ∈ N, and we have

E(Mt+1|S0, . . . , St) = E((q/p)St+1 |S0, . . . , St)

= E((q/p)St (q/p)St+1−St |S0, . . . , St)

= (q/p)St (p (q/p) + q (p/q))

= (q/p)St = Mt,

so that M is indeed a martingale. Now define τ = τ0 ∧ τN . Since E(Mτ ) < ∞, we can use
the optional stopping theorem, so that Mτ∧t is a martingale and E(Mτ ) = E(M0). We get

Ek(Mτ ) = Ek((q/p)Sτ ) = (q/p)k .
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On the other hand we have

Ek(Mτ ) = Pk(τ0 < τN ) + (1− Pk(τ0 < τN )) (q/p)N .

Combining these two results we find that

Pk(τ0 < τN ) =
(q/p)N − (q/p)k

(q/p)N − 1
. (5.1)

For our original problem we had the transition probabilities, for i ∈ 2, . . . , n− 2,

P (i, i− 1) =
1

2
, P (i, i) =

1

2
− 1

2
e−δβ and P (i, i+ 1) =

1

2
e−δβ.

Conditioning on the event {Xt+1−Xt = ±1} for all t ∈ N, we get the following probabilities:

Pk(Xt+1 = i+ 1|Xt = i) =
e−δβ

1 + e−δβ
= p

and

Pk(Xt+1 = i− 1|Xt = i) =
1

1 + e−δβ
= q.

Using this p and q for equation (5.1) we get

Pk(τ0 < τn) =
eδβN − eδβk

eδβN − 1
,

and so we have
lim
β→∞

Pk(τ0 < τN ) = 1 for k = 0, . . . , n− 1.

We can translate our original problem to the case of the gambler’s ruin by translating state
1 to a fortune of size 0 and translating state n− 1 to a fortune of state N . Then we have

lim
β→∞

Px(τ1 < τn−1) = 1 for x < n− 2,

and since we must reach state n− 1 before reaching state n it follows immediately that

lim
β→∞

Px(τ1 < τn) = 1 for x < n− 2.

(2) We will show that the probability that τn is larger than eβ(Γ+ε) is SES and that the prob-
ability that τn is smaller than eβ(Γ−ε) tends to 0 as β → ∞. To prove the first statement,
define the set

Rn := {Xt = max{X0 + t, n} for t = 0, 1, . . . , n},

i.e., the set of all paths of length n+ 1 that start from any point x ∈ Ω, move up each time
step, and when they reach state n stay in state n. If X moves along a path in Rn, then
the event {τn ≤ n} is realized. The probability that X moves along a path in Rn can be
bounded from below as follows:

Px({X0, X1, . . . , Xn} ∈ Rn) ≥
n−1∏
i=0

P (i, i+ 1) ≥
(

1

2

)n
eβΓP (0, 1)

≥ e−β(Γ+ε/2),
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where the last inequality holds if β is large enough. We now have

Px(τn > eβ(Γ+ε)) ≤ (1− Px({X0, X1, . . . , Xn} ∈ Rn))e
β(Γ+ε)/2n

≤
(

1− e−β(Γ+ε/2)
)eβ(Γ+ε)/2n

≤ e(e−β(Γ+ε/2)eβ(Γ+ε))/2n

= ee
−βε/2/2n = SES. (5.2)

To prove the other bound, remark that

Px(τn < eβ(Γ−ε)) ≤ Px(τ1 < τn < eβ(Γ−ε)) + Px(τ1 > τn), (5.3)

and that
Px(τ1 < τn < eβ(Γ−ε)) ≤ P1(τn < eβ(Γ−ε))

We have the following inequality

P1(τn < eβ(Γ−ε)) ≤ P1(τn−1 < eβ(Γ−ε)) =
eβ(Γ−ε)∑
t=1

∑
ω = (ω0 = 1, . . . , ωt = n− 1)
ωi 6= n− 1, i = 1, . . . , t− 1

P (ω).

Since the chain is time reversible, we have

P (ω) := P (ω0, ω1)P (ω1, ω2) · · ·P (ωt−1, ωt)

=
µ(n− 1)

µ(1)
P (ωt, ωt−1) · · ·P (ω2, ω1)P (ω1, ω0) =:

µ(n− 1)

µ(1)
P (←−ω ),

which yields

P1(eβ(Γ−ε)) ≤ µ(n− 1)

µ(1)

eβ(Γ−ε)∑
t=1

∑
ω = (ω0 = 1, . . . , ωt = n− 1)
ωi 6= n− 1, i = 1, . . . , t− 1

P (←−ω ).

The summation leaves out the paths that start from state n − 1 and arrive at state 1 at
time t but do not visit the states n− 1 or n in between, and so the sum is smaller than 1.
This gives us

P1(eβ(Γ−ε)) <
µ(n− 1)

µ(1)
eβ(Γ−ε) = eβ(Γ−ε)e−β(H(n−1)+H(1)) = e−βε. (5.4)

Now using part (1) and equation (5.4), we see that both parts in the right hand side of
equation (5.3) tend to 0 as β → ∞. This together with inequality (5.2) gives the desired
result

Px(eβ(Γ−ε) < τn < eβ(Γ+ε)) = 1.

(3) For a discrete time Markov chain there are two ways to bound the expectation time of the
hitting time τn. On one hand we have

Ex(τn) =

∞∑
t=1

tPx(τn = t) >

eβ(Γ+ε)∑
t=eβ(Γ−ε)

tPx(τn = t)

> eβ(Γ−ε)Px(eβ(Γ−ε) < τn < eβ(Γ+ε)),

and, on the other hand, we have

Ex(τn) =

∞∑
t=1

Px(τn > t) < eβ(Γ+ε) +
∑

t>eβ(Γ+ε)

Px(τn > t).
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Letting β →∞, we see that part (2) of this theorem yields

eβ(Γ−ε) < Ex(τn) < eβ(Γ+ε).

Since ε > 0 is arbitrary, therefor

lim
β→∞

1

β
lnEx(τn) = Γ.

(4) Straightforward computation shows

Px(τ{0,n−1} = 0) =
∞∑
t=1

Px({Xt = 0} ∩ {τ{0,n−1} = t})

≤
∞∑
t′=0

Px({Xt′ = 1} ∩ {τ{0,n−1} > t′})P (1, 0)

≤ e−β(H(0)−H(1))Ex(τ{0,n−1})

≤ e−β(H(0)−H(1))Ex(τn−1)

≤ e−β(H(0)−H(1))Ex(τn)

≤ e−β(H(0)−H(1))eβ(H(n−1)−H(1)+ε)

= e−β(H(n)−H(n−1)−ε),

where the last equation follows from part (3).
(5) Let N be the number of failed attempts by the random walk to move from 1 to n, i.e., all

attempts starting from state 1 and returning to state 1 before reaching state n. Call p the
escape probability. Then N ' Geo(p). Now remark that τn conditioned on the event that
{τ1 < τn} can be written as

τn = τ1 +
N∑
i=1

τ
(i)
1 + τ ′n,

where τ1, τ
(i)
1 and τ ′n are defined as

τ1 := inf{t ≥ 0 : Xt = 1|X0 = x},

τ
(i)
1 := inf{t > 0 : Xt = 1 and Xs 6= n for s ≤ t|X0 = 1},
τ ′n := inf{t ≥ 0 : Xt = n and Xs 6= 1 for s ≤ t|X0 = 1}

The τ
(i)
1 are clearly i.i.d. hitting times and represent all failed attempts to leave the

metastable state. Easy computation shows that, as β tends to ∞, we have

lim
β→∞

Ex(τ1) =
3

2
|x− 1|, lim

β→∞
E1(τ ′n) =

1

2
(3n− 4) , lim

β→∞
E1(τ

(i)
1 ) = 1.

Since all times are independently distributed, this yields via part (3) and the “Law of Large
Numbers” that

τn
LLN∼ N and E(N) = Ex(τn) = eβΓ.

Let p := E(τn)−1. Since p� 1, we have

P1(N = k) = p(1− p)k ∼ pe−kp, k = 0, 1, . . . ,

and hence N ∼ Exp(p). Now, we get

lim
β→∞

Px(τn > tEx(τn)) = lim
β→∞

Px(N > t/p) = e−p·t/p = e−t, t > 0.

�
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Theorem 5.1 gives the following characterization of metastability:
• If the dynamics Xt is in the vicinity of the local minimum, i.e., situated inside the well

surrounding state 1, then it will move according to the drift towards the local minimum.
• After a time, that is exponentially large in β and dependent on the energy needed to reach

the saddle point, Γ, a fluctuation occurs against the drift, after which the dynamics will
move towards the global minimum.
• If we look at the dynamics at time steps of length E(τn), i.e., the expected time in which

a motion against the drift occurs, then the probability that the dynamics is in the global
minimum is exponentially distributed with mean 1.
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6 A Ferromagnet and Glauber Dynamics

Consider a Ferromagnet under an adjustable external magnetic field at low temperature T . Like
most systems, it seeks a configuration that has a low energy level. We can imagine such a magnet
as a system of spins, either pointing up or down, which prefers to be parallel to the external
magnetic field. These spins behave as tiny magnets themselves, so they have the tendency to
align and when they do their spin interaction energy is negative, while when they do not align
their interaction energy is positive. Each individual spin has a negative energy if it aligns with
the external magnetic field and positive energy when it does not.
Starting with a strong negative external magnetic field the system will have minimal energy

when all spins are pointing down, so if the system is stable most spins will point this way. If
we change the external magnetic field rapidly to weakly positive en preserve this new field the
system would have minimal energy when all spins prefer to be pointing up. But due to the
sudden change and the interaction energy between the parallel spins the system will stay in the
old phase, which we now call a metastable state.
Every now and then, due to a random fluctuation, a spin flips, loosing energy because it

aligns with the external magnetic field, but gaining energy because it no longer aligns with its
neighbors. If the net result is positive, then the spin will have the tendency to flip back. After
a random fluctuation a group of spins will flip up, loosing energy because this group of spins
now align with the magnetic field, but gaining energy because the spins on the boundary of the
group are not parallel to the spins outside the group. However, the net energy per spin is lower
then when a single spin was flipped. If the net energy per spin that can be added by flipping
a spin on the outside of the boundary of this group is increasing, then the spins will still have
the tendency to flip back and we say that the group has a subcritical size. Eventually a group
of spins will flip up so that the net energy per spin is decreasing when more spins are flipped up
at the boundary. We say that such a group of spins has a supercritical size. The spins around
the boundary of this group will now have the tendency to flip up, until a majority of the spins
will point up and the system will finally be positively magnetized.
The same phenomenon occurs if we change the magnetization of the external field from positive

to weakly negative and the system started with minimal energy, i.e., a configuration where most
spins where pointing up.

We can model this system as follows. Let Λ ⊂ Z2 be a large finite box, with periodic boundary
conditions. With each site x ∈ Λ we associate an Ising-spin variable σ(x) ∈ {−1, 1}, indicating
whether the spin at x is up or down corresponding, respectively, to σ(x) = 1 and σ(x) = −1. A
spin configuration σ = {σ(x) : x ∈ Λ} is an element of the configuration space X := {−1, 1}Λ.
With each configuration σ ∈ X we associate an energy, as described above, by the following
Hamiltonian

H(σ) := −J
2

∑
(x,y)∈Λ∗

σ(x)σ(y)− h

2

∑
x∈Λ

σ(x), (6.1)

where Λ∗ denotes the set of neighboring spins, J > 0 is the ferromagnetic pair potential acting
between neighboring pair of spins and h > 0 is the magnetic field acting on the spins.
Let β denote the inverse temperature, i.e. β = T−1. Via the Metropolis algorithm we get a

stochastic dynamics on X given by

σ −→ σ′ at rate e−β[H(σ′)−H(σ)]+ ,

for all σ′ obtained from σ by flipping exactly one spin. This stochastic dynamics is called the
Glauber dynamics on a torus at inverse temperature β > 0. The Gibbs measure associated with
H is

µβ(σ) =
e−βH(σ)

Z
,
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where Z =
∑

σ∈X e
−βH(σ). The Gibbs measure µβ is the reversible equilibrium of the Glauber

Dynamics. We are interested in the metastable regime

h ∈ (0, 2J), β →∞.

Two important configuration in this dynamics are: (1) the configuration where all spins are
pointing down, i.e., equal to minus one, called the metastable state; (2) the configuration where
all spins are pointing up, i.e., equal to plus one, called the equilibrium state. Let us denote these
to configurations as

� := {σ(x) = −1, for all x ∈ Λ}
� := {σ(x) = 1, for all x ∈ Λ}

Since the Glauber dynamics is aperiodic and reversible, it will eventually converge to the Gibbs
measure µβ. As in the 1dRW, it will concentrate around the configuration with minimal energy,
i.e., configuration �. After a very long time the Markov chain will be in this configuration
with probability 1 as β tends to infinity. The other configurations again have a weight that
is exponentially smaller in β, of which configuration � has the largest weight. This configura-
tion is a local minimum and will play the role of metastable state in the case of the Ferromagnet.

Starting from �, after a exponentially large time a random fluctuation makes a group of spins
flip up. If the group is large enough, then the energy per spin added is decreasing and the
dynamics will move to the global minimum, �. Since the Ferromagnet lives on a finite but large
box Λ ⊂ Z2, the most convenient way of keeping the boundary of such a group small is a square.
So we will look at configurations σl×l ∈ X , where σl×l is the configuration that contains an l× l
square of spins pointing up, i.e., a square of ones, and all other spins pointing down, i.e., are
minus ones. The energy of such a configuration, called E, in comparison to the metastable state
� is given by

E(σl×l) := H(�)−H(σl×l) = 4Jl − hl2. (6.2)

Simple calculation shows that the maximum energy of an l × l square of spins pointing up in a
sea of spins pointing down is reached at l = 2J/h. To avoid duplicity, assume that J/2h is not
an integer, and take lc := dJ/2he. As illustrated in figure 2, if l < lc, then from a configuration
σl×l the system will return to the metastable configuration � again; such a configuration we
call subcritical If l > lc, then from a configuration σl×l the system will move to the equilibrium
configuration �; such a configuration we call supercritical. In both cases this happens because
the systems seeks a configuration of minimal energy.

Let Pσ be the law of the Glauber dynamics (σt)t∈N on X starting from σ0 = σ. Before we can
state the theorems equivalent to Theorem 5.1 we need a few extra definitions. Let

Γ := min
ω:�→�

max
σ∈ω

[H(σ)−H(�)]

be the communication height between � and �, where the minimum runs over all admissible
paths ω connecting � and �, i.e., paths allowed by the Glauber dynamics, and the maximum
runs over all configurations σ encountered along ω. Let

S := {ζ ∈ X : ∃ω : �→ �, ζ ∈ ω : max
σ∈ω

E(σ) = E(ζ) = Γ}

be the communication level set between � and �, containing all configurations from all admis-
sible paths between � and � that have an energy level equal to the communication height and
equal to the maximum energy level of the path.
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Figure 2: Plot of E(σl×l).

Theorem 6.1 .

(i) limβ→∞ P�(eβ(Γ−δ) < τ� < eβ(Γ+δ) | τ� < τ�) = 1 for all δ > 0.

(ii) limβ→∞ P�(τS < τ� | τ� < τ�) = 1.

Theorem 6.1.(i) shows that the required time to reach the equilibrium � when starting the
dynamics from � takes an exponential time with Γ = H(S) in the exponent of the transition
time. Theorem 6.1.(ii) tells us that the communication level set S is a gate, i.e., all transitions
from � to � must pass through S. The bounds are sharp as β →∞.
To compute Γ and to refine the geometry of the relevant configurations in S, define:

Definition 6.2 .

(i) Let C = C̄ ∪ C̃, with

• C̄ is the set of all configurations containing a single lc × (lc − 1) square of spins
pointing up, with a protuberance at a side of length lc also pointing up, in a sea of
spins pointing down.
• C̃ is the set of all configurations containing a single lc × (lc − 1) square of spins

pointing up, with a protuberance at a side of length lc − 1 also pointing up, in a sea
of spins pointing down.

(ii) Let Γ∗ = E(C) = 4J − h(lc(lc − l) + 1).

Theorem 6.3 .

(i) C ⊆ S.

(ii) Γ = Γ∗.

(iii) limβ→∞ P�(τC̄ < τ� | τ� < τ�) = 1.

Theorem 6.3.(i) shows us that C is a proper subset of S. Theorem 6.3.(ii) gives us a represen-
tation of Γ in terms of the parameters of the dynamics. By Theorem 6.3.(iii) we know that the
true gate is made up from the configurations contained in C̄, whereas the configurations in C̃
are dead-ends. The configurations in C̄ form the critical droplets, because:
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• Adding a bar of length l to a droplet costs 2J − h energy; adding a protuberance costs 2J
energy since this creates two extra pairs of anti-parallel spins and gains h energy because an
extra spin aligns with the field. The rest of the bar is added “downhill”, i.e., extra spins do
not create more anti-parallel pairs of spins, they only lower the energy cost of the droplet
by h for each spin flipped up.
• Removing a bar of length l from the droplet costs (l − 1)h energy; removing l − 1 spins

costs h energy per spin, but gains no energy since no anti-parallel pairs are removed from
the droplet. Removing the protuberance is “downhill” since we gain 2J energy for removing
two anti-parallel pairs of spins and only lose h energy by flipping the protuberance down,
since h < 2J .
• The two costs match when l = 2J/h. The configurations in C̄ are obtained by first creating

a 1 × 1 square, then successively adding bars of length 1, 2, . . . , lc − 1 following a sequence
of growing squares,

1× 1, 1× 2, 2× 2, 2× 3, . . . , (lc − 1)× (lc − 1), (lc − 1)× lc,

and finally adding a protuberance, thereby reaching the “top of the hill”. The rest of the
process is “downhill”.

We now state two theorems, giving further refinements.

Theorem 6.4 .

(i) C ( S

(ii) limβ→∞ P�(στC̄ = σ|τC̄ < τ�) = 1
|C̄| for all σ ∈ C̄.

Theorem 6.4.(i) shows that S contains more configurations than C. An example of such a
configuration is obtained by picking any configuration in C, flipping up a spin next to the
protuberance and the quasi-square and flipping down one of the corners of the quasi-square.
Clearly, Theorem 6.4.(ii) shows that the entrance distribution of C̄ is uniform. This fact follows
from symmetry arguments.

Theorem 6.5 .

(i) limβ→∞ E�(τ�) = KeβΓ∗ (1 +O(1)) with K = 3
4(2lc−1)

1
|Λ| .

(ii) limβ→∞ P�(τ� > tE�(τ�)) = (1 +O(1)) e−t(1+O(1)) for t ≥ 0.

Theorem 6.5.(i) gives a sharp asymptotics for the average magnetization time. The expectation
is made up of two components. Namely, the average time it takes to reach a configuration of C̄;

1

|C̄|
eβΓ∗ (1 +O(1)) as β →∞,

while 1 over the probability to leave such a configuration into the direction of � rather than �,
is given by

π(lc)
−1 =

3lc
2lc − 1

as β →∞.

Theorem 6.5.(ii) shows that the transition time is exponentially distributed, with each unsuc-
cessful attempt to create a critical droplet ending with a return to the configuration � where
the system starts from scratch. This is typical for “success after many unsuccessful attempts”.

Theorems 6.1-6.5 are equivalent to Theorem 5.1. In this section we have only given a sketch of
the heuristics behind the proofs, whereas in the previous section we gave the complete proof. It
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is way beyond the scope of this master thesis to dive into the technical details of these proofs. In
three dimensions or higher, the proofs become even more complex. A path from the metastable
phase to the stable phase is realized by the creation of a critical droplet after some random
fluctuations. the construction of this critical droplet with the help of isoperimetric inequalities
is a delicate matter.
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7 A Supersaturated Gas and Kawasaki Dynamics

We consider a container with gas. When the density of the gas is high, say supersaturated, it has
the tendency to condense and form droplets, e.g. rain consists of condensed water molecules. For
this particular example of metastability, we examen a closed system containing gas molecules.
We rapidly change the density of the molecules from a low density, such that molecules will have
the tendency to move apart, to a slightly supersaturated density, such that the molecules will
prefer to clump together.
As in the previous two examples (the Ferromagnet and the random walk on the double well),

the system prefers to be in a state of minimal energy. Each molecule in the system adds some
energy, whereas molecules that clump together lose some energy, due to van der Waals forces,
here called interaction energy.
Under the influence of the Kawasaki dynamics the molecules will gradually clump together,

but at low temperature this can take a very long time as we explain next. At some moment
two molecules will meet and clump together, losing some energy, but not enough for another
molecule to attach itself before the two molecule break up again. After another random fluctua-
tion three molecules will clump together, having a slightly lesser energy level than in the case of
two molecules, but once again before a next molecule can join they will break up. At a certain
moment a large random fluctuation takes place and a large group of molecules clump together
such that the total interaction energy is lower than the energy needed to put each molecule into
the system. Now the group molecules is large enough to stick together so that a next molecule
has the to attach itself to this droplet. Such a group of molecules we call a supercritical droplet,
while a group of molecules that does not have the tendency to grow we call a subcritical droplet.
Molecules will keep attaching themselves to the supercritical droplet, so that the gas will con-
densate.

We can model this process as follows. Let Λ ⊂ Z2 be a large finite box. With each site x ∈ Λ we
associate an occupation bit, η(x) ∈ {0, 1}, indicating whether a molecule is located at site x or
not, represented, respectively, by η(x) = 1 and η(x) = 0. A gas configuration η = {η(x) : x ∈ Λ}
is an element of the configuration space X = {0, 1}Λ.
With each configuration η ∈ X we associate an energy level as described by the following

Hamiltonian
H(η) := −U

∑
(x,y)∈Λ−∗

η(x)η(y) + ∆
∑
x∈Λ

η(x),

where Λ− is the set of all sites of Λ minus the boundary of Λ, denoted by ∂Λ, i.e., Λ− := Λ \ ∂Λ
and Λ−∗ is the set of all neighboring pairs in Λ−. U denotes the binding energy between to
neighboring molecules and ∆ denotes the activation energy of single molecules.
Again, let β denote the inverse temperature, i.e., β = T−1. Via the Metropolis algorithm we

get a stochastic dynamics on X , given by

η −→ η′ at rate e−β[H(η′)−H(η)]+ ,

for all η′ can be reached from η by either of the following two transitions:
1) A molecule is swapped between two neighboring sites, i.e., there exists a unique element

(x, y) ∈ Λ∗ such that η(x) 6= η(y), η′(x) = η(y) and η′(y) = η(x).
2) A molecule is created or removed at the boundary, i.e., there exists an unique element x ∈ ∂Λ

such that η′(x) 6= η(x).
This corresponds to “motion” of molecules in Λ, respectively, the “creation” or “annihilation”
of molecules at the boundary ∂Λ. We can imagine Λ to be a box in some greater gas reservoir,
so that the creation and annihilation of particles at the boundary corresponds, respectively, to
the hopping of particles in and out of the box. This is called the Kawasaki dynamics at inverse
temperature β > 0.
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Figure 3: Plot of E(σl×l).

The Gibbs measure associated with H is

µβ(η) :=
e−βH(η)

Zβ
∀η ∈ X ,

with Zβ =
∑

η∈X e
−βH(η), which is the reversible equilibrium of the Kawasaki dynamic with

density rate ρ = e−∆β, i.e., the rate at which particles are created at the boundary ∂Λ. We are
interested in the metastable regime

U > 0, ∆ ∈ (U, 2U), β →∞.

As in the case of the Ferromagnet, we see that an energy efficient group has a form in which
with as few particles as possible we have as many neighboring pairs as possible. Again, such a
configuration is achieved when the particles form a square. With each square of size l× l of ones
we associate the energy level

E(ηl×l) := H(ηl×l) = −U(2l(l − 1)) + ∆l2.

Easy computation shows that a square of size l = U/(2U −∆) has the highest energy level. For
duplicity reasons assume that U/(2U −∆) is not an integer and take lc = dU/(2U −∆)e. This
also explains why the parameters are chosen, such that ∆ ∈ (U, 2U). As illustrated in figure 3,
if a square has sides larger than lc, then its energy is decreasing as it becomes larger and so it
has a supercritical size, while a square has sides smaller than lc, then its energy is increasing as
it becomes larger and has a subcritical size.

Let Pη be the law of the Kawasaki dynamics (ηt)t≥0 on X starting from η0 = η. Before we can
state the theorems equivalent to Theorems 5.1 and 6.1-6.5, we need the following definitions.
Let

Γ := min
ω:�→�

max
η∈ω

[H(η)]

be the communication height between � and �, where the minimum runs over all admissible
paths ω connecting � and �, i.e., paths allowed by the Kawasaki dynamics, and the maximum
runs over all configurations η encountered along ω. Let

S := {ζ ∈ X : ∃ω : �→ �, ζ ∈ ω : max
η∈ω

H(η) = H(ζ) = Γ}

be the communication level set between � and �, containing all configurations from all admis-
sible paths between � and � that have a energy equal to the communication height and to the
maximum energy level of its path.
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Theorem 7.1 .

(i) limβ→∞ P�(eβ(Γ−δ) < τ� < eβ(Γ+δ)) = 1, ∀δ > 0.

(ii) limβ→∞ P�(τS < τ� | τ� < τ�) = 1.

Theorem 7.1.(i) shows that the required time to reach the equilibrium � is exponential with
Γ in the exponent of the transition time. Theorem 7.1.(ii) shows that the communication level
set S is a gate, i.e., all transitions from � to � must pass through at least one configuration in
S. The bounds are sharp as β →∞.
As in the previous section, we can refine these statements by specifying what the configurations

that act as gates look like and by computing Γ.

Definition 7.2 .

(i) Let Q = Q̄ ∪ Q̃, with

• Q̄ is the set of all configurations containing a single lc × (lc − 1) square of particles,
with a protuberance at a side of length lc in an otherwise empty Λ.
• Q̃ is the set of all configurations containing a single lc × (lc − 1) square of particles,

with a protuberance at a side of length lc − 1 in an otherwise empty Λ.

(ii) Let D ⊃ Q be the set of configurations that can be reached from Q via a U -path, where a
U -path is defined as ω : η → η′, with η ∈ Q and η′ ∈ D such that

|ζ| = |η| = |η′| for all ζ ∈ ω,
H(η) = H(η′),

max
ζ∈ω

H(ζ) ≤ H(η) + U,

i.e., all configurations contain the same number of particles, the starting configuration and
the end configuration in a U -path have the same energy level, and this path corresponds to
the movement of a particle around the border of the droplet.

(iii) Let C := D + {a free particle in Λ}.

(iv) Let

Γ∗ = E(C) = H(D) + ∆ = H(Q) + ∆

= U [(lc − 1)2 + lc(lc − 2) + 1] + ∆[lc(lc − 1) + 2] = 2U [l2c − 2lc + 1] + ∆[l2c − lc + 2].

Theorem 7.3 .

(i) C ⊆ S.

(ii) Γ = Γ∗.

(iii) limβ→∞ P�(τC̄ < τ� | τ� < τ�) = 1.

Theorem 7.3.(i) shows that C is a subset of S. Theorem 7.3.(ii) gives us a representation of Γ
in terms of the parameters of the dynamics. By Theorem 7.3.(iii) we know that the true gate
consists of those configurations that are in C. In fact, the set C forms the minimal gate for
the transition. Thus, C plays the role of the set of critical droplets, where Γ∗ is the energy
associated with such a droplet. These configurations are critical because:
• Adding a bar of length l to a droplet costs 2∆− U energy; a new particle is created at cost

∆, after which it moves towards the droplet at cost 0 and attaches itself at gain U . A new
particle must be created at the boundary at cost ∆. Since traveling towards the droplet
is free and attaching itself next to the protuberance now gains 2U energy, the rest of the
process is “downhill”, since 2U > ∆.
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• Removing a bar of length l from the droplet costs (l − 2)(2U −∆) + 2U energy; removing
l − 2 particles costs 2U −∆ energy per particle, since for each particle that detaches itself
the configuration loses 2U energy, after which it moves at cost 0 to the boundary and is
removed at gain ∆. The (l − 1)-th particle only needs to detach itself at cost 2U , the rest
of the process is again “downhill”, since 2∆ > U .
• The two costs match when l = U/(2U −∆). The configurations in C̄ are obtained by first

creating a 1 × 1 square, then successively adding bars of length 1, 2, . . . , lc − 1 following a
sequence of growing squares,

1× 1, 1× 2, 2× 2, 2× 3, . . . , (lc − 1)× (lc − 1), (lc − 1)× lc,

and finally adding a protuberance, thereby reaching the “top of the hill”.
• The configurations in D are those configurations the dynamics can reach from Q before

the arrival of a new particle in the system. A U -path is completed in a time of order eUβ ,
whereas the creation of a new particle takes a time of order e∆β, and eUβ � e∆β. The
arrival of the new particle moves the dynamics into C and completes the formation of the
critical droplet.

Theorem 7.4 D = D̄ ∪ D̃ with
• D̄ the set of configurations where the particles form a (lc − 2) × (lc − 2) square with four

bars attached to the four sides of length k̄i satisfying

1 ≤ k̄i ≤ lc − 1,
4∑
i=1

k̄i = 3lc − 3.

• D̃ the set of configurations where the particles form a (lc − 3) × (lc − 1) square with four
bars attached to the four sides of length k̃i satisfying

1 ≤ k̃i ≤ lc − 1,
4∑
i=1

k̃i = 3lc − 2.

Remark that Q̄ ⊂ D̄, Q̃ ⊂ D̃, and that the configurations in D are precisely those configurations
that are reachable via an U -path from any configuration in Q, i.e., a particle at cost U slides
around at the boundary of the droplet towards the protuberance, where it reattaches itself at
gain U .

Theorem 7.5 .

(i) C ( S.

(ii) limβ→∞ P�(τQ < τC < τ� | τ� < τ�) = 1.

(iii) limβ→∞ P�(ητC− = η|τC < τ�) = 1
|D| for all η ∈ D,

where τC− is the time prior to τC .

Theorem 7.5.(i) shows that S contains more configurations than C. An example of such a
configuration is obtained by picking any configuration in Q, adding an extra particle at the
boundary of the box, so that the energy of the system is equal to H(C), and moving it next to
the protuberance but without attaching it. Then let the protuberance detaches itself from the
droplet and simultaneously attach itself to the free particle. Since the energy of the system does
not change, this configuration is an element of S. Theorem 7.5.(ii) shows that the dynamics
must pass a configuration in Q, and possibly through C\Q, before reaching C. Clearly, Theorem
7.5.(iii) shows that the entrance distribution of C̄ is uniform, i.e., all configurations of D are
equally likely before the extra particle is created.
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Theorem 7.6 .

(i) There exists a K > 0 such that

lim
β→∞

E�(τ�) = KeβΓ∗ (1 +O(1)) .

(ii) limβ→∞ P�(τ� > tE�(τ�)) = (1 +O(1)) e−t(1+O(1)) for t ≥ 0.

Theorem 7.6.(i) gives a sharp asymptotics for the average magnetization time. As in the case
of the Ferromagnet, K is a constant derived from the probability that once the top of the hill is
reached the dynamics exits towards the equilibrium and, from the geometry of the configurations
in C. For the Kawasaki dynamics, K is a lot harder to determine than for the Glauber dynamics
and hence we do not state further details. 4

Theorem 7.6.(ii) shows that the transition time is exponentially distributed with each unsuc-
cessful attempt to create a critical droplet ending with a return to the configuration �, from
which the system starts anew.

Theorems 7.1-7.6 are equivalent to Theorem 5.1 and Theorems 6.1-6.5. Again, we only gave
a sketch of the proofs and the whole proofs are even more difficult than in the case of the
Glauber dynamics, due to the difficulties that arise when describing the transition gates. In
three dimensions a detailed description of the set D is not yet available. Again, isoperimetric
problems play a key role in the metastable behavior of the system.

4For a detailed description of K see [3].
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Part III

Conclusion

49





In this master thesis we have studied two possible types of convergence that can occur in
with Markov chains, both being asymptotic in the limit as a certain parameter diverges. In
Markov chains that show cutoff behavior, this parameter is given by the dimension, n, of the
configuration or sample space. In Markov chains that show metastable behavior, this parameter
is given by the inverse of the temperature, β.
Though both phenomena are asymptotic, they are very different in nature. This is best ex-

plained by looking at the random variable that corresponds to the time it takes the Markov
chains come close to equilibrium. Let U (n) be family of random variables, that characterizes the
mixing times for a family of Markov chains that shows cutoff. Then

lim
n→∞

U (n)

E(U (n))
= 1 in probability.

This is equivalent to the statement that limn→∞ P(U (n) > cE(U (n))) = 1 for c < 1 and = 0
for c > 1, which corresponds to definition of cutoff, i.e., Definition 2.3. Let V (β) be a family of
random variables that characterizes the times needed to leave the metastable state and reach
the stable state for a family of Markov chains that show metastability. Then

lim
n→∞

V (β)

E(V (β))
= exp(1) in distribution.

This is equivalent to the statement that limβ→∞ P(V (β) > tE(V (β))) = e−t for t ≥ 0 as explained
in Theorem 5.1, 6.5 and 7.6. Thus we see that cutoff is a deterministic asymptotics, whereas
metastability is a random asymptotics. This dichotomy corresponds exactly to what we would
expect from cutoff and metastability.

One of the targets of this master thesis was to explain what characterizes cutoff and metasta-
bility. For a family of Markov processes that show cutoff we have the following two characteri-
zations:
1. The eigenvalues corresponding to the transition kernels of the Markov chains are ordered

1 = λ1 ≥ λ2 ≥ · · · ≥ λk > −1 and the second eigenvalue has a high multiplicity.
2. There exists a strong stationary time tmix, with the help of which we can bound the total

variation distance to equilibrium from above. Near tmix, the total variation drop from being
close to one to being close to zero and the width of this drop is of a lower order than tmix.

Both characteristics only give us an upper bound for the total variation distance. A lower bound
of the same order can often be found by choosing some subset of the configuration space and
showing that the bound holds at this subset.
From our examples it is clear that the state space does not have any influence on whether or

not a family of Markov chains shows cutoff behavior. On the other hand, if a family of Markov
processes shows metastable behavior, then we expect that the energy landscape, defined by the
Hamiltonian H on the configuration space, is made up of hills and valleys, which represents a
group of configuration that have a high energy, respectively, a low energy level. The process
is stable as soon as it reaches the global minimum, which lies in the deepest valley. The time
needed to leave the local minima, lying in higher valleys, is exponentially distributed according
to the parameters of H.

Though cutoff was studied by P. Diaconis as early as the 1980’s, the subject has not reached
widespread attention. On reason may be that cutoff studies need a lot of algebra or combina-
torics, as we have seen in the example of the GSR-shuffle. Later work off Peres gives a conjecture
saying that a necessary and sufficient condition for cutoff is that the product of the mixing time
and the spectral gap tends to infinity. In a paper of J. Barrera, O. Bertoncini, and R. Fernández
[1], cutoff and metastability are linked because of this conjecture. They argue that both phe-
nomena are naturally intertwined. Reaching a stable state from a metastable state happens after
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some random fluctuation. When this happens, the transition is almost instantaneous, because
the Markov chain is over the “top of the hill” and runs down to the bottom of the valley. The
latter corresponds precisely to cutoff. An explanation is provided via an example especially
constructed for this purpose, namely a certain death-birth process on a finite interval.
In this master thesis we have discussed both cutoff and metastability at the hand of some

concrete examples. These examples give insight in to what drives both phenomena.
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