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Preface

In this thesis we investigate the collective behaviour of fish called schooling. It
is written around one central question: how does this schooling behaviour arise
from individual response to the observed environment? We investigated how
this can be modelled mathematically in such a way that there is an explicit
and precisely formulated relationship to relevant biological and (bio)physical
processes. There already exist mathematical models to simulate aggregation
behaviour. Most of these models however do not properly relate to the under-
lying biology. For example, some important physical properties of the sensory
systems of fish have not been taken into account in these models, like the fact
that neighbouring fish might be hidden behind each other, that water qual-
ity might influence the vision of fish and that fish typically do not see depth
and hence are not able to determine the absolute distance to their neighbours.
Hence, most models lack validation by experiment. Actually, their poor relation
to the biology inhibits validation.
In this thesis we propose an approach to the modelling and subsequent simula-
tion and analysis of the collective behaviour, in which we carefully separate an
individual’s observation of the environment, decision making and the subsequent
physical response. What the organism can observe is accessible to biophysical
and chemical considerations and experiment. Moreover, their physical response
is also accessible in such a way. When we relate this to our central question, we
find that the functioning of the fish’s decision system, which links observation
and response, is of critical importance in resolving it. It obviously is poorly
accessible to experiment, but in order to get some insight, it is important to
realize that as input one should take what an individual can observe, and as an
output how it physically can respond.
We have made a mathematical model based on existing models, but with a
relation to biology along the line sketched above, which can be linked to exper-
imental data and be executed together with experiments to explain behaviour
from hypotheses on how the decision system relates observation to response.
The execution of the experiments itself was beyond the scope of this thesis
in (bio)mathematics. We expect that future experimental work in conjunction
with the type of mathematical modelling and simulation proposed here will yield
new and deeper insights in the question how fish school and what the important
parameters are which determine the characteristics of the resulting school.
The model incorporates different aspects to take into account the points of
criticism mentioned above. We will investigate how observation, memory, deci-
sion and response are intertwined and unravel the relation between them in the
model. These parts are recognizable in the structural set-up of the high-level
architecture of our model. This high level ‘model architecture’ is not limited to
the study of fish schooling. It is relevant and useful for different organisms. In
particular, it is interesting to “put it to the test” with e.g. unicellular organisms
like bacteria, amoebae or macrophages in the immune system. These have the
advantage that their decision making system should be less complicated com-
pared to higher organisms, like fish. Moreover, these model systems seem to be
more easily accessible experimentally.
We will make a comparison to existing models and investigate possible differ-
ences.
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In this thesis we set out to develop, implement and try-out a modelling and sim-
ulation approach, that has the potential of bringing mathematics, physics and
experimental biology closer together on the topic of understanding collective
behaviour of organisms. To succeed, the challenge is not to excel and go deep
in one of these fields, but to understand all at a proper level and find the best
combination of these fields in order to truly assess the question. Our biggest
challenge has been to collect and combine the large variety of subjects needed
for this research, for which we have investigated different parts of mathematics,
physics and biology.
We hope the reader will enjoy this combination of topics as we did and will
be convinced of the necessity of the proposed approach in order to establish a
better, i.e. more explicit and experimentally accessible, relationship to biology
in the field of modelling, simulation and analysis of collective behaviour of living
organisms and artificial agents like robots, in the future.

Lisette de Boer
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Chapter 1

Introduction

There is a long lasting interest in the collective behaviour of living organisms.
A question of particular interest was, whether or not an intelligent leader was
required to coordinate group behaviour or aggregation of individuals. Since the
beginning of 1950 the behaviour patterns of different species have been investi-
gated using mathematical models. Among others, one studied group behaviour
of e.g. ants, birds (in particular starling), and fish, see Figure 1.1. In this thesis
we shall consider the mathematical modelling and simulation of fish schooling.

Figure 1.1: Examples of collective behaviour of starling, army-ants and bigeye
trevally

1.1 The biology and physics of fish swimming

There are more than 25.000 different species of fish known so far. There are
more kinds of fish than all other vertebrates together. Over 95% of all living
fish today are bony teleosts. About 50%-80% of fish swim in schools [5]. A
school is defined as a group of fish that are swimming at about the same speed
in roughly parallel orientation and maintaining a constant distance to their
nearest neighbour. A school contains fish of about the same size: individuals
that differ in size around 30% simply do not fit in. A shoal is a social group, but
not necessarily a school because fish in a shoal may have random orientation,
nearest neighbour distance and sizes. It has been suggested that schooling and
other forms of social shoaling play important roles in searching for food, predator
avoidance and energy conservation [5].
There are different types of fish. We will investigate pelagic fish, which live in

1
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Figure 1.2: Fish

an open part of the sea or ocean, in the middle of the water column between
the surface and the bottom of a sea or lake. These fish can be contrasted with
demersal fish, which live on or near the bottom of an ocean or lake, and reef
fish which live in coral reefs. Pelagic fish can be divided in two groups: coastal
(or inshore), and oceanic (or offshore). We will investigate the latter.
Fish can use different methods for swimming. They use their fins in one way
or another, depending on the type of fish, to propulse themselves through the
water, [21]. In Figure 1.2 it is described how the different fins are located at the
body of the fish. As we will see later on, oceanic pelagic fish will mainly use
their tail or caudal fin as the main propulsive and steering device. For other
kinds like coastal and reef fish, other fins may be more important for steering.
One makes the distinction between neutrally, negatively and positively buoyant.
When a fish is more dense than water it is negatively buoyant, which means that
(part of) its body will sink. The fish use different methods to maintain at the
same level in the water. For example, they may use their pectoral fins as lifting
foils. If only the tail part of the body sinks, this generates a dynamic lift when
swimming. These types of fish tend to use the so called kick-and-glide method:
by alternating propulsive body movements and periods of gliding they are able
to save 20% or more energy, [5, Ch 3 and 4]. The downside of being negatively
buoyant is that these fish must maintain a minimum cruising speed to prevent
them from sinking. Thus they have to be on the move constantly.
There are two ways a fish can create a static lift. The first is by gas and the
second by fats and oils. Fish have a gas bladder which is about 5% of their
body. By constantly secreting and absorbing gas they keep the volume of this
bladder constant to remain neutrally bouyant. This way fish are able to regulate
their buoyance very quickly. As second method fish use fats and oils as a source
to generate static lift. An advantage of using lipids is that the density at the
water surface barely differs from the density at the bottom of the sea. On the
other hand, fish will find it difficult to adjust its density rapidly to cope with
the short-term density changes resulting from feeding and parturition (laying
eggs) [5].

1.2 Current theory on fish schooling

In [11], Huth and Wissel introduced rules of how fish may react to their envi-
ronment and in [12] they continued this approach. Their way of describing the
schooling rules for fish has been fully adopted by subsequent researchers.
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Figure 1.3: A: Different regions around the fish according to Huth and Wissel,
[11]. B: The lateral lining system of fish.

According to Huth and Wissel, four different regions around the fish are rele-
vant: the zone of repulsion, alignment and attraction, and the remaining part
of their habitat designated as searching area. In Figure 1.3A it is shown how
these regions are located around the fish, where the parallel area represents the
alignment zone. Typical sizes for the radii of these zones expressed in the unit
‘Body Length’(BL), are respectively 0.5BL, 2BL and 5BL.
Fish use vision and their lateral line to observe the environment. The lateral
line is an organ on the side of the body which senses movement and vibration
in the surrounding water, see Figure 1.3B. Fish seem to use the lateral line to
avoid collision and to realise alignment at short ranges, whereas vision is used
to detect others at larger distance. Vision is important in schooling, since a
school falls apart at night due to vision loss. When the lateral line is cut, fish
swim closer to each other than the usual 1 to 1.5 BL distance.

1.3 A sketch of the history of modelling and sim-
ulation

From the 1990’s computers were used to simulate schooling behaviour. In the
first simulations, fish were just points in two-dimensional space which moved
with constant speed. In [10] this speed has been made adjustable while an
average cruising speed was maintained, possibly dependent on environmental
and/or physiological state of the fish. This idea seems not to have been ex-
plored further, but we will investigate this approach further in this thesis.
In recent models, the two dimensional setting has been replaced by more real-
istic simulations in three dimensions, although mostly with periodic boundary
conditions in all direction (if the boundary conditions are specified at all). This
means that fish which swim out on one side, will enter again on the other side, in
all directions. Incorporation of boundaries as water surface and sea floor seems
to be rare. We will incorporate these in our approach to explore any possible
effects of these boundary conditions.
There are models where also the size and shape of the fish are incorporated. In
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[8] it was studied for the first time how body size and shape affect the shape of
the school. We will also incorporate body size in our approach.

1.3.1 Discrete-time models

There are different ways of modelling fish behaviour. In [17] the authors have
included a table which summarizes fish school simulation parameters and out-
put variables from different researchers up to 1999. Here we give a few other
examples of discrete-time models, followed in the next section by continuous-
time models.

Couzin and coworkers
An example of a discrete-time model based on the absolute distance between
fish is the model of Couzin et al. in [7]. Their aim is to provide new insights
into the mechanism of effective leadership and decision-making in biological
systems. They have adopted the different interaction zones described in [11]
while postulating interaction rules in these zones. These rules do not seem to
have been validated experimentally.
Each fish has a position ci(t) in three-dimensional space at time t. If there are
neighbours in the zone of repulsion, the desired direction for fish i at the next
time step is given by

di(t+ 1) = −
n∑
j=1

cj(t)− ci(t)
|cj(t)− ci(t)|

. (1.3.1)

where the summation runs over the neighbours in the zone of repulsion.
If there are no neighbours in the repulsion zone, fish in the alignment zone are
taken into account. Then the desired direction is given by

di(t+ 1) =

n∑
j=1

vj
|vj |

(1.3.2)

where vj represents the velocity of fish j, and the summation runs over all fish
in the alignment zone.
Finally, if there are no other fish in the repulsion and alignment zone, they use
the follow rule for attraction by their neighbours:

di(t+ 1) =

n∑
j=1

cj(t)− ci(t)
|cj(t)− ci(t)|

. (1.3.3)

If there are neighbours in both of the last two zones, these rules will be combined,
simply by addition. Finally, the vector di will be converted into the unit vector
d̂i. As may be clear from the equations above, this model does not incorporate
any biological (experimental) data1.
In [7], they investigate how many informed individuals are needed to guide a
group. An informed individual has a nonzero vector ~gi pointing in the ‘informed

1We will provide an adjustment to this model at this point in Section 4
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direction’. They introduce a weighting factor ω and incorporate the information
gi into the desired direction as an additional ω-weighted term:

d′i(t+ 1) =
d̂i(t+ 1) + ωgi

|d̂i(t+ 1) + ωgi|
. (1.3.4)

If ω = 0, none of the individuals is informed about where to go. They reveal
that the larger the group, the smaller the proportion of informed individuals
needed to guide the group. However, these results only hold for their artificial
interaction rules. They do not specify the ‘virtual tank’ they work in or any
boundary conditions.

Hemelrijk and coworkers
In [9], Hemelrijk and Hildebrandt refined the situation of Huth and Wissel as
described in Figure 1.3, see Figure 1.4. Here, the blind zone behind the fish is
larger for the cohesion zone than for the repulsion zone and the alignment zone,
because in former studies only vision is used, whereas in [9] the lateral line also
plays part in determining these zones. They assume that the perceptual field
of the lateral line follows the body form: therefore the repulsion and alignment
regions are elliptical rather than circular [8].

Figure 1.4: Regions refined by Hemelrijk and Hildebrandt, [9].

Most models are formulated in terms of the distances between the centres of
mass of the fish. Hemelrijk’s discrete-time model is based on the aggregation
rules described by Couzin in [7]. In addition, fish in a school are also attracted to
the centre of gravity of a group of individuals located in their attraction range.
They mention that they have used a efficient spatial search method based on
a Hilbert R-tree to locate their neighbours. A Hilbert R-tree is a tree data
structure to store multidimensional objects such as lines and regions.
In [8], Hemelrijk and Hunz not only use the distance to the centre of mass of its
neighbours, but also the distance to the nearest point. In [9] the previous model
described in [8] has been improved by making it more realistic. The constant
speed has been made variable and a ‘cruise speed’ has been introduced. Their
aim is to develop testable hypotheses for the mechanisms underlying school
shape and structure in real schools of fish.
Their virtual fish swim in a continuous, unbounded 3D world. They have de-
veloped detailed model-based hypotheses that may be used to verify whether in
real fish an oblong school form and high frontal density appear as a side-effect of
coordination in a similar way as in the model. Their model resulted in a oblong
school with highest density at the front of the school which they investigated at
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different group sizes and speed. They note a few shortcomings of their model:
it only studies the consequences of simple rules for coordination. Vision is iden-
tical around the axis of movement, which implies that width and height of the
school are identical, which is often not true in nature [9,14]. Their hypotheses
have not yet been verified by empirical scientists.

Barbaro and coworkers
In [1], Barbaro et al. model the spawning migration of the Icelandic capelin
stock, Mallotus villosus, by using an interacting particle model with added en-
vironmental field. The capelin, see Figure 1.5, is an example of a species of
pelagic fish which covers several hundred kilometers in the course of its migra-
tion.

Figure 1.5: Capelin

The Icelandic fishing industry is interested in the capelin because it is a feeder
fish for many larger, economically important species of fish such as cod and
herring [2].
The interacting particle model is related to Couzin’s model and based on the
work of Hubbard and coworkers, which originated from work by Vicsek et al.
[2,10,20]. Since the type of fish is specified and environmental aspects are added,
this model is more realistic. But, unlike the models seen before, they do not
employ a blind region behind a fish. They note that is ambiguous whether or
not this blind zone is biologically relevant in the case of fish since the lateral
line should allow a fish to sense the region behind it as it swims. To us it seems
that for the largest range, the range of attraction, vision is the dominant sen-
sory system. Then the blind zone is present and may have an effect. However,
in their simulation, the presence of such a region does not seem to affect the
outcome of the simulations [12].
Their model is two-dimensional in which particles update their speed vi and
their position qk as follows

vk(t+ ∆t) =
1

|Ok|
∑
j∈Ok

vj(t) (1.3.5)

qk(t+ ∆t) = qk(t) + ∆t · vk(t+ ∆t)

(
cos(φk(t+ ∆t))

sin(φk(t+ ∆t))

)
(1.3.6)

where |Ok| denotes the number of particles in the orientation zone and φk(t) is
the directional angle of particle k with respect to the positive x-axis. They note
that since the information on position and direction of neighbouring particles
can lead to conflict of interest, they use a weighted average to determine the
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particles desired direction, φk(t+ ∆t), in the next time step according to(
cos(φk(t+ ∆t))

sin(φk(t+ ∆t))

)
=

dk(t+ ∆t)

|dk(t+ ∆t)|
(1.3.7)

where

dk(t+ ∆t) :=
1

|Rk|+ |Ok|+ |Ak|
× (1.3.8)(∑

r∈Rk

qk(t)− qr(t)

|qk(t)− qr(t)|
+
∑
o∈Ok

(
cos(φk(t)

sin(φk(t))

)
+
∑
a∈Ak

qa(t)− qk(t)

|qa(t)− qk(t)|

)

with |Rk|, |Ak| the number of neighbours in the repulsion and attraction zone
respectively.
By including an environmental grid containing information about the current
and the temperature at regular intervals, particles are able to respond to their
environment. The data contained in the grid allow each fish to be translated
by the current and to adjust its direction depending on the temperature of
the surrounding ocean [1]. The particles sense the surrounding temperature T
according to the gradient of the function r:

r(T ) :=

 −(T − T1)4 if T ≤ T1

0 if T1 ≤ T ≤ T2

−(T − T2)2 if T2 ≤ T,

where T1, T2 are constants and [T1, T2] is referred as the preferred temperature
range. The current field is denoted by C.
By including the environmental fields, equation (1.3.6) becomes

qk(t+ ∆t) = qk(t) + ∆t · vk(t+ ∆t)
Dk(t+ ∆t)

|Dk(t+ ∆t)|
+ C(qk(t)), (1.3.9)

where

Dk(t+ ∆t) := (1− β)
dk(t+ ∆t)

|dk(t+ ∆t)|
+ β

∇r(T (qk(t)))

|∇r(T (qk(t)))|
. (1.3.10)

Here β ∈ [0, 1], the temperature weight factor, determines the reaction of each
particle to the temperature and its neighbours.
New in this model is the introduction of superindividuals; particles do not au-
tomatically represent individual fish, but may also represent many particles
together, e.g. a school, behaving in an identical manner as an individual. There
are several scaling relations explained in their article to justify the use of these
superindividuals.
A contribution of this paper is that they were able to qualitatively reproduce
the spawning migrations of the capelin without an external forcing term.

1.3.2 Continuous-time models

Various attempts have been made to model schooling behaviour by using a
continuous-time model. We mention a few below.
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Bertozzi, D’Orsogna and coworkers
The model designed by Bertozzi and D’Orsogna et al. described in [15,16], dif-
fers from previously described models, since it only uses the regions of repulsion
and attraction and does not take alignment into consideration. They model
a non-linear system of self-propelled individuals interacting via a pairwise at-
tractive and repulsive potential. In contrast with the previous models, this is a
continuous-time model.
They discuss aggregation patterns and asymptotic behaviours by investigating
robot swarming. The underlying idea is to simulate agent motion in a manner
similar to the motion of swarm-animals like birds and fish in nature. To describe
the motion of the discrete swarming agent i they use the following equations of
motion

dxi
dt

= vi, (1.3.11)

mi
dvi
dt

= (α− β|vi|2)vi −∇iU(xi), (1.3.12)

where

U(xi) =
∑
j 6=i

[
Cre

|xi−xj |/lr − Cae−|xi−xj |/la
]

(1.3.13)

is the general Morse potential. Here la, lr represent the range of the attractive
and the repulsive part of the potential and Ca, Cr their amplitudes. From equa-
tion (1.3.12) we notice that agents tend to swim close to the self-propelled speed
|vi| =

√
α/β.

This model is 2D, does not take alignment into account and assumes that all
individuals have the same mass: mi = m for all i. They also mention in [15]
that |vi|2 = α/β does not hold for rigid body structures. As will be mentioned
later on, we will model our fish as rigid bodies and hence this approach is not
useful for us.

Barbaro, Birnir and coworkers
Another continuous-time model by Barbaro and coworkers, [2,4], is based on
the discrete-time model similar to the described model above by Barbaro et al.
to describe the motion of the capelin. Their goal was to create a model which
can be used to estimate the location of the capelin stock at various times of the
year. They derived a system of four ODE’s

ṙk = vk cos(φk − θk)

rkθ̇k = vk sin(φk − θk)

v̇k = α
N2

N∑
j=1

vj
N∑
j=1

cos(φj − φk)− αvk

vkφ̇k = α
N2

N∑
j=1

vj
N∑
j=1

sin(φj − φk).

Here the position of each fish has been expressed in polar coordinates r and θ, N
represents the number of individuals and a turning rate α has been introduced,
which they fix at 1. By noting that the capelin tends to stay close to the water
surface, they justify the choice of a 2D model.
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By using these ODE’s, they numerically found stationary, migratory and circling
behaviour in both the discrete and the ODE model and two types of swarming
behaviour in the discrete model [2].
First they note that the different interaction zones can be implemented using
potentials, but that these zones are not necessary to find simple behaviours ex-
hibited by the model. By adding small deterministic perturbation to the last
two equations above, they also found circling solutions. They showed that by
only incorporating the alignment zone, they found the same result as when us-
ing the repulsion and attraction zones.
By assigning a “selfWeight” to each fish, they were able to take a preferred
direction of each fish into account. This corresponds to the method used in
the discrete-time model by Couzin et al. of incorporating informed individuals.
They note that the selfWeight needed to be approximately 1.5-2 times the total
number of fish to achieve a swarming solution. By decreasing the selfWeight,
a stable swarming solution can be made migratory. When the selfWeight ap-
proaches one quarter or less of the total number of fish, the school assumes
parallelism and travels in a well-defined direction, transitioning to a migratory
solution.

1.4 Discussion

The biological literature seems to agree upon the roles of vision and lateral line
in the various interaction zones as identified by Huth and Wissel [11]. One im-
portant comment can be made about all models discussed above: the specified
rules implicitly need the assumption that fish are able to measure the absolute
distance to their neighbours. This seems quite unrealistic, since fish like the
capelin typically have one eye on either side of their body and hence are not
able to see depth. Moreover, considering fish as point masses makes the model
predictions in crowded situations questionable. Yet another possible effect re-
lating to the functioning of the visional sensory system is the effect of water
quality. This limits the effective range of vision and hence the ability to see
neighbours. And what is the difference in perception of a large neighbour far
away compared to a small neighbour, really close? These are all questions which
have not been answered yet.

A few researchers make slight improvements; in [9] the authors note that indi-
viduals are unlikely to perceive those that are hidden behind others. They note
that the range of observation is inversely related to the density of the school; the
observation range is flexible. In other words: if a fish is located at the centre of
the school, it is not able to see fish far away because its vision is blocked by its
neighbours, whereas on the outside of the school the vision of the fish reaches
further. This model has the best relation to biology of the models investigated
in Section 1.3.
In [24] the authors mention that there is a limited number of neighbours influ-
encing the decision of a fish. They concluded from their previous investigations
in [23] that the number of influencing neighbours should be 16. They introduce a
scaling function for the influence of these 16 neighbours; if the closest neighbour
is too close, this will have a large impact on a fish and will result in repulsion.
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Also, a very close nearest neighbour would likely obstruct a large percentage of
a fish’s field of view, making more distant school-mates more difficult to see.
We will provide a different method to prevent a fish to spot neighbours hidden
behind others, see Section 2.1.2.

In [24], the authors aim to leverage well known rules of physics to help codify
the fish schooling problem mathematically, without sacrificing the behavioural
realism too greatly. They suggest that one should definitely incorporate drag
and acceleration, which we will do further on in our model. They note that it is
unlikely that animals can judge the distance to a target with perfect precision,
but they still assume that organisms use distance as a relevant measure of influ-
ence. According to them, since animals are not capable of perfect visual acuity,
some investigators assume there will be a margin of error in the computation of
the preferred distance to neighbours. This margin is commonly formalized as a
finite region, the “neutral zone”, where there is neither attraction nor repulsion.
This is also known as the alignment zone in most articles, and from our point of
view this does not change the fact that fish are probably not able to determine
the absolute distance to their neighbours at all.

A lot of fish school simulations described in articles do not specify which fish
they are simulating. Maybe the zone of repulsion, alignment and attraction are
different for different kind of fish. And how about the blind zone behind the
fish? Does this depend on the type? In [24] they do specify the type of fish
simulated. Their simulations are based on measurements of giant danio (Danio
aequipinatus) movements taken from companion schooling experiments, [23]. In
their article they have added a table of parameters to justify the choices made
in their model.

Most models work like the model of Couzin in [7]. This model determines
where one fish will go in the next time step, by measuring all the distances to
its neighbours and their velocity in a certain zone and averaging it. But how do
we know if this is the way fish make their decisions? Again, here it is not taken
into account that fish may have different sizes and might be hidden behind each
other. In [1] they concluded that their contribution was that they were able
to reproduce spawning migrations without external forces, but does this model
just copy what fish do, or is it really based on movements of fish? In other
words, what is the connection of the model to the biology?
We will react to this subject in detail in Section 2.1.2.

1.5 Our objectives

In the previous section we have discussed several models and noted on which
points these models lack the relation with biology and can be improved. There-
fore we have made a model which can be linked to experimental data and be
executed together with experiments in order to explain schooling behaviour,
based on existing models.
We will introduce a perceived distance which will be used instead of the absolute
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distance to neighbours. We will describe a different way to store the informa-
tion of a fish’s environment, the so-called sphere of perception. Besides the way
fish see their surroundings, we are also going to investigate how fish combine
the different impulses from their surroundings. We will make it impossible for
fish to detect (part of) neighbours hidden behind others. Moreover, we will
incorporate the physics of fish swimming into their response to the observed
environment.
We will further develop a general modelling framework for collective behaviour,
which we shall explain in the next chapter. This framework is very useful, since
it enables us to easily adapt our model to other organisms than fish.
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Chapter 2

High-level model and
simulation architecture

Before fish can decide how to respond to their environment, they first need to
observe this environment. Then they need to use their observations and com-
bine this with information from their memory to decide how to react. This is
the framework of our model: a clear separation of the processes of observation,
decision making and response, see Figure 2.1. In this section we will describe
the parts of our framework in detail and explain how it is used in modelling and
the implementation of our simulation. By using this framework and making it
visible in our simulation, our simulator can be easily adapted to the organism
investigated. Whether we investigate fish, E. coli bacteria or white blood cells,
the framework remains the same. Of course, the biophysical or chemical mech-
anisms of observation and response and their characteristics will differ, which
also holds for how decisions are made from observations.

2.1 The framework constituents

2.1.1 The environment

The environment of an organism depends on the type of organism. It may
contain individuals of the same type, other species like predators and prey, con-
centration of chemicals, water temperature etc. All elements in the environment
of an organism may have an influence on the way it will respond. As shown in
Figure 2.1, the environment is used as the input of an organism’s observation
system and it changes over time due to for example changes in concentration of
chemicals, or moving and interacting individuals. The observed environment is
accessible by biophysical and chemical considerations and experiment and the
physical response is also accessible in such a way. We will make the distinction
between the environment as seen by an external observer and the environment
observed by the organism.

13
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Figure 2.1: modelling framework

2.1.2 Observation system

The behaviour of an organism can only be determined by the physical interac-
tions between the environment and the organism. The observation system en-
ables an active modification of the organism’s behaviour based on a particular
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decision making, while for example water currents causes passive modifications
in the movement. The extent to which the organism is capable of observing
the state of the environment it is in, depends on the species. For example,
various bacteria like E. coli and Bacillus subtilis are capable of measuring the
concentration of particular chemical compounds in their environment through
receptor molecules in their cell membrane. Receptors are protein molecules to
which signaling molecules can bind. In reaction to changes in the environment,
the receptor can change its shape, which will cause a cellular response. Chemical
reactions involving compounds like these are a first step in a chain of so-called
response regulators and secondary messenger molecules. The state of the envi-
ronment, i.e. the outside total concentration of molecules, is thus encoded in
an internal level of (a) messenger molecule(s).
Since these bacteria are ∼ 1µm long, they are not able to determine whether
there is a higher concentration of a compound on the front or back side. They
may use a kind of memory in the form of internal biochemical signals to compare
the concentration in their environment to the concentration a moment before.
If the concentration decreases, it will ‘decide’ to change direction and to move
in another, random, direction (the so-called ‘run-and-tumble’ movement). The
biophysical and biochemical details of the receptor, the response regulator and
the secondary signaling molecules and how these influence the molecular motors
that drive the bacterial movement can and have been studied extensively.
For E. coli, the output of the observation system is a particular (combination

Figure 2.2: Observation of surrounding by fish.

of) internal signaling molecule(s). It is commonly accepted that there cannot
be directional information in this signal. In case of vision and lateral line in
fish, the output is essentially particular neural activity of the retina and lateral
line. There is directional information in this signal. We view this internal signal
(in both cases, i.e. with and without spatial information) as represented by
a function, or more general, a measure on the sphere S2 in three dimensions,
which represents all directions. We call this the sphere of perception of the en-
vironment.
For example for fish, there are two situations possible. In the first situation all
neighbours are spread apart and hence produce distinct spots on the sphere of
perception, possibly with different (light) intensity, see Figure 2.2. In the sec-
ond situation, fish can be hidden behind each other, which produces overlapping



16CHAPTER 2. HIGH-LEVELMODEL AND SIMULATION ARCHITECTURE

images of neighbours on the sphere. In the first situation, the method of Couzin
can be partially justified as we will show in Section 4.1, but the second case is
different. It seems that it has not been considered in the literature so far.

2.1.3 Response system

How fish will respond to their environment depends on the state they are in, e.g.
foraging, and the type of model used. On the discrete decision moments, the
observed environment will be converted into a physical response. Very intense,
dark, spots will most likely lead to repulsion, medium intense spots to alignment
and spots with low intensity to attraction. By storing all the information on
the same sphere, it is also possible to combine the aggregation rules from the
different zones. It is likely that fish want to avoid collision by turning away
from their neighbours, but still remain close to the school and keep the same
direction as most of its neighbours.
We will investigate two models; one with constant speed, followed by a variable
speed model. In the first model, the response only determines which way the
fish will turn to in the next time step, whereas in the second model the speed
can also be adjusted, which is more realistic. Our assumptions on this part
are based on the predicted energy expenditure in different states. The more
energy an organism wants to invest in its movement, the larger the acceleration
or turning angle will be. We will investigate the response of fish in more detail
in the next chapters.

2.1.4 Decision making system

Neighbours produce spots on the sphere of perception which may vary in inten-
sity. The intensity depends on factors such as the distance, water quality, depth,
lighting, time of the day, etc. On discrete decision moments, the organisms de-
cide what to do with the information stored on their sphere of perception. How
this works internally is obviously hard to investigate experimentally. Neverthe-
less, this part of our framework is very important. We will clarify the importance
of the decision making system in Section 2.2.

2.2 Mathematical model

We shall now describe how the framework of observation, decision making and
response is used in our high-level mathematical model. This model is formu-
lated in discrete time where each time step corresponds with ∆τ of physical time.

At every time step t, the environment Et exists of:

• The position of every individual fish;

• Its orientation;

• Sea properties such as water level, depth, sea floor conditions, obstacles,
predators, ...;
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• Lighting conditions,

Every fish i observes the environment with its observation system, resulting in
an observed environment εit. This observed environment is considered a finite
measure on the sphere of perception: εit ∈M(S2).
We introduce the map O:

Et
Oi→ εit

Et
O→ (ε1

t , ε
2
t , · · · , εNt ).

with N the number of fish in the environment.

As shown in Figure 2.1, the observed environment is mapped to the response
system. We consider this map as consisting of two subsequent steps. Firstly,
from the observed environment a desired direction for movement is obtained.
We view this intermediary output as a probability measure µ on S2, the set of
possible directions. Thus, we allow stochastics in the decision making, which
is reasonable in view of the poor experimental accessibility and possible bio-
physical complexity of this process. Secondly, for each desired direction d′i there
corresponds a setting σ of steering and propulsion parameters.
Let

Ψ : S2 → Σ

d′i 7→ σ

Thus we have two maps:

D1 :M(S2)→ P(S2) : εit 7→ µit,

D2 : P(S2)→ P(Σ) : µit 7→ µit ◦Ψ−1.

For each setting σ of steering parameters, the fish will change its spatial position
in the physical time interval [t(∆τ), (t+1)(∆τ)] according to a trajectory deter-
mined by Newtonian mechanics. This trajectory is a solution to the equations
of motion: {

ẋ(t) = v(t), x(0) = xi ∈ R3,
v̇(t), = F (x(t), v(t), σ) v(0) = vi ∈ R3,

(2.2.1)

where F : (R6×Σ)→ R3 is suitably smooth, such that the system can be solved
on the interval [0,∆τ ] yielding the operator

Φστ : R6 → R6

Now for τ ∈ [0,∆τ ], τ 7→ Φστ (xi, vi) determines the trajectory of the individual
fish in the interval [0,∆τ ]. We define our position and velocity in the next time
step as:

(xit+1, v
i
t+1) := Φσ

i

∆τ (xit, v
i
t)

We can extend Φστ trivially to a map

Φ̂τ : R6 ×M(S2)× Σ → R6 ×M(S2)× Σ

(x, v, ε, σ) 7→ (Φστ (x, v), ε, σ)
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Hence there exists a deterministic semi-flow (Φ̂τ )τ∈[0,∆τ ] in the state space of
each individual fish, R6 ×M(S2)× Σ.

Thus, our model is a randomly switched system, where switching occurs at deter-
ministic moments, namely at ∆τ, 2∆τ, · · · , while the stochasticity resides solely
in the decision making system: at switching times a new parameter σ is selected
from a distribution (law) determined through D = D2 ◦D1 from the observed
environment. Thus, two fish with exactly the same observed environment, might
still respond slightly different. We can view this as a “switched system”, since
we are alternating the deterministic dynamics with (biased) stochastic jumps in
M(S2)× Σ-space.
So concluding, the dynamics of our switched system consist of the iteration of
the position, velocity, observed environment and steering parameters. This can
be described in four steps:

(xit, v
i
t, ε

i
t, σ

i
t)
N
i=1

(1)

↓ by evolving these parameters over the

interval [0,∆τ ] via (Φ̂τ )τ∈[0,∆τ ] for every fish,
independent of one another

Et+1 = (x̂i∆τ , v̂
i
∆τ , ε

i
∆τ , σ

i
∆t)

N
i=1

(2)

↓ where x̂i∆τ and v̂i∆τ are solutions to (2.2.1)
with initial condition xit, v

i
t,

via observation map O
εit+1

(3)

↓ via random variable D1

µit+1

(4)

↓ via random variable D2

σit+1

↓

(xit+1, v
i
t+1, ε

i
t+1, σ

i
t+1)

and back to (1) again for the next step. Here (1) and (2) are deterministic and
(3) and (4) are stochastic.
Hence, for every εit ∈M(S2) we have a random variable D = D(εit) with values
in S2: the ‘desired direction’ corresponding to observation εit. The ‘law’ of this
random variable is the probability measure D1(εit) = µit on S2, i.e. the distri-
bution of the output on S2 at observation εit. This results in the distribution
D2D1(εit) of σit on Σ.
The abstract analysis of the composition of Φ∆τ , O,D1, D2 for all the fish to-
gether seems quite complicated, even when D is deterministic. That is why we
explore these dynamics by using simulation.



2.3. SIMULATION 19

2.3 Simulation

We have written a program in MATLAB to simulate the movement of fish
which implements the framework of separating observation, decision making
and response. This framework is recognisable in the MATLAB program. In
the appendix one can find the pseudo code, which only describes the global
structure of the program which is based on our framework. With this model,
one can easily adapt the different constituents to the organism investigated.
We have made two models: one with a constant speed and one with a variable
speed. These models will be explained in the Chapters 4 and 5.

2.3.1 Implementation of sphere of perception

The output of the observation system is represented as a density function or
measure over the sphere S2 of directions. This function is in turn represented
in spherical coordinates. Before we can convert the Cartesian coordinates of
every neighbour fish observed by fish i into spherical coordinates, we first have
to transform the Cartesian coordinates in such a way that the direction vector
of fish i is placed on the x-axis. This is done by two rotations, produced by two
rotation matrices. We assume that the horizontal angle of the direction vector
of fish i, ϑ, and the vertical angle of this direction vector, ϕ, both measured from
the positive x-axis, are positive, so by first rotation clockwise horizontally and
than clockwise vertically, we find that our new positions in Cartesian coordinates
are given by x′

y′

z′

 =

 cos(ϕ) 0 sin(ϕ)
0 1 0
− sin(ϕ) 0 cos(ϕ)

 cos(ϑ) sin(ϑ) 0
− sin(ϑ) cos(ϑ) 0
0 0 1

 x
y
z


so we find that x′

y′

z′

 =

 cos(ϕ) cos(ϑ) cos(ϕ) sin(ϑ) sin(ϕ)
− sin(ϑ) cos(ϑ) 0
− sin(ϕ) cos(ϑ) sin(ϕ) sin(ϑ) cos(ϕ)

 x
y
z

 .
The Cartesian coordinates of every neighbour of fish i are now converted to
spherical coordinates where we use the conventions employed by MATLAB.
That is, we express the position of each fish in three variables: the radial distance
r of fish j from fish i, its elevation angle ϕ measured from the direction of fish i,
and the azimuth angle ϑ of its orthogonal projection on a reference plane that
passes through the origin and is orthogonal to the zenith, measured from the
direction of fish i on that plane, see Figure 2.3.
In Figure 2.3, ϕ ∈ [− 1

2π,
1
2π] and ϑ ∈ [−π, π). Note that the literature is

not consequent on this part: some authors use another spherical representation
where ϕ ∈ [0, π] is the inclination angle measured from the positive z-axis.
Now we divide ϑ and ϕ in regions of size π

M , where M is a positive integer.
This divides our surface into boxes which can be represented by a matrix of size
2M ×M , so every box has a row and a column number. This way we are able
to store in which box there is (part of) a neighbour spotted by fish i and how
intense this spot is. This intensity can be measured in two parts: the first part
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Figure 2.3: Spherical coordinates in MATLAB (by Jorge Stolfi

is created by the vision and is a function of the distance to the neighbour, its
length and its thickness; the second part is created by the lateral line which also
uses the direction of the neighbouring fish.
The observed length of a neighbouring fish j seen from fish i is given by L′ =
L sin γ, see Figure 2.4. If we only consider the length of fish j, this describes an
angle ς on the sphere of perception:

ς ≈ L′

2π|~cj − ~ci|
(2.3.1)

where ~cj− ~ci represents the vector from fish i to the centre of fish j, ~d the direc-
tion of fish i, see Figure 2.4. Hence the further away a neighbour is, the smaller
the region occupied on the sphere of perception and the larger a neighbour, the
larger this region is.
We also want to incorporate the thickness of the fish into the intensity function.
This way a neighbour swimming in the viewing direction of fish i does not pro-
duce one single point, but a larger spot. The thickness of the fish remains the
same, since we consider our fish to be approximately cylindrical.

If a box is already occupied when another neighbour is localised at the same
box, only the one with the smallest (absolute) distance will be stored in this
box. This way (part of) fish hidden behind (part of) others will not be seen by
or influence the decision of fish i.

Since we make the distinction between information collected from vision and
the lateral line, we can combine these in the region of repulsion and alignment
where both are used. In the attraction zone, only vision is used. Fish have dif-
ferent blind zones for vision and for the lateral line, [9], which explains why some
boxes of our observation matrix will not be filled. In Figure 2.5 it is pointed
out which boxes can store which kind of information. Here one can exclude the
top and bottom row, since it might be impossible for fish to see straight above
and below them.
Another purpose for which this observation system can be used, is to detect
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Figure 2.4:

Figure 2.5: Storing observation information in boxes

other objects and species, for example predators and food. Since fish have a
high priority to avoid predators, it is a possibility to give predators negative
values, which will cause a different response from our individual fish. The same
can be done for food, but then in a attracting way. Depending on the state
a fish is in, it will prefer to feed or stay close to a school and hence respond
differently to an equal environment in a different state.

Triangulation of the fish

We use triangles to present neighbouring fish and the spots they produce on
the sphere of perception. This is a common method, since this is the smallest
surface possible and by using triangles, all surfaces, or bodies, can be very well
approximated. We used a single triangle per fish in our implementation to prove
our concept. This can be extended in a way such that the spot has the shape of
a fish. It can even be used to build in skin patterns or colors, which may have
different influences on the fish; by making the head of a fish a different color,
this might reflect the light more which causes the fish to be more attracted by
its neighbours head than its tail, which might result in more alignment.
In our simulation we use the three points defining the triangle and connecting
them by a straight line in the matrix representing the sphere of perception,
and filling the boxes in between. We had to be careful at this point, when
a neighbouring fish is located straight above or below the observing fish, this
will result in a spot covering (at least) one entire row, so connecting the three
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points does not suffice in this case. Hence we have to check if the solid triangle
generated by the three point, A,B,C, intersect the z-axis, Rez. To that end,
consider X = [ ~xA, ~xB , ~xC ], the matrix containing three vectors point towards
A,B and C. These vectors span a convex cone.

Proposition 1. The solid triangle generated by the vectors ~xA, ~xB , ~xC in R3

intersects the z-axis, i.e., conv ({ ~xA, ~xB , ~xC}) ∩ Rez 6= ∅, if and only if
(i) det(X) 6= 0 and sign(det(Xi))=sign(det(Xj)) whenever det(Xi) 6= 0 and
det(Xj) 6= 0, or
(ii) det(X) = 0 and det(Xi) = 0 ∀i.

Proof. ”⇒”: There exists λi ∈ [0, 1] :
∑
i

λi = 1 and µ ∈ R3 such that

λ1~xA + λ2~xB + λ3~xC = µez. (2.3.2)

In particular, Xλ̂ = ez has a solution λ̂ with all entries either positive or nega-
tive.
If detX 6= 0, then by Cramer’s Rule we find that

λ̂i =
det(Xi)

det(X)
, (2.3.3)

where Xi is the matrix X with the i-the column replaced by the vector ez. Then
the det(Xi) must have the same sign when non-zero.
If det(X) = 0, the three vectors ~xA, ~xB , ~xC are linearly dependent. If (2.3.2)
holds, then ez and either pair of ~xA, ~xB and ~xC is linearly dependent, i.e.
det(X1) = det(X2) = det(X3) = 0.

”⇐”: Consider the equation Xλ̂ = ez. If det(X) 6= 0 and all det(Xi) that are
non-zero have the same sign,

λ :=
λ̂∑
i

λ̂i
; (2.3.4)

µ :=
∑
i

λ̂i (2.3.5)

will satisfy (2.3.2) and λi ∈ [0, 1],
∑
i

λi = 1. Thus conv({ ~xA, ~xB , ~xC})∩Rez 6= ∅.

If det(X) = 0, then ~xA, ~xB and ~xC are linearly dependent. conv({ ~xA, ~xB , ~xC})
therefore lies in a plane or line through the origin;
span{ ~xA, ~xB , ~xC} = Rez∩conv({ ~xA, ~xB , ~xC}) 6= ∅ iff ~xA, ~xB , ~xC and ez are lin-
early dependent. In particular, det(X1) = det(X2) = det(X3) = 0.

If the components of λ are all positive, this means the spot is at the north pole.
If all components are negative, the spot is at the south pole. In all other cases,
A,B and C are not located around a pole.

2.3.2 Interpretation of sphere of perception

After the implementation of the sphere of perception, we need to use it to de-
termine what the fish will do in the next time step in the simulation. This is
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part of the decision making system of an organism, which is hard to investigate
experimentally.
Before, we used the zones of repulsion, alignment and attraction in which dif-
ferent aggregation rules hold. By introducing the sphere of perception, we do
not want to lose this concept. Since on this sphere, the intensity of the spot
the neighbours produce has also been taken into account, we can use this to
determine which spots will result in repulsion, alignment or attraction. A very
black spot means a very close neighbour, which will make fish i turn away from
this neighbour. Therefore more intense spots have higher priority than spots
with low intensity. Since the intensity is a function of the distance from fish i
to its neighbours, we can use this to determine which spots result in which type
of aggregation. This way it is also possible to combine the different zones.
In Section 3.1 we will show how the intensity of the spots can be used to de-
termine the sizes of the different aggregation zones. We will describe in Section
4.1 how the sphere of perception can be used to determine the desired direction
for the next time step.
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Chapter 3

Some physics of fish vision
and swimming

In this chapter we will investigate the physics and the visual system of fish in
more detail. We will provide an improvement to the models used by previous
researchers on the part where the absolute distance to neighbours is used, by
introducing a perceived distance in the next section. In Section 3.2 and 3.3 we
will investigate how the speed of a fish will change by taking into account the
amount of power investigated in swimming by a fish. We will investigate how
turning effects the speed, when a fish stops investing energy in its movement.

3.1 Characteristics of the visual system

Vision plays an important role in schooling behaviour. Fish spot their neigh-
bouring fish by the reflected sunlight that strikes their eye. Here we assume
that the amount of reflected light is equal for all fish, despite their dept, and
that the reflected light on a neighbouring fish has an effective radiant power p.
That is, the differential sensitivity of the fish eye to various wave lengths and
differences in the reflectiveness of the fish for the wave lengths is expressed as
the total amount of energy per unit of time and per unit area, that is reflected
by the neighbouring fish as can be observed by the fish eye.
The amount of light reflected by a neighbouring fish depends on the light in-
tensity. The intensity is a measure for the energy flux density, i.e. if S is some
surface and I the intensity vector, then the amount of energy flowing through
the surface S per unit of time is equal to

PS =

∫
S

I · dA.

If there is no energy loss to the medium, in this case water, the intensity will
decrease in proportion to the squared of the distance to the source. If the surface
S is a sphere of radius r centred at the light point source, conservation of energy

25
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yields

P = |I| · 4πr2, (3.1.1)

where P is the radiant power of the source.
In any medium, light energy is absorbed at exponential rate, depending on
the wavelength, which is commonly called attenuation. Now equation (3.1.1)
becomes

e−αrP = |I| · 4πr2,

where α is the attenuation rate or absorption coefficient which depends on the
wave length and the medium the light is travelling through.
Now we find for a point source with radiant power P

|I| = P

4πr2eαr
.

The light energy striking the fish eye surface Seye of area Aeye reflected by the
neighbouring fish surface Sfish equals

Peye =

∫
Seye

ItotdA

=

∫
Seye

 ∫
Sfish

p(r)

4πr2eαr
~r

|~r|
dS

 dA

≈ Aeye
∫
Sfish

p(r)

4πr2eαr
dS (3.1.2)

where p is the radiant power density distribution over the fish skin surface. For
simplicity, we assume p(r) ≡ p̄, so we find

Peye ≈ Aeye
p̄Aefffish

4πr̄2eαr̄

where Aefffish is the surface area that is effectively visible and r̄ the distance to

the centre of mass of the neighbouring fish. Note that Aefffish depends on Afish
and the longitudinal swimming direction of this neighbouring fish. Recall from
Section 2.3.1 that the effective visible surface area is given by Afish sin(γ).
The height of a fish is related to its length: h = c·BL. For the capelin h ≈ 1

7BL,
see Figure 3.1.

Figure 3.1: Height to body length ratio for the capelin

Hence we can write Afish = c0 · hBL = c1BL
2 where c1 depends of the shape
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of the fish and the proportion of the length and height of the fish.
Now we find that we can approximate the radiant power in the eye by

Peye =
p̄c1Aeye sin(γ)

4π

BL2

r2
e−αr

= C

(
BL

r

)2

e−αr

If we assume that the fish eye is sensitive to signals above a total power P 0
eye,

then we obtain a natural bound r∗ for vision:

C

(
BL

r∗

)2

e−αr
∗
≥ P 0

eye

By assuming the ideal situation, we can neglect attenuation, hence α = 0 and
we obtain

BL

r∗
≥

√
P 0
eye

C

hence

r∗

BL
≤

√
C

P 0
eye

(3.1.3)

=

√
p̄c1Aeye sin(γ)

4πP 0
eye

(3.1.4)

We can conclude that the maximal radius of the visual system for effective
detection of other fish, expressed in body length, depends rather simply on the
shape of the fish, skin structure and properties of the fish eye itself, according
to equation (3.1.4).
For the lateral line, we might be able to determine a maximal radius in a similar
way. These constraints lead to the sizes of the different aggregation zones: the
zone of repulsion, alignment and attraction.

3.2 Energy and power expenditure

One of the main reasons for fish to school, is to save energy. Here we will
investigate the total energy expenditure per time unit, the power, of an organism
seen as rigid body subject to Newtonian mechanics, in order to make predictions
about the speed of fish in different states.
The total power needed for movements depends on different aspects like the
metabolic power (for heartbeat, create nutrients for muscles, etc), velocity and
acceleration. Hence the effective power is smaller than the total power invested
by the organism. The latter we cannot measure, but we can investigate the
power needed for locomotion. Swimming involves the transfer of momentum
from the fish to the surrounding water en vice versa, where the main momentum
transfer mechanisms are via drag lift and acceleration. Swimming drag consists
of three components:
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• Skin friction between the fish and the boundary layer of water (viscous or
friction drag);

• Pressure formed in pushing water aside for the fish to pass (form drag);

• Energy lost in the vortices formed by fins to generate lift and thrust (vortex
or induced drag).

The latter two components are jointly described as pressure drag [18].
According to Sparenberg and Lighthill [19], the rate of shedding kinetic energy
into the water when fish are swimming in a straight line can be approximated
by:

P loss ≈ 1

2
C|v(t)|3 (3.2.1)

where C depends on parameters like the drag coefficient, the size of the fish and
the water density. We found a similar approach by Videler [21] that is further
developed in [6]. While swimming, fish experience drag from the water. In order
to move through the water, the power needed to cancel the drag onto the fish is
called the thrust. While steering, fish also lose energy. Since the kinetic energy
is given by Ekin = 1

2m|v|
2 we can write the change in kinetic energy as

dEkin
dt

(t) = mv(t) · dv
dt

= P thrustt − [P drag(vt) + P steering(vt, θ̇)]

= P thrustt − P losst (3.2.2)

where P loss ≥ 0 and θ̇ is the angular velocity of the reorientation movement
which is a function of the angle θ that the caudal fin makes with respect to
the longitudinal direction of the fish. Here we do not consider the total power
invested by the fish, since this also includes the metabolic power. How this
power is used internally, which muscles are used and how, has been investigated
thoroughly, but will not be discussed here. We refer interested readers to [5,
21].
We first look at the case when the fish decides to stop investing energy into its
movement. Hence P thrust = P steering = 0, but we assume that the speed at
this moment is positive. The remaining equation is

dEkin
dt

= −1

2
C|v(t)|3. (3.2.3)

By substituting y = 2Ekin

m = |v|2, (3.2.3) reduces to

dy

dt
= −C

m
|y|3/2. (3.2.4)

with y(0) = y0 > 0.

We can solve this differential equation by separation of variables to find

y(t) =
1

( C
2m t+ 1√

y0
)2
. (3.2.5)
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Notice here that for all t ≥ 0, y(t) > 0, so v2 > 0 and hence the fish will keep
moving. This is in an ideal situation where the water is completely still, which
is not very realistic. To overcome this problem, one can introduce a threshold
for the speed; if the speed drops below this threshold, the speed is considered
to be equal to zero.

3.3 Horizontal steering

Many fish use their tail fin, or caudal fin, as the main propulsive and horizontal
steering device [21]1. The amount of flexibility of the caudal fin depends on the
type of fish and the type of swimming required to optimize survival. For slow-
swimmers, manoeuvrability is more important than the ability to generate large
propulsive forces, whereas for pelagic fish it is the other way around. In [5,21]
the authors describe in detail how the different muscles work in both types of
fish. Beside the caudal fin, other fins may take part in steering and propulsion,
depending on the type of fish.
Here we will investigate how the steering power is related to the movement of
the caudal fin. We will therefore consider neutrally buoyant fish which mainly
use their tail fin for thrust and horizontal steering.
From a physical point of view, we look at the fish as a rigid body. According
to [5, p.84] fast swimmers like tuna can be very well described by a more of
less rigid body to which a caudal oscillating propeller is attached. There they
describe two methods to analyse the process of generating forward thrust: by a
lift-based or vorticity approach, or by a bulk momentum or added mass method.

3.3.1 Turning angle as function of tail angle

When a fish wants to change its direction, it will bend its tail fin to generate an
extra drag force which will make the fish both slow down and turn, see Figure
3.2A. This additional drag force creates a momentum ~M with respect to the
centre of mass: the tendency of a force to rotate an object about an axis. To
calculate ~M , we need the moment arm ~r which is the vector from the centre of
mass R to the point where the net force ~Ftail is working on the tail fin. The
distance of the centre of mass to the starting point of the tail P is designated
by l. The distance from P to the point where the force is working on is d. The
force working on the tail fin is pointing in the swimming direction of the fish.
Now

~M = ~r × ~Ftail,

M = rFtail sin(φ),

with M = | ~M |, r = |~r|, F = |~F | and φ is the angle between the mid line of the
fish and ~r.
Let θ be the angle between the tail fin and the main body of the fish, as shown
in Figure 3.2A. We know that Ftail = 1

2C
′Atail| sin(θ)|v2 where Atail| sin(θ)|

represents the reference area which creates the extra drag force. This reference

1Recall Figure 1.2 for the used terminology for fish
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area depends on the size of the tail fin and the angle it is bend in; a larger tail
or angle will create a larger force and hence a larger turning rate.

Figure 3.2: A: Turning. B: Shifting from desired direction.

Notice that r sin(φ) = d sin(θ). Thus

M = Ftaild sin(θ)

=
1

2
C ′Ataild sin(θ)| sin(θ)|v2. (3.3.1)

Now we will take a look at the angular momentum, given by

~J = m~r × ~̇r

(Kibble, [13]).
Since we are interested in the horizontal rotation, we can consider the rotation
about the fixed z-axis Jz = Iω where ω is the angular velocity of the rotation
about the z-axis and I is the moment of inertia: this describes the resistance of
an object to change its rotation rate.
In general, for a solid rigid body with mass density distribution ρ(x) and the
distance r of part x in the body to the centre of mass, the moment of inertia
with respect to the centre of mass is given by I =

∫
r2ρ(x)dx.

Now let us go back to the equation Jz = Iω. Differentiating both sides with
respect to time gives

~̇Jz = m~̇r × ~̇r +m~r × ~̈r
= 0 +m~r × ~̈r
= ~r × ~F = M

since the cross product of a vector with itself is zero. Hence

Iω̇ = M

ω̇ =
M

I
.
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Now by substituting (3.3.1) we find

ω̇ =
1

2

C ′

I
Ataild sin(θ)| sin(θ)|v2 (3.3.2)

Since we know from the schooling rules what the desired turning angle α for
a fish should be in a time step ∆τ , we now know the change of direction in
one time step assuming that ω̇ remains approximately constant in that time
interval;

∆α ≈ 1

2
ω̇∆τ2

=
1

4

C ′

I
Ataild sin(θ)| sin(θ)|(v∆τ)2. (3.3.3)

Since I is a constant, we would like to make a good estimate for this. We can
compare our fish, the rigid body, to a thin cylinder, a rod, with the axis of
rotation at the end of the rod. Then I can be estimated by I = 1

3mL
2 where L

is the length of the rod which corresponds to the body length, BL, of the fish.
Then equation (3.3.2) and (3.3.3) become respectively

ω̇ =
1

2

3C ′

mBL2
Ataild sin(θ)| sin(θ)|v2.

∆α =
1

4

3C ′

mBL2
Ataild sin(θ)| sin(θ)|(v∆τ)2. (3.3.4)

Now it follows from (3.3.4) that

| sin(θ)|2 =
4|∆α|mBL2

3C ′Ataild
· 1

(v∆τ)2

| sin(θ)| = 2BL

√
m

3C ′Ataild
·
√
|∆α|
|v∆τ |

.

Now we notice that the additional loss in kinetic energy per unit of time due to
horizontal steering equals approximately

Ftailv =
1

2
C ′Atail| sin(θ)|v3

= BL

√
C ′Atailm

3d
·
√
|∆α|v2

∆τ
.

From this last equation and equation (3.2.2) we are able to give an educated
guess for the new velocity at the next time step, given we know how much power
a fish wants to invest in its situation. This will be investigated in Section 5.3.
From the last equation we are also able to determine the maximal angle possible
to turn in one time step. Therefore we need to know how flexible the tail of
a specific fish type is. This information is incorporated in the fish-dependent
constant C ′. Then we know θ and hence we can calculate how much a fish can
change its direction in ∆τ . Since sin(θ) ≤ 1, we know that

∆α ≤ 1

4

C ′

I
Ataild(v∆τ)2

αmax =
1

4

C ′

I
Ataild(v∆τ)2.
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3.3.2 Loss of speed due to turning

In the previous section we calculated how much a fish can turn in one time
step and how the speed changes if a fish stops investing energy in swimming.
By turning, the speed of a fish reduces even more. We can investigate this

by adding a total steering component C̃

√
|∆α|v2

|∆t| where C̃ = BL
√

C′Atailm
3d to

equation (3.2.3) and (3.2.4) in order to get

dEkin
dt

= −1

2
C|v(t)|3 − C̃

√
|∆α|v2

|∆τ |
dy

dt
= −C

m
|y|3/2 − 2C̃

m

√
|∆α|
|∆τ |

y. (3.3.5)

where y = 2Ekin

m = v2. By taking a = C
m , b = 2C̃

m

√
|∆α|
|∆t| , (3.3.5) becomes

dy

dt
= −(ay3/2 + by)∫

1

ay3/2 + by
dy = −t∫

1

2
√
y

1
a
2y + b

2

√
y
dy = −t

By substituting z =
√
y, dz = 1

2
√
y we find∫

1
a
2z

2 + b
2z
dz = −t∫

1

z

1
a
2z + b

2

dz = −t

and by using partial fraction we get

−t =

∫ 2
b

z
−

a
b

a
2z + b

2

dz

=
2

b
ln |z| − 2

b
ln

∣∣∣∣a2z +
b

2

∣∣∣∣+ C0

=
2

b

(
ln |z| − ln

∣∣∣∣a2z +
b

2

∣∣∣∣)+ C0

=
2

b

(
ln z − ln

(
a

2
z +

b

2

))
+ C0

=
2

b

(
ln z − ln

(
1

2
(az + b)

))
+ C0

=
2

b
ln

∣∣∣∣ 2z

az + b

∣∣∣∣+ C0

=
2

b
ln

∣∣∣∣ 2v

av + b

∣∣∣∣+ C0
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where C0 ∈ R. Now we find that

ln

(
2v

av + b

)
= − b

2
t− bC0

2
,

2v

av + b
= C ′0e

− b
2 t,

from which we find

v =
bC ′0e

− b
2 t

2− aC ′0e−
b
2 t
.

Since b is a function of the turning angle, we have now expressed the new speed
in the angle turned, which in turn depends on properties of the fish and the
surrounding water.
In a similar way, the vertical rotation can be incorporated by using the pelvic
fins instead of the caudal fin.

Translational shift in turning
While steering, fish change direction. Since they are already swimming with a
certain speed v > 0, they tend to drift sideways while turning. This results in
a shifting from the desired trajectory, see Figure 3.2B.
What does this mean for the new position of the fish? If a fish stops investing
energy and does not turn, we know that the speed is given by

v(t) =
1

C
2m t+ 1

v0

,

and the distance travelled in one time step is given by

∆x = v0

∆τ∫
0

1

v0
C

2m t+ 1
dt (3.3.6)

=
2m

C
ln

(
v0C

2m
∆τ + 1

)
. (3.3.7)

Hence we know that the translational shift ∆xturn ≤ ∆x when turning.
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Chapter 4

A constant speed model

We model and simulate fish in a three dimensional water tank that has periodic
boundaries horizontally: fish that swim out on one side, will enter the tank
again on the opposite side. At every time step, the position vector of its cen-
tre of mass ci, and velocity vector vi are updated for every individual. In this
chapter, the speed of the fish, si = ||vi||, remains constant. It will be made
adjustable later on in Chapter 5.
Vertically, we consider two cases. In order to compare our model with Couzin’s,
we simulate a version which has periodic boundary condition in vertical direc-
tion too. In the second case we include vertical boundaries caused by the water
surface and the sea floor. This appears to be new.

In our three dimensional model we followed the basic aggregation rules originally
described by Huth and Wissel in [11] and further developed by Hemelrijk and
Hildebrandt in [9], starting with the most important rule:

• Avoid collision with neighbours in a zone close to the fish;

• Align with neighbours a bit further away;

• Be attracted by neighbours at a large distance.

These three regions are assumed to be spherical.
Previous models always used the absolute distance from a fish to its neighbours
to determine how fish would react to their environment. We argued above
that it is improbable that fish are able to determine this distance. Instead, we
introduce a perceived distance, pdj , in our simulation that we will now discuss.
By using the perceived distance, a large fish appears to be closer and a very
small fish further away. Hence a large neighbour might have a bigger influence
in the decision than a small neighbour: it is plausible that a school, which might
be seen as one very large neighbour, will have a much bigger influence on a fish
than a small neighbour, which happens to be closer.

35
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4.1 Perceived distance

Consider a fish, i, that visually spots a neighbouring fish j and suppose there
are no other fish present. Fish j produces a single spot on the retina of the
observing fish i. The radiant power on this spot equals

Pj = C

(
BL

rj

)2

e−αrj ,

see Section 3.1.
This spot is represented on the sphere of perception by a spot Ej ⊂ S2 of area

|Ej | :=
∫
S2

1Ej
dω and intensity Ij =

Pj

|Ej | . Let ωEj
:= 1
|Ej |

∫
Ej

ωdω be the centre

of mass of Ej .
We assume that the decision making system (D, see Section 2.2) transforms the
perceived environment as represented by an intensity function f on the sphere
of directions S2 into a desired direction d̂′ according to

d′ :=

∫
S2

ωf(ω)dω

d̂′ :=
d′

||d′||
.

This yields for the single spot Ej

d′ =

∫
S2

ωIj1Ejdω

= Ij

∫
Ej

ωdω

= Ij |Ej |ωEj

= PjωEj ,

Hence d̂′ = ωEj
.

If there areN neighbouring fish which produce non-overlapping spots E1, · · · , EN
of homogeneous intensity I1, · · · , IN respectively, then

d′ =

∫
S2

ωf(ω)dω =

N∑
j=1

ωIj1Ej
dω

=

N∑
j=1

PjωEj

≈
N∑
j=1

C

(
BL

rj

)2

e−αrj
~rj
|~rj |
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where ~rj is the vector from i to the centre of mass of fish j.
Now we define the perceived distance from fish i to its neighbour j by

pdj := C−1
( rj
BL

)2

eαrj

Then it follows that

d′ =

N∑
j=1

~rj
pdj

d̂′ =
d′

||d′||
,

which is similar to Couzin’s approach, but with the absolute distance replaced
by the perceived distance, which takes attenuation, fish shape and size into
account.
Once the desired direction is determined and the direction vector d′i has been

normalized to d̂′i, the positions can be updated by

ci(t+ 1) = ci(t) + si · d̂′i(t+ 1) ·∆τ. (4.1.1)

The speed si can be taken constant over time, but different for every fish, or
the same for all fish for all time.
For the variable speed model we will improve this approach by taking the ob-
served environment into account, represented on the sphere of perception as will
be described in Section 5.1.

4.2 Maximal turning angle

The physical limitation in response that is taken into account in the various
modelling approaches in the literature, is a maximal angle over which a fish can
turn in a single time step. If a fish wants to avoid collision with a neighbour right
in front of it, it would like to make a turn of 180◦. Since this is not possible in
small time steps in reality, most discrete models incorporate a maximal turning
angle per time step for every fish. We will follow this approach.
This maximal turning angle αmax depends on a maximal turning rate ωmax and
the physical time step ∆τ corresponding to one time step in our simulation:
αmax = ωmax∆τ . In Section 3.3 we have investigated this maximal turning
angle for the variable speed model, based on the physics of fish motion in water.

The question is to find the vector of unit length in the plane in R3 spanned
by the current direction of movement vi(t) and the desired direction for the
next time step d′i(t+ 1) that has angle αmax with vi(t) and smallest angle with
d′i(t + 1). If the angle between the velocity at time t and the desired direction
vector at time t+ 1 is larger than the maximal turning angle, di(t+ 1) will be
positioned in the direction of the maximal turning angle.
To calculate this new achievable desired direction of movement, let ~a the velocity
vector at time t and ~b the desired velocity vector at time t+ 1. The achievable
direction vector ~x∗ that takes the maximal turning angle αmax into account
is precisely the normalisation to unit length of the vector among the convex
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Figure 4.1: Maximal turning rate

combination of ~a and ~b that has the maximal turning angle with respect to ~a,
see Figure 4.1. In the constant speed case, ||~a|| = ||~b||.

Proposition 2. Let αmax ∈ (0, π) and let ~a,~b ∈ Rn be linear independent
vectors such that the angle between them is larger than αmax. Then the vector
among the convex combination of ~a and ~b that has angle αmax with respect to ~a
is given by

~x∗ = λ~b+ (1− λ)~a (4.2.1)

with λ = λ+ or λ = λ− in [0, 1] given by

λ± =
||a||2

||a||2 − 〈b, a〉 ∓ | cotαmax|
√
||a||2||b||2 − 〈b, a〉2

. (4.2.2)

Proof. It holds that

~x∗ = ~a+ λ(~b− ~a)

= λ~b+ (1− λ)~a (4.2.3)

where λ ∈ [0, 1].
We know that the angle between ~a and ~x∗ is the maximal angle, αmax, so this
gives a second equation, with c = cos(αmax)

〈~x∗,~a〉 = ||~a|| · ||~x∗|| · c. (4.2.4)

Now by combining (4.2.3) and (4.2.4) and noting that

〈~x∗,~a〉 = λ〈~b,~a〉+ (1− λ)||~a||2

we find that λ has to satisfy

λ〈~b,~a〉+ (1− λ)||~a||2 = ||~a|| · ||~x∗|| · c. (4.2.5)
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By taking the square of equation (4.2.5) and using

||x∗||2 = 〈x∗, x∗〉 = (λ~b+ (1− λ)~a) · (λ~b+ (1− λ)~a)

= λ2||~b||2 + 2λ(1− λ)〈~b,~a〉+ (1− λ)2||~a||2

we obtain after simplification:

λ2
[
〈b, a〉2 − 2〈b, a〉||a||2(1− c2) + ||a||4(1− c2)− c2||a||2||b||2

]
+2λ

[
〈b, a〉||a||2(1− c2)− ||a||4(1− c2)

]
− ||a||4(1− c2) = 0

λ2
[{
〈b, a〉2 − 2〈b, a〉||a||2 + ||a||4

}
(1− c2) + c2

{
(b · a)2 − ||a||2||b||2

}]
+2λ(1− c2)

[
〈b, a〉||a||2 − ||a||4

]
− ||a||4(1− c2) = 0

Division by (1− c2) yields the quadratic equation in λ:

λ2

[
〈b, a〉2 − 2〈b, a〉||a||2 + ||a||4 +

c2

1− c2
{
〈b, a〉2 − ||a||2||b||2

}]
(4.2.6)

+2λ
[
〈b, a〉||a||2 − ||a||4

]
− ||a||4 = 0

Notice that the discriminant is given by

D = 4||a||4 c2

1− c2
(||a||2||b||2 − 〈a, b〉2) (4.2.7)

where c2

1−c2 > 0, since c ∈ (−1, 1). By using the Cauchy-Schwarz inequality
|〈a, b〉| ≤ ||a|| · ||b|| we conclude that D ≥ 0.
Since c = cosαmax, we find

c2

1− c2
=

cos2 αmax
1− cos2 αmax

=
cos2 αmax

sin2 αmax
= cot2 αmax (4.2.8)

which brings us to

λ± =
||a||4 − 〈b, a〉||a||2 ± ||a||2| cot(αmax)|

√
||a||2||b||2 − 〈a, b〉2

(||a||2 − 〈b, a〉)2 − cot(αmax)2(||a||2||b||2 − 〈b, a〉2)

=
||a||2

||a||2 − 〈b, a〉 ∓ | cot(αmax)|
√
||a||2||b||2 − 〈b, a〉2

. (4.2.9)

Application in R3

The result of Proposition 2 is useful for us in R3 since we can simplify λ even
further by using the cross product. By using ϕ as the angle between ~a and ~b
and the common relations

〈b, a〉 = cosϕ · ||a|| · ||b||
|a× b| = | sinϕ| · ||a|| · ||b||
|a× b|2 = ||a||2||b||2 − 〈a, b〉2,
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we can simplify (4.2.9) in order to get

λ± =
||a||

||a|| − ||b||(cosϕ± | cotαmax|| sinϕ|)
(4.2.10)

=
||a||

||a|| − ||b|| · | sinϕ|(cotϕ± | cotαmax|)
.

Since 0 < αmax < ϕ ≤ π, sinϕ ≥ 0. Notice that

[cotx]′ =

[
1

tanx

]′
= − 1

tan2 x

1

cos2 x
< 0, (4.2.11)

so cotx is a decreasing function. Hence cotϕ < cotαmax and cotϕ−cotαmax <
0. Now we notice that λ− > 0. In the constant speed case, ||a|| = ||b|| and λ−
can be written as ||a||

k||a|| = 1
k with k > 1. Hence λ− < 1. On the other hand,

if λ+ > 0, we can also write it as ||a||
k||a|| = 1

k , but now k < 1, so λ+ 6∈ [0, 1].

Concluding, our unique suitable λ ∈ [0, 1] is given by:

λ =
||a||

||a|| − ||b|| · sinϕ(cotϕ− cotαmax)
. (4.2.12)

Finally, notice that if ϕ = π, cotϕ is not defined. In that case, we can conclude
from (4.2.10) that λ = 1

2 which means that the fish prefers to stay where it is.
In this case, the fish will make a maximal turn in a random direction to avoid
collision.
Now we have found our x∗ and by scaling it to the (constant) speed, we find
our new position.

4.3 Water surface and sea floor

Most models that are mentioned in the modelling overview in [17] use a bounded
area or square lattice. However, it is not mentioned which and how boundary
conditions are incorporated.
In order to make model predictions accessible to experimental validations, we
have included a water surface and a sea floor in our simulation as vertical bound-
ary conditions. Just underneath the water surface we have added a layer, in
which fish will start to adjust their direction to prevent jumping out of the wa-
ter. A similar layer above the sea floor is included to prevent collision.
The maximal turning angle of the fish (Section 4.2) imposes a condition on the
thickness b of this layer. It must have a thickness that is at least so, that fish
can correct their movement direction with several turns of maximal angle and
stay in the water, or not hit the bottom of the tank or sea floor. In order
to determine the minimal value of b, bmin, we first look at the worst-case sce-
nario for a single fish: it is entering this layer swimming straight upwards. In
this case, the fish wants to make several maximal turns downwards with angle
αmax. After the first step, the difference in vertical position, ∆z1, is equal to
si∆τ cosαmax = si∆τ sin( 1

2π − αmax). The reason we use this last notation is
to be consistent with the spherical coordinates used on the sphere of perception:
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ϕ is the elevation angle measured from the xy-plane. Similar, the second step
gives an additional vertical shifting of ∆z2 = si∆τ sin( 1

2π − 2αmax), see Figure
4.2A. Proceeding this iteratively and stopping when 1

2π − nαmax < 0, we need

Figure 4.2: A: Layer underneath the water surface. B: Graph of function bmin(ϕ)
for αmax = 1

8π and a piecewise linear approximation (in red).

to start turning at a level bmin underneath the water surface where in the worst
case scenario of ϕ = 1

2π it holds that

bmin =
∑
n∈N0

∆zn = s∆τ ·

 ∑
n∈N0: 12π−nαmax≥0

sin(
1

2
π − nαmax)

 (4.3.1)

where s = max si. Note that per fish the speed si is constant. It may be equal
for all fish.

We can use this method to determine the minimal thickness of the boundary
layer for fish entering this layer under an angle ϕ ∈ [0, 1

2π] with the xy-plane.
For ϕ ∈ [− 1

2π, 0] it is not necessary to change its direction to prevent jumping
out of the water since it is already swimming downwards.
Hence we find for ϕ ∈ [0, 1

2π]:

bmin(ϕ) =
∑
n∈N0

∆zn = s∆τ ·

 ∑
n∈N0:ϕ−nαmax≥0

sin(ϕ− nαmax)


= s∆τ ·Bmin(ϕ). (4.3.2)

In Figure 4.2B this function is drawn for αmax = 1
8π. Note that this function

can be approximated well by a piecewise linear function.

Lemma 1. The function ϕ 7→ bmin(ϕ) is strictly increasing and continuous on
[0, 1

2π]. In particular it is injective.
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Proof. First note that we can rewrite equation (4.3.2) using

Bmin(ϕ) =

∞∑
n=0

1[nαmax,
1
2π](ϕ) · sin(ϕ− nαmax)

=

∞∑
n=0

fn(ϕ).

It holds that each function ϕ 7→ fn(ϕ) is continuous on [0, 1
2π]. The sum is

finite, so Bmin(ϕ) is continuous and hence bmin(ϕ) is continuous.

Let 0 ≤ ϕ1 < ϕ2 ≤ 1
2π and let ni := max {n ∈ N0 : nαmax ≤ ϕi}. Then n2 ≥

n1. Now it holds that

Bmin(ϕ2)−Bmin(ϕ1) =

n2∑
k=0

sin(ϕ2 − kαmax)

−
n1∑
k′=0

sin(ϕ1 − k′αmax)

=

n1∑
k=0

[sin(ϕ2 − kαmax)− sin(ϕ1 − kαmax)]

+

n2∑
k′=n1+1

sin(ϕ2 − k′αmax). (4.3.3)

Since ϕi−kαmax ∈ [0, 1
2π] for k = 0, 1, · · · , n1 and ϕ 7→ sinϕ is strictly increas-

ing on [0, 1
2π], the first sum over k in (4.3.3) is strictly positive. The second sum

is non-negative. Therefore bmin(ϕ2) > bmin(ϕ1).
Hence bmin(ϕ) is a strictly increasing continuous function.

Let zw be the z-coordinate of the water surface. At every time step, we check
for every fish whether its swimming depth zw− zi(t) and the vertical angle ϕ(t)
are such that zw − zi(t) > bmin(ϕ(t)). If not, we will need to adjust its vertical
angle such that zw − zi(t) > bmin(ϕ(t)). That is, from the next step onwards,
it is able to stay under water.
We assume that this condition was fulfilled in the previous time step, so we
know that it is possible for the fish to stay under water by making several maxi-
mal turns. At every vertical position, we know what the maximal vertical angle
ϕmax can be, using equation (4.3.2) and Lemma 1, see Figure 4.2B, by inverting
bmin. In the implemented simulation we use a piecewise linear approximation
for bmin, which is reasonably in view of Figure 4.2B.
That is why we check if the vertical angle of desired direction of the fish, ϕ,
is smaller than ϕmax. If this is not the case, the virtual fish needs to adjust
its direction more downwards and adopt this maximal vertical angle. This can
be done by using the same construction used for the maximal turning angle
αmax. Then we take the desired direction vector as ~a, its horizontal projection
as ~b and our ~x∗ is now placed on the vector which has angle ϕmax with ~b and
smallest angle with ~a. According to Proposition 2 there is a unique position
which satisfies the conditions.
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At this point we need to be careful: if a fish needs to make a maximal turn in
vertical direction, this means that the horizontal angle must be zero. Hence, it is
not correct to only adjust the vertical angle, we also need to take the horizontal
angle into account, since the combination of these leads to the angle α between
the direction of fish i at time t, di(t), and its direction at time t + 1, di(t + 1)
which cannot exceed αmax.
At every vertical position z, we know the maximal vertical angle, ϕmax, a fish
can have when swimming at this level with speed s, since bmin is invertible as
a strictly increasing continuous function. In fact;

ϕmax = ϕmax(z, s) = b−1
min(zw − z)

= B−1
min(

zw − z
s∆τ

).

We need to check two things:

1) Does ϕ′i(t + 1), the angle between the desired direction d′i(t + 1) and the
xy-plane, satisfy

Bmin(ϕ′i(t+ 1)) >
zw − zi(t)
s∆τ

; (4.3.4)

(4.3.5)

2) Does the angle between di(t) and d̃i(t + 1), the direction vector after
adjusting ϕ′ to ϕ̃ to satisfy 1), not exceed the maximal turning angle, i.e.
does it hold that cos(α) = d̃i(t+ 1) · di(t) ≤ cos(αmax)?

If condition 1) is not satisfied, we have to adjust ϕ′ to ϕmax. If by adjusting ϕ′,
α exceeds αmax, we also need to adjust ϑ to secure that α ≤ αmax.
Let a = di(t), b = d′i(t + 1) and b′ = d̃i(t + 1) the new direction vector with
maximal vertical angle. Assume that ||a|| = ||b|| = ||b′|| = 1 and note that

a =

 xa
ya
za

 =

 cos(ϕa) cos(ϑa)
cos(ϕa) sin(ϑa)
sin(ϕa)

 .
Then we want to solve for the vector b′

cos(αmax) = a · b′

= cos(ϕa) cos(ϑa) cos(ϕb′) cos(ϑb′)

+ cos(ϕa) sin(ϑa) cos(ϕb′) sin(ϑb′)

+ sin(ϕa) sin(ϕb′), (4.3.6)

where all the parameters are known except ϑb′ . Note that ϕb′ = ϕmax(z, s). We
can rewrite equation (4.3.6)

c1 = c2 cos(ϑb′) + c3 sin(ϑb′) (4.3.7)

where

c1 = cos(αmax)− sin(ϕa) sin(ϕmax),

c2 = cos(ϕa) cos(ϑa) cos(ϕmax),

c3 = cos(ϕa) sin(ϑa) cos(ϕmax).
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It holds that

c2 cos(ϑb′) + c3 sin(ϑb′) =
√
c22 + c23 · sin(ϑb′ + β) (4.3.8)

with

β = arctan

(
c2
c3

)
+

{
0 if c3 ≥ 0,
π if c3 < 0.

Hence we can calculate the horizontal angle ϑb′ for b′ by

ϑb′ = arcsin

(
c1√
c22 + c23

)
− β or

ϑb′ = π −

(
arcsin

(
c1√
c22 + c23

)
− β

)
(4.3.9)

where we choose ϑb′ for equation (4.3.9) such that the deviation from d′i(t+ 1)
is minimal. The resulting vector b′ has ϕ′ = ϕmax and turning angle α ≤ αmax.
We have made a similar construction to avoid collision with the sea floor.
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A variable speed model

In the previous sections we have used a constant speed in our model. Now we
are ready to make our model more realistic, by making the speed of the fish
variable. This is not as simple as it may seem, in particular because we want
to have experimentally verifiable expressions. How is this speed related to the
state the fish is in, its body length and other aspects? The vertical boundary
conditions also depend on the speed, so how do these change when the speed is
made variable? A large fish will swim faster than a small fish since the distance
traveled by one tail beat is given by 0.7BL, [5], so the speed must be related to
the length of the fish in our model.
In our model, we let every fish start with its favorite cruising speed. In the
literature there are different approaches for this speed. According to [5], sfav =
0.5BL0.43 where BL is in m and sfav in cm/s, which corresponds with the
expectations based on minimal energy expenditure, whereas in [3] they use

sfav = g1/2ρ
−1/6
b M

1/6
b where g, ρb,Mb represent respectively the acceleration

of gravity, body density and body mass. In [21], Videler relates the optimal
cruising speed to the mass of the fish by sfav = 0.47M0.17 with M in kg and
sopt in cm/s. Obviously, these approaches for the favorite cruising speed were
constructed to fit particular experimental data.
In this section we will discuss how the speed changes through time, depending
on the state the fish is in. How much power it wants to invest in acceleration
will be investigated first, followed by the rules on how to adjust the velocity. In
Chapter 6 we will compare the simulation results of this variable speed model
and the constant speed model.

5.1 Decision making: the desired direction

Once we have stored the observed environment on the sphere of perception,
we need to use it to determine where the fish wants to go in the next time
step. Since we use spherical coordinates, we can rewrite our desired direction
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as described in Section 4.1 as

d′ =

∫
S2

ωf(ω)dω

=

1
2π∫

ϕ=− 1
2π

π∫
ϑ=−π

Φ(ϑ, ϕ)f(ϑ, ϕ)|∂Φ(ϑ, ϕ)|dϑdϕ (5.1.1)

where

Φ(ϑ, ϕ) =

 r cosϕ cosϑ
r cosϕ sinϑ
r sinϕ

 =

 cosϕ cosϑ
cosϕ sinϑ

sinϕ


since r = 1 and

|∂Φ(ϑ, ϕ)| =
∣∣∣∣∂Φ

∂ϑ
× ∂Φ

∂ϕ

∣∣∣∣
=

√
cos4(ϕ) + cos2(ϕ) sin2(ϕ)[cos4(ϑ) + sin4(ϑ)] + 2 cos2(ϕ) sin2(ϕ) cos2(ϑ) sin2(ϑ)

=

√
cos4(ϕ) + cos2(ϕ) sin2(ϕ)[cos2(ϑ) + sin2(ϑ)]2

=
√

cos2(ϕ) = | cos(ϕ)|.

Notice that |∂Φ(ϑk, ϕl)|∆ϑ∆ϕ ≈ Ak,l, the surface area of the part of the sphere
corresponding to the ‘box’ in spherical coordinates designated by ϑk, ϕl. By
approximating the integral by a Riemann sum, equation (5.1.1) becomes

d′ ≈
∑
k,l

Φ(ϑk, ϕl)f(ϑk, ϕl)|∂Φ(ϑk, ϕl)|∆ϑ∆ϕ

=
∑
k,l

Φ(ϑk, ϕl)f(ϑk, ϕl)| cos(ϕl)|∆ϑ∆ϕ

=
∑
k,l

Φ(ϑk, ϕl)f(ϑk, ϕl)Ak,l

and

d̂′ =
d′

||d′||
.

In Section 4.1 we have shown that this is comparable with the model used by
Couzin and others when fish do not ‘overlap’, but what happens if the do neigh-
bours overlap, are hidden behind each other, and will hence give an overlapping
spot on the sphere of perception? Then it is no longer correct to just add all
the different direction vectors and equation (5.1.1) will give a different outcome
than the model by Couzin.
This is one point where our model differs from previous models. This approach
will give a more realistic outcome, compared to previous models.

5.2 Adjusting speed and direction

How fish modify their direction and speed depends highly upon the particular
species considered, as different species may use different swimming and steering



5.3. THRUST POWER DISTRIBUTION 47

techniques [5,21]. Consequently, when modelling a particular species in an ex-
perimental setting, this part needs to be ‘filled in’ based upon observations and
measurements of these techniques. Since we lack such relation to experiment
here unfortunately, we shall illustrate the way one may proceed at this point
using a hypothetical example.
As in Section 3.3 we consider a pelagic fish like tuna that can be considered as a
rigid body with an oscillating propeller. The latter is able to generate a forward
thrust power P thrust. One issue, which should be settled through experimental
observations, is to what extent the fish is able to both generate forward thrust
and steer at the same time. In the extreme case, a fish must alternate between
a period of (forward) acceleration and a period of steering, in which the tail
fin is held at a particular angle θ and the fish is loosing kinetic energy at a
rate P steering(vt, θ̇), as described in Section 3.2. Possibly steering and forward
thrust may be combined, be it that P thrust is lower in this case, depending on
the angular velocity ω of the steering movement. In any case it is important
to know the thrust power that the fish is able or ‘willing’ to generate in that
situation. The power loss due to steering can be resolved from biophysical con-
siderations along the lines of reasoning of Section 3.3.
Thus, when P thrust is known, the new speed and direction after one time step
can be computed.

5.3 Thrust power distribution

We postulate below how much thrust power a fish would invest in locomotion,
depending on the mood it is in. If a fish is in a life threatening situation, it will
do everything it can to prevent being caught by a predator and hence invest its
maximal power, if necessary. If a fish is foraging, the displacement is small and
hence it will not use a lot of power. When cruising from one place to another, it
would like to keep its favorite cruising speed and direction. This way the change
in kinetic energy remains zero, and from equation (3.2.3) it follows that it wants
to keep its power close to 1

2C|v(t)|3. While being attracted by a school, it will
also invest power in catching up with this school. Finally, if it is trying to avoid
its neighbours, it will still prefer to keep its cruising speed while minimizing the
required power, but now with a larger standard deviation; if necessary it will
avoid collision at the expense of saving energy. In Figure 5.1 we have translated
our assumptions into examples of distributions for different moods of the fish.
We are interested in the functions to describe these distributions. Notice that
the power invested will never be negative, so we need positive functions. A pos-
sibility is the log normal distribution: this is a probability distribution of a ran-
dom variable whose logarithm is normally distributed. Ergo, if Y ∼ N(µ, σ2),
then X = eY ∼ logN(µ, σ2). When for example σ ∼ 10, this describes the
foraging mood; fish swim in all directions. When cruising around, fish swim in
mainly the same direction and at the same speed and hence invest around the
same amount of power, which explains the second distribution. The remaining
moods are similar to the latter, but have different mean, since fish will invest
more power in life threatening situations and to catch up with a school than it
would while just cruising around. Notice that this power is bounded from above
by the maximal power possible to invest.
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Figure 5.1: Example of a power distribution in different behavioural situations
(‘moods’).

When the fish and environment depend parameter C is known, these distribu-
tions can be used to determine how a fish will change its speed, as explained in
Section 3.2.

5.4 Speed adjustment in implementation

Since we do not model and simulate one specific fish type and lack experimental
observations and data on this point, we will adjust the speed in a more straight
forward way. We use different rules to adjust the speed in the various aggrega-
tion zones. Let us first look at the speed adjustment in the smallest zone, the
zone of repulsion. According to Hemelrijk [9], fish will slow down in this zone.
They already change direction to prevent collision, but in order to deviate as
little as possible from the desired direction, they will slow down. The new speed
can be constructed using

si(t+ 1) =
1

3
(sfav + si(t) + smin) , (5.4.1)

where smin depends on the acceleration of the fish; it is the minimal speed
possible to attain in one time step when slowing down maximally.
If there are only fish in the zone of alignment, it will adjust its speed to the n
neighbours in this zone, while also trying to return to its favorite cruising speed:

si(t+ 1) =
1

3

sfav + si(t) +
1

n

n∑
j=1

sj(t)

 . (5.4.2)
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Note that directional information has been incorporated in the desired direction
already.
While aligning with its neighbours in the alignment zone, fish still want to get
close to larger groups in the neighbourhood. If there are also neighbours in
the zone of attraction, fish want to adjust their speed as mentioned in equation
(5.4.2), but also accelerate to catch up with the school. In that case we can
adjust equation (5.4.2) in order to get

si(t+ 1) =
1

3

sfav + si(t) +
n

n+m

1

n

n∑
j=1

sj(t) +
m

m+ n
smax


where smax represents the desired speed to catch up with the school. We weigh
the last two terms; if the fraction of neighbours in the alignment zone is very
small compared to the number of neighbours in the attraction zone, the fish
will be more inclined to speed up, whereas if it is the other way around, it will
prefer to adjust its speed to the neighbours in the alignment zone.
As we have seen in Section 5.3, if there are only fish in the largest interaction
zone, the zone of attraction, the invested power will be larger than 1

2C|v(t)|3
and hence it will accelerate. How much it will accelerate might depend on the
size of the school it is approaching and the perceived distance to the school. For
simplicity, both smin and smax have been taken constant in our model.
If there are no fish to interact with, the total power encountered by the fish will
stay close to zero. Hence the change in velocity is negligible in this case and we
will add a little noise to the speed at time t to find the speed at time t+ 1. We
will apply the magnitude of the new velocity in the desired direction. Hence it
will adjust its speed as in equation (5.4.1).

5.5 Implementation of boundary conditions

The realisation of the water surface and sea floor boundary in the constant speed
model used a ‘boundary layer’ of a thickness that depended on the speed of fish,
see Section 4.3. The best way to adjust the speed when a fish is entering this
layer, is to slow down. This way, it is not forced to make a lot of large turns in
a row, and deviate as little as possible from its desired direction. We used this
approach in our implementation.
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Chapter 6

Simulation results

To investigate our simulation results, we plotted the movement of our artificial
fish in four frames: one three dimensional plot and three projections on the xy-,
yz- and xz-plane respectively, see Figure 6.1. To make the distinction in body
length of the fish, we have added colors: blue represents small fish, green fish
with body length close to average, and red large fish.
This enables us to get a good impression of how our artificial fish swim, see
Figure 6.1 and Figure 6.2 for an example. There we have plotted four subsequent
moments of the variable speed model comparable to Couzin’s model, but then
with vertical boundary conditions and the perceived distance instead of the
absolute distance to the neighbours.

6.1 Time series for 3D plots

In Figure 6.1 and 6.2 we plot a simulation run at four subsequent time points,
starting from a random configuration at t = 1. Initial positions have been
chosen homogeneously, similarly for directions. Every fish starts with it favorite
cruising speed, depended on the body length, which is normally distributed.
The small and large fish deviate more than one standard deviation from the
mean body length. More parameter settings are listed in Table 6.1.

From these plots it is hard to compare the simulation results of our models.
Therefore we investigate how the horizontal and vertical direction of the fish
changes through time. In the variable speed model, we also investigate how the
speed changes through time. We were interested in the influence of the vertical
boundaries on the results of the simulation and if and how our model based on
the sphere of perception differs from the model with the perceived distance.
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6.2 Horizontal and vertical direction distribu-
tions

In both the constant speed model and the variable speed model we make the
distinction between the model with periodic boundary conditions in all direc-
tions, and the model which includes the water surface and the sea floor. We
investigated the orientation of every fish at every time step in both horizontal
and vertical direction.

Figure 6.1: Example of the state at two subsequent time points in our simu-
lation with vertical impenetrable boundary conditions and horizontal periodic
boundaries (t=1 and t=100 approximately).
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Figure 6.2: Two more time steps at time t=200 and t=400 approximately.

The main difference in schooling behaviour in the model with periodic bound-
ary conditions was that it took more time to school compared to the model
with vertical boundaries. Since fish at the top of the (virtual) tank are only
attracted by fish below them, and fish at the bottom only by fish above them,
this resulted in a contraction of all fish towards the centre of the tank, which is
visible in the example plotted in Figure 6.1 and Figure 6.2. In the model with
periodic boundary conditions, fish at the top were also attracted by fish ‘above’
them, which were placed at the bottom of the tank. This caused more chaos to
start with, but eventually it resulted in the same behaviour as the more realistic
model with incorporated water surface and sea floor. This result was visible in
both the constant speed and the variable speed model. Since speed was variable
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Table of parameters
Parameter Unit Symbol Value

Number of fish 1 N 50-100
Time step s ∆τ 1

30
Length of fish cm BL 5
Velocity BL/s v 0-smax
Favorite cruising speed BL/s sfav 3
Maximum speed BL/s smax 5
Minimum speed BL/s smin 0.5
Radius of zone of repulsion BL ρ 0.5
Radius of zone of alignment BL α1 2
Radius of zone of attraction BL α2 5
Maximal turning angle rad αmax

1
8π

Depth and width of water tank BL size 20
Size of box of grid representing sphere of perception 1 M 20

Table 6.1: Table of parameters

in the latter, this led to faster aggregation behaviour. In Figure 6.3 we have
plotted histogram of the horizontal and vertical orientation of 100 fish for 200
time steps in the constant speed model with vertical boundaries. Since every
run starts with random position and orientation for all fish, the output of other
runs may vary. Note that the vertical orientation is mainly zero. This is caused
by the periodic boundaries, since vertical movement is restricted in certain ar-
eas of the virtual tank. The vertical orientation in the models without vertical
boundaries was more scattered. We have used the typical values according to
Huth and Wissel [12] of the three zones: repulsion zone 0.5BL, alignment zone
2BL and the attraction zone 5BL. Recall from Section 3.1 that these zones can
be made more precise if the type of fish investigated is specified. When we make
the repulsion zone smaller, this results in a more aligned school and hence in a
higher and steeper peak in the orientation plots. A larger attraction zone might
lead to chaos, since fish get attracted to too many sides to determine a new
direction. A too small attraction zone will slow down the aggregation process.
The same holds for the alignment zone.

Figure 6.3: Histogram of horizontal and vertical orientation of 100 fish through
time resulting from the constant speed model with horizontal periodic bound-
aries and water surface and sea floor restrictions.

The model including the sphere of perception yielded a slightly different output,
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since it took more time for fish to school. This can be explained by the part
that neighbours hidden behind others are not visible. Hence, if a neighbouring
fish is really close, the amount of fish influencing the decision of a fish is a lot
smaller which will slow down the aggregation process.
Movies of simulation output for the various models are available in the supple-
mentary material, see Appendix B.

6.3 Speed distribution

Beside the orientation, we are also interested in how the speed changes through
time and how this depends on the boundary conditions. In our simulation, every
fish starts with its favorite cruising speed. When starting the simulation, we
see that all the fish start to accelerate immediately in order to get closer to
other fish. After a while, fish do not need to accelerate a lot any more, since
they have become part of a school. At that point they start to return to their
favorite cruising speed. Since they are still trying to keep the same speed as
their neighbours and are constantly attracted by neighbours in the school, the
entire school will eventually swim with a speed between the average cruising
speed and the maximal speed caused by attraction, see Figure 6.4.

Figure 6.4: Change in speed distribution of the population over time.
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Chapter 7

Discussion and proposals
for further research

7.1 Discussion and conclusion

In this thesis we investigated multiple mathematical models made to model
collective behaviour of living organisms. We can conclude that most models en-
countered in the literature originated from biology, but were further developed
as ‘toy-models’, which had a poor relation to biology and lacking the possibility
of validation by experimental data. We have tried to keep biology in focus when
making our model, by building in different aspects in which experimental data
can be incorporated. By carefully separating observation, decision making and
physical response, we were able to get more insight in the aggregation process.
In Section 3.1 we found a method to determine the sizes of the different regions
around a fish better by using the visual observation system. We succeeded in
implementing the boundary conditions at the water surface and the sea floor
while taking the maximal turning angle into account. These are examples of
aspects where we have made our model more realistic. Besides these improve-
ments, we have used a completely different way of describing and storing the
observed environment, by using the sphere of perception.

The result is a model with an outcome not completely different from other
models, but completely different behind the scenes, in its ‘architecture’, and
the way in which underlying processes like observation, decision making and
response are explicitly modelled. From our simulations, we can conclude that
we have proven our concept. The implementation of the sphere of perception
and various aspects which can be adjusted to the type of fish, or other organism,
investigated, still results in artificial fish acting similar to fish in nature. Hence
our model is an improvement of existing models with a better relation to biology.
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7.2 Proposal for further research

Further details on the biophysics of the fish visual system and possibly similarly
for the lateral line, may result in a better explanation of the radii of the different
aggregation zones, in view of (3.1.4). Note that in our approach to modelling the
visual system, we neglect the dependence on depth of the effective radiant power
in the (sun)light reflected on fish. This represents a well-lighted experimental
set up in a fish tank. In a natural environment, lightning conditions will depend
on the swimming depth, i.e. the deeper the fish swims, the more light will
already be adsorbed by the water before being reflected on the fish. Moreover,
the time of the day and the time of the year determine the position of the sun
and therefore the amount of sunlight and the angle it is penetrating the water
with. These aspects influence the amount of light reflected on fish and can be
incorporated by replacing the average radiant power p̄ from Section 3.1 by

p̄′ = p̄0e
−α(zw−zt) (7.2.1)

where zw and zt are the z-coordinate of the water surface and the fish at time
t respectively and p̄0 is the effective radiant power at the water level, which
depends on the moment of the day and the time of the year.
It would be interesting to see whether this creates a preferred swimming depth
for the fish and how this depends on the time of the day and year, the skin
structure, body shape and eye sight properties. By making the distinction in
body length visible in the simulation output, one might be able to draw con-
clusions about the influence of the body length on aggregation and show that
artificial fish act the same way as in nature; fish which differ more than 30% is
body size do not fit in the school.

Concluding, the approach described in Section 2.2 assumes deterministic deci-
sion moments at t = ∆t. But we actually have no information about how often
fish observe their environment and decide to adjust their velocity. Therefore
it might be more realistic to take a distribution of the decision moments, for
example a Poisson distribution. Another option is to take continuous decision
moments which is the limit of de discrete decision moment case, but this is even
more complicated.

We hope this model and modelling approach will be used in the future in order
to explain typical aggregation behaviour in fish, or other organisms.



Appendix A

Pseudocode

function[]=fishschool(r1,a1,a2)

%fishschool simulation

%r1: (radius zone of repulsion)

%a1: (radius zone of alignment)

%a2: (radius zone of attraction)

%initial values

N; %number of fish

T; %time

size; %size square(or kubed) grid

mu; %average body length of fish

sigma; %standard deviation

dtau; %physical timestep

alphamax; %maximum turning angle per timestep

gamma; %visionrange

%iv for differentiating fishsizes

small=mu-sigma; %upper limit for small fish

big=mu+sigma; %lower limit for big fish

%make first position

for i=1:N

*give fish i random position, (unit) direction and length

*make size of zones depending on fish

%in the variable speed model:

*let fish start with its favorite cruising speed

*determine maximal and minimal speed

end

*determine average body length

for t=1:T %for all time steps

for i=1:N %for alle fish

% determine for i its perceived environment
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*determine which fish are visible and with which intensity

*and store this in the sphere of perception matrix

% fish i makes decission what to do

if there are neighbours in the zone of repulsion

*integrate over the boxes filled by these fish and turn away

else if there are neighbours in zone of alignment

*adopt direction of fish in this zone

if there are neighbours in zone of attraction

*integrate over these boxes and change direction

if there are no neighbours around, add some noise to the direction

%check if new direction does not exceed alpha_max

if it does, change direction such that angle is alpha_max

%make new speed

if there are no neighbours around, return to cruising speed

if there are neighbours in zone of repulsion

*slow down

elseif there are neighbours in zone of alignment

*adjust speed to neighbours speed while trying to return to cruising speed

elseif there are only neighbours far away

*speed up to catch up with school

if speed exceeds maximal acceleration, speed becomes maximum or minimum

%make new position

c_i(t+1)=c_i+s(i,t+1)*d_i(t+1)*dtau

%check if new position does not exceed water surface

or goes below the sea floor

*adjust position

end%end fishloop

plot 3D

plot xy

plot yz

plot xz

end%end timeloop

%plot horizontal and vertical angle distribution through time

%plot speed distribution through time



Appendix B

Suplementary material

CD/DVD with movies and full MATLAB code.
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