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Introduction

In this report we shall prove the following theorem.

Theorem 1. Consider a field K and n = pk for p a prime number and k ∈ Z>0.
Let E ⊇ K be a finite Galois extension of K such that the subgroup µ ⊆ E∗ of all
n-th roots of 1 has order n. Let G = Gal(E/K). We define two sets:

S1 = {ghg−1h−i|g, h ∈ G, i ∈ Z, h(ζ) = ζ, g(ζ) = ζi for all ζ ∈ µ)},
S2 = {g2|g ∈ G, g(ζ) = ζ−1 for all ζ ∈ µ)}.

Let L be the largest intermediate field between K and E generated by n-th radicals
of K, i.e.

L = K(α ∈ E∗|αn ∈ K).

Then:

Gal(E/L) = 〈S1〉 · 〈S2〉.

Given a field K, a Galois extension E ⊇ K and n ∈ Z, we say that α ∈ E∗ is an
n-th radical of K when αn ∈ K.
Problems in Galois theory can be approached either from the field-theoretic point of
view or from the group-theoretic side. We shall choose the second; we shall look for a
purely group-theoretical criterion to decide whether a certain extension is generated
by n-th radicals of the base field. Equivalently, we shall try to decide whether the
extension E is the splitting field of a collection of polynomials {xn − ai}i∈I with
ai ∈ K. In the end this quest for a criterion will allow us find a generating set for
the Galois group of the largest intermediate field generated by radicals, as Theorem
1 shows. The pivot of the discussion will be the link between the group of n-th
radicals and the group of cocycles Z1(G,µ), defined in 1.4. Namely, we will base
our discussion on the following.

Proposition 2. Consider a field K and n ∈ Z>0. Let L ⊇ K be a finite Galois
extension of K such that the subgroup µ ⊆ L∗ of all n-th roots of 1 has order n.
Then, the extension L is the splitting field of a collection of polynomials {xn−ai}i∈I
with ai ∈ K if and only if ⋂

c∈Z1(G,µ)

ker c = {1}.

We will first forget about the Galois problem and we will concentrate on collecting
sufficient wisdom about cocycles. The first chapter is devoted to this task; more
explicitly, we will link the condition appearing in Proposition 2 with the splitting
of certain exact sequences. The natural tool in this situation, then, will be the
second cohomology group H2(Γ, µ) where Γ = Gal(K(µ)/K), or more in general
Γ ≤ Aut(µ). In this context we will see a beautiful description of Tate cohomology
groups of a certain type of modules. That is, we shall prove the following theorem.

Theorem 3. Let µ be a cyclic group of order n = pk where p is a prime number
and k ∈ Z>0, and Γ ≤ Aut(µ).

v



vi INTRODUCTION

1. If n = 2k with k ≥ 2 and there is g ∈ Γ such that g(ζ) = ζ−1 for all ζ ∈ µ; then

Ĥq(Γ, µ) has order 2 for all q ∈ Z.
2. Otherwise µ is cohomologically trivial as a Γ-module.

These cohomology groups have already been computed in [3] (see page 453). How-
ever the theorem appearing there is not correct, namely the case of non-trivial
cohomology is wider than how it is described in [3].
In the second chapter, we shall use results from the first chapter. We shall prove
Proposition 2 here above and finally we will be able to prove the above mentioned
theorem. As a pleasant detour, we shall see a corrected version of the aforesaid
theorem in [3]. That correction is put there because the statement of the corrected
theorem will refer to fields, while the first chapter is only about group theory.
We will also set a step forward towards dropping the hypothesis of n being a power
of a prime. Concerning this point, it must be said that, once dropped the hypothesis
of n being a power of a prime, we shall not have anymore a generating set for the
Galois group Gal(E/L) as in Theorem 1, this leaves spaces to further investigation.
The very last section will contain a generalization of the main theorem to infinite
Galois extensions; thus profinite groups will be called in.

Regarding what is needed to understand this report: we shall try to set our notation
defining all important objects we will need. For reasons of briefness we will avoid
to give the definitions of cohomology groups and Tate cohomology groups, however
all what we need is easily recovered from [1] and [7]. For the last section, but only
for it, a bit of infinite Galois theory is needed. We shall refer to [4].

In the end, I am really grateful to my advisor prof. Hendrik W. Lenstra, for his
crucial advices, and for his wittiness in finding my mistakes, I also thank him
for his endless patience and care in reading my drafts many times, and for his
ability in correcting my style. I also thank dr. Ronald van Luijk and dr. Bart de
Smit who agreed to form my reading committee and suggested me further valuable
improvements. I also thank Sep Thijssen for using Theorem 1 in his Master’s thesis
[6] at the Radboud University of Nijmegen. This has given value to my effort. I also
thank him for putting my family name next to the word theorem, I am extremely
pleased for this honour.



CHAPTER 1

Group cohomology

We briefly fix conventions to be used throughout all this report.

1.1. Definition. Let G,N be groups. A left action of G on N is a group homo-
morphism ϕ : G → Aut(N). In this situation, we also say that G acts on N , and
for all g ∈ G and n ∈ N , we write

gn = ϕ(g)(n).

Moreover we denote with NG the group of G-invariants in N , that is:

NG = {n ∈ N | gn = n for all g ∈ G}.

1.2. Definition. Let G be a group. A (left) G-module µ is an abelian group
together with a left action of G on µ.

1.3. Definition. Let G,N,N ′ be groups, and let G act on N and N ′. A G-
homomorphism between N and N ′ is a group homomorphism ϕ : N → N ′ such
that, for all g ∈ G and n ∈ N :

ϕ(gn) = gϕ(n).

We denote the set of all G-homomorphisms N → N ′ with HomG(N,N ′).

1. Cocycles

We give a general definition of cocycle:

1.4. Definition. Let G and N be two groups with G acting on N . A function
c : G→ N is a cocycle, if for arbitrary g, h ∈ G:

c(gh) = gc(h)c(g).

We denote the set of all cocycles G→ N with Z1(G,N).
For n ∈ N the function G→ N defined by

g 7→ gnn−1

is called a coboundary. We denote the set of all coboundaries with B1(G,N), and
we have B1(G,N) ⊆ Z1(G,N).

1.5. Remark. The definition we are giving does not agree with the definition ap-
pearing in chapter 5 of [5]. We took this decision because 1.11 requires our definition
to be true. Actually our cocycles are inverses of cocycles defined in [5].
When N is commutative we get the usual definition of a cocycle. In this case,
Z1(G,N) with the pointwise multiplication is a group and we have B1(G,N) ≤
Z1(G,N).

As for usual cocycles, the kernel of a cocycle is a subgroup of the domain.

1.6. Lemma. Let G and N be two groups with G acting on N and let c : G → N
be a cocycle. The kernel

ker c = {g ∈ G|c(g) = 1}
of c is a subgroup of G.

1



2 1. GROUP COHOMOLOGY

Proof. We have

c(1) = c(1 · 1) = 1c(1)c(1) = c(1)2,

so c(1) = 1. If g ∈ G and c(g) = 1 then

1 = c(1) = c(g−1g) = g−1

c(g)c(g−1) = c(g−1)

where the last equality holds because c(g) = 1; thus K is closed under inverses.
Finally, when g, h ∈ ker c we have

c(gh) = gc(h)c(g) = g1 · 1 = 1,

and so gh ∈ K, and hence K is a subgroup. �

We need another definition:

1.7. Definition. Let N,G,H be groups. An extension of N by H is a short exact
sequence

1 // N
ε // G

π // H // 1 .

The group G, equipped with ε and π, is also called an extension of N by H.

1.8. Definition. Let N,H be groups. Let G1 and G2 two extensions of N by H.
We say that G1 is equivalent to G2 if there is a group homomorphism ϕ : G2 → G1

such that the following diagram commutes:

1 // N

id

// G1
// H //

id

1

1 // N // G2
//

ϕ

OO

H // 1.

1.9. Definition. Consider an extension

1 // N // G // H // 1 .

We say that the extension (or the short exact sequence) splits, when there is an
action ψ of H on N , such that G is equivalent to the standard splitting exact
sequence,

1 // N // N oψ H // H // 1.

1.10. Remark. The homomorphism ϕ of the previous definition is both injective
and surjective, because of the commutativity of the diagram. Hence ϕ is actually an
isomorphism so the relation described above is an equivalence relation. Moreover
if we have a splitting short exact sequence

1 // N

id

// G // H //

id

1

1 // N // N oψ H //

ϕ

OO

H // 1,

thenG = N0H0 whereN0 = ϕ(N) = im ε andH0 = ϕ(H), consideringN ≤ NoψH
and H ≤ N oψ H.

1.11. Lemma. Consider a short exact sequence of groups:

1 // N
ε // G

π // H // 1.

We define an action of G on N : for all g ∈ G and n ∈ N
gn = ε−1(gε(n)g−1).

Then the following are equivalent:

1. The sequence splits.



1. COCYCLES 3

2. There is a group homomorphism σ : H → G such that πσ = idH .
3. There is a cocycle c : G→ N such that cε = idN .

Proof. We prove that 1 implies 3. Suppose the sequence splits. We have
an action of H on N and a commutative diagram as in the definition. We write
G = N0H0 with H0 = ε(N) and H0 = ϕ(H). Now we can define a map:

c : N0H0
// N

n0h0
� // ε−1(n0).

It is easily seen that c is a cocycle according to our definition of action of G on N .
We prove that 3 implies 2. Let c : G → N be a cocycle that is the identity on
N0 ≤ G. We can consider the subgroup H0 = ker c. Since c is the identity on
N0, we have that H0 ∩N0 = {1}, therefore π|H0

is injective. Furthermore, consider

π(g) ∈ H. If we define h = ε(c(g))−1g ∈ H0 then gh−1 = ε(c(g)) ∈ N0. This implies
that π(h) = π(g). Therefore π|H0

is also surjective; thus it is an isomorphism and

we can define σ = π−1
|H0

.

Last, we prove that 2 implies 1. If σ : G/N → G is as in 2, then we can define an
action of H on N in the following way: for every h ∈ H and n ∈ N ,

hn = ε−1(σ(h)ε(n)σ(h)−1).

Using the fact that πσ = idH and that σ is a group homomorphism, we see that

ϕ : N oH // G

(n, h)
� // ε(n)σ(h)

defines a group homomorphism. This homomorphism defines an equivalence of our
short exact sequence with the standard splitting exact sequence. �

1.12. Lemma. Let G be a group and NEG, and let µ be a G-module. Let c : N → µN

be a G-homomorphism (G acting by conjugacy on N). Then:

Hc = {(c(x), x−1)|x ∈ N}
is a normal subgroup of µN oG.

Proof. Consider the following map:

fc : N // µN oG

x � // (c(x)−1, x).

This is a group homomorphism, namely for x, x′ ∈ N , we have

(c(x)−1, x)(c(x′)−1, x′) = (c(x−1)c(x′−1), xx′) = (c(xx′)−1, xx′)

because µ is an abelian group. Since, Hc = im fc, we have that Hc ≤ µN oG.
Now we want to show that Hc is normal. Consider G ≤ µNoG acting by conjugacy
on µN o G; consider also G acting on N by conjugacy. We have that fc is G-
equivariant for these actions. This implies that Hc is stable under the conjugation
by elements of G ≤ µN oG. Furthermore, as µ is abelian, we have µN ≤ Z(µN ×
N) ⊆ N(Hc). Therefore, the normalizer N(Hc) contains both µN and G, hence
N(Hc) = µN oG. �

1.13. Proposition. Let G be a group and N E G, and let µ be a G-module. In
addition let c : N → µN be a G-homomorphism (G acting by conjugacy on N).
Consider Hc = {(c(x), x−1)|x ∈ N}, and define

Ec =
µN oG

Hc
.



4 1. GROUP COHOMOLOGY

Then we have:

1. There are group homomorphisms: ιc : µN → Ec and πc : Ec → G/N defined by

ιc : m 7→ (m, 1)Hc πc : [(m, g)] 7→ gN

and ψ : G→ Ec defined by

ψ : x 7→ [(1, x)] = (1, x)Hc

such that in the diagram

(1.1)

1 // N //

c

��

G
π //

ψ

��

G/N //

id

1

1 // µN
ιc // Ec

πc // G/N // 1

all squares are commutative and the bottom row is a short exact sequence.
2. The bottom row splits if and only if c extends to a cocycle c̃ : G −→ µN .

Proof. Thanks to 1.12, the group Ec is well defined. Moreover it is easy to
see that ψ and ιc are group homomorphisms. We have that ιc is injective because
Hc ∩ µN = {1} in µN oG. Moreover, for x ∈ N we have ιc(c(x)) = (c(x), 1)Hc =
(1, x)Hc = ψ(x).
The map πc is a well-defined group homomorphism that has kernel µNHc/Hc, and
its image is clearly G/N . Hence the diagram (1.1) commutes and the bottom row
is a short exact sequence.

We still have to prove that the bottom row splits if and only if c extends to a
cocycle c̃ : G −→ µN . Suppose the bottom row splits; then by lemma 1.11 we have
a cocycle q : Ec → µN that is the identity on µN . Therefore we can consider q ◦ ψ.
It is a cocycle because ψ is a group homomorphism; and since

ψ(x) = (1, x)Hc = (c(x), 1)Hc

for all x ∈ N , we easily have that q(ψ(x)) = c(x) for all x ∈ N .
Conversely let c̃ : G→ µN a cocycle extending c. Let µN oG act on µN as defined
in 1.11. We define q : µN o G → µN as q(m, g) = mc̃(g). We have that q is a
cocycle: consider (m, g), (m′, g′) ∈ µN oG then

q(m gm′, gg′) = m gm′c̃(g) g c̃(g′) = q(m, g) (m,g)q(m′, g′).

Moreover, since c̃ extends c, for each (c(x)−1, x) ∈ Hc it holds

q(c(x)−1, x) = c(x)−1c(x) = 1.

Therefore q is constant on cosets of Hc and it induces a well-defined cocycle q̄ :
Ec → µN , which indeed has the property that if m ∈ µN and (m, 1)Hc ∈ Ec then
q̄((m, 1)Hc) = q(m, 1) = m. Therefore the bottom row splits. �

1.14. Definition. Let G be a group and let µ be G-module. We define

C(G,µ) =
⋂

q∈Z1(G,µ)

ker q.

1.15. Lemma. Let G be a group. Let µ be a G-module on which G acts via ϕ.
Define N = kerϕ and consider G acting by conjugacy on it. For c ∈ HomG(N,µ)
consider Ec as described in 1.13. Then we have that for q ∈ Z1(G,µ) the restriction
q|N is a G-homomorphism, and

C(G,µ) =
⋂

c∈HomG(N,µ)
Ec splits

ker c.
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Proof. We have N acting trivially on µ, i.e. µN = µ. Therefore every cocycle
q ∈ Z1(G,µ), restricted toN , defines aG-homomorphismN → µ. In fact, for x ∈ N
and g ∈ G we can compute

q(gx) = gxq(g−1)q(gx) = gq(g−1) gq(x)c(g) = gq(x) gq(g−1)q(g) = gq(x).

Proposition 1.13 says that for every c ∈ HomG(N,µ) such that Ec splits, we have
c = c̃|N for a c̃ ∈ Z1(G,µ). This implies that:⋂

q ∈Z1(G,µ)

ker q|N =
⋂

c∈HomG(N,µ)
Ec splits

ker c.

Finally N = ∩q∈B1(G,µ) ker q ⊆ C(G,µ), this implies that:

C(G,µ) =
⋂

q ∈Z1(G,µ)

ker q|N

and we are done. �

1.16. Theorem. Let µ be a G-module, with ϕ the action of G on µ and N = kerϕ
(with G acting on N by conjugacy). Then we have that:

1. There is a cocycle q ∈ Z1(G,µ) such that

N ∩ (ker q) = {1}

if and only if there is an injective G-homomorphism c : N → µ, such that the
short exact sequence

1 // µ ιc // Ec
πc // G/N // 1 ,

defined by c as in 1.13, splits.
2. We have that

C(G,µ) = {1},
if and only if there are G-homomorphisms {ci : N → µ}i∈I , such that

i. we have
⋂
i∈I ker ci = {1};

ii. the short exact sequence defined by ci as in 1.13, splits for all i ∈ I.

Proof. By 1.15, there is a cocycle q ∈ Z1(G,µ) such that

N ∩ (ker c) = {1}

if and only if there is a injective G-homomorphism c : N → µ extending to a
cocycle c̃ : G → µ. By 1.13, we notice that this homomorphism extends to a
cocycle c̃ : G→ µ if and only if the short exact sequence

1 // µ ιc // Ec
πc // G/N // 1 ,

defined by c as in 1.13, splits.

The other equivalence is an immediate consequence of 1.15. �

The theorem we have just proved, leads us to investigate whether a certain extension
of µ by G splits or not. To decide when that extension splits, the most appropriate
tool is the group H2(G/N, µ). In the following we shall focus on the computation
of cohomology groups we need. We are interested in calculating H2(Γ, µ) when µ
is a cyclic group of order n (for n ∈ Z>0) and Γ acts faithfully on it, that is to say
that Γ ⊆ Aut(µ).



6 1. GROUP COHOMOLOGY

2. Notations and definitions of group cohomology

In the following section we shall use group cohomology to investigate extensions of
the type (1.1). In this section we recall some basics of group cohomology and we
give the necessary background to prove the statements that will appear in the next
section. All definitions of cohomology groups and other basics are well explained
in [1].

1.17. Definition. Let G be a finite group. A G-module A is cohomologically trivial
when, for every subgroup H ≤ G, we have Ĥq(H,A) = {1}, for all q ∈ Z.

1.18. Lemma. Let R be any ring, and G a finite group. The G-module R[G] is
cohomologically trivial.

Proof. We give R the trivial G-module structure and we notice that R[G] ∼=
HomZ(Z[G], R). As it is explained in [1], the G-module structure on HomZ(Z[G], R)
is defined as follows: for ϕ ∈ HomZ(Z[G], R) and for all g ∈ G we set g.ϕ(g−1−) =
ϕ(g−1−) (R is a trivial G-module).
When G is finite, there is a natural G-module homomorphism which maps a =∑
G rgg ∈ R[G] to ϕa defined by ϕa(g) = rg. This is an isomorphism too. Therefore

R[G] is a co-induced G-module, which implies that it is cohomologically trivial. �

Let H ≤ G be groups. Consider, now, the forgetful functor ρ : G-mod → H-mod.
It is exact, and hence we can consider the ∂-functor S∗ = H∗(H, ρ(−)), and the
∂-functor T ∗ = H∗(H, ρ(−)). For A an arbitrary G-module, projections ϑA : AH →
AG define a natural transformation ϑ : S0 → −G, and on the other hand, injections
κA : AG → AH define a natural transformation κ : −G → T 0. By the fact that
derived functors are universal ∂-functors, the following definition makes sense (see
[7] 6.7 for the positive (resp. negative) part, the negative (resp. positive) part is
straightforward from the other).

1.19. Definition. Let H ≤ G be finite groups.

1. We define Res : Ĥ∗(G,−)→ Ĥ∗(H,−) to be the unique system of morphisms of
functors

{Resq : Ĥq(G,−)→ Ĥq(H,−)}q∈Z
such that: for all short exact sequences of G-modules

0 // A // B // C // 0

i. For all q ∈ Z the following diagram commutes:

Ĥq(G,C)

Resq

��

∂ // Ĥq+1(G,A)

Resq+1

��
Ĥq(H,C)

∂ // Ĥq+1(H,A)

where the ∂’s are the morphisms in the long exact sequence of Tate coho-
mology.

ii. Res0 is induced by the embedding AG → AH .
2. We define Cor : Ĥ∗(H,−)→ Ĥ∗(G,−) to be the unique system of morphisms

{Corq : Ĥq(H,−)→ Ĥq(G,−)}q∈Z
such that: for all short exact sequences of G-modules

0 // A // B // C // 0
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i. For all q ∈ Z the following diagram commutes:

Ĥq(H,C)

Corq

��

∂ // Ĥq+1(H,A)

Corq+1

��
Ĥq(G,C)

∂ // Ĥq+1(G,A)

where the ∂’s are the morphisms in the long exact sequence of Tate coho-
mology.

ii. Cor−1 is induced by the projection AH → AG.

1.20. Definition. Let G be a finite group, the norm element NG ∈ Z[G] (or only
N when there is not ambiguity) is NG =

∑
g∈G g.

1.21. Lemma. Let G be a finite group, the subgroup (Z[G])G ≤ Z[G] is the ideal
NZ = (N).

Proof. Take a =
∑
g∈G ngg ∈ (Z[G])G, then ga = a for all g ∈ G. Therefore

all ng’s are the same; this means that a = nN , for some n ∈ N . �

We need some general facts concerning projective resolutions of Z as a Cm-module,
when Cm is a cyclic group of order m ∈ Z>0. Let c be a generator of Cm; the norm
element N in Z[Cm] is N =

∑m
i=1 c

i.

1.22. Lemma. Consider Z acted upon trivially by Cm. Let c be a generator of Cm,
then a projective resolution of Z is:

. . . c−1 // Z[Cm]
N // Z[Cm]

c−1 // Z[Cm]
N // Z[Cm]

c−1 // Z[Cm] // 0 ,

where N and c− 1 are multiplication on the left by N and c− 1 respectively.

Proof. Let ε : Z[Cm] → Z be the augmentation morphism, we have to prove
that the following augmented complex is exact:

. . . N // Z[Cm]
c−1 // Z[Cm]

N // Z[Cm]
c−1 // Z[Cm]

ε // Z // 0 .

First, it is clear that I = im(c−1) ⊆ ker ε. Vice versa if a =
∑m
i=1 αic

i ∈ ker ε then∑m
i=1 αi = 0 and this implies that a = cb− b where b =

∑m
i=1 βic

i, with

β1 = −α1

β2 = −(α1 + α2)

β3 = −(α1 + α2 + α3)

. . .

Lemma 1.21 says that

(Z[Cm])Cm = NZ ⊆ Z[Cm];

moreover, the natural map π : NZ = (Z[Cm])Cm → (Z[Cm])Cm
∼= Z sends N to m.

This implies that NZ ∩ I = (0), therefore:

kerN = {a ∈ Z[Cm]|Na ∈ I}.

Since Z[Cm]/I ∼= Z is a domain, I is a prime ideal. Thus Na ∈ I if and only if
a ∈ I. Hence it holds that kerN = im(c− 1).
Finally we have N(c − 1) = 0 so imN ⊆ ker(c − 1), but every g ∈ Z[Cm], with
ag − g = 0, is an invariant so it is in imN , hence imN = ker(c− 1). �

This resolution permits us to perform the following computation.
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1.23. Proposition. Let A be a Cm-module being finite and cyclic as an abelian
group, where Cm is a cyclic group of order m. Then for all q ∈ Z, the cohomology
group Ĥq(Cm, A) is isomorphic to ACm/N(A).

Proof. By lemma 1.22 we are reduced to calculate the cohomology of this
complex:

. . . c−1 // A
N // A

c−1 // A
N // A

c−1 // A // 0 .

The complex is periodic therefore we shall have Ĥi(Cm, A) = Ĥi+2(Cm, A). Further-

more the Herbrand quotient h0/h1 = 1, this means that Ĥ0(Cm, A) = ACm/N(A)

and Ĥ1(Cm, A) are cyclic groups of the same order. Thus they are isomorphic. �

3. Cyclic group acted upon faithfully

We shall be able to compute explicitly H2(G/N, µ) when n = pk is a power of a
prime number, this will give us a simple condition in G to decide if the extension
of µ by G splits.
Let µ be a cyclic group (written additively) of order n = pk where p is a prime
number and k ∈ Z>0. We think of Aut(µ) being equal to (Z/pkZ)∗. We shall
consider Γ ≤ Aut(µ), and we shall consider µ a Γ-module in the following way: for
γ ∈ Γ and m ∈ µ

γm = γ(m).

When p = 2, we choose δ = −1 + 2kZ ∈ Aut(µ) of order 2 and we write:

∆ = 〈δ〉.

1.24. Remark. When p = 2 and k ≥ 2, we have that Ĥ0(∆, µ) = µ∆ has order 2,

hence by 1.23 we have that Ĥq(∆, µ) has order 2, for all q ∈ Z.

We shall see the following.

1.25. Theorem. Let µ be a cyclic group of order n = pk where p is a prime number
and k ∈ Z>0, and Γ ≤ Aut(µ).

1. If n = 2k with k ≥ 2 and δ ∈ Γ then Ĥq(Γ, µ) has order 2 for all q ∈ Z. Moreover

Res : Ĥq(Γ, µ)→ Ĥq(∆, µ) is an isomorphism for q even and Cor : Ĥq(∆, µ)→
Ĥq(Γ, µ) is an isomorphism for q odd.

2. Otherwise µ is cohomologically trivial as a Γ-module.

Before proving this theorem it is convenient to restate it in another form.
Consider the ring homomorphism π : Z/pk+1Z→ Z/pkZ defined by π : z+pk+1Z 7→
z + pkZ. It has got kernel pkZ/pk+1Z which has order p, and moreover it induces

a surjective group homomorphism f :
(
Z/pk+1Z

)∗ → (
Z/pkZ

)∗
whose kernel is

1 + kerπ which has still order p.
We recall a fact whose proof can be found in chapter 4 of [2].

1.26. Lemma. Let µ be a cyclic group of order pk where p is a prime number and
k ∈ Z>0, then:

1. When p 6= 2, Aut(µ) is a cyclic group of order (p− 1)pk−1.
2. When p = 2 and k = 1 then Aut(µ) = {1}, when k = 2 we have Aut(µ) = ∆.

While when p = 2 and k > 2 we have that Aut(µ) = ∆ × 〈5 + 2kZ〉, and every
subgroup Γ ≤ Aut(µ) is either cyclic or ∆×B with B ≤ 〈5 + 2kZ〉 cyclic.

1.27. Lemma. Let f be as defined before; f−1(Γ) is not cyclic if and only if p = 2,
the exponent k ≥ 2 and δ ∈ Γ.
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Proof. If p 6= 2 or k < 2, then f−1(Γ) is cyclic because Autµ itself is cyclic.
Moreover when p = 2 and k ≥ 2 we have

f(−1 + 2k+1Z) = δ f(1 + 2k + 2k+1Z) = 1 + 2kZ

therefore δ ∈ Γ if and only if

−1 + 2k+1Z ∈ f−1(Γ) 1 + 2k + 2k+1Z ∈f−1(Γ).

This is equivalent to say that f−1(Γ) is not cyclic. In fact, 1+2k ≡ 52k−2

mod 2k+1,
thus by 1.26 we can conclude. �

Thanks to this lemma we can restate 1.25.

1.28. Theorem. Let µ be a cyclic group of order n = pk where p is a prime number
and k ∈ Z>0, and Γ ≤ Aut(µ).

1. If f−1(Γ) is cyclic then µ is cohomologically trivial as a Γ-module .

2. Otherwise Ĥq(Γ, µ) has order 2 for all q ∈ Z. More precisely, Res : Ĥq(Γ, µ) →
Ĥq(∆, µ) is an isomorphism for q even and Cor : Ĥq(∆, µ) → Ĥq(Γ, µ) is an

isomorphism for q odd. In particular Ĥq(Γ, µ) has order 2 for all q ∈ Z.

Proof. Throughout this proof, for z ∈ Z, we shall write [z] = (z mod n).
In the first case we have that Γ is a cyclic group of order dividing (p − 1)pk−1.
Moreover f−1(Γ) is cyclic, so we can write f−1(Γ) = 〈c mod pk+1〉 for some c ∈ Z
such that Γ = 〈[c]〉.
Now we want to use 1.18, so we have to construct a suitable short exact sequence.
We can choose η a generator of µ, and define:

v : Z[Γ] // µ∑#Γ
i=1 ai[c]

i � // ∑#Γ
i=1 aic

iη.

This is a morphism of Γ-modules; therefore, for K = ker v, we have a short exact
sequence:

(1.2) 0 // K // Z[Γ]
v // µ // 0 .

and indeed we have that K = (pk, [c]− c), ideal of Z[Γ].
Now, since Z∩K = (pk) ≤ (p), the exact sequence (1.2) induces an exact sequence:

0 // Kp // Z(p)[Γ] v̄ // µ // 0 ,

where Kp = (pk, [c]− c) ⊆ Z(p)[Γ] that is Kp = ker v̄.

We have defined c is such a way that f−1(Γ) = 〈c mod pk+1〉. This group has
order p#Γ, and hence we see that

pk || 1− c#Γ = [c]#Γ − c#Γ.

This means that we can write

[c]#Γ − c#Γ = mpk

with p - m. This implies that m is invertible in Z(p) and consequently that pk is
a multiple of [c] − c. Hence Kp = ([c] − c) ⊆ Z(p)[Γ]; and since [c] − c is not a
zero-divisor , the following is an exact sequence of Γ-modules:

0 // Z(p)[Γ]
[c]−c // Z(p)[Γ] v̄ // µ // 0 .

Now it suffices to note that Z(p)[Γ] is cohomologically trivial by 1.18; and hence µ
is cohomologically trivial too. This proves the first point.
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Now, consider the case f−1(Γ) not cyclic, then p = 2 and Γ = B×∆ for B a cyclic
subgroup of (Z/nZ)∗. Moreover 1.27 implies that f−1(B) is cyclic. We define the
following modules:

ν = µ as a B-module,

Z ∆-module with the trivial action,

Z− ∆-module with the non-trivial action.

We also notice that if M is a B-module and M ′ is a ∆-module then the tensor
product M ⊗Z M

′ is naturally a Γ-module, and for instance µ = ν ⊗Z Z−.
We have two short exact sequences:

0 // Z // Z[∆] // Z− // 0

a+ bδ
� // a− b

0 // Z− // Z[∆] // Z // 0

a+ bδ
� // a+ b

.

The two sequences split over the integers. This means that tensoring on the left by
ν gives again two new short exact sequences:

0 // ν ⊗Z Z // ν ⊗Z Z[∆] // µ // 0(1.3)

0 // µ // ν ⊗Z Z[∆] // ν ⊗Z Z // 0 .(1.4)

By the fact that f−1(B) is cyclic, we have that B is cohomologically trivial. Fur-
thermore, specializing what we have done before to p = 2, there is a short exact
sequence:

0 // Z(2)[B] // Z(2)[B] // ν // 0 .

Now Z[∆] is a free Z-module, in particular it is torsion-free and therefore flat. Thus
tensoring on the right by Z[∆] is an exact functor and

0 // Z(2)[Γ] // Z(2)[Γ] // ν ⊗Z Z[∆] // 0

is an exact sequence of Γ-modules. Therefore, by 1.18, we have that ν ⊗Z Z[∆] is
cohomologically trivial.
Using twice the long exact sequence of cohomology on sequences (1.3) and (1.4),
we easily get that for every q there are two exact sequences

Ĥq(Γ, ν ⊗Z Z[∆]) // Ĥq(Γ, µ)
∂q // Ĥq+1(Γ, ν ⊗Z Z) // Ĥq+1(Γ, ν ⊗Z Z[∆])

Ĥq(Γ, ν ⊗Z Z[∆]) // Ĥq(Γ, ν ⊗Z Z)
∂′q // Ĥq+1(Γ, µ) // Ĥq+1(Γ, ν ⊗Z Z[∆]) .

and since ν ⊗Z Z[∆] is cohomologically trivial, we have that

∂q ◦ ∂′q+1 : Ĥq(Γ, µ) // Ĥq+2(Γ, µ)

is an isomorphism.
We notice that NΓµ = N∆µ = {0}, therefore Ĥ0(G,µ) = H0(G,µ) and Ĥ−1(G,µ) =

H0(G,µ) for G = ∆,Γ. Therefore Res : Ĥ0(Γ, µ) → Ĥ0(∆, µ) is nothing but the
injection µΓ → µ∆. Since µ∆ has order 2, and B consists of automorphisms of µ,
we have that µΓ = µ∆, so we have the isomorphism. Furthermore we have that
I∆ = (−2). Thus I∆µ = −2µ = 2µ; moreover we clearly have that IΓµ 6= µ because
IΓ consists only of even numbers. As I∆ ⊆ IΓ and 2µ is the maximal subgroup of
µ, the projection µ/I∆µ→ µ/IΓµ is the identity. Hence we have the isomorphism.
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By definition, Res and Cor commute with ∂ and ∂′. We have just proved that
Res : Ĥ0(Γ, µ) → Ĥ0(∆, µ) and Cor : Ĥ−1(∆, µ) → Ĥ−1(Γ, µ) are isomorphisms.
The fact that ∂q ◦ ∂′q+1 is always an isomorphism guarantees that the statement is
true for the other levels too.
Finally, by 1.24 we conclude also that Ĥq(Γ, µ) has order 2 for all q ∈ Z. �

4. Extensions

Let H be a group and let N be an H-module (written multiplicatively) on which
H acts via ϕ. Consider an extension E of N by H. Since N is abelian, the short
exact sequence

1 // N
ε // E

π // H // 1
induces an action of H on N . Namely, for n ∈ N and h ∈ H we can pick g ∈ E
such that π(g) = h and define:

ε(hm) = gε(n)g−1.

The fact that N is abelian guarantees that this is a well-defined action.

1.29. Definition. Let H be a group and let N be an H-module on which (written
multiplicatively) H acts via ϕ. We say that the extension

1 // N
ε // E

π // H // 1

is an extension of N by H as an H-module when the action of H on N induced by
the exact sequence is ϕ i.e. when: for n ∈ µ and g ∈ E

gε(n)g−1 = ε(ϕ(π(g))(n)).

Let µ a be a Γ-module as in the previous section, except that this time we write it
multiplicatively. Consider an extension of µ by Γ as a Γ-module:

(1.5) 1 // µ ε // E
π // Γ // 1.

The group Ĥ2(Γ, µ) describes the possible extensions (1.5), modulo the equivalence
relation described in 1.8. In fact, if we have such an extension, choose a system of
coset representatives σ : Γ→ E i.e. a map such that πσ = idΓ. Then we have

σ(g)σ(g′) = ϕ(g, g′)σ(gg′).

This function is a 2-cocycle ϕ : Γ× Γ→ µ. If we change the map σ, we multiply ϕ
by a 2-coboundary. Vice versa every class in Ĥ2(Γ, µ) arises from an extension of
µ by Γ in this way. See [1] section 2 or [7] 6.6 for explicit computations.
In the following we will consider µ a cyclic group of order n and we will identify
Aut(µ) with (Z/nZ)∗. As usual we will write δ = −1 + nZ and ∆ = 〈δ〉.

1.30. Lemma. Consider n = 2k with k ≥ 2; let δ ∈ Γ ⊆ Aut(µ) where µ is a cyclic
group of order n. Consider an extension of µ by Γ as a Γ-module

(1.6) 1 // µ ε // E
π // Γ // 1.

Then this sequence splits if and only if the exact sequence

(1.7) 1 // µ ε // π−1(∆)
π // ∆ // 1

splits.

Proof. We point out that, if ϕ : Γ× Γ→ µ is a 2-cocycle, and [ϕ] ∈ Ĥ2(Γ, µ)

is its cohomology class, then Res([ϕ]) = [ϕ|∆×∆] ∈ Ĥ2(∆, µ).

Every system of coset representatives σ : ∆ → π−1(∆) is the restriction to ∆
of a system of cosets representatives Γ → E. Therefore the class of 2-cocycles
corresponding to (1.7) is the restriction of the class of cocycles associated to (1.6).
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This means that if ϕ ∈ Ĥ2(Γ, µ) is the class corresponding to (1.6), then (1.7)

corresponds to Res(ϕ). In 1.28, we proved that Res : Ĥ2(Γ, µ) → Ĥ2(Γ, µ) is an
isomorphism, this suffices to conclude. �

1.31. Remark. Consider n = 2k with k ≥ 2; let µ be a cyclic group of order n.
The short exact sequence (1.7) splits if and only if there is η ∈ π−1(δ) such that
η2 = 1. In fact, having such an element η, we can define

σ : ∆ // π−1(∆)

δ
� // η

;

and this has clearly the property that πσ = id. Conversely if we have a group
homomorphism σ : ∆→ π−1(∆) such that πσ = id, then σ(δ) is of order 2.

It is now straightforward to prove the following theorem.

1.32. Theorem. Consider n = pk with p prime and k ≥ 2; let Γ ⊆ Aut(µ) where
µ is a cyclic group of order n. Consider an extension of µ by Γ as a Γ-module

1 // µ ε // E
π // Γ // 1.

Then:

1. when n = 2k with k ≥ 2 and δ ∈ Γ the extension splits if and only if there is
η ∈ π−1(δ) such that η2 = 1.

2. Otherwise it always splits.

1.33. Corollary. Consider n = pk with p prime. Let G be a group, and let µ be
a G-module being a cyclic group of order n, on which G acts via ϕ. Let N = kerϕ,
consider c : N → µ, a G-homomorphism (G acting by conjugacy on N); and
consider the extension defined in 1.13:

1 // µ ιc // Ec
πc // G/N // 1 .

Then:

1. when n = 2k with k ≥ 2 and δ ∈ ϕ(G) the extension splits if and only if for all
g ∈ G such that ϕ(g) = δ, we have c(g2) = 1.

2. Otherwise it always splits.

Proof. As G/N ∼= ϕ(G), say via κ,

1 // µ ιc // Ec
πc // G/N // 1

splits if and only if

1 // µ ιc // Ec
κ◦πc // ϕ(G) // 1

splits. This means that, for our purposes, we can consider G/N = ϕ(G) ⊆ Aut(µ)
and use 1.32.
In the first case, by 1.32, the extension splits if and only if η ∈ π−1

c (δ) of order 2.
Now c : N → µ is an embedding that is also a G-homomorphism. Therefore we can
consider (1.1) restricted to ∆:

1 // N //

c

��

π−1(∆)
π //

ψ

��

∆ //

id

1

1 // µ ιc // π−1
c (∆)

πc // ∆ // 1.
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Surely, if there is g ∈ G such that π(g) = δ and c(g2) = 1 then we can set η = ψ(g)
and we have:

η2 = ψ(g2) = ιc(c(g
2)) = ιc(1) = 1.

Conversely if there is η as wanted, by 1.13, we have a cocycle c̃ : G→ µ extending
c. Moreover, by definition of πc, we ought to have g ∈ G such that πc(ψ(g)) =
π(g) = δ. Clearly, g2 ∈ kerπ = N but we also have that

c(g2) = c̃(g2) = g c̃(g)c̃(g) = c̃(g)−1c̃(g) = 1

because π(g) = δ. Now, for all h ∈ G such that ϕ(h) = δ we have h = gn with
n ∈ N . Therefore:

c(h2) = c(gngn) = gnc̃(gn)c̃(gn) = g c̃(gn)c̃(gn) = c̃(gn)−1c̃(gn) = 1.

The second point is trivial from 1.32. �

5. Transgression

For the reader acquainted with inflation-restriction sequences of cohomology groups,
it may be worth while noticing that, what we have done up to now has a strong
relation with these sequences.
In fact, consider a group G, a G-module µ on which G acts via ϕ and N = kerϕ.
Then the inflation-restriction long exact sequence is

1 // H1(G/N, µ)
Inf // H1(G,µ)

Res // H1(N,µ)
G/N EDBC

GF
Tra

@A
..̂^^^ H2(G/N, µ)

Inf // H2(G,µ) // . . .

where Inf and Res are the usual inflation and restriction morphisms. The arrow
labeled Tra is the transgression homomorphism, which is defined in 3.7 of [4] for
the profinite case (the finite case is easily got from the profinite one). We briefly
give the definition here too.

1.34. Definition. Consider a group G and a normal subgroup N E G. Let ā ∈
H1(N,µ)

G/N
where a is a cocycle in Z1(N,µ). Let σ : G/N → G be a system of

coset representatives. Since ā is G/N invariant, for each γ ∈ G/N there is b(σ(γ))
such that

σ(γ)a(σ(γ)−1hσ(γ))a(h)−1 = hb(σ(γ))σ(γ)−1.

We can define a lift b of a to G in the following manner. Consider an arbitrary
g = hσ(γ) ∈ G (for suitable and unique h ∈ N and γ ∈ G/N , we define

b(g) = a(h) hb(σ(γ)).

The transgression homomorphism sends ā to ϕ̄ ∈ H2(G/N, µN ), where ϕ : G/N ×
G/N → µ is defined to be:

ϕ(γ1, γ2) = b(σ(γ1)) ·σ(γ1) b(σ(γ2)) · b(σ(γ1)σ(γ2))−1.

Using that definition, it can be seen that 1.13 is actually an interpretation of the
transgression homomorphism.

1.35. Proposition. In the same notations of 1.13 , if c : N → µ is a G-homomor-
phism, and c̄ is its cohomology class, then the extension Ec of 1.13 corresponds to
Tra(c̄)−1.
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Proof. On the one hand the extension Ec corresponds to the class of

ϕE(γ1, γ2) = ψ(σ(γ1)σ(γ2)σ(γ1γ2)−1) = c(σ(γ1)σ(γ2)σ(γ1γ2)−1).

On the other hand, the subgroup N is the kernel of the action. This implies that
we can choose b(σ(γ)) = 1 for all γ ∈ G/N . This way we have Tra(c̄) is the class of

ϕ(γ1, γ2) = c(σ(γ1)σ(γ2)σ(γ1γ2)−1)−1.

�



CHAPTER 2

Galois extensions

1. A cohomological point of view on the problem

Consider a field K and n ∈ Z>0. Let L ⊇ K be a finite Galois extension of K such
that the subgroup µ ⊆ L∗ of all n-th roots of 1 has order n. Let G = Gal(L/K),
we have an action ρ : G→ Aut(µ) of G on µ and Autµ ∼= (Z/nZ)∗. Composing ρ
with this last isomorphism we get:

G
ϕ //

ρ
!!DDDDDDDDD (Z/nZ)∗

Autµ

99ttttttttt

In other words for ζ ∈ µ the action is σζ = σ(ζ) = ζϕ(σ). Taking into account this
fact, we can identify Aut(µ) with (Z/nZ)∗ and say that G acts on µ via ϕ.

2.1. Proposition. Consider a field K and n ∈ Z>0. Let L ⊇ K be a finite Galois
extension of K such that the subgroup µ ⊆ L∗ of all n-th roots of 1 has order n.
Let G = Gal(L/K) acting on µ via ϕ as explained above.
Then we have the following equivalences:

1. The extension L is the splitting field of a polynomial of the form xn − a with
a ∈ K if and only if there is a cocycle c ∈ Z1(G,µ) such that

(kerϕ) ∩ (ker c) = {1}.

2. The extension L is the splitting field of a collection of polynomials {xn − ai}i∈I
with ai ∈ K if and only if

C(G,µ) = {1},
where C(G,µ) is the group defined in 1.14

We need the following fact.

2.2. Lemma. There is an isomorphism η : (L∗/K∗)[n]
∼−→ Z1(G,µ) defined by

η(αK∗) : σ 7→ σα
α . Moreover, Gal(L/K(α)) = ker η(αK∗), for all α ∈ L∗ such that

αn ∈ K.

Proof. Clearly, since αn ∈ K∗ then we have that σ(α)
α ∈ µ, while if α′K∗ =

αK∗ hence α′ = kα with k ∈ K∗ so

σ(α′)

α′
=
kσ(α)

kα
.

The formula η(αK∗) : σ 7→ σα
α defines a cocycle. In fact, since G is a group of

automorphisms, for σ, σ′ ∈ G we have

σσ′(α)

α
=
σσ′(α) · σ(α)

σ(α) · α
= η(αK∗)(σ) · σ(η(αK∗)(σ′));

and it is easy to see that η is a group homomorphism. Furthermore η is injective,
because if η(αK∗) ≡ 1 then for all σ ∈ G, it ought to hold σ(α) = α which is

15
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equivalent to say that α ∈ K∗. Finally η is also surjective, in fact by Hilbert’s Satz
90 we have

B1(G,L∗) = Z1(G,L∗) ⊇ Z1(G,µ);

therefore every cocycle c ∈ Z1(G,µ) is indeed a coboundary in B1(G,L∗). Thus,
we have c : σ 7→ σα

α for α ∈ L∗ and σ(α)n = αn which means that αn ∈ K∗.
The last remark is immediately seen writing down explicitly ker η(αK∗) for every
α ∈ E∗ such that αn ∈ K. �

2.3. Proof of 2.1. We notice that:

N = {σ ∈ G|∀ m ∈ µ σ(m) = m} = Gal(L/K(µ)).

As proved in 2.2, the existence of c ∈ Z1(G,µ) with (kerϕ)∩ (ker c) = {1} is equiv-
alent to the existence of α ∈ L∗ with αn ∈ K∗ such that kerϕ∩ ker η(αK∗) = {1}.
Since Gal(L/K(α)) = ker η(αK∗), we have easily that (kerϕ)∩ (ker c) = {1} if and
only if Gal(L/K(µ, α)) = {1}.

For the second case, we notice that L is the splitting field of a collection of
polynomials {xn − ai}i∈I with ai ∈ K, if and only if L is the splitting field of
{xn − αn}α∈{α∈E∗|αn∈K} over K. Now, we have that:

C(G,µ) = Gal(L/K(µ, {α ∈ E∗|αn ∈ K}));

and Gal(L/K(µ, {α ∈ E∗|αn ∈ K})) = {1} if and only if L is the splitting field
over K of {xn − αn}α∈{α∈E∗|αn∈K}.

2. Proof of the main theorem

Let K be a field and n = pk for p a prime number and k ∈ Z>0. Consider L ⊇ K
a finite Galois extension of K such that the subgroup µ ⊆ L∗ of all n-th roots
of 1 has order n. Let ϕ : G → (Z/nZ)∗ be the action of G on µ (as usual we
have identified Aut(µ) with (Z/nZ)∗). We define N = kerϕ = Gal(L/K(µ)). We
have G/N ∼= ϕ(G) ⊆ Aut(µ), therefore all the theory of the previous chapter can
be applied. Moreover, when p = 2 and δ is the inversion in Aut(µ), under our
identification, we have δ = −1 + nZ ∈ Aut(µ). Therefore, as done in the previous
chapter, we write ∆ = 〈δ〉.

2.4. Theorem. Consider a field K and n = pk for p a prime number and k ∈ Z>0.
Let L ⊇ K be a finite Galois extension of K such that the subgroup µ ⊆ L∗ of all n-
th roots of 1 has order n. Let G = Gal(L/K) be acting on µ via ϕ : G→ (Z/nZ)∗.
Define N = kerϕ. Then:

1. The Galois extension L is the splitting field of a polynomial of the form xn − a
with a ∈ K if and only if

i. N is cyclic and its order divides the order of µ;
ii. for all g ∈ G and h ∈ N , we have ghg−1 = hi with (i mod n) = ϕ(g);

iii. in case n = 2k with k ≥ 2 and δ ∈ ϕ(G), we have that for all g ∈ G such
that ϕ(g) = δ, it holds g2 = 1.

2. The Galois extension L is the splitting field of a collection of polynomials

{xn − ai}i∈I
with ai ∈ K if and only if

i. N is abelian and its exponent divides the order of µ;
ii. for all g ∈ G and h ∈ N , we have ghg−1 = hi with (i mod n) = ϕ(g);

iii. in case n = 2k with k ≥ 2 and δ ∈ ϕ(G), we have that for all g ∈ G such
that ϕ(g) = δ, it holds g2 = 1.
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Proof. We notice that i and ii are equivalent to say that there is an embedding
c : N → µ that is also a G-homomorphism. Therefore, 1.16 together with 2.1 tell
us that L is the splitting field of a polynomial of the form xn−a with a ∈ K if and
only if i and ii hold, and the short exact sequence

(2.1) 1 // µ ιc // Ec
πc // G/N // 1 ,

defined by c as in 1.13, splits.
When p is odd or k < 2 or δ /∈ ϕ(G), the sequence (2.1) splits because of 1.33.
Otherwise, by 1.33 and the injectivity of c, we have that (2.1) splits if and only iii
holds.

The second case is very similar. We notice that since L is a finite extension, N
needs to be finite. Therefore, by the Elementary Divisor Theorem we have that
i and ii are equivalent to having an injective G-homomorphism c : N → (µ)r

for some r ∈ Z>0. This is equivalent to having a collection of G-homomorphisms
{ci : N → µ}i∈I such that ⋂

i∈I
ker ci = {1}.

Once again we have that L is the splitting field of a collection of polynomials

{xn − ai}i∈I
if and only if i and ii hold, and each short exact sequence, defined by ci as in 1.13,
splits. However, this is true in all cases but when n = 2k with k ≥ 2 and δ ∈ ϕ(G).
In this case, all short exact sequence split, if and only if for all g ∈ G such that
ϕ(g) = δ we have ci(g

2) = 1, for all i ∈ I. This means that g2 = 1 because the
intersection of all kernels is trivial. �

2.5. Remark. Notice that we have proved the theorem showing that that the three
conditions are equivalent to C(G,µ) = {1}.

Theorem 2.4 gives us an important corollary. We fix n, a power of a prime number
as above. Suppose we are given a field K and a finite Galois extension E of K such
that the subgroup µ ⊆ E∗ of n-th roots of unity has order n. We want to know
which is the largest extension of K generated by n-th radicals of K, contained in
E. The theorem we have proved gives us an important description of the Galois
group of such an extension.

2.6. Corollary. Consider a field K and n = pk for p a prime number and k ∈
Z>0. Let E ⊇ K be a finite Galois extension of K such that the subgroup µn ⊆ E∗
of all n-th roots of 1 has order n. Let G = Gal(E/K), and let ϕ : G→ (Z/nZ)∗ be
the action of G on µn. We define two sets:

S1 = {ghg−1h−i|g ∈ G, h ∈ kerϕ, (i mod n) = ϕ(g)}
S2 = {g2 ∈ G|ϕ(g) = δ}

Let Ln be the largest intermediate field between K and E generated by n-th radicals,
i.e.

Ln = K(α ∈ E∗|αn ∈ K).

Then:

Gal(E/Ln) = C(G,µn) = 〈S1〉 · 〈S2〉.

Proof. Let Cn = C(G,µn). The fact that Gal(E/L) = C(G,µn) is a con-
sequence of 2.2. Let N = kerϕ. We prove that [N,N ] ⊆ Cn, Nn ⊆ Cn. If we
consider g ∈ N then ϕ(g) = 1̄ so [h, h′] = hh′h−1h′−1 ∈ S1 for all h, h′ ∈ N , this
implies that the group generated by all commutators is in the group generated by
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S1, and therefore [N,N ] ⊆ Cn. Moreover we can consider h ∈ N and g = 1, then
ϕ(g) = 1̄, and n+ 1 ≡ 1 mod n. Therefore we can choose i = n+ 1 and we get

ghg−1h−i = h1−i = h−n ∈ S1;

hence Nn ⊆ Cn.
We see that Cn is a normal subgroup of G. Clearly S2 is stable under conjugacy
by elements of G. While 〈S1〉 is normal, in fact for every g, g′ ∈ G and h ∈ N and
i ≡ ϕ(g) mod n, j ≡ ϕ(g′) mod n:

(g′ghg−1g′−1gh−ig′−1)(g′hig′−1(hi)j) = g′gh(g′g)−1hij

and ij ≡ ϕ(gg′) mod n.
The other conditions of 2.4 are satisfied by definition, and the minimality of Hm is
also trivial from 2.4.

�

3. A proposition in Neukirch’s book

We promised to correct a theorem in [3]. Let k ∈ Z>0 and p be a prime number,
consider K a field. We shall write µpk for the group of pk-th roots of unity in an

algebraic closure K̄.
The wrong statement is the following. Let p be a prime, k ∈ Z>0, and let K be
any field with charK 6= p. Let G = Gal(K(µpk)/K). Then the group

Ĥi(G,µpk) = {1} for all i ∈ Z,

except when p = 2, k ≥ 2, char(K) = 0 and K ∩Q(µ2k) is real. In this exceptional

case Ĥi(G,µ2k) has order 2 for all i ∈ Z.

Now, consider K of charK = q 6= 0. We denote with Fq the finite field with q
elements. Using the fundamental theorem of Galois theory, it can be seen that the
restriction induces an isomorphism

Gal(K(µ2k)/K) ∼= Gal(Fq(µ2k)/K ∩ Fq).

Therefore Gal(K(µ2k)/K) ≤ Gal(Fq(µ2k)/Fq) = 〈q〉 where q is the Frobenius au-
tomorphism: q : a 7→ aq for all a ∈ Fq(µ2k). Hence in the case of p = 2 and positive
characteristic, the two conditions q ≡ −1 mod 2k and µ2k * K are equivalent to
say that Gal(K(µ2k/K) ⊆ Aut(µ) is generated by −1 : ζ 7→ ζ−1 for all ζ ∈ µ.
Statement here above implies that cohomology ought to be trivial, but a simple
computation based on 1.23 tells us that Ĥi(G,µpk) has order 2. Here it is a correct
version of the aforestated proposition.

2.7. Proposition. Let p be a prime, k ∈ Z>0, and let K be any field with charK 6=
p. Let G = Gal(K(µpk)/K). Then the group

Ĥi(G,µpk) = {1} for all i ∈ Z,

except when p = 2, k ≥ 2, and

• either char(K) = 0 and K ∩Q(µ2k) is real;
• or char(K) ≡ −1 mod 2k and µ2k * K .

In these exceptional cases Ĥi(G,µpk) has order 2 for all i ∈ Z.
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4. Non prime-power radicals

What we have done up to now referred only to the case of prime-powers radicals.
However 2.6 allows us to make a step into the case of general n.
As usual, we have our base field K, and a finite Galois extension E with the
property that the n-th roots of 1 contained in E are n, where this time n ∈ Z>1.
We factor n into pairwise-coprime prime powers, let P be the set of prime divisors
of n; then we write n =

∏
p∈P p

ep . It is clear that α ∈ E is an n-th radical if and

only if α =
∏
p∈S⊆Q αp, with αp being a pep -th radical of K for all p ∈ S. This

means that the largest intermediate field generated by n-th radicals is the join of
all largest intermediate fields generated by pep -th radicals. This immediately gives
us the following.

2.8. Theorem. Let n ∈ Z>1. Consider a field K and finite Galois extension E ⊇ K
such that the subgroup µn ⊆ L∗ of all n-th roots of 1 has order n . Let M be defined
as above. For each m ∈ M consider µm the group of m-th roots of unity in E.
Then, the largest intermediate field L generated by n-th radicals of K, has Galois
group:

Gal(E/L) = C(G,µ) =
⋂
m∈M

C(G,µm) .

5. Infinite Galois extension

What we have seen up to now concerns only finite Galois extensions; we shall now
drop the finiteness hypothesis.

2.9. Definition. Let G,N be topological groups. A continuous left action of G
on N is a group homomorphism ϕ : G→ Aut(N), such that the map G×N → N
defined by

(g, n) 7→ ϕ(g)(n)

is continuous.
In this situation, we also say that G acts continuously on N , and for all g ∈ G and
n ∈ N , we write

gn = ϕ(g)(n).

2.10. Remark. If N is Hausdorff, the kernel of a continuous action is a closed
subgroup because we have

kerϕ =
⋂
n∈N
{g ∈ G| gn = n}.

That is, kerϕ is an intersection of closed subgroups, and therefore closed.

2.11. Definition. Let G be a topological group. A continuous G-module µ is a
topologigal abelian group µ toghether with a continuous action of G on µ.

2.12. Definition. Let G and µ be two profinite groups with G acting on µ. We
define Z1

C(G,µ) to be the set of all continuous cocycles G → µ. As for the finite
case, when mu is abelian Z1

C(G,µ) is a group with the pointwise multiplication.

2.13. Definition. Let G be a profinite group and let µ be a continuous G-module.
We define:

CC(G,µ) =
⋂

q∈Z1
C(G,µ)

ker q

If G is a profinite group and µ is a continuous G-module then µoG endowed with
the product topology is a profinite group too. In the following, it is intended that
all finite groups are equipped with the discrete topology. We can prove an analogue
of 1.13.
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2.14. Lemma. Let G be a profinite group and let N be a closed normal subgroup
of G. Consider a finite G-module µ . Let c : N → µN be a G-homomorphism (G
acting continuously by conjugacy on N). Then:

Hc = {(c(x), x−1)|x ∈ N}

is a closed normal subgroup of µN oG.

Proof. The map:

fc : N // µN oG

x � // (c(x)−1, x)

is a continuous homomorphism, so Hc is a closed subgroup because it is image of
a compact group N through fc which is continuous. The proof of the fact Hc is
normal descends from 1.12. �

2.15. Proposition. Let G be a profinite group and let µ be a finite G-module on
which G acts continuously via ϕ. Consider N = kerϕ, and let c : N → µ be a
continuous G-homomorphism (G acting continuosly by conjugacy on N). Consider
Hc = {(c(x), x−1)|x ∈ N}, and define

Ec =
µoG

Hc
.

Then we have:

1. There are continuous group homomorphisms: ιc : µ → Ec and πc : Ec → G/N
defined by

ιc : m 7→ (m, 1)Hc πc : [(m, g)] 7→ gN

and ψ : G→ Ec defined by

ψ : x 7→ [(1, x)] = (1, x)Hc

such that in the diagram

(2.2)

1 // N //

c

��

G
π //

ψ

��

G/N //

id

1

1 // µ ιc // Ec
πc // G/N // 1

all squares are commutative and the bottom row is a short exact sequence.
2. The bottom row splits if and only if c extends to a continuous cocycle

c̃ : G −→ µ.

Proof. The bottom row is a short exact sequence by 1.13. All groups ap-
pearing in the bottom row are finite, because µ and G/N are finite by hypothesis.
Therefore πc and ιc are continuous too. The proof that ψ is continuous depends on
the fact that ψ factors through an embedding and a projection modulo the normal
subgroup Hc, which is closed, as 2.14 proves.
The rest is proved similarly to 1.13 using continuous maps. �

Thanks to this proposition we can prove the following.

2.16. Lemma. Let G be a profinite group and let µ be a finite G-module on which
G acts continuously via ϕ. Define N = kerϕ and consider G acting by conjugacy
on it. For c ∈ HomG(N,µ) continuous consider Ec as described in 2.15. Then we
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have that for q ∈ Z1
C(G,µ) the restriction q|N is a continuous G-homomorphism,

and

CC(G,µ) =
⋂

c∈HomG(N,µ)
continuous
Ec splits

ker c.

As done before we can now switch to field theory. Consider a field K and n ∈ Z>1.
We shall consider a Galois extension L ⊇ K such that the subgroup µ ⊆ L∗ of n-th
roots of unity has order n. In this setting, we shall write G = Gal(L/K); thus we
will have a continuous action of G on µ that we shall call ϕ. As before we have to
find out the correspondence between n-th radicals and cocycles G → N . This is
done with the following.

2.17. Lemma. Let K be a field and n ∈ Z>1. Consider L a Galois extension of K
such that charK - n. Then, there is an isomorphism η : (L∗/K∗)[n]

∼−→ Z1
C(G,µ)

defined by η(αK∗) : σ 7→ σα
α . Moreover, Gal(L/K(α)) = ker η(αK∗) for α ∈ E∗

such that αN ∈ K.

Proof. The proof is the same as 2.2 except that we use the version of Hilbert’s
90 for infinite Galois extensions (Theorem 3.18 in [4]). �

Now it is immediate to see the following.

2.18. Proposition. Consider a field K and n ∈ Z>0. Let L ⊇ K be a Galois
extension of K such that the subgroup µ ⊆ L∗ of all n-th roots of 1 has order n.
Let G = Gal(L/K) acting continuously on µ via ϕ. Then, the extension L is the
splitting field of a collection of polynomials {xn − ai}i∈I with ai ∈ K if and only if

CC(G,µ) = {1}.

Now we restrict to the case of n = pk for p prime and k ∈ Z>0. We shall consider
a Galois extension L ⊇ K such that the subgroup µ ⊆ L∗ of n-th roots of unity
has order n. In this setting, we shall write N = Gal(L/K(µ)) = kerϕ. We identify
Aut(µ) and (Z/nZ)∗. Thus G/N ∼= ϕ(G) ⊆ Aut(µ) and hence 2.15 can be applied.

As before, we define δ = −1 + nZ ∈ Aut(µ). Furthermore the groups Ĥi(G/N, µ)
have already been calculated so the conditions for Ec are the same seen in 1.32.

2.19. Theorem. Consider a field K and n = pk for p a prime number and k ∈ Z>0.
Let L ⊇ K be a Galois extension of K such that the subgroup µ ⊆ L∗ of all n-
th roots of 1 has order n. Let G = Gal(L/K) be acting continuously on µ via
ϕ : G→ (Z/nZ)∗. Define N = kerϕ. Then, the Galois extension L is the splitting
field of a collection of polynomials

{xn − ai}i∈I

with ai ∈ K if and only if

i. N is abelian and its exponent divides the order of µ,
ii. for all g ∈ G and h ∈ N , we have ghg−1 = hi with (i mod n) = ϕ(g);

iii. in case n = 2k with k ≥ 2 and δ ∈ ϕ(G), we have an element σ ∈ G such
that ϕ(σ) = δ and σ2 = 1.

Proof. Again we try to prove that CC(G,µ) = {1} if and only if the three
conditions hold. The fact that CC(G,µ) = {1} implies i, ii and iii is because
[N,N ] ∪Nn ⊆ CC(G,µ) and because of 2.16.
Conversely the three conditions imply that for each x ∈ N there is a continuous
G-homomorphism c : N → µ such that Ec of 2.15 splits and c(x) 6= 1̄. In fact, we
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are assuming that N is profinite abelian and of exponent dividing n, this implies
that ⋂

U open normal
subgroup

U = {1}.

This implies that for every x ∈ N there is U open normal subgroup such that x /∈ U .
Hence we have N/U finite, abelian and of exponent dividing n and for h̄ ∈ N/U ,
g ∈ G and for (i mod n) = ϕ(g) we have

gh̄g−1 = h̄i.

Therefore there is a G-homomorphism c̄ : N/U → µ such that c̄(xU) 6= 1̄. Consider
the projection π : N → N/U , we can define c as follows:

N
c //

π
!!DDDDDDDD
µ

N/U

c̄

OO .

The function just defined is a G-homomorphism because c̄ is a G-homomorphism,
it is continuous because π is continuous and Ec splits because of iii. Moreover
c(x) = c̄(xU) 6= 1̄. �

And as before we get the following corollary.

2.20. Corollary. Consider a field K and n = pk for p a prime number and
k ∈ Z>0. Let E ⊇ K be a Galois extension of K such that the subgroup µn ⊆ E∗

of all n-th roots of 1 has order n. Let G = Gal(E/K), and ϕ : G → (Z/nZ)∗ the
action of G on µn. We define two sets:

S1 = {ghg−1h−i|g ∈ G, h ∈ kerϕ, (i mod n) = ϕ(g)},
S2 = {g2 ∈ G|ϕ(g) = δ}.

Let Ln be the largest intermediate field between K and E generated by n-th radicals
of K, i.e.

Ln = K(α ∈ E∗|αn ∈ K).

Then:
Gal(E/Ln) = CC(G,µn) = clG(〈S1〉 · 〈S2〉),

the closure of 〈S1〉 · 〈S2〉.
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