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Abstract

This thesis describes the result and the process of a research to determine an optimal trading
strategy for storage systems in the low voltage grid. To give a clear insight in the problem
and in the algorithms to solve the problem, a phased approach is used. First a simple model
of a storage system is described, that is extended in three steps to the final model that is
a realistic model of a storage system. All four models are described and for each of these
models an algorithm is developed to determine an optimal trading strategy. In these models
the energy prices per quarter of an hour are given in advance for 24 hours, the model is
discrete in time. We use n intervals of a quarter of an hour in which the storage system
can charge energy, discharge energy or do nothing. We assume that there is no residual
value of energy. Though the problem solved is a normal LP problem, the phased approach
and the description of the problem and the algorithm give insight in the solution that is required.

In the first model, Model A, the state of charge of the storage system of interval i, SOC(i),
is either full or empty, this can be naturally modeled as a binary integer problem. Algorithm
1 is developed to determine an optimal trading strategy as described above. Algorithm 1 has
complexity O(n).

In Model B the charge capacity, the discharge capacity and the capacity of the storage
system can have different values. With three different values for these physical constrains, the
SOC cannot be modeled as a discrete model and thus the SOC is modeled as a continuous
model. Algorithm 2 is developed to determine an optimal trading strategy for Model B as
described above, Algorithm 2 has complexity O(n2).

As an extension to Model B, in Model C energy losses from using the storage system
are taken into account. There is energy required for charging and for discharging the storage
system. This is energy that cannot be used for trading. Also, in time the energy in the
storage system decreases, this is energy that cannot be sold. The energy that cannot be
sold constitutes a loss from using the storage system. To take the losses into account, there
are two virtual energy prices developed, the virtual charge price and the virtual discharge
price. Similar to the previous model, the maximum amount of energy to trade can be
determined, using the new determined SOC(i). Algorithm 3 is developed to determine an
optimal trading strategy for Model C, as described above. This Algorithm has complexity O(n2).

In the final model, Model D, there are bounds included in the model. With these bounds it is
possible to use the storage system for trading as well as for solving problems in the low voltage
grid. To solve problems in the low voltage grid, space to store too much energy that is in the low
voltage grid is required. It is also possible that not all the energy demanded can be transported,
for instance because of the capacity of the network. If there is a storage system nearby the
problem it is possible that the energy available in the storage system can help to overcome the
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problem. For such a problem, the storage system is used to supply energy. To be able to help
overcome both types of problems, there is a lower and an upper bound required. With these
bounds, there is less storage space available for trading. To be able to solve problems in the low
voltage grid, every interval must have a SOC within the bounds. Algorithm 4 is developed to
determine an optimal trading strategy for Model D. While the complexity of Algorithm 2 and
3 is O(n2), the complexity of Algorithm 4 is O(n3).

To reduce the complexity, a greedy algorithm is developed. For every iteration i, interval
i is first used to discharge the maximum amount of energy that is possible with respect to
the discharge capacity. After this, the minimum amount of energy must be charged to get
the SOC(i) equal to the LB. The absolute local minimum before interval i is used to charge
energy for minimum cost. This is done for all intervals, and gives an optimal trading strategy.
Algorithm 5 determines an optimal trading strategy for Model D with complexity O(n2).

For KEMA the program ATMP1 is developed. The code of the algorithms that are used
in ATMP are written in Visual Basic Application of Excel. Therefore these algorithms can be
used by KEMA for the overal program PLATOS2. ATMP is used to give clear insight in the
algorithms developed and the output of the algorithms is processed graphically. The user can
even try to develop a trading strategy that is better than the trading strategy developed by
ATMP. This helps the user to get a good insight in the problem and trust in the solution. In
the Appendices the algorithms used are described.

1 Algorithm for Trading with Maximum Profit
2 PLAnning Tool for Optimal Storage
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Extended summary

This thesis describes the result and the process of a research to determine an optimal trading
strategy for storage systems in the low voltage grid. To give a clear insight in the problem and in
the algorithms to solve the problem, a phased approach is used. First a simple model of a storage
system is described, that is extended in three steps to the final model that is a realistic model
of a storage system. All four models are described and for each of these models an algorithm
is developed to determine an optimal trading strategy. For these models, the energy prices per
quarter of an hour are assumed to be given in advance for 24 hours, the model is discrete in time.
We assume that there is no residual value of energy. In these models the storage system can
charge energy, discharge energy or do nothing during each of the n intervals. For charging energy
the energy price of the relevant interval is the cost and for discharging energy the energy price of
the relevant interval is the profit. The algorithm is developed to determine a strategy to obtain
the maximum profit.Though the problem solved is a normal LP problem, the phased approach
and the description of the problem and the algorithm give insight in the solution that is required.

In the first model, Model A, the state of charge of the storage system of interval i,
SOC(i), is either full or empty. Therefore we can make the following decisions during one
interval: we can buy energy, sell energy, or do nothing. We cannot sell energy if the SOC is
empty, and we cannot buy energy when the SOC is full. This is a simple description of a storage
system, that is used to show that it is optimal to charge energy in interval i, if the SOC(i) is
empty and the energy price of interval i + 1, p(i + 1) is larger than p(i). For discharging, it is
optimal to discharge in interval j, if the SOC(j) is full and the energy price of interval j + 1,
p(j + 1) is smaller than p(j). Algorithm 1 is developed to determine an optimal trading strategy
as described above. Algorithm 1 has complexity O(n).

In Model B the storage system can have three different values for the charge capacity,
the discharge capacity and the capacity of the storage system. With the capacity of the storage
system, C, larger than the charge capacity of the storage system, ChC, it is possible that
an optimal solution will not make fully use of the capacity of the storage system for every
interval. Therefore the state of charge of the storage system for every interval i, SOC(i), can
take any value between zero and C. Also the quantity of energy that is charged during interval
i, ChQ(i), can take any value between zero and ChC. Likewise for the discharge capacity
of the storage system, DChC. When the capacity of the storage system is larger than the
absolute value of the discharge capacity of the storage system, the quantity of energy that is
discharged during an interval i, DChQ(i), can take any value between DChC and zero. With
some small adjustments, the description of the optimal trading strategy for Model A can be
applied to Model B. The last local minimum is the last interval, that can be used to charge
energy, of a non-increasing period for the energy price, that has a subsequent local maximum.
A subsequent local maximum is the last interval, for which the discharge capacity is not fully
used, of a non-decreasing period for the energy price after a local minimum. Now it is required
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to determine the maximum amount of energy to trade, since this is no longer given by the
capacity of the storage system. The capacity available to charge and to discharge is determined,
and for all intervals k, between the profitable combination of intervals i and j, to charge and to
discharge it is determined if the SOC(k) is not larger than the capacity of the storage system
after charging. If for one interval r, the SOC(r) becomes larger than the capacity, the amount
of energy to charge is decreased to the maximum amount of energy that can be charged to get
the SOC(r) equal to the capacity of the storage system. Algorithm 2 is developed to determine
an optimal trading strategy for Model B as described above, Algorithm 2 has complexity O(n2).

As an extension to Model B, in Model C energy losses from using the storage system
are taken into account. There is energy required for charging and for discharging the storage
system. This is energy that cannot be used for trading. Also, in time the energy in the storage
system decreases, this is energy that cannot be sold. The energy that cannot be sold are losses
from using the storage system. With these losses taken into account, the model becomes more
realistic. To be able to find the last local minimum and the subsequent local maximum, the
costs for the losses suffered must be taken into account. The energy price of every interval can
be recalculated by taking the losses caused by storage into account. If there are two intervals,
interval r and interval r + k, with energy price of interval r, p(r) = p(r + k), because of the
losses caused by storage, energy charged in interval r would decrease in the time k, and thus
this energy is more expensive since we have in interval r + k less energy left. To use this to
determine the last local minimum and the subsequent local maximum, a virtual energy price is
determined for every interval. The virtual energy price of interval i, vp(i), is the original energy
price, p(i), multiplied with the residual after the losses caused by storage, RLBS, to the power
i, as given in expression (1).

vp(i) := p(i) ·RLBSi (1)

Also the losses caused by (dis)charging must be taken into account. These losses are taken into
account in the virtual price, which let to two virtual prices for every interval. For charging energy,
the virtual charging price is determined, and for discharging energy, the virtual discharge price
is determined. These prices are determined to be able to calculate if it is profitable to use a
combination of intervals for trading. Since energy is lost by charging, the virtual charge price of
energy must be larger than the virtual price already determined. The virtual charging price of
interval i, cp(i), is therefore determined as the virtual price of interval i, vp(i), devided by the
residual after losses caused by charging, RLBC, as in expression (2).

cp(i) :=
p(i) ·RLBSi

RLBC
(2)

The losses caused by discharging also have effect on the profit. Energy that is lost because of
discharging is energy that cannot be sold. Therefore the virtual discharging price is smaller
than the already determined virtual price. The virtual discharging price of interval j, dcp(j) is
therefore determined as the virtual price of interval j, vp(j), multiplied with the residual after
losses caused by discharging, RLBDC, as in expression (3).

dcp(j) := p(j) ·RLBSj ·RLBDC (3)

The charging and discharging prices that are determined for all intervals, can be used to deter-
mine the last local minimum and the subsequent local maximum. First the last local minimum is
determined using the charging price. If a last local minimum is determined, the subsequent local
maximum is determined by the discharging price. While in the previous models it was clear that
once a combination was determined, this combination was profitable, now it is possible that there
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CHAPTER 0. EXTENDED SUMMARY

is a combination determined that is not profitable, since there is a charge and a discharge price
used. Now a combination is profitable if the charge price of the last local minimum is smaller
than the discharge price of the subsequent local maximum. If the combination determined is not
profitable, a new subsequent local maximum is determined for the already determined last local
minimum. If there is an interval i, for which the charging price is less than the charging price of
the last local minimum found, interval i is the new last local minimum for which a subsequent
local maximum is determined. Once a profitable combination of a last local minimum and a
subsequent local maximum is determined, the amount of energy to trade is to be determined.
Therefore it is required to know the SOC(k) for all intervals k between the last local minimum
and the subsequent local maximum. The SOC is affected by the losses caused by storage and by
the losses caused by charging. The losses caused by discharging is calculated over energy that
would be discharged. The losses caused by discharging only affect the profit and not the SOC.
Every interval energy is stored in the system, energy is lost. To determine the current SOC, the
residual after losses caused by storage is multiplied with the SOC of the previous interval. To
take losses by charging into account, the charge quantity of an interval is multiplied with the
residual after losses caused by charging. The SOC(i) can be determined by expression (4).

SOC(i) := SOC(i− 1) ·RLBS + ChQ(i) ·RLBC + DChQ(i) (4)

Similar to the previous model, the maximum amount of energy to trade can be determined,
using the new determined SOC(i). Algorithm 3 is developed to determine an optimal trading
strategy for Model C, as described above. This Algorithm has complexity O(n2).

In the final model, Model D, there are bounds included in the model. With these bounds it
is possible to use the storage system for trading as well as for solving problems in the low
voltage grid. To solve problems in the low voltage grid, space to store too much energy that
is in the low voltage grid is required. It is also possible that it is not possible to transport all
the energy demanded, for instance because of the capacity of the network. If there is a storage
system nearby the problem it is possible that the energy available in the storage system can
help to overcome the problem. For such a problem, the storage system is used to supply energy.
To be able to help overcome both types of problems, there is a lower and an upper bound
required. With these bounds, there is less storage space available for trading. To be able to
solve problems in the low voltage grid, every interval must have a SOC within the bounds. It is
expected that there is energy in the storage system at the beginning of the period over which
an optimal trading strategy is to be determined. With this energy, the SOC of all intervals is
determined, using expression (4). It is required to keep the SOC for all intervals smaller or
equal to the upper bound, UB. Therefore, for the first interval this is determined. If the SOC is
larger than the UB, the amount of energy that is required to be discharged is determined. For
the next interval it is determined as well if the SOC is smaller or equal to the UB. Once this
is true, all subsequent intervals have a SOC that is smaller or equal to the UB. If for the last
interval the SOC(n) is larger than the lower bound, LB, the amount of energy that is in the
storage system, that is not required for solving problems, can be discharged in the first local
maximum. The first local maximum is the last interval i, that can be used for discharging, of a
non-decreasing period for the energy price, with SOC(i) > LB. If the SOC(i) is smaller than
the lower bound, it is required to charge energy. To charge energy for minimum costs, interval
m with the absolute minimum energy price available before interval i, is determined to charge
the required amount of energy. Interval m is the absolute local minimum before interval i. For
all the intervals the SOC is within the bounds. An optimal trading strategy can be determined
that keeps the SOC within the bounds. Since there is energy in the storage system, it is possible
to discharge energy, before we charge energy to keep the SOC within the bounds. To be able to
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determine the best combinations for trading, first the interval to discharge energy is determined
and than the interval to charge energy is determined. The interval to discharge energy, is the
first local maximum. The first local maximum has a domain in which the interval to charge is
determined. The domain starts with the first interval and it ends with the first interval, k, since
the first local maximum, that has a SOC that is less or equal to the lower bound. The interval
to charge energy, is the absolute local minimum before interval k. The maximum amount of
energy to trade can be determined similar to the previous model. Algorithm 4 is developed to
determine an optimal trading strategy for Model D. While the complexity of Algorithm 2 and
3 is O(n2), the complexity of Algorithm 4 is O(n3).

To reduce the complexity, a greedy algorithm is developed. For every iteration i, interval
i is first used to discharge the maximum amount of energy that is possible with respect to
the discharge capacity. After this, the minimum amount of energy must be charged to get
the SOC(i) equal to the LB. The absolute local minimum before interval i is used to charge
energy for minimum cost. This is done for all intervals, and gives an optimal trading strategy.
Algorithm 5 determines an optimal trading strategy for Model D with complexity O(n2).

For KEMA the program ATMP3, is developed. The code of the algorithms that are used
in ATMP are written in Visual Basic Application of Excel. Therefore these algorithms can be
used by KEMA for the overal program PLATOS4. ATMP is used to give clear insight in the
algorithms developed and the output of the algorithms is processed graphically. The user can
even try to develop a trading strategy that is better than the trading strategy developed by
ATMP. This helps the user to get a good insight in the problem and trust in the solution. In
the Appendices the algorithms used are described.

3 Algorithm for Trading with Maximum Profit
4 PLAnnig Tool for Optimal Storage
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Introduction

In this thesis the developments and the outcome of the research done for the study Mathematics
at the University of Leiden are described. The research is done during an internship at KEMA.
The problem to solve is an optimization problem. The assignment was to develop a trading
strategy that obtains a maximum profit for an electricity storage system used for buying and
selling energy in the electrical grid. The storage system and the electrical grid are subject
to physical constraints. KEMA is involved in a project closely connected to this problem, the
GROW-DERS project. To get a better insight in the assignment, first an introduction to KEMA,
power grids and GROW-DERS is presented.

0.1 Grid developments and storage

KEMA is a multinational company specializing in strategic and technical energy consultancy,
operational support, measurements and inspection, and testing and certification. The intern-
ship was at KEMA Consulting at the office in Arnhem. For more details we refer the reader to [8].

The electrical grid can be divided in three main levels, the so called high, medium and
low voltage grid. The high voltage grid is used for transmission, the medium voltage grid for
sub-transmission and the low voltage grid is used for distribution. The research topic is an
application related to the low voltage grid. In the current grid, the centralized generators supply
energy to the high voltage grid. The high voltage grid will transport energy to the medium
voltage grid. The medium voltage grid will transport energy to the low voltage grid and to
large industry. The large industry both demands and supplies energy. The low voltage grid
will distribute energy to the customers, like households that demand energy. Figure 1 gives an
overview of an electrical grid. For more details we refer the reader to [1]. In the last decade some
households became suppliers of energy, using small generators as photovoltaics, PV, windmills
and combined heat and power, CHP. At the moment the generation by households is on small
scale, but in the future growth is expected. With the upcoming decentralized generation of
renewable energy by households, the low voltage grid is subject to change. The generation of
renewable energy is currently not fully controlled or regulated, and it is expected that demand
and supply will not be coordinated, at least not in the same way as the centralized generation.
Generation of renewable energy by households can fluctuate, and the centralized generators
are not able to react as fast as the change in generation of renewable energy. Therefore the
generation of renewable energy by households is not very reliable at the moment because of
the fluctuations. Leveling the supply of this energy would make it more useful. For leveling the
supply, some sort of storage system could be helpful. This storage system could be charged with
energy when there is more energy generated than the average supply, and could be discharged
when the energy generated is less than the average. In addition, because of the growing demand
of energy by households, the low voltage grid is subject to changes. These changes bring
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problems for the daily-activities and for the long-term planning of the low voltage grid.

Figure 1: The electrical grid

At the high voltage level, renewable energy generated by great (offshore) wind farms is very
fluctuating, which causes problems for processing the energy. If it would be possible to level
the supply or to control this, a better result of processing the energy generated by wind farms
can be achieved. At the moment, controlling the supply is done by not fully using the capacity
of the wind farms. In the future, perhaps it is possible to level the supply by using storage
systems. Though the high voltage level is not part of the scope of the assignment, the outcome
of this thesis might be useful if storage systems are used for leveling the supply by wind farms.

A storage system can be used in an electrical grid to store energy. A storage system can
be charged and discharged and thereby subtract energy from, or add energy to the electrical
grid. The amount of energy that can be charged or discharged from the storage system depends
on the capacity of the electrical grid, on the charging respectively discharging power of the
storage system and on the state of charge of the storage system. There is a difference between
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the capacity of the storage system and the charge and discharge power of the storage system
concerning the units it is expressed in. The capacity of a storage system can be expressed in
kWh, which is a unit for energy. The charge and discharge power of a storage system can be
expressed in kW, which is a unit for power.

Figure 2: Example of a storage system (Li-ion, from SAFT)

Another application of a storage system is trading energy, with the aim of making a profit.
Amsterdam hosts the headquarter of the APX, short for the Amsterdam Power Exchange.
There are two markets for trading electricity: the day-ahead market and the intraday market.
For the day-ahead market the prices are calculated one day ahead. The market members
can submit their orders until a day before it is needed, after which supply and demand are
compared, and the prices for each hour of the following day are calculated. For the intraday
market, the APX offers market members the opportunity to trade energy in 15 minute intervals,
1 hour blocks, and 2 hour blocks up to two hours prior to delivery. For more details we refer
the reader to [7]. Because of the fluctuating prices there is a potential profit by trading energy.
For trading energy profitable, energy must be bought at a low energy price and be sold later in
time at higher price. In between a storage system can be used to store the energy. Therefore a
storage system is set to charge energy at low price and is set to discharge at high price.

The increased use of electric cars is a new challenge and opportunity for the low voltage
grid. The energy demand will increase enormously. But when these cars are not used, and are
plugged into the electrical grid, the energy stored in the cars, or any free storage space in these
cars, could be of great use as well.
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0.2 The GROW-DERS project

One of the projects in which KEMA is involved, is the GROW-DERS project. GROW-DERS
stands for grid reliability and operability with distributed generation using flexible storage.
Storage systems are the focus for the GROW-DERS project. Next to being used for energy
trade, one can use storage systems to solve physical problems in the low voltage grid.

GROW-DERS is an innovative demonstration project that offers a better insight into
the possibilities of the use of storage systems in the low voltage grid. GROW-DERS offers
operational experience and examines the technical and economical feasibility of some storage
systems. To determine the benefit of a storage system, all the possible applications must be
looked at. Of course, these storage systems can only help solving non-permanent problems in
networks, since a storage system can only act as a buffer; it cannot generate energy. Perhaps
storage systems also bring new problems for the network, as for instance when the storage system
has a trading strategy that is in conflict with the constraints of the network. By contributing to
solving problems in the network, a storage system can save costs by postponing, or even prevent-
ing investments. With the possibility to store energy it might also be possible to make a profit
by trading energy using the storage system as a depot. For more details we refer the reader to [6].

KEMA developed the PLATOS model for the GROW-DERS project, PLATOS stands
for planning tool for optimising storage. The PLATOS model is a simulation program that
models the network. With the PLATOS model KEMA is able to give a clear view of the benefits
of the storage system used in the network. The PLATOS model is developed to determine
the best locations for storage systems in the low voltage grid. Besides these benefits, a good
strategy needs to be developed to determine the optimal profit obtained by adding storage
systems into the network. One of the partners of the GROW-DERS project developed a simple
program to use a storage system for trading. This simple program was developed to give an
insight in what is needed to make a more realistic model of a storage system. This program was
processed by KEMA in the PLATOS model of the network with storage systems included.

To get a good insight into the possibilities for storage systems in the low voltage grid, a
program that can determine the optimal trading strategy is needed. This is the topic of the
assignment. This problem applies to the daily activities in the low voltage grid.

0.3 Problem description and approach

The problem considered in this thesis is an optimization problem, namely to develop an optimal
trading algorithm for an electricity storage system. The solution to the problem must meet the
physical constraints of the low voltage grid. It was desirable to start with a simple model and
to make it more realistic using several steps. This phased approach gives KEMA the insight
they want into all the intermediate results. The phased approach leads in this thesis to several
models, called A, B, C and D. For these models there are algorithms developed to determine
an optimal trading strategy to obtain a maximum profit, called Algorithm 1, 2, 3, 4 and 5 with
som heuristics and sub algorithms. For the models, we assume that energy prices per quarter
of an hour are given in advance for 24 hours by the APX. The model is discrete in time, for
which we use a time-step of fifteen minutes. We assume that there is no residual value for energy.
For all four models these assumptions are similair. Since there are four models, there must be
differences between the models as well. Differences between the models are wether the state of
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charge SOC is a boolean or not. If the SOC is either empty or full, the SOC is like a boolean,
while if the SOC can take any value between empty and full, the SOC is not a boolean. Energy
losses for using the storage system are not taken into account in the first two models. To be
able to use the storage system for other purposes besides trading, for the last model there are
bounds for the SOC taken into account. The similarities and the differences between the models
are shown in Table 1.

Similairities Differences

Prices are given SOC as boolean or not
Discrete model Energy losses taken into account or not
No residual value for energy Bounds for the SOC taken into account or not

Table 1: Similarities and differences between the models

The assignment is formulated as follows;

The assignment is to develop a practical and mathematically correct algorithm that gives an
optimal trading strategy for an electricity storage system. The solution to this problem must
meet the physical constraints of the low voltage grid. It is desired to start with a simple model
and make it more realistic using several modeling steps.

In the final model the trading strategy must take into account that a storage system
has a power to charge, a power to discharge and a capacity to store energy. There will be energy
losses from using the storage system. The storage system can be used for trading as well as for
solving problems in the low voltage grid. The phased approach gives KEMA the insight they
want in all the intermediate results.

For the phased approach, the models used are described in Table 2.

Characterization Model A Model B Model C Model D

SOC as boolean yes no no no
Energy losses taken into account no no yes yes
Bounds for the SOC taken into account no no no yes

Table 2: Description of the models

With the diverse audience, mathematicians at the university and engineers at KEMA and grid
companies, the report is a mix of theory with models, algorithms and proofs, and practical
examples with graphs and explanations.
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0.4 Outline of the thesis

During the research, an algorithm is developed that, for a given period of time, with the energy
prices given, will determine an optimal trading strategy for a given storage system to obtain a
maximum profit. This algorithm is used in a program called ATMP, Algorithm for Trading with
Maximum Profit. ATMP is developed to use the algorithm and to clarify how the algorithm
works. The output of the algorithm is processed into graphs that give a clear overview of the
strategy. It is desirable that the storage system can be used for other purposes besides trading.
Therefore some constraints are added to the problem to be able to use the storage system for
solving problems in the electrical grid, as well as for trading. To show how the user can chose
what constraints must be taken into account, the frontpage of ATMP is given in Figure 3.

constraints

prices

profit by HAND

profit by Alg.

Figure 3: The front page of ATMP

In Chapters 1-3 Model A, Model B and Model C will be described that are used to find a new
algorithm to give an optimal trading strategy. In Chapter 4 the final program to find an optimal
trading strategy will be described. Chapter 5 describes the reduction of the complexity for the
final algorithm. In Chapter 6 some other heuristics to give an optimal trading strategy for a
storage system are described. Chapter 7 describes the overall problem and how the outcome of
the research can be of use for this problem. The conclusions and recommendations are given in
Chapter 8. An overview of this thesis is given in Figure 4.
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Step 1: Inventory of the assignment Introduction

Step 2: Inventory of available heuristics Chapter 6

Step 3: Basics Model A Algorithm 1 Chapter 1

Step 4: Taking scals into account Model B Algorithm 2 Chapter 2

Step 5: Taking losses into account Model C Algorithm 3 Chapter 3

Step 6: Taking bounds for the SOC into account Model D Algorithm 4 Chapter 4

Step 7: Reducing the complexity Algorithm 5 Chapter 5

Step 8: Use of outcome, for the overall problem Chapter 7

Step 9: Conclusions and recommendations Chapter 8

Figure 4: Overview
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Chapter 1

Algorithm 1: The basics

In this chapter a simple model of a storage system will be described. Here the basics of an
optimal trading strategy will be explained and proven. In Section 1.3 the overall approach to
determine an optimal trading strategy to obtain a maximum profit for Model A is described.

1.1 Model of the storage system

In the first model, Model A, the energy prices per quarter of an hour are supposed to be given
in advance for 24 hours. The model is discrete, for which we use a time-step of fifteen minutes.
We assume that there is no residual value of energy. These are assumptions made for the models
in general. For Model A, the state of charge of the storage system, SOC, is either full or empty.
Therefore we can make the following decisions during one interval: we can buy energy, sell energy,
or do nothing. We cannot sell energy if the SOC is empty, and we cannot buy energy when the
SOC is full. The decision in interval i determines the situation for the next interval i+1. Selling
energy in interval i gives a profit of p(i), and buying energy in interval i gives costs of p(i) which
can be looked at as a profit of −p(i) as is shown in Figure 1.1.

SOC = Full

SOC = Empty

Interval “i” has energy price: p(i)

i i + 1

S
ell (discharge) energy

=> P
rofit: p(i)

B
uy

(c
ha

rg
e)

 e
ne

rg
y

=>
 P

ro
fit

: -
p(

i)

Do nothing => Profit: 0

Do nothing => Profit: 0

Figure 1.1: Costs and profit by charging and discharging
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To develop the optimal trading strategy, using the storage system for trading, we can describe
the problem as a single source shortest path problem as shown in Figure 1.2. Chapter 6 shows
that it will become undesirable to describe the problem as shortest path problem. Therefore in
the next sections, a new algorithm to determine an optimal trading strategy, called Algorithm
1, is described.

60 %

80 %

100 %

0 %

i = 0  i = 1  i = 2  i = n 

40 %

20 %

i = 3   

Figure 1.2: Optimal trading strategy determined by dynamic programming

In the Introduction short descriptions of a storage system, the power market and the grid were
given. This section gives a model of the storage system. The capacity of a storage system, C,
can be expressed in kWh, which is a unit for energy. The (dis)charge power of a storage system
can be expressed in kW, which is a unit for power. The APX uses intervals of 15 minutes for the
energy prices in e/MWh, thus the energy prices that are calculated by the APX are constant
for that time. Therefore models that are used in this context can logically be discretized in time
using intervals of 15 minutes. In this model of the storage system it is only required to know
the amount of energy that can be (dis)charged during an interval. Therefore we will define the
maximum amount of energy that can be charged during one interval as the charge capacity,
ChC, in kWh, and the maximum amount of energy that can be discharged during one interval
as the discharge capacity, DChC, in kWh.

Definition 1.1. ChC in kWh:=(the charge power in kW)·(the time of an interval in h.)

Definition 1.2. DChC in kWh:=(the discharge power in kW)·(the time of an interval in h.)

For the modeled storage system the charge capacity is one, the discharge capacity is minus one
and the capacity of the storage system is one. Therefore in each interval the state of charge
of the storage system for every interval i, SOC(i), can either be fully charged or discharged.
In this model it is assumed that there are no energy losses by using the storage system, and
the power grid gives no constraints. The storage system is empty at the start and there is no
residual value for energy. The energy prices for interval i, p(i), are given by the APX, these
energy prices are independent of the SOC(i) since such a storage system in the low voltage
grid is too small to influence the national market.
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Table 1.1 gives a summary of the properties of the modeled storage system. Also the decision
variables are included in this table. Such a table will be used in every chapter to give an overview
of what is changed in the model as compared to the previous chapter. (Note that DChQ(i) ≤ 0.)

Name Abbreviation Value Unit

Energy price for interval i p(i) input e/kWh
Charge Capacity ChC 1 kWh
Discharge Capacity DChC −1 kWh
Capacity of the Storage System C 1 kWh
Quantity of energy charged in interval i ChQ(i) {0, 1} kWh
Quantity of energy discharged in interval i DChQ(i) {-1,0} kWh
State of Charge for interval i SOC(i) {0, 1} kWh

Table 1.1: Parameters and decision variables for Model A

1.2 Mathematical model

To develop an optimal trading strategy we can describe the optimization problem with the
following mathematical model:

max

n∑
i=1

(−(DChQ(i) + ChQ(i)) · p(i)) (1.1)

s.t. SOC(i) =
i∑

j=1

(ChQ(j) + DChQ(j)) ; 1 ≤ i ≤ n (1.2)

SOC(i) ∈ {0, 1} ; 1 ≤ i ≤ n (1.3)

ChQ(i) ∈ {0, 1} ; 1 ≤ i ≤ n (1.4)

DChQ(i) ∈ {−1, 0} ; 1 ≤ i ≤ n (1.5)

In expression (1.1) the profit that can be made by using the storage system for trading is
maximized. Although this seems to be a very short mathematical model of the problem, there
are many different summations made in expression (1.2) since 1 ≤ i ≤ n. In expression (1.3)
it is given that the SOC(i) is either equal to one, which is the capacity of the storage system
or equal to zero for interval i, for i between one and n. In expression (1.4) it is given that the
quantity of energy charged in interval i is always zero or one, while in expression (1.5) the
quantity of energy discharged is always zero or minus one for i between one and n.

With this mathematical model the optimization problem is described as a binary integer
programming problem. Though these problems are classified as nondeterministic polynomial
time hard, for more details we refer the reader to [4]. In Section 1.3 it is proven that this specific
problem can be solved and in Section 1.5 it is shown that this problem can be solved in linear
time.
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1.3 Approach

With the capacity of the storage system equal to the charge capacity, it is possible to fully
charge the storage system during interval i if the SOC(i) is empty. With the capacity of the
storage system equal to minus the discharge capacity, it is also possible to fully discharge the
storage system during interval j if the SOC(j) is full.

To obtain a profit by trading energy, the selling energy price must be larger than the
purchase energy price. To obtain the maximum profit, the difference between the selling and
purchase price must be as large as possible. Since it is not possible to sell energy that is not
stored, first energy must be bought to charge the storage system. In Model A the storage system
can charge and discharge infinitely many times. Hence the storage system can charge energy
in interval i, if the SOC(i) is not full, and if p(i) is less than p(i + 1). The storage system can
discharge energy in interval j if the SOC(j) is not empty, and if p(j) is higher than p(j + 1).
Once the storage system is charged, it cannot be charged again before it is discharged since the
state of charge is full. The storage system can only be discharged after it is charged. This can
be summarized as in Table 1.2.

SOC \ Action Buying/Charging Selling/Discharging Do nothing

Full not possible possible possible

Empty possible not possible possible

Table 1.2: Possible actions for trading in Model A

By Table 1.2, it is known when it is possible to buy, to sell or to do nothing. To be able to
determine an optimal trading strategy, it is required to know when it is most profitable to buy
and sell. To show when it is best to trade, as an example a price list is given and an optimal
trading strategy is determined for this example. In Figure 1.3, in the first graph the energy price
for all intervals, are shown (externally given by the APX). In this graph it can be seen that it is
best to charge in interval 3 and to discharge in interval 6 to obtain the maximum profit. In the
second graph the charging and the discharging is shown. In the third graph the resulting SOC
can be seen. The cumulative cash flow is given in the fourth graph, in this last graph the total
profit is shown. When we annalyse why it is optimal to charge in interval 3 and to discharge in
interval 6, we can define when we want to charge and when we want to discharge. We want to
charge in a last local minimum as in Definition 1.3 and we want to discharge in a subsequent
local maximum as in Definition 1.4.

Definition 1.3. A last local minimum is the first interval i, that can be used for charging for
which the energy price is less than the energy price of the next interval in line.
SOC(i) = 0 & p(i) < p(i + 1)

Definition 1.4. A subsequent local maximum is the first interval j, that can be used for dis-
charging for which the energy price is larger than the energy price of the next interval in line.
SOC(j) = 1 & p(j) > p(j + 1)
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Last Local

Minimum Subsequent

Local Maximum

Figure 1.3: The last local minimum and it’s subsequent local maximum

1.4 Optimal trading strategy

To obtain a maximum profit, the storage system will be charged in every last local minimum
and discharged in every subsequent local maximum. To make sure the last interval can be used
as subsequent local maximum we must be able to compare the energy price of the last interval,
interval n, with the energy price of interval n + 1. Since there is no residual value for energy,
the energy price for interval n + 1 can be set to be 0.
The trading strategy to obtain a maximum profit can be formulated as an algorithm, see Algo-
rithm 1. In the next chapters this algorithm will be extended. Since this algorithm is used as
basis for the other algorithms, Algorithm 1 is shown next. The other algorithms are listed in the
appendixes. The text in green are comments.
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Algorithm 1

Declarations
i = 1..n the set of intervals
p(i) the energy price of interval i
ChQ(i) is the quantity charged in interval i
DChQ(i) is the quantity discharged in interval i
SOC(i) := 0 state of charge of interval i is empty
SOC(i) := 1 state of charge of interval i is full

Data & Initialization
p(1)..p(n)
p(n + 1) := 0
SOC(1) := 0

Program

i := 1
: This WHILE LOOP goes chronologically through the intervals starting with interval 1 :
while i ≤ n do

: IF the current interval is a last local minimum, set ChQ(i) as charging and set SOC(i) as
FULL :
if p(i) < p(i + 1) and SOC(i) < 1 then

SOC(i) := 1
ChQ(i) := 1

end if
: IF the current interval is a subsequent local maximum, set DChQ(i) as discharging and
set SOC(i) as EMPTY :
if p(i) > p(i + 1) and SOC > 0 then

SOC(i) := 0
DChQ(i) := −1

end if
i = i + 1
SOC(i) = SOC(i− 1)

end while

The outcome of Algorithm 1, an optimal trading strategy, is a list of intervals to charge ChQ(i),
and a list of intervals to discharge DChQ(i). The output of Algorithm 1 is processed in a program
to show the ChQ(i), the DChQ(i), the resulting SOC(i), and the cumulative cash flow.

Proposition 1.5. Algorithm 1 produces an optimal trading strategy to obtain a maximum profit.

In order to prove that this trading strategy is optimal for Model A, we need to prove that it is
not possible to obtain a higher profit with another trading strategy.

Proof. If interval i is determined as the last local minimum, we know from Definition 1.3 that
for all intervals k that can be used for charging up to interval i + 1, p(k) is not less than p(i).
Therefore it is not possible to charge energy for a price that is less than the energy price of
interval i, in the intervals up to interval i + 1, interval i + 1 included. Since for all intervals k
up to interval i, interval i included, p(k) are non-increasing, it is not possible to make a profit
with first buying and subsequently selling energy during these intervals that are available for
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charging energy, before interval i. Since interval i is the last interval of a list of intervals with
non-increasing energy prices it is given that p(i + 1) is larger than p(i). Therefore, we can sell,
in interval i + 1, the energy charged in interval i with a profit.

With the definition of the subsequent local maximum given in Definition 1.4 we know
that if interval j is determined as the subsequent local maximum, then p(j) is larger than p(l),
with interval l between interval i and j + 1, interval j + 1 included. The energy prices of the
intervals between interval i and j, interval j included, are non-decreasing. Therefore it is not
possible to make a higher profit by first selling and subsequently buying energy between the
intervals i and j. Since it is possible to buy energy in interval j + 1 and p(j) is higher than
p(j + 1), it is best to sell the energy in interval j, since it is profitable to sell energy in interval
j, buying energy in interval j + 1. Once the last local minimum and subsequent local maximum
are determined the process is repeated which gives an optimal trading strategy for a storage
system as modeled in Model A.

In Figure 1.4 an example is given of how the energy price can fluctuate. In this figure it is shown
how the process can be repeated and that charging in the last local minimum and discharging
in the subsequent local maximum gives an optimal trading strategy.

Figure 1.4: Example of optimum trading
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1.5 Structure and complexity

The structure of Algorithm 1 is straightforward. For each interval we determine if it is a last
local minimum, a subsequent local maximum, or if it is just an interval that will not be used
to charge or discharge energy. Every interval is checked once to see if it can be used to trade.
The complexity to check every interval once is O(n). To determine if interval i will be used
for charging or for discharging energy, the energy price of interval i and the energy price of
interval i + 1 are compared, and the SOC(i) is determined. This has complexity O(1). Thus,
the complexity of Algorithm 1 is O(n) ·O(1) = O(n).

1.6 Reflection and result

To give a clear overview of the trading strategy, the program ATMP, Algorithm for Trading
with Maximum Profit, is written in Visual Basic Application Excel during the research. In
ATMP the user is able to compare Algorithm 1 with any other trading strategy one can
come up with. In Figure 1.5 the front page of ATMP is shown. The user can enter the energy
price for every interval. Also the charge power, the discharge power and the capacity of the
storage system can be entered in this front page. The user can make an attempt to determine
an optimal trading strategy to obtain a maximum profit. With a simple click on the button
”START PROGRAM” an optimal trading strategy that gives the maximum profit will be given.

In Figure 1.6 the graphs drawn by ATMP are shown. In the first graph, the energy
price is given. The second graph shows which intervals Algorithm 1 determined to charge and
discharge the storage system and during which intervals the user wants to charge and discharge
the storage system. The third graph shows the effect on the SOC by charging and discharging
the storage system, for Algorithm 1 as well as for the user. In the last graph the cumulative
cash flow is shown for Algorithm 1 and the user. This last graph shows which strategy has a
better result.

An optimal trading strategy for a storage system as given in Model A is to charge in
every last local minimum as defined in Definition 1.3, and to discharge in every subsequent
local maximum as defined in Definition 1.4. Since it is wanted to charge the maximum amount
of energy in the last local minimum and to discharge the maximum amount of energy in the
subsequent local maximum, the output of the Algorithm would not be different when this
problem was modeled as a linear programming problem. With Algorithm 1 the optimal trading
strategy to obtain a maximum profit is determined in linear time. Algorithm 1 will be used as
a reference in the following extended models.
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Figure 1.5: The front page of ATMP(1)
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Figure 1.6: The graphs produced by ATMP(1)
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Chapter 2

Algorithm 2: Including scaling

In this chapter, Model A as described in Chapter 1 will be extended. In reality, storage systems
can have different values for the capacity of the storage system, the charge capacity and the
discharge capacity. Therefore, as an extension to Model A, in Model B it is possible to enter
different values for these constraints. With this extension, the model of the storage system
becomes more realistic. Even though this is only a small extension, it makes a big difference in
how an optimal trading strategy that obtains a maximum profit for the modeled storage system
can be determined.

2.1 Model of the storage system

Model B is an extension to Model A, in which more states of charge are used, for instance 0%,
20%, 40%, 60%, 80% and 100% of the full capacity of the storage system. Also, the power to
charge can be limited as well as the power to discharge. Therefore the charge and discharge
capacity are limited. As an example, we assume that during fifteen minutes the storage system
can charge up to 40% of the full capacity of the storage system because of the limited power
to charge. And because of the limited power to discharge, during fifteen minutes the storage
system can discharge up to 60% of the full capacity of the storage system. Still, this problem
can be solved as a single source shortest path problem, but the graph we obtain becomes larger.
An example of such a graph is given in Figure 2.1.
In Chapter 1, the capacity, the charge and the discharge capacity of the storage system modeled
in Model A all have the same absolute value. The storage system modeled in Model B can have
three different values for these physical constraints. Model B will only be different from Model
A when the capacity of the storage system is larger than the charge and/or the absolute value
of the discharge capacity. Otherwise the charge capacity and the discharge capacity will be
bound by the capacity of the storage system and therefore the capacity of the storage system
would always be fully used like in Model A.

With the capacity of the storage system, C, larger than the charge capacity of the stor-
age system, ChC, it is possible that an optimal solution will not make fully use of the capacity
of the storage system for every interval. Therefore the state of charge of the storage system
for every interval i, SOC(i), can take any value between zero and C. Also the quantity of
energy that is charged during interval i, ChQ(i), can take any value between zero and ChC.
Likewise for the discharge capacity of the storage system, DChC. When the capacity of the
storage system is larger than the absolute value of the discharge capacity of the storage system,
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Figure 2.1: The problem as a graph

the quantity of energy that is discharged during an interval i, DChQ(i), can take any value
between DChC and zero.

With this extension the model becomes more realistic, and even though this change might not
seem to make that big a difference, the optimization problem to determine an optimal trading
strategy for the modeled storage system to obtain a maximum profit, is solved in polynomial
time like the problem in Chapter 1, but notice that the running time of Algorithm 1 in Chapter
1 is even linear. With the absolute values of the three physical constraints not equal to each
other, it is possible to charge more than once before discharging and to discharge several times
after charging. The problems that occur because of the extension of Model A will be discussed
by examples. These examples will show which improvements are needed to Algorithm 1, to
determine an optimal trading strategy that obtains a maximum profit for Model B. There are
several extensions to Algorithm 1 required to develop a new algorithm. Algorithm 1 is extended
step by step, so that all extensions can be described.

Like in Chapter 1 the parameters and the decision variables of Model B are summarized
in Table 2.1. In this table the difference between Model A and B is clear. While in Model A the
ChC, the DChC and the C are given as ±1, in Model B these are arbitrary input values. Also
for Model A, the SOC(i), the ChQ(i), the DChQ(i) can be seen as booleans, while in Model B
they have values between zero and C, zero and ChC, and DChC and zero, respectively. This
makes Model A a discrete model for the SOC, the ChQ and the DChQ while Model B is a
continuous model.

12



CHAPTER 2. ALGORITHM 2: INCLUDING SCALING

Name Abbreviation Value Unit

Energy price for interval i p(i) input e/kWh
Charge Capacity ChC input kWh
Discharge Capacity DChC input kWh
Capacity of the Storage System C input kWh
Quantity of energy charged in interval i ChQ(i) 0 ≤ ChQ(i) ≤ ChC kWh
Quantity of energy discharged in interval i DChQ(i) DChC ≤ DChQ(i) ≤ 0 kWh
State of Charge for interval i SOC(i) 0 ≤ SOC(i) ≤ C kWh

Table 2.1: Parameters and decision variables for Model B

2.2 Mathematical model

The optimization problem to determine an optimal trading strategy for the modeled storage
system can be described with the following mathematical model:

max

n∑
i=1

(−(DChQ(i) + ChQ(i)) · p(i)) (2.1)

s.t. SOC(i) =
i∑

j=1

(ChQ(j) + DChQ(j)) ; 1 ≤ i ≤ n (2.2)

0 ≤ SOC(i) ≤ C ; 1 ≤ i ≤ n (2.3)

0 ≤ ChQ(i) ≤ ChC ; 1 ≤ i ≤ n (2.4)

DChC ≤ DChQ(i) ≤ 0 ; 1 ≤ i ≤ n (2.5)

The difference between Model A and B is shown in the differences between expression (1.3)
till (1.5) and (2.3) till (2.5). While the mathematical model for Model A is a binary integer
programming problem, the mathematical model for Model B is a linear programming problem.
In 1979, it was proven by L.G. Khachiyan, that it is possible to solve such a problem in
polynomial time. For more details we refer the reader to [3]. To get a good insight in this
specific problem, an algorithm to solve this problem will be developed in this chapter. As said
above, C > ChC and/or C > |DChC| for Model B to be an extension of Model A. (Note that
for Model B, just as for Model A: DChQ(i) ≤ 0.)
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2.3 Approach

To give clear examples that show the shortcomings of Algorithm 1 for this new model, the input
ChC, DChC and C are set. For all examples in this chapter we use ChC = 1, DChC = −1
and C = 3.

2.3.1 Heuristic 2.1: State of charge

With the capacity of the storage system being three times larger than the charge and the
absolute value of the discharge capacity of the storage system, it is clear that the state of charge
as used in Chapter 1 can no longer be used as a boolean. Therefore we extend Algorithm 1
such that the state of charge can take any value between zero and the capacity of the storage
system. There is also an extension of the charge and discharge capacity since it is possible that
the capacity of the storage system does not allow the storage system to charge or discharge
the total charge or discharge capacity. These extensions to Algorithm 1 are not enough to give
an optimal trading strategy. We need to extend the algorithm further. Therefore the extended
version of Algorithm 1 is called Heuristic 2.1, this heuristic is given in Appendix A. The trading
strategy as determined by Heuristic 2.1 could be summarized as follows:
If the energy price for interval i, p(i), is less than p(i+1) and the SOC(i) is not full, the storage
system must be charged as much as possible in interval i. If the energy price for interval j, p(j),
is larger than p(j + 1) and the SOC(j) is not empty, the storage system must be discharged as
much as possible in interval j. This heuristic goes chronologically once through all intervals.

2.3.2 Counterexample Heuristic 2.1

The following counterexample can be used to show that it cannot be guaranteed that Heuristic
2.1 determines an optimal trading strategy. The energy prices are as shown in the first graph
of Figure 2.2. The second graph shows when to charge and when to discharge, according to the
trading strategy determined by Heuristic 2.1 and according to a better trading strategy. The
effect on the SOC is shown in the third graph and the last graph shows the cumulative profit
for both trading strategies. For this example we used ChC = 1, DChC = 1 and C = 3. The
strategy as given by Heuristic 2.1 gives an outcome with a loss.
−20− 40− 80 + 100 = −40.
In the graph, it is taken into account that the energy prices are in MWh, therefore the losses
are −40/1000 = −0.04.

As given in Chapter 1 there are no residual values, thus it is not desirable to charge
more energy than can be discharged. Since the charge capacity is equal to the absolute value of
the discharge capacity, it is not optimal to charge in interval 1, 2 and 3 while only in interval
4 energy is discharged. Instead a better outcome would be to charge in interval 1 and 2 and
to discharge in interval 3 and 4. Since all profitable combinations of intervals to charge and to
discharge are used, this is an optimal solution. This trading strategy would give a profit of
100 + 80− 40− 20 = 120.
In the grapg this gives 0.12.
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Figure 2.2: Counterexample 1

2.3.3 Heuristic 2.2: The subsequent local maximum

The previous example shows that it is important to charge energy in an interval only when there
is a subsequent interval in which we can discharge this energy with a maximum profit. Since
it was optimal in Chapter 1 to discharge energy in the so called subsequent local maximum
we need to find a subsequent local maximum for every last local minimum. Once an interval is
fully used to discharge energy it can no longer be used to discharge more energy. Therefore it
is desirable to not define it as a subsequent local maximum again. In Algorithm 1 an interval
would not be visited twice, thus an interval could not be defined as subsequent local maximum
if the discharge capacity of this interval was already fully used. But now it could occur that
an interval would be defined as subsequent local maximum while the discharge capacity of this
interval is fully used, and therefore we redefine the subsequent local maximum.

Definition 2.1. A subsequent local maximum is the last interval, for which the discharge ca-
pacity is not fully used, of a non-decreasing period for the energy price after a local minimum.
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Using this new definition of the subsequent local maximum in a new heuristic gives a new trading
strategy. This extension of Heuristic 2.1 is called Heuristic 2.2, this heuristic is given in Appendix
B. The trading strategy as determined by Heuristic 2.2 could be summarized as follows:
If the energy price for interval i, p(i) is less than p(i+ 1), and the SOC(i) is not full, there must
be a subsequent local maximum determined, interval j. The maximum amount of energy that
can be charged in interval i and discharged in interval j, with the SOC(k) taken into account
for i ≤ k ≤ j will be charged and discharged in the intervals i and j.

2.3.4 Counterexample Heuristic 2.2

If Heuristic 2.2 would be used, an optimal solution is still not guaranteed. The next counterex-
ample can be used to show this. The energy prices are as shown in the first graph of Figure
2.3. The second graph shows when to charge and when to discharge, according to the trading
strategy determined by Heuristic 2.2 and according to a better trading strategy. The effect on
the SOC is shown in the third graph and the last graph shows the cumulative profit for both
trading strategies.

Figure 2.3: Counterexample 2
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The strategy as given by Heuristic 2.2 gives an outcome with a profit of
−40 + 100 = 60.
Also for this example, in the graph this is 0.06.

With Heuristic 2.2, interval 1 was not identified as an interval to charge, while the en-
ergy that can be charged in interval 1 can be discharged in interval 3. This would give a profit
of
−60− 40 + 80 + 100 = 80.
Which is in the graph 0.08.

This profit is better than the outcome of Heuristic 2.2, therefore an improvement to
Heuristic 2.2 is required.

The extension described next will give an algorithm that determines an optimal trading
strategy.

2.4 Optimal trading strategy

With only a little extension of Heuristic 2.2 an optimal trading strategy is developed. Interval 1
was not found as a possibility to charge energy since Heuristic 2.2 only goes through the price
list once chronologically to find the last local minimum. To find every last local minimum that
can be used to charge energy, to be discharged in the subsequent local maximum, the heuristic
cannot continue chronologically. After using the last found last local minimum it would be better
to start to search again for the new last local minimum in the first interval for which the state
of charge is not equal to the capacity of the storage system, after the last interval for which he
state of charge is equal to the capacity of the storage system. Now we need to redefine the last
local minimum.

Definition 2.2. The last local minimum is the last interval, that can be used to charge energy,
of a non-increasing period for the energy price, that has a subsequent local maximum.

Combining the new definition of the last local minimum with Heuristic 2.2 gives Algorithm 2,
that guarantees an optimal strategy. Algorithm 2 is given in Appendix C. After a short explana-
tion of how this algorithm works it will be proven that it guarantees an optimal trading strategy.

Algorithm 2 can be described with the flow stream as given in Figure 2.4. To determine
the maximum quantity energy to trade, the minimum of the energy that can be charged in the
last local minimum i, and the energy that can be discharged in the subsequent local maximum
j, is determined. Than it is determined for every interval k, between the last local minimum
and the subsequent local maximum if the quantity energy added to the SOC(k) is not larger
than the capacity of the storage system. If the quantity energy is to larg, the new quantity is
determined using Heuristic 2.3.

17



2.4. OPTIMAL TRADING STRATEGY

Heuristic 2.3

CHQ := min(ChC + DChQ(i)− ChQ(i), C − SOC(i))
DCHQ := min(DChC −DChQ(j), C − SOC(j))
Q := min(CHQ,DCHQ)
k := i + 1
:In this WHILE LOOP for all intervals from the LLM to the SLM the maximum amount of
energy to be stored is determined. :
while k < j do

Q := min(Q,C − SOC(k))
k := k + 1

end while

START

Determine LLM

Determine SLM

is there

a LLM?

STOP

Determine the 

maximum 

quantity energy

to trade using

Heuristic 2.3

Algorithm 2

Yes No

Figure 2.4: Flow stream of Algorithm 2

Algorithm 2 gives like Algorithm 1, a list of intervals in which to (dis)charge energy, together with
the amount of energy to be (dis)charged in these intervals. The last local minimum as defined
in Definition 2.2 and the subsequent local maximum as defined in Definition 2.1 are determined
in Algorithm 2. It is never possible that we find a subsequent local maximum before an interval
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that is already used for charging energy. Therefore we can only use intervals for charging after
the last interval for which the SOC = C. This is used in Algorithm 2. The subsequent local
maximum is always after the last local minimum, and also not before the last interval that can
be used for discharging energy, before the last found subsequent local maximum. This is also
used in Algorithm 2. To give a feasible solution, the maximum amount of energy to be charged,
discharged and stored is determined in Algorithm 2.

Proposition 2.3. Algorithm 2 produces an optimal trading strategy that gives a maximum profit
for the modeled storage system by Model B.

In order to prove that the new trading strategy is optimal for Model B, we need to prove that
it is not possible to obtain a larger profit with another trading strategy. It is important to
understand that the new trading strategy determined by Algorithm 2 for Model B, is in fact not
that different from the trading strategy determined by Algorithm 1 for Model A. In the strategy
determined by Algorithm 1, it was known that it was not possible to charge more than once
before discharging. Therefore searching for a new local minimum was only needed for intervals
after the interval that was used for discharging, since the state of charge would be equal to the
capacity of the storage system until then. In Model B it is possible to charge more often before
discharging. Therefore the search for a last local minimum is started in the first interval after the
last interval with the SOC = C for every iteration. It is proven in Chapter 1 that it is optimal
to charge in a last local minimum with a subsequent local maximum for the energy price and
to discharge in this subsequent local maximum. Since we redefined the last local minimum and
the subsequent local maximum we still need to prove that using these new defined last local
minimum and subsequent local maximum still provides an optimal trading strategy.

Proof. We must prove that, when an interval i is determined as a last local minimum, to be used
to charge energy, there is no interval available before the matching subsequent local maximum
(the interval which will be used to discharge energy) with a lower energy price than the last local
minimum. This means that we need to prove that when interval i cannot charge energy, since
during previous iterations energy is charged in other intervals, that it can never be better to use
interval i instead of previous found intervals. When using interval i as a last local minimum for
charging energy interferes with charging energy during interval k that is determined as a last
local minimum during a previous iteration, the energy price of interval k has to be less than or
equal to the price of the new found interval i. When charging in a new found interval i is not
possible because of an interval k that was determined as a last local minimum in a previous
iteration, the so called subsequent local maximum, interval j, that was found as subsequent local
maximum of the last local minimum k, has to be later in time then the new found last local
minimum i. To give a clear overview, the first graph of Figure 2.5 shows the intervals i, j and k.

19



2.4. OPTIMAL TRADING STRATEGY

j i

k

q

m

l

m

lq

Figure 2.5: The algorithm improves the outcome every iteration

The first found last local minimum k is the interval with the absolute minimum price of all
intervals available for charging before the subsequent local maximum j. Therefore the new
found interval i has to have a price larger than the energy price of interval k used for charging.

We need to prove that when an interval l is used to discharge energy, that there is not
an interval m, not fully used to discharge energy, after the found last local minimum q, with
an energy price that is larger than the energy price of the interval l that is used. If interval
m would be before interval l, than interval m would be the subsequent local maximum of the
found last local minimum q and thus fully used for discharging energy if possible. This is shown
in the second graph of Figure 2.5.

Let interval l be used to discharge energy, with an energy price that is less than the en-
ergy price for a subsequent interval m, as shown in the third graph of Figure 2.5. If there is not
another interval before interval m where energy can be charged, to be discharged in interval
m, and it is possible that interval l will be determined as the last local minimum and interval
m the subsequent local maximum, the energy planned to be discharged in interval l will not
be discharged in interval l but this energy will be discharged in interval m. This means that
the action of discharging in interval l is undone and this amount of energy is discharged in
interval m. Therefore it is not possible that an interval l in which energy is discharged has an
energy price that is less than the energy price of a subsequent interval m that is not used for
the maximum discharge capacity when it is possible to determine interval l as the last local
minimum. This is shown in Figure 2.5

The search for a last local minimum is started in the first interval after the last interval
with the SOC = C for every iteration, therefore every usable moment to charge and to
discharge energy will be found.
This makes the trading strategy optimal.
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2.5 Structure and complexity

The structure of Algorithm 2 is more complex. There are three inner loops, those will be
described first. During the first inner loop there is an interval determined as the last local
minimum. Since there are n intervals, this can be done in O(n). If there is a last local minimum
determined, the second inner loop determines an interval as the subsequent local maximum.
This is also done in O(n). Once there is a last local minimum and a subsequent local maximum
determined, the amount of energy to be charged, discharged and stored is determined in the
third inner loop. This is also done in O(n). These are all actions that are done one after another.
This gives O(n) for the three inner loops together.

The inner loops of Algorithm 2 will be repeated until there cannot be a last local mini-
mum determined in the first inner loop. It is possible that there are intervals first determined
as subsequent local maximum and during a subsequent iteration determined as last local
minimum. Once an interval is determined as last local minimum, it cannot be determined
as subsequent local maximum during subsequent iterations. Therefore the three inner loops
can be repeated at most 2 · 1/2 · n times. While it is possible that a last local minimum is
repeatedly used, for every time a last local minimum is repeatedly used there is a subsequent
local maximum used that cannot be used again as a subsequent local maximum. Thus this
process has O(n), and since this includes the inner loops with complexity O(n), the complexity
of Algorithm 2 is O(n) · O(n) = O(n2). This is clearly worse than the complexity of Algorithm
1, therefore the small extension of Model A has great impact for the complexity.

2.6 Reflection and result

In this section there will be a reflection on the results given. The differences between Algorithm
1 and Algorithm 2 is shown in Figure 2.7. In this figure, the solution of Algorithm 1 is called
HAND and Algorithm 1 is called Algorithm. It is shown that Algorithm 1 uses only the last
local minimum and the subsequent local maximum as defined in Definitions 1.3 and 1.4, while
Algorithm 2 uses the new defined last local minimum and subsequent local maximum as defined
in this chapter. Therefore the profit of Algorithm 1 is at least as large as the profit of Algorithm 2.

To obtain an optimal profit for Model B, the storage system is charged in every local
minimum as defined in Definition 2.2 with a subsequent local maximum as defined in Definition
2.1. The amount of energy that must be charged in this last local minimum depends on the
SOC of all intervals between the last local minimum and the subsequent local maximum
including the last local minimum, and it depends on the charge and discharge capacity that is
still available. This trading strategy gives an optimal outcome as proven above. With Model B,
the modeled storage system is more realistic than with Model A. Algorithm 2 is more complex
than Algorithm 1.
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Figure 2.6: The front page of ATMP(2)
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Figure 2.7: The graphs produced by ATMP(2)
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Chapter 3

Algorithm 3: Including losses

In Model C, as extension to Model B, losses will be taken into account. By the law of conservation
of energy, using a storage system cannot be without losses. There is energy required to (dis)charge
the storage system, electricity energy will be transformed into thermal energy. There is also
electricity energy transformed for instance into irretrievable chemical energy caused by storage.
Therefore with taking losses into account, the modeled storage system becomes more realistic.
This chapter describes the new calculations, required to determine an optimal trading strategy
taking losses into account. Algorithm 3 is described as the extension of Algorithm 2. Algorithm 3
determines an optimal trading strategy for a modeled storage system by Model C. Though there
are some new calculations required, the complexity of Algorithm 3 is O(n2) like the complexity
of Algorithm 2.

3.1 Model of the storage system

As an extension to Model B, in Model C energy losses from using the storage system can be
taken into account. There is energy required for charging and for discharging the storage system.
This is energy that cannot be used for trading. Also, in time the energy in the storage system
decreases, this is energy that cannot be sold. The energy that cannot be sold are losses from
using the storage system. With these losses taken into account, there will be many more states
of charge. In order to construct an associated graph in which we can model the problem as a
single source shortest path problem, the states of charge must be discrete. With the losses taken
into account, the state of charge can take any value within the capacity of the storage system.
Therefore it is no longer possible to construct a discrete model of the problem, when losses are
taken into account. There are three types of losses as described above:

• losses caused by storage (LBS),

• losses caused by charging (LBC),

• losses caused by discharging (LBDC).

To take these losses into account in the mathematical model, it is important to clarify how
these losses are modeled. Also it is important to know how they affect the state of charge of
the storage system, SOC, and/or the profit. In this section the losses caused by storage are
described first. The effect of these losses on the SOC(i) and the profit will be described. After
this, the losses caused by charging are described. For these losses, the effect on the SOC(i) and
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the profit is described, in this description the other losses are not taken into account. At last
the losses caused by discharging are described. These losses are modeled such that they have no
effect on the SOC(i), but they affect the profit. Finally the new calculations to determine the
SOC(i) and the profit are expressed in expression (3.11) and (3.12).

3.1.1 Losses caused by storage

Model D is, like the other models, discrete in time. Therefore the result of the losses by storage
during an interval is required. To be able to determine the SOC(i), the SOC(i − 1) must be
reduced with the losses by storage. The energy that is lost in time during interval i, is modeled
as a percentage of the SOC(i− 1). We determine the SOC(i) by calculating the residual energy
after the losses by storage, RLBS as calculated in expression (3.1).

RLBS :=
100− LBS

100
(3.1)

For an interval i, in which there is no energy charged or discharged, the SOC(i) is calculated,
as in expression (3.2), using the residual after the losses by storage.

SOC(i) := SOC(i− 1) ·RLBS (3.2)

The effect on the SOC by the losses caused by storage are shown in Figure 3.1, to be able to
show the effect extreem values are chosen.

Figure 3.1: The losses by storage

The losses caused by storage must be taken into account for every interval. If there is a com-
bination of a last local minimum i and a subsequent local maximum j found for trading, the
contribution to the profit of this combination (i, j), can be expressed as in expression (3.3).
In this expression the discharge quantity of the subsequent local maximum is expressed as the
charge quantity of the last local minimum, decreased with the losses caused by storage.

Profit(i, j) := p(j) · ChQ(i) ·RLBSj−i − p(i) · ChQ(i) (3.3)
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In the mathematical model, to determine the SOC(i), the losses by storage are adapted as in
expression (3.4).

SOC(i) :=
m∑
i=1

((ChQ(i) + DChQ(i)) ·RLBSm−i); 1 ≤ i ≤ n (3.4)

In the mathematical model, to determine the profit, the losses by storage are adapted. This is
not as clear as for the SOC(i), but since the SOC(i) is decreased taking the losses caused by
storage into account, the DChQ(i) is bound, and thus the losses are taken into account for the
profit as well. To show how the losses by storage affect the SOC and the profit, an extreme
example is shown in Figure 3.2.

Figure 3.2: The losses by storage affect the SOC and the profit

3.1.2 Losses caused by charging

When energy is charged, the resulting losses must be taken into account as well. Again it is
needed to determine the energy that really is in the storage system, after charging the storage
system. The energy that is lost by charging, is modeled as a percentage of the energy that is
charged. We are interested in the SOC(i) after charging in interval i, thus we calculate the
residual after the losses suffered by charging, RLBC, as in expression (3.5).

RLBC :=
100− LBC

100
(3.5)

The SOC(i) for interval i, in which there is energy charged, is calculated as in expression (3.6).

SOC(i) := SOC(i− 1) ·RLBS + ChQ(i) ·RLBC (3.6)
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If there is a combination of a last local minimum i and a subsequent local maximum j found
for trading, the contribution to the profit, of this combination (i, j), can be expressed as in
expression (3.7). In this expression the discharge quantity of the subsequent local maximum is
expressed as the charge quantity of the last local minimum, decreased with the losses caused by
charging.

Profit(i, j) := p(j) · ChQ(i) ·RLBC − p(i) · ChQ(i) (3.7)

In the mathematical model, to determine the SOC(i), the losses by charging are adapted as in
expression (3.8).

SOC(i) :=
m∑
i=1

((ChQ(i) + DChQ(i)) ·RLBC); 1 ≤ i ≤ n (3.8)

In the mathematical model, to determine the profit, the losses by charging are adapted similar as
the losses caused by storage. Since the SOC(i) is decreased taking the losses caused by charging
into account, the DChQ(i) is bound, and thus the losses are taken into account for the profit
as well. To show how the losses by charging affect the SOC and the profit, an extreme example
is shown in Figure 3.3.

Figure 3.3: The losses by charging affect the SOC and the profit

3.1.3 Losses caused by discharging

When discharging energy, the resulting losses must be taken into account as well. The losses
caused by discharging are expressed as a percentage of the energy that is discharged. Therefore, a
percentage of the energy that is discharged cannot be sold since electricity energy is transformed
into thermal energy. Similar as the other losses, also for the losses suffered by discharging, we
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need to determine the residual of the discharge energy after losses by discharging, RLBDC as
calculated in expression (3.9).

RLBDC :=
100− LBDC

100
(3.9)

While the other losses affected the SOC(i) the losses caused by discharging are taken over
energy that is discharged and thus this has no effect on the SOC(i). The electricity energy
that is transformed in heat, cannot be sold. Therefore these losses affect the profit. If there is a
combination of a last local minimum i and a subsequent local maximum j found for trading, the
contribution to the profit, of this combination (i, j), can be expressed as in expression (3.10).
In this expression the discharge quantity of the subsequent local maximum is expressed as the
charge quantity of the last local minimum, decreased with the losses caused by discharging.

Profit(i, j) := p(j) · ChQ(i) ·RLBDC − p(i) · ChQ(i) (3.10)

With the losses suffered by discharging having no effect on the SOC(i), in the mathematical
model, the SOC(i) is calculated as in expression (3.11).

SOC(i) :=

m∑
i=1

((ChQ(i) ·RLBC + DChQ(i)) ·RLBSm−i); 1 ≤ i ≤ n (3.11)

In the mathematical model, to determine the profit, the losses by discharging are adapted as in
expression (3.12).

profit :=

n∑
i=1

(−(DChQ(i) ·RLBDC + ChQ(i)) · p(i)) (3.12)

To show how the losses by charging affect the profit, an extreme example is shown in Figure 3.3.

Figure 3.4: The losses by discharging affect the profit
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The effect of the losses is that there is less efficiency by charging and by discharging. Therefore
the profit decreases. How the losses are included in Algorithm 3 is described in the next sections,
but first the variables used in this chapter will be summarized in Table 3.1.

Name Abbreviation Value Unit

Energy price for interval i p(i) input e/kWh
Charge Capacity ChC input kWh
Discharge Capacity DChC input kWh
Capacity of the Storage System C input kWh
Quantity of energy charged in interval i ChQ(i) 0 ≤ ChQ(i) ≤ ChC kWh
Quantity of energy discharged in interval i DChQ(i) DChC ≤ DChQ(i) ≤ 0 kWh
State of Charge for interval i SOC(i) 0 ≤ SOC(i) ≤ C kWh
Charging price for interval i cp(i) calculated e/kWh
Discharging price for interval i dcp(i) calculated e/kWh
Losses by Charging LBC 0− 100 (% of ChQ) %
Losses by Discharging LBDC 0− 100 (% of DChQ) %
Losses by Storage LBS 0− 100 (% of SOC) %

Residual after Losses by Charging RLBC 100−LBC
100

Residual after Losses by Discharging RLBDC 100−LBDC
100

Residual after Losses by Storage RLBS 100−LBS
100

Table 3.1: Parameters and decision variables for Model C

3.2 Mathematical model

The optimization problem to determine an optimal trading strategy for the modeled storage
system can be described with the following mathematical model:

max

n∑
i=1

(−(DChQ(i) ·RLBDC + ChQ(i)) · p(i)) (3.13)

s.t. SOC(i) :=

m∑
i=1

((ChQ(i) ·RLBC + DChQ(i)) ·RLBSm−i) ; 1 ≤ i ≤ n (3.14)

0 ≤ SOC(i) ≤ C ; 1 ≤ i ≤ n (3.15)

0 ≤ ChQ(i) ≤ ChC ; 1 ≤ i ≤ n (3.16)

DChC ≤ DChQ(i) ≤ 0 ; 1 ≤ i ≤ n (3.17)

This mathematical model shows that the losses by discharging only affect the profit in expression
(3.13), as described above. The state of charge that is calculated in expression (3.14), is influenced
by the losses by charging, this is because not all energy charged can be stored. Some of this
energy is used for charging. Also the losses by storage affect the SOC as shown in this model.
The SOC is not influenced by the losses by discharging, since this is energy that would not be
in the storage system already.
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3.3 Approach

With the losses taken into account, some calculations become more complex, but the basics of
the trading strategy as described in Chapter 2 are not changed; still we search for the last local
minimum, LLM , and the subsequent local maximum, SLM , and we determine the maximum
amount of energy to trade. In this section we will describe what calculations are required to find
the last local minimum, the subsequent local maximum and the maximum amount of energy
that can be charged, discharged and stored. The losses that are taken into account, can be used
to determine a virtual energy price to charge energy in interval i, cp(i), and a virtual energy
price to discharge energy in interval j, dcp(j). These prices are used to determine the trading
strategy.

3.3.1 Charging price and discharging price

To determine the last local minimum, the losses must be taken into account. The amount of
energy that is in the storage system after charging, the SOC, will decrease in time due to the
losses by storage. To reflect the costs of these losses, a virtual price can be calculated for every
interval. Energy stored decreases in time. If for interval i and i + 1 the energy prices are equal,
because of the losses by storage it would be better to charge energy in interval i+ 1. The virtual
price of interval i, vp(i) should thus be larger than the virtual price of interval i+1. The original
energy price of every interval can be recalculated by expression (3.18).

vp(i) := p(i) ·RLBSi (3.18)

The virtual price can be used for charging as well as for discharging since they both are
affected by the losses suffered by storage. The losses by charging will change the energy price
for charging energy, and the losses by discharging will change the energy price for discharging
energy. The losses for charging and for discharging are taken into account separately, to be
able to make a difference between charging energy in an interval, and not discharging the
stored energy in an interval to be able to discharge this energy in another interval. The losses
caused by charging increase the virtual price. Therefore the charging price is divided by the
residual after losses by charging. The losses caused by discharging decrease the virtual price.
The discharging price is multiplied by the residual after losses by discharging as in Algorithm 3.1.

Algorithm 3.1

Data & Initialization
p(1)..p(n) original energy price
cp(1)..cp(n) virtual charging price
dcp(1)..dcp(n) virtual discharging price
RLBC, RLBDC and RLBS

Program

i := 1
while i ≤ n + 1 do

cp(i) := p(i)·RLBSi

RLBC
dcp(i) := p(i) ·RLBSi ·RLBDC
i := i + 1

end while
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Once the energy prices are recalculated by Algorithm 3.1, the new prices can be used to determine
the last local minimum and the subsequent local maximum. With the new prices to charge and
to discharge energy, an optimal trading strategy can be determined. The extension of Algorithm
2 is Algorithm 3. Section 3.4 describes Algorithm 3, but first in this section an overview of
the algorithms used in Algorithm 3 is given. At the end, it will be proven that Algorithm 3
guarantees an optimal trading strategy for a storage system modeled in Model C.

3.3.2 The last local minimum and the subsequent local maximum

To find the subsequent local maximum as defined in Definition 2.1, for a given last local minimum
as defined in Definition 2.2, some calculations are required. In Model C, it is possible that there
is a subsequent local maximum j found, with a dcp(j), that is not profitable in combination
with the last local minimum i, since cp(i) ≥ dcp(j). Therefore a new algorithm is developed to
determine a last local minimum and it’s subsequent local maximum. First a last local minimum
i is determined. For this last local minimum i, the subsequent local maximum is searched. If
there is a subsequent local maximum found that is not profitable, the search continues. If an
interval k is found, with cp(k) ≤ cp(i), interval k is the new last local minimum and for this last
local minimum k, the search for the subsequent local maximum continues. If there is a profitable
subsequent local maximum found, the maximum amount of energy to trade is to be determined
as in Section 3.3.3. In Algorithm 3.2 as described in Appendix D, it is described how the last
local minimum and it’s subsequent local maximum can be determined.

Figure 3.5: The search for the last local minimum

While in Algorithm 2 the search for a last local minimum started in the first interval available
for charging, not fully used for discharging, before the last found last local minimum, the search
for a last local minimum will now start in the first interval that can be used for charging in
Algorithm 3. For Algorithm 2 it was not required to start the search in that interval but as
shown in Figure 3.5, for Algorithm 3 it is required, to be able to determine the optimal trading
strategy. In the figure, it is not real clear that the profit is better with this new strategy. This
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is because the losses are only 2.5% thus this is not very clear in a graph, but it is shown that
the new algorithm uses another trading strategy.

3.3.3 Amount of energy

When the last local minimum and the subsequent local maximum are known, the energy to trade
must be calculated. Taking the losses in Model C into account, calculating the maximum amount
of energy to charge, discharge and store is more complex. The basics of these calculations are
already given in Algorithm 2, new calculations are needed, which are described in Algorithm
3.3 as given in Appendix E. In Algorithm 3.3 the calculation as described in expression (3.11) is
used to determine the SOC. The SOC must be kept larger or equal to zero and smaller or equal
to the capacity of the storage system. The charge and the discharge capacity must be respected
as well, for the solution to be feasible.

3.3.4 New charging price

When energy is charged, the losses caused by charging are taken into account by the charging
price. If the discharge quantity of interval j, DChQ(j), is smaller than zero, this energy can be
used to be discharged in a subsequent interval j + k, as shown in Figure 3.6. The first graph is
the start situation. The second graph shows the result after 1 iteration. This is what is described
here. The third graph is described later. To transport the energy that is available because of the
discharge quantity of interval j, the losses caused by charging should not be taken into account
again. Therefore it is needed to recalculate the charging price of interval j, if by an iteration the
DChQ(j) becomes negative, as in expression (3.19)

cp(j) := cp(j) ·RLBC (3.19)

Similar when we are used to just transport energy from interval m to subsequent intervals, the
DChQ(m) can become zero again, as shown in the third graph of Figure 3.6. Than we cannot
just transport energy from interval m to subsequent intervals but energy must be charged again
and thus the losses caused by charging must be taken into account again for the charging price,
as in expression (3.20). The final result of this strategy is shown in Figure 3.7.

cp(j) :=
cp(j)

RLBC
(3.20)

It is not required to do these calculations for the discharging price, this is because it is not
possible that an interval set to charge energy is determined as a subsequent local maximum.
Algorithm 3.3 as given in Appendix E uses the expressions (3.19) and (3.20), to determine the
new charging prices if required after the charging and discharging quantities are determined.
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Figure 3.6: The changing charging price

Figure 3.7: Recalculating the charging price when interval i is set to discharge
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3.4 Optimal trading strategy

Algorithm 3 is an extension of Algorithm 2. Like in Algorithm 2, in Algorithm 3 the maximum
amount of energy to trade is used for every last local minimum combined with a profitable
subsequent local maximum. To give a clear view of Algorithm 3 the flow stream of Algorithm 3
is given in Figure 3.8. The used algorithms 3.1 till 3.3 are described earlier, as well as expressions
(3.19) and (3.20), that are used in Algorithm 3.3.

Figure 3.8: Flow stream of Algorithm 3

Algorithm 3 gives a list of intervals to charge energy, with the amount of energy to be charged
during these intervals. There is also a list given of intervals to discharge energy, with the amount
of energy to be discharged. The profit of this strategy is also determined.

Proposition 3.1. Algorithm 3 determines an optimal trading strategy, for a storage system
modeled in Model C, to obtain a maximum profit.

Proof. With the new calculations, Algorithm 2, to determine the optimal trading strategy as
described in Chapter 2, is extended. The extension of Model B did influence the calculations
to determine the last local minimum and the subsequent local maximum. Like in Algorithm 2,
the last local minimum, which is the interval used to charge energy has the absolute minimum
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price to charge energy, of all intervals available to charge energy, before the subsequent local
maximum that is used to discharge this energy. The same applies to discharging. It is not
possible to discharge the storage system for a discharge price higher than the discharge price for
the interval that is finally used to discharge. This makes the trading strategy optimal, similarly
as proven in Chapter 2 for Algorithm 2 for Model B.

3.5 Structure and complexity

To give a clear overview in this section a flow-diagram of Algorithm 3 is given with the
complexity.

Nr. Determine Next Action

1. Algorithm 3.1 Algorithm 3.2 O(n)
2. Algorithm 3.2 If there is an LLM; Algorithm 3.3 Else; THE END O(n)
3. Algorithm 3.3 Algorithm 3.2 O(n)

Table 3.2: Flow-diagram of Algorithm 3

As proven in Chapter 2 it is only needed to search for a last local minimum n times, therefore
the complexity of Algorithm 3 is O(n2). This is the same as the complexity of Algorithm 2.

3.6 Reflection and result

With the losses taken into account in this model, it cannot be expected that the profit in this
model is larger than the profit in the previous model, for the same price list. But Algorithm
2 does not give a feasible solution to the problem and hence it cannot guarantee optimality in
general. If Algorithm 2 is used to determine an optimal profit for a modeled storage system as in
Model C, and the storage system is discharged for as much as there is energy stored, to make the
solution feasible. This feasible solution will never give a larger profit than can be obtained by the
optimal trading strategy determined by Algorithm 3. In Figure 3.9 it is shown how the optimal
trading strategy determined by Algorithm 2 is transformed to respect the physical constraints
of the modeled storage system. This is done by HAND and therefore the modified solution of
Algorithm 2 is called HAND in this example. Algorithm 3 is called Algorithm in this example. In
this figure Algorithm 3 and Algorithm 2 can be compared. To give a clear view of the differences
in the trading strategies, in Figure 3.10 the price list, the charge and discharge activities, the
state of charge and the profit of both algorithms are shown. With the extensions to Algorithm
2, a new algorithm to determine the optimal trading strategy for Model C is found. Though
the calculations for finding the last local minimum and the subsequent local maximum became
more complex, still it is possible to find an exact solution for this problem as proven above in
O(n2).

36



CHAPTER 3. ALGORITHM 3: INCLUDING LOSSES

Figure 3.9: The front page of ATMP(3)
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Figure 3.10: The graphs produced by ATMP(3)
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Chapter 4

Algorithm 4: Including bounds

In this chapter Model C as described in Chapter 3 is extended by including bounds for the state
of charge, yielding Model D to be solved by Algorithm 4. With bounds, the storage system can
be used for trading energy as well as for solving problems in the low voltage grid. There are
several problems that can be solved using a storage system, as described in Section 7.2. For
instance, it is possible that the demand is larger than the supply for a certain period. In such a
situation, the storage system can be discharged to help overcome this problem, for a period of
time, provided the SOC is high enough. It is also possible that there is more (renewable) energy
generated in the low voltage grid than can be used in the low voltage grid at the same time. If
this energy cannot be transported to the medium voltage grid, the storage system can help by
storing energy. To be able to use the storage system for both of these problems it is required to
have a lower bound and an upper bound respectively, for the state of charge.

4.1 Model of the storage system

In Model D, the state of charge of the storage system, SOC, needs to be higher than a lower
bound, LB, and less than an upper bound, UB. These bounds are used so the storage system
can also be used for other purposes such as solving problems in the electrical grid, besides
trading. With this extension to Model C, the final model of the storage system for this research
is developed, Model D. In Table 4.1 the parameters and the decision variables used in this
chapter are summarized.

4.2 Mathematical model

This optimization problem can be described just as before with a mathematical model. Besides
expression (4.3), the following mathematical model is the same as the mathematical model as
given in Chapter 3.
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Name Abbreviation Value Unit

Energy price for interval i p(i) input e/kWh
Charge Capacity ChC input kWh
Discharge Capacity DChC input kWh
Capacity of the Storage System C input kWh
Quantity of energy charged in interval i ChQ(i) 0 ≤ ChQ(i) ≤ ChC kWh
Quantity of energy discharged in interval i DChQ(i) DChC ≤ DChQ(i) ≤ 0 kWh
State of Charge for interval i SOC(i) 0 ≤ SOC(i) ≤ C kWh
Charging price for interval i cp(i) calculated e/kWh
Discharging price for interval i dcp(i) calculated e/kWh
Losses by Charging LBC 0− 100 % of ChQ %
Losses by Discharging LBDC 0− 100 % of DChQ %
Losses by Storage LBS 0− 100 % of SOC %

Residual after Losses by Charging RLBC 100−LBC
100

Residual after Losses by Discharging RLBDC 100−LBDC
100

Residual after Losses by Storage RLBS 100−LBS
100

Lower Bound LB 0− 100 % of C kWh
Upper Bound UB LB − 100 % of C kWh

Table 4.1: Parameters and decision variables for Model D

max
n∑

i=1

(−(DChQ(i) ·RLBDC + ChQ(i)) · p(i)) (4.1)

s.t. SOC(i) =
m∑
i=1

((ChQ(i) ·RLBC + DChQ(i)) ·RLBSm−i) ; 1 ≤ i ≤ n (4.2)

LB ≤ SOC(i) ≤ UB ; 1 ≤ i ≤ n (4.3)

0 ≤ ChQ(i) ≤ ChC ; 1 ≤ i ≤ n (4.4)

DChC ≤ DChQ(i) ≤ 0 ; 1 ≤ i ≤ n (4.5)

This mathematical model shows that the lower bound and the upper bound affect the state of
charge as expressed in expression (4.3). The costs because of losses of storage will be larger with
a larger lower bound, since the costs are calculated over the state of charge.

4.3 Approach

The bounds for the SOC can be chosen in such a way that the storage system can help to
overcome problems, when supply and demand are not coordinated. The lower bound can also
be used to not discharge the storage system beyond a given percentage, because of the physical
constraints of the storage system. In the previous models a trading strategy was not feasible if
not all constraints were met, for instance, it is simply not possible, to charge more energy than
the charge capacity can handle. In this model the bounds are set to help overcome problems.
It now is possible that these constraints are not met because of the starting condition of the
storage system. If possible, it is required to meet the constraints of the bounds of the SOC,
but when this is not possible still the best trading strategy can be determined. When it is not
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possible to get the SOC within the bounds, this is because of the starting condition. First the
SOC must be within the bounds and then the trading can begin. In this research it is taken
into account that the algorithm to develop an optimal trading strategy, is able to deal with a
starting condition with the SOC not within the bounds. This means that when it is not possible
to set the SOC within the bounds the algorithm first will (dis)charge energy to get the SOC
within the bounds. In the rest of this thesis, the possibility that the SOC is not within the
bounds for the first interval(s), is assumed to be taken care of, because once the SOC is within
the bounds, this is maintained. For determining an optimal trading strategy, a phased approach
is used. There are five algorithms used, one for every phase:

• Determine the SOC of all intervals with the SOC to start,

• Getting the SOC under the upper bound for all intervals,

• Getting the SOC of the last interval equal to the lower bound,

• Getting the SOC of all intervals within the bounds,

• Determine an optimal trading strategy that respects the bounds.

In this section these different phases will be described.

4.3.1 State of charge to start with

As said before, the first concern is to keep the SOC within the bounds. To make the model
more realistic, the start SOC can have any value between zero and the capacity of the storage
system. Now for every interval i, the SOC(i) must be set between the bounds. To get the SOC
within the bounds, first the SOC(i) will be calculated for every interval i, by Algorithm 4.1,
using the start SOC and the losses by storage.

Algorithm 4.1
Declarations
SOC(0) the SOC to start with
LBS the losses by storage
SOC(1) := ... := SOC(n) := 0

Program

: This WHILE LOOP goes chronological through the intervals starting with interval 1 to set
the SOC for every interval :
while i < n + 1 do

SOC(i) := startSOC · LBSi

i := i + 1
end while

Algorithm 4.1 is only used to determine the SOC of all intervals, using the SOC(0). To get the
SOC within the bounds, Algorithm 4.2 till Algorithm 4.4 are used.

4.3.2 State of charge is less or equal to upper bound

With Algorithm 4.1 we know the SOC(i) for every interval i. The SOC(i) must be less or equal
to the UB for every interval i. In Algorithm 4.2 as given in Appendix F, the SOC of the first

41



4.3. APPROACH

interval is compared with the UB. If the SOC of this interval is larger than the UB, this interval
is set to discharge energy. The amount of energy to be discharged is determined in Algorithm
4.2 using expression (4.6).

DChQ(i) := min(DChC −DChQ(i), SOC(i)− UB) (4.6)

If for the next interval the SOC is still larger than the UB, again this interval is set to discharge
energy and so on. If for an interval j the SOC(j) is less or equal to the UB, all subsequent
intervals will have a SOC less or equal to the UB. This is because there is not an interval set
to charge energy yet in the algorithms used. This means that all intervals have a SOC smaller
or equal to the UB, and thus Algorithm 4.2 is finished.

4.3.3 State of charge of the last interval is equal to lower bound

For interval n, the last interval, it is desirable to have the SOC(n) equal to the LB, since there
is no residual value. While for the other models this was always true, in this model it is possible
that, because of the start SOC there is more energy in the storage system than required. Since
there is no residual for energy, it is best to get the SOC(n) equal to the lower bound. That
way, there is not more energy in the storage system reserved for solving problems than required.
When the SOC(n) is larger than the LB by Algorithm 4.1, all intervals have a SOC that is
larger. Therefore it is not desirable to charge energy for solving problems. In this situation, it is
best to discharge this extra amount of energy in the first local maximum as defined in Definition
4.1.

Definition 4.1. A first local maximum is the last interval i, not fully used to discharge energy,
of a non-decreasing period for the energy price with SOC(i) > LB.

In Chapter 3 it is shown that some calculations are necessary to find the subsequent local
maximum, the same calculations must be done to determine the first local maximum. The new
prices for every interval are calculated like in Chapter 3 in Algorithm 3.1. In Algorithm 4.3,
given in Appendix G, it is described how the extra amount of energy in interval n is discharged
in the first local maximum. In expression (4.7) the calculation required to determine the amount
of energy to be discharged in the first local maximum i is given.

DChQ(i) := min(DChC −DChQ(i), (SOC(n)− LB) · LBSi−n) (4.7)

4.3.4 State of charge within the bounds

If SOC(n) ≥ LB, all intervals have a SOC that is within the bounds. Else, with the new prices,
we can charge energy to get the SOC larger or equal to the lower bound, and keep it less or
equal to the upper bound for minimum cost. This is done by checking if the SOC is bigger
or equal to the LB for every interval. If the SOC(j) for interval j is less than the LB, in an
interval before interval j, including interval j, the storage system needs to charge energy. Now
the charging prices will be used to charge for the minimum price. The storage system must be
charged for minimum cost, therefore the absolute local minimum until interval j needs to be
determined as defined in Definition 4.2.

Definition 4.2. The absolute local minimum until interval j is the interval with the smallest
charging price, that can be used for charging, before interval j + 1.
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In the absolute local minimum i, until interval j, the storage system must be charged to get
the SOC(j) equal to the LB. The amount of energy that is needed to charge is calculated in
expression (4.8). In this expression the losses caused by charging and storage are taken into
account. Since it is not possible to charge more energy than possible by the charge capacity, and
it is only required to charge energy needed to get the SOC(j) equal to the LB the minimum of
these amounts of energy is determined.

ChQ(i) := min(ChC − ChQ(i), (LB − SOC(j)) · LBSj−i) (4.8)

It is possible that by charging in interval i the SOC for a subsequent interval k, before interval
j would become bigger than the UB, therefore this is checked in Algorithm 4.4 as in expression
(4.9) for k from interval i till interval j.

ChQ(i) := min(ChQ(i), (UB − SOC(k)) · LBSi−k) (4.9)

In Algorithm 4.4 as given in Appendix H, it is described how we can charge energy to get the
SOC larger or equal to the LB, and to keep the SOC less or equal to the UB with minimum
costs. Once all intervals are checked, the SOC is kept within the bounds for all intervals and
Algorithm 4.4 is finished.

4.3.5 Optimal trading within the bounds

Now we finally got the SOC of all intervals within the bounds, if this was possible with the
start SOC. Now a trading strategy can be determined that respects the bounds. To determine
an optimal trading strategy, Algorithm 4.5 as given in Appendix I, is developed to be used after
Algorithm 4.1 till 4.4. In the Chapters 1 till 3, the only possible strategy for trading was to
charge before discharging. This was the only possible way for trading, since there was no energy
in the storage system, before the trading strategy started. Now it is possible to discharge before
charging since there are intervals with a SOC that is larger than the lower bound, since it can
cost less to charge energy for solving problems in advance. The extra energy, that is available in
interval k can be used to discharge in interval j, with j ≤ k. Before the interval for which the
SOC becomes less than the lower bound, energy must be charged again. It is possible that it is
after interval j, that an amount of energy must be charged again, so that in subsequent intervals
the SOC never is less than the lower bound. Therefore a new strategy is needed to trade optimal.

The previous algorithms first determined a last local minimum after which a subsequent
local maximum was determined, since it was needed to charge before discharging. If the SOC,
for every interval since interval j until interval k, is larger than the LB, with interval j the
subsequent local maximum, and j < k. Using the strategy of Algorithm 3 makes it possible that
the last local minimum i, that is used for charging energy for the subsequent local maximum
j, is not the interval with the absolute minimum charging price, available to charge energy
to be discharged in interval j, while the absolute local minimum until interval k, as defined
in Definition 4.2, has the absolute minimum charging price. In Chapter 1 till 3 the last local
minimum always was the interval with the absolute minimum charging price that was available
to be used for charging. Now it is better to first determine the first local maximum j as defined
in Definition 4.1, and then determine the absolute local minimum i.

The absolute local minimum has to be in a certain domain. The domain of interval j
contains all previous intervals {1, ..., j − 1}, all adjacent intervals {j, ..., j + h} that have more
energy reserved for solving problems in the grid than the lower bound requires, together with
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the first interval after all these intervals. The domain of interval j is {1, ..., j + h + 1}. Only the
last interval of the domain is required to determine the absolute local minimum. Therefore the
last interval k of the domain is determined as k := j + h + 1. For this domain interval i, with
the smallest new price is the best interval to charge energy to be discharged in interval j. Only
if the charging price for the interval with the absolute minimum charging price is less than the
discharging price for the first local maximum, the first local maximum will be used to discharge
energy.

There are two possible situations now to determine the amount of energy that can be
charged and discharged, since there is either energy charged before discharging or there
is energy charged after discharging. If the energy is charged after discharging, the energy
that can be discharged in j needs to be determined. To keep the SOC for interval m with
j ≤ m ≤ i above the lower bound, the maximum amount to discharge in interval j is
determined as in expression (4.10), for every interval m between interval j and interval i, with
DChQ(j) := DChC −DChQ(j) to begin with.

DChQ(j) := min(DChQ(j), (SOC(h) · LBSi−m − LB) · LBSj−i) (4.10)

Charging the storage system again to get the SOC within the bounds for all intervals, will be
done as described earlier in Algorithm 4.3. It is only required to use Algorithm 4.3, for the
intervals subsequent to interval j. If the energy is charged before discharging, the calculations
that are done are the same as in Algorithm 3 in Chapter 3.

4.4 Optimal trading strategy

The five algorithms used to determine an optimal trading strategy are described above. To give
a clear view of Algorithm 4, the algorithm to determine an optimal trading strategy for Model
D, the flow stream of Algorithm 4 is given in Figure 4.1. The used algorithms 4.1 till 4.5 are
described earlier.

Yes

Yes

No

No

Figure 4.1: Flow stream of Algorithm 4
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Algorithm 4 gives a list of intervals to charge energy, with the amount of energy to be charged
during these intervals. There is also a list given of intervals to discharge energy, with the amount
of energy to be discharged. The profit of this strategy is also determined.

Proposition 4.3. Algorithm 4 determines an optimal trading strategy for a modeled storage
system by Model D, that obtains a maximum profit.

Proof. Model D, the extension of Model C, required a new approach. In Model D, the SOC
must be kept within the bounds. To be able to make an optimal trading strategy, it is wanted
to keep the SOC within the bounds for minimum cost. Therefore first the SOC is determined
in Algorithm 4.1 for all intervals. To get the SOC below the upper bound, Algorithm 4.2 is
used. This Algorithm is used to discharge energy to get the SOC smaller or equal to the UB,
regardless of the energy price. In order not to have more energy in the storage system than
is required to help overcome problems in the low voltage grid, Algorithm 4.3 is used. This
algorithm discharges the amount of energy that is in the storage system, that is not needed
for solving problems in the low voltage grid, in the first local maximum, to get the SOC(n)
equal to the LB. It is not possible to make a larger profit by discharging the extra energy
in the storage system earlier. If it would be better to discharge this energy later, this will be
determined by Algorithm 4.5. Algorithm 4.4 is the last algorithm to get the SOC within the
bounds for all intervals. Algorithm 4.4 charges energy for minimum cost to get the SOC equal
to the lower bound, without getting the SOC above the upper bound. If Algorithm 4.3 is used,
and there is energy discharged to get the SOC(n) equal to the LB, Algorithm 4.4 is not used.
Since Algorithm 4.3 is used to get the SOC within the bounds with a maximum profit and
Algorithm 4.4 is used to get the SOC within the bounds, for a minimum cost, these algo-
rithms give a strategy to keep the SOC within the bounds with minimum cost / maximum profit.

After Algorithm 4.1 till 4.4 are used to get the SOC within the bounds for minimum
cost / maximum profit, Algorithm 4.5 is used to determine an optimal trading strategy.
Algorithm 4.5 uses a first local maximum as defined in Definition 4.1 and an absolute local
minimum as defined in Definition 4.2 to obtain a maximum profit by trading energy. The
combination of these two intervals gives the maximum profit possible by trading. Just like in
Chapter 1 till 3, the interval to charge energy has a charging price that is the absolute minimum
charging price of all intervals that are available to charge energy, for the interval that can be
used for discharging. This process is repeated till there cannot be any other first local maximum
found. As proven in Chapter 2 it is optimal to use the interval with the absolute minimum
charging price of all intervals available to charge energy in, for every iteration to find an optimal
trading strategy. As described above, the SOC is kept within the bounds for minimum cost /
maximum profit and the trading strategy used gives a maximum profit. Therefore Algorithm 4
gives an optimal trading strategy.

4.5 Structure and complexity

Algorithm 4 uses 5 algorithms as described above. The structure of Algorithm 4 is clear, and
the complexity can be determined by determining the complexity of each algorithm used by
Algorithm 4. Like in Chapter 3 an overview of Algorithm 4 is given in Table 4.2. The flow
stream is given in Figure 4.1 Also the calculations for the complexity are described in this
section.
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Algorithm Complexity

4.1 O(n)
4.2 O(n)
4.3 O(n2)
4.4 O(n2)
4.5 O(n3)

Table 4.2: Flow-diagram of Algorithm 4

Algorithm 4.1 determines the SOC for all the intervals, using the start SOC. This algorithm
has complexity O(n).

Algorithm 4.2 will discharge during intervals for which the SOC is larger than the up-
per bound. This algorithm starts in the first interval i and if the SOC(i) is larger than the
upper bound, this interval will be used to discharge energy. After this the SOC(i + 1) is
determined and this will be repeated till the SOC(i + 1) is less or equal to the upper bound.
Once the SOC(i + 1) is less or equal to the upper bound, the SOC for all the other intervals
will be determined. The complexity of Algorithm 4.2 is O(n).

Algorithm 4.3 sets the SOC(n) not larger than the lower bound. For this, the first local
maximum is determined. The maximum amount of energy that can be discharged is determined
and the SOC for all intervals since the subsequent local maximum and the last interval n are
determined. The complexity of determining the subsequent local maximum, the amount of
energy to discharge and the SOC for the intervals has complexity O(n). It is possible that all
intervals must be used to discharge energy to get the SOC(n) not larger than the lower bound.
Therefore Algorithm 4.3 has complexity O(n2).

If an interval has a SOC that is less than the lower bound, Algorithm 4.4 uses the ab-
solute local minimum for the current interval for charging energy. The required amount of
energy must be determined and the SOC of all intervals since the absolute minimum must
be determined. To determine the absolute local minimum of an interval, all intervals must be
sorted. It is possible to order the intervals in O(n). Just as for Algorithm 4.3, it is now possi-
ble that all intervals must be used for charging and thus the complexity of Algorithm 4.4 is O(n2).

Algorithm 4.5 uses two algorithms to determine an optimal trading strategy. If the first
local maximum is after the absolute local minimum, Algorithm 4.5 uses Algorithm 3 to deter-
mine the amount of energy to trade. It was already proven that Algorithm 3 has complexity
O(n2) and thus, this part of Algorithm 4.5 has complexity O(n2). Once the first local maximum
is followed by the absolute local minimum, Algorithm 4.4 as described above is used to get the
SOC for every interval within the bounds. It is possible that there are 1

2 ·n combinations of a first
local maximum followed by an absolute local minimum, as shown in Figure 4.2. In this figure the
difference between using Algorithm 4.4 in Algorithm 4.5 and for not using this Algorithm. By
Hand the result is given for not using Algorithm 4.4 and the Program is used to show the result
with using Algoritmh 4.4. The complexity of Algorithm 4.5 is thus O(n2)+O(n2)·O(n) = O(n3).

The total complexity of Algorithm 4 is the maximum of the complexity of Algorithms
4.1 till 4.5. This is O(n3), and is not as good as the complexity of Algorithm 3.
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Figure 4.2: With or without use of Algorithm 4.4

4.6 Reflection and result

With the bounds used in the new model in this chapter, there is less storage capacity available
for trading. Therefore the profit that can be made is less or equal to the profit that can be
obtained with a modeled storage system as in Model C.

It is not expected that a trading strategy, produceded by Algorithm 3 gives a feasible
solution for Model D. Once a trading strategy determined by Algorithm 3 is adjusted to the
physical constraints of Model D, this trading strategy can be compared to the optimal trading
strategy determined by Algorithm 4. The front page of ATMP as shown in Figure 4.3, shows
that the adjusted optimal trading strategy obtained by Algorithm 3, called HAND in this
example, gives a profit that is less than the profit obtained by Algorithm 4, which is called
Algorithm. Of course, when the bounds were not taken into account, both algorithms would
give the same solution, which has a profit that is higher than the profit obtained by Algorithm
4 with bounds included. In Figure 4.4 it is shown how these differences affect the charge and
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discharge activities of the modeled storage systems. Also the effect on the state of charge and
the profit is shown in this figure.
With Model D it is possible to use different values for the charge capacity, the discharge

Figure 4.3: The front page of ATMP(4)

capacity, and the capacity of the storage system. The losses by storage, by charging and by
discharging are taken into account. And the storage system can be used for solving problems
in the low voltage grid, as well as for trading. It is possible to model different sorts of storage
systems, with different sorts of physical constraints in Model D. Therefore it is possible to
compare these different sorts of storage systems to determine what storage system gives the
maximum profit.
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Figure 4.4: The graphs produced by ATMP(4)
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Chapter 5

Algorithm 5: Reducing the
complexity

In this chapter, Algorithm 4 as described in Chapter 4 is improved by reducing the complexity.
To develop an optimal trading strategy for a storage system a phased approached is chosen
to give a clear view on the method. Once the aimed goal is reached, it is often possible that
another path to reach the aimed goal can be found. Since KEMA is interested in the phased
approach in this thesis both the final algorithm as result of the phased approach is described
as well as an algorithm that was developed once the aimed goal was reached. The algorithm
that was developed after the aimed goal has complexity O(n2) while the found algorithm by
the phased approach as described in Chapter 4 has complexity O(n3). If the algorithm is used
to determine an optimal trading strategy for one day ahead the difference in the complexity
between the algorithms is not very interesting, but when the algorithm is used to determine the
possible costs for using a storage system to overcome problems in the low voltage grid for more
than 5 years, this difference is very important. Therefore the new found algorithm described
next is interesting.

5.1 Model of the storage system

Model D as given in Chapter 4 is used and not changed, therefore, the same parameters and
decision variables as used in Chapter 4 are used, to give a good overview, they are summarized
in Table 5.1.
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Name Abbreviation Value Unit

Energy price for interval i p(i) input e/kWh
Charge Capacity ChC input kWh
Discharge Capacity DChC input kWh
Capacity of the Storage System C input kWh
Quantity of energy charged in interval i ChQ(i) 0 ≤ ChQ(i) ≤ ChC kWh
Quantity of energy discharged in interval i DChQ(i) DChC ≤ DChQ(i) ≤ 0 kWh
State of Charge for interval i SOC(i) 0 ≤ SOC(i) ≤ C kWh
Charging price for interval i cp(i) calculated e/kWh
Discharging price for interval i dcp(i) calculated e/kWh
Losses by Charging LBC 0− 100 % of ChQ %
Losses by Discharging LBDC 0− 100 % of DChQ %
Losses by Storage LBS 0− 100 % of SOC %

Residual after Losses by Charging RLBC 100−LBC
100

Residual after Losses by Discharging RLBDC 100−LBDC
100

Residual after Losses by Storage RLBS 100−LBS
100

Lower Bound LB 0− 100 % of C kWh
Upper Bound UB LB − 100 % of C kWh

Table 5.1: Parameters and decision variables for Model D

5.2 Mathematical model

The optimization problem is the same as in Chapter 4. This optimization problem can be
described just as before with a mathematical model.

max
n∑

i=1

(−(DChQ(i) ·RLBDC + ChQ(i)) · p(i)) (5.1)

s.t. SOC(i) =
m∑
i=1

((ChQ(i) ·RLBC + DChQ(i)) ·RLBSm−i) ; 1 ≤ i ≤ n (5.2)

LB ≤ SOC(i) ≤ UB ; 1 ≤ i ≤ n (5.3)

0 ≤ ChQ(i) ≤ ChC ; 1 ≤ i ≤ n (5.4)

DChC ≤ DChQ(i) ≤ 0 ; 1 ≤ i ≤ n (5.5)

5.3 Approach

As described in Chapter 4, there are 5 algorithms developed to determine an optimal trading
strategy. To develop an Algorithm with a smaller complexity, first the algorithm used with the
largest complexity is observed. Algorithm 4.5 has complexity O(n3), since it can use Algorithm
4.4 so often, and thus the SOC of all intervals has to be recalculated to often. If it is possible
to use Algorithm 4.4 different, the complexity could be reduced. Combining Algorithm 4.1
with Algorithm 4.4 gives an improvement to Algorithm 4. By first discharging the maximum
discharge capacity, for the interval of every iteration, an algorithm to determine an optimal
trading strategy, with complexity O(n2), is developed.
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5.4 Optimal trading strategy

Every iteration of Algorithm 5 has five main actions. The first action of iteration i it to discharge
in interval i. This means: ChQ(i) = ChC. The second action is to determine the SOC(i) as in
expression 5.6

SOC(i) := SOC(i− 1) ·RLBS + DChQ(i) (5.6)

The third action is to add the charging price of interval i, cp(i) to the sorted list of charging
prices. The fourth action is to charge the required amount of energy for the lowest cost. Therefore
it is determined if the SOC(i) is smaller than the lower bound. If the SOC(i) is not smaller than
the lower bound, the next iteration is started. If the SOC(i) is smaller than the lower bound,
the absolute local minimum of interval i, as defined in Definition 4.2, is determined to be used
to charge energy to get the SOC(i) equal to the lower bound, just like Algorithm 4.4. The cp(k)
of intervals used to charge is if required recalculated using expression 3.20 and the list is sorted
again. Once there is no new absolute local minimum or the SOC(i) is equal to the lower bound,
the next iteration is started, until the last interval. The flow stream of Algorithm 5 is given in
Figure 5.1.

Yes No

Figure 5.1: Flow stream of Algorithm 5

Proposition 5.1. Algorithm 5 determines an optimal trading strategy for a modeled storage
system by Model D.

Proof. Since every interval is first used to discharge the maximum amount of energy that can
be discharged by the discharge capacity, also the intervals with a maximum discharge price are
used to discharge energy. After there is energy discharged, it is determined if it is required to
charge energy. Only if it is required to charge energy, energy will be charged for the absolute
minimum price possible. As proven in Chapter 1 it is best to charge for the minimum price,
and to discharge for the maximum price to obtain a maximum profit. Therefore Algorithm 5
determines an optimal trading strategy.
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5.5 Structure and complexity

To give a good overview, the structure and the complexity are shown in Table 5.2. The steps for
every iteration i are described in this table. The calculations for the complexity are described
in this section.

step Determine next step

1. ChQ(i) := ChC 2. O(1)
2. SOC(i) := SOC(i− 1) ·RLBS + DChQ(i) 3. O(1)
3. add cp(i) to the sorted list 4. O(1)
4. charge for minimum costs to get SOC(i) = LB 5. O(n2)
5. i := i + 1 1. O(1)

Table 5.2: Flow-diagram of Algorithm 5

For interval i, first we discharge the total amount of energy that can be discharged during an
interval, this is the discharge capacity. After this we determine if the SOC(i) still is larger or
equal to the lower bound. The charging price for interval i, cp(i) is determined and this new
price is appended to the ordered charging price list. For interval i this is O(i) since for all
intervals before interval i the charging prices are already sorted.

If the SOC(i) is larger or equal to the lower bound, Algorithm 5 will continue the pro-
cess with interval i + 1 if i + 1 ≤ n. If the SOC(i) is not larger or equal to the lower bound,
only the amount of energy that is required to get the SOC(i) equal to the lower bound will be
charged, for the minimum costs. To determine the complexity normally it would be sufficient to
determine the step with the largest complexity, step 4 with complexity O(n2), and to multiply
this with O(n), which is the amount of intervals and thus also the amount of iterations. This
would give a complexity of O(n3). But to determine the complexity of this process, it is required
to determine how often in total intervals can be used to charge energy. If for the current
interval i to get the SOC(i) equal to the lower bound, all previous intervals are used to charge
energy, the intervals are at most 2 times used to charge energy, before they are used for the
last interval. This gives that it is possible that there are 3n acts of charging wanted to get the
SOC within the bounds for all intervals. For every iteration it is also required to determine the
new SOC(j) for all intervals j since interval m that is used to charge energy in, till the current
interval i. Since it is only possible to have 3n iterations, the complexity of Algorithm is O(n2),
this is better than the complexity of Algorithm 4.

5.6 Reflection and result

With the complexity reduced and the same optimal trading strategy determined as before,
Algorithm 5 is a real improvement of Algorithm 4.

54



Chapter 6

Finding a trading strategy using
other methods

This chapter will give a description of two heuristics to give a trading strategy. The heuristics
described are the heuristics that were looked at before developing an algorithm to give an optimal
trading strategy. These heuristics gave a good insight in the problem and were useful to analyse,
to see how to develop an algorithm to determine the optimal trading strategy.

6.1 Heuristic A

Heuristic A is a heuristic developed for the GROW-DER’S project by one of the partners.
This heuristic was not developed to obtain the maximum profit, it was only intended to
be able to use the storage system for trading in the model of the low voltage grid de-
veloped by KEMA.This heuristic is included in this thesis to show what elements of this
heuristic are used in the other algorithms. Some parts of the heuristic that can be adjusted
have been an important source of inspiration. First the heuristic will be described, the com-
plexity of the heuristic will be given and at the end the result of this heuristic will be determined.

The APX gives an energy price list, like in the Chapters 1 till 4, and the start SOC is
given for the moment the heuristic starts, like in Chapter 4. There also will be costs taken into
account for trading that are constant, that is called the costs for trading, CFT . In the Models
C and D these costs depend on the amount of energy that was used for trading. There are
also losses by charging/discharging taken into account, these losses determine the amount of
energy that can be used to be discharged. Therefore this is taken into account in this heuristic
by determining what percentage of the amount of energy that is charged can be used to be
discharged, this is the percentage left for discharging, LFD.

For this heuristic the price list must be sorted in a list L. This is done in MATLAB
with the function ”sort”. With the start SOC the sorted price list L with L(i) ≤ L(j) with
1 ≤ i ≤ j ≤ n the trading strategy for the storage system can be determined. First it is
determined if it is profitable to charge energy for the energy price of the first in row of L
and to discharge this energy for the energy price of the last in row of L. After this, it must
be determined what the maximum amount of energy is that can be charged. Therefore the
SOC and the maximum power that can be used to charge, Pmin are used. The amount
of energy that can be discharged is determined by the amount of energy that is charged
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and the losses by charging/discharging. There is a new SOC determined with use of the
SOC and the amount of energy that is charged. After this, for the intervals next in line
again it is determined if it is profitable to trade. Once it is not profitable to trade or the stor-
age system is fully used, the heuristic is finished. The code of this heuristic is given in Heuristic A.

Heuristic A

Declarations
C the Capacity of the storage system
SOC the State Of Charge of the storage system
SOCmax the maximum SOC
CFT the costs for trading
LFD percentage left for discharging
L(1) ≤ · · · ≤ L(n) the sorted energy prices
I(1) · · · I(n) interval in time for the sorted energy prices
P (I(1)) := · · · := P (I(n)) := 0 the Power for interval I(1) · · · I(n)
Pmin, Pmax the minimum Power and the maximum Power for every interval
dT the time of an interval

Program

i := 0
j := 1
k := 1
: This WHILE LOOP is the outer loop :
while k = 1 do

if L(n− i)− L(j + i) > CFT then

P (I(j + i)) := −min(−Pmin),
100−SOC

100
·C

dT
P (I(n− i)) := −P (I(j + i)) · LFD

SOC := SOC − P (I(j+i))·dT
C · 100

if SOC > SOCmax then
k := 0

end if
else
k := 0

end if
i := i + 1

end while

The outcome of Heuristic A is a list of intervals with the power that must be delivered by the
storage systems during these intervals. In this list both possitive and negative power are included.

This heuristic has complexity O(n) since the heuristic only goes through the sorted price
list once. The SOC is determined after the storage system is used for trading. This is not the
real SOC since it is possible that the storage system is used for discharging earlier but it is
a maximum. The price list can be sorted in O(n) using MATLAB and thus this heuristic has
complexity O(n).

It is not guaranteed that this heuristic gives an optimal trading strategy, but analyzing
this heuristic gave a start to develop an algorithm that determines an optimal trading strategy.
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This heuristic uses the absolute minimum and maximum for charging and discharging. This
is the basic of trading and can be used in other algorithms. Heuristic A did not take into
account that the storage system will need energy charged before it can discharge. This is a
good extension to the problem. In Heuristic A the losses by charging/discharging are taken
into account but only for the SOC, not for determining the profit. These are some parts of this
heuristic that can be used to develop an algorithm that determines an optimal trading strategy.

6.2 Heuristic B

In this section the optimization problem, to find an optimal trading strategy for a storage system,
is described as the well known shortest path problem. This is a well known problem with several
algorithms to solve the problem. First there will be a description given of how the problem can
be rewritten as a single source shortest path problem. After this, some well known algorithm’s
that can be used to solve the single source shortest path problem will be discussed. At last we
will describe what problems will occur for a more complex model of the storage system.

6.2.1 Rewriting the problem to find an optimal trading strategy

To be able to describe the problem as a shortest path problem, a graph is developed. An example
of such a graph is given in Figure 6.1. This graph has vertices, which represent the SOC for a
given interval. The SOC is represented in discrete stages. To get a clarifying graph, the vertices
are ordered. The vertices for different SOC for one interval are piled in order of size with the
smallest SOC at the bottom and the largest SOC at the top. The intervals are next to each
other in order of time with the first interval in time in front. The direction of every edge is from
an interval i to the interval i+1. At i = 0, the SOC = 0. Charging (buying) energy means ”going
up” one or more SOC-vertices, limited by the maximum charge capacity. Likewise discharging
(selling) energy goes ”downward”. The edges represent the price to go from an interval with a
given SOC to the next interval with a given SOC. In this situation we need to make a difference
between charging and discharging for the edges. In this graph, the weight of an edge is the price
for energy multiplied with the amount of energy to be charged. It is minus the price for energy
multiplied with the amount of energy we want to discharge, and the weight of an edge is 0 when
we wish to do nothing.

6.2.2 Well known algorithm’s

Let G := (V,E), |V | = v, |E| = e, be a graph as described above. Since an edge that is used to
discharge energy has a negative weight, it is logical to think of the Bellman-Ford Algorithm, to
find the shortest path, since this is an algorithm that can be used for solving the single source
shortest path problem for a graph with negative edge’s. The upper bound for the running time
of this algorithm can be expressed with the big O notation in the amount of vertices and the
amount of edges, which would give O(v · e).

It is also possible to solve this single source shortest path problem with dynamic pro-
gramming. Since the graph is very well ordered it is possible to find an optimal trading strategy
in linear time. For every vertex it is determined what edge must be used to obtain the maximum
profit. For this graph, the complexity for dynamic programming is O(e).
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Figure 6.1: Graph of the optimization problem

6.2.3 Problems with more complex models

For the GROW-DER’S project a storage system is used with a charge power of 10 kW, a
discharge power of 10 kW and a capacity of 40 kWh. There is a list of energy prices for 24 hours,
given by the APX one day ahead. These energy prices calculated by the APX are constant for
intervals of 15 minutes, which gives 96 intervals for the graph. Using a storage system with a
charge power and a discharge power of 10 kW and a capacity of 40 kWh gives, because of the
intervals of 15 minutes, 16 different states of charge. Knowing the amount of the different status
of charge and the amount of intervals, we can calculate v for the graph. We use #SOC as the
amount of the different status of charge and n as the amount of intervals.

v := (#SOC · n)− (#SOC · (#SOC + 1))

This gives a graph with over 1000 nodes. This would give an upper bound of 1000 iterations for
finding the shortest path, which gives the optimal trading strategy, using dynamic programming.
Since Heuristic B has complexity O(e), this is much better than Algorithm 2 as described
in Chapter 2 which has complexity O(n2), with n still 96 thus about 10, 000 iterations for
Algorithm 2. Though this seems very promising, the size of the graph depends on the amount of
status of charge. In this situation the charge capacity, the discharge capacity and the capacity
of the storage system are very fortunate for Heuristic B. If the charge capacity, the discharge
capacity and the capacity of the storage system are chosen less fortunate the amount of status
of charge increases drastically.

If we would want to extend the model we could take losses by storage, losses by charg-
ing and losses by discharging into account, which would give Model C. Taking these losses
into account, the graph becomes more complex. The number of status of charge will grow

58



CHAPTER 6. FINDING A TRADING STRATEGY USING OTHER METHODS

significantly since it becomes possible that the charge capacity of an interval is partly used. To
give an indication of v we use:

v := #SOC · n

Taking losses into account would have an effect on the upper bound of the running time. The
smallest change of the SOC possible must be determined to calculate the #SOC. For example,
a small change in the SOC would be charging energy in an interval i to be discharged in interval
i + 2 because of the losses for charging in interval i + 1. The losses caused by charging in
interval i+ 1 will be a percentage of the charged energy, this will be in about 2%. Therefore the
number of states of charge will be multiplied with 50. This would give an upper bound of over
100
2 · 1000 = 50.000 iterations for finding the shortest path in this graph and thus the optimal

trading strategy using dynamic programming. If we would want to take losses by storage into
account, it is more likely that we think of 0.001% losses per day. This would give an upper bound
of over 100

0.001
96

· 50.000 = 500.000.000.000 iterations for finding the shortest path. Even with this

extension to the graph, the exact optimal solution cannot be found, since this is essentially a
continuous problem and not a discrete problem. Therefore it is interesting to find an algorithm
that can solve this problem exact, and has a running time that is not depending on the number
of status of charge. In the Chapters 1-4 a new algorithm to find an optimal trading strategy for
a storage system for which the complexity does not depend on the number of status of charge
is described.
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Chapter 7

The optimal location in the low
voltage grid for a storage system

This chapter describes the overall problem of which the research, in this thesis, is a part
of. Though this overall problem is out of scope, it gives a clear view on how the algorithms
developed during the research may find their application. In addition, in this chapter a
description will be given of interesting research opportunities regarding to the overall problem.
Though the research in this thesis is about short term planning for the storage system, the
problem in this chapter is about long term planning for the low voltage grid.

First an additional short introduction will be given regarding the low voltage grid. There are
many different low voltage grids worldwide. The GROW-DERS project focuses on the low
voltage grids in Europe. These low voltage grids will be discussed, to give a good insight in the
problems that can be solved by using storage systems. Some of the possible negative effects of
distributed generators in the nearby future will be given.

7.1 Introduction

In Europe there was a great variety of low voltage grids. In 1973 the Comité Européen de
Normalisation Électrotechnique, CENELEC, was founded. This organization is responsible
for European standardization in the area of electrical engineering. The up to date standard
European low voltage grid is an Alternating Current, AC, circuit with a frequency of 50 Hz and
a voltage of 230 volt (+6%/-10%). Electrical distribution utilities use regulating equipment at
electrical substations or along the distribution line, to maintain the voltage at the customer’s
service within the acceptable range. This regulating equipment is an autotransformer with
on-load tap-changers, to adjust the ratio depending on the observed voltage changes. An
autotransformer is only used to adjust the long-term average voltage at the service points. It
is not actively used to regulate the voltage seen by the utility customer. Though it might solve
problems in the low voltage grid, changing the standard, like going from 110 volt to 220 volt
in the beginning of the twentieth century, would have great impact now, since there are much
more users connected to the low voltage grid in the beginning of the twenty-first century than
in the beginning of the twentieth century. Electrical equipment is developed to be connected
to the low voltage grid that meets the European Standard. For the lifespan of the electrical
equipment it is important that the voltage does not vary too much, for instance voltage dips
must be prevented if possible. This means that the power quality must be guaranteed.
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The grid is exploited in a way that energy generated in the high voltage grid, is trans-
ported in the medium voltage grid and is distributed in the low voltage grid. Therefore the low
voltage grid is fed by the medium voltage grid with a transformer. During the twentieth century
the electricity grid has grown to a large network. In the Netherlands there is over 100.000 km
cable in the medium voltage grid as well as in the low voltage grid, and there is almost 10.000
km cables and overhead lines for the high voltage grid. In the Netherlands most of the network
is underground cable, while in the rest of Europe most is overhead line, with the exception of
urban areas.

Building the electrical network is a growing process. Not all demographic developments
and increases of the demand for electricity were foreseen. Therefore it is possible that the
structure of the grid is not optimal. In the beginning of the development of the grid, the
main focus was to fulfill the technological reliability. Besides the technological reliability the
economic efficiency and at last the environmental quality was taken into account. At the end
of the twentieth century the most important characteristic of energy supply decision making
was about the economic efficiency, then the environmental quality and at last the technological
reliability were taken into account. Now the main focus is the environmental quality, followed
by the economic efficiency and at last the technological reliability is taken into account. With
environmental quality as an important characteristic of energy supply, there has been a great
development in renewable energy. Distributed generators as photovoltaics, PV, windmills and
combined heat and power, CHP, had their onset in the low voltage grid. For more details we
refer the reader to [2]. A typical layout of a low voltage grid is given in Figure 7.1, this is a
radial operated low voltage grid, which is the majority of the low voltage grid’s in Europe. In
this example there is no distributed generation shown.

Figure 7.1: An example of a low voltage grid
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7.2 Problems in the low voltage grid

KEMA is able to model the low voltage grid and to analyze the low voltage grid with the
computer program ”PowerFactory”. An example of a model used in the GROW-DERS project
is given in Figure 7.2 and 7.3. In these models distributed generation is included. As can be
seen in Figure 7.3 there are more storage systems used in this grid. To prevent these storage
systems to work competitive, a partner in the GROW-DERS project developed the EMS, Energy
Management System. EMS is out of scope of this research. For trading, storage systems will not
become competitive, but it is possible that not all storage systems can be used optimal for
trading, when this is limited by the grid.

Figure 7.2: The modeled low voltage grid (Bronsbergen)
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Figure 7.3: The modeled low voltage grid

PowerFactory can determine if there are problems in the low voltage grid concerning the
technical reliability. This is a nice tool to use for the long term planning of the low voltage grid.
Problems that will occur in the future can be determined in advance and therefore it is possible
to make a better planning. With the new developments in the low voltage grid it is important
to be able to oversee the effects of these developments.

The problems that occur in the low voltage grid, because of distributed generation and
other changes in the low voltage grid, that can be solved using a storage system are described
in this section. The problems described in this section are summarized in Table 7.1. There are
other problems that occur, that cannot be solved with a storage system, these problems are not
in the scope of the GROW-DERS project and will not be described in this thesis.

Problem Solution using

Capacity more capacity cable/line, transformer
Capacity peak shaving storage system
Fluctuating generating back up supply storage system
Voltage dips fast resolving energy supply storage system
Power Quality power electronics part of the storage system

Table 7.1: Problems in the low voltage grid
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With the upcoming distributed generation, the function of the low voltage grid is changing. The
idea of having many small generators near the consumers was already envisaged by Thomas
Edison but not comprehensive applied. In 2020 it is expected that the main supply of energy is
distributed generated. Already in Poland more than 25% of the energy comes from distributed
generation. With distributed generation, the low voltage grid will get a new functionality. The
new functionality of the low voltage grid might give problems since the low voltage grid was
not developed for this application.

It is possible that in a low voltage grid the supply of energy is larger than the demand
of energy. Because of this the load flow from the low voltage grid to the medium voltage
grid might even be larger than the capacity of the transformer. If the capacity of the mv/lv
transformer is temporarily exceeded, this problem can be solved by using a storage system to
level the load flow. During the overload period the storage system will charge energy that can
not be transported. When there is less energy produced by distributed generation, the storage
system can discharge the energy that was stored and during this more convenient time the
energy can be transported to the medium voltage. Similarly other overloaded components may
be relieved, depending on the location of the storage system.

Generation of renewable energy depends on a variety of factors, therefore it is not a
constant supply. Because of the fluctuation of renewable energy, there is no technical reliability,
and the power quality cannot be guaranteed. For this problem it is possible to use a storage
system to level the supply. When there is much renewable energy generated, some energy can
be stored for times when there is less renewable energy generated. Doing this gives a more
constant supply. When the storage system is used to supply energy and reaches a certain SOC,
the centralized generators can be activated to contribute in the supply.

Thanks to the large variety of electrical equipment in the households and the growing
industry, the demand of energy is growing. A storage system cannot generate energy but it
is able to supply energy when the demand is larger than can be distributed. Therefore it
is important that it is possible to distribute enough energy while it is not possible to give
enough power at a certain time. The energy can be stored in the storage system and when the
demanded power can not be delivered, the storage system can be used to reach the demanded
power.

Due to faults or disturbances in the grid, there may be short periods of time that there
is not enough energy. If these periods are very small, this phenomenon is called ”voltage dip”.
A storage system may supply the missing energy, using it’s own power controls, provided they
respond fast enough. The low voltage grid is fed by the medium voltage grid. The medium
voltage grid is sensitive to interruptions because of e.g. excavation. If the medium voltage is
interrupted it cannot transport energy to the low voltage grid. Because of this, for a longer
period of time, a storage system may act as a back-up power supply, provided that the
protection of the grid allows this.

For all these problems, the storage system will reserve capacity. This capacity cannot be
used for trading. Therefore in Chapter 4 the SOC has to be within bounds.
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7.3. OPTIMAL LOCATION

7.3 Optimal location

KEMA developed PLATOS for the GROW-DERS project. PLATOS is a program developed
in PowerFactory that determines the best locations for storage systems in a low voltage grid.
This gives locations for storage systems and types of storage systems that can be used best to
help overcome problems. Such a combination of locations and types is called a solution. To be
able to determine which solution is better to use, the problems described above are scaled. If a
solution helps solving problems, the value of the problems will be linked to this solution. There
are also costs for the storage system that are taken into account in PLATOS. To determine
the total contribution of the storage system in the low voltage grid, all costs and profits must
be taken into account. Therefore Algorithm 4b to determine an optimal trading strategy as
described in this thesis will be used in PLATOS to determine the total profit of using a storage
system in the low voltage grid.

Using a genetic algorithm, a good location for a storage system in the low voltage grid
can be found. This is a very well known heuristic to find a good solution for a combinatorial
problem for which there is no structure known. Once there are several solutions found, the
best solutions are used to search for new solutions. When the difference between the solutions
becomes small enough, the program stops. For every possible solution PLATOS has to do many
complex calculations to determine if the new location is a good solution to help overcome the
problems in the low voltage grid. This is very time consuming and therefore it is needed to
develop a better heuristic to determine what locations can be used best to help overcome the
problems in the low voltage grid.

To determine what locations can be used best to help overcome problems, it is impor-
tant to know where the problems are in the grid, and of course it is important to know what
kind of problems there are. PowerFactory can be used to determine the locations of problems
in the low voltage grid. For every problem in the low voltage grid it is possible to determine
what the problem is, and it is possible to determine if this problem can be solved with a storage
system. It can be determined, what locations for storage systems in the low voltage grid can be
used to help overcome problems. The type of storage system that is required can be determined.

It is possible that to overcome more problems the same locations for storage systems can be
used. The locations that can solve more problems give a possible better solution than separate
locations. At the same time it is possible that it is not possible to solve all problems with one
storage location even though they all have this location for a storage system as possible solution.

Because of the large amount of variety, it is very hard to find structure in this problem.
Therefore it is important to use a phased approach to come to a good solution. By adding
structure to the problem the search for a good solution becomes less complex. The amount
of possible locations for a storage system decreases and therefore the running time decreases.
When the type of storage system is determined in advance for every location, several types of
storage systems will not be used to determine if there is a positive result by using this location.
The algorithms developed in this thesis can help to reduce the possible types This helps to
decrease the running time as well. The structure explained above is taken into PLATOS. The
code of PLATOS is KEMA ownership and therefore this is not in this thesis. If it would be
possible to determine in advance all locations that cannot be used for a storage system to help
overcome the problems in the low voltage grid, the running time of PLATOS would decrease.
It would be very interesting to find more locations that cannot be used.
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Chapter 8

Conclusions and recommendations

This chapter first describes the assignment, followed by conclusions regarding the results of the
research and some recommendations. The algorithm developed during this research is developed
to be included in PLATOS.

8.1 Assignment

The assignment is to develop a practical and mathematically correct algorithm that gives
an optimal trading strategy for an electricity storage system. For this problem, the solution
must meet the physical constraints of the low voltage grid. It was desired to start with a
simple model and to make it more realistic using several modeling steps. In the final model
the trading strategy must take into account that a storage system has a power to charge, a
power to discharge and a capacity to store energy. There will be energy losses by using the
storage system. The storage system can be used for trading as well as for solving problems in
the low voltage grid, therefore the state of charge of the storage system must be within bounds
determined by the grid while the storage system is used for trading. The phased approach gives
KEMA the insight they want in all the intermediate results.

In the following overview the conditions of the assignment are summarized:

1. A phased approach is desired to give KEMA the insight they want.

2. For every model a practical algorithm must be developed.

3. Every algorithm must:

(a) determine an optimal trading strategy for an electricity storage system.

(b) be proven to be mathematically correct.

(c) meet the physical constraints of the model of the grid.

(d) meet the physical constraints of the model of the storage system.

4. The final model of the storage system must contain:

(a) different values for the power to charge, to discharge and the capacity of the storage
system.

(b) energy losses by using the storage system.
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8.2. CONCLUSIONS REGARDING THE RESULTS OF THE RESEARCH

(c) bounds for the state of charge of the storage system, determined by the grid.

5. Preferably the models are translated into a tool KEMA can use in its projects, and can
help to communicate with future users of storage systems

8.2 Conclusions regarding the results of the research

The main conclusion is that all conditions have been fulfilled. This thesis describes a number
algorithms that are used in the phased approach to develop the final algorithm that determines
an optimal trading strategy for the final model. These algorithms are programmed in Visual
Basic Applications Excel, therefore these algorithms can easily be included in PLATOS. This
makes it very practical for KEMA to use. For every algorithm this thesis proved that these
algorithms determine an optimal trading strategy for the given models. These algorithms act
to the constraints of the model of the grid and of the storage system. Chapters 1 till 3 describe
several models created during the phases. For every model a new dedicated algorithm was
developed that gives an optimal trading strategy.

The final model in Chapter 4 has a storage system with a power to charge, a power to
discharge and a capacity to store energy. There are energy losses by using this storage system
and this storage system can be used for trading as well as for solving problems in the low
voltage grid. This model meets the requirements of the final model determined by KEMA as
described above. For this storage system model Algorithm 4a as described in Chapter 4 gives
the optimal trading strategy. The complexity of Algorithm 4a is O(n3). Besides the phased
approach, because of insight on resolution, Algorithm 5 also gives an optimal trading strategy.
The complexity of Algorithm 5 is O(n2).

The algorithms in this thesis are used in ATMP, Algorithm for Trading with a Maxi-
mum Profit. ATMP is developed to show the user an optimal trading strategy. The effects of
this strategy are shown by the charging and discharging activities of the storage system, by the
state of charge and by the profit. To make this an interactive program, the user can try to make
a better strategy that obtains a better profit. Once a user has tried to develop a strategy to
obtain a maximum profit, the user will be convinced that it would be better to use a program
to determine an optimal trading strategy. The algorithm used in ATMP can be activated to
show the user the optimal trading strategy. This is of course not a proof that the algorithm
used determines the optimal trading strategy, but it shows the user that the program is very
fast in determining a good strategy. Since PLATOS is very complex and it takes quite some
time to get a result, it is important to show the possible users that with ATMP, it is possible
to use the storage systems optimal for trading in real time. Therefore it is important to show
that within a few seconds ATMP determines an optimal trading strategy. ATMP shows users
the possibilities of using a storage system for trading.
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CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS

To give a clear overview, the conclusions regarding the results of the research are summarized:

1. A phased approach is used to develop an algorithm that determines an optimal trading
strategy.

2. For every model a practical algorithm is developed.

3. Every algorithm:

(a) determines an optimal trading strategy for an electricity storage system.

(b) is mathematically correct.

(c) meets the physical constraints of the model of the grid.

(d) meets the physical constraints of the model of the storage system.

4. The final model of the storage system contains:

(a) different values for the power to charge, to discharge and the capacity of the storage
system.

(b) energy losses by using the storage system.

(c) bounds for the state of charge of the storage system, determined by the grid.

5. ATMP is a program that can be used in PLATOS

This overview shows that all conditions of the assignment are fulfilled, still there is always room
for extensions and thus there are recommendations.

8.3 Recommendations

The recommendations for further development for ATMP can be applied to different levels:

• details inside ATMP

• development of ATMP

• application of ATMP

For these levels some recommendations to further develop ATMP:

• Though the code of ATMP is checked repeatedly, it is not unthinkable that there might
be a little typing error in this code. You can never say that there is not any typing error
in a code of over 20 pages, but reviewing and testing the program always helps to improve
the code.

• With feedback of users of ATMP the desires of the user can be used to improve this
program. New calculations can be included and the interface can be modified.

• Multiple storage systems can be taken into account. Since it is possible to determine an
optimal trading strategy for one, it is easy to do this for several but this is not programmed.

• Sequential applications or periodic (SOC(n) = SOC(0))
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8.4. REFLECTION

• The ATMP program can determine an optimal trading strategy for every sort of storage
system, therefore this even can be used for storage systems that can be used in the medium
voltage or even in the high voltage grid.

For PLATOS, there still are some interesting uncertainties. It can be possible that with further
research the running time of PLATOS can decrease drasticcally. One can think of an heuristic
that uses:

• calculations to determine the minimum capacity of the storage that must be used.

• knowledge of the grid to determine locations that cannot be used.

• knowledge of multiple storage systems, to determine the possible combinations that can
be used.

• etc.

All these extensions to PLATOS could contribute in decreasing the running time for determining
the best locations for storage systems in the grid. These extensions should contribute more
structure to the problem.

At this moment, the losses taken into account still are very important and cannot be ignored. In
the future with the technical developments on electrical storage systems it is possible that these
losses become negligible. This would make it possible to determine an optimal trading strategy
with dynamic programming (as described in Chapter 6 in Section 6.2) that has complexity O(n).

PLATOS is developed for the low voltage grid but in the future it could be interesting
to develop a similar model for the medium or the high voltage grid. Especially with the new
research to large-scale energy island offshore energy storage systems. But there are already
large energy storage systems such as artificial water reservoirs.

8.4 Reflection

During the research I learned to use known heuristics and algorithms to get a good insight in
the problem. Of course there is more than applying known algorithms. When known heuristics
and algorithms are not sufficient it is important to be able to expand these heuristics. Working
at KEMA gave me the opportunity to contribute in the GROW-DERS project. In this project I
learned to contribute in consultations and to present the progress I made. During my internship
at KEMA I had the opportunity to learn from colleagues, as well as from my supervisors. This
was very instructive for me. This research was a very positive experience for me.
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Appendix A

Heuristic 2.1

Declarations
i = 1..n the set of intervals
p(i) the energy price of interval i
ChQ(1)..ChQ(n) a list with the quantity to charge for every interval
DChQ(1)..DChQ(n) a list with the quantity to discharge for every interval

Data & Initialization
p(1)..p(n)
p(n + 1) := 0
SOC(0) := .. := SOC(n) := 0
ChC,DChC,C
ChQ(i) ≤ ChC
DChQ(i) ≤ DChC
SOC(i) ≤ C

Program

i := 1
: This WHILE LOOP goes chronologically through the intervals starting with interval 1 :
while i ≤ n do

: IF the current interval is a last local minimum, CHARGE as much as possible :
if p(i) < p(i + 1) and SOC(i− 1) < C then

ChQ(i) := min(ChC,C − SOC(i− 1))
SOC(i) := SOC(i− 1) + ChQ(i)

else
: IF the current interval is a subsequent local maximum, DISCHARGE as much as possible
:
if p(i) > p(i + 1) and SOC(i− 1) > 0 then

DChQ(i) := min(DChC, SOC(i− 1))
SOC(i) := SOC(i− 1)−DChQ(i)

else
SOC(i) := SOC(i− 1)

end if
end if
i := i + 1

end while
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Appendix B

Heuristic 2.2

Declarations
i = 1..n the set of intervals
p(i) the energy price of interval i
ChQ(1)..ChQ(n) the list with the quantity to charge for every interval
DChQ(1)..DChQ(n) the list with the quantity to discharge for every interval
CHQ,DCHQ,Q used to determine the amount of energy to charge, discharge and store
m = 1 the local minimum is searched
m = 0 the local maximum is searched
m = 2 there is no local minimum/maximum found
m = 3 the amount of energy to charge and discharge is determined

Data & Initialization
p(1)..p(n)
p(n + 1) := 0
SOC(0) := .. := SOC(n) := 0
ChC,DChC,C
ChQ(i) ≤ ChC
DChQ(i) ≤ DChC
SOC(i) ≤ C

Program

i := 1
: This WHILE LOOP goes chronological through the intervals starting with interval 1 :
while i ≤ n do

m := 1
: In this WHILE LOOP, the last local minimum is determined :
while m = 1 do

if p(i) < p(i + 1) and SOC(i) < C then
j := i + 1
m := 0

else
i := i + 1

end if
if i ≥ n then
m := 2
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end if
end while
: In this WHILE LOOP, the subsequent local maximum is determined :
while m = 0 do

: In this WHILE LOOP an interval subsequent to the last local minimum, to discharge
energy is determined :
while DChQ(j) ≥ DChC and j ≤ n do
j := j + 1

end while
k := j + 1
: In this WHILE LOOP an other interval subsequent to the previous found interval, to
discharge energy is determined :
while DChQ(k) ≥ DChC and k ≤ n + 1 do
k := k + 1

end while
: If there is no subsequent local minimum is found for the last local minimum, this last
local minimum cannot be used :
if j > n then
m := 2

else
: If interval(j) has an energy price larger than the energy price of interval(k), interval(j)
is the subsequent local maximum :
if p(j) > p(k) then
m := 3

else
: ELSE, for interval(k) must be determined if it is the subsequent local maximum :
j := k

end if
end if

end while
: If (m=3) there is a last local minimum with a subsequent local maximum determined,
therefore the amount to charge and discharge is determined in this part of the program:
if m=3 then
CHQ = min(ChC + DChQ(i), C − SOC(i))
DCHQ = min(DChC −DChQ(j), SOC(j))
Q = min(CHQ,DCHQ)
ChQ(i) = max(0, Q−DChQ(i))
DChQ(i) = max(0, DChQ(i)−Q)
DChQ(j) = DChQ(j) + Q
: In this WHILE LOOP for all intervals since the last local minimum, till the subsequent
local maximum are determined :
while j > i do
j := j − 1
SOC(j) := SOC(j) + Q

end while
end if
: The WHILE LOOP begins with the interval after the last local minimum :
i := i + 1

end while
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Appendix C

Algorithm 2

Declarations
i = 1..n the set of intervals
p(i) the energy price of interval i
ChQ(1)..ChQ(n) the list with the quantity to charge for every interval
DChQ(1)..DChQ(n) the list with the quantity to discharge for every interval
CHQ,DCHQ,Q used to determine the amount of energy to charge, discharge and store

Data & Initialization
p(1)..p(n)
p(n + 1) := 0
SOC(0) := .. := SOC(n) := 0
ChC,DChC,C
ChQ(i) ≤ ChC
DChQ(i) ≤ DChC
SOC(i) ≤ C

Program

d := 0
: This WHILE LOOP goes chronologically through the intervals every time starting with
interval d :
while d ≤ n do

i := d + 1
g := 0
: In this WHILE LOOP the last local minimum is determined :
while g = 0 do

: This WHILE LOOP determines the first interval that can be used for charging energy :
while ChQ(i) ≥ ChC or SOC(i) = C and i ≤ n do

i := i + 1
end while
k := i + 1
f := 0
: In this WHILE LOOP the subsequent interval to charge energy is determined. :
while f = 0 do

while ChQ(k) ≥ ChC and k ≤ n do
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k := k + 1
end while
: If the subsequent interval to charge energy is fully used to discharge energy, there is
a special situation. :
if DChQ(k) = DChC then

: This subsequent interval cannot be used to discharge energy. Because of this, even
if the energy price of the first interval that can be used to charge energy is less than
the energy price of this interval, it is possible that there is another interval to charge
energy with an energy price less than the first found interval, before the energy to
be charged can be discharged :
if p(k) > p(i) then

k := k + 1
if k > n then

f := 1
end if

else
f := 1

end if
else

f := 1
end if

end while
: If the subsequent interval to charge energy has an energy price that is larger than
the energy price of the first interval to charge energy, the first interval is the last local
minimum. :
if p(i) < p(k) then
g := 1

else
: Else, the subsequent interval to charge energy in is used as the first interval to charge
energy. :
i := k
if i > n then

g := 1
end if

end if
end while
: It can be determined in what interval we should start to look for the subsequent local
maximum. Therefore we want to be able to start in interval j, if j > 0. :
if j ≤ i then
j := i + 1

end if
m := 0
: In this WHILE LOOP the subsequent local maximum is determined :
while m := 0 do

: In this WHILE LOOP the first interval to discharge energy is determined. :
while (DChQ(j) ≥ DChC or ChQ(k) > 0) and j ≤ n do

j := j + 1
end while
k := j + 1
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APPENDIX C. ALGORITHM 2

: In this WHILE LOOP the subsequent interval to charge energy is determined. :
while (DChQ(k) ≥ DChC or ChQ(k) > 0) and k ≤ n + 1 do

k := k + 1
end while
: If the subsequent interval to discharge energy has an energy price that is less than the
energy price of the first interval to discharge energy, the first interval is the subsequent
local maximum. :
if p(j) > p(k) then
m := 1

else
: Else, the subsequent interval to discharge energy is used as the first interval to dis-
charge energy. :
j := k
if j > n then
m := 1

end if
end if

end while
: If there is a last local minimum and a subsequent local maximum found, the amount of
energy to charge, discharge and store must be determined. :
if j < n then

CHQ := min(ChC + DChQ(i)− ChQ(i), C − SOC(i))
DCHQ := min(DChC −DChQ(j), C − SOC(j))
Q := min(CHQ,DCHQ)
k := i + 1
:In this WHILE LOOP for all intervals from the LLM to the SLM the maximum amount
of energy to be stored is determined. :
while k < j do
Q := min(Q,C − SOC(k))
k := k + 1

end while
: If the amount of energy to be charged, discharged and stored is larger than zero, the
charge quantity, the discharge quantity of the LLM and SLM are determined. :
if Q > 0 then

ChQ(i) := max(0, Q−DChQ(i))
DChQ(i) := max(0, DChQ(i)−Q)
DChQ(j) := DChQ(j) + Q
k := j
: In this WHILE LOOP, the SOC of all intervals from the LLM to the SLM are
determined. :
while k > i do
k := k − 1
SOC(k) := SOC(k) + Q

end while
end if
d := j
:In this WHILE LOOP, the last interval with a SOC = C is determined. :
while SOC(d) < C, and d > 1 do
d := d− 1
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end while
: In this WHILE LOOP, the first interval that can be used as SLM is determined. :
while DChQ(j) ≥ DChC, and j > d do
j := j − 1

end while
: Else, there is no LLM and/or no SLM. Therefore we can stop the program. :

else
d := n + 1

end if
Q := 0

end while
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Appendix D

Algorithm 3.2

Data & Initialization
LLM the last local minimum
SLM the subsequent local maximum
cp(1)...cp(n)
dcp(1)...dcp(n + 1)
ChQ(1)...ChQ(n)
DChQ(1)...DChQ(n)
ChC
DChC

Program

i := 1
: In this WHILE LOOP it is determined if there is an interval that can be used to charge
energy in. :
while ChQ(i) ≥ ChC or SOC(i) = C and i ≤ n do
i := i + 1

end while
k := i + 1
if k < n then
f := 1
: In this WHILE LOOP it is determined if there is a last local minimum with a subsequent
local maximum. :
while f = 1 do

if k > n then
f := 2
g := 0

else
: If there is an interval that can be used to discharge energy with a profit for this last
local minimum, there is a subsequent local maximum. :
if DChQ(k) < DChC and dcp(k) > cp(i) then

s := k
d := 1

else
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: If there is an interval that can be used to charge energy with a price to charge
energy that is less than the price to charge energy in the last local minimum, there
is a new last local minimum. :
if ChQ(k) < ChC and cp(k) < cp(i) then

i := k
end if

end if
k := k + 1
while d = 1 do

if DChQ(k) < DChC and dcp(k) > dcp(s) then
s := k

end if
if DChQ(k) < DChC and dcp(k) < dcp(s) then

d := 0
f := 0

end if
if ChQ(k) < ChC and cp(k) < dcp(s) then

d := 0
f := 0

end if
if d = 0 then

LLM := i
SLM := s

end if
k := k + 1
if k > n then

d := 0
f := 0

end if
end while

end if
end while

end if
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Appendix E

Algorithm 3.3

Declarations
CHQ,DCHQ,Q used to determine the amount of energy to charge, discharge and store
b used to see if energy is charged during an interval or if it was already there to be discharged

Data & Initialization
j the last local minimum, given by Algorithm 3.2
l the subsequent local maximum, given by Algorithm 3.2
SOC(j)..SOC(l)
DChQ(j), DChQ(l)
ChQ(j)
DChC,ChC

Program

: If there was energy discharged in interval j, the maximum amount of energy that can be
used is determined. :
if DChQ(j) > 0 then

CHQ := min(DChQ(j), C − SOC(j))
b := 0
: Else, the maximum amount of energy that can be charged is determined. :

else
CHQ := min(ChC − ChQ(j), C − SOC(j))
b := 1

end if
: the maximum amount of energy that is desired to be able to discharge the maximum amount
of energy. :
DCHQ := (DChC−DChQ(l))

RLBCb·RLBS(l−j)

Q := min(CHQ,DCHQ)
i := j + 1
: The maximum amount of energy that can be stored is determined. :
while i < l do

if SOC(i) + Q ·RLBCb ·RLBS(i−j) > C then

Q := (C−SOC(i))

RLBCb·RLBS(i−j)

end if
i := i + 1
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end while
if b = 0 then
DChQ(j) := DChQ(j)−Q
if DChQ(j) = 0 then

: Determine the new price for charging as in 3.20. :
end if

else
ChQ(j) := ChQ(j) + Q

end if
if DChQ(l) = 0 then

: Determine the new price for charging as in 3.19. :
end if
DChQ(l) := DChQ(l) + Q ·RLBCb ·RLBS(l−j)

i := j
while i < l do

SOC(i) := SOC(i) + Q ·RLBCb ·RLBS(i−j)

i := i + 1
end while
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Appendix F

Algorithm 4.2

Declarations
i = 1..n the set of intervals
DChQ(1)..DChQ(n) a list with the quantity to discharge for every interval
DChC,UB
DChQ(i) ≤ DChC
SOC(i) ≤ UB

Data & Initialization
SOC(0)..SOC(n) determined by Algorithm 4.1

Program

i = 1
: This WHILE LOOP will discharge energy if the SOC > UB :
while SOC(i) > UB do
DChQ(i) = min(DChC,UB − SOC(i))
SOC(i) := SOC(i)−DChQ(i)
i := i + 1
SOC(i) := SOC(i− 1) · LBS
: IF the SOC ≤ UB for the subsequent intervals the SOC can be determined :
if SOC(i) ≤ UB then
j := i + 1
while j ≤ n do
SOC(j) := SOC(j − 1) · LBS
j = j + 1

end while
end if

end while
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Appendix G

Algorithm 4.3

Declarations
i = 1..n the set of intervals
DChQ(1)..DChQ(n) a list with the quantity to discharge for every interval

Data & Initialization
cp(1)..cp(n) determined by Algorithm 3.1
dcp(1)..dcp(n + 1) determined by Algorithm 3.1
SOC(0)...SOC(n) determined by Algorithm 4.2
DChC,LB
DChQ(i) ≤ DChC

Program

i := 1
k := 1
: While the SOC of the last interval is larger than the LB, energy is discharged in the first
local maximum :
while SOC(n) > LB do
m := 1
: This WHILE LOOP determines the first local maximum :
while m = 1 do

if k = 1 then
while DChQ(i) ≥ DChC do

i := i + 1
end while
j := i + 1

else
j := j + 1

end if
while DChQ(j) ≥ DChC do
j := j + 1

end while
if dcp(i) > dcp(j) then
m := 0

else
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if dcp(i) = dcp(j) then
j := j + 1
k := 0

else
i := j

end if
end if

end while
DCHQ := minimum(DChC −DChQ(i), (SOC(n)− LB) · LBS(i−n))
if DChQ(i) = 0 then

: Determine the new price for charging as in 3.20. :
end if
DChQ(i) := DChQ(i) + DCHQ
j := i
: This WHILE LOOP will set the SOC for all intervals since the first local maximum :
while j ≤ n do
SOC(j) := SOC(j)−DCHQ · LBSj−i

j := j + 1
end while
i := 1

end while
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Appendix H

Algorithm 4.4

Declarations
i = 1...n the set of intervals
ChQ(1)...ChQ(n) a list with the quantity to charge for every interval
DChQ(1)...DChQ(n) a list with the quantity to discharge for every interval

Data & Initialization
cp(1)...cp(n) determined by Algorithm 4.3
SOC(1)...SOC(n) determined by Algorithm 4.3
UFC(1) := ... := UFC(n) := 0 a list to know if an interval can be used for charging
ChC, LB and UB
ChQ(i) ≤ ChC
DChQ(i) ≤ DChC
LB ≤ SOC(i) ≤ UB
LBC, LBDC and LBS

Program

i := 1
k := 1
: This WHILE LOOP will check for all intervals if the SOC is larger or equal to the LB :
while i ≤ n do

: If the SOC is smaller than the LB, if possible, energy will be charged for the smallest price
:
if SOC(i) < LB then

: This WHILE LOOP will search for the first interval that can be used for charging energy
:
while ChQ(k) ≥ ChC or UFC(k) 6= 0 and k ≤ i do

k := k + 1
end while
j := k + 1
: This WHILE LOOP will search the interval with the smallest price to charge energy :
while j ≤ i do

while (cp(j) > cp(k) or ChQ(j) ≥ ChC) and j ≤ i do
j := j + 1

end while
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if j ≤ i then
k := j
j := j + 1

end if
end while
: If there is an interval found that can be used for charging, the amount of energy to charge
is determined and with the list UFC the interval that is used for charging is characterized
and therefore this interval will not be used again to charge for interval i :
if k ≤ i then
UFC(k) := 1
CHQ := min(ChC − ChQ(k), (SOC(j)− LB) · LBC · LBS(j−k)

l := k
: This WHILE LOOP is used to determine the maximum amount of energy to charge
to not get the SOC larger than the upper bound :
while l < i do

if SOC(l) + CHQ · LBC · LBS(l−k) > UB then

CHQ := (UB−SOC(l))

LBC·LBS(l−k)

end if
l := l + 1

end while
: If it is possible to charge energy, the SOC for all intervals since interval k will be
determined. :
if CHQ > 0 then

ChQ(k) := ChQ(k) + CHQ
m := k
while m ≤ n do
SOC(m) := SOC(m) + CHQ · LBC · LBS(m−k)

: If there is an interval with a SOC that is equal to the UB, it is not possible to
charge energy in an interval before this interval :
if SOC(m) = UB then

n := m
while n ≥ 1 and UFC(n) < 2 do

UFC(n) := 2
n := n− 1

end while
end if
m := m + 1

end while
end if

else
: If there is no interval found to charge energy in for interval i, it is not possible to get
the SOC in interval i larger or equal to the lower bound :
i := i + 1

end if
else
i := i + 1
j := i
: This WHILE LOOP will reset the UFC, till an interval with a SOC that is equal to the
UB :
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while UFC(j) < 2 do
UFC(j) := 0
j := j − 1

end while
end if

end while
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Appendix I

Algorithm 4.5

Declarations
i = 1...n the set of intervals
ChQ(1)...ChQ(n)
DChQ(1)...DChQ(n)

Data & Initialization
cp(1)...cp(n)
dcp(1)...dcp(n)
SOC(1)...SOC(n)
UFC(1) := ... := UFC(n) := 0
ChC, LB and UB
ChQ(i) ≤ ChC
DChQ(i) ≤ DChC
LB ≤ SOC(i) ≤ UB
LBC, LBDC and LBS

Program

i := j
DCHQ := (SOC(i) · LBS(m−i−1) − LB) · LBS−(m−j−1)

while i ≤ m do
DCHQ := minimum(DCHQ, (SOC(i) · LBS(m−i−1) − LB) · LBS−(m−j−1))

end while
DCHQ = minimum(DCHQ,DCHC −DChQ(j), ChC−ChQ(m)

(LBC·LBS(m−j−1))
)

91



92



Appendix J

Algorithm 5

Declarations
i = 1...n the set of intervals
ChQ(1)...ChQ(n) a list with the quantity to charge for every interval
DChQ(1)...DChQ(n) a list with the quantity to discharge for every interval
ocp(i) the charging price ordered
interval(i) the interval of the ordered charging price i

Data & Initialization
cp(1)...cp(n) determined by Algorithm 3.1
SOC(0) start SOC
SOC(1) := .. := SOC(n) := 0
UFC(1) := ... := UFC(n) := 0 a list to know if an interval can be used for charging
ChC, LB and UB
ChQ(i) ≤ ChC
DChQ(i) ≤ DChC
LB ≤ SOC(i) ≤ UB
LBC, LBDC and LBS

Program

i := 1
: This WHILE LOOP is the first outer-loop :
while i ≤ n do
DChQ(i) := DChC
SOC(i) := SOC(i− 1) · LBS −DChC
: Determine the new price for charging as in 3.20. :
j := 1
: This WHILE LOOP determines the place for interval i in the ordered charging price list :
while cp(i) < ocp(j) and j < i do

j := j + 1
end while
x := i
: This WHILE LOOP will set the intervals before interval i in the new place in the ordered
charging price list :
while x > j do
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ocp(x) := ocp(x− 1)
interval(x) := interval(x− 1)
x := x− 1

end while
ocp(x) := cp(i)
interval(x) := i
: If the SOC is smaller than the lower bound, if possible, energy will be charged for the
smallest price :
if SOC(i) < LB then
q := 0
h := i
: This WHILE LOOP will search for the interval with the lowest charging price in the
ordered charging price list, that can be used for charging energy :
while q = 0 do

k := interval(h)
if ChQ(k) < ChC and UFC(k) = 0 then

q := 1
else
h := h− 1
if h < 1 then
q := 2

end if
end if

end while
: If there is an interval found that can be used for charging, the amount of energy to charge
is determined and with the list UFC the interval that is used for charging is characterized
and therefore this interval will not be used again to charge for interval i :
if q = 1 then
UFC(k) := 1
if DChQ(k) > 0 then

CHQ := min(DChQ(k), (SOC(i)−LB)

LBC·LBS(j−k) )
else
CHQ := min(ChC − ChQ(k), (SOC(i)−LB)

LBC·LBS(j−k) )
end if
l := k
: This WHILE LOOP is used to determine the maximum amount of energy to charge
to not get the SOC larger than the upper bound :
while l < i do

if SOC(l) + CHQ · LBC · LBS(l−k) > UB then

CHQ := (UB−SOC(l))

LBC·LBS(l−k)

end if
l := l + 1

end while
: If it is possible to charge energy, the SOC for all intervals since interval k will be
determined. :
if CHQ > 0 then

if DChQ(k) > 0 then
DChQ(k) := DChQ(k)− CHQ
if DChQ(k) = 0 then
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: Determine the new price for charging as in 3.19. :
j := h
while cp(k) > ocp(j) and j > 0 do
j := j − 1

end while
x := h
: This WHILE LOOP will set the charging prices from place j till place h in the
new place in the ordered charging price list :
while x > j do
ocp(x) := ocp(x− 1)
interval(x) := interval(x− 1)
x := x− 1

end while
ocp(x) := cp(k)
interval(x) := k

end if
else
ChQ(k) := ChQ(k) + CHQ

end if
m := k
while m ≤ i do
SOC(m) := SOC(m) + CHQ · LBC · LBS(m−k)

: If there is an interval with a SOC that is equal to the UB, it is not possible to
charge energy in an interval before this interval :
if SOC(m) = UB then
n := m
while n ≥ 1 do
UFC(n) := 2
n := n− 1

end while
end if
m := m + 1

end while
end if

else
: If there is no interval found to charge energy in for interval i, it is not possible to get
the SOC in interval i larger or equal to the lower bound :
i := i + 1

end if
else
j := i
: This WHILE LOOP will reset the UFC, till an interval with a SOC that is equal to the
UB :
while UFC(j) < 2 do
UFC(j) := 0
j := j − 1

end while
i := i + 1

end if
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end while
i := 1
: This WHILE LOOP is the outer-loop :
while i ≤ n do

if cp(i) < 0 and ChQ(i) < ChC then
CHQ := ChC − ChQ(i)
j := i
while j ≤ n do

if CHQ · LBC · LBSj−i + SOC(j) > UB then

CHQ := UB−SOC(j)
LBC·LBSj−i

end if
j := j + 1

end while
end if
i := i + 1

end while
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