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Abstract

When adding coprime numbers A and B, one could ask how big A, B, and A+B could be com-
pared with the product of the prime numbers dividing these numbers. One can expect that this
prime product has about three times as many digits as A + B, but with smart choices of A and
B this prime product can be smaller than A+B.

However, the so-called ABC-conjecture says that it cannot be much smaller. Several mathe-
maticians have tried to develop algorithms creating infinitely many triples An, Bn, and An +Bn
such that An + Bn is large compared to the product of the primes dividing one of the numbers
An, Bn, and An + Bn. And I add a new algorithm to this list of algorithms and use the tool of
elliptic curves , the zero set of a polynomial equation together with a group law , to create my
triples.
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Chapter 1

Introduction to the ABC-conjecture

The inspiration of my thesis goes back to Diophantus, who proved the following:

Theorem 1.1. (Diophantus) Let a and b be positive rational numbers such that a > b. Then
there exist positive rational numbers x and y such that

a3− b3 =x3 + y3

For example, if one starts with 7= 23− 13, after some research one finds

(

4

3

)3

+

(

5

3

)3

=
64+ 125

27
=7

The proof of this theorem is very easy after the introduction of the group law on elliptic curves,
and will be shown in 3.6. But in the introduction I only tell why this result is interesting for me.
For this thesis I was doing some research about the ABC-conjecture:

One can start with three positive integers A, B, and C such that A+B =C. If A, B, and C
have common divisors, we can divide these numbers by their greatest common divisor and get
another integer triple A′, B ′ and C ′ such that A′, B ′ and C ′ are coprime and A′ + B ′ = C ′. So
we look only at triples A, B, and C such that A, B, and C are coprime.

We define the radical r(n) of a number n as the product of all distinct prime numbers
dividing n. This makes r(n) being the largest squarefree (not divisible by any square except 1)
divisor of n. The ABC-conjecture compares r(ABC ), which is equal to r(A) · r(B) · r(C) since
A, B, and C are coprime, with C as follows:

limsup
A,B,C>0,C→∞,A+B=C, gcd(A,B,C)=1

logC

log r(ABC )
= 1

In other words, if I make an infinite sequence of coprime positive integer triples An, Bn, and Cn

such that An + Bn = Cn and Cn→ ∞ as n→ ∞, then the largest limit point of
log Cn

log r (AnBnCn)
is

equal to 1. Note that the smallest limit point is at least
1

3
, since r(ABC ) 6 ABC < C3 for any

triple (A, B, C) of coprime positive integers satisfying A+B =C. Note also that it is important
to require that A, B, and C are coprime. Else one can pick a prime number p dividing ABC
and consider the sequence of triples (An, Bn, Cn) = (pnA, pnB, pnC) where the radical is con-
stant for each n> 0, but logCn→∞ as n→∞.

Definition 1.2. Let (A, B, C) be a triple of positive integers such that A + B = C and with
gcd(A,B,C)= 1.

1. The quality of the triple is defined as q(A,B,C)=
log C

log r(ABC )

2. The triple is called an ABC-triple if q(A,B,C)> 1

Note that the only case of equality is (1, 1, 2), since in other triples, at least one of the numbers
A and B is divisible by a prime number not dividing C.

It is easy to construct infinitely many ABC-triples. For example, take

(An, Bn, Cn)= (1, 9n− 1, 9n)
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for any integer n> 1. Then Bn is divisible by 9− 1 =8, so

r(AnBnCn) 6 1 · 9n− 1

4
· 3< 3

4
·Cn,

q(An, Bn, Cn) >
logCn

logCn+ log
3

4

= 1+
log 4− log 3

logCn
,

where
log 4− log 3

log Cn
→ 0 as n → ∞. So one could ask whether such a function

log 4− log 3

log x
can be

improved to a larger function f(x) such that there are infinitely many ABC-triples (An, Bn, Cn)
with

∀n> 1: q(An, Bn, Cn)> 1 + f(Cn)

The answer of this question is yes, and there are some such sequences of these triples known. In
the following section I give some methods making better functions, but in general these methods
gives full control over two out of the three numbers, and only little control over the third one
like it is very small for example. In the rest of this thesis, I state my own method, which works
differently: It takes equal control of all three numbers, in the sense that two of them are cubes,
and the third one is the product of a small given number and a cube, and is relatively small.
This method uses Elliptic Curves , algebraic curves over Q with a group law , which will be intro-
duced in the third section.

Here the theorem from Diophantus comes in. If I begin with an integer d which is the differ-
ence between two rational cubes, so d = a3 − b3, then by Diophantus, there are positive rational
numbers x and y such that x3 + y3 = d. Such a solution (x, y) can be seen as a point in the
Elliptic Curve E: x3 + y3 = d. It turns out that if Ed has one non-trivial point (a point (x, y)
such that x · y · (x − y) � 0, for example the starting numbers (a,− b)), then by using the group
law on E one can find many rational points {(pi

ri
,
qi

ri
)}i∈I on E. Note that I use that d is an

integer , so the denominators in both coordinates of each point must be equal. Each such point

(
pi

ri
,
qi

ri
) gives rise to a candidate ABC-triple (|pi3|, |qi3|, dr i3) whose radical is at most dpiqiri. Here

I need to take absolute values since one of the coordinates of the point can be negative. If that
happens, the number dr i

3 is not the largest number among them, but then one of the numbers

|pi3| and |qi3| is the sum of the other one and dr i
3. The radical dpiqiri is in general larger than

max ({|pi3|, |qi3|, |dr i3|}), but with smart choices of the points I can make the radical smaller.
Back to the example, I started with d = 7 and the initial point (2, − 1) on the elliptic curve

E7:x
3 + y3 = 7, and discovered the point (

4

3
,

5

3
) on E7. This point gives rise to the equation

(

4

3

)3

+

(

5

3

)3

= 7.

To make this an integer equation I multiply each side with 33 to get

43 +53 = 7 · 33 = 189

Thus I got the candidate triple (43, 53, 7 · 33). Their radical is equal to 2 · 3 · 5 · 7 = 210> 189, so
this time the candidate is not an ABC-triple. The problem here is that the disturbing factor d=
7 is larger than the benefit gain from the fact 4 = 22, and the fact that the numbers 7 · 33, 53 and
43 are too close to each other. But when running along the elliptic curve x3 + y3 = 7 one can find
rational numbers x and y whose absolute value are very large - so pi and qi are very large com-

pared to ri - making the radical smaller than max (|pi3|, |qi3|). In chapter 3 I explain how such
points can be discovered. In chapter 4 then I explain how much I can get the quality above 1
this way. Then in chapter 5 I come back to this case and give an ABC-triple right from the
point (2,− 1)∈E7.

But first I explain some other known methods for finding ABC-triples with a quailty as high
as possible.

8 Introduction to the ABC-conjecture



Chapter 2

Several methods for finding ABC-triples

As seen in the introduction, it is easy to create sequences of infinitely many ABC-triples. Each
of such sequences has its own function f :Z>0� R>0 such that the quality of the ABC-triple is
at least 1 + f(C). More precisely, one creates an infinite sequences of ABC-triples (An, Bn,
Cn)n>1 and defines a function f :Z� R, often also defined over R, such that

∀n> 1: q(An, Bn, Cn)> 1 + f(Cn)

Until now, the ABC-conjecture has not been proven or disproved yet - it is a conjecture - but if
it is true, then a pair of an infinite sequence (An, Bn, Cn)n>1 and a function f(x) such that
q(An, Bn, Cn) > 1 + f(Cn) for all n > 1 only can be constructed if f(Cn) → 0 as Cn→ ∞. The
ABC-conjecture has some refinements claiming a sharper bound of f(x). One of them is stated
by Stewart and Tenenbaum. They created the family of functions

fN(x)=
N

√

(log x) · log log x
√

and conjecture that there cannot be created an infinite sequence of ABC-triples (An, Bn, Cn)
such that

q(An, Bn, Cn) > 1 + fN(Cn)

for N > 48. They claim that there does exist an infinite sequence of ABC-triples (An, Bn, Cn)
with quality above 1 + fN(Cn) for each N < 48, but such a sequence, or a method finding the
sequence, has not been discovered yet. The best known methods gives infinitely many ABC-
triples (An, Bn, Cn)n>1 with quality larger than a function of the shape

f(Cn)=
const.

logCn
√

· log logCn
and the LLL-method explained later in this section is one of these methods.

We need more properties an ABC-triple (A,B, C) can satisfy:

Definition 2.1. Let (A,B,C) be an ABC-triple.

1. (A,B,C) is a good ABC-triple when q(A,B,C)> 1.4.

2. The merit m(A,B,C) is defined as the largest N such that

q(A,B,C)> 1 +
N

√

(logC) · log logC
√

hence

m(A,B,C) = (q(A,B,C)− 1)2 · (logC) · log logC.

3. (A,B,C) is called unbeaten if there are no triples (A′, B ′, C ′) with C ′>C and

q(A′, B ′, C ′)> q(A,B,C).

The value of 1.4 given in this defenition is arbitrary - it could have been any value. So in this
thesis I use this definition as little as possible. A consequence of the ABC-conjecture is that
there are only finitely many good ABC-triples. At the time this thesis is defended, there are 233
known good ABC-triples, and the largest one among them is

(237 · 312 · 91093, 513 · 1315 · 2939, 723 · 11 · 793345871)
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with 30 digits. However, it has not been proved yet that there are no more good ABC-triples.
Als long as the ABC-conjecture has not been proven, it theoretically could be possible that

for any number α ∈R there are infinitely many ABC-triples (An, Bn, Cn)n>1 with quality larger
than α. If that is true, then every ABC-triple (A, B, C) is not unbeaten; there is another ABC-
triple (A′, B ′, C ′) that beats it. So at present, to the question whether an ABC-triple (A, B, C)
is unbeaten we can only answer “no” or “we don’t know.” Of course, from the largest good ABC-
triple we don’t know whether it is unbeaten as long as we don’t know better. There is a list of
the smallest 100 ABC-triples for which no one has discovered another ABC-triple which beats
them, and this “unbeaten” list can be seen on A). The ‘holy grail’ of the methods below is to
add new ABC-triples to the “unbeaten” list - maybe beating some ABC-triples current on the
list.

2.1 Elementary number theory

In the introduction I gave an explicit method constructing infinitely many ABC-triples using
nothing more than ‘elementary’ number theory - number theory not using tools from other
courses. A method like this uses a small number A and a large number Cn= pn with p a (small)
prime number not dividing A, and n a (large) integer. Their difference Bn = Cn − A also is a
large number, over which we have only little control. For an arbitrary integer n, we in general
don’t have a better upper bound for r(Bn) than Bn itself. So (A, Bn, Cn) even isn’t an ABC-
triple. But we can fix a prime number q � p and choose n such that q2 divides Bn. Then

r(ABnCn)6A · Bn
q

· p

which is smaller than Cn if q >A · p.
This can be done by finding an integer k such that

pk≡A(mod q2)

Then any integer n= k+ l · ϕ(q2) will create an ABC-triple (A, Bn, Cn). But here we have to be
careful. Such an integer k does not always exist for a given A, p and q. The problem is that p is
not necessary a generator of the multiplicative group (Z/q2Z)∗. But for A = 1 it is always pos-
sible since 1 is the unit of this group.

The exponent of q occurring in pn − A can be improved from 2 by a larger integer m. If we
create an infinite sequence of ABC-triples (A, Bn

′ , Cn
′ ) where Cn

′ is the smallest power of p con-
gruent to Amod qn and Bn

′ =Cn
′ −A, then

Cn
′ 6 pϕ(qn) = p(q−1)qn−1

.

Hence the quality is at least

logCn
′

log r(ABn
′ Cn

′ )
>

logCn
′

log
(

A · Cn
′

qn−1 · p
)= 1+

(n− 1)log q− logA− log p

logCn
′ + logA+ log p− (n− 1)log q

.

We can use that logA, log p and log q are small fixed constants. We know

log logCn
′ 6 log ((q− 1)qn−1) + log log p= (n− 1)log q+ log (q− 1)+ log log p,

q(A,Bn, Cn) > 1+
log logCn

′ − logA− log p− log(q− 1)− log log p

logCn
′ + logA+ log p+ log(q− 1)− log logCn

′ .

As n→∞, this quality can be approximated by

1 + f(Cn)= 1 +
log logCn
logCn

since for n sufficiently large, the denominator is smaller than log Cn and the numerator is equal
to log log Cn

′ + δ with δ a constant number only depending on A, p, and q, but not on n. This

function f(x) =
log log x

log x
does not depend on the choises of A, p and q, so for each choise of these

constants there are infinitely many ABC-triples (A,Bn
′ , Cn

′ )n>1 and a constant δ > 0 such that

q(A,Bn
′ , Cn

′ )> 1+
log logCn

′ − δ

logCn
′ .

10 Several methods for finding ABC-triples



The only prerequisite is that A must be in the subgroup of (Z/pmZ)∗ generated by p for all m.

This method seems not to be optimal compared with the function
C0

log x
√

· log log x
, where C0 is

some constant number. But the difference is that the term log log x now is in the numerator
rather than the denominator, so this function can be better for some values for x:

(log log x)4>C0
2 · log x� log log x

log x
>

C0

log x
√

· log log x

If C0 =1, then this happens if x6 1.626 · 102390.
Of course we also can try to use several prime numbers q1, 	 , qr such that Bn is divisible by

squares of all these numbers, trying to improve this method. But that is harder to compute and
to write down, and falls outside the subject of this thesis.

My own method, the one using elliptic curves, has a similar result, creating infinitely many
ABC-triples (An, Bn, Cn)n>1 with quality at least

1+ f(x)= 1+
r · log log x− δ

log x

where the constant δ depends on the choice of the elliptic curve. The constant r can be larger
than 1 and hence my method using elliptic curves seems to be better than the method above,
using only elementary number theory, but my method often has some larger disturbing constant
factor δ. But it has another important property: All the numbers An, Bn and Cn are of a special
form: Two of them are cubes and the third one is the product of a cube and a small constant.

2.2 LLL-method

This method picks some distinct prime numbers p1, 	 , pn with n a positive integer. Then the
purpose is to find integers e1, 	 , en ∈ Z and to define B and C, both integers completely factor-
ized into primes along p1,	 , pn, such that

C

B
=
∏

i=1

n

pi
ei

is as close to 1 as possible. Hence C is the product of the prime powers of the shape pi
ei with

ei > 0 and B is the product of prime powers of the shape pj
−ej with ej < 0. Then we have full

control of B and C in the sense that their radical is bounded by a constant number depending
only on the set of primes, but no control of A6 C −B (it can be an arbitrary number), except
that A is relatively a very small number compared with B and C. If A is small enough, then
r(ABC )<C and we have an ABC-triple. This is the case when

r(BC ) 6 p1 ·
 · pn6
C

A

and in general we don’t know more than r(A) 6 A. So we have full control of B and C, but in
general we only know r(A) 6 A. This method is one of the best methods for finding nice ABC-
triples:

Theorem 2.2. (Stewart-Tijdeman) For each δ > 0 there are infinitely many triples (Ai, Bi,
Ci)i>1 with Ai+Bi=Ci, gcd(Ai, Bi) =1 and Ri defined as r(AiBiCi) such that

Ci> exp

(

(4− δ)
logRi

√

log logRi

)

Ri

Since logCi> logRi, this formula says that the quality
log Ci

log Ri
is larger than

logRi
logRi

+
(4− δ) logRi

√

(logRi) log logRi
= 1 +

4− δ

logRi
√

· log logRi
> 1 +

4− δ

logCi
√

· log logCi

2.2 LLL-method 11



The proof of this theorem uses subtle analytic number theory using the prime number theorem
with error terms: The fact that the n-th prime number is about n log n with relatively small
error term. The details of this proof falls outside this thesis, but can be find in B). Here I only
explain how it works.

First of al we must translate the problem above to a “smallest vector problem”. Then we
need to solve the smallest vector problem and finally we need to translate it back into ABC-
triples. The first part, translating the problem above into the shortest vector problem, goes as
follows: Let p1,	 , pn be (small) prime numbers. Then find (probably negative) integers e1,	 , en
such that p1

e1 ·
 · pnen≈ 1. This is equivalent with

e1log p1 +
 + en log pn≈ 0

So this has become an approximate linear dependency problem : Given real numbers α1, 	 , αn,
find (small) integers e1, 	 , en such that α1e1 + 
 + αnen lie as close to 0 as possible - to make
them “nearly linear dependent.” This can be solved using lattices . Before defining a lattice, first
I need some tools:

I. The vector space Rn is equipped with an inner product 〈, 〉:Rn×Rn� R satisfying the
following properties for all λ∈R,x, y , z ∈Rn:

1. 〈x+ y , z〉= 〈x, z〉+ 〈y + z〉.
2. 〈λx, y〉=λ〈x, y〉.
3. 〈x, y〉= 〈y ,x〉.
4. 〈x,x〉> 0 and equality holds if and only if x = 0.

II. The inner product as defined above also defines a norm and a distance

‖x‖ 6 〈x,x〉
1

2

d(x, y) 6 ‖x− y‖

III. The inner product and the norm also can be defined alternatively by a quadratic form

q:Rn� R

satisfying for all l∈R,x, y ∈Rn:

1. q(x + y)+ q(x− y)= 2q(x)+ 2q(y). (parallelogram law )

2. q(lx)= l2q(x).

3. q(x)= 0� x = 0.

4. {x∈L: q(x)6 r} is a finite subset of the lattice L.

Then the norm ‖ · ‖ is defined as ‖x‖= q(x)
√

and the inner product 〈 , 〉 is defined as

〈x, y〉=
q(x+ y)− q(x)− q(y)

2
.

Now I am ready to define a lattice:

Definition 2.3. Let n be an integer. Then Rn is a vector space equipped with some quadratic
form q: Rn� R and a lattice is a discrete subgroup L ⊂ Rn in Rn with the induced quadratic
form. Sometimes the lattice is denoted (L, q).

The rank r(L) of the lattice L is defined as the rank of the linear subspace T of Rn spanned
by the elements of L.

A lattice L⊂Rn is said to have full rank if r(L)=n

So L can be written as L = Zr, r 6 n, generated by vectors b1, 	 , br where b1, 	 , br form a
basis of T.

Definition 2.4. Let L⊂Rn be a lattice of full rank. The determinant d(L) of L is defined as

d(L) = lim
r→∞

volB( r
√

)

#{x∈L: q(x)6 r} = lim
r→∞

vol({x∈Rn: 〈x,x〉6 r})
#{x∈L: q(x)6 r}

12 Several methods for finding ABC-triples



where the standard volume in Rn is used, using the standard ball B( r
√

) of radius r
√

. So

volB( r
√

)= r
n

2 · volB(1)= r
n

2 · π
n

2

( n

2

)

!

where 0! = 1,
(

1

2

)

! =
π

√

2
and

( n

2

)

! =
n

2
·
( n

2
− 1

)

! if n > 2. Note that the determinant of (L, q)

also depends on q since the number of elements in the set #{x ∈ L: q(x) 6 r} depends on the
choice of the quadratic form q. The determinant of L is equal to the volume, depending on q, of
the fundamental domain

FL6 {

∑

i=1

n

λibi: 0 6λi< 1

}

.

where b1,	 , bn form a basis of L. That volume is equal to

|det ((〈bi, bj 〉)16i,j6n)|
√

Theorem 2.5. (Minkowski) Each lattice L of rank n contains a nonzero vector x satisfying

q(x) 6
4

π
·
((

n

2

)

!
)

2

n · d(L)
2

n 6n · d(L)
2

n

Proof. Let

λ6 λ(L)=min {q(x): x∈L,x� 0}

Then there are no two lattice points x,y such that

d(x, y)= ‖x− y‖�
λ

√

2
Let

B ′= {z ∈Rn: 〈z, z〉< λ

4
}

the standard ball of diameter λ
√

. Then the sets x +B ′ are pairswise disjoint if x runs through
L. But also the sets x +FL are pairswise disjoint if x runs through L and these sets cover Rn.
So

(

⋃

x∈L
x +B ′

)

⊂
(

⋃

x∈L
x +FL

)

hence vol(B ′)6 vol(F )= d(L). Since

vol(B ′)=

(

λ

4

)
n

2

·π
n

2 ·
((

n

2

)

!
)−1

we get the first inequality

λ6

(

π
−n

2 · 4
n

2 ·
(

n

2

)

! · d(L)
)

2

n
=

4

π
·
((

n

2

)

!
)

2

n · d(L)
2

n

The second inequality is true because

B(1)⊃
{

(x1,	 , xn)∈Rn: |x1|,	 , |xn|6 1

n
√
}

a cube of volume
(

2

n
√
)n

. Hence

π
n

2 ·
((

n

2

)

!
)−1

>

(

2

n
√

)n

=

(

4

n

)
n

2

So we get the second inequality

n>

(

(

4

π

)
n

2

·
(

n

2

)

!

)
2

n

=
4

π
·
((

n

2

)

!
)

2

n
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�

Remark 2.6. Stirling proved in 1730 that
4

π
·
(( n

2

)

!
)

2

n =
2 +O(1)

eπ
· n as n→ ∞. A proof using

only elementary calculus is published by Keith Conrad, see C).

Now we are able to translate the approximate linear dependency problem into a shortest
vector problem: If we begin with the Q-linearly independent numbers α1, 	 , αn and want to
find ’small’ integers x1, 	 , xn such that x1α1 + 
 + xnαn ≈ 0, one can create the lattice L = Zn

with

qN(x1,	 , xn) =

(

∑

i=1

n

xi
2

)

+N

(

∑

i=1

n

xiαi

)2

where N is a sufficiently large number.

Lemma 2.7. The determinant of this lattice is equal to d((L, qN))= 1 +N
∑

i=1
n

αi
2

√

.

The proof of this lemma falls outside my thesis, but can be find in D). With this result and
the shortest vector whose existence is proved by Minkowski, one can get the result from
Stewart-Tijdeman (Theorem 2.2).

However, the given proof of Minkowski’s theorem 2.5 is called ineffective: It proves the exis-
tence, but doesn’t give an algorithm that finds one. Moreover, there is no known algorithm that
finds the shortest nonzero vector in a given lattice, which runs in polynomial time: For each
number M each known algorithm requires (much) more than nM bit operations as n → ∞,
where n is the rank of the lattice. In practice it takes too much time to find the optimal solu-
tion, especially when looking at many lattices - or at least many different values for N - so to
find at least approximately good solutions, one needs an algorithm that doesn’t give the optimal
solution but a sufficiently good solution in sufficiently few time. And one of such algorithms is
called the LLL algorithm.

For each lattice L of rank n and with basis b1,	 ., bn one can define a flag F = (Li)i=0
n where

{0}=L0 $L1 $	 $Ln=L

a chain of pure sublattices, where M ⊂L is a pure sublattice of L if the linear subspace spanned
by M does not contain lattice points of L outside M , with for each i ∈ {1, 	 , n} the quotient
Li/Li−1 being a lattice of rank 1, by defining

Li=Z · b1⊕
 ⊕Z · bi, i=1,	 , n
This is a bad flag in general, and the LLL-algorithm finds a better flag by reducing the size of
the flag. The size of the flag is defined by

s(F) = s({Li}i=0
n )=

∏

i=0

n

d(Li)

where d(Li) is the determinant of the sublattice Li. Define the j-th successive distance lj(F) of
F to be d(Lj)/d(Lj−1) with l0(F)6 1, then the size of the flag F is equal to

s(F)=
∏

i=0

n
∏

j=0

i

lj(F)

Since the factors with small j occur more often than the factors with large j, a way to reduce
the size of a flag is to make the values of lj(F) the largest if j is large.

The numbers d(Li) can be computed through the Gram Schmidt orthogonalization: Let bi
∗ be

the unique vector in bi +
∑

j=1
i−1

R · bj that is orthogonal to
∑

j=0
i−1

R · bj. Then b1
∗ = b1 and

inductively

bi
∗ = bi −

∑

j=1

i−1 〈bi, bj
∗〉

〈bj
∗ , bj

∗〉

14 Several methods for finding ABC-triples



So li(F)= ‖bi
∗‖= q(bi

∗)
√

.

Let c be a real number. Then a flag F of a lattice L of rank n is called c-reduced if

∀j ∈{0,	 , n− 1}: (lj+1(F))2 >
(lj(F))2

c

hence when c · q(bj+1
∗ ) > q(bj

∗) for all j. Such a c-reduced flag exists if c>
4

3
and in general such

a c-reduced flag does not exist for smaller values of c. If a given flag F = (Li)i=0
n is not c-

reduced, then there exists a pivot , an index j ∈{1,	 , n− 1} such that

c · lj+1(F)2< lj(F)2

Then Fj = (Li/Lj−1)i=j−1
j+1 is a flag of the rank two lattice Li+1/Li−1 which is not c-reduced.

We need to find a size-reduced basis which give rise to this flag: First take the basis bj ,1, bj ,2 of

the lattice Lj+1/Lj−1 giving rise to this flag. Then we have a unique vector bj ,2
′ such that

bj ,2
′ − bj ,2

∗ belongs to the fundamental domain {λbj ,1:− 1

2
<λ6

1

2
} of Lj/Lj−1. Then the basis

bj ,1, bj ,2
′ is size-reduced, and bj ,2

′ = bj ,2
∗ + µbj ,1 with |µ|6 1

2
. So

q(bj ,2
′ )= q(bj ,2

∗ )+ µ2q(bj ,1) 6

(

l2(Fj)2

l1(F)2
+

1

4

)

q(bj ,1)<

(

1

c
+

1

4

)

q(bj ,1)

where the latter inequality comes from the assumption that F is not c-reduced. So if c >
4

3
, we

have q(bj ,2
′ )< q(bj ,1) and have a flag Fj

′ corresponding to the basis bj ,2
′ , bj ,1 which is of smaller

size than Fj is. Since this doesn’t influence Li(F) outside the pivot j, we also have a flag F′ of
smaller size than the flag F, where F′=(Li

′)i=0
n with Li

′=Li if i� j, and

Lj
′ =Lj−1⊕Z · bj ,2

′ =Z · b1⊕
 ⊕Z · bi−1⊕Z · bj ,2
′

If we have a strict inequality c <
4

3
, let’s say c =

4

3
+ ε for some ε > 0 the size of the new flag is

reduced by a factor at least
(

1

c
+

1

4

)−1

=

(

3

4 + 3ε
+

1

4

)−1

=

(

12+4 + 3ε

4(4 +3ε)

)−1

=
16+ 12ε

16+3ε
= 1+

9ε

16+ 3ε
> 1

Since every lattice has only finitely many flags of size smaller than a given number, we find in

polynomial time a flag what is c-reduced when c >
4

3
. However, if c =

4

3
, this algorithm is not

guaranteed to work in polynomial time. In practice it is mostly used with c= 2.

Note that when we take c <
4

3
, we still have q(bj,2

′ )<
(

1

c
+

1

4

)

q(bj ,1), but then
1

c
+

1

4
< 1, so

we don’t necessary have q(bj ,2
′ ) < q(bj ,1). So this method doesn’t necessary increase the flag

each time, and when it doesn’t, we can repeat the process using the same indices. So the algo-
rithm doesn’t always end, and that is why we need to have the lower bound c >

4

3
to guarantee

that there exist a c-reduced flag.
The next step is to find a short vector from the c-reduced flag. From our final c-reduced flag

Ffinal = (Li)i=0
n , we have a size-reduced basis b1, 	 , bn of L such that Li= Z · b1 ⊕ 
 ⊕ Z · bi for

i = 1, 	 , n. Let y be an optimal solution of the shortest vector problem. Then there is some
index i, 1 6 i6 n such that y ∈Li but y � Li−1. Then li(Ffinal) = q(y) and by the fact that Ffinal

is c-reduced, q(b1)6 ci−1q(y). Since i6n,

q(b1)6 cn−1min {q(x): x∈L−{0}}6 c
n−1

2 d(L)
2

n

where the latter inequality comes from Minkowski’s theorem 2.5. To find the optimal solution y,
one needs to check q(x) for each x of the form

x =
∑

i=1

n

ribi, |ri|6 c
n−1

2

(

3c

4

)n−i
, 16 i6n

The number of vectors in this “box” is very high, of the form

const1
1+2+
 +n · const2

n(n−1)

2 =O(en
2
)
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so it takes very much time to check all vectors when n grows large. So often one is satisfied with
just taking b1 as solution.

With the algorithm described above, H.E. Reijngoud showed in her Bachelor Thesis (see E),

written in Dutch) that one cannot get a better lower bound for the quality than 1 +
log log C

log C
.

However, when n is small enough, one can find optimal solutions, and this method has lead to
new ABC-triples in the “unbeaten” list.

2.3 Transfer method

Another method creating infinitely many ABC-triples is to create new ABC-triples from old
ones. A simple way is the following: Suppose we have an ABC-triple (A, B, C) with quality
equal to 1 + q > 1 and suppose B >A. Since A +B = C, one can multiply C with (B −A) get-
ting

C(B −A)=B2−A2

Then we have a new ABC-triple (A2, C(B −A), B2) with quality

q(A2, C(B −A), B2) =
logB2

log r(A2 ·C(B −A) ·B2)

Here we already have the factors A, B and C and the only new factor is (B − A). Hence the
quality is

logB2

log r(ABC (B −A))
>

log (C(B −A))

log r(ABC ) · log r(B −A)

>
logC + log(B −A)

log r(ABC )+ log(B −A)

>
logC + logC

log r(ABC )+ logC

=

(

log r(ABC )

2 logC
+

logC

2logC

)−1

=

(

1

2(1+ q)
+

1

2

)−1

= 1+
q

2 + q

Also the largest number B2 is larger than
1

4
C2, so the triple nearly doubles in size. So one can

ask how slow the quality decreases each step and can try to find a function f(C) such that

q(An, Bn, Cn) > 1 + f(Cn)

where for all i> 2: Bi>Ai, Ci=Bi−1
2 ,

Bi=max (Ai−1
2 , Ci−1(Bi−1−Ai−1))

and Ai = Ci − Bi. Here we have a not so good function: The larger n is, the smaller An is rela-

tive to Bn and Cn since both Bn
2 and An

2 are involved, and then we have

f(Cn+1)

f(Cn)
>

(

q

2+ q

)

q
=

1

2 + q
→ 1

2
as q→ 0. We also have

logCn+1

logCn
>

2logCn− log 4

logCn
→ 2

as n→∞. Hence f(Cn) · log Cn is approximately constant, and we have a function of the shape
f(C)=

const.

log C
, a function worse than other discovered functions.
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But there are many other polynomial transfers of such a triple. The transfer above takes the
polynomial equation A2 + (A+B)(B −A) =B2. When we only look at the polynomial itself and
compare the degree of the radical with the degree of the largest polynomial, we see that the rad-
ical is equal to A ·B · (A+B) · (B −A), of degree 4, while the largest polynomial (hence all the
three polynomials since they are homogenious) has degree 2. So this is a “sharp” triple in the
sense of the results below. To prove these results, define deg(f) as being the degree of a polyno-
mial f and define r(f) as being the radical of f . I use the following facts for f , g, h coprime
polynomials with f + g= h:

Fact 1. deg(gcd(f , f ′))= deg(f)−deg (rad(f))

Fact 2. f ′g− fg ′= f ′h− fh ′� 0 if f , g and h are not all three constant.

Fact 2 is true because f ′+ g ′= h′ and therefore

f ′g− fg ′ = f ′(h− f)− f(h′− f ′) = f ′h− fh ′

It is nonzero because otherwise f ′g = fg ′ � 0, and since f and g are relative prime, g must
divide g ′. This is unless f and g are both constants, but then h is constant too. Note that if

f

g
is constant, but f and g are not constant, then f and g are not coprime.

Theorem 2.8. (Mason-Stothers) Let f , g, h∈C[X ]. Then

max {deg(f), deg(g), deg(h)}6deg(r(fgh))− 1

Proof. We observe that gcd(f , f ′) and gcd(g, g ′) divide the left hand side of fact 2, and that
gcd(h, h′) divides the right hand side of fact 2. Since both sides are equal and gcd(f , f ′), gcd(g,
g ′) and gcd(h, h′) are coprime (they divide f , g resp. h), we conclude that

f ′g− fg ′

(gcd(f , f ′))(gcd(g, g ′))(gcd(h, h′))
∈C[X]

So

deg(gcd(f , f ′)) +deg(gcd(g, g ′))+ deg(gcd(h, h′))6 deg(f ′g− fg ′) =deg(f)+ deg(g)− 1

and by fact 1 on f , g and h, applied to the equation above, we get

deg(h)6 deg(r(f))+ deg(r(g))+ deg(r(h))− 1 =deg(r(fgh))− 1

since f , g and h are coprime. Applying fact 2 to g and f yields g ′h− gh ′� 0 and we can use the
above argument for f and g to get the same inequality for deg(f) and deg(g). �

In fact Stothers discovered the theorem in 1981, Mason rediscovered it in 1983, and the ver-
sion above of the proof is given by Noah in 1998, as stated in F).

Corollary 2.9. Let f, g and h be coprime homogenious polynomials of degree d in variables x
and y such that f + g= h. Then r(fgh) has degree at least d+ 2.

Proof. r(fgh) is a product of linear factors over C. By change of variables one can set one of
these linear factors to be y, and make the equation inhomogenious over one variable by setting
y= 1. This lowers the degree of the radical by 1 while keeping

max {deg(f), deg(g), deg(h)}= d

(only one of them has a factor y since they are coprime.) By the Mason-Stothers theorem

d=max {deg(f), deg(g), deg(h)}6deg(r(fgh))− 1

hence

deg(r(fgh))> d+ 1

In the original equation, the factor y is added in the radical, making the degree of the radical at
least d+ 2. �
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A special family of polynomial triples is of the shape

(A+B)n=Ak

(

∑

i=0

n−k (
n

i

)

An−k−iBi

)

+Bn−k+1

(

∑

i=0

k−1 (
n

i

)

AiBk−1−i

)

, n> 2, i6 k <n

where we have the degree 1 factors A, B and A +B, and split up the binomium of Newton into
a part of degree n− k and a part of degree k− 1. The radical of their product is of degree

1+ 1 +1 + (n− k) + (k− 1)=n+ 2

so it is a sharp triple. Starting with an initial ABC-triple (A, B, A + B) of integers, one con-
structs another ABC-triple

(

Ak

(

∑

i=0

n−k (
n

i

)

An−k−iBi

)

, Bn−k−1

(

∑

i=0

k−1 (
n

i

)

AiBk−1−i

)

, (A+B)n

)

whose radical is at most

r(A ·B · (A+B)) ·
(

∑

i=0

n−k (
n

i

)

An−k−iBi

)

·
(

∑

i=0

k−1 (
n

i

)

AiBk−1−i

)

where r(A · B · (A + B)) < A + B and the product of the other two factors is of degree n − 1 in
terms of A and B, but it can be larger than (A+B)n−1.

For example, one starts with 1 +8 = 9 and takes n= 3 and k= 2, hence looks at

(1+ 8)3 = 12(1 · 11 · 80 + 3 · 10 · 81) +82(1 · 10 · 81 +3 · 11 · 80)

Their radical is equal to r(1 · 8 · 9) · r(25) · r(11), but here

25 · 11= 275> (8+ 1)3−1 = 81

Fortunately, r(25) = 5, so the radical of (1 · 8 · 9) · 25 · 11 is equal to 6 · 5 · 11 = 330 < 729, so we
have created a new ABC-triple

(25, 704, 729) = (52, 26 · 11, 36)

this way. But such ’luck’ of finding a factor what is not squarefree easily can be forced to
happen. If we keep k = 2, one gets one of the factors being equal to Bn−1(B + nA) for any n, so

one can try to find an n such that
B+ nA

r(B+ nA )
is as large as possible, relative to n.

But even when such a trick succeeds, we get a computation like at the beginning of this sec-
tion: The size of the triple is increased by a factor n, while the quality minus 1 is decreased by a

factor n. So we get the same: A function of the shape f(C) =1 +
const.

log C
.

Some research is fixed to get the odds for a lucky square factor dividing one of the polyno-
mial factors as high as possible. One can try this by getting as many different factors as pos-
sible. So one can try to find sharp polynomial factors which completely can be factored into
linear polynomials, polynomials of degree 1. Examples of these polynomial transfers already are
given above, with a degree 4 and a degree 6 example added:

A2 + (B −A)(A+B) = B2

A2(A+ 3B)+B2(3A+B) = (A+B)3

A3(A+ 2B)+ (A+B)3(B −A) = B3(2A+B)

27(A+B)5(B −A)+A3(3A+ 5B)2(3A+ 2B) = B3(5A+ 3B)2(2A+ 3B)

These examples generates a whole family of such polynomial triples since we can take any mul-
tiple of A and any multiple of B. There also are some essential different triples, but there are
no such triples known of degree other than 2, 3, 4 or 6. These triples are constructed by Men-
tien, de Smit and Taelman.
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Theoretically using such transfers one doesn’t get better functions than f(C) = 1 +
const.

log C
, but

in practice, when finding squares dividing one of these factors, or when starting with a very
good ABC-triple, one can find new good ABC-triples.

Such transfer methods also can be useful when one finds some interesting approximate rela-
tion between two numbers of A, B and C =A+B. For example, when one finds an ABC-triple
(A, B, C) satisfying B − A = 1, the ABC-triple (A2, (B − A)(B + A), B2) has radical r(A · B ·
(A+B)) · r(B −A) where r(B −A)= 1. So the quality becomes

log(B2)

log r(A ·B · (A+B))
≈ 2q(A,B,A+B)

Yes, this way the quality nearly doubles , so triples (A,B, C) with B −A very small are expected
to be very rare (else the ABC-conjecture seems to be false.) Something similar can be done
when B≈ 2A. Then C ≈ 3A, and we get by applying the degree 3 transfer to C and −A:

C2(C − 3A)+A2(3C −A)= (C −A)3 =B3

with factors A, B, C, the very small factor C − 3A and the other factor 3C − A. Suppose we
have C − 3A= 1. Then

q(C2(C − 3A), A2(3C −A), B3)=
3logB

log r(A ·B ·C · (3C −A))
=

log (degree 3)

log ((degree 1) · (degree 1))
≈ 3

2

Such tricks can be done with many approximate relations, creating high quality triples. How-
ever, much of the new discovered ABC-triples are of the shape B ≈ C and A very small, in par-
ticular when using elementary number theory or the LLL method.

Another way to increase the expected quality is to find a prime factor which will occur often
in the factorisation. For example, when we have an ABC-triple (A, B, C) with C an odd
number, then A ·B is even and we can use the transfer

((A−B)2, 4AB , (A+B)2)

Since A+B is odd, 4AB and (A+B)2 are coprime and the necessary factor 2 is involved in the
term 4AB . So compared to the transfer (A2, (A + B)(B − A), B2) the radical is the same, but
the advantage is that the largest number now is (A + B)2 rather than B2. Such transfers uses
scalar multiplication of a polynomial (like AB) with a scalar number (like 4). But most transfers
uses few scalars.

As seen until now, most relatively good ABC-triples (A, B, C) have a very small number A
and two approximately equal numbers B and C. This can motivate one to transfer using poly-
nomials of only one variable. The small number A will be seen as a constant number , and the
large number B will be the variable. For example, if A = 1, one can transfer the initial ABC-
triple (1, B,B+ 1) into the new triple (1, B3, B3 + 1). Here

B3 + 1 = (B+ 1) · (B2−B+1)

r(1 ·B3 · (B3 + 1)) = r(1 ·B · (B+ 1)) · r(B2−B+ 1)< (B+ 1)r(B2−B+ 1)<B3 + 1

So (1, B3, B3 + 1) is a new ABC-triple whose quality minus 1 approximately decreases by a
factor 3 while the size of the largest number increases by a factor 3. So again such transfers
create infinite sequences of ABC-triples (An, Bn, Cn) with

q(An, Bn, Cn)> 1+
const.

logCn

Something similar is true when A> 1. Then just take the triple

(A3, B3, (B+A) · (B2−A ·B+A2))

with the same effects.
When looking at the radical of the polynomial rather than the number one finds that the

radical of the product is

r(1 ·B3 · (B+1) · (B2−B+ 1))=B · (B+1) · (B2−B+ 1)
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of degree 4. This is one larger than the degree of the largest polynomial, and also this cannot be
improved (by corollary 2.9) unless all the three polynomials are constant.

So also here it doesn’t give better ABC-triples in general than the methods creating new
ABC-triples. So the transfer method can be used best when starting with an ABC-triple with a
very high merit. Then the new ABC-triple discovered by a transfer also may have a relatively
high merit, and sometimes it can appear on the “unbeaten” list of A).

2.4 Some other methods

There are many other methods trying to find new good or unbeaten ABC-triples. In this subsec-
tion I give an overview of some of these methods and some interesting results for them.

2.4.1 Continued Fractions

One can try to approximate an irrational number by rational numbers in the following way: Let
α be an (irrational) number. Then find the unique integer n0 such that α − n0 = : α1 ∈ [0, 1).

Then
1

α1
is another number above 1 and we can repeat the process, finding the unique number

n1 such that
1

α1
−n1 = :α2∈ [0, 1) etc. This creates a sequence (n0, n1, n2,	 ) such that

α=n0 +
1

n1 +
1

n2 +
1


This chain of unit fractions is infinite if and only if α is irrational.
At any index i we can stop repeating the process and take

(n0, n1,	 , ni−1)6 n0 +
1

n1 +
1
 +

1

ni−1

as rational approximation of the initial number α. Denote this approximation
xi

yi
with xi and yi

coprime integers with yi> 0. This is called the continued fraction algorithm to find coprime inte-
gers xi, yi with yi> 0 such that |α− xi

yi
|6 1

niyi
2 6

1

yi
2 . For the purpose of finding nice ABC-triples

using continued fractions this is most interesting when we have discovered a large value for ni
and choose to stop at i.

For example, one can start with

α= 1095
√

= 2.555555397	
so n0 = 2. Then

1

α1
= 1.800000515	 making n1 = 1. This gives

1

α2
= 1.249999196	 so n2 = 1.

This makes
1

α3
= 4.000012864	 with n3 = 4. Now the large number appears:

1

α4
= 77733.379227053	

giving n4 = 77733. This extremely large number compared to the others makes us stop by n4

giving as approximation

α≈ 2+
1

1 +
1

1+
1

4

=
23

9
.

So 109 = α5 ≈
(

23

9

)5
, or in integer terms, 95 · 109 ≈ 235. And indeed, their difference is equal to

2. So we have an ABC-triple (2, 310 · 109, 235) whose quality

q(2, 310 · 109, 235)=
log(235)

log(2 · 3 · 109 · 23) = 1.629911694	
is the highest quality discovered until now, thanks to Reyssal.
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However, this was one “lucky shot” since we early got the large number n4 = 77733, but in
general the result will be much worse. To explain why, I start with an arbitrary number qp√ . If

one finds coprime integers x, y such that | qp√ − x

y
| 6

1

ny 2 for a certain number, one is interested

in the consequence for the quality of the triple (BIG, qyp, xp), where “BIG” is a number, rela-
tively small compared to the other two numbers, which we don’t have control over. I call this
number “BIG” since this number is in general too large to determine its radical exactly and will
be much larger than qxy . For computing the size of BIG, one uses the fact that if |1 − α| 6 ε,

then |1p − αp| is approximately as small as, or smaller than pε. Here α=
y qp√

x
, hence |qy

p

xp − 1| is
as most as large as approximately

p

nxy
. So at worst BIG≈ xp−1

ny
. This makes the quality of (BIG,

qy p, xp) to be at least approximately

logmax {xp, qyp}
log
(

xp−1

ny
· qxy

) >
log xp

log(
qx p

n
)
.

Hence the triple isn’t guaranteed to be an ABC-triple unless n > q. Often we have no expecta-

tion that an n= ni> 3 can be discovered from qp√ , so the value n4 = 77733 from α= 1095
√

really
is a lucky shot. Note that for any

α� 1+ 5
√

2
=1 +

1

1+
1

1 +
1


there is an index i such that ni> 2.

One may ask whether we cannot get better than |α − x

y
| 6

1

ny 2 and get something like |α −
x

y
| 6

const.

y2+δ
for some δ > 0. The answer is known for algebraic numbers α, in particular for α of

the shape α= qp√ .

Theorem 2.10. (Roth) Let α be an algebraic number. Then the inequality |α− x

y
|6 C

|y|2+δ
has

only finitely many solutions (x, y)∈Z2, gcd(x, y)= 1 for any C, δ>0.

The proof of this theorem falls outside this thesis. But Granville and Langevin discovered
that the ABC-conjecture implies Roth’s theorem. If Roth’s theorem is false for some qp√ , then

one finds infinitely many ABC-triples whose quality goes to
log xp

log xp−δ
= 1 +

δ

p− δ
, so that would

disprove the ABC-conjecture. A consequence is that for better results one must use transce-

dental numbers. So one can try α=
log p

log q
. Then if

x

y
is a good approximation, one can try (BIG,

py, qx) as a triple. However, this already can be done by trying LLL on p and q with the same
results, since LLL on 2-dimensional lattices can give an optimal solution in only a little time.

2.4.2 2-Dimensional lattices

There also is another way to find ABC-triples out of 2-dimensional lattices, first published by
Tim Dokchitser G). This goes as follows: Start with three pairwise coprime integers a, b and c

such that each of these numbers are close to each other and have small radicals. Then one can
create a sublattice L⊂Z3 satisfying

L= {(x, y, z)∈Z3: ax + by + cz = 0}.

This is a two-dimensional lattice and one can find small nonzero vectors (x, y, z) ∈L. Then con-
sider the candidate ABC-triple (A, B, C) where C = max {|ax |, |by |, |cz |} and A, B the other
two numbers among them.

A method to find short vectors is to check all numbers

{ax + by + cz : 06 x, y, z6N }

and check whether there are different triples (x1, y1, z1) and (x2, y2, z2) such that

ax 1 + by1 + cz 1 = ax2 + by2 + cz 2
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and take as vector (x1− x2, y1− y2, z1− z2). This is time-consuming since we need

N > 1 + 3 ·max (a, b, c)
√

and get a list of at least
(

1 + 3 ·max (a, b, c)
√

)3
numbers, to guarantee that we find two times

the same value for ax + by + cz and hence a vector of this lattice. If we take N =

3 ·max (a, b, c)
√ 3

, then the list contains 3 3
√

· (max (a, b, c))
3

2 numbers, while these numbers run

through 0,	 , 3 · 3 ·max (a, b, c)
√

·max (a, b, c), so theoretically it is possible that all these num-

bers are different. Since the size of the list grows faster than the largest possible number of that
list, the given lower bound for N is required. However, this method does search for a large
number of ABC-triples and can find all good ABC-triples below a given value in not too much
time. Now all good ABC-triples (A,B,C) with C 6 1020 are known.

Another method to find small vectors (x, y, z) is the earlier described LLL-algorithm. To be
able to apply LLL to this problem, we first need to know more properties of the lattice L, in
particular a basis and the determinant.

A basis can be constructed as follows: Start with a linear subspace T of the linear subspace
of R3 spanned by L, for example with the subspace z = 0, and find point of T ∩ L. For example
(b, − a, 0) ∈ T ∩ L. This point generates the sublattice T ∩ L since a and b are coprime. Then
find integers m, n such that (m, n, 1) ∈ L is a lattice point of minimal distance from T. Such a
point (m, n, 1) exists since x and y are coprime, hence there exists integers u and v such that
m+n= ua + vb =− 1. Then (uc) · a+(vc) · b+ 1 · c= 0, hence (uc , vc , 1)∈L.

The next step is to compute the determinant of L, what can be done using what is described
in section 2.2. So the square of the determinant is equal to

〈(b,− a, 0), (b,− a, 0)〉 · 〈(uc , vc , 1), (uc , vc , 1)〉 − 〈(b,− a, 0), (uc , vc , 1)〉2
= (a2 + b2)(u2c2 + v2c2 + 1)− (ubc − vac)2

= a2 + b2 + u2a2c2 + u2b2c2 + v2a2c2 + v2b2c2− u2b2c2 +2uvabc2− v2a2c2

= a2 + b2 + u2a2c2 + 2uvabc2 + v2b2c2

= a2 + b2 + (uac + vbc)2

= a2 + b2 + (ua + vb)c2

= a2 + b2 + c2

So by theorem 2.5, L contains a nonzero point (x, y, z) such that

x2 + y2 + z2 6
4

π
·
((

2

2

)

!

)
2

2

· a2 + b2 + c2
√ 2

2 =
4

π
a2 + b2 + c2

√
.

When a, b and c are approximate equal, the theoretical result from LLL and Minkowski is worse
than the theoretical result from searching all 2-dimensional lattice points in the box, since that
way guarantees a vector (x, y, z) such that

x2 + y2 + z2 6 3 ·
(

1 + 3 ·max (a, b, c)
√

)2

because then a2 + b2 + c2
√

≈ 3
√

·max (a, b, c). But LLL will be applied on a 2-dimensional lat-
tice, so in this case also one can find the shortest vector using LLL.

2.4.3 p-adic LLL

This method goes similar as the LLL-method from section 2.2, but now we use different absolute
values. Let p be a prime number. Then one can define the p-adic absolute value | · |p on Q by
|x|p= p−n where x= pn · a

b
where a, b integers not divisible by p. If we add |0|p= 0 this becomes

an absolute value satisfying the three axioms:

1. |x|p> 0. Equality holds if and only if x= 0.

2. |x · y |p= |x|p · |y |p for any x, y ∈Q.
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3. |x+ y |p6 |x|p+ |y |p for any x, y ∈Q (triangular law)

For p-adic absolute values, the triangular law can be improved by the ultrametric property

|x+ y |p6max {|x|p, |y |p}

for any x, y ∈Q. The ultrametric property makes this absolute value non-Archimedian while the
standard absolute value | · |∞ not satisfying the ultrametic property is called Archimedian. Note
that for any nonzero number x∈Q we have

|x|∞ ·
∏

p prime

|x|p= 1

since for x= (− 1)e0p1
e1
 pnen, |x|pi

= pi
−ei and |x|q= 1 for any prime number q � {p1,	 , pn}.

Also with p-adic LLL one tries to find B= p1
e1
 pmem and C = pm+1

em+1
 pnen such that for a given
prime number p one has |C −B |p= p−N with N a sufficiently large number. In other words, try
to find two numbers B and C such that their difference is divisible by a large factor of p. Then
r((C −B) ·B ·C) is small because of the factor p occuring often in the number C −B and r(B)
and r(C) are constants.

2.4.4 Sort method from Jarek Wrobleski

The most succesful known method is from Jarek Wrobleski, who discovered 81 of the first 100
ABC-triples from the unbeaten list from now. He hasn’t published much of his tool, so we can
only guess what he is doing, but we guess he finds them on the following way:

Start with some numbers (xi)i∈I, all rational and nearly equal to 1, and with small radical.
From this list of numbers one can try to create a new list of rational numbers (yj)j∈J by multi-
plying some numbers from list I, to make the numbers yj much closer to 1 than the numbers xi
are. This way he creates exactly the same kind of ABC-triple as the LLL-method does, but it
probably works more efficiently. However, for the large numbers the merit shrinks to values
around 13, suggesting there are still better ABC-triples waiting to be discovered.
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Chapter 3

A short introduction to Elliptic Curves

My own method is another form of lattice theory, but of a different kind using Elliptic Curves .
Before I can explain how it exactly works, I will introduce Elliptic Curves first. Since a complete
introduction can be very large and is taught during any course of Elliptic Curves, I only give the
important definitions and some important results.

At first I need to say what an Elliptic Curve is. An elliptic curve over a field k is a smooth
1-dimensional projective algebraic variety over k with genus 1, with a given rational point, and
what is irreducible as a variety. In this introduction I will explain what this means. When k =
C, topologically it looks like a real torus , or the product set of two real circles, on which a point
is specified. This sounds 2-dimensional, but the torus is a one-dimensional object when one
views it as a variety over C, the field of complex numbers. Since it is one-dimensional, it actu-
ally is a curve rather than a surface. The presence of the rational point means that there must
exist at least one given point with coordinats in the field the curve is defined in. The reason
such curves are elliptic is that they originally are used to compute arc lengths of ellipses. This is

done by integrating functions of the shape
dt

(a− t2)(b− t2)
√ . These functions have 4 singularities,

namely ± a
√

and ± b
√

, but integrating over a path containing two of these singularities gives
0 again. Furthermore, taking the square root is two-valued. So the original curve y2 = (a −
x2)(b− x2) over C looks like two complex planes with a point ∞ added, connected to each other
by two wormholes . Since the comples plane with ∞ looks like a sphere, the whole construction
is topologically equal with a sphere with one handle, or a torus. That makes it a Riemann Sur-
face, a complex curve without singularities, and its genus is equal to the number of handles it
has. Since topologically a torus looks like a sphere with one handle, the genus of such a curve is
equal to 1. But such curves does contain points at infinity, so is not sufficient to consider the
affine space; we need to consider an elliptic curve as a subset of the projective space. However,
the part at infinity mostly is restricted to one point, so often we look at the affine part.

Another way to describe a torus is as C modulo a 2-dimensional lattice L. In this way, the
torus becomes a quotient variety and you can still add two elements from C/L - it also is a quo-
tient group. The given rational point there becomes the zero element of that curve.

On an elliptic curve E, seen as a Riemann surface, one can do complex analysis. On a Rie-
mann surface, there is a function field C(E) defined as the field of C-valued functions which are
regular on E with the exception of at most finitely many points, on which such a function has a
pole of finite order. There also are divisors on E: Formal sums

∑

P ∈E nP · P for which nP is 0

for all but finitely many points P . For each f ∈ C(E) and each P we can define the order
ordf(P ) of f at P . If f is regular and nonzero at P the order is 0. If f(P ) = 0, then the order
of f is the order of the zero at P . If f is singular at P , then the order of f at P is minus the
order of the pole of f at P , hence minus the order of the zero of

1

f
at P . Then for each function

f ∈C(E) there is an associated divisor

D(f)6 ∑

P ∈E
ordf(P ) ·P .

Note that for all f ∈ C(E), we have
∑

P∈E ordf(P ) = 0. From algebraic geometry there is a

theorem, which tells that the set of functions on C(E) on which the singularities have given
bounds is a vector space, and which tells the dimension of that vector space, depending on the
genus of E. But I already know the genus is 1 since E is an Elliptic Curve.
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Theorem 3.1. (Riemann-Roch for elliptic curves) Let D =
∑

P∈E nP · P be a divisor and
n=

∑

P∈E nP. Then the dimension of the vector space

L(D)= {0}∪ {f ∈C(E): ∀P ∈E: ordf(P )+nP > 0}
is equal to

− 0 if n< 0,

− 0 or 1 if n= 0,

− n if n> 0.

The first part of the theorem is clear. The second and third part follows from the general Rie-
mann-Roch theorem and the fact that the genus of any elliptic curve is equal to 1. The proof for
general Riemann-Roch can be read in H). The constant functions clearly are defined over C/L.
Then Riemann-Roch says that there are no functions with just one simple zero and one simple
pole, but there are functions with a double pole in some point and which is regular everywhere
else.

One of these functions is the Weierstrass-℘-function

℘= ℘L: z+L	 1

z2
+

∑

w∈L−{0}

(

1

(w− z)2
− 1

w2

)

.

This function is regular except on the point z=0. Elsewhere

1

(w− z)2
− 1

w2
=

z(2w+ z)

w2(w− z)2

is of degree − 3 in w. So this series converges over x ∈ L − {0} for any z ∈ C, but the term
1

z2

makes 0 a pole of order 2. The Weierstrass-℘-function also has a derivative

℘′(z)=− 2
∑

w∈L

1

(z −w)3

which is regular everywhere except an order 3 pole at z= 0. The function with a degree 4 pole is
℘(z)2, an order 5 pole is provided by ℘(z) · ℘′(z), but for the order 6 pole there are two possibil-
ities, namely ℘(z)3 and ℘′(z)2. Since by Riemann-Roch the vector space of functions with a pole
at order at most 6 at z = 0 and regular everywhere has dimension 6, and the dimension is
reduced to 5 when we only allow order 6 5 poles, there must be a linear relation between ℘(z)3,
℘′(z)2, 1, ℘(z), ℘′(z), ℘(z)2, and ℘(z)℘′(z). And indeed, we have

℘′(z)2 = 4℘(z)3 + g2℘(z)+ g3

where g2 and g3 are constants depending only on the lattice L. If we multiply the equation with
a factor 16 and put y=4℘′(z) and x= 4℘(z), we get the elliptic curve in Weierstrass form

y2 = x3 + ax + b

with a and b some constant numbers. Also it is always possible to go back from a smooth
elliptic curve in Weierstrass form into some lattice, where smooth means that the discriminant

g2
3− 27g3

2 is nonzero. The proof of this result is given in I), page 25.

Theorem 3.2. (Uniformization Theorem) Given g2, g3 ∈C such that g2
3 � 27g3

2, there exists
a lattice L ⊂ C of rank 2 such that g2(L) = g2 and g3(L) = g3. Here g2(L) = 60

∑

z∈L,z� 0
z−4

and g3(L)= 140
∑

z∈L,z� 0
z−6.

In this thesis, I only use fields with characteristic 0 - either Q or R and sometimes C. That
means that any elliptic curve used in this thesis can be written in Weierstrass form. In fact the
form y2 = x3 + a · x+ b is called the short Weierstrass form and there also exists a (long) Weier-
strass form

y2 + a1xy + a3y=x3 + a2x
2 + a4x+ a6
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In characteristic � 2 we can get rid of a1 and a3 by taking y ′ = y +
a1x+ a3

2
. Then in character-

istic � 3 one can get rid of a2 by taking x′ = x +
a2

3
. When looking over R, the curve topologi-

cally either looks like one circle, or it looks like two circles.
It also is possible for the family of elliptic curves of the form x3 + y3 = dz 3 to transform it

into Weierstrass form. When taking x= u+ v and y= u− v this equation becomes

(u+ v)3 + (u− v)3 = 2u3 + 6uv2 = dz 3

To get this in short Weierstrass form, one sets the curve in affine coordinats by taking u= 1 and
gets

6v2 = dz 3− 2⇔ (62dv )2 = (6dz )3− 432d2.

So taking

X =
12dz

x+ y
, Y =

36d(x− y)

x+ y

one gets Y 2 =X3− 432d2. Conversely one has

x=
36d+Y

6X
, y=

36d−Y

6X
to go back to x3 + y3 = d.

3.1 The group law

Let L again be a lattice in C, and E(C) be the elliptic curve associated with L. Then the map

C/L→E(C), z+L� (℘(z): ℘′(z): 1)

is an isomorphism of Riemann surfaces. One also wants this isomorphism to be a group isomor-
phism and then needs to define a group law directly described in terms of E: y2 = x3 + ax + b.
This is possible and one can do it by looking again at divisors. Suppose we have a line in
A2(C), the affine complex plane. Then that line is given by a linear equation

lx +my +n= 0

Since x= ℘(z) and y= ℘′(z), we have a function

l℘(z)+m℘′(z) +n∈C(E)

This function is regular everywhere on E with the exception of a pole of order 3 in z = 0. So the
divisor of such a function is of the form 1 ·P + 1 ·Q+ 1 ·R− 3 · 0E, where P , Q,R are not neces-
sary distinct points on E where the function lx + my + n has a zero, and where 0E is defined to
be the image of 0 +L under the isomorphism described above. This point 0E turns out to be the
zero point under the group law on E.

Lemma 3.3. Let f be a meromorphic function on C/L. Then
∑

z∈C/L

z · ordf(z)= 0∈C/L

Proof. (sketch) This expression is equal to
∫

∂(F )
z
f ′(z)

f(z)
dz, where F is a fundamental domain

of L such that its boundary ∂(F ) does not contain zeroes or poles of f(z). When computing the
integral over this path, one finds that

∫

∂(F )

z
f ′(z)
f(z)

dz ∈L

hence is equal to 0 ∈ C/L. The details of this computation is given in any course of Elliptic
Curves, for example on I), pages 13-14. �

As a consequence, if the points P , Q and R are collinear, there is a function f ∈ C(E) with
associated divisor D(f)=P +Q+R− 3 · 0E and we can describe the group law as

P +Q+R= 0E.
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When one takes Q= 0E, the equation becomes P + 0E + (−P ) = 0E, so P and −P are collinear
with 0E. So the group law can be interpreted geometrically as follows: To determine P + Q,
draw the line through P and Q. Then there is a third point R intersecting this line, and we
have P + Q = − R. To determine P + P , we just take the tangent line at P , that intersects P
with multiplicaty 2, or 3 if P is an inflection point.

But if one has an equation y2 = x3 + ax + b defining the curve E, the group law also can be
computed algebraically: First of all, the point 0E is the ‘point at infinity’

(℘(0): ℘′(0): 1)= (0: 1: 0)

where “infinity” is in the sense of the affine plane z = 1. These coordinates (0: 1: 0) follows from
the fact that ℘(0) is of order − 2 and ℘′(0) is of order − 3. Then let (x1, y1) � (x2, y2) be two
distinct points on the curve E. The line through these points is given by

y− y1 =
y2− y1
x2− x1

(x−x1)

if x1� x2. If so, this is equivalent to

y=
y2− y1
x2− x1

x+ (y1− y2− y1
x2− x1

x1)

To find the third intersection point we substitute this equation in the equation of E and get
(

y2− y1
x2−x1

x+ y1− y2− y1
x2− x1

x1

)2

= x3 + ax + b

To solve this equation we put all terms on one side getting

x3−
(

y2− y1
x2− x1

)2

x2 +	 = 0

where we already have two solutions x1 and x2 from our initial points. So it suffices to look at
the coefficient of x2:

x3 =

(

y2− y1
x2− x1

)2

−x1− x2

For the y-coordinate we just use the line equation:

y3 =
y2− y1
x2−x1

(

(

y2− y1
x2− x1

)2

− x1− x2

)

+ y1− y2− y1
x2− x1

x1 =

(

y2− y1
x2− x1

)3

+
y2− y1
x2− x1

(− 2x1− x2)+ y1

But that is just the intersection point. To finish the computation, we have to take the third
intersection point of the line through (x3, y3) and 0E, and get

(x1, y1)+ (x2, y2) = (x3,− y3) =

(

(

y2− y1
x2−x1

)2

− x1− x2,

(

y2− y1
x2− x1

)3

+
y2− y1
x2−x1

(− 2x1−x2) + y1

)

If x1 = x2, then the line through these points is vertical, so the third intersection point of the
line is 0E. The “line through 0E and 0E” is the tangent line at 0E, so is the line at infinity, hence
the “third” intersection point also is 0E. So (x1, y1) + (x1, y2)= 0E if y1� y2.

We also need to determine P + P , hence to compute (x1, y1) + (x1, y1). The formula above

doesn’t work, but instead we need the tangent line at (x1, y1). Since y = ± x3 + a ·x+ b
√

, the
derivative is

± 3x2 + a

2 x3 + a ·x+ b
√ =

3x2 + a

2y
so the tangent line is given by

y− y1 =
3x1

2 + a

2y1
(x− x1)

and is vertical if y1 = 0. In that case, (x1, y1)+ (x1, y1)= 0E. If y1� 0, the line equation is equiv-
alent with

y=
3x1

2 + a

2y1
x+

(

y1− 3x1
2 + a

2y1
x1

)
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and this equation can be filled in the curve equation:

x3 +

(

3x1
2 + a

2y1

)2

x2 +	 =0

with a known double root x1. Hence the third root is

x3 =

(

3x1
2 + a

2y1

)2

− 2x1

and the corresponding y3 is equal to

3x1
2 + a

2y1

(

(

3x1
2 + a

2y1

)2

− 2x1

)

+ y1− 3x1
2 + a

2y1
x1.

This completes the proof of the duplication formula:

(x1, y1)+ (x1, y1) =

(

(

3x1
2 + a

2y1

)2

− 2x1,

(

3x1
2 + a

2y1

)3

− 3
3x1

2 + a

2y1
x1 + y1

)

So now we have an algebraic expression for the group law. Note that this expression is a
rational formula in terms of x1, y1, x2, y2, so when these coordinates and the coefficients a and b
are defined over some other field (with characteristic � 2), this group law stays intact. In partic-
ular, the set E(Q) of points in E(C) of rational coordinates is closed under the group law.

For any elliptic curve E, we can pick any point P ∈E and then define a group law such that
P is the zero element of the group, that looks like the group law described above. Suppose we
take the group law with another zero point P0 ∈ E, then the group law on E with respect to P
can be described in terms of the group law w.r.t. P0. Namely, suppose Q, R and S are collinear,
and let S0 be the third point intersecting E and the line through S and P0. Then Q+P0R= S0,
where “ +P0 ” means adding w.r.t. P0. If we add Q and R w.r.t. P , then their sum (w.r.t. P ) is
the third point SP intersecting the line through P and S. But we also can write S as being the
third intersection point of E and the line through P and SP , and write S0 =SP +P0

P . Hence

SP =Q+PR=S0−P0P =Q+P0R−P0P

or in other words, to add Q and R w.r.t. P , you can add them w.r.t. P0 and then substract P
w.r.t. P0 from it. In the world of C/L this is much easier: Suppose we choose z as zero element
rather than 0. If we compute x + y w.r.t. this zero element, actually we first substract z from
both elements, then add them as usual, and finally add z to the outcome. In formula

x+z y= (x−0 z)+0 (y−0 z) +0 z= x+0 y−0 z.

This gives rise to another (formal) definition of an Elliptic Curve:

Definition 3.4. An Elliptic Curve over a field k is a smooth nonempty projective curve E=E(k)
of genus 1 together with a given zero point P ∈E, and what is irreducible as a variety.

As seen above, there is a natural group law on E such that the given rational point P is the
zero element of this group. Then there is a isomorphism (of algebraic curves preserving the
group law) between this curve E and a curve E ′ in Weierstrass form. When looking at this nat-
ural group law, one can see that the group is abelian.

Theorem 3.5. (Mordell-Weil) Let E be an elliptic curve with rational point 0E and suppose
0E is defined over Q. Then the group of points in E defined over Q is finitely generated.

The proof of this theorem is too complicated to put in this thesis, but can be found in J)
part VIII (p 189-240). It uses the height of points on E/Q, what will be introduced in the next
section. A consequence of the Mordell-Weil theorem is that as a group, E(Q)B T⊕Zr where T

is the (finite) torsion subgroup of elements of finite order, and r∈Z>0 is the rank of E(Q).
If we go back to the curve

E:x3 + y3 = dB C:Y 2 =X3− 432d2
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over R it looks like one circle. Over Q it is a subgroup, and if the rank of it is at least 1, the
subset is dense: In every open subset of the real curve there are rational points. This is easy to
see in the world of C/L on where the real subset behaves like a circle. Then the rational subset
is generated by one or more points, and running this over the circle clearly gives a dense subset
on the circle. This motivates to write down an isomorphism sending a point on E (or on C) to
R/Z preserving the group law.

If that is possible, one can think of the following method to find ABC-triples: Start with a
number d which is the sum of two (possible negative) integer cubes. This sum gives rise to a
point on E. If that point is not a torsion point, it generates a subgroup of E(Q) isomorphic to
Z, and topologically one can get as close to the zero point 0E = (− 1: 1: 0) as one wants. A point

P = (
p

r
:
q

r
: 1) close to 0E gives rise to the equation p3 + q3 = dr3 with pq < 0 while r is small com-

pared to |p| and |q |. We can assume without loss of generality that |p|> |q |, hence get the can-

didate ABC-triple (q3, dr3, p3). The quality of the triple (q3, dr3, p3) is at least

log(p3)

log r(dp3q3r3)
>

3log p

log(dpqr)

This is larger than 1 if p > dr , and after enough research such points (p: q: r) can be discovered,
just by repeatedly adding the initial starting point to itself. Another way to achieve this is by
associating a real number α to the initial point. Then one tries to find integers m, n such that
nα≈m and for each irrational α∈ [0, 1) it is possible to find m, n such that |mα−n|6 1

|n| . So it

is a good question to ask that given |mα− n|< ε, what do we know about the associated
q

r
? To

answer this question, the following result is useful:

Theorem 3.6. Let d>0 and Ed: x
3 + y3 = d be an elliptic curve over R. Then the homeomor-

phism (of Euclidean topological spaces)

ϕd:Ed� R/Z, (x, y)	 ∫

−∞
x dt

d− t33
√ 2

∫

−∞
+∞ dt

d− t33
√ 2

+Z

preserves the group law.

Proof. We need to prove that ω =
dx

3y2
=

dy

3x2 is an invariant differential on Ed. Hence let Q ∈Ed
and define

τQ:Ed� Ed, P	 P +Q

be the “translation-by-Q-map.” Then to prove: τQ
∗ω = ω, where τQ

∗ is the automorphism induced
by τQ on C(Ed), the function field of rational functions defined over the algebraic closure of R.
This automorphism is defined by

(P	 f(P ))	 (P	 f(P +Q)).

Since ω can be written as a formal expression g(t)dt for some variable t, this τQ
∗ω is well defined

as (τQ
∗ (g))(t)dt.

Since Ed is a curve, the set of differential forms on Ed is a one-dimensional vectorspace over
C(Ed), so there is a function aQ∈C(Ed)

∗ such that τQ
∗ω= aQω. Their associated divisors satisfy

D(aQ) =D(τQ
∗ω)−D(ω)= τQ

∗D(ω)−D(ω)

where D(ω) = D(g(t)dt) = D(g(t)) =
∑

P∈Ed
ordP (g) and τQ

∗D(ω) =
∑

P ∈Ed
ordP+Q(g). Now

τQ
∗D(ω)−D(ω) is equal to 0 because of the following:
Let P = (x0, y0)∈Ed. Then

ω=
d(x− x0)

3y2
=− d(y− y0)

3x2
.

Since Ed is smooth, P ∈Ed cannot be a pole. We have a bijection

Ed(R)� P1(R), (x: y: 1)	 (x: 1),

so ordP (x− x0) = 1 if P � 0Ed
and y(P )� 0. In the case y(P ) = 0 we have ordP(x− x0) = 3, but

then the denominator has a zero of order 2 in P . In either case,

ordP(ω) = ordP(x− x0)− ordP(3x2)− 1 = 0.
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If P = 0Ed
, then let t be an uniformizer at 0Ed

. Since

ord0Ed
(x) = ord0Ed

(y)= 3,

x= t−3f , y= t−3g

for some f , g regular at 0Ed
. Now

ω=
dx

3y2
=

(

− 3t−4f + t−3f ′

3t−6g2

)

dt=
t3f ′− 3t2f

3g2
.

But f ′ is the derivative of a rational function hence regular at 0Ed
, so the function

t3f ′− 3t2f

3g2
is

regular and does not vanish at 0E, so ord0Ed
(ω)= 0.

So aQ neither has zeroes nor has poles, hence is constant and can be seen as a complex
number. Consider the map

Ed� P1, Q	 (aQ: 1)

what is rational from Ed to P1 since aQ can be expressed as a rational function of x(Q) and

y(Q). But it is not surjective since both (1: 0) and (0: 1) aren’t in the image of this map. By
algebraic geometry, a morphism between curves either is surjective, or is constant. So in this
case it is constant. So

∀Q∈Ed: aQ= a0Ed

but τ0Ed
is the identity on Ed hence aQ= 1. �

Remark 3.7. These integrals - called elliptic logarithms - are not exactly computable. But for
the purpose of finding approximate linear dependencies between such numbers it suffices to get a
good numerical approximation. There are several ways to get good numerical approximations to
these numbers. An algorithm which doubles the accuracy of the approximation on each iteration
uses the Arithmetic-Geometric Mean , see K).

Now it has become easy to proof theorem 1.1.

Corollary 3.8. (theorem of Diophantus) The difference between two positive integer cubes
also is the sum of two positive rational cubes.

Proof. Let a3− b3 = d where a> b> 0<d all integers. Then P =(a,− b) is on the curve

Ed:x
3 + y3 = d.

Since the point
(

d
3
√

, 0
)

is an inflection point, by theorem 3.6, ϕd
((

d
3
√

, 0
))

=
2

3
, so since the y-

coordinate of P is negative, ϕd(P )∈
(

2

3
, 1
)

. Hence there is some multiple m∈Z such that

ϕd(m ∗P )∈
(

1

3
,
2

3

)

and the point m ∗P has positive rational coordinates. �

Remark 3.9. This theorem also holds when starting with d= a3 + b3 unless ab(a− b) = 0. In all
other cases, the discovered point (a, − b) resp. (a, b) are points of infinite order. The proof of
this claim is an exercise in a course of Elliptic Curves, and it is for example written as exercise
in L).

When we start with an initial point P = (a: b: 1) on Ed, the quest for finding nice ABC-triples
now restricts to associate a real number αP ∈ R/Z to P and find integers m, n such that
|mαP − n| becomes very small. Since this also is a numerical approximation, it suffices to give a
numerical approximation of αP . But what does it mean for ABC-triples when we already know
that |mαP −n|<ε?

To answer that question one needs to know what a small distance to 0 means for the value
x(m ∗P )

z(m∗P )
. So one is interested in ϕd

−1(ε). We already have the map σd from

Cd:Y
2Z =X3− 432d2Z3
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to Ed defined by

(X:Y :Z)	 (36dZ +Y : 36dZ −Y :X)

and for Ld the lattice associated with Cd by the Uniformization Theorem the Weierstrass map

℘: z+Ld	 (℘(z): ℘′(z): 1)

but it is in general not true that 1∈Ld. However, for this particular family of elliptic curves the
lattice has a real period denoted αd and we need a map · αd from R/Z to R/αdZ that multi-
plies every element with αd. The image of the Weierstrass map ℘ is an elliptic curve of the
shape

Cd
′: y2z= 4x3 + g2xz

2 + g3z
3

and we need to multiply x and y by 4 to go to

Cd: y
2z= x3 + 4g2xz

2 + 16g3z
3

where g2 = 0 and g3 = − 27d2. So we have the following homeomorphisms preserving the group
law:

·αd: R/Z� R/αdZ x	 αdx

℘Ld
|R: R/αdZ� Cd

′ z	 (℘Ld
(z): ℘Ld

′ (z): 1)

· 4: Cd
′� Cd (x: y: z)	 (4x: 4y: z)

σd: Cd� Ed (X :Y :Z)	 (36dZ +Y : 36dZ −Y : 6X)

ϕd: Ed� R/Z (x: y: z)	 ∫

−∞
x

z
dt

d− t33
√ 2

∫

−∞
∞ dt

d− t33√ 2

+Z

and ϕd ◦ σd ◦ · 4 ◦ ℘Ld
◦ ·αd is the identity on R/Z. Note that in the definition of ϕd, if z= 0, the

term
x

z
is ∞ and the integral becomes 1 + Z= 0 + Z, so it indeed maps 0Ed

to 0 +Z. So for any

ε∈R/Z,

ϕd
−1(ε)= (σd◦ · 4 ◦ ℘Ld

◦αd)(ε).

It is clear that ϕd
−1(z) is singular at z = 0 since ϕd(∞) = 0, so we need the Laurent series of

ϕd
−1(z) around z= 0. To determine this, first note that for z ∈R/αdZ we have

z	 (℘(z): ℘′(z): 1)	 (4℘(z): 4℘′(z): 1)	 (36d+ 4℘′(z): 36d− 4℘′(z): 24℘(z)).

In affine coordinates the latter image becomes
(

9d+ ℘′(z)
6℘(z)

,
9d− ℘′(z)

6℘(z)

)

Since
9d

6℘(z)
is regular at z = 0,

9d+ ℘′(z)

6℘(z)
has a simple pole at z = 0 with residue

− 2

6
=− 1

3
. Hence

ϕd
−1(z) has a simple pole at z= 0 with residue − 1

3αd
. This proves

Lemma 3.10. For all P ∈ Ed, integers m, n ∈ Z, real ε > 0 and ϕd(P ) = αd,P there is a δ > 0
only depending on ε and going to 0 if ε→ 0 such that

|mαd,P −n|<ε� ∣

∣

∣

∣

x(m ∗P )

z(m ∗P )

∣

∣

∣

∣

>
1

3αdε
− δ1

The error term δ1 is needed since
9d+ ℘′(z)

6℘(z)
is not exactly equal to − 1

3(αdz)
. In fact, it is equal to

− 1

3
(αdz)−1 +2(αdz)3 +


It is possible to tell more about αd:

Proposition 3.11.
∫

−∞
∞ dt

d− t33
√ 2 = 3αd= 3

2

d

3
√

α2.
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Proof. To prove the first equality, one computes

ϕd

((

d

2
3

√

:
d

2
3

√

: 1

))

=
1

2

in an alternative way. The easy way is to use that the point

(

d

2
3
√

:
d

2
3
√

: 1

)

is the point of order

2 at Ed, so the integral must be equal to
1

2
. But it is also possible to compute the integral by

computing its derivative at the same point. Multiplied with the derivative of ϕd
−1 at

1

2
it must

be equal to 1 since the composition of these inverse functions is the identity. Clearly

ϕd
′
((

d

2
3

√

:
d

2
3

√

: 1

))

=

1

d− d

2

3
√ 33

√

2

∫

−∞
∞ dt

d− t33
√ 2

=

(

2

d

)
2

3

∫

−∞
∞ dt

d− t33
√ 2

On the other side, the derivative of the affine x-coordinate of σd◦ · 4 ◦ ℘Ld
◦αd is equal to

αd ·
(

9d+ ℘′(αdz)
6℘(αdz)

)′
=
℘(αdz)℘′′(αdz)− (℘′(αdz))2− 9d℘′(αdz)

6(℘(αdz))2
αd

Now from the theory of elliptic curves with in this case g2 = 0:

℘′′(αdz) = − 6
∑

w∈Ld

1

(z −w)4
= 6℘(αdz)

2− 1

2
g2 = 6℘(αdz)

2,

(

ϕd
−1
)′
(

1

2

)

=
6(℘(

αd

2
))3− (℘′(αd

2
))2− 9d℘′(αd

2
)

6(℘(
αd

2
))2

αd.

For a specific computation, a numerical example is needed, and for this proof first take d=2:
Then the order 2 point is (1: 1: 1), so

ϕ2
′ ((1: 1: 1)) =

1
∫

−∞
∞ dt

2− t33
√ 2

On the other side, (℘(
α2

2
): ℘′(

α2

2
): 1) is the order 2 point from the curve

C2
′: y2z= 4x3− 27 · 22z3

hence satisfies y= 0, 4x3 = 108, so is the point (3: 0: 1). This makes ℘(
α2

2
)= 3, ℘′(

α2

2
)= 0. So

6(℘(
α2

2
))3− (℘′(

α2

2
))2− 9d℘′(

αd2

2
)

6(℘(
α2

2
))2

α2 = ℘
(

α2

2

)

α2 = 3α2,

3α2 · 1
∫

−∞
∞ dt

2− t33√ 2

= 1

making the equality true for d= 2.

For d arbitrary the order 2 point on the curve Cd
′: y2z = 4x3 − 27d2z3 is

(

3
(

d

2

)2
3

√

: 0: 1

)

hence

(ϕd
−1)′

(

1

2

)

=αd · 3
(

d

2

)2
3

√

On the other hand

ϕd
′
((

d

2
3

√

:
d

2
3

√

: 1

))

=

(

2

d

)
2

3

∫

−∞
∞ dt

d− t33
√ 2

,

3αd

(

d

2

)
2

3

·

(

2

d

)
2

3

∫

−∞
∞ dt

d− t33
√ 2

=
3αd

∫

−∞
∞ dt

d− t33
√ 2

= 1
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which implies the first equality. To finish the proof it suffices to determine
∫

−∞
∞ dt

d− t33√ 2

knowing
∫

−∞
∞ dt

2− t33
√ 2 = 3α2:

∫

−∞

∞ dt

d− t3
3
√ 2 =

∫

−∞

∞ dt
(

2− 2t3

d

)(

d

2

)

3

√

2

=

∫

−∞

∞ dt

(

d

2

)
2

3 · 2−
(

2

d

3
√

t

)3
3

√

2

=

∫

−∞

∞
(

2

d

)
2

3
dt

2−
(

(

2

d

)
1

3
t

)3

3

√

√

√

√

2

=

(

2

d

)
1

3
∫

−∞

∞
d

(

(

2

d

)
1

3
t

)

2−
(

(

2

d

)
1

3
t

)3

3

√

√

√

√

2

=

(

2

d

)
1

3
∫

−∞

∞ dt

2− t3
3
√ 2

So 1=
3αd

∫

−∞

∞ d t

d − t3
3√ 2

=
3αd

(

2

d

)

1

3
∫

−∞

∞ d t

2− t3
3√ 2

=
3α2

∫

−∞

∞ d t

2− t3
3√ 2

hence αd=
2

d

3
√

α2. �

Hence the real period of the lattice associated with Ed is equal to
∫

−∞
∞ dt

3 d− t33
√ 2 and is d

3
√

as small as the real period of the lattice associated with E1. From numerical analysis

α2 = 1.40218	
Remark 3.12. (link with ABC-triples) If we have a point “close to 0” the claim in lemma
3.10 tells what one can expect for the quality of the candidate ABC-triple associated with the
said point. Suppose we have an elliptic curve Ed: x

3 + y3 = dz 3 and a point P ∈ Ed. We run
through the set {P , 2 ∗P , 3 ∗P ,	 } to find integers m> 0 such that m ∗P lies close to 0Ed

. Sup-

pose m ∗ P = (pm: qm: rm). Then pm
3 + qm

3 = drm
3 and max (|pm|, |qm|) is large compared with

drm. To be precise,

∀δ > 0: ∃M ∈R>0: ∀m>M :

(

|mαP −n|< 1

a|n|

)�(

max (|pm|, |qm|)
drm

>
a|n|
3αd

(1− δ)

)

The left hand side can be achieved for example by creating the continued fraction (see subsec-
tion 2.4.1) associated with αP = ϕd(P ) where a is sufficiently small. Also LLL will work finding
m, n (and determining a) and is very useful when starting with more than one point P , if Ed
has rank higher than 1. In that case, linear combinations of generating points with small coeffi-
cients can come much closer to 0Ed

. See chapter 4 for details.
The only question left is how large log C = log (max (|p|, |q |)3) grows when m, n grows. The

answer to this question is described in the following section.

3.2 Heights of a point

Let E be an elliptic curve over Q and P ∈ E(Q) be written as P = (x: y: z). The (absolute)
height H(P ) of P has two equivalent definitions:

1. H(P ) = max (|x′|, |y ′|, |z ′|) where (x′: y ′: z ′) are coordinates chosen such that x′, y ′, z ′ ∈Z

with gcd(x′, y ′, z ′) =1.

34 A short introduction to Elliptic Curves



2. H(P )=max (|x|∞, |y |∞, |z |∞) ·∏
p prime

max (|x|p, |y |p, |z |p).

The first definition only works for integer coordinates on P , while the second definition works
for any choice of coordinates (x: y: z) in P2(Q) and even is independent of the field k over which
E ∋ P is defined over, as long as k is a finite field extension of Q. But if k � Q the absolute
values are defined over prime elements of Ok, the ring of integers over k, multiplicities must be
counted and the (positive real) [k: Q]-th root must be taken. Also the absolute value | · |∞ has
extensions in k⊃Q, depending on the chosen embedding k� C.

All I write in this section holds for E defined over an algebraic number field, and the details
of it can be found in several books introducing elliptic curves, for example in J) part VIII chap-
ters 5, 6 and 9 (p 205-220, 227-233). But for now I restrict only to Q.

A morphism of degree d over Q is a map

f :Pm(Q)� Pn(Q), P	 (f0(P ):	 : fn(P ))

where f0(P ),	 , fn(P )∈Q[X0,	 , Xm] are homogeneous of degree d with no common zero except
(0,	 , 0) in the algebraic closure of Q.

Theorem 3.13. Let f : Pm(Q)� Pn(Q) be a morphism of degree d, then there are constants
C1 and C2 such that

∀P ∈Pm(Q):C1H(P )d6H(F (P ))6C2H(P )d

For example, take

σd:Cd� Ed, (X:Y :Z)	 (36dZ +Y : 36dZ −Y : 6X)

For each d this is a morphism of degree 1, so there are constants M and N such that for all
points P ∈Cd we have M ·H(P )6H(σd(P )) 6N ·H(P ). Likewise

σd
−1: (x: y: z)	 (12d · z: 36d(x− y):x+ y)

is of degree 1. So analysis about the heights of points on Ed is nearly equivalent with analysis
on the corresponding points of Cd.

Proof. (upper bound)
Write P = (x0:	 : xm), F = (f0:	 : fn), and let | · | be any absolute value defined over Q, so it

is either the standard absoulte value max (x,−x) or a p-adic absolute value p−vp(x). Let

|P | = max
06i6m

|xi|,
|F (P )| = max

06j6n
|fj(P )|,

|F | = max {|a|: a is a coefficient of some fj},
H(F ) 6 |F |∞ ·

∏

p prime

|F |p.

Let ε(| · |) be 1 if | · |= | · |∞ and ε(| · |p)= 0 for all prime numbers p. Then for all t1,	 , tr ∈Q,

|t1 +
 + tr |6 rε(|·|)max (|t1|,	 , |tr |).
For an absolute value | · | we have

|fi(P )|6C1
ε(|·|)|F | · |P |d

where C1 is the number of terms in fi, being at most the number of monomials of degree d in
m+ 1 variables. Running through 0 6 i6n we get

|F (P )6C1
ε(|·|)|F | · |P |d

Multiply over all absolute values defined over Q gives the upper bound

H(F (P )) 6C1H(F )H(P )d

(lower bound)
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By the Nullstellensatz M), the ideal generated by f0, 	 , fn in Q[X0, 	 , Xm] contains some
power of Xi for each i∈ {0,	 , m} since f0,	 , fn have a common zero only at (0,	 , 0). So there
is an integer e> 0 such that

Xi
e=
∑

j=0

m

gi,jfj

for some polynomials gi,j. Since we can discard all terms which are not homogeneous of degree e
we can assume each gi,j is homogeneous of degree e − d. Define |G| = max {|b|: b is a coefficient
of some gi,j} for each absolute value | · | and

H(G)6 |G|∞ ·
∏

p prime

|G|p.

Recall P = (x0:	 :xm). The equations for Xi
e imply that for all i:

|xi|e= |xie|=
∣

∣

∣

∣

∣

∑

j=0

n

gi,j(P )fj(P )

∣

∣

∣

∣

∣

6C2
ε(|·|)max {|gi,j(P )|: 06 j6n}|fj(P )|

Maximize over i:

|P |e6C2
ε(|·|)

max {|gi,j(P )|: 0 6 i6m, 0 6 j6n}|F (P )|
Each gi,j has degree e− d hence by the triangle inequality

|gi,j(P )|6C3
ε(|·|)|G‖P |e−d

Now substitute the triangular inequality in the upper bound for |P |e and multiply by |P |d−e to
get

|P |d6C4
ε(|·|)|G‖F (P )|

Multiply over all absolute values to get the desired lower bound. �

Definition 3.14. For the rest of this section I need the following definitions:

i. (big-O-notation) f(x)= g(x) +O(1)� ∃C1, C2∈R, ∀x:C1 6 f(x)− g(x) 6C2.

ii. Let E be an elliptic curve defined over Q and f : E� C be a function in C(E). Then
define a function also denoted f as f : E� P1, P	 (f(P ): 1) if f is regular at P and
f(P ) = (1: 0) if P is a pole of f.

iii. (absolute logarithmic height) The absolute algorithmic height is defined as h: Pn� R,

h(P )= logH(P )> 0 where the inequality comes from the fact that H(P )> 1 for all P.

iv. The height on E relative to f is defined as the function hf:E� R, hf(P )= h(f(P )).

Note that the set {Q ∈E:Hf(P ) 6C} is finite for any non-constant function f and for any con-

stant C. This is true since f gives a finite-to-one map of this set to {Q ∈ P1(Q): H(Q) ∈ eC}
and that set is finite since points in P1(Q) are given by coordinates (a: b) with a, b ∈Z coprime.
Then H((a: b))=max (|a|, |b|). But this claim also holds for any Pm(k).

Theorem 3.15. Let E be an elliptic curve defined over Q and f ∈ Q(E) be an even function
(i.e. f ◦ · (− 1) = f). Then for all points P , Q∈E:

hf(P +Q)+ hf(P −Q)= 2hf(P )+ 2hf(Q) +O(1)

The constants implied by O(1) depend on E and f, but not on P and Q.

Proof. Suppose E is in short Weierstrass form E: y2 = x3 + ax + b and start with the function

x: (a: b: 1)	 a.

Then hx(0E) = 0, hx(−P ) = hx(P ), so the result holds if 0E ∈ {P , Q}. If P =Q= (x1, y1) we use
the duplication formula to get

x(P +Q)=

(

3x1
2 + a

2y1

)2

− 2x1,

36 A short introduction to Elliptic Curves



a degree 4 equation. So

hx(2P )− 4hx(P ) = log(max (|(3x1
2 + a)2− 8x1y1

2|, 4y12))− 4log x1

= log(max (|(3x1
2 + a)2− 8x1(x1

3 + a ·x1 + b)|, 4(x1
3− a ·x1 + b)))− 4log x1

= log(max (x1
4 +O(x1

2), 4O(x1
3)))− 4log x1 =O(1).

So the claim also holds for 0E ∈{P +Q,P −Q}.
For P � Q, write x(P ) = (x1: 1), x(Q) = (x2: 1), x(P + Q) = (x3: 1) and x(P − Q) = (x4: 1).

Note that x1� x2 since otherwise P =±Q. By the addition formula

x3 =

(

y(Q)− y(P )

x2− x1

)2

− x1−x2,

x4 =

(

y(Q) + y(P )

x2− x1

)2

− x1−x2.

The purpose of the next computation is to express x3 + x4 and x3x4 in terms of x1 + x2 and
x1x2:

x3 + x4 =
(y(Q)+ y(P ))2 + (y(Q)− y(P ))2

(x2−x1)2
− 2(x1 +x2)

=
2y(P )2 +2y(Q)2− 2(x1 + x2)(x2− x1)2

(x2− x1)2

=
2x1

3 +2ax1 +2b+2x2
3 +2ax2 + 2b− 2(x1

3− x1
2x2− x1x2

2 +x2
3)

(x1 + x2)2− 4x1x2

=
2x1x2(x1 +x2) +2a(x1 + x2)+ 4b

(x1 + x2)2− 4x1x2

=
2(x1 + x2)(a+ x1x2)+ 4b

(x1 + x2)2− 4x1x2

and

x3x4 =

(

(y(Q)+ y(P ))2

(x2− x1)
2 −x1− x2

)(

(y(Q)− y(P ))2

(x2− x1)2
−x1− x2

)

=
(y(Q)2− y(P )2)2

(x2−x1)4
− (x1 + x2) · 2(y(P )2 + y(Q)2)

(x2− x1)2
+(x1 + x2)

2

=
(x2

3 + ax2 + b− x1
3− ax1− b)2

(x2−x1)4

− 2
(x1 +x2)(x1

3 +x2
3 + a(x1 + x2)+2b)

(x2− x1)2
+

(x1 +x2)2(x2− x1)2

(x2− x1)2

=
((x2− x1)(x1

2 + x1x2 +x2
2 + a))2

(x2− x1)4

+
− 2(x1

4 + x1
3x2 + x1x2

3 + x2
4 + a(x1 +x2)2 +2b(x1 + x2))+ (x2

2− x1
2)2

(x2−x1)2

=
x1

4 +2x1
3x2 + 3x1

2x2
2 + 2x1x2

2 + x2
4 +2ax1

2 + 2ax1x2 +2ax2
2 + a2

(x2− x1)2

+
−x1

4− 2x1
3x2− 2x1

2x2
2− 2x1x2

3− x2
4− 2a(x1 + x2)2− 4b(x1 + x2)

(x2− x1)2

=
x1

2x2
2 + 2a(x1

2 + x1x2 + x2
2−x1

2− 2x1x2− x2
2)+ a2− 4b(x1 + x2)

(x1 + x2)2− 4x1x2

=
(x1x2)2− 2ax1x2 + a2− 4b(x1 + x2)

(x1 +x2)2− 4x1x2

=
(x1x2− a)2− 4b(x1 + x2)

(x1 +x2)2− 4x1x2
.

With these expressions we can define a map

(1:x1 + x2:x1x2)	 (1:x3 + x4:x3x4)
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as follows: Define

g:P2� P2, (t:u: v)	 (u2− 4tv: 2u(at+ v)+ 4bt2: (v− at)2− 4btu)

For t=1, u=x1 + x2, v= x1x2 this gives

((x1 + x2)
2− 4x1x2: 2(x1 + x2)(a+ x1x2)+ 4b: (x1x2− a)2− 4b(x1 +x2))

where the first coordinate is the denomerator of both expressions of x3 and x4, the second coor-
dinate is the numerator of the expression of x3 and the third coordinate is the numerator of the
expression of x4.

Let

G:E ×E� E ×E, (P , Q)	 (P +Q,P −Q)

and let σ:E ×E� P2 be the composition of the following:

E ×E� P1×P1 (P , Q)� (x(P ), x(Q))

P1×P1� P2 ((α1: β1), (α2, β2))	 (β1β2:α1β2 +α2β1:α1α2)

Then g ◦ σ = σ ◦ G. We need g to be a morphism (of degree 2.) To prove it, it suffices to prove
that the polynomials

u2− 4tv

2u(at+ v)+ 4bt2

(v− at)2− 4btu

do not have common zeroes (t, u, v) except (0, 0, 0). So suppose there is a common zero (t, u, v).
If t= 0, then

u2− 4tv = u2 =0,

(v− at)2− 4btu = v2 = 0,

hence (t, u, v) = (0, 0, 0). If t� 0, define x=
u

2t
. Then

u2− 4tv= 0� u2

4t2
=
v

t
� x2 =

v

t
.

If so, write the other two polynomials in terms of x after dividing them by t2:

ψ(x) =
2u

t
(a+

v

t
) +4b=4x(a+ x2) +4b=4x3 + 4ax+4b=0

φ(x) = (
v

t
− a)2− 4b

u

t
= (x2− a)2− 8bx=x4− 2ax2− 8bx+ a2 =0

So the duplication formula reads

2 ∗ (x, y)= (
3x2 + a

2y
)2− 2x=

9x4 + 6ax+ a2− 2x(4x3 + 4ax+ 4b)

4x3 + 4ax+4b
=
x4− 2ax2− 8bx+ a2

4x3 + 4ax+ 4b
=
φ(x)

ψ(x)
.

Hence if x is the x-coordinate of a point P0∈E, then
φ(x)

ψ(x)
= x(2 ∗P0). But ψ(x)= 4y2 hence it is

only zero at order 2 points. These zeroes are simple since E is regular everywhere while
φ(x)

ψ(x)
has

a pole in these points: 2 ∗ P0 = 0E. Hence φ(x) � 0 at these points. So ψ(x) and φ(x) has no
common zeroes, hence g is a morphism.

Now to prove

hx(P +Q)+ hx(P −Q)= 2hx(P )+ 2hx(Q)+O(1),

use theorem 3.13 and that g is a morphism:

h(σ(P +Q,P −Q))= h(σ ◦G(P , Q))= h(g ◦σ(P , Q))= 2h(σ(P , Q)) +O(1)

since g is a morphism of degree 2. To determine h(σ(P +Q)) let again x(P ) = x1 and x(Q) = x2.
Then

h(σ(P , Q))= h((1:x1 + x2:x1x2))
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and clearly this is equal to

h((x1: 1))+ h((x2: 1)) +O(1)= hx(P ) +hx(Q)+O(1)

since we only look over the field Q. The same holds for (P +Q,P −Q). So

hx(P +Q) +hx(P −Q)− 2hx(P )− 2hx(Q)

= h(σ(P +Q,P −Q)) +O(1)− 2h(σ(P , Q))−O(1)

= 2h(σ(P , Q)) +O(1)+O(1)− 2h(σ(P , Q))−O(1)

= O(1)

To finish the proof take f an arbitrary even function. The subfield in Q(E) of even functions is
exactly Q(x), so we have a rational function ρ:P1� P1 satisfying ρ ◦ x= f so

deg(f) = deg(x)deg(ρ)= 2deg(ρ),

hf = hx ◦ ρ= (deg(ρ))hx+O(1)=
1

2
deg(f)hx+O(1)

since x is a function of degree 2. �

Remark 3.16. Now the goal nearly is reached: If the term O(1) can be removed, it has become
a quadratic form and the height has become a norm on the lattice of points on E. So then LLL
can be used to find points close to 0E with height as low as possible. This can be done when
taking limits of the logarithmic height. Before defining it, I first need some other results.

Note that the elliptic curves I look at are of the form x3 + y3 = d, not in Weierstrass form.
But the degree 1 isomorphism σd transforms the corresponding elliptic curve in Weierstrass form
into this form and back, so this theorem also holds for elliptic curves in this form.

These results also holds for odd functions f since f2 is even, so hf2 = 2hf.

Corollary 3.17. Let E be an elliptic curve (in Weierstrass form) and f ∈Q(E) even.

a) For all Q∈E we have

∀P ∈E:hf(P +Q)6 2hf(P )+O(1).

Here O(1) depends on E, f and Q.

b) We have for all m∈Z and P ∈E:
hf(m ∗P )=m2hf(P )+O(1)

where O(1) depends on e, f and m but not on P.

Proof. a) Theorem 3.15 reads

hf(P +Q) +hf(P −Q)= 2hf(P )+ 2hf(Q)+O(1).

But here 2hf(Q) is a constant number and hf(P −Q)> 0, getting the inequality.

b) The corollary is trivial for m= 0, 1. The case m= 2 follows immediately from the proof of
theorem 3.15. Assume the claim is true for m = 0, 1, 	 , n. To check the claim for m = n + 1
replace (P , Q) by (m ∗P , P ). By theorem 17 we have

hf((n+ 1) ∗P ) = hf(n ∗P +P )

= 2hf(n ∗P ) +2hf(P )−hf((n− 1) ∗P )+O(1)

= hf(P )(2n2 +2− (n− 1)2)+O(1) = (n+1)2hf(P )+O(1)

�

Proposition 3.18. (Tate) Let E be an elliptic curve defined over Q and P ∈E. Let f ∈Q(E)
nonzero and even. Then

1

deg f
lim
n→∞

4−nhf(2n ∗P )
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exists and is independent of f.

Proof. For the existence of the limit, it suffices to prove that
{

1

deg f
4−nhf(2n ∗P )

}

n=0

∞

is a Cauchy sequence. That is, that for all ε > 0 there is an integer M such that for all m, n >
M :

∣

∣

∣

∣

1

deg f
4−mhf(2m ∗P )− 1

deg f
4−nhf(2n ∗P )

∣

∣

∣

∣

∞
<ε

By corollary 3.17 b there is a constant C > 0 such that for all Q∈E:

|hf(2 ∗Q)−− 4hf(Q)|6C

Let m,n> 0 be integers. Then

|4−nhf(2n ∗P )− 4−mhf(2m ∗P )| =

∣

∣

∣

∣

∣

∑

k=m

n−1

4−(k+1)hf(2
n+1 ∗P )− 4−nhf(2n ∗P )

∣

∣

∣

∣

∣

6
∑

k=m

n−1

4−(n+1)|hf(2n+1 ∗P )− 4hf(2
n ∗P )|

6
∑

k=m

n−1

4−(n+1)C 6
C

4m+1

For the independence of the choice of the function f take another non-constant even function
g ∈Q(E). Then

(deg g)hf − (deg f)hg = (deg g)(
1

2
(deg f)hx+O(1))− (deg f)(

1

2
(deg g)hx+O(1))

=
1

2
(deg f)(deg g)hx(1− 1)+O(1)(deg g− deg f)=O(1)

So for all n> 0:

(deg g)4−nhf(2n ∗P )− (deg f)4−nhg(2n ∗P )= 4−nO(1)

Taking the limit over n gives

lim
n→∞

(

1

deg f
4−nhf(2n ∗P )− 1

deg g
4−nhg(2n ∗P )

)

=
1

(deg f)(deg g)
lim
n→∞

(

(deg g)4−nhf(2n ∗P )− (deg f)4−nhg(2n ∗P )

)

=0

So the limit does not depend on the choice of the function f . �

Now it is time to give a height giving rise to quadratic forms:

Definition 3.19. The canonical height on an elliptic curve E(Q), denoted ĥ or ĥE is the func-
tion

ĥ:E� R, P	 1

deg f
lim
n→∞

4−nhf(2n ∗P )

for any non-constant even function f ∈Q(E).

Theorem 3.20. (Neron-Tate) Let ĥ be the canonical height on E(Q):

a) ∀P , Q∈E: ĥ(P +Q) + ĥ(P −Q) =2 ĥ(P )+ 2 ĥ(Q) (parallelogram law)

b) ∀P ∈E,m∈Z: ĥ(m ∗P )=m2 ĥ(P )

c) ĥ is even and we have a bilinear pairing

〈, 〉:E ×E� R, 〈P , Q〉=
ĥ(P +Q)− ĥ(P )− ĥ(Q)

2

40 A short introduction to Elliptic Curves



This pairing is called the Neron-Tate pairing.

d) Let P ∈E. Then ĥ(P ) > 0 and equality holds if and only if there is an integer n > 0 such
that n ∗P = 0E (iff P is a torsion point.)

e) Let f ∈Q(E) be an even function. Then (deg f) ĥ =hf +O(1).

Proof. e) In the proof of proposition 3.18 there is a constant C depending on f such that for
all n>m> 0:

|4−nhf(2n ∗P )− 4−mhf(2m ∗P )|6 C

4m+1

Let m= 0 and n→∞. Then we get

|(deg f) ĥ(P )− hf(P )|6 C

4
=O(1)

a)

ĥ(P +Q)+ ĥ(P −Q)− 2 ĥ(P )− 2 ĥ(Q)

= lim
n→∞

1

(deg f)4n

(

hf(2
n ∗ (P +Q))+ hf(2

n ∗ (P −Q))− 2hf(2
n ∗P )− 2hf(2

n ∗Q)

)

= lim
n→∞

1

(deg f)4n
O(1)= 0

b) Same argument as in a) with ĥ(m ∗ P ) − m2 ĥ(P ), or use a) using induction on m as in
the proof of corollary 3.17 b.

c) From linear algebra, a function satisfying the parallelogram law (proved in a)) is
quadratic.

d) Inequality: hf(P )> 0 for all f and for all P , so the limit cannot be negative.
Equivalence: If P is a torsion point, there is some n> 0 such that n ∗P = 0E. Since by b)

0 = ĥ(n ∗P )=n2 ĥ(P )

we have ĥ(P )= 0. If ĥ(P )= 0 for some P ∈E, then for all

n> 0: ĥ(n ∗P )=n2 ĥ(P )= 0

Now consider the set {0E , P , 2 ∗P , 3 ∗P ,	 }. If P is not a torsion point, this set is infinite while
by e) there is a C > 0 such that

hf(n ∗P ) = |(deg f) ĥ(n ∗P )− hf(n ∗P )|6C

But {Q∈E(Q):hf(Q)6C} is a finite set hence P has finite order. �

Remark 3.21. Part e) of the theorem imply that there is some number δ2> 0 such that for all
P ∈E we have

| ĥ(P )− h(P )|6 δ2.

This bound δ2 is called the Cremona-Prickett-Siksek height bound . In the case of other number
fields rather than Q this bound is caled the Silvermann-height-bound . Here I denote this bound
δ2 since in my main theorem I both use this δ2 and another bound δ1 from lemma 3.10.

Actual the Neron-Tate pairing has two different definitions. The definition I gave in the the-
orem is the easiest for computations, since then 〈P , P 〉 = ĥ(P ), but it often is defined without
dividing by 2. For example, Silvermann defines the pairing in his book J) page 233, as

〈P , Q〉= ĥ(P +Q)− ĥ(P )− ĥ(Q).

But for concrete computations it is better to define the Neron-Tate pairing as in the theorem
above, because we can use the Elliptic Regulator matrix

M = (〈Pi, Pj〉)16i,j6r
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where E has rank r and generator points P1, 	 , Pr. With this matrix M and a linear combina-
tion of points a1 ∗P1 +
 + ar ∗Pr we can define the vector a = (a1,	 , ar) such that

ĥ(a1 ∗P1 +
 + ar ∗Pr)= aMa⊤.

So using M we can do linear algebra on points on E using only the standard quadratic form
while still computing canonical heights. The determinant of M is called the elliptic regulator ,
denoted R=R(Ed/Q).

Now I can give an answer to the question how large log C = log (max (|p|, |q |)3) grows when
m,n grows, where now

m ∗P =(p: q: r), |m · ϕd(P )−n|6 1

a · |n|
for some a, n∈Z>0 and

(A,B,C)= (dr3,min (|p|3, |q |3),max (|p|3, |q |3))

an ABC-triple created from the elliptic curve Ed: x
3 + y3 = d. We know ĥ(m ∗ P ) =m2 ĥ(P ), so

H((p: q: r))≈ (H(P ))m
2
. This makes an expected quality of

logC

log r(ABC )
≈ 3log p

3log p− log
αd

3a · |n| + const.
≈ 3C1m

2

3C1m2− log (C2 ·m2)+C3
≈ 1+

const. · log logC
logC

The details of this approximations and the constants are the main result and come in the fol-
lowing chapter.
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Chapter 4

The Main Result

Now I have introduced all I need to prove the main result for finding ABC-triples using elliptic
curves. Recall that I define an elliptic curve Ed: x

3 + y3 = d and find points P1, 	 , Pr for some
r > 0 such that Ed(Q)/(Ed(Q)tor) is generated by P1, 	 , Pr. Then I can approximate 0Ed

by a
linear combination of P1, 	 , Pr and denote the point given by this linear combination by Q. In
section 3.1 I explained the relation of the distance between Q and 0Ed

and the quotient of the
coordinates of Q. In section 3.2 I explained the relation of the coefficients of the linear combina-
tion a1 ∗P1 +
 + ar ∗Pr and the size of the coordinates of Q. And in this chapter I will explain
how one can find Q using what I told in section 2.2. But first I explain what one can expect of
the quality one can get for ABC-triples discovered this way.

4.1 The Main Theorem

Theorem 4.1. (Main Theorem of this thesis) Let d > 0 be an integer such that the elliptic

curve Ed: x
3 + y3 = d · z3 has r> 1 linearly independent points P1,	 , Pr. Then there is a constant

number C > 0 depending only on d and the choice of the set of points P1, 	 , Pr, such that there
are infinitely many triples (pn, qn, rn)∈Z3, n> 0, of coprime positive integers, such that

(pn: qn: rn)∈Ed

and the associated ABC-triples (An, Bn, Cn)= (drn
3 ,− pn

3 , qn
3), n> 0, satisfy

q(An, Bn, Cn)> 1+
r log logCn−C

2 logCn

Proof. Associate αd,1,	 , αd,r ∈R/Z to the points P1,	 , Pr as in theorem 3.6 and take a lift of
them into R, also denoted αd,1, 	 , αd,r. Then find approximate linear dependencies of 1 and
these numbers, using a quadratic form involving the canonical height as in theorem 3.20 c).

We then need to define for any N > 0 the lattice LN = {(a0, 	 , ar): a0, 	 , ar ∈ Z} with
quadratic form

qN((a0,	 , ar))= ĥ(a1 ∗P1 +
 + ar ∗Pr)+N · (a0 + a1αd,1 +
 + arαd,r)
2.

The determinant of LN is equal to the determinant of the matrix











0 	 0 N
√

〈P1, P1〉 	 〈P1, Pr〉 N
√

αd,1� � �
〈Pr, P1〉 	 〈Pr, Pr〉 N

√
αd,r











hence is equal to R N
√

. Here R= (det((〈Pi, Pj〉)16i,j6r) is the elliptic regulator of Ed when r is
the actual rank of Ed and when P1,	 , Pr is a set of generators of the group Ed(Q)/(Ed(Q)tor).
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So by Minkowski’s theorem (see 2.5) L has a nonzero vector x with

q(x)6 (r+ 1) · d(L)
2

r+1 = (r+ 1)R
2

r+1N
1

r+1.

Such an x = (a0,	 , ar) satisfies two inequalities:

ĥ(a1 ∗P1 +
 + ar ∗Pr) 6 (r+ 1)R
2

r+1N
1

r+1,

N · (a0 + a1αd,1 +
 + arαd,r)
2 6 (r+ 1)R

2

r+1N
1

r+1.

The next step is to translate this result to the quality of such a candidate ABC-triple associated

with the shortest vector x. The upper bound on ĥ(a1 ∗P1 +
 + ar ∗Pr) combined with theorem
3.20 e) says that the point (p0: q0: r0) associated with an optimal solution x∈L satisfies

log(max (|p0
3|, |q03|)) 6 3h(a1 ∗P1 +
 + ar ∗Pr)6 3(r+ 1)R

2

r+1N
1

r+1 + δ2,

where I take the logarithmic height (see definition 3.14 iii) and δ2 is the Cremona-Prickett-
Siksek height bound, depending only on Ed.

The other inequality gives an upper bound on the distance of the resulting point with 0Ed
:

|a0 + a1αd,1 +
 + arαd,r |6 r+ 1
√

·R
1

r+1N
−r

2r+2.

This upper bound combined with remark 3.12 tells that

max (|p0|, |q0|)
r0

>
N

r

2r+2

3αd r+ 1
√

·R
1

r+1

(1− δ1)

for some δ1 with upper bound depending only on P1, 	 , Pr, and where αd is the same αd as in
proposition 3.11. We always can replace a point by minus the point, reversing p0 and q0, to get
|p0|< |q0|. Then

q(dr0
3, |p0|3, q03) =

log(q0
3)

log r(dr0p0q0)

>
log(q0

3)

log
(

q0
3 · r(d)r0

q0

)

= 1 +
log
(

q0

r(d)r0

)

log
(

q0
3 · r(d)r0

q0

)

> 1 +
log
(

q0

r(d)r0

)

log(q0
3)

Now the numerator log
(

q0

r0
· 1

r(d)

)

can be estimated below by

log





N
r

2r+2

3αd r+1
√

·R
1

r+1

· 1− δ1
r(d)



=
r

2r+ 2
logN − 1

r+ 1
logR− log

(

3αdr(d) r+ 1
√

1− δ1

)

and the denominator log(q0
3) can be estimated above by 3(r+ 1)R

2

r+1N
1

r+1 + δ2. So we get

1+
log
(

q0

r(d)r0

)

log(q0
3)

>

r

2r+ 2
logN − 1

r+ 1
logR− log

(

3αdr(d) r+1
√

1− δ1

)

3(r+1)R
2

r+1N
1

r+1 + δ2

.
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Now I want to express the numerator in terms of log the denominator, so I need to replace the
adding with + δ2 by a multiplication with (1 + δ3) with δ3 a (not too) small non-increasing
number if N increases. This gives, while still not increasing the numerator and not decreasing
the denominator,

r

2r+ 2
logN − 1

r+1
logR− log

(

3αdr(d) r+1
√

1− δ1

)

3(r+1)R
2

r+1N
1

r+1 + δ2

>

r

2r+ 2
logN − 1

r+1
logR− log

(

3αdr(d) r+1
√

1− δ1

)

3(r+1)R
2

r+1N
1

r+1(1 + δ3)

=

r

2

(

log

(

3(r+ 1)R
2

r+1N
1

r+1(1+ δ3)

)

)

− logR− r

2
log(3(r+ 1)(1 + δ3))− log

(

3αdr(d) r+1
√

1− δ1

)

3(r+1)R
2

r+1N
1

r+1(1 + δ3)

>

r

2

(

log

(

3(r+ 1)R
2

r+1N
1

r+1(1+ δ3)

)

)

− δ4

3(r+1)R
2

r+1N
1

r+1(1 + δ3)

where δ4 is a real number, not increasing when N increases. In each step of the computations
above, the numerator did not increase and the denominator did not decrease, but now we have

got a function of the shape
r

2
log log x− δ4

log x
where

x= exp

(

3(r+1)(1+ δ3)R
2

r+1N
1

r+1

)

.

So the quality, which already is at least 1 +
log
(

q0
r(d)r0

)

log(q0
3)

, also is at least 1 +
r

2
log log x− δ4

log(q0
3)

. Since x is

larger than q0
3, we therefore have

q(dr0
3, p0

3, q0
3)>

r

2
log log(q0

3)− δ4

log(q0
3)

Now one can define C =2δ4.

The last step is to create infinitely many such triples (drn
3 , |pn|3, qn3) satisfying the claim in

the theorem. Start with any value N0 > 0 and take a triple (dr0
3, q0

3, p0
3) corresponding to a

shortest vector x0. Then let N1 >N0 grow. By Minkowski and the fact that the determinant of
LN1

is equal to R N1

√
, the shortest nonzero vector of LN1

, denoted x1, satisfy

q(x1)6 (r+ 1)(R N1

√
)

2

r+1 =(r+1)R
2

r+1N1

1

r+1.

But if x1 = x0, the value of N1 cannot grow too large, since q(x0) will grow linear with N1 and
hence will fall outside the upper bound from Minkowski. So the vector x1 gives rise to another

ABC-triple (dr1
3, |p1|3, q13). Now there is an N2 > N1 such that x1 is not the shortest nonzero

vector of LN2, so LN2 has another nonzero shortest vector x2, giving rise to another ABC-triple

(dr2
3, |p2|3, q23), etcetera. This process can be continued infinitely many times, getting the infinite

sequence of ABC-triples satisfying the claim in the theorem. �

Corollary 4.2. Let d, Ed, r and P1, 	 , Pr be as in the main theorem. Then for all δ > 0 there
are infinitely many ABC-triples (An, Bn, Cn) = (drn

3 ,− pn
3 , qn

3) with n> 0 where (pn: qn: rn) ∈Ed
with integer coordinates and gcd(pn, qn, rn) =1 for all n> 0, such that

q(An, Bn, Cn)> 1+
r log logCn

2 logCn
(1− δ)
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Proof. For any δ > 0 one has

1 +
r log log(q0

3)−C

2 log(q0
3)

> 1+
r log log(q0

3)

2 log(q0
3)

(1− δ)

if q0 is sufficiently large. �

One also can be interested in the value of q0 one has to start with to satisfy the claim for a
certain δ. To find such a q0 one has to start with an N0 such that the inequality above holds,
hence such that the disturbing negative number from the proof of the Main Theorem

− δ4 =− logR− r

2
log(3(r+ 1)) + log(1− δ1)− log(3r(d)αd r+ 1

√
)− log

(

1 + δ3

)

is absolutely small compared to 3(r+1)R
2

r+1N0

1

r+1(1 + δ3). This happens when

r

2
log(3(r+ 1)R

2

r+1N0

1

r+1(1+ δ2))− δ4>
r

2
log(3(r+ 1)R

2

r+1N0

1

r+1(1+ δ3))(1− δ).

This inequality is equivalent with each of the following inequalities:

(

r

2
log

(

3(r+ 1)R
2

r+1N0

1

r+1

)

)

δ > δ4,

log

(

3(r+1)R
2

r+1N0

1

r+1

)

>
2δ4
rδ
,

3(r+ 1)R
2

r+1N0

1

r+1 > e
2δ4
rδ ,

N0 >
e

2(r+1)δ4
rδ

(3(r+1))r+1R2

=

(

R · (3(r+ 1))
r

2 · 1+ δ3

1− δ1
· 3r(d)αd r+ 1

√ )
2(r+1)

rδ

(3(r+ 1))r+1R2

= R
2(r+1)−2rδ

rδ

(

1 + δ3
1− δ1

·αdr(d)
)

2(r+1)

rδ

3
(r+1)(1−δ)

δ (r+1)
(r+1)(1+r−rδ)

rδ

After discovering the first vector x0 associated with a chosen N0 satisfying the inequality above,
one can proceed as in the end of the proof of the Main Theorem to find infinitely many such
triples.

Remark 4.3. There are several issues to note.

a) One also can be interested in the merit (see definition 2.1 part 2) of such a constructed
ABC-triple. This merit is equal to

m(An, Bn, Cn) = (q(An, Bn, Cn)− 1)2 · (logCn) · log logCn

>

(

r log log(qn
3)−C

2 log(qn
3)

)2

· (log(qn3)) · log log(qn3)

=
(r log log(qn

3)−C)2 · log log(qn3)
4 log(qn

3)

Or in terms of Nn (and δ2) from the theorem, the merit is at least

m(An, Bn, Cn) >
(r(log(r+ 1) +

2 log R+ log Nn

r+1
+ δ2)−C)2 · (log(r+1)+

2 log R+ log Nn

r+1
+ δ2)

4(r+1)R
2

r+1Nn

1

r+1 + δ2
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b) In practice the rank often is very small. Thanks to Noam D. Elkies and Nicolas F.
Rochers there are elliptic curves of this family known of rank up to 11, see N). The fol-
lowing table shows the smallest integer d> 0 for which the elliptic curve Ed/Q has rank r
for 06 r6 11.

rank smallest knownnumber d

0 1

1 6

2 19

3 657

4 21.691

5 489.489

6 9.902.503

7 1.144.421.889

8 1.683.200.989.470

9 349.043.376.293.530

10 137.006.962.414.679.910

11 13.293.998.056.584.952.174.157.235

So the smallest number d increases quickly when r grows. We want d to be small, so the
higher rank curves seems to be not very helpful for finding nice ABC-triples. In addition,
for r > 4 it is very hard to find the generators of a curve Ed with rank r. So in chapter 5
I only take examples with r6 3.

In the proof of the Main Theorem I more or less said how the algorithm to find ABC-triples
using Elliptic Curves goes. In the following section I explain the algorithm and say something
about its complexity.

4.2 The algorithm

The following algorithm gives infinitely many ABC-triples:

1. Pick a number d and define the elliptic curve

Ed:x
3 + y3 = d · z3� Cd: y

2z= x3− 432d2z3

(with rational zero points (1: − 1: 0) resp. (0: 1: 0)). Find as many linearly independent
points of Ed(Q) as possible, and let r be the number of these generators, the (expected)
rank of Ed. Denote these points

P1,	 , Pr= (x1: y1: 1),	 , (xr: yr: 1).

2. Pick a number N0> 0 and compute a good approximation of

αd=

∫

−∞

∞ dt

d− t3
3
√ 2

and for each point Pi, 16 i6 r, a good approximation of the associated real number

αd,i=

∫

−∞
xi dt

d− t33√ 2

αd
.

These numbers are irrational and Q-linear independent and lie between 0 and 1. Their
precision will depend on N0. Then find a shortest nonzero vector in the lattice LN0 =
{(a0,	 , ar): ai∈Z} with quadratic form

q: (a0,	 , ar)	 ĥ(a1 ∗P1 +
 + ar ∗Pr) +N0(a0 + a1αd,1 +
 + arαd,r)
2
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and denote this vector x0 =(a0,	 , ar). This can be done using LLL with the matrix

MN0 =











0 	 0 N0

√

〈P1, P1〉 	 〈P1, Pr〉 N0

√
αd,1� � �

〈Pr, P1〉 	 〈Pr, Pr〉 N0

√
αd,r











with standard quadratic form on the lattice generated by this matrix. Here the inner
products 〈Pi, Pj〉 are defined as in theorem 3.20 c. For more precision, multiply this
matrix with a large scalar M and round the entries of M ·MN0 to make them integers.

3. Compute a1 ∗ P1 + 
 + ar ∗ Pr ∈ Ed and express this point in coprime integer coordinats
(X: Y :Z). Then X3 + Y 3 = d ·Z3. Here X and Y are coprime, hence we have a candidate
ABC-triple (A0, B0, C0). Here C0 is the largest among |X3|, |Y 3|, |dZ 3| and A0 and B0 are
the other two among them.

4. Pick an Ni+1 > Ni, i > 0 such that xi is not the shortest vector in the lattice LNi+1 with
quadratic form defined as in step 2 in terms of Ni+1, and go to step 2.

Theorem 4.4. Each iteration of this algorithm needs a number of bit operations less than

quadratic in the length of the output. This output length is at most linear in N
1

r+1.

Proof. To pick d and to find r linearly independent generator points P1, 	 , Pr can be hard to
compute, but the computation time of this is constant, independent of N .

Now pick N . The precision of αd and αd,i, 1 6 i6 r must be given in at least the number of
bits N has. This precision easily can be given when computing αd and αd,i using 3.7.

Next is to find short nonzero vectors of the lattice L=Zr+1 with quadratic form

q((a0,	 , ar))= ĥ(a1 ∗P1 +
 + ar ∗Pr)+N · (a0 + a1αd,1 +
 + arαd,r)
2

using the LLL algorithm, see section 2.2. Now I need to determine the complexity of the LLL
algorithm applied to this problem. Choose a number c>

4

3
.

1. Check whether the initial flag is c-reduced: Start with the row vectors of M · MN as
basis. To compute MN0 one needs to compute

〈Pi, Pj〉=
ĥ(Pi+Pj)− ĥ(Pi)− ĥ(Pj)

2

There are
1

2
(r + 1)(r + 2) such computations, but that is a constant number. For one

computation one needs to compute the height of some point. This can be done right from
the definition 3.19 of the canonical height, and this way each iteration of doubling the
point adds two bits to the precision. The number of bits the entries of MN must be given
in must be at least equal to the number of bits N is given in, to make the computations
required to find the optimal solution being not corrupted. The hard part of this step is to
multiply N with a linear combination of the αd,i’s, with running time at most quadratic
with log N . With Gram Schmidt orthogonalization one checks whether the lattice given
by the row vectors of M ·MN is c-reduced, and that goes linear with logN .

2. Select a pivot and reduce the flag: Selecting a pivot, if any, takes at most r + 1 checks.

Then changing the basis goes by finding a new vector bj,2
′ computed using

〈bj,1, bj,2〉
〈bj,2, bj,2〉

,

where computing the denominator is easy after computing the numerator, since it is one
computation from part 1. One such interation multiplies the size of the flag by a factor at

most
1

c
+

1

4
=

4 + c

4c
, hence the number of iterations needed is logarithmic in the size of the

original flag.

3. If we have our c-reduced flag with first basis element b1, the shortest vector is in the box
{

∑

i=1

r+1

ribi: |ri|6 c
r

2

(

3c

4

)r+1−i
, 16 i6 r+ 1

}
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This box has at most
∏

i=1

r+1
(

1+ 2 · c
r

2

(

3c

4

)r+1−i
)

< 2r+1cr
2

elements, where the last inequality is a rough estimate. For each vector x = (a0, 	 , ar) in
the box we can just compute (a0,	 , ar) ·MN · (a0,	 , ar)⊤ and check whether this number
is minimal. The running time of one such computation is linear with log N . There are

less than 2r+1cr
2
such computations, a constant number.

After finding the optimal solution (a0,	 , ar) one needs to compute the coordinates of the point

a1 ∗P1 +
 + ar ∗Pr

with canonical height at most linear with N
1

r+1. So the size of the output is linear with N
1

r+1,

but the numbers are computed with multiplication of other numbers with size linear with N
1

r+1.
Hence to compute the coordinates one needs a number of bit operations at most quadratic with
the length of the output.

If we have the shortest vector, and have computed in the previous step what candidate ABC-

triple (A,B, C) is associated with this, the final step is to do trial division on
A

d

3
√

, B
3
√

and C
3
√

and the computation of each trial has a running time linear with the size of these numbers,

hence is at most linear with N
1

r+1.

So adding all this together the running time is at most quadratic with N
1

r+1. �

Remark 4.5. The hard part of this algorithm is the multiplication of two large numbers. Intu-
itively this has complexity quadratic with the size of this numbers, but there are known algo-
rithms which goes much faster than that.

The constant factor 2r+1 · cr2 can be avoided when one is happy with an approximate
optimal solution rather than the optimal solution. But this weakens the estimate of the quality
of the discovered candidate ABC-triples compared with the Main Result.

Sometimes one is not interested in an infinite sequence, but only in one or a few ABC-triples.
And often one wants N to be chosen in a specific way to satisfy some condition on the resulting
ABC-triple. The following problems can occur when d and Ed are given:

Find an ABC-triple (A, B, C) of bounded size: Suppose we want to have log C 6 Q.
Then use from the proof of the Main Theorem that for any given N ,

ĥ(a1 ∗P1 +
 + ar ∗Pr)6 (r+ 1)R
2

r+1N
1

r+1 =Q

So it often suffices to take N =
Qr+1

(r+ 1)r+1R2
, but in rare cases the optimal solution from there

gives a larger logarithmic height (due to the error term O(1).) But in that case, the discovered
ABC-triple has a small value for |a0 + a1αd,1 +
 + arαd,r | and is accidently a nice ABC-triple.

Find an ABC-triple (A, B, C) with a small value for
A

C
: Suppose we want

A

C
< ε.

Then by lemma 3.10, we want |a0 + a1αd,1 +
 + arαd,r |< ε

3αdd
+ O(1). During the proof of the

Main Theorem we got

|a0 + a1αd,1 +
 + arαd,r |6 r+1
√

·R
1

r+1N
−r

2r+2 =
ε

3αdd

so it often suffices to take

N =(
3αdd r+ 1

√
R

1

r+1

ε
)
2r+2

r =
(3αdd)

2r+2

r (r+1)
r+1

r R
r

2

ε
2r+2

r

In rare cases the distance can be larger, but then the height is very small, also giving a nice,
small ABC-triple.

Find an ABC-triple (A, B, C) with a large merit: To optimize the merit

m(A0, B0, C0)>
(r log log(p0

3)−C)2 · log log(p0
3)

4 log(p0
3)
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where C is the disturbing factor from the Main Theorem, one takes the derivative of this real-

valued function w.r.t. log(p0
3) to get

2(r log log(p0
3)−C)(log log(p0

3))+ (r log log(p0
3)−C)2− (r log log(p0

3)−C)2 · log log(p0
3)

4(log(p0
3))2

and finds a value of log(p0
3) such that this function equals 0. Then one recalls that

log(p0
3) 6 (r+ 1)R

2

r+1N
1

r+1 + δ1

and takes N = 2 · (log(p0
3))r+1

(r+1)r+1R2
. This factor 2 is required since we have

log(p0
3)+

3αd|p0|
|r0|

6 (r+ 1)R
2

r+1N
1

r+1 + δ1

and can expect to both terms on the left hand side to have the same size.

4.3 Some other results

The main result is not the only result I got from my method. In this section I give some other
results I got in my research.

4.3.1 Expanding the family of elliptic curves

Until now I only looked at elliptic curves of the shape X3 + Y 3 = d · Z3, but this family can be
expanded to the family of elliptic curves

Ea,b,c: a ·X3 + b ·Y 3 + c ·Z3 =0

But such a curve is only elliptic over Q when there is a rational point given. The unique real
point with z-coordinate 0, denoted Pz = (x0: y0: 0), is in general not rational anymore since we
need the cubic root of some integers. However, some of these elliptic curves have a rational
point with nonzero coordinates. If we denote this point P0, we have from section 3.1:

P +P0
Q=P +Pz

Q+Pz
(−P0)

where “ +Pz
” means adding with respect to Pz, still possible over R. To show that if such a

point P0 exists, there are more points in Ea,b,c/Q, use that P0 is not an inflection point. So the
tangent line on P0 intersects Ea,b,c on another point, say P . Since the coordinates of P0 are
nonzero, we can use affine coordinats and denote P0 =(x0, y0). Then the tangent line satisfies

y=− a ·x0
2

b · y02
x+ y0 +

a ·x0
3

b · y02

To find the intersection point with Ea,b,c we need to solve the cubic equation

(a− a3x0
6

b2y0
6 )x3 +3b(

a2x0
4

b2y0
4 (y0 +

a ·x0
3

b · y02
))x2 +
 = 0

where the coefficients of x1 and x0 are not important since we already know that x0 is a double
solution of this equation. So the solution x1 can be read from the first two coefficients of this
equation. By doing the same reversing x and y by all instances we also get y1:

(x1, y1) = (2x0 +
3a ·x0

4

b · y03− a ·x0
3 , 2y0 +

3b · y04
a ·x0

3− b · y03
)

These are rational functions in x0 and y0 hence prove that P = (x1, y1) ∈ Ea,b,c(Q). It is likely
that P is of infinite order in Ea,b,c(Q), but if we are unlucky, P is a torsion point.
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Also in Ea,b,c one can try to approximate Pz with a linear combination of generator points
P1,	 , Pr trying to find integers a1,	 , ar such that

a1 ∗P1 +P0
 +P0 ar ∗Pr
lie close to P0. So one can associate α1, 	 , αr ∈ R/Z to the generating points and associate
another α∈R/Z to Pz and try to find a0,	 , ar ∈Z such that

|a0 + a1α1 +
 + arαr−α|
is as small as possible. This can be done in the same way as done before, but here we use the
invariant differential ω=

dx

3b · y2 =
dy

3a · x2 . So we take the isomorphism

ϕ:Ea,b,c � R/Z

(x: y: 1) 	 ∫

x0

x dt

b(c− a · t3)3
√ 2

∫

−∞
∞ dt

b(c− a · t3)3
√ 2

Pz 	 ∫

x0

∞ dt

b(c− a · t3)3
√ 2

∫

−∞
∞ dt

b(c− a · t3)3
√ 2

where we now in the numerator have the lower border at x0 so the integral is negative when x <
x0. This isomorphism preserves the group law with respect to P0.

But surprisingly, proven results for irrational α for this problem are very weak. We only
know

Theorem 4.6. For all ε > 0 and given Q-linear independent reals α, α1, 	 , αr there is an
integer solution x1,	 , xr, y such that

|α1x1 +
 +αrxr+ y−α|<ε

This theorem follows immediately from the fact that the set {α1x1 + 
 + αrxr: x1, 	 , xr ∈ Z} is
dense in R. But this isn’t very helpful when finding nice ABC-triples. Note that Pz is of infinite
order with respect to P0 if and only if P0 is of infinite order with respect to Pz.

4.3.2 Approximate other points

Until now we only looked at the possibilities when approximating the point 0E, but it can be
possible to approximate other points. However, also this problem leads to the approximation of
a given real number α by a linear combination of given reals 1, α1,	 , αr. But if we approximate
a torsion point, hence a rational number α, the theory required for the main result still works.
This can be done by finding an approximate linear dependence of α, αd,1, 	 , αd,r where α is a
given rational number rather than 1. If one finds a solution (a0, a1, 	 , ar) with a0 such that
αa0 ∈Z, then we have a solution of the original problem. Actually such a solution can be better
since the determinant is smaller: It is multiplied with α since for determining the determinant
one can start with a map

(a0, a1,	 , ar)	 (αa0, a1,	 , ar)
of determinant α. In practice this improvement only works for α=

1

3
or α=

1

2
.

To see it for the case α=
1

3
is easy: Then one approximates the point (0: d

3
√

: 1) or ( d
3
√

: 0: 1)

and this time not the z-coordinate becomes small but either the x-coordinate or the y-coordi-
nate. Since we also can take minus the solution, we can assume without loss of generality that
we approximate (0: d

3
√

: 1). Assume we have discovered a solution (a0,	 , ar) such that

|a0

3
+ a1αd,1 +
 + arαd,r |6 r+ 1

√
(
1

3
R(Ed/Q))

1

r+1N
−r

2r+2

Then we are at an affine point (x, y) with

|x|= r+ 1
√

(
1

3
R(Ed/Q))

1

r+1N
−r

2r+2(ϕd
−1)′(

1

3
)(1− δ) = r+ 1

√
(
1

3
R(Ed/Q))

1

r+1N
−r

2r+23α1 d
3
√

(1− δ)
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where the equality follows from proposition 3.11 and its proof. Note that α1 is the real period of
the elliptic curve E1:x

3 + y3 = 1. We also have

ĥ(a1 ∗P1 +
 + ar ∗Pr)6 (r+ 1)(
1

3
R(Ed/Q))

2

r+1N
1

r+1

we get an ABC-triple with quality of the form

logC

log r(A ·B ·C)

>
3ĥ(a1 ∗P1 +
 + ar ∗Pr)

3ĥ(a1 ∗P1 +
 + ar ∗Pr)− log(
1

r+1
√ (

1

3
R(Ed/Q))

−1

r+1N
r

2r+2 1

3α1 d
3√ (1− δ)) + log d

> 1 +
log(

1

3α1 d
3
√

r+1
√ (

1

3
R(Ed/Q))

−1

r+1N
r

2r+2(1− δ))

(r+ 1)(
1

3
R(Ed/Q))

2

r+1N
1

r+1

> 1 +

r

2
log logC

logC
(1− δ0)

where for any δ0> 0 there is an M > 0 such that all N >M gives an optimal solution (a0,	 , ar)
satisfying the inequality above. So in fact I can try to approximate three points rather than one
point.

The case α =
1

2
works differently. Here we find a point (x, y) where x ≈ y ≈ d

2

3
√

. This does

not necessary give rise to an ABC-triple, but with the aid of a transfer (see section 2.3) there
may appear a possible nice ABC-triple. The starting triple clearly has A ≈ B (since both x and
y are positive) so a transfer involving B − A can be useful. To determine B − A it is useful to
notice that around the 2-torsion point we have

x− d

2
3

√

≈ d

2
3

√

− y

so it suffices to determine (ϕd
−1)′(

d

2
3
√

) what already is determined in proposition 3.11: It is

equal to
∫

−∞
∞ dt

d− t33
√ 2

(
2

d
)
2

3

=3αd
d

2
3

√

2

=3α2
d

2
3

√

with α2 being the real period of E2. So let n be the degree of a sharp transfer polynomial
involving B − A. Then for all δ1 > 0 there is an M > 0 such that all M > N yield a solution
(a0,	 , ar) satisfying

logC

log rad (ABC )

>
3n · ĥ(a1 ∗P1 +
 + ar ∗Pr)

3n · ĥ(a1 ∗P1 +
 + ar ∗Pr)+ log d− log

(

1

3
d

2

3
√

α2 r+1
√ (

1

2
R(Ed/Q))

−1

r+1N
r

2r+2(1− δ)

)

> 1 +

r

2n
log logC

logC
(1− δ1)

So this is a weaker result, since we must take n > 2. In section 2.3 there are given transfers
involving B − A of degree n = 2. However, such transfers can make ABC-triples in new special
form. If for example the transfer ((A − B)2, 4AB , (A + B)2) is taken, then (A − B)2 is a small

square number, 4AB is 4 times a cube, and (A+B)2 is d2 times a sixth power.

But there is also the possibility of a linear transfer. Since the order 2 point is approximated,
if we write the curve in Weierstrass form, the y-coordinate comes close to 0. Recall the isomor-
phism

σd
−1: (x: y: z)	 (12d · z: 36d(x− y):x+ y)
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Then we have got an equality

(x+ y)(36d(x− y))2 = (12d · z)3− 432d2(x+ y)3

This equality tells that (12d · z)3 is divisible by x+ y and indeed by x3 + y3 = d · z3 we have

(12d · z)3 = 1728d2(d · z3)= 1728d2(x+ y)(x2−x · y+ y2)

So after dividing each side by an additional factor 432d2 the triple restricts to

3(x− y)2 = 4(x2− x · y+ y2)− (x+ y)2

for some arbitrary selected x ≈ y. But even when (x − y)2 = 1 the radical of this triple is of
degree 3 so the expected quality of such a candidate ABC-triple goes at best to the too low
value of

2

3
. But it is a sharp polynomial transfer and can be interesting in de sense of section

2.3.

4.3.3 Fixing coordinates, varying the curve

Another different way to search for ABC-triples is to fix some properties of the coordinates and
changing d such that these properties work optimal. The best way to explain this is with an
example:

An alternative way to approximate a 3-torsion point is to take x= 1. Then we have the point

P = (1: y0: 1)∈Ey03+1:x
3 + y3 = (y0

3 + 1)z3

The larger y0 is, the closer P is to the 3-torsion point with x = 0, hence the closer 3 ∗ P is to
0E

y0
3+1

. By the first part of the proof of proposition 3.11 the distance between ϕd((0: d
3
√

: 1)) and

ϕd((1: d− 13
√

: 1)) is approximately equal to

(
1

d
3
√ 2)

3αd
=

d
3
√

3α1 d
3
√ 2

=
1

3α1 d
3
√

hence |ϕd(3 ∗P )| ≈ 1

α1 d
3√ . So we can expect 3 ∗P = (x: y: 1) where |x| ≈ α1 d

3√

3αd
=

d
3√ 2

3
. Then we can

get an expected quality of at least the shape

ĥ(3 ∗P )

ĥ(3 ∗P )+ log d− log(
d

3√ 2

3
)
≈ 27log y0

28log y0
=

27

28

what seems not good. However, there can be infinitely many y0 chosen such that r(y0
3 + 1) 6 y0

2

3.

For example (see section 2.1) take y0 = pn− 1 for any n> 1 and prime number p such that p3 +
1 is divisible by q2 with q > p. This decreases the radical by a factor y0 hence pushes the quality
just above 1.

Since here we only compute 3 ∗P it also is possible to write down the direct formula:

3 ∗ (1: y0: 1) = (y0
9− 3y0

6− 6y0
3− 1:− y0

9− 6y0
6− 3y0

3 + 1:− 3y0
7− 3y0

4− 3y0)

and here one can see directly that the factor y0 appears in this formula, hence any ABC-triple
(1, y3, y3 + 1) can be transferred into a new ABC-triple

((y3 + 1)(3y7 +3y4 + 3y)3, (y9− 6y6− 3y3− 1)3, (y9− 3y6− 6y3− 1)3)

and viewing this as polynomials this is a sharp triple in the sense of the theorem from Mason-
Stothers: The largest term is of degree 27 and their radical is of degree 28. Substituting t = y3

we get

(t(t+1)(3t2 +3t+ 3)3, (t3− 6t2− 3t− 1)3, (t3− 3t2− 6t− 1)3)

and this also defines a point on a new elliptic curve:

(y0
3− 3y0

2− 6y0− 1:− y0
3− 6y0

2− 3y0 + 1:− 3y0
2− 3y0− 3)∈Ey0(y0+1):x

3 + y3 = y0(y0 + 1)z3
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proving the following:

Theorem 4.7. The rank of the elliptic curve Ed(d+1)/Q:x3 + y3 = d(d+ 1)z3 is nonzero if d> 2.

Proof. For d = 1 we get the point ( − 9: − 9: − 9) = (1: 1: 1), the torsion point. For d > 2 there
are no torsion points unless d(d+ 1) = 2x3 for some integer x. This is the equation of an Elliptic

Curve, so solutions (x, d) of this equation are on the Elliptic Curve (d +
1

2
)2 = 2x3 +

1

4
. This

Elliptic Curve can be transformed linearly into the Elliptic Curve with equation

y2 =x′3 +1

This curve has rank 0 and the torsion group is of order 6. Each such torsion point (x′, y) corre-
sponds with a solution (x, d) = (2x′, 2y− 1), where y ∈{− 3,− 1, 0, 1, 3}. So we only have to look
at y = 3 since in all other cases we don’t have d> 2. But when y = 3, we have d= 5 and look at
the elliptic curve E30 whose actual rank is 2.

In all other cases for d, the point (d3 − 3d2 − 6d − 1: − d3 − 6d2 − 3d + 1: − 3d2 − 3d − 3)
clearly is of infinite order in Ed(d+1), proving that the rank of that curve is at least 1. �

Remark 4.8. Something similar can be done when starting with a point ( − 1: y0: 1) from an

ABC-triple (1, y0
3− 1, y0

3), and this gives the following results:

3 ∗ (− 1: y0: 1)= (y0
9 + 3y0

6− 6y0
3 + 1:− y0

9 + 6y0
6− 3y0

3− 1: 3y0
7− 3y0

4 + 3y0)

(y0
3 + 3y0

2− 6y0 + 1:− y0
3 + 6y0

2− 3y0− 1: 3y0
2− 3y0 + 3)∈Ey0(y0−1):x

3 + y3 = y0(y0− 1)z3

However, when we replace y0 by y0 + 1 in these formula, we get the same results as in the the-
orem, where each coordinate is multiplied with − 1. So this gives no new points on Ed(d+1).

The 2-torsion point also can be approximate when varying the elliptic curve:

P 6 (x0:x0 + 1: 1)∈Ex0
3+(x0+1)3:x

3 + y3 = (x0
3 + (x0 + 1)3)z3

Also here we can get close to 0E
x0
3+(x0+1)3

: Directly from the duplication formula we get

2 ∗P = ((x0 + 1)(2x0
3− 5(x0 + 1)3):x0(5x0

3− 2(x0 + 1)3): 3x0
2 +3x0 +1)

hence a polynomial ABC-triple of degree 12 whose radical is of degree 13. So also this is a sharp
transfer from an ABC-triple (1, x0, x0 + 1).

When transferring the initial point (x: x+ 1: 1) into Weierstrass form, from the previous trial
we got an equation where we fill in x and x + 1, making it a sharp polynomial equation of one
variable:

3= 4(x2 +x+ 1)− (2x+ 1)2

One also could ask whether it is possible to pick another torsion point Pd (with irrational coor-
dinats) such that n ∗Pd= 0Ed

. Start with P1 = (x1: y1: 1) such that n ∗P1 =0E1. Then

( d
3
√

x1: d
3
√

y1: 1)∈Ed
of order n. So the x-coordinate and the y-coordinate keep having the same quotient, and

x1

y1
�

Q. Hence there are infinitely many rationals p, q ∈Z coprime such that

|x1

y1
− p

q
|6 1

q2

Now P = (p: q: 1) is a good approximation of Pd where d= p3 + q3. But the approximation is not
good enough:

x(n ∗Pp3+q3)=O(q2) as q→∞

hence the disturbing factor p3 + q3 is of degree 3 while the distance between n ∗ Pp3+q3 and
0Ep3+q3 is of degree − 2. This has as usual a factor q “too much”, but this time we don’t have

control of the radical of p3 + q3 since they need to approximate a given number. So this doesn’t
create nice ABC-triples in general.
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Chapter 5

Examples

Recall from the introduction the example

7 =23− 13 =

(

4

3

)3

+

(

5

3

)3

So the points (2:− 1: 1) and (4: 5: 3) are on the elliptic curve E7: x
3 + y3 = 7z3. The real number

I associate with P = (2:− 1: 1) in the sense of theorem 3.6 now is equal to 0.763100196119	 and
one easily can see that (4: 5: 3) = 2 ∗P is far away from 0E7

. So it doesn’t surprise much that the
triple (43, 53, 7 · 33) is not an ABC-triple. But 4 ∗ P = ( − 1256: 1265: 183) is close to 0E7. How-
ever, 7 · 183 = 1281> 1265 so at first sight this still doesn’t guarantee that we have got an ABC-
triple. But 1256= 23 · 157 what makes the quality above 1. Actually,

q(7 · 1833, 12563, 12653)= 1.068879285550	
This triple occurs when one chooses N = 10. So according to the algorithm there will be an
N1>N such that this triple is not the ABC-triple associated with the shortest vector in the lat-
tice LN1

. In fact N1 = 111 is the smallest integer such that there is a new triple, here associated
with 17 ∗ P . The coordinates of this point give rise to an ABC-triple on where each number has
at most 169 digits and has a quality of at least 1.001643803949	 This is not the best result:
When taking N = 500 one finds that there is an ABC-triple associated with 38 ∗ P with 842
digits and with quality at least 1.001992020237	

It can be improved when using section 4.3.2. We got ϕ7(2 ∗ P ) ≈ 1

2
so we can apply the

transfer

((A−B)2, 4AB , (A+B)2)

on A= 53 and B= 43. Since AB is even we don’t need to divide by 4 and get

q(3721, 32000, 35721) = 1.108428277918	
But here A3 ≈ 2B3 so one also could try to apply the transfer above to 2B. We then lose the
profit from A+B=C =7 · 33 but get as reward A− 2B=− 3 having

q((53− 2 · 43)2, 4 · 53 · 2 · 43, (53 + 2 · 43)2)= q(9, 64000, 64009)2 = 1.238644733998	
Also 38 is an even number, so we can do the same with ϕ7(19 ∗ P ) ≈ 1

2
. This way one discovers

an ABC-triple with 422 digits each and with quality at least 1.0047u07267854.
But 7 is not the smallest value for d on which Ed: x

3 + y3 = d · z3 has rank > 1. Since we are
more interested in r(d) we got as smallest value r(d) = 3 by taking d= 9 and define P = (2: 1: 1).
Then ϕ9(P ) = 0.574182369078	 hence 54ϕ9(P ) ≈ 31. So by section 4.3.2 it suffices to consider
18 ∗ P . The ABC-triple associated with this point has about 320 digits and a quality of at least
1.009705805844	

We also can look at higher ranks. An interesting case of luck with quadratic divisors comes
from the rank 2 curve E30. It has generators P1 =(163: 107: 57) and P2 = (289:− 19: 93). So

ϕ30(P1)≈ 0.547976236974	 , ϕ30(P2)≈ 0.679071968111	
Note that P2 itself already generates a nice ABC-triple, since ϕ30(P2) ≈ 2

3
and one coordinate is

equal to 172. We already have

q(6859, 24130710, 24137569) = 1.347776094029	
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But 3ϕ30(P2) = 2.037215904333	 It creates an ABC-triple of up to 67 digits and with quality of
at least 1.029542135303	 , a good result compared with the ABC-triple got from 3 ∗ P1 + 2 ∗ P2.
Namely, this point creates an ABC-triple of up to 73 digits with quality > 1.020554802425	 but
it comes from

ϕ30(3 ∗P1 +2 ∗P2) = 3.002072647144	
more than ten times as close as 3 ∗P2 is to 0E3 0 .

A more interesting result comes from the rank 3 curve E854 with generators P1 = (9: 5: 1),
P2 =(685: 291: 74) and P3 = (29:− 11: 3) Then using N = 90000 one finds

ϕ854(− 2 ∗P1− 1 ∗P2 +3 ∗P3)≈ 1

2

so the same transfer as above can be applied to the triple created from this point. This creates
an ABC-triple of up to 170 digits, and with quality being at least 1.021691571883	 When one
just takes − 4 ∗P1− 2 ∗P2 + 6 ∗P3 one finds an even more interesting ABC-triple with 340 digits
and a quality of at least 1.016356735498	

So the method from my thesis does find ABC-triples, but not with very spectacular quality:
An ABC-triple with 340 digits already is beaten as long as the quality is below 1.0616	
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