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Introduction

The Atiyah-Singer index formula equates a purely analytical property of an
elliptic differential operator P (resp. elliptic complex E) on a compact manifold
called the analytic index inda(P ) (resp. inda(E)) with a purely topological prop-
erty, the topological index indt(P )(resp. indt(E)) and has been one of the most
significant single results in late twentieth century pure mathematics. It was an-
nounced by Michael Atiyah and Isadore Singer in 1963, with a sketch of a proof
using cohomological methods. Between 1968 and 1971, they published a series of
papers1 in which they proved the formula using topological K-theory, as well as
filling in the details of the original proof.

The history of the Atiyah-Singer index formula reads as a“Who’s Who” in twen-
tieth century topology and analysis. The formula can be seen as the culmination
of a project of generalisation of index theorems that began in the mid 1800’s with
the Riemann-Roch theorem (and the Gauss-Bonnet theorem), and which involved
many of the greatest names in topology and analysis of the last 150 years. It is
an achievement for which Atiyah and Singer were awarded the Abel Prize in 2004.
The significance of their formula reaches beyond the fields of differential topology
and functional analysis: it is also fundamental in much contemporary theoretical
physics, most notably string theory.

For the purpose of this paper however, the only results which we shall consider
are the classical Riemann-Roch theorem (1864), the Hirzebruch-Riemann-Roch the-
orem (1954), and the Atiyah-Singer index formula (1963). In fact, we will only really
look at the latter two in the context of being direct generalisations of the classical
Riemann-Roch theorem.

The (classical) Riemann-Roch theorem, proved as an equality in 1864, links
analytic properties of certain objects called divisors on compact Riemann surfaces,
with topological properties of holomorphic line bundles defined in terms of the
divisors. Though the terms involved will only be properly defined later in this
paper, it is convenient, nonetheless, to state the theorem here.

Let X be a compact Riemann surface and D a divisor on X, that is, a function
D : X → Z with discrete support. Then the Riemann-Roch theorem states that

(0.1) h0(X,OD)− h1(X,OD) = 1− g + deg(D).

Here h0(X,OD) is the dimension of the space of meromorphic functions f such
that, for all x ∈ X, ord x(f) ≥ −D(x), where ord x(f) = n if f has a zero of order
n or a pole of order −n at x, and h1(X,OD) is the dimension of another space of
meromorphic functions also with only certain prescribed poles and zeroes (we will
discuss this in detail in chapter 3). The degree, deg(D), of the divisor D is the sum

1The index of elliptic operators: I-V. (Paper II from 1968 is authored by Atiyah and Segal,
rather than Atiyah and Singer.) [AS1, AS2, AS3, AS4, AS5].
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6 INTRODUCTION

of its values over X. Since X is compact, the support of D is finite and so deg(D)
is well-defined. Finally g denotes the genus of the surface X. It is clear that these
are all integral values.

The left hand side of equation (0.1) can be described in terms which depend
on the holomorphic structure of certain line bundles on X, whilst we shall see that
the right hand side depends only on the topology of these bundles.

There is a natural equivalence relation on the space of divisors of a Riemann
surface X and it will be shown that there is a one to one correspondence between
equivalence classes of divisors on X and isomorphism classes of line bundles on X.
(This will be described in chapter 3.)

The Riemann-Roch theorem provides the conditions for the existence of mero-
morphic functions with prescribed zeroes and poles on a compact Riemann surface.
Its significance did not go unnoticed and its implications were studied by many of
the greatest names in topology and analysis (even including Weierstrass). Interest-
ingly it was initially regarded fundamentally as a theorem of analysis and not of
topology.

It was not until 1954, nearly a century after its original discovery, that Hirze-
bruch found the first succesful generalisation of the Riemann-Roch theorem to
holomorphic vector bundles of any rank on compact complex manifolds of any di-
mension.2 This came a few months after J.P Serre’s 1953 discovery of what is now
known as Serre duality, which provides a powerful tool for calculation with the
Riemann-Roch theorem, but also deep insights into the concepts involved. Serre
had applied sheaf theory to the Riemann-Roch theorem and Hirzebruch also used
these newly emerging methods of topology to find techniques suitable for the project
of generalisation. The so-called Hirzebruch-Riemann-Roch theorem says that the
Euler characteristic χ(E) of a holomorphic vector bundle E on a compact complex
manifold X is equal to its T-characteristic T (E). We will define these terms in
chapters 3 and 4. Of significance here is that, in the case that the X has dimension
1 and E rank 1, if D is the divisor that corresponds to E, then the Euler charac-
teristic χ(E) is equal to the left hand side of equation (0.1) and T (E) is equal to
the right hand side of (0.1).

After Hirzebruch’s theorem, progress to the Atiyah-Singer index formula was
very swift indeed. Grothendieck discovered the Grothendieck-Riemann-Roch theo-
rem around 19563, and the Atiyah-Singer index formula was published in its com-
plete form in 1964.

The Atiyah-Singer index formula is a direct generalisation of the Hirzebruch-
Riemann-Roch theorem since we can assosciate a certain elliptic complex ∂(E) with
any holomorphic vector bundle E on a compact complex manifold X, and it can
be shown that χ(E) = inda(∂(E)) and T (E) = indt(∂(E)).

In this paper, we will show how the original Riemann-Roch theorem, formu-
lated for divisors on compact Riemann surfaces, is a special case of the Hirzebruch-
Riemann-Roch Theorem and the Atiyah-Singer index formula. The paper does not
set out to prove any of these theorems. One of the most striking features of the

2 These results can be found in [Hi], originally published as Neue topologische Methoden in

der algebraischen Geometrie in 1956.
3Grothendieck had originally wished to wait with publishing a proof. With Grothendieck’s

permission, a proof was first published by Borel and Serre [BS] in 1958.
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Atiyah-Singer index formula, and a good illustration of the depth and signifcance
of the result, is that it admits proofs by many different methods, from the initial
cohomology and K-theory proofs, to proofs using the heat equation. We will limit
ourselves here to a cohomological formulation of the formula since this is the most
natural choice when dealing with the Riemann-Roch theorem. However it is per-
haps worth mentioning that the K-theoretic formulation lends itself best to a more
general exposition on the Atiyah-Singer index formula.

The paper begins with two purely expository chapters. Chapter 1 sets out
the basic definitions and notations concerning vector bundles, sheaves and sheaf
cohomology which will be used throughout the paper. Most proofs will not be
given. In chapter 2, elliptic differential operators, complexes and the analytic index
of an elliptic complex will be defined and a number of examples will be given.

The substantial part of the paper begins in chapter 3. Divisors on a Riemann
surface X are defined and the Riemann-Roch theorem is stated in terms of divisors.
By constructing a holomorphic line bundle L = LD on X, associated with the
divisor D, it is then shown that the left hand side of the Riemann-Roch equation
(0.1) can be interpreted as a special case of the analytic index of an elliptic operator.
Finally we show that this also corresponds to the Euler characteristic χ(L) of L on
a Riemann surface.

In chapter 4, we turn to the right hand side of the Riemann-Roch equation
(0.1) and show that this can be described in terms of purely topological properties
of the surface X and the bundle L = LD. To this end we also define the first
Chern classes for the line bundles LD over X. However, the formulation we obtain
for the right hand side of the equation (0.1) is not yet the formulation for the
topological index, indt, of the Atiyah-Singer index formula or the T-characteristic
of the Hirzebruch-Riemann-Roch theorem.

Chapter 5 provides the first step in this further path of generalisation. We show
how the Chern classes defined in the previous chapter as topological quantities of
holomorphic line bundles over Riemann surfaces, can be generalised to properties of
rank r holomorphic bundles over compact complex manifolds of higher dimension n.
We then define a number of topological objects on vector bundles which are needed
in the description of the T-characteristic and the topological index. Most proofs
will be omitted from these expository sections. This information leaves us in a
position to show that the right hand side of the Riemann-Roch equality (0.1) is a
special case of the T-characteristic of a holomorphic bundle over a compact complex
manifold. We will therefore have shown that the classiscal Riemann-Roch theorem
is a special case of the Hirzebruch-Riemann-Roch theorem.

In the final chapter 6 it remains to show how, in the case of a holomorphic
line bundle L over a compact complex Riemann surface X, the T-characteristic of
L is equal to the topological index of L. In doing so we complete the proof that
the classical Riemann-Roch theorem is a special case of the Atiyah-Singer index
formula.

Unfortunately, there is not space in this paper to show the more general result
that the Hirzebruch-Riemann-Roch theorem for higher dimensions is implied by the
Atiyah-Singer index formula. However, in the appendix we shall briefly describe
some steps that are necessary for doing this.





CHAPTER 1

Review of Basic Material

This chapter serves to review the some of the basic concepts and to establish
the notation that we will be using in the rest of the paper. Most proofs of the
results will not be included. The books [We], [Fo], [Hi] are excellent sources for
this material.

Throughout the paper we will assume that the base manifold X is paracompact
and connected.

1. Vector bundles

1.1. Vector bundles, trivialisations, frames and forms. Familiarity with
vector bundles is assumed in this paper. The purpose of this section is not to in-
troduce new material but to establish the notation and conventions for the rest of
the paper.

In the following, the field K can be R or C. Let U be an open subset of Kn.
We will use the following notation:

• C(U) refers to the collection of K-valued continuous functions on U .
• E(U) refers to the collection of K-valued differentiable functions on U .
• O(U) refers to the collection of C-valued holomorphic functions on U .

In general we will refer to S- functions and S-structures where S = C, E ,O.
In this paper we will be dealing with manifolds with real differentiable and

complex analytic (holomorphic) structures. That is, manifolds such that the tran-
sition (change of chart) functions are real differentiable or holomorphic. We will
call these E-, and O- manifolds respectively.

Definition 1.1. Let E, X be Hausdorff spaces and π : E → X be a continuous
surjection. π : E → X is called a K- vector bundle of rank r over the base space
X with total space E if

(1) There exists an open cover U = {Ui}i∈I of X and, for all i ∈ I, there
exists a homeomorphism ϕi : π−1(Ui) → Ui ×Kr such that

ϕi(Ex) = {x} ×Kr, for all x ∈ Ui

where Ex := π−1(x) is the fibre of E over x.
For x ∈ Ui, (Ui, ϕi) is called a local trivialisation of π : E → X at x.

A local trivialisation of E over X is a collection {(Ui, ϕi)i∈I}.
(2) For all i, j ∈ I we define the transition function gi,j := ϕi◦ϕ−1

j |(Ui∩Uj)×Kr .
Then, for all x ∈ Ui ∩ Uj, the map

Kr ∼= {x} ×Kr gi,j−−−→ {x} ×Kr ∼= Kr

9



10 1. REVIEW OF BASIC MATERIAL

is a linear isomorphism.
We usually simply say that E is a vector bundle over X and rkE = r.

Remark 1.2. For x ∈ Ui, identifying the fibre Ex with Kr ∼= {x} × Kr via
ϕi gives Ex the structure of an r-dimensional K-vector space. By (2), this is
independent of the choice of i ∈ I with x ∈ Ui.

Definition 1.3. For S = E ,O, a vector bundle E over X is an S-bundle if E
and X are S-manifolds, π : E → X is an S-morphism, and the local trivialisations
are S- isomorphisms. It is easily seen that this last condition is equivalent to the
transition functions being S-morphisms.

Remark 1.4. Note that the definitions imply that, if π : E → X is an S- bundle
over X with local trivialisation {(Ui, ϕi)i} relative to some cover U = {Ui}i, then, if
{φi : Ui → GL(n,K)}i are S-maps on Ui, {(Ui, φi ·ϕi)}i is also a local trivialisation
for E.

We calculate the transition functions {g′i,j}i,j for E relative to {(Ui, ϕ
′
i)}i, in

terms of the transition functions {gi,j}i,j for E relative to {(Ui, ϕi)}i:
By definition

gi,j = ϕi ◦ ϕ−1
j , on Ui ∩ Uj

so
g′i,j = ϕ′i ◦ ϕ

′−1
j = (φi ◦ ϕi) ◦ (ϕ

′−1
j ◦ φ−1

j ) = φigi,jφ
−1
j , on Ui ∩ Uj .

Example 1.5. The complex projective line CP1 is a compact Riemann surface.
A point in CP1 can be specified in homogeneous coordinates [z0 : z1] where zo, z1 ∈
C and z0 and z1 are not both zero. Then

[z0 : z1] = [z′0 : z′1] if [z′0 : z′1] = [λz0 : λz1], λ ∈ C∗.
(C∗ denotes the non-zero complex numbers.)

We view CP1 as the space of complex lines l in C2 which go through the origin
and define OCP1(−1) as the submanifold of CP1 × C2 given by

OCP1(−1) = {(l, p) : p ∈ l} = {([z0 : z1], (λz0, λz1)) : λ ∈ C} ⊂ CP1 × C2.

Now, CP1 = U0 ∪ U1 where, for i = 0, 1, Ui is the open set given by

Ui := {[z0 : z1] ∈ CP1 : zi 6= 0}.
We wish to show that π : OCP1(−1) → X (where π(l, p) = l) is a holomorphic line
bundle over CP1:

Local trivialisations ϕi : π−1(Ui) → Ui × C, i = 0, 1 are given by

ϕ0 : ([1 : z], (λ, λz)) 7→ ([1 : z], λ)

and
ϕ1 : ([w : 1], (µw, µ)) 7→ ([w : 1], µ) .

So, on U0 ∩ U1, [w : 1] = [1 : z] and therefore w = 1
z .

We calculate the transition functions relative to U0 and U1.

g0,1 = ϕ0 ◦ ϕ−1
1 |(U0∩U1)×C : ([1 : z]), µ) 7→

(
[1 : z], (

µ

z
, µ)
)
7→
(
[1 : z],

µ

z

)
.

Since z is non-zero on U0 ∩ U1, g0,1|(U0∩U1)×C) is clearly holomorphic. As a
map, g0,1 : U0 ∩ U1 → GL(1,C) = C∗,

g0,1([z0 : z1]) =
z0
z1

( so g0,1([1 : z]) =
1
z
).
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It is easy to check that g1,0 = g−1
0,1 : ([w : 1]), λ) 7→

(
[w : 1], λ

w

)
, and so

g1,0([z0 : z1]) =
z1
z0

: U0 ∩ U1 → GL(1,C).

Definition 1.6. Let E and F be K-vector bundles over X. A map

f : E → F

is a vector bundle homomorphism if it preserves fibres and fx = f |Ex
is a K-linear

map for every x ∈ X. Two S- bundles are isomorphic if there is an S-isomorphism

f : E → F

which is a K vector space isomorphism on the fibres of E.

Proposition 1.7. For S = E ,O, given a covering {Ui}i of a manifold X and
non-vanishing S-functions gi,j : Ui∩Uj → GL(r,K) such that for all i, j, k and for
all x ∈ Ui ∩ Uj ∩ Uk,

gi,j(x)gj,k(x) = gi,k(x)
we can construct an S-bundle π : E → X which has transtion functions {gi,j}i,j

with respect to the covering {Ui}i. The bundle E is unique up to isomorphism.

Proof. For an outline of this construction see [We, 13-14] .
�

Definition 1.8. A (local) section of a vector bundle π : E → X is a map from
X (or an open subset U of X) to E such that π ◦ s = id X (resp. id U ). We denote
the S-sections of E over X by S(E) := S(X,E). The collection of S-sections of E
over an open subspace U ⊂ X is denoted by S(U,E). The S-sections of a vector
bundle E, defined by {Ui}i and {gi,j}i,j are given by S-functions fi : Ui → Kr such
that

fi = gi,jfj , on Ui ∩ Uj .

When E is the trivial line bundle X × C, we write S := S(X × C).
Finally, a meromorphic section f of a holomorphic line bundle L over a holo-

morphic manifold X is, relative to a trivialisation {Ui}i, a collection of meromor-
phic functions fi : Ui → C such that

fi = gi,jfj , on Ui ∩ Uj .

The space of meromorphic sections of a line bunle L→ X is denoted by M(L).

Definition 1.9. A frame at x ∈ X for a bundle E → X is an ordered basis
for Ex.

Since there is a locally trivialising neighbourhood Ux for E, it is clear that we
can extend this and define a frame for E above Ux as an ordered set of sections
f = (fi)i of E over Ux such that, for each y ∈ Ux, (fi(y))i is an ordered basis for
Ey. A frame over Ux is an S-frame if the sections are S-sections

Remark 1.10. A frame for E on U ⊂ X defines in a natural way a local
trivialisation of π : E → X and vice versa.

Namely, let f = (fi)i be a frame for E over U . We wish to construct a local
trivialisation ϕ : π−1(U) ∼−→ U ×Kr. Given e ∈ Ex, x ∈ X, e =

∑r
i=1 λi(x)fi(x)

where λi : U → K is an S- function. We define

ϕ(e) = (λi(x), . . . , λr(x)).
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It is easily checked that this is an S-isomorphism.
Conversely, given a trivialisation ϕ : π−1(U) ∼−→ U × Kr, we can define an

S-frame f = (fi)i over U by

fi(x) := ϕ−1(x, ei)

with (e1, . . . , er) an ordered basis for Kr.

Definition 1.11. A vector field V on X is a continuous section of the tangent
bundle TX of X.

If E is a vector bundle over X, then ∧pE denotes the bundle of p-vectors with
coefficients in E. That is, for x ∈ X, the fibre ∧pEx of ∧pE over x consists of
K-linear combinations of elements of the form v1 ∧ · · · ∧ vp with v1, . . . , vp ∈ Ex,
where ∧ denotes the exterior product in the exterior algebra

∧
Ex of Ex.

For, S = C, E ,O, let Sk(E) denote the S- k-forms of X with coefficients in E.
That is

Sk(E) := S(E ⊗ ∧kT ∗X)

where T ∗X is the (real) cotangent bundle of X.
(When E,X are complex, E ⊗ ∧kT ∗X := E ⊗C ∧kT ∗X.)
If X is a complex manifold with basis of local coordinates (z1, . . . , zn), then

(dz1, . . . , dzn) is a local frame for T, the holomorphic cotangent bundle of X. T is
defined as the bundle for which (dz1, . . . , dzn) is a local frame.

We denote by Ep,q(E) the differentiable (p, q)-forms of X with coefficients in
E. That is

(1.1) Ep,q(E) := E(E ⊗ ∧pT⊗ ∧qT).

We have

(1.2) Ep(E) =
⊕

q+r=p

Eq,r(E).

When E = X × C, we will often write simply Eq,r := Eq,r(X × C).

1.2. Metrics on a vector bundle.

Definition 1.12. Let E be a real differentiable vector bundle over a real differ-
entiable manifold X. A (bundle) metric on E is an assignment of an inner product
gx on every fibre Ex such that such that for any open set U ⊂ X and sections ξ, η
of E over U , g(ξ, η) is smooth on U .

Using a trivialisation and a partition of unity, it is easy to see that

Proposition 1.13. A vector bundle E over a paracompact differentiable man-
ifold X admits a metric.

Since all base spaces in this paper are paracompact, all bundles will be metris-
able (admit a metric).

Definition 1.14. If E → X is a complex vector bundle over a manifold X
then a Hermitian metric on E is the assignment of a Hermitian inner product hx

on every fibre Ex such that for any open set U ⊂ X and sections ξ, η of E over U ,
h(ξ, η) is smooth on U .
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Given a Hermitian bundle (E, h) of rank r over X and a set of local frames
f = {f i}i where f i = (f i

1, . . . , f
i
r) for E, we can define the function matrix

(1.3) h(f i) := (hi(f i
β , f

i
α))α,β , h(f i

β , f
i
α) : Ui → GL(r,C).

Then
h(f j) = (hj(gj,if

i
β , gj,if

i
α))α,β = gi,j

thi(f i)gj,i.

Remark 1.15. The above implies that for a line bundle L over a Riemann
Surface X, defined in terms of a covering U = {Ui}i and transition functions
{gi,j}i,j , a Hermitian metric h on L is therefore entirely defined by a collection
of positive functions λ = {λi : Ui → R+}. Namely let fi be a holomorphic frame
for L over Ui. Then hi is completely determined by λi := hi(fi, fi) > 0 which is a
continuous positive valued function on Ui.

So a Hermitian metric on L is uniquely determined by a collection of positive
functions λi on Ui such that λj = gi,jgi,jλi on Ui ∩ Uj .

Proposition 1.16. If E → X is a smooth complex vector bundle over a com-
plex manifold X, E admits a Hermitian metric.

Proof. [We, 68]. �

Example 1.17. Let π : OCP1(−1) → CP1 be as in example 1.1.5. We wish to
define a Hermitian metric h on CP1. If z is a local coordinate on CP1, the standard
Hermitian metric on CP1 × C2 → CP1 is given by

| (l, (α, β)) |2 = |α|2 + |β|2, l ∈ CP1, α, β ∈ C.

Since OCP1(−1) ⊂ CP1×C2, we can take the restriction of this metric to OCP1(−1).
Then, if CP1 = U0 ∪ U1 as in example 1.1.5, on U0 we have

| ([1 : z], (1, z)) |2 = 1 + |z|2,

and on U1 we have
| ([w : 1], (w, 1)) |2 = 1 + |w|2.

On U0 ∩ U1, with w = 1
z ,

1 + |w|2 = 1 +
∣∣∣∣1z
∣∣∣∣2 =

1
|z|2

∣∣1 + |z|2
∣∣ = g0,1g0,1

(
1 + |z|2

)
.

So, the restriction of the standard metric on CP1×C2 is indeed a Hermitian metric
for OCP1(−1).

(In the notation of remark 1.1.15, we have λ0[1 : z] = 1 + |z|2 on U0 and
λ1[w : 1] = 1 + |w|2 on U1.)

Remark 1.18. A Hermitian metric h on a complex bundle E → X induces a
metric g on the underlying real vector bundle. Define

g := Reh =
1
2
(h+ h).

Then g is positive definite, symmetric, bilinear and real valued.

Definition 1.19. If π : E → X is a bundle, the dual bundle π∗ : E∗ → X
is the bundle with fibres E∗x := (Ex)∗ for all x ∈ X. A choice of metric g on E
induces an isomorphism E → E∗ : ξ 7→ g(ξ, ·).
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Proposition 1.20. If a vector bundle E on X has transition functions
gi,j ∈ S(Ui ∩ Uj ,GL(n,K)) with respect to a given covering, the dual bundle E∗

has transtion functions (gj,i)−1.

Proof. This is a simple exercise in linear algebra. �

Proposition 1.21. Every complex vector bundle E over a complex manifold
X can be described by unitary transition functions.

Proof. Let h be a Hermitian metric on E and {f i}i a collection of frames for
E. We can apply Gram-Schmidt orthonormalisation to each h(f i). The transition
maps so obtained are then unitary. �

Proposition 1.22. If π : E → X is a complex bundle with Hermitian metric
h, then

E ∼= E
∗
.

Proof. By the previous proposition, E can be described by unitary transition
functions gi,j with respect to a given covering. We have seen, in proposition 1.1.20,
that E∗ has transition functions (gj,i)−1, but since gi,j(x) ∈ U(n) for all x ∈ Ui∩Uj ,
(gj,i)−1 = gi,j .

In other words E∗ ∼= E and we are done. �

1.3. Complexification and almost complex structures. We wish to be
able to move from complex vector bundles to the underlying real vector bundle and
conversely to define (almost) complex structures on even dimensional real bundles.

The map ψ : GL(n,C) → GL(2n,R) is the embedding obtained by regarding a
linear map of Cq with coordinates z1, . . . , zq as a linear map of R2q with coordinates
x1, . . . , x2q where zk = x2k−1 + ix2k.

The map υ : GL(n,R) → GL(n,C) is the complexification map, that is the
embedding obtained by regarding a matrix of real coefficients as a matrix of complex
coefficients.

We have the following commutative diagrams of embeddings:

(1.4)

U(n)
ψ - O(2n)

GL(n,C)
?

ψ
- GL(2n,R)

?

(1.5)

O(n)
υ - U(n)

GL(n,R)
?

υ
- GL(n,C)

?

where in both diagrams the vertical arrows are simply inclusion.
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If X is a compact complex manifold, we can extend the maps υ and ψ to maps
of vector bundles over X.

Lemma 1.23. There is an automorphism Φ of U(2q) such that, for A ∈ U(q),
Φ(υ ◦ ψ(A)) ∈ U(2q) has the form (

A 0
0 A

)
,

up to a permutation of coordinates. Similarly, if B ∈ O(q), then, up to a permuta-
tion of coordinates, ψ ◦ υ(B) ∈ O(2q) has the form(

B 0
0 B

)
.

Proof. (N.B. In this proof, we will not consider the permutations of coordi-
nates. However, this does become relevant when considering the orientation of the
spaces.)

ψ(A) =
(

Re A − Im A
Im A Re A

)
∈ O(2n).

For M ∈ U(2n), let

Φ(M) =
1
2

(
1 i
i 1

)
M

(
1 −i
−i 1

)
.

This is clearly an automorphism and it is easily checked that it is the desired map
Φ : U(2n) → U(2n).

We regard B ∈ O(n) as an element B = υB of U(n). For M ∈ U(n),

ψ(M) =
(

Re M − Im M
Im M Re M

)
∈ O(2n).

Since B is real

ψ ◦ υ(B) =
(
B 0
0 B

)
.

�

Proposition 1.24. If E → X is a complex bundle described by unitary tran-
sition functions, (ψ ◦ υ)(E) ∼= E ⊕ E ∼= E ⊕ E∗.

Similarly, if W → X is a real bundle, (υ ◦ ψ)(W ) ∼= W ⊕W .
In this case the orientations of (υ ◦ ψ)(W ) and W ⊕ W differ by a factor

(−1)
q
2 (q−1).

Proof. By proposition 1.1.22, E is described by unitary transition functions
so E∗ ∼= E and the isomorphism follows from the above lemma 1.1.23. Similarly
for the second statement. As for the orientations, (υ ◦ ψ)(W ) is represented by
transition matrices gi,j ∈ GL(2q,R) with coordinates x1, y1, . . . , xq, yq and the
transition matrices of W ⊕W have coordinates x1, . . . xq, y1, . . . , yq. �

Definition 1.25. Let V be a real r-dimensional vector space. The complexifi-
cation V C of V is given by

V C := V ⊗R C.
This is equivalent to V C = V ⊕ iV and therefore there is a natural isomorphism of
R-vector spaces

V C ∼= V ⊕ V.
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V C is a complex r-dimensional vector space with complex multiplication given by

λ(v ⊗ α) = v ⊗ λα, v ∈ V, λ, α ∈ C.
There is a canonical conjugation map on V C defined by

v ⊗ α = v ⊗ α.

If W → X is a real vector bundle, the complexification WC of W over X is
the bundle with fibres (Wx)C. If W is given by transtion functions {gi,j}i,j with
gi,j ∈ GL(r,R), then WC is given by the same transition functions {gi,j}i,j but
now with the functions gi,j(= υ(gi,j)) regarded as elements of GL(r,C).

Furthermore WC ∼= W⊕W , although the orientation differs by a factor (−1)
r
2 (r−1).

Definition 1.26. Given a 2n-dimensional real vector space V , there exists a
linear map J ∈ End(V ) such that J2 = id V . Then J is called a complex struc-
ture for V . J gives V the structure of a complex vector space with complex scalar
multiplication defined by

(a+ ib)v = av + bJv, a, b ∈ R, v ∈ V.
J can be extended to V C by J(v ⊗ α) = Jv ⊗ α.

Definition 1.27. An almost complex structure θ on a smooth 2n-dimensional
real manifold X is a complex structure on each fibre TxX of the tangent space TX
of X which varies smoothly with x ∈ X.

Equivalently, given a trivialisation for the tangent bundle of X with transition
functions {gi,j}i,j with gi,j ∈ GL(2n,R), an almost complex structure for X is a
bundle E over X with transition functions {ti,j}i,j, ti,j ∈ GL(n,C) relative to the
same trivialisation and such that ψ(ti,j) = gi,j (for all i, j).

In particular, if X is a complex manifold then the complex tangent bundle
T = T (X) is an almost complex structure for X.

Henceforth we shall use the following notation: If X is a complex manifold then
• TX denotes the real tangent bundle of X, and T ∗X its dual, the real

cotangent bundle of X.
• T denotes the complex (holomorphic) tangent bundle of X and T its dual,

the complex cotangent bundle of X.
If T is given by transition functions f = {fi,j}i,j , we can define a bundle T

given by f = {fi,j}i,j . T is the bundle dual to T .
The maps ψ and υ imply the following:

Proposition 1.28. The following identities hold:

(1.6) TXC = T ⊕ T ,

(1.7) (TXC)∗ = T ∗XC = T⊕T.

And the r-th exterior power of T ∗XC, ∧rT ∗XC is given by

(1.8) ∧r T ∗XC =
⊕

p+q=r

(∧pT) ∧ (∧qT).

Proof. This follows directly from the maps υ and ψ and proposition 1.1.24.
�

Corollary 1.29. The isomorphism T ∗XC ∼= T ∗X ⊕ iT ∗X, together with the
projection p : T ∗XC ∼= T⊕T → T induces an isomorphism T ∗X → T.
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1.4. Connections.

Definition 1.30. A connection ∇ on a differentiable K-vector bundle E → X
with X paracompact, is a collection of K-linear maps

∇U : E(U,E) → E1(U,E), U ⊂ X open,

such that, if U ′ ⊂ U is open and ξ ∈ E(U,E), then

(∇Uξ)|V = ∇V (ξ|V )

and which satisfies the Leibniz formula

∇U (sξ) = ds⊗ ξ + s∇U (ξ)

for any s ∈ E and any ξ ∈ E(U,E).
If E → X is a complex bundle, a connection ∇ on E can be written as

∇ = ∇1,0 +∇0,1, with ∇1,0 : E(E) → E1,0(E), ∇0,1 : E(E) → E0,1(E).

Essentially a connection provides a rule for ‘differentiating’ a section with re-
spect to a vector field.

Definition 1.31. If f = (fα)r
α=1 is a frame for E on an open set U , then we

can define an r× r matrix A = A(∇, f) of differentials on U , called the connection
matrix of ∇ with respect to f such that

(1.9) Aβ,α(∇, f) ∈ E1(U), ∇fα =
r∑

β=1

Aβ,α(∇, f)⊗ fβ .

A differentiable section of ξ of E over U can be written as ξi =
∑

i λifi where
λi ∈ E(U,K). Let ξ(f) := (λ1, . . . , λr). Then, by the defining properties of the
connection ∇,

(1.10) ∇(ξ|U ) =
r∑

α=1

dλα ⊗ fα + λα

r∑
β+1

Aβ,α ⊗ fβ)

 = A(∇, f)(ξ(f)) + d(ξ, f)

where d(ξ, f) :=
∑

α(dλα ⊗ fα).

Proposition 1.32. Every differentiable vector bundle over a paracompact man-
ifold X admits a connection.

Proof. [We, 67]. �

Example 1.33. Let (X, g) be a Riemannian manifold (g is a metric on the
tangent bundle TX of X) with tangent bundle TX. The Levi-Civita connection ∇
on X is the unique connection on TX which satisfies:

(1) For vector fields V1, V2, V3 on X

V1(g(V2, V3)) = g(∇V1(V2), V3) + g(V2,∇V1(V3)).

It is then said that ∇ preserves the metric.
(2) For vector fields V1, V2 on X

∇V1(V2)−∇V2(V1) = [V1, V2]

where [V1, V2] is the Lie bracket of TX. ∇ is then said to be torsion free.
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The following proposition says that, with respect to a given Hermitian metric h
on a holomorphic bundle E → X, a unique special connection with very convenient
properties called the canonical connection exists. If E is taken to be T , the complex
tangent bundle of X, this is a Hermitian analogue of the Levi-Civita connection.

Proposition 1.34. Let X be a complex manifold and E a holomorphic bundle
over X with Hermitian metric h. There exists a unique connection ∇(E,h) on E
which satisfies.

(1) ∇(E,h) is compatible with h. I.e.

(1.11) d(h(ξ, η)) = h(∇(E,h)ξ, η) + h(ξ,∇(E,h)η)

(2) For every holomorphic section ξ of E over any U ⊂ X open, it holds that

(1.12) ∇0,1
(E,h)ξ = 0

In this case ∇(E,h) is the so-called canonical connection.

Proof. [We, 78-79]. �

2. Sheaves

2.1. Some definitions.

Definition 2.1. A presheaf F on a topological space X is an assignment of
an Abelian group F(U) to every non-empty open U ⊂ X, together with a collection
of restriction homomorphisms {τU

V : F(U) → F(V )}V⊂U for U, V open in X. The
restriction homomorphisms satisfy:

(i) For every U open in X, τU
U = id U the identity on U .

(ii) For W ⊂ V ⊂ U open in X, τU
W = τV

W τW
V .

If F is a presheaf, an element of F(U) is called a section of the presheaf F
over U .

A subpresheaf G of F is a presheaf on X such that for all U open in X,
G(U) ⊂ F(U) and, if {ρU

V }V⊂U are the restriction functions for G, then ρU
V =

τU
V |G(U).

Definition 2.2. Given two presheaves F and G, a sheaf morphism h : F → G
is a collection of maps

hU : F(U) → G(U)
defined for each open set U ⊂ X such that the hU commute naturally with the
restriction homomorphisms τU

V on F and ρU
V on G. That is, if V ⊂ U , with U, V

open in X then
ρU

V hU = hV τ
U
V .

Definition 2.3. A sheaf is a presheaf F such that for every collection {Ui}i

of open sets of X with U =
⋃

i Ui, the following axioms are satisfied:
(1) For s, t ∈ F(U) such that τU

Ui
(s) = τU

Ui
(t) for all i, it holds that s = t.

(2) Given si ∈ F(Ui) such that

τUi

Ui∩Uj
si = τ

Uj

Ui∩Uj
sj ,

there exists an s ∈ F(U) which satisfies τU
Ui
s = si for all i.

A subsheaf G of a sheaf F is a subpresheaf of F which satisfies the
sheaf axioms 1.2.3 (1), and 12.3 (2).
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Remark 2.4. If F is a sheaf over X then F(∅) is the group consisting of exactly
one element.

Example 2.5. Given a topological space X, we note that, for K = R,C, and
U ⊂ X open, the space C(U,K) of continuous K-valued functions on U is a K-
algebra. So, we can define the presheaf CX by CX(U) = C(U,K). For V ⊂ U
open subsets of X, the restriction homomorphisms τU

V are given by τU
V (f) = f |V ,

f ∈ C(U,K) = CX(U). It can easily be checked that this is a sheaf of K-algebras.

Example 2.6. For S = E ,O, if X is an S-manifold, then we can define the
sheaf SX by SX(U) := S(U,K). Then SX ⊂ CX and SX is called the structure
sheaf of the manifold X.

Definition 2.7. Let R be a sheaf of commutative rings over X. Say F is
a sheaf such that, for every U open in X, we have given F(U) the structure of a
module over R(U) in a manner compatible to the sheaf structure, i.e., for α ∈ R(U)
and f ∈ F(U),

τU
V (αf) = ρU

V (α)τU
V (f)

where V ⊂ U open in X and τU
V , resp. ρU

V are the corresponding F , resp. R
restrictions. Then we call F a sheaf of R-modules.

Now, for p ≥ 1, we define the presheaf Rp by

U → Rp(U) := R(U)⊕ · · · ⊕ R(U)︸ ︷︷ ︸
p times

, (ρp)U
V := ρU

V ⊕ · · · ⊕ ρU
V︸ ︷︷ ︸

p times

.

A sheaf G over X is called a locally free sheaf of R-modules of rank p if G is
sheaf of R- modules and, for each x ∈ X, there is a neighbourhood U 3 x, such
that, for all open U ′ ⊂ U , G(U ′) ∼= Rp(U ′) as R-modules.

Theorem 2.8. Given a S-manifold X there is a natural equivalence between
the category of S-vector bundles on X of dimension p and the category of locally
free sheaves of S-modules on X of finite rank p. So, given a vector bundle E on
X, we can define uniquely the locally free sheaf of rank p, S(E)X on X where
S(E)X(U) := S(U,E).

Proof. For proof that there is a natural one-to-one correspondence, see [We,
40-41]. It is then easy to see that this correspondence induces an equivalence of
categories. �

Definition 2.9. Let F be a sheaf over X. For, x ∈ X, we define an equivalence
relation on the disjoint union

∐
U3x F(U) where U runs over all open neighbour-

hoods U ⊂ X of x:
If U, V ⊂ X are open neighbourhoods of x, we say that two elements s ∈ F(U)

and t ∈ F(V ) are equivalent if there exists and open neighbourhood W of x with
W ⊂ U ∩ V and s|W = t|W .

The set of equivalence classes is called the stalk of F at x and is denoted by
Fx. In other words, Fx is the direct limit of the groups F(U) (x ∈ U) with respect
to the restriction homomorphisms τU

V , x ∈ V ⊂ U , i.e.

Fx = lim
U3x

F(U) =

(∐
U3x

F(U)

)
/
∼.
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If F is a sheaf of Abelian groups or commutative rings then Fx will also inherit
that structure.

An element of the stalk Fx of F at x ∈ X is called a germ.

Definition 2.10. A sheaf F over a paracompact Haussdorff space is called
fine if given any locally finite open cover U = {Ui}i of X, there exists a partition
of unity on F subordinate to U . That is, there exists a family of sheaf morphisms
{φi : F → F}i such that

(i) supp (φi) ⊂ Ui for all i,
(ii)

∑
i φi = idF .

Example 2.11. If E is a differentiable vector bundle over a differential manifold
X and E(E)X is the sheaf associated to E via theorem 1.2.8, then E(E)X is fine.

Namely for any locally finite open cover U = {Ui} of X, there exists a partition
of unity {φi} onX subordinate to U where each φi is a globally defined differentiable
function and therefore multiplication by φi of elements of E(E)X gives a sheaf
homomorphism which induces a partition of unity on E(E)X .

If K ⊂ X is a closed subspace of X and F is a sheaf over X, we define F(K)
as the direct limit of F(U) over all open U ⊂ X such that K ⊂ U . That is

F(K) := lim
U⊃K

F(U).

Definition 2.12. A sheaf F over a space X is called soft if for any closed
subset K ⊂ X, the natural restriction map

F(X) → F(K)

is surjective. That is, any section over K of a soft sheaf F can be extended to a
global section of F .

Proposition 2.13. Fine sheaves are soft. In particular the sheaf E(E) associ-
ated to a vector bundle E → X by theorem 1.2.8 is soft.

Example 2.14. Below are some commonly occurring examples of sheaves:
• Constant sheaves

If F is a sheaf such that F(U) = G for some Abelian group G and for
every non-zero connected open set U ⊂ X, then F is a constant sheaf.
Examples are the sheaves F = ZX ,RX ,CX given by F(U) = Z,R,C
respectively (so the restriction functions on F(U) are simply the identity
on F(U)). Constant sheaves on a manifold of dimension greater than zero
are not soft and therefore also not fine. See [We, 53].

• Sheaves of functions and forms
We have seen in example 1.2.11 that, if E → X is a vector bundle, the

sheaf E(E)X is fine. Similarly we can show that C(E)X is fine for a para-
compact differential manifold X and Ep,q(E)X is fine for a paracompact
complex manifold X.

The sheaf O(E)X of locally holomorphic sections of a complex bundle
E → X is, in general, not soft and therefore also not fine. The same
applies to the sheaf O∗(E)X of nowhere vanishing locally holomorphic
sections of E.

In particular, if E is the trivial bundle 1 := ((C×X) → X), the
sheaves CX(:= C(1)X), EX and Ep,q

X are fine and, if X is a manifold of
dimension at least 1, OX ,O∗X are neither soft nor fine.
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2.2. Cohomology groups. Most of the proofs of the results in this section
can be found in e.g. [Fo]. However, it is worthwhile to note that in some cases the
results and definitions are given here in a more general form than in [Fo].

Definition 2.15. Let F be a sheaf on a topological space X and let U = {Ui}i∈I

be an open covering of X. For q = 0, 1, 2, . . . , a q- cochain is an element of the
q-th cochain group of F , Cq(U ,F), defined by

Cq(U ,F) :=
∏

(i0,...,iq)∈Iq+1

F(Ui0 ∩ · · · ∩ Uiq
)

(where Iq+1 is the direct product of q + 1 copies of I). The group operation on
Cq(U ,F) is componentwise addition.

Definition 2.16. For q = 0, 1, . . . , the coboundary operators

δq : Cq(U ,F) → Cq+1(U ,F)

are defined by
{δq(f)}i0,...,iq,iq+1 = {gi0,...,iq,iq+1}i0,...,iq,iq+1

where

gi0,...,iq,iq+1 =
q+1∑
k=0

(−1)kfi0,..., bik,...,iq,iq+1
on

⋂
k=0,...,q+1

Uik
.

(Here fi0,..., bik,...,iq,iq+1
:= fi0,...,ik−1,ik+1,...,iq,iq+1 .)

So, in particular δ0(f)i,j = fj − fi on Ui ∩ Uj and δ1(g)i,j,k = gj,k − gi,k + gi,j

on Ui ∩ Uj ∩ Uk.
Where there is no possibility of confusion, δq will be referred to simply as δ.

It is easily checked that the coboundary operators are group homomorphisms.

Definition 2.17. Let
Zq(U ,F) := Ker (δq)

and
Bq(U ,F) := Im (δq−1).

The elements of Zq(U ,F) are called q-cocycles and the elements of Bq(U ,F) are
called q-coboundaries.

Lemma 2.18. For q = 0, 1, . . . , Bq ⊂ Zq.

Proof. This follows immediately from the definitions. [We, 63]. �

Definition 2.19. For q = 0, 1, . . . the q-th cohomology group Hq(U ,F) of F
with respect to U is defined by

Hq(U ,F) := Zq(U ,F)/
Bq(U ,F).

Definition 2.20. Given two coverings U = {Ui}i∈I and V = {Vk}k∈K of X,
V is called finer than U , written V < U , if, for every k ∈ K, there exists an i ∈ I
such that Vk ⊂ Ui. In other words, there exists a refining map τ : K → I such that
Vk ⊂ Uτ(k) for all k ∈ K.
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Given a sheaf F on X and covers V < U of X, the refining map τ enables us
to construct a homomorphism tUV : Zq(U ,F) → Hq(V,F) given by

tUV : {fi0,...,iq
}i0,...,iq

7→ fτ(k0),...,τ(kq)}i0,...,kq
.

We note that tUV (Bq(U ,F)) ⊂ Bq(V,F) for all q, so tUV defines a homomorphism
of cohomology groups

tUV : Hq(U ,F) → Hq(V,F).

Lemma 2.21. The map tUV : Hq(U ,F) → Hq(V,F) is independent of the choice
of refining map τ : K → I.

Proof. [Fo, 98]. �

Lemma 2.22. tUV : Hq(U ,F) → Hq(V,F) is injective.

Proof. [Fo, 99]. �

Given three open coverings W < V < U , the above implies that

tVW t
U
V = tUW .

Therefore, we can define an equivalence relation (∼) on the disjoint union∐
Hq(U ,F), where U runs over all open coverings of X, by ξ ∼ η for ξ ∈ Hq(U ,F)

and η ∈ Hq(V,F) if there is a covering W < U ,W < V such that tUWξ = tVWη.

Definition 2.23. The q-th cohomology group of X with coefficients in F is
defined as the set of all the equivalence classes of Hq(U ,F) running over all open
coverings U of X. That is, Hq(U ,F) is the direct limit of the cohomology groups
Hq(U ,F) over all open coverings U of X.

Hq(U ,F) := lim
U
Hq(U ,F) =

(∐
Hq(U ,F)

)/
∼ .

Proposition 2.24. Let F be a sheaf over X. For any covering U = {Ui}i of
open subsets of X,

H0(X,F) ∼= H0(U ,F) ∼= F(X).

Proof. [Fo, 103]. �

Proposition 2.25. If F ⊂ G are sheaves then there is a well-defined natu-
ral homomorphism Θ : Hi(X,F) → Hi(X,G) , i ≥ 0 induced by the inclusions
Zi(U ,F) ⊂ Zi(U ,G) and Ci−1(U ,F) ⊂ Ci−1(U ,G) relative to an open cover
U = {Ui}i for X

Proof. Since F ⊂ G, an element α ∈ Zi(U ,F) is in Zi(U ,G) and can therefore
be mapped onto the corresponding cohomology class in Hi(X,G).

Now, let α, α′ be representatives of the same class in Hi(X,F). Then there is
a cover U for X such that α− α′ = δi−1(β) for all i, j, k and some β ∈ Ci−1(U ,F).
But, Ci−1(U ,F) ⊂ Ci−1(U ,G) so, α, α′ are mapped onto the same element in
Hi(X,G).

That this is a homomorphism follows directly from the definition and the alge-
braic structure on F and G.

�
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Remark 2.26. Occasionally we use the subscript (·)X to distinguish a sheaf
FX over X with FX(U) = F (U) from F = FX(X), the global sections FX(X)
of FX . Examples are the constant sheaves, ZX , RX and CX and the sheaves of
functions CX , EX and OX . We will drop the subscript when referring to the associ-
ated cohomology groups Hk(X,F ) := Hk(X,FX) (and similarly when referring to
CK(U , F ), Zk(U , F ) and Bk(U , F )) since there is no possibility of confusion. For
example, we will write Hk(X,R) rather than Hk(X,RX).

Definition 2.27. A sequence

· · · → F α−→ G β−→ . . .

where α, β, . . . are sheaf morphisms, is called exact if, for every x ∈ X, the corre-
sponding sequence of stalks and restriction maps

· · · → Fx
α|Fx−−−→ Gx

β|Gx−−−→ . . .

is exact.

It is not necessarily the case that

· · · → F(U) α−→ G(U) β−→ . . .

is exact for every U open in X. However, the following does hold:

Proposition 2.28. If
0 → F α−→ G β−→ H

is an exact sequence of sheaves then,

0 → F(U) α−→ G(U) β−→ H(U)

is exact for every U open in X.

Proof. [Fo, 121]. �

Example 2.29. The Dolbeault sequence
Let X be a Riemann surface. As usual, E0,1

X is the sheaf of local differentiable (0,1)-
forms on X. If the Dolbeault operator ∂ denotes the antiholomorphic component
of the exterior derivative, then the Dolbeault sequence

(2.1) 0 → OX ↪→ EX
∂−→ E0,1

X → 0

where ↪→ denotes inclusion, is a short exact sequence of sheaves. This follows from
the Dolbeault lemma [Fo, 105], which says that every differentiable function g on
X is locally of the form g = ∂f

∂z for some differentiable function f on X.

Theorem 2.30. If
0 → F α−→ G β−→ H → 0

is an exact sequence of sheaves over a paracompact Hausdorff space X, then, for
q = 1, 2, . . . , there exists a connecting homomorphism

δ∗ := δ∗q : Hq−1(X,H) → Hq(X,F)
so that

(2.2) · · · → Hq−1(X,G) → Hq−1(X,H) δ∗−−→ Hq(X,F) → Hq(X,G) → . . .

is an exact sequence.
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Proof. [We, 56-58].
�

Theorem 2.31. If F is a soft sheaf over X, then, for q = 1, 2, . . . , the coho-
mology groups Hq(X,F) vanish. In particular, if E → X is a S-vector bundle with
S = C, E, Hq(X,E) := Hq(X,S(E)) vanishes for q ≥ 1.

Proof. [We, 56-57], [Hi, 34]. �

Definition 2.32. Let

(2.3) 0 → F h−→ F0 h0−−→ F1 h1−−→ F2 h2−−→ . . . hp−1−−−−→ Fp hp−−→ . . .

be an exact sequence of sheaves over a compact space X. If Hq(X,Fp) ∼= 0 for
p ≥ 0 and q ≥ 1, then 1.(2.3) is called a resolution of F . In particular, by theorem
1.2.31 , this is the case if Fp is fine for all p ≥ 0. In this case, 1.(2.3) is called a
fine resolution of F .

Example 2.33. The sequence 1.(2.1) in example 1.2.29 is a fine resolution for
OX .

Theorem 2.34. Let

(2.4) 0 → F h−→ F0 h0−−→ F1 h1−−→ F2 h2−−→ . . . hp−1−−−−→ Fp hp−−→ . . .

be a resolution of a sheaf over a compact manifold X. This defines naturally a
sequence

(2.5) 0 → F(X) h∗−−→ F0(X) h0
∗−−→ F1(X) h1

∗−−→ . . . hp−1
∗−−−−→ Fp(X) hp

∗−−→ . . . .

There are natural isomorphisms

Hq(X,F) ∼= Ker (hq
∗)
/
Im (hq−1

∗ ), q ≥ 1

and
H0(X,F) ∼= Ker (h0

∗).

Proof. By proposition 1.2.28

0 → F(X) h∗−−→ F0(X) h0
∗−−→ F1(X)

is exact so F(X) = H0(X,F) = Ker (h0
∗) as required.

Now let Kp denote the kernel of hp : Fp → Fp+1. Then, for all p,

(2.6) 0 → Kp ↪→ Fp → Kp+1 → 0

is a short exact sequence of sheaves on X.
Then, for p ≥ 0, q ≥ 2,

(2.7) · · · → Hq−1(X,Fp) → Hq−1(X,Kp+1) → Hq(X,Kp) → Hq(X,Fp) . . .

is exact by theorem 1.2.30, and since Hq(X,Fp) = 0 for q ≥ 1, p ≥ 0, it follows
that

(2.8) Hq−1(X,Kp+1) ∼= Hq(X,Kp).

Letting p = q − 1, we obtain

Hq(X,F) = H1(X,Kq−1), q ≥ 1.

by repeated application of equation (2.8). For q = 1 and letting p = 0, F = Kerh0,
soH1(X,F) = H1(X,K0).



2. SHEAVES 25

Since
0 → Kq−1 ↪→ Fq−1 → Kq → 0

is a short exact sequence, the sequence

· · · → H0(X,Fq−1) → H0(X,Kq) → H1(X,Kq−1) → (H1(X,Fq) = 0)

is exact for q ≥ 1 by theorem 1.2.30. Rewriting gives

· · · → Fq−1(X) h∗q−1−−−→ Kq(X) h∗q |Kq−−−−→ → Hq(X,F) → 0, q ≥ 1.

In other words, for q ≥ 1,

Hq(X,F) ∼= Ker (hq
∗)
/
Im (hq−1

∗ )
as required.

�





CHAPTER 2

The Analytic Index of an Elliptic Complex

Most of the material in this chapter can be found in [We].

1. Elliptic differential operators

Let K denote the field R or C.

Definition 1.1. A linear differential operator P acting on differentiable func-
tions defined on an open set U ⊂ Rn is an operator of the form

(1.1) P (x,D) =
∑
|α|≤m

aα(x)Dα

where α = (α1, . . . , αn), αi = 0, 1, . . . is a multi-index (|α| :=
∑

i αi) and Dα =
∂α1
1 . . . ∂αn

n , ∂j = ∂
∂xj

, j = 1 . . . n. For each α, aα is a differentiable function on U .
Similarly, a linear differential operator P acting on differentiable functions de-

fined on an open set U ⊂ Cn has the form

(1.2) P (z,D) =
∑
|α|≤m

aα(x)Dα

where α = (α1, α
′
1, . . . , αn, α

′
n), αi, α

′
i = 0, 1, . . . and Dα = ∂α1

1 ∂
α′1
1 . . . ∂αn

n ∂
α′n
n ,

∂j = ∂
∂zj

, ∂j = ∂
∂zj

j = 1 . . . n.
The order k of the operator P in equation 2.(1.2) is the greatest integer such

that there is an α with |α| = k and aα 6≡ 0.

Let X be a compact differentiable n-dimensional manifold without boundary
and E → X and F → X vector bundles of rank p and q respectively. As usual,
E(E) resp. E(F ) denote the spaces of differentiable sections of E resp. F .

Definition 1.2. A K-linear operator P : E(E) → E(F ) is a differential op-
erator of order k if it has the following form: Let U ⊂ X such that (ej)

p
j=1, resp

(fi)
q
i=1 are frames for E, resp. F over U , and let λ =

(∑p
j=1 λjej

)
∈ E(U,E),

then P can locally be expressed in the form

P (x,D)(λ) = P (x,D)

 p∑
j=1

λjej

 =
q∑

i=1

 p∑
j=1
|α|≤k

ai,j
α (x)Dα(λj)(x)

 fi(x),

and there is at least one i such that
∑p

j=1
|α|=k

ai,j
α 6≡ 0 on U . Here (ai,j

α )i,j is a q × p

matrix of smooth functions, so each component of the above is a differential operator
in the sense of definition 2.1.1.

27
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The space of differential operators P : E(E) → E(F ) of order less than or
equal to k is denoted by Diff k(E,F ), and the space of all differential operators
E(E) → E(F ) is denoted by Diff (E,F ) :=

⋃
k Diff k(E,F ).

If T ∗X is the real cotangent bundle of X we define T ′X as the collection of
nonzero cotangent vectors on X:

T ′X :=
⋃

x∈X

(T ∗xX/{0}) ⊂ T ∗X.

Let π : T ′X → X be the canonical projection and π∗E, π∗F the pullbacks of E
and F over T ′X. Then π∗E (resp. π∗F ) can be regarded as the subset of E×T ′X
( resp. F × T ′X) consisting of the elements (e, ξ) with ξ ∈ T ′X and e ∈ Eπξ (resp.
e ∈ Fπξ).

Definition 1.3. For k ∈ Z, the k-symbol σk(P ) : π∗E → π∗F of a differential
operator P : E → F is defined as follows:

For x ∈ X, let ξ ∈ T ′Xx, and s ∈ E(E) be a differentiable section of E with
s(x) = e. If f is a differentiable function on an open neighbourhood of x with
df(x) = ξ, then we define

(1.3) σk(P )(s(x), ξ) := P

(
ik

k!
(f − f(x))ks

)
(x) ∈ Fx.

Proposition 1.4. The k-symbol σk(P ) : π∗E → π∗F of P is a well-defined
homomorphism which is homogeneous of degree k, i.e. for ρ > 0,

σk(P )(s(x), ρξ) = ρkσk(P )(s(x), ξ).

Proof. The symbol σk(P ) is well-defined. That is, it is independent of the
choices of f ∈ E(X) and s ∈ E(E) = E(X,E):

Let f ′ be another differential function on X with df ′(x) = df(x) = ξ and
s′ another section of E with s′(x) = s(x) ∈ Ex. Locally, P has the form P =∑
|α|≤k AαD

α where {Aα} are q × p matrices of locally smooth functions. So, in

applying P to
(

ik

k! (f
′ − f ′(x))ks′

)
and evaluating at x, derivatives of order < k will

vanish (by the chain rule) since a factor of (f ′ − f ′(x)) (x)s(x) = 0 will remain. For
derivatives of order k we notice that the kth derivative of (f ′ − f ′(x))k

s depends
only on df ′(x) = df(x) = ξ and s′(x) = s(x). So, the k-symbol is independent of
the choices of f and s.

That σk(P ) it is linear (in P ) is immediate. If t ∈ E(E) denotes another section
of E,

σk(P )((λs+ µt)(x), ρξ) = P

(
ik

k!
(ρf − ρf(x))k(λs+ µt)

)
(x)

= λσk(P )(s(x), ρξ) + µσk(P )(t(x), ρξ), λ, µ ∈ C
by the linearity of P , so σk(P )(s(x), ξ) is a homomorphism from Ex to Fx.

Finally, for ρ > 0

σk(P )(s(x), ρξ) = P

(
ik

k!
(ρf − ρf(x))ks

)
(x)

= P

(
ik

k!
ρk(f − f(x))ks

)
(x) = ρkσk(P )(s(x), ξ)
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by the linearity of P . In other words σk(P ) is homogeneous of degree k.
�

Clearly σk(P ) ≡ 0 if and only if the degree of P is less than k. In fact, for
a differential operator P of degree k, we will only be interested in the k-symbol
σk(P ) and so, henceforth, unless otherwise stated, we shall refer to this simply as
the symbol of P and write σ(P ) := σk(P ).

Definition 1.5. The operator P is said to be elliptic if for all x ∈ X and for
all ξ ∈ T ′Xx, σ(P )(ξ) is an isomorphism from Ex to Fx.

Of course, if an elliptic operator P : E → F exists then rkE = rkF .

Example 1.6. The Laplacian.
As an example, we will show that the Laplace-Beltrami operator for Riemannian
manifolds is elliptic.

(X, g) is a n-dimensional Riemannian manifold with Levi-Civita connection ∇
(see example 1.1.33). E(TX) is the space of differentiable vector fields on X. For
a smooth real valued function f ∈ C∞(X,R), the operator

Hf : E(TX)× E(TX) → C∞(X,R) , Hf(V1, V2) := LV1(LV2(f))− L(∇V1V2)(f)

(where LV1f denotes the Lie derivative of f with respect to V1) is the called the
Hessian of f .

The Laplace-Beltrami operator, or Laplacian ∆ on X is the trace of this oper-
ator. That is

∆ : C∞(X,R) → C∞(X,R), ∆(f)(x) :=
n∑

j=1

Hf(vj , vj)

with (v1, . . . , vn) a g- orthonormal basis of TxX. Clearly the degree of ∆ is 2. So,
we wish to show that for any ξ ∈ T ′X, x = π(ξ) ∈ X and function s ∈ C∞(X,R),
σ(∆)(s(x), ξ) : R → R is an isomorphism.

Let f ∈ C∞(X,R) such that df(x) = ξ and f(x) = 0 and choose an orthonormal
frame {v1, . . . vn} of TxX such that ξ(vj) = ‖ξ‖δ1,j , j = 1, . . . , n. Locally, we can
extend this to an orthonormal frame of vector fields {V1, · · · , Vn}, with V1(x) = v1,
on some neighbourhood U of x.

Let s ∈ C∞(X,R). Then,

σ(∆)(s(x), ξ) = ∆
(
−1

2
(f2s)

)
(x) = −1

2

n∑
j=1

(
LVj

LVj
(f2s)− L∇Vj

Vj
(f2s)

)
(x).

Using the Leibniz property of the Lie derivative we have, for all j = 1, . . . n,

LVj
(f2s) = f2LVj

(s) + 2fsLVj
(f)

so

LVj
LVj

(f2s) = LVj

(
f2LVj

(s) + 2fsLVj
(f)
)

= 4fLVj
(f)LVj

(s) + f2LVj
LVj

s+ 2s(LVj
(f))2 + 2fsLVj

LVj
(f).

By construction, LVj
(f) = ‖ξ‖ · δ1,j at x. So

n∑
j=1

LVj
LVj

(f2s) = 4fLV1fLV1s+ 2fsLV1LV1(f) + 2s(LV1(f))2 +
n∑

j=1

f2LVj
LVj

s.
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Using the fact that f(x) = 0, we get
n∑

j=1

LVjLVj (f
2s)(x) = 2s(LV1(f))2 = 2s(x) · ‖ξx‖2.

Again, by the Leibniz rule and the fact that f(x) = 0 we have

L∇Vj
Vj

(f2s)(x) = f2(x)L∇Vj
Vj

(s)(x) + 2f(x)s(x)L∇Vj
Vj

(f)(x) = 0.

So,

σ(∆)(s(x), ξ) =
−1
2

n∑
j=1

(
LVj

LVj
(f2s)− L∇Vj

Vj
(f2s)

)
(x) = −‖ξx‖2s(x) = 0

if and only if s(x) = 0.
In other words, the endomorphism σ(∆)(·, ξ), ξ ∈ T ′xX is injective and hence

an isomorphism and we have proved that ∆ : C∞(X,R) → C∞(X,R) is elliptic.

2. Elliptic complexes

Definition 2.1. Given a finite number of differentiable vector bundles (Ei)l
i=1

on X and differential operators di : E(Ei) → E(Ei+1), E = (Ei, di)l
i=1 is called a

complex if di+1 ◦ di ≡ 0.
A complex is said to be elliptic if for any ξ ∈ T ′xX, the sequence

· · · → Ei,x
σ(di)(ξ)−−−−−→ Ei+1,x → . . .

is exact. (In particular, an elliptic operator is an elliptic complex of the form
0 → E(E) P−→ E(F ) → 0.)

Example 2.2. The de Rham complex on a complex manifold
For a differentiable manifold X of real dimension m, the de Rham complex is

given by
0 → E0(X) d−→ E1(X) d−→ . . . d−→ Em(X)

where d denotes exterior differentiation. We let T ∗X denote the real cotangent
bundle and T ∗XC = T ∗X ⊗R C its complexification. Using the notation above we
write the de Rham complex as

0 → E(E0) d−→ E(E1) d−→ . . . d−→ E(Em) → 0

where Ek := ∧kT ∗XC.
d is a differential operator of degree 1 so we calculate, for each k = 1, . . . , nm,

the associated 1-symbol homomorphisms

(2.1) E0,x
σ(d)(s0(x),ξ)−−−−−−−−−→ E1,x

σ(d)(s1(x),ξ)−−−−−−−−−→ . . . σ(d)(sm−1(x),ξ)−−−−−−−−−−−→ Em,x.

Given ξ ∈ T ′xX ⊂ T ′X, we choose an f ∈ E(X) such that df(x) = ξ and f(x) = 0.
Let si ∈ E(Ei) such that si(x) = e ∈ Ei,x. Then

σ(d)(s(x), ξ) = id(fsi)(x) = idf(x) ∧ e+ if(x)dsi(x) = iξ ∧ e

by the Leibniz property for exterior differentiation.
So, the sequence 2.2.1 is exact. Namely ξ ∧ e = 0 if and only if e and ξ are

linearly dependent, i.e. e = ξ ∧ α for some α ∈ Ei−1,x.
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Example 2.3. The Dolbeault complex on a complex manifold
We generalise example 1.2.29 to higher dimensional complex manifolds and show
that the complex thus obtained is elliptic.

For a complex n-dimensional differentiable manifold X the de Dolbeault com-
plex ∂(X) is given by

Ep,0(X) ∂−→ Ep,1(X) ∂−→ . . . ∂−→ Ep,n(X) → 0

where the Dolbeault operator ∂ : Ep,q(X) → Ep,q+1(X) is the antiholomorphic
component of the exterior derivative.

Let T denote the complex cotangent bundle and T its conjugate. Then, we
may write the Dolbeault complex as

E(E0) ∂−→ E(E1) ∂−→ . . . ∂−→ E(En) → 0

where Ek := ∧pT⊗ ∧kT.
∂ is a differential operator of degree 1 so we calculate, for each k = 1, . . . , n,

the associated 1-symbol homomorphisms

(2.2) E0,x
σ(∂)(s0(x),ξ)−−−−−−−−−→ E1,x

σ(∂)(s1(x),ξ)−−−−−−−−−→ . . . σ(∂)(sn−1(x),ξ)−−−−−−−−−−−→ En,x.

Given ξ ∈ T ′Xx, we choose an f ∈ C∞(X) such that df(x) = ξ = ξ1,0 + ξ0,1 (with
ξ1,0 ∈ T and ξ0,1 ∈ T) and f(x) = 0. Let si ∈ E(Ei) such that si(x) = e ∈ Ei,x.
Then

σ(∂)(si(x), ξ) = i∂(fsi)(x) = i(∂f(x) ∧ e+ f(x)∂s(x)) = iξ0,1 ∧ e
by the Leibniz property.

So, the symbol sequence is exact. Namely ξ0,1 ∧ e = 0 if and only if e and ξx
are linearly dependent, i.e. e = ξ0,1 ∧ α for some α ∈ Ei−1,x.

Now let E → X be a holomorphic bundle over a paracompact manifold X.
Choose a holomorphic frame f = (fi)rk E

i=1 for E on a neighbourhood U ⊂ X which
is small enough that it is contained in a chart neighbourhood for X. Recall that
Ep,q(E) = E(E ⊗ ∧pT ⊗ ∧qT), so for an element α ∈ Ep,q(E), α|U =

∑
i fi ⊗ βi

where each βi is a (p, q)-form on U .
Then define

∂E(α|U ) :=
∑

i

∂(fi ⊗ βi). =
∑

i

fi ⊗ ∂(βi)

Since fi is holomorphic, ∂E(α|U ) =
∑

i fi ⊗ ∂(βi) .

Proposition 2.4. The operator ∂E of a complex vector bundle E → X is a
well-defined global operator. That is, it is independent of the choice of frame f .

Proof. Let f ′ = (f ′j)j be another holomorphic frame for E on U . Then, there
is a change of frame matrix (ti,j)i,j i, j = 1, . . . , rkE such that each of the maps
ti,j is holomorphic and fi =

∑
j ti,jf

′
j .

Now

α|U =
∑

j

f ′j ⊗

(∑
i

ti,jβi

)
,

so, in terms of f ′,

∂(α|U ) =
∑

j

f ′j ⊗ ∂

(∑
i

ti,jβi

)
=
∑

j

f ′j ⊗

(∑
i

ti,j∂(βi)

)
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i,j

f ′j ⊗ fi,j∂(βi) =
∑

i

fi ⊗ ∂(βi).

In other words, ∂(α) ∈ Ep,q+1(E) is globally defined. So ∂E : Ep,q(E) → Ep,q+1(E)
is a well-defined map.

�

Definition 2.5. Given a holomorphic vector bundle E → X, the operator ∂E

is called the Dolbeault operator of E.

Example 2.6. The Dolbeault complex for a holomorphic bundle
We wish to show that the Dolbeault complex ∂(E) of E given by

(2.3) Ep,0(E) ∂E−−→ Ep,1(E) ∂E−−→ . . . ∂E−−→ Ep,q(E) → 0

is elliptic. In fact the argument of example 2.2.3 carries over to this more general
case.

∂E is a differential operator of degree 1 so we calculate, for each k = 1, . . . , n,
the associated 1-symbol homomorphisms:

Let si ∈ E(⊗ ∧p T ⊗ ∧iT) such that s(x) = e ∈ E ⊗ ∧pT ∧i T and ξ ∈ T ′Xx.
We choose an g ∈ C∞(X) such that dg(x) = ξ = ξ1,0 + ξ0,1 (with ξ1,0 ∈ T and
ξ0,1 ∈ T) and g(x) = 0.

Then

σ(∂E)(si(x), ξ) = i∂E(gsi)(x) = i(∂g(x) ∧ e+ g(x)∂Es(x)) = iξ0,1 ∧ e

by the Leibniz property.
As before ξ0,1∧e = 0 if and only if e and ξ are linearly dependent, i.e. e = ξ0,1∧α

for some α ∈ E ⊗ ∧pT⊗ ∧i−1T.

Remark 2.7. If E → X is a holomorphic vector bundle, we consider the kernel
of ∂E : (E(E) = E0,0(E)) → E0,1(E):

As above, we choose a holomorphic frame f = (fi)rk E
i=1 for E on a neighbourhood

U ⊂ X which is small enough that it is contained in a chart neighbourhood for X.
Then, given α ∈ E(E), α =

∑rk E
i=1 αifi with αi ∈ E(U) on U . In this case α is

holomorphic if and only if αi is holomorphic for all i and, by the construction of
∂E above, this is precisely when

∂E(α) = ∂(
∑

i

αifi) =
∑

i

(∂αi)⊗ fi = 0

(where the first equality follows from the definition of ∂E in example 2.2.3).

Definition 2.8. The cohomology groups Hi(E) of a complex E = (Ei, di)i

are defined by

Hi(E) = Ker di
/
Im di−1

.

Proposition 2.9. The cohomology groups Hi(E) of an elliptic complex E =
(Ei, di)i over a compact manifold X are finite dimensional for all i.

Proof. This is an analytic proof which rests on some deep results in functional
analysis. These are described in [Ho]. Given the findings of Hörmander, there is
an elegant proof in [AB, 395-398]. [We, 119-153] also gives a good overview. �
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Definition 2.10. The analytic index of an elliptic complex E of length l is
defined to be inda(E) :=

∑l
i=0(−1)i dimHi(E).

In particular, the analytic index of an elliptic operator P : E → F where
E → X and F → X are vector bundles over X, is given by

inda(P ) = dim Ker (P )− dim Coker (P ).





CHAPTER 3

The Riemann-Roch Theorem

1. Divisors

1.1. Definitions.

Definition 1.1. A divisor on a Riemann surface X is an integer valued func-
tion D : X → Z with discrete support. If D(x) = nx, we write formally
D =

∑
x∈X nx · x.

A divisor is called effective if nx ≥ 0 for every x in X.

We can define a partial ordering ≤ on the set of divisors on X by D ≤ D′ if
and only if D(x) ≤ D′(x) for all x ∈ X. (D < D′ if D ≤ D′ and there is at least
one x ∈ X such that D(x) < D′(x).)

The set of divisors Div (X) on a Riemann surface X defines in a natural way an
Abelian group with operation + such that, for x ∈ X, (D+D′)(x) := D(x)+D′(x).

LetX now be a Riemann surface and letM(X) denote the field of meromorphic
functions on X. If φ ∈ M(X) is not identically zero, then, at every x ∈ X, if z is
a local coordiinate for X centered at x, then φ has the unique form φ(z) = zkg(z)
with k ∈ Z and g(z) holomorphic and non-zero at z = 0. k is the order of φ at x,
ord x(φ) and ord z(φ) 6= 0 only on a discrete set in X. So, φ defines a divisor div (φ)
by

div (φ) :=
∑
x∈X

ord x(φ) · x.

In particular, a non-zero holomorphic function on X defines an effective divisor.

Proposition 1.2. Let X be a compact Riemann surface. Given points {xi}N
i=1 ⊂

X and complex numbers {ci}N
i=1, there exists a function φ ∈ M(X) such that

φ(xi) = ci , i = 1, . . . , N .

Proof. [Fo, 116].
�

Definition 1.3. A divisor of the form div (φ) for φ ∈M(X)∗ (where M(X)∗

is the group of non-zero elements of M(X)) is called a principal divisor.

Definition 1.4. We say that two divisors D and D′ on X are linearly equiv-
alent if there is a meromorphic function φ on X such that D′ = D + div (φ).

Definition 1.5. A meromorphic differential on a Riemann surface X is a
holomorphic 1-form ω on X − S where S ⊂ X is discrete, with the following local
description: Since S is discrete, for all s ∈ S, there exists an open neighbourhood
Us of s with Us ∩ S = {s} and Us is contained in a chart neighbourhood of X with
local coordinate z. Then

ω|Us
= φdz

35
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where φ is meromorphic on Us.
We denote the set of meromorphic differentials on X by M1(X).

Remark 1.6. It follows from definition 3.1.5 that the meromorphic differen-
tials on X correspond to the meromorphic sections (see definition 1.1.8) of the
holomorphic cotangent bundle T of X.

Lemma 1.7. If ω is a non-zero meromorphic differential on a Riemann surface
X, then every meromorphic differential η on X is of the form ψω with ψ ∈M(X).

Proof. Let {(Ui, zi)}i be a holomorphic atlas for X. On Ui ∩ Uj , gi,j := dzj

dzi

is a transition function for the cotangent bundle T. So

ω|Uj = φjdzj = gj,iφidzi, and η|Uj = θjdzj = gj,iθidzi on Ui ∩ Uj .

But
θj

φj

dzj

dzj
=
θj

φj

and
θj

φj

dzj

dzj
=
gj,iθi

gj,iφi

dzi

dzi
=
θi

φi

for all i, j. So, ψ, given locally by ψ|Ui
= θi

φi
, is a globally defined meromorphic

function such that η = ψω.
�

Remark 1.8. Proposition 3.1.2 asserts the existence of a non-constant mero-
morphic function φ on X. Therefore, the set of meromorphic differentials on a
Riemann Surface X is non-empty. Namely, ∂φ given locally by ∂φ := ∂φ

∂z dz is a
meromorphic differential on X.

Definition 1.9. Given a mermorphic differential φdz on an open V ⊂ C, we
define it’s order at x ∈ V as the order of φ at x.

If X is a Riemann surface, x ∈ X and z a local coordinate at x, the order
ord x(ω) of a meromorphic differential ω with ω = φdz in a neighbourhood of x is
ord x(ω) := ord x(φ). So, we can define

div (ω) =
∑
x∈X

ord x(ω) · x.

A divisor of the form D = div (ω) with ω a meromorphic differential on X is a
called a canonical divisor on X.

Definition 1.10. On a compact Riemann Surface X a divisor D has compact
support and therefore the map deg : Div (X) → Z defined by deg(D) :=

∑
x∈X nx is

well defined and clearly a homomorphism. This is called the degree homomorphism.

Proposition 1.11. Every principal divisor has degree 0 and so linearly equiv-
alent divisors have the same degree.

Proof. [Fo, 80-81]. This is a consequence of the residue theorem on Riemann
surfaces. �

An immediate consequence of lemma 3.1.7 and proposition 3.1.11 is

Corollary 1.12. All canonical divisors on a Riemann surface X have the
same degree.
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1.2. The line bundle LD. Let D be a divisor on a compact Riemann Surface
X. We associate to D a (holomorphic) line bundle LD over X.

Since X is compact, supp(D) = {pj ∈ X|npj 6= 0} is finite. We choose a finite
covering {Uk}k of X such that for each Uk, there is a meromorphic function gk on
Uk with ord gk

(p) = np for every p ∈ Uk. For example, we could choose Uk so that
at most one point pk ∈ supp(D) is contained in Uk. (See e.g. [Jo, 228-229] for why
it is possible to construct such functions {gk}k.)

Then, the zero and polar sets of {gi} are well defined since, by construction,
gi and gj have the same zero and polar sets on Ui ∩ Uj . In particular, gi

gj
is a

nowhere zero holomorphic function on Ui ∩ Uj and so the covering {Ui}i together
with the transition functions {gi,j}i,j := { gi

gj
|Ui ∩ Uj}i,j specify a one dimensional

holomorphic vector bundle (a complex line bundle) LD on X. That is, we can take
each open set Ui as a trivialising neighbourhood for LD so that LD|Ui

≡ Ui × C.
Fibres over points x ∈ Ui ∩Uj are then identified by the function gi,j = gi

gj
. So LD

is a holomorphic line bundle over X.

Conversely, we shall see that all holomorphic line bundles on a compact Rie-
mann surface X can be associated to a divisor on X.

Definition 1.13. If s ∈ M(L) is a non-zero meromorphic section of a holo-
morphic line bundle L represented by functions si ∈ M(Ui) relative to an open
cover {Ui}i of X, then the order ord x(s) of s at x ∈ Ui is given by

ord x(s) := ord x(si).

This is clearly independent of the choice of cover {Ui}i.

Lemma 1.14. Every holomorphic line bundle L → X on a compact Riemann
surface X admits a global meromorphic section s such that s 6≡ 0 on X. In partic-
ular, since s has only isolated zeroes and poles, we can associate a divisor (s) on
X to s by (s)(x) = ord x(s) for x ∈ X.

Proof. [Fo, 225]. �

Lemma 1.15. Let L be a holomorphic line bundle on a compact Riemann surface
X. If s is a global meromorphic section of L and (s) the divisor associated to s,
then (s) defines a holomorphic line bundle L(s) on X.

In this case L(s) is isomorphic to L.

Proof. Let L have transition functions {gi,j}i,j and s = {si}i be a global
meromorphic section of L. Then, for all, i, j, si

sj
is non-vanishing and holomorphic

on Ui ∩ Uj so we can define L(s) by means of the meromorphic functions si on Ui.
Since s = {si}i is a section, si = gi,jsj so L(s) has transition functions si,j := si

sj
=

gi,j . �

Definition 1.16. The degree deg(L) of a holomorphic line bundle L is defined
as deg(L) := deg(s) where s is a global meromorphic section of L. By the above
lemma 3.1.15, this is well defined.

The following theorem says that there is a one to one correspondence between
the linear equivalence classes of divisors on X and the isomorphism classes of line
bundles on X. In particular, the line bundle LD associated to a divisor D is well-
defined up to isomorphism.
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Theorem 1.17. If L = LD and L′ = LD′ , then L and L′ are isomorphic if and
only if D and D′ are linearly equivalent.

Proof. Let D′ = D + div (φ), φ ∈ M(X). Then, according to the above
method, if L is associated to the data {Ui, gi}i, D′ can be associated to giφ and
so we obtain transition functions g′i,j = giφ

gjφ = gi,j for L′. By proposition 1.1.7,
L ∼= L′.

For the converse, let L have transition functions {gi,j}i,j = { gi

gj
}i,j and L′ has

transition functions {g′i,j}i,j = { g′i
g′j
}i,j with respect to a cover U = {Ui}i, and with

gi, g
′
i ∈M(Ui) for all i. The divisors corresponding to {gi}i and {g′i}i are denoted

by D and D′ respectively.
Say f : L → L′ is an isomorphism of holomorphic line bundles. We wish to

show that D′ = D + div (φ) for some φ ∈M(X). That is, that

g′i = φgi, for all i.

For all i, let si, resp. s′i denote the holomorphic section of L|Ui
resp. L′|Ui

which is mapped to the constant function 1 ∈ C by a trivialising map. Then, in
particular, si, resp. s′i is nowhere vanishing on Ui, so, since f is linear on fibres

f(si) = fi · s′i
where fi is a nowhere vanishing holomorphic function on Ui.

So, on Ui ∩ Uj we have

f(sj) = fj · s′j = fj

g′j
g′i
s′i

and also

f(sj) = f

(
gj

gi
si

)
=
gj

gi
f(si) =

gj

gi
fis

′
i.

So, since s′i 6= 0 on Ui ∩ Uj

g′j
g′i
fj =

gj

gi
fi

on Ui ∩ Uj and therefore

φi :=
g′i
gi
fi

defines a meromorphic function φ on X. Furthermore, on Ui, the divisor associated
to φ is the divisor associated to g′i

gi
(since fi is non-vanishing and holomorphic on

Ui). I.e. div (φ) = D′ −D. This is what we wished to prove.
�

Example 1.18. By proposition 3.1.11, linearly equivalent divisors on a compact
Riemann surface have the same degree. On CP1 the converse also holds. That is,
if divisors D and D′ on CP1 have the same degree, they are linearly equivalent:

Let D be a divisor on CP1 such that deg(D) = 0. We cover CP1 with the open
sets U0 and U1 as in example 1.1.5. On U0, we have the local coordinate [1 : z] 7→ z
and on U1 we have the local coordinate [w : 1] 7→ w. By translating if necessary, we
may assume that D is supported on (U0∩U1) ⊂ U0 (since the complement of U0∩U1

in CP1 is a discrete set of two points) and we may therefore write D =
∑

z∈C∗ nz ·z.
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If supp (D) = {zi}i, then
∑

i nzi
= 0. We wish to associate a meromorphic

function φ on CP1 to the divisor D. On U0,define

φ0(z) :=
∏

i

(z − zi)nzi .

Clearly div (φ0) = D|U0 . Now, on U0 ∩ U1, w = 1
z , wi := 1

zi
, and we have

φ0(w) =
∏

i

(
1
w
− zi

)nzi

=
(

1
w

)P
i nzi ∏

i

(1− wzi)
nzi

=
∏

i

(
1− w

wi

)nzi

=
∏

i

(
1− w

wi

)nzi

,

=
∏

i

(
1
wi

)nzi

(wi − w)nzi .

Since
∏

i

(
1

wi

)nzi

(wi − 0)nzi is finite, we can extend φ0 to all of U1. Furthermore,

φ is non-zero at w = 0 so, we have defined a global meromorphic function φ on CP1

with div (φ) = D. We have shown that if D is a divisor on CP1 such that degD = 0,
then D = div (φ) for some meromorphic function φ on CP1, and therefore that two
divisors on CP1 have the same degree if and only if they are linearly equivalent.

This, together with theorem 3.1.17, implies that two line bundles on CP1 have
the same degree if and only if they are isomorphic.

Let π : OCP1(−1) → CP1 be as in examples 1.1.5 and 1.1.17. We define a global
meromorphic section s on OCP1(−1) via the covering CP1 = U0 ∪ U1. Define

s0 : [1 : z] 7→ (1, z) on U0, and s1 : [w : 1] 7→ (
1
w
,

1
w

) on U1.

Then s = {s0, s1} transforms according to s1 = g1,0s0 on U0∩U1 and s is a nowhere
vanishing global meromorphic section of OCP1(−1) with a single pole of order 1 in
the point given by [0 : 1].

Therefore we have deg(OCP1(−1)) = −1 and, if D is a divisor on CP1 with
deg(D) = −1, there is an isomorphism LD

∼−→ OCP1(−1).

Proposition 1.19. Let K be a canonical divisor on a compact Riemann Sur-
face X. Then LK is isomorphic to the holomorphic cotangent bundle T of X. We
call LK

∼= T the canonical line bundle on X.

Proof. A canonical divisor is the divisor of a meromorphic differential on X.
The statement follows from definition 3.1.5 (see remark 3.1.6). �

Definition 1.20. By theorem 1.2.8, we associate to LD a sheaf OD := O(D)
of local holomorphic sections of LD.

Proposition 1.21. There is a natural isomorphism between OD and the sheaf
F where F(U) = {φ ∈ M(U) : D|U + div (φ) ≥ 0} and the restriction functions
τU
V , V ⊂ U are simply the restrictions τU

V (φ) = φ|V , φ ∈M(U).
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Proof. D is the divisor of a meromorphic section s0 of L = LD. φ ∈ F(U) if
and only if div (φ · s0) = div (φ) + div (s0) ≥ 0. That is div (φ · s0) is effective on U
and therefore φ · s0 ∈ OD(U).

Conversely, given a local holomorphic section s ∈ OD(U),

div (s)− div (s0) ≥ −D|U
so the formal expression s

s0
defines an element of F(U).

�

2. The Riemann-Roch Theorem and the analytic index of a divisor

Definition 2.1. The genus g of a compact Riemann Surface X is defined by

g := dimH1(X,O).

Theorem 2.2. The Riemann-Roch theorem
If D is a divisor on a compact Riemann surface X and OD is the sheaf of local

holomorphic sections of LD (or, by proposition 3.1.21, the sheaf of local meromor-
phic functions φ on U open in X such that div (φ) + D|U ≥ 0), then H0(X,OD)
and H1(X,OD) are finite dimensional vector spaces with dimensions h0(X,OD)
and h1(X,OD) respectively and

(2.1) h0(X,OD)− h1(X,OD) = 1− g + degD.

It is not the aim of the current thesis to prove this theorem (refer to e.g. [Fo,
129-130]). In this chapter we are interested in showing that the integer quantity
given on the left hand side of the equation can be interpreted as the analytic index
of a differential operator associated to the divisor D.

2.1. Serre duality. The Serre duality theorem provides a powerful tool for
calculating with the Riemann-Roch theorem.

Theorem 2.3. Serre duality theorem
There is an isomorphism

Φ : H0(X,OK−D) →
(
H1(X,OD)

)∗
.

Proof. [Fo, 132-138]. �

Corollary 2.4. If K is a canonical divisor on a compact Riemann surface
X, then

degK = 2g − 2.

Proof. By Serre duality, theorem 3.2.3,

H1(X,OK) = (H0(X,OK−K))∗ = (H0(X,O))∗.

H0(X,O) consists of the holomorphic functions on X but since X is compact,
H0(X,O) = C so h1(X,OK) = h0(X,O) = 1.

Furthermore, H0(X,OK) = (H1(X,OK−K))∗ = (H1(X,O))∗ but
h1(X,O) =: g. So the Riemann-Roch theorem gives

h0(X,OK)− h1(X,OK) = g − 1 = 1− g + degK.

That is degK = 2g − 2.
�
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Example 2.5. The projective line CP1 has genus 0. Therefore a canonical
divisor K on CP1 has degree -2. In particular, by proposition 3.1.19, the degree
deg(T) of the holomorphic cotangent bundle T of CP1 is -2.

2.2. The analytic index of a divisor.

Definition 2.6. If D is a divisor on a compact Riemann surface X then the
Dolbeault operator ∂D of D is defined as ∂D := ∂LD

: E(LD) → E0,1(LD) (see
definition 2.2.5).

Remark 2.7. Where the bundle is clear from the context, we shall simply refer
to the operators ∂L, ∂D as ∂.

We will use the notation

(2.2) ED := E(LD) and E0,1
D := E0,1(LD).

In example 2.2.6, we have seen that the Dolbeault operator Ep,q(E) ∂E−−→ Ep,q+1(E)
for a holomorphic vector bundle E → X is elliptic with symbol

σ(∂E)(sq(x), ξ) = i∂E(gsq)(x) = i(∂g(x) ∧ e+ g(x)∂Esq(x)) = iξ0,1 ∧ e

for sq ∈ Ep,q(E) such that sq(x) = e ∈ E ⊗ ∧pT ∧q T, ξ ∈ T ′X and g ∈ C∞(X)
such that dg(x) = ξ = ξ1,0 + ξ0,1 (with ξ1,0 ∈ T and ξ0,1 ∈ T) and g(x) = 0.

In particular if D is a divisor on a compact Riemann surface X, the operator
∂D is elliptic. Furthermore, by remark 2.2.7, Ker (ED

∂D−−→ E0,1
D ) = OD.

Lemma 2.8. The sequence

(2.3) 0 → (OD)X ↪→ (ED)X
∂D−−→ (E0,1

D )X
∂−→ 0

(where the arrow ↪→ denotes inclusion) is an exact sequence of sheaves. Here we
denote the sheaf morphism induced by ∂D also by ∂D.

Proof. Clearly the map OD(U) ↪→ ED(U) is injective for all U ⊂ X open,
and we have just seen that, by remark 2.2.7, Ker (ED

∂D−−→ E0,1
D ) = OD. So, by the

definition of the Dolbeault operator ∂D, Ker (ED(U) ∂D−−→ E0,1
D (U)) = OD(U) for

all U ⊂ X open.
It therefore remains to show that (ED)X

∂D−−→ (E0,1
D )X is surjective: Let x ∈ X

and α ∈ E0,1
D (V ) where V 3 x is an open neighbourhood. On a sufficiently small

neighbourhood U ⊂ V of x, α = s ⊗ ω where s ∈ ED(U) and ω ∈ E0,1(U). The
Dolbeault lemma ([Fo, 105]) says that, in a small enough neighbourhood U ′ ⊂ U ⊂
X, ω = ∂f where f ∈ E . Therefore, by the definitions 3.2.6, and 2.2.5 of ∂D = ∂LD

,
s⊗ ω = ∂(f · s) =: ∂D(β) for some β ∈ (ED)(U).

�

Lemma 3.2.8 can be generalised in an obvious fashion to holomorphic vector
bundles of rank r over compact complex manifolds of any dimension.

Theorem 2.9. If D is a divisor on a compact Riemann surface X and
∂D : ED → E0,1

D is the Dolbeault operator on LD, then

Ker (ED
∂−→ E0,1

D ) ∼= OD = H0(X,OD)

and
Coker (ED

∂−→ E0,1
D ) ∼= H1(X,OD).
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Proof. The first statement has been proved in lemma 3.2.8 above. Again by
lemma 3.2.8,

0 → (OD)X ↪→ (ED)X
∂−→ (E0,1

D )X
∂−→ 0

is a short exact sequence of sheaves. So, by theorem 1.2.30

0 → OD ↪→ ED
∂−→ E0,1

D
δ∗−−→ H1(X,OD) → H1(X, ED)

is exact
Furthermore, by theorem 1.2.31, H1(X, ED) = H1(X, E0,1

D ) = 0. So, it follows
directly from theorem 1.2.34 that

H1(X,OD) ∼= Coker (ED
∂−→ E0,1

D ).

�

Definition 2.10. The analytic index of a divisor D on a compact Riemann
surface X is given as

inda(D) := inda(∂(LD)),

the analytic index of the elliptic operator ∂D : ED → E0,1
D .

Corollary 2.11. By theorem 3.2.9,

inda(D) = h0(X,OD)− h1(X,OD),

the left hand side of equation 3.(2.1).

3. The Euler characteristic and Hirzebruch-Riemann-Roch

Definition 3.1. Let E → X be a holomorphic vector bundle of rank r over a
compact complex manifold X of dimension n. The Euler characteristic χ(E) of E
is given by

χ(E) :=
∑
i≥0

(−1)ihi(X,E),

where hi(X,E) := dimHi(X,E) and Hi(X,E) := Hi(X,O(E)) as in theorem
1.2.8.

Lemma 3.2. Hi(X,E) = 0 for i ≥ n.

Proof. Let E → X be a holomorphic vector bundle with X is a compact
complex manifold of complex dimension n. It follows from remark 2.2.7 that the
sequence of sheaves

0 → O(E)X ↪→ E(E)X
∂E−−→ E0,1(E)X

∂E−−→ . . . ,

is a resolution for O(E)X . In fact, since the sheaves E0,k(E)X are fine for all k (by
example 1.2.14), the above sequence is a fine resolution for O(E)X . So the sequence
of global sections

0 → O(E) ↪→ E(E) ∂E−−→ E0,1(E) ∂E−−→ . . .

is a complex. Therefore, by theorem 1.2.34

Hi(X,E) := Hi(X,O(E)) ∼= Ker
(
∂E(E ⊗ ∧iT)

)/
Im
(
∂E(E ⊗ ∧i−1T)

) = 0

for i > n since ∧iT = 0 in that case.
�
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Corollary 3.3. The analytic index of a divisor D on a Riemann surface X
is equal to the Euler characteristic χ(LD) of the bundle LD over X.

Proof. This is a restatement of corollary 3.2.11. �

Remark 3.4. As a special case of this, we have already seen in 3.2.4 that the
analytic index of a canonical divisor K is equal to

1− g + degK = 1− g + (2g − 2) = g − 1,

the Euler number of X.

In fact as a direct corollary of theorem 1.2.34, we have the following general
result:

Theorem 3.5. Let E be a holomorphic vector bundle over a compact complex
manifold X . Then

χ(E) = inda(∂(E)).





CHAPTER 4

The Topological Index of a Divisor

We now turn to the right hand side of the Riemann-Roch equation:

(0.1) T (D) := 1− g + degD.

The aim of this chapter will be to show that, if L is a holomorphic line bundle on a
compact Riemann surface X, and D is the divisor of a meromorphic section of L,
T (D) is dependent only on the topological, and not the analytic, structure of L.

1. De Rham Cohomology

Let X be a real n-dimensional differentiable manifold. As before (page 32), for
p ≥ 0, Ep = Ep(K) denotes the space of differential p-forms on X with coefficients
in the field K = R,C. In particular, E0 is the space of differentiable K-valued
functions on X.

Recall (equation 1.(1.1)) that if K = C and X is complex, Ep :=
⊕

q+r=p Eq,r

where Eq,r := E(∧qT⊗ ∧rT).
The exterior derivative dp : Ep → Ep+1 is a K-homomorphism.
For p ≥ 1, we define

Zp := Ker (Ep dp−−→ Ep+1)

and
Bp := Im (Ep−1 dp−1−−−→ Ep).

Then Zp is the space of closed p-forms on X, and Bp the space of exact p-forms on
X.

Definition 1.1. For K = R,C, the p-th de Rham cohomology group
Hp

deRh(X) := Hp
deRh(X,K) of X is defined by

Hp
deRh(X) (= Hp

deRh(X,K)) := Zp/
Bp .

Theorem 1.2. de Rham’s theorem.
For X, a real paracompact n-dimensional differentiable manifold with

KX = RX ,CX the constant real or complex sheaf on X, there is a natural isomor-
phism

Hp(X,K) ∼−→ Hp
deRh(X,K), p ≥ 0.

Proof. We consider the resolution

(1.1) 0 → KX ↪→ E0
X

d0−−→ E1
X

d1−−→ . . . dn−1−−−−→ En
X

dn−−→ 0,

where ↪→ denotes inclusion. The result follows immediately from theorem 1.2.34.
�

Henceforth we shall often identify Hp(X,K) and Hp
deRh(X,K).

45



46 4. THE TOPOLOGICAL INDEX OF A DIVISOR

Remark 1.3. For a Riemann surface X, we describe the map
Φ : H2(X,R) → H2

deRh(X)(= H2
deRh(X,R)) explicitly:

Let U = (Ui)i be a covering of X by open sets, and choose an α = {αi,j,k}i,j,k

in Z2(U ,R) ⊂ Z2(U , E).
EX is a fine sheaf (example 1.2.11) so, by theorem 1.2.31 we have

Z2(U , E) = B2(U , E) := δ1(C1(U , E)).

In other words, there is a β := {βi,j}i,j ∈ C1(U , E) such that α = δ1(β).
Now, exterior differentiation d : E → E1 is well defined on E and, δd = dδ.

Therefore, since α is locally constant we have

0 = dα = dδ1(β) = δ1(dβ)

so dβ ∈ Z1(U , E1).
Since E1

X is also fine, dβ = δ0(µ) for some µ ∈ C0(U , E1). But then δ1dµ =
d2β = 0 so Φ(α) := dµ ∈ Z0(U , E2) = E2(X) is a global 2-form on X. Since d2 = 0,
dµ is closed and therefore represents an element of H2

deRh(X).
To show that this is independent of the choices made, it is sufficient to show

that, given a representative α = {αi,j,k}i,j,k of 0 ∈ H2(U ,R), the two-form dµ
constructed in the above manner is exact. Namely, if α is a representative of
0 ∈ H2(U ,R), α = δ1β for some β ∈ C1(U ,R) ⊂ C1(U , E). So, dβ = (dβi,j)i,j = 0.
Therefore, if µ ∈ C0(U , E) is such that δ0µ = dβ = 0, µi = µj for all i, j.

In other words, µ is a global 1-form and dµ is exact.

Proposition 1.4. If X is a compact, connected Riemann surface, then a
differential 2-form α ∈ E2(X) is exact if and only if

∫
X
α = 0. In particular

H2
deRh(X,K) ∼= K.

Proof. If α ∈ E2(X) is exact,
∫

X
α = 0 by Stokes’ theorem since X is without

boundary.
For the converse see [Lo, 35-36]. �

We will need the following lemma in the final chapter.

Lemma 1.5. If X,X ′ are homotopy equivalent topological spaces, then

Hk
deRh(X,R) ∼= Hk

deRh(X ′,R)

for all k.

Proof. [BT, 36] �

2. The genus of a Riemann surface

In the preceding (definition 3.2.1) we have defined the genus g of a compact
Riemann surface X as the dimension h1(X,OX) of the first cohomology group
H1(X,O) of the sheaf of local holomorphic functions (the sheaf with locally con-
vergent power series as germs) on X. In what follows, we consider the equivalence
of alternative definitions in order to arrive at a more obviously topological charac-
terisation.

Let O1 := O1(X) denote the space of holomorphic 1-forms on X and O1
X the

sheaf of locally holomorphic 1-forms on X. Then, if K is a canonical divisor on X,
O1 := O(T) = OK by proposition 3.1.19.
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Proposition 2.1.
h1(X,O) = h0(X,O1).

Proof. Since O = O0 where 0 is the divisor with empty support, and

H0(X,O1) = O1 = OK ,

this follows from Serre Duality, proposition 3.2.3. �

Definition 2.2. Let X be a Riemann surface. A differentiable function f :
X → C is said to be harmonic if

∂∂(f) = 0.

Example 2.3. Let f be a non-vanishing holomorphic function on U ⊂ X.
Then log |f |2 = log ff is harmonic. Namely,

∂2

∂z∂z
log |f |2 =

∂2

∂z∂z
(log f + log f) =

∂

∂z
(log f) = 0.

Definition 2.4. A complex differential 1-form on a Riemann surface X is
a harmonic 1-form if it is locally of the form df with f a harmonic function on
U ⊂ X.

Proposition 2.5. A differential 1-form ω on a Riemann surface X is harmonic
if and only if it is of the form

ω = η1 + η2

with η1, η2 holomorphic differentials (locally of the form φdz, φ holomorphic). There-
fore, the space H1(X) of harmonic differentials on X is equal to the direct sum
O1(X)⊕O1(X).

Proof. [Fo, 154]. �

In particular, it follows from the above proposition 4.2.5 that

dimH1(X) = 2 dimO1(X) = 2g.

Lemma 2.6. The space H1(X) is isomorphic to the first de Rham cohomology
group H1

deRh(X,C) of X.

Proof. SinceH1(X) consists of closed differentials, there is an obvious natural
map H1(X) → H1

deRh(X,C).
The proof that this is an isomorphism rests on Hodge theory which we will not

discuss here. See [Lo, 39]. �

Theorem 2.7. H1(X) denotes the abelianised fundamental group of X, that is
the group obtained by taking the quotient of the fundamental group with its commu-
tator subgroup. It holds that

H1
deRh(X,C) ∼= Hom (H1(X),C).

In particular, H1
deRh(X,C) has dimension 2g.

Proof. This a theorem of de Rham.
The map

∫
: H1

deRh(X,C) → Hom (H1(X),C) is given by∫
([η])([α]) :=

∫
α

η
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where η is a representative of [η] ∈ H1
deRh(X,C) and α a representative of [α] ∈

H1(X). A proof that this is an isomorphism can be found in [Lo, 29-30].
�

Therefore the genus g of a Riemann surface X is a topological invariant of X,
independent of its holomorphic structure. We have

Theorem 2.8.

g := dimH1(X,O) = dimH0(X,O1) =
1
2

dim Hom (H1(X),C).

From the description of g as half the number of generators of the Abelianised
fundamental group, we are able to come to the intuitive idea of genus as the number
of ‘handles’ or ‘holes’ in a Riemann surface.

3. The degree of a divisor

We wish to show that, if L is a holomorphic line bundle on a compact Riemann
surface X, and D is the divisor of a meromorphic section of L, the degree deg(D)
of D is only dependent on the topological structure of L.

Let Pic (X) denote the space of isomorphism classes of holomorphic line bun-
dles1 on X. C∗ = GL(1,C) denotes the non-zero complex numbers.

Lemma 3.1. Pic (X) is a group with operation ⊗.

Proof. Pic (X) has identity id Pic (X) = [X × C → X].
If L,L′ are holomorphic line bundles over X then [L]⊗ [L′] := [L⊗L′] is well-

defined and an element of Pic (X). Namely, if L is defined by {gi,j}i,j and L′ by
{g′i,j}i,j with respect to U = {Ui}i, L⊗ L′ is defined by {ti,j}i,j ,

ti,j := gi,jg
′
i,j : Ui ∩ Uj → C∗

and so is also a holomorphic line bundle on X.
In the proof of theorem 3.1.17, we have seen that isomorphic line bundles can

be represented by the same transition functions. Therefore the class of [L ⊗ L′] is
independent of the choices of representatives L and L′ for [L] and [L′].

Finally, by proposition 1.1.20, [L]−1 ∈ Pic (X) is given by [L∗] where L∗ is the
holomorphic line bundle dual to L.

�

Let O∗X denote the sheaf of non-vanishing locally holomorphic functions on X.

Proposition 3.2. For a compact, connected Riemann surface X, there is a
natural isomorphism

H1(X,O∗) ∼= Pic (X).

Proof. A representative of an isomorphism class L̃ of line bundles on X is
defined by a covering U = (Ui)i∈I of X and non-zero holomorphic functions gi,j

on Ui ∩ Uj such that gi,k = gi,jgj,k for all i, j, k ∈ I. So, L corresponds to an
element (gi,j)i,j of Z1(U ,O∗). Conversely, an element (gi,j)i,j of Z1(U ,O∗) defines
the transition functions relative to U of a line bundle L on X.

1The notation Pic (X) stands for the Picard group of the space X.
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Now, L′ ∈ L̃ if and only if there exist non-zero holomorphic functions fi on
each Ui such that, if L′ is defined by (g′i,j)i,j , g′i,j = fi

fj
gi,j . But this is precisely

when (gi,j)i,j and (g′i,j)i,j belong to the same class in H1(U ,O∗).
Therefore, there is a well defined natural one to one correspondence between

Pic (X) and H1(X,O∗).
Since the trivial bundle onX can be defined by the transition functions gi,j(x) =

id = 1 for all x ∈ Ui ∩ Uj , and the correspondence is defined in terms of the mul-
tiplicative property of the transition functions, it is straightforward to show that
this is an isomorphism.

�

In what follows we will therefore often use isomorphism classes of holomorphic
line bundles and elements of H1(X,O∗) interchangeably. We may also use the same
notation when referring to representatives of the classes of Pic (X) ∼= H1(X,O∗),
though, of course, only where we have shown the results to be independent of the
particular choice of representative.

Remark 3.3. In particular deg(LD) = deg(D) by lemma 3.1.15.

Lemma 3.4. The degree map deg : Pic (X) → Z is a surjective group homo-
morphism. In other words

(1) deg(L⊗M) = deg(L) + deg(M)
(2) deg(L∗) = −deg(L)

Proof. Given two line bundles L, and L′ over X defined via the same covering
U = {Ui} by the transition functions {gi,j} = {gi/gj} and {g′i,j} = {g′i/g′j} respec-
tively, we calculate the degree of the tensor product L ⊗ L′. A section of L ⊗ L′

has locally the form ξiξ
′
i and on Ui ∩Uj we have ξjξ′j = (gj,iξi)(g′j,iξ

′
i) = gj,ig

′
j,iξiξ

′
i.

But gj,ig
′
j,i = gjg′j

gig′i
and so deg(L⊗ L′) = deg(L) + deg(L′).

We have already seen that L∗ can be described by the transition functions
{g−1

i,j = gj

gi
}i,j . So deg(L∗) = −deg(L) as required

The map is surjective since for all n ∈ Z we can define a divisor Dn with
deg(Dn) = deg({Dn}) = n, for example we take the point divisor Dn = n · x for
some x ∈ X.

�

Example 3.5. In example 3.1.18 we have seen that two holomorphic line bun-
dles on CP1 are isomorphic if and only if they have the same degree. Therefore,
by the above lemma 4.3.4 and examples 1.1.5 and 3.1.18, if T is the holomorphic
cotangent bundle on CP1,

T ∼= OCP1(−1)⊗OCP1(−1).

In particular, if CP1 = U0 ∪ U1 is the covering of CP1 given in example 1.1.5, then
relative to this covering, T has transition function g0,1[1 : z] = ( 1

z )2 = 1
z2 .

Clearly, if T is the holomorphic tangent bundle of CP1, deg(T ) = −deg(T) = 2
and

T = T∗ = OCP1(−1)∗ ⊗OCP1(−1)∗.
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Moreover, by 3.1.18, two holomorphic line bundles on CP1 are isomorphic if and
only if they have the same degree. So, if we define

OCP1(k) :=
{
⊗kOCP1(−1)∗ =: ⊗kOCP1(1), k > 0
⊗kOCP1(−1), k ≤ 0

(where ⊗0OCP1(−1) = C × X → X is the trivial line bundle), then, for every
holomorphic line bundle L on CP1,

deg(L) = k ⇒ L ∼= OCP1(k).2

By proposition 4.3.2, a holomorphic line bundle L over X can be viewed as an
element of the cohomology group H1(X,O∗) represented by the cocycle {gi,j}i,j

(with respect to a covering U = {Ui}i of X).

Let (L, h) be a holomorphic line bundle with Hermitian metric h over a compact
Riemann Surface X and let λ = {λi}i be a collection of positive functions λi on Ui

obtained as in remark 1.1.15 relative to a cover U = {Ui}i of X.

Proposition 3.6. There is a global closed 2-form c̃1(L) on X defined by

c̃1(L)|Ui =
i

2π
∂2

∂z∂z
log λidz ∧ dz.

Proof. On Ui ∩ Uj

i

2π
∂2

∂z∂z
log λjdz ∧ dz =

i

2π
∂2

∂z∂z
log(gi,jgi,jλi)dz ∧ dz

=
i

2π
∂2

∂z∂z
(log |gi,j |2 + log λi)dz ∧ dz =

i

2π
∂2

∂z∂z
log λidz ∧ dz.

So we can write c̃1(L) = i
2π

∂2

∂z∂z log λdz ∧ dz is a globally defined 2-form on X. By
definition c̃1(L) is closed.

�

Since c̃1(L) is closed it represents an element of the de Rham cohomology group
H2

deRh(X).

Proposition 3.7. The class of c̃1(L) in H2
deRh(X) is independent of the choice

of metric h on L.

Proof. Let 1h and 2h be Hermitian metrics on L which induce collections
of positive functions 1λ, 2λ respectively. Then σ = (σi)i =

(
1λi

2λi

)
i

is positive.
Furthermore, σ is globally defined since

σj = 1λj

2λj
= 1λigi,jgi,j

2λigi,jgi,j
= 1λi

2λi
= σi

on Ui ∩ Uj for all i, j. We have

i

2π

(
∂2

∂z∂z
log 1λidz ∧ dz −

∂2

∂z∂z
log 2λidz ∧ dz

)
2In fact, if E → CP1 is holomorphic, then it can be proved that E is a direct sum of

holomorphic line bundles on CP1. Therefore, if rk (E) = r, there exist unique k1 ≤ · · · ≤ kr such
that

E ∼= OCP1 (k1)⊕ · · · ⊕OCP1 (kr).

This is the Grothendieck splitting theorem ([Gr]).
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=
i

2π
∂2

∂z∂z
log σdz ∧ dz = d

(
i

2π
∂

∂z
log σdz

)
which is exact.

�

Definition 3.8. The 2-form c̃1(L) is called the first Chern form of L.
We denote the class of c̃1(L) in H2

deRh(X), also by c̃1(L). This is the first
Chern class of the line bundle L.

Lemma 3.9. The map c̃1 :
(
Pic (X) ∼= H1(X,O∗)

)
→ H2

deRh(X) is a homo-
morphism of groups.

Proof. Let 1 denote the trivial line bundle onX. Then we can choose a metric
h on 1 such that λ ≡ 1 (since 1 is trivial we can choose λ = λi for all i relative to
any cover {Ui} of X, λ is as in remark 1.1.15). Since log 1 = 0, c̃1(1) = 0 ∈ E2(X)
so c̃1(1) = 0 in the additive group H2

deRh(X).
If L is a vector bundle with metric h and local frames fi and L′ is a vector

bundle with metric h′ and local frames f ′i , we obtain positive functions (as in remark
1.1.15)

{λi := hi(fi, fi) : Ui → R+}i =: λ} and {λ′i := h′i(f
′
i , f

′
i) : Ui → R+}i =: λ′.

Furthermore hh′ defines a metric on L⊗L′ and fif
′
i are local frames for L⊗L′ so

hh′ is given by λλ′ = {λiλ
′
i : Ui → R+}i. Then

c̃1(L⊗ L′) =
i

2π
log(λλ′)dz ∧ dz =

i

2π
log λdz ∧ dz +

i

2π
log λ′dz ∧ dz

= c̃1(L) + c̃1(L′) ∈ H2
deRh(X)

as required.
�

Example 3.10. Let OCP1(−1) → CP1 be the bundle defined in example 1.1.5.
Then, if z is a local coordinate, we have

c̃1(OCP1(−1)) =
i

2π
∂2

∂z∂z
log(1 + |z|2)dz ∧ dz =

i

2π
1

(1 + |z|2)2
dz ∧ dz.

We consider the short exact sequence of sheaves

0 → ZX ↪→ OX
exp−−−→ O∗X → 0.

where exp : OX → O∗X is the map defined by exp(f) := e2if for f ∈ O(U) and
U ⊂ X open.

The connecting homomorphism theorem 1.2.30, says that the sequence

(3.1) · · · → H1(X,O) → H1(X,O∗) δ∗−−→ H2(X,Z) → . . .

is exact. In proposition 1.2.25 we have seen that the obvious map Θ : H2(X,Z) →
H2(X,R) induced by the inclusions Z2(U ,Z) ⊂ Z2(U ,R) and C1(U ,Z) ⊂ C1(U ,R)
is a well-defined homomorphism.

Theorem 3.11. Identifying H2(X,R) and H2
deRh(X) via theorem 4.2.7, it holds

that
c̃1 = Θ ◦ δ∗(: H1(X,O∗) → H2

deRh(X))
where δ∗ : H1(X,O∗) → H2(X,Z) is the connecting homomorphism.
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Proof. By the footnote in [We, 104], there is an open covering U = {Ui}i of
X such that each intersection Ui ∩Uj is simply connected. Let {gi,j}i,j denote the
corresponding transition functions.

We denote a map Z1(U ,O∗) → Z2(U ,Z) which induces the connecting homo-
morphism δ∗ also by δ∗ and, given g = {gi,j}i,j ∈ Z1(U ,O∗), we wish to construct
a δ∗(g) ∈ Z2(U ,Z).

For all x ∈ X, expx : (OX)x → (O∗X)x is a surjective homomorphism so,
since connected components of Ui ∩ Uj are simply connected for all i, j, there is a
f = (fi,j)i,j ∈ C1(U ,O) such that fi,j = i

2π log gi,j = exp−1(gi,j).
Then δ1f ∈ C2(U ,O) and, in particular, δ1f ∈ Z1(U ,O) (since δ2 = δ2δ1 = 0).

Using the fact that gi,k = gi,jgj,k for all i, j, k we have

(δ1f)i,j,k =
i

2π
(log gj,k − log gi,k + log gi,j) ∈ Z ⊂ O

on each connected component of Ui ∩ Uj ∩ Uk for all i, j, k.
So, δ1f ∈ Z2(U ,Z) and is a representative for an element δ1f ∈ H2(X,Z) as

well as for the Θδ1f ∈ H2(X,R) .
We construct the corresponding element of H2

deRh(X): Using the method of
remark 4.1.3, we let α := δ1f and β = f . By the inclusion O ↪→ E , f = {fi,j}i,j is
in C1(U , E).

L → X is a holomorphic line bundle defined by g = {gi,j}i,j and h is a Her-
mitian metric on L. λ = {λi}i is a collection of positive functions obtained from h
as in remark 1.1.15. We choose µ = µi ∈ C0(U , E1), µi = i

2π
∂
∂z log λidz. Then

(δ0µ)i,j = µi − µj =
i

2π
∂

∂z
log
(
λi

λj

)
dz

=
i

2π
∂

∂z
log (gi,jgi,j) dz =

i

2π
∂

∂z
log(gi,j)dz = dfi,j .

Therefore

δdµ = dδµ = d2f = 0

so

dµ =
i

2π
∂2

∂z∂z
log λdz ∧ dz ∈ Z0(U , E2) = E2

is a global 2-form and equal to c̃1(L).
�

Remark 3.12. Sometimes it will also be convenient to refer to the element of
H2(X,R) represented by δ1(f) := {(δ1f)i,j,k}i,j,k where

(δ1f)i,j,k =
i

2π
(log gj,k − log gi,k + log gi,j) ∈ Z

also as the first Chern form c̃1(L) of L.
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Theorem 3.13.
∫

X
c̃1(L) = deg(L).

Proof. By lemmas 4.3.4 and 4.3.9, it suffices to prove this for L = {(p)} a
line bundle associated to a simple point divisor.

For such an L there exists a global holomorphic section s of L which is non-zero
on X − {p} and which vanishes to first degree at p ∈ X.

Since the result is independent of the choice of metric on L by proposition 4.3.7,
we can choose a covering U = {Ui}N

i=0 for X, and a metric h for L as follows:
Let U be an atlas for X such that, relative to a local coordinate, U0 = B1 is

a disc centered at {p} with radius 1 relative to the metric on X (with scaling if
necessary), B 1

2
⊂ B1 is the concentric disc with radius 1

2 , and B 1
2
∩ Ui = ∅ for all

i 6= 0. We also choose s = z on U0, and s ≡ 1 on Ui, i 6= 0. Via a partition of unity
we can construct a Hermitian metric h on L and choose a frame f for U0 = B1

such that λ0|B 1
2

:= h(f)|B 1
2
≡ 1.

{gi,j}i,j is the set of corresponding transition functions for L.
We let Br := B(p, r) be a disc about p with radius r in a coordinate neighbour-

hood of X.
There is a positive function |s|2 on X given by

|s|2 = λisisi, on Ui.

Then |s|2 is globally defined since

λjsjsj = λigi,jgi,jgj,isigj,isi = λisisi.

s is holomorphic and non-zero on X\Br. So, on Ui\Br,
log |s|2 = log λi + log |si|2, and therefore

(3.2)
∂2

∂z∂z
log λ =

∂2

∂z∂z
log |s|2.

Although c̃1(L, λ) = i
2π

∂2

∂z∂z log λ dz∧dz is well-defined on X, ∂
∂z log λdz is not,

in general, globally defined (as can be easily seen by writing out how it transforms
under the transition functions gi,j). However, since |s|2 is globally defined

∂2

∂z∂z
log |s|2dzdz = d(

∂

∂z
log |s|2dz).

so by equation 4.(3.2),∫
X\Br

c̃1(L) =
i

2π

∫
X\Br

∂2

∂z∂z
log λ dz dz =

i

2π

∫
X\Br

d

(
∂

∂z
log |s|2 dz

)
.

We may apply Stoke’s theorem to obtain∫
X\Br

c̃1(L) =
i

2π

∫
X\Br

d

(
∂

∂z
log |s|2 dz

)
= − i

2π

∫
∂Br

∂

∂z
log |s|2 dz.

For r < 1
2 , |s|2 = |z|2 so

− i

2π

∫
∂Br

∂

∂z
log |s|2 dz = − i

2π

∫
∂Br

∂

∂z
log |z|2 dz = − i

2π

∫
∂Br

1
z
dz.

Since, by the residue theorem
∮

1
z dz = 2πi when the closed curve of integration

contains z = 0,∫
X

c̃1(L) = lim
r→0

i

2π

∫
X\Br

∂2

∂z∂z
log λ dz dz = lim

r→0
− i

2π

∫
∂Br

1
z
dz = 1



54 4. THE TOPOLOGICAL INDEX OF A DIVISOR

as required.
�

Example 3.14. In example 4.3.10, we saw that

c̃1(OCP1(−1))(z) =
1

(1 + |z|2)2
dz ∧ dz.

Since limz→∞
1

(1+|z|2)2 = 0, theorem 4.3.13 gives

1
2πi

∫
C

1
(1 + |z|2)2

dz ∧ dz = 1.

Let CX denote the sheaf of locally continuous functions on X and C∗X denote
the sheaf of locally continuous functions on X which are nowhere vanishing on their
domain. A holomorphic line bundle L ∈ H1(X,O∗) (see proposition 4.3.2) is, in
particular, a continuous line bundle. That is, L ∈ H1(X, C∗).

Since the sequence

0 → ZX → CX
exp−−−→ C∗X → 0

is exact, so too is the sequence

(3.3) · · · → H1(X, C) → H1(X, C∗) δ∗−−→ H2(X,Z) → H2(X, C) → . . . .

Lemma 3.15. H1(X, C) = H2(X, C) = {0}.

Proof. CX is a fine sheaf since there exists a continuous partition of unity on
X. The result follows from theorem 1.2.31. �

Theorem 3.16. The degree degD of a divisor D on a compact Riemann sur-
face X is a topological invariant of the line bundle LD and not dependent on the
holomorphic structure of LD.

Proof. The commutative diagram

(3.4)

0 - ZX
ι - OX

expO- O∗X - 0

0 - ZX

id

?

ι
- CX

ι

?

expC
- C∗

ι

?
- 0.

induces a commutative diagram

(3.5)

. . . - H1(X,O)
expO- H1(X,O∗)

δ∗O- H2(X,Z) - . . .

(0 = H1(X, C))

α

?

expC
- H1(X, C∗)

β

?

δ∗C

- H2(X,Z)

id

?
- 0.

([We, 56-57]) where ι denotes inclusion in each case, and

α :=
(
Θ : H1(X,O) → H1(X, C)(= 0)

)
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and
β :=

(
Θ : H1(X,O∗) → H1(X, C∗)

)
are natural homomorphism induced by the inclusions (proposition 1.2.25). In par-
ticular α ≡ 0 is the zero-map.

Since the map H2(X,Z) → H2(X,Z) in diagram 4.(3.5) is the identity, so, in
particular a bijection, by theorem 4.3.11, the following diagram commutes

(3.6)

H2(X,R)

∫
- R

. . . - H1(X,O∗)
δ∗O-

c̃ 1

-

H2(X,Z)

Θ
6

- . . .

. . . - H1(X, C∗)

β

?

δ∗C

- H2(X,Z)

∼
6

- . . . .

That is, the map obtained by first ignoring the holomorphic structure of a line
bundle L → X and then applying the connecting homomorphism δ∗C and

∫
Θ is

the same as
∫
c̃1. By theorem 4.3.13 (

∫
c̃1 ≡ deg) : Pic (X) → Z. In other words,

the degree of a holomorphic and therefore continuous line bundle is a topological
property independent of its holomorphic structure.

�

It has therefore been shown that the right-hand side of the Riemann-Roch equa-
tion 3.(2.1) can be characterised by the topology of the line bundle LD associated
to the divisor D on the Riemann surface X.





CHAPTER 5

Some aspects of algebraic topology and the
T-characteristic

1. Chern classes

We generalise the Chern classes defined in chapter 4 to characteristic classes
of complex differentiable vector bundles of rank r on smooth complex manifolds of
dimension n.

1.1. Curvature. Connections on a vector bundle E → X have been defined
in definition 1.1.30.

Definition 1.1. A connection ∇ on a vector bundle E → X defines in a
natural fashion an element K∇ ∈ E2(X,Hom(E,E)) called the curvature tensor of
∇.

If f is a frame at x, and A is the matrix for ∇ with respect to f at x, then K∇
at x is given by the r × r matrix of 2-forms

Θ∇(f) = dA+A ∧A.

Lemma 1.2. If g is a change of frame then we have

Θ∇(gf) = g−1Θ∇(f)g

and so K∇ : E(E) → E2(E) is globally defined,

Proof. [We, 72-73]. �

Remark 1.3. Given vector fields V1, V2 defined on an open set of X and a
differentiable section ξ ∈ E(E), we have

K(V1, V2)(ξ) = ∇(V1)(∇(V2)(ξ))−∇(V2)(∇(V1)(ξ))−∇([V1, V2])(ξ).

We have already defined (definition 1.1.34) the canonical connection ∇(E,h)

with respect to a Hermitian metric h on a holomorphic bundle E.

Definition 1.4. The canonical curvature Kh on a holomorphic vector bundle
E with hermitian metric h is the curvature form Kh := K∇(E,h) .

For simplicity of notation, we will usually refer to the canonical connection
∇(E,h) simply as ∇ and the canonical curvature as K.

Now let f = (fi)r
i=1 be a holomorphic frame for E on U ⊂ X open and ∇ the

canonical connection with respect to h. A is the corresponding connection matrix
on U . Since f is a frame, h(f) is invertible. Then, on U ,

Lemma 1.5. (1) A(f) = h(f)−1
∂h(f),

(2) Θ(f) = ∂A.

57
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Proof. As in (1.3), page 13, we set hα,β := h(fβ , fα), α, β = 1 . . . r and simi-
larly dhα,β := dh(fβ , fα), and use the notation h := h(f) = (hα,β)α,β ,

dh := dh(f) = (dhα,β)α,β = (∂hα,β)α,β + (∂hα,β)α,β =: ∂h+ ∂h . Then h, resp. dh
(and ∂h, ∂h) are r × r matrices of functions, resp. differentials on U .

If ∇ is the canonical connection with respect to h it holds by equation 1.(1.11)
that

dhα,β = h(∇fβ , fα) + h(fβ ,∇fα)

= h(
r∑

δ=1

Aδ,βfδ, fα) + h(
r∑

δ=1

Aδ,αfδ, fβ)

= hA+A
t
h.

Now by equation 1.(1.12), we have ∇′′ξ = 0 for ξ ∈ E(E) holomorphic. Therefore,
in particular A = A(f) is of type (1,0) so we have ∂h = hA and ∂h = A

t
h.

In other words, if f is a holomorphic frame, A = ∂h(f) ·h(f)−1 so (1) is proved.
Since

0 = ∂(1) = ∂
(
h · h−1

)
= ∂h · h−1 + h∂h−1,

it holds that

(1.1) ∂h−1 = −h−1 · ∂h · h−1.

Therefore, by part (1) and 5.(1.1)

∂A = ∂(h−1∂h)
= ∂h−1 ∧ ∂h
= −h−1 · ∂h · h−1 ∧ ∂h
= −h−1∂h ∧ h−1∂h

= −A ∧A.

It follows that

Θ(f) : dA+A ∧A = ∂A+ ∂A+A ∧A = −A ∧A+ ∂A+A ∧A = ∂A

as required.
�

1.2. Invariant Polynomials. Let Mr denote the set of r × r complex ma-
trices.

Definition 1.6. A multi-linear form φ̃ : Mr×· · ·×Mr → C is called invariant
if

φ̃(gA1g
−1, . . . , gAkg

−1) = φ̃(A1, . . . , Ak)
for all g ∈ GL(r,C) and all Ai ∈Mr.

Now, let X be a complex manifold and ωi ∈ Ep = Ep(X) for i = 1, . . . k. We
can extend the action of φ̃ to Mr ⊗ Ep by settting

(1.2) φ̃(A1 ⊗ ωi, . . . , Ak ⊗ ωk) := (ω1 ∧ · · · ∧ ωk)φ̃(A1, . . . , Ak) ∈ Epk.

It is simple to check that φ̃ so defined is well defined and multi-linear on Mr ⊗Ep.
Let π : E → X be a complex vector bundle with rkE = r. Given a choice of

frame f at x ∈ X, the restriction of a homomorphism E → E to a single fibre Ex
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can be written as an element of Mr and it is possible to further extend the action
of φ̃ to Ep( Hom(E,E)) := E(( Hom(E,E)⊗ ∧pT ∗X) to obtain a map

(1.3) φ̃X : Ep( Hom(E,E))× · · · × Ep( Hom(E,E)) → Epk(X).

To this end, let U ⊂ X be an open subset over which E is trivial. If ξi ∈
Ep(U, Hom(E,E)), for i = 1, . . . k and f is a frame for E over U , ξi(f) has the
form Aiωi, with Ai ∈Mr and ωi ∈ Ep(U), so it is natural to define

(1.4) φ̃U (ξ1, . . . , ξk) := φ̃U (ξ1(f), . . . , ξk(f)).

Lemma 1.7. This definition is independent of the choice of frame so φ̃U can be
extended to all of X to obtain a map φ̃X as in 5.(1.5).

Proof. Given a choice of frame f for E on U ⊂ X open, another frame on
U has the form g ◦ f where g has values in GL(r,C). If α ∈ Hom (E,E) then
α(g ◦ f) = g−1α(f)g. Therefore, by definition, if φ̃ is an invariant multi-linear form
and ξi ∈ Ep(U, Hom(E,E)) as above,

φ̃U (ξ1(g ◦ f), . . . , ξk(f ◦ f)) = φ̃U (g−1ξ1(f)g, . . . , g−1ξk(f)g)

= φ̃U (ξ1(g ◦ f), . . . , ξk(f ◦ f)).

In other words, φ̃U is independent of the choice of frame.
�

Definition 1.8. We call a map φ : Mr → C an invariant polynomial of degree
k if for every g ∈ GL(r,C) and for every A ∈ Mr, φ(gAg−1) = φ(A) and φ(A) is
a homogeneous polynomial of degree k in the entries of A.

Example 1.9. The determinant map det : Mr → C is an invariant polynomial
of degree r. Furthermore

det(I +A) =
r∑

k=0

Φk(A)

where each Φk is an invariant polynomial of degree k in the entries of A.

Remark 1.10. We note that an invariant k-linear form φ̃ naturally defines an
invariant polynomial φ by setting

φ(A) := φ̃(A, . . . , A), A ∈Mr.

The converse is also true (see [We, 85]): Every invariant polynomial φ of degree k
acting on Mr defines a linear map

φ̃ : Mr × · · · ×Mr︸ ︷︷ ︸
k times

→ C

such that φ̃ is invariant, and φ̃(A, . . . , A) = φ(A) for all A. In particular there is a
1-1 correspondence between the invariant k-linear forms on Mr and the invariant
homogeneous polynomials of degree k acting on Mr. So we can use the same
symbol φ for both the invariant k-linear form φ̃ and its restriction to the diagonal
φ.
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Remark 5.1.10 implies that, given an invariant polynomial φ of degree k, we
can extend the action of φ to Ep( Hom(E,E)) by constructing the map (5.1.3)
corresponding to φ̃ and then evaluating this on the diagonal. That is, for ξ ∈
Ep( Hom(E,E)),

(1.5) φX(ξ) : Ep( Hom(E,E)) → Epk(X), φX(ξ) = φ̃X(ξ, . . . , ξ).

Given a connection ∇ : E(E) → E1(E) on E, its curvature K is an element of
E2( Hom(E,E)) given locally by an r×r matrix Θ of two forms. So, if φ : Mr → C
is an invariant polynomial of degree k, φX(K) ∈ E2k(X) is well-defined by lemma
5.1.7.

Proposition 1.11. If φ is an invariant homogeneous polynomial of degree k
acting on Mr, then the 2k-form φ(K) ∈ E2k is closed.

Proof. [We, 86-87] or [MS, 296-298]. �

Therefore φ(K) defines an element of the de Rham cohomology groupH2k
deRh(X).

Proposition 1.12. If φ is an invariant homogeneous polynomial of degree k
acting on Mr, and ∇,∇′ are connections on a complex vector bundle E → X, the
forms φ(K∇) and φ(K∇′) represent the same element in the de Rham cohomology
group H2k

deRh(X).

Proof. [We, 86-87] or [MS, 298]. �

1.3. Chern classes. As before let E π−→ X be a complex diferentiable vector
bundle and let ∇ : E(E) → E1(E) be a connection on E with curvature

K∇ : E(E) → E2(E).

As in example 5.1.9 above, for k = 0, . . . , r, we define the invariant polynomials
Φk(A) given by det(I +A) =

∑r
k=0 Φk(A).

Definition 1.13. The k-th Chern form ck(E,∇) of E relative to the connection
∇ is the closed differential 2k-form given by

ck(E,∇) := (Φk)X(
i

2π
K∇)

where (Φk)X( i
2πK∇) := (Φk)X( i

2π Θ∇) is well-defined by lemma 5.1.7.
The total Chern form of E relative to ∇ is

c(E,∇) =
r⊕

k=0

ck(E,∇) ∈
r⊕

k=0

H2k
deRh(X)(X).

By proposition 5.1.11, we can define the k-th Chern class ck(E) of E relative to ∇
as the cohomology class of ck(E,∇) in H2k

deRh(X,C). By proposition 5.1.12, this
is independent of the connection ∇. In particular, if E is holomorphic, we can
henceforth assume that the Chern classes are calculated relative to the canonical
connection.

The total Chern class c(E) of E is then given by

c(E) :=
r⊕

k=0

ck(E) ∈ H∗
deRh(X).

In what follows, we will use the same notation to refer to the (total or k-th)
Chern class in H∗

deRh(X) and a representative of this class.
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The Chern classes ci(X) of a complex manifold X are defined to be the Chern
classes ci(T ) of the holomorphic tangent bundle of X.

Remark 1.14. Note that the definition of the Chern classes implies that, if
E → X is a complex bundle with rkE = r, then ci(E) = 0 for all i > r.

Proposition 1.15. The Chern classes have the following properties:

(1) Let E be a complex vector bundle over a differentiable manifold X. For
all i, ci(E) is only dependent on the isomorphism class of E.

(2) If Y is also a differentiable manifold and ϕ : Y → X is a differentiable
map then

c(ϕ∗E) = ϕ∗c(E)

where ϕ∗c(E) is the pullback of the cohomology class c(E) ∈ H∗
deRh(X,C).

(3) Let E,F be complex differentiable bundles over a differentiable manifold
X. Then

c(E ⊕ F ) = c(E) · c(F )

where the product is defined in terms of the wedge product in the de Rham
cohomologies. That is

ck(E ⊕ F ) =
⊕

i+j=k

ci(E) ∧ cj(F ).

(4) For all i,

(1.6) ci(E∗) = (−1)ici(E).

Proof. [We, 92]. �

Theorem 1.16. For a holomorphic line bundle L over a Riemann surface X,
the first Chern class c̃1(L) defined in definition 4.3.8 corresponds to c1(L) according
to definition 5.1.13 above.

Proof. Let {Ui}i be a trivialising cover for L and f i be a holomorphic frame
for L over Ui. Furthermore, let h be a Hermitian metric on L, and h(f) = λ := {λi}i

be as in remark 1.1.15. By, lemma 5.1.5 the matrix A for the connection is given
on Ui by

A(f) =
1
λi

∂λi

∂z
dz =

∂

∂z
log λidz

and so the curvature K is represented on Ui by the matrix

Θi = ∂A(f i) =
∂

∂z

(
∂

∂z
log λi

)
dz ∧ dz.

Since L is one dimensional, det(I+α) = 1+α for α ∈M1 = C. So by definition
5.1.13 the Chern form c1(L) is given by

c1(L) =
i

2π
∂

∂z∂z
log λidz ∧ dz = c̃1(L) ∈ H2

deRh(X).

�
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2. Multiplicative sequences and the Todd polynomials

[Hi, 9-16] is the authorative reference for this section.

2.1. Definitions and basic properties. Let R be a commutative ring with
identity id R =: 1, and let p0 = 1 ∈ R, and {pi}∞i=1 be variables.

The ring of polynomials in the variables pi with coefficients in R is denoted by
R = R[p1, p2, . . . ] which can be graded as follows:

The weight of the product pj1pj2 . . . pjr is given by
∑r

i=1 ji. We let R0 := R
andRk be the group of polynomials consisting only of terms with weight k. That is,
Rk consists of linear combinations of products of weight k. So, Rk is the R-module
spanned by all products pj1pj2 . . . pjr

of weight k.
Clearly R =

∑∞
k=0Rk .

Definition 2.1. Let (Kj)∞j=0 be a sequence of polynomials in pi such that
K0 = 1 and Ki ∈ Ri (so Ki is a polynomial in the variables p1, . . . , pi). (Kj)∞j=0

is called a multiplicative (or m-) sequence if every identity of the form

(2.1) 1 + p1z + p2z
2 + · · · = (1 + q1z + q2z

2 + . . . )(1 + r1z + r2z
2 + . . . )

implies that

(2.2)
∞∑

j=0

Kj(p1, p2, . . . )zj =
∞∑

i=0

Ki(q1, q2, . . . , qi)zi
∞∑

k=0

Kk(r1, r2, . . . , rk)zk.

Definition 2.2. We write

K

( ∞∑
i=0

piz
i

)
:= 1 +

∞∑
i=1

Ki(p1, . . . , pi)zi.

The characteristic power series associated to the m-sequence (Kj)j is given by

K(1 + z) =
∞∑

i=0

biz
i, (b0 = 1, bi = Ki(1, 0, . . . , 0) ∈ R, i ≥ 1).

Proposition 2.3. Every formal power series Q(z) =
∑∞

i=0 biz
i is the charac-

teristic power series of a unique m-sequence (Kj)j.

Proof. [Hi, 10]. �

Example 2.4. The sequence (pj)∞j=0 is an m-sequence since in this case equa-
tions (2.1) and (2.2) are equivalent. It follows immediately from the definition
(5.2.2) that (pj)∞j=0 has characteristic power series 1 + z.

2.2. Todd polynomials. In what follows we will need them-sequence of Todd
polynomials (Tj)j

Definition 2.5. The Todd polynomials (Tj)j are the elements of the m-
sequence associated to the characteristic power series

Q(x) =
x

1− e−x
= 1 +

1
2
x+

∞∑
k=1

(−1)k−1 Bk

(2k)!
x2k

where Bk is the kth Bernoulli number. 1

1The Bernoulli numbers (Bk)k are the coefficients of (−1)k−1 z2k

2k!
in the power series expan-

sion of
z

ez − 1
= 1−

z

2
+

B1

2!
z2 − . . . .
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The first few Todd polynomials are given by 2

T1(p1) =
1
2
p1,

T2(p1, p2) =
1
12

(p2 + p2
1),

T3(p1, p2, p3) =
1
24
p2p1,

T4(p1, p2, p3, p4) =
1

720
(−p4 + p3p1 + 3p2

2 + 4p2p
2
1 − p4

1).(2.3)

In what follows, we will only need the first two Todd polynomials T1 and T2.
However, the polynomials T3, T4, . . . , are also required for generalising the results
of this paper to higher dimensions.

Remark 2.6. Let E → X be a complex differentiable bundle with Chern
classes {ck ∈ H2k

deRh(X)}rk E=r
k=1 . If we take {pk = ck}k and define the product

ci · cj := ci ∧ cj , then

T1(c1) =
1
2
c1,

T2(c1, c2) =
1
12

(c2 ⊕ c1 ∧ c1), etc.

(2.4)

These are elements of H∗
deRh(X) =

⊕dimR(X)
k=0 Hk

deRh(X).

3. The Todd class and the Chern Character

Let X be a locally compact complex manifold and E → X be a continuous
complex bundle with Chern classes ci ∈ H2i

deRh(X).

Definition 3.1. The (total) Todd class of E is defined by

td (E) =
∞∑

j=0

Tj(c1, . . . cj) ∈ H∗
deRh(X)

where (Tj(c1, . . . , cj))j is the m-sequence of Todd polynomials (definition 5.2.5).
The Todd class, td (X), of a compact complex manifold X, is defined as

td (X) := td (T ),

the Todd class of its holomorphic tangent bundle T = T (X).

Lemma 3.2. If E and F are differentiable complex bundles over X, then

(3.1) td (E ⊕ F ) = td (E)td (F ).

Proof. This follows from the defining property of m-sequences 5.(2.2) and
proposition 5.1.15, 3. �

Remark 3.3. Since td (E) is a finite series starting with 1 (the constant func-
tion 1 on X), the inverse (td (E))−1 exists.

2See [Hi, 14].
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Example 3.4. Let L be a continuous complex line bundle over X. Then
ci(E) = 0 for i > 1 (by remark 5.1.14), so, by the definition 5.2.2 of the characteris-
tic formal series for an m-sequence, we have that td (E) is equal to the characteristic
formal series associated to (Tj(c1, . . . cj))j . So, formally

td (E) = Q(d) :=
d

1− e−d
,

where d := c1(E).

Example 3.5. The Todd class T (L) of a complex line bundle L → X over a
Riemann surface X where c1 = c1(L) is the first Chern class of L, is given by

td (L) = 1 + T1(c1) =
d

1− e−d
= 1⊕ 1

2
c1 ∈ H∗

deRh(X).

The formal polynomial P (x) given by P (x) =
∑q

j=0 cjx
j , has a unique formal

factorisation

(3.2)
q∑

j=0

cjx
j =

q∏
i=0

(1 + γix).

The ci’s are symmetric polynomials in the γi’s.

Remark 3.6. Let
∑q

j=0 cjx
j =

∏q
i=0(1+γix) be a formal factorisation. Then,

(3.3) td (E) =
q∏

i=1

γi

1− e−γi
∈ H∗

deRh(X).

See [Hi, 91].

Definition 3.7. If, E is a continuous complex vector bundle of rank q over
X, with Chern classes ci, i = 1, . . . q, and such that

∑q
j=0 cjx

j has the factorisation
5.(3.2), we define the (total) Chern character ch (E) of E by

ch (E) :=
q∑

i=1

eγi ∈ H∗
deRh(X).

If LD is the line bundle associated with a divisor D on a compact Riemann
surface X, then we denote ch (LD) by ch (D).

Lemma 3.8. Let E and F be continuous rank q complex vector bundles over
X. Then

ch (E ⊕ F ) = ch (E) + ch (F )
and

ch (E ⊗ F ) = ch (E)ch (F ).

Proof. [Hi, 91,(64)]. �

Proposition 3.9. X is a compact complex manifold and E is a continuous
complex bundle of rank q over X. Then

q∑
k=0

(−1)kch (∧kE∗) = (td (E))−1cq(E)

where cq(E) is the q-th Chern class of E.

Proof. [Hi, 92]. �
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4. The T-characteristic

Definition 4.1. If X has complex dimension n and α ∈ H∗
deRh(X), with

α = α< + αn where αn is an n-form and α< is a linear combination of k-forms
with k < n, where defined, the evaluation of the form α over the fundamental class
of X is defined by

{α}[X] :=
∫

X

αn.

Definition 4.2. The T-characteristic T (E) of a complex vector bundle E → X
is given by

(4.1) T (E) := {ch (E)td (X)}[X].

Theorem 4.3. The Hirzebruch-Riemann-Roch theorem
For a holomorphic vector bundle E over a compact complex manifold X, the

Euler characteristic χ(E) of E is equal to the T-characteristic T (E) of E.

Proof. The proof of this theorem provides the subject matter of most of
[Hi]. �

If X is a Riemann surface and L is a holomorphic line bundle over X, then
definition 5.3.7 gives

ch (L) = 1 + c1(L).

Theorem 4.4. The topological index of a divisor D on a compact Riemann
surface X of genus g is equal to the T-characteristic of LD. That is

1− g + degD = {ch (D)td (X)}[X].

Proof. Using the equations above, we have

td (X) = 1 + T1(c1(X)) = 1 +
1
2
c1(X)

since the complex tangent bundle T has complex rank 1. Now, by proposition
5.1.15, (1.6), c1(X) := c1(T ) = −c1(T), and since, if K is a canonical divisor,
LK = T (as in proposition 3.1.19). So,

∫
X
c1(X) = −

∫
X
c1(T) = −degK. We

have

ch (D)td (X) = (1 + c1(D))
(

1− 1
2
c1(T)

)
= 1 + c1(D)− 1

2
c1(T)

and so (by an abuse of notation)

T (L) =
∫

X

(
c1(D) +

c1(X)
2

)
= degD − 1

2
degK.

We have already seen in corollary 3.2.4 that degK = 2g − 2 and so, it follows
immediately that T (L) = degD − g + 1 as required. �





CHAPTER 6

The Topological Index of the Dolbeault operator

Theorem 0.5. The Atiyah-Singer Index formula
X is a compact manifold of real dimension m and E,F are differentiable com-

plex vector bundles over X and P : E(E) → E(F ) is an elliptic operator. Let η be an
almost complex structure (definition 1.1.27) for the total space of the cotangent bun-
dle T ∗X. The orientation of T ∗X is given by local coordinates (x1, ξ1, . . . , xm, ξm),
where (x1, . . . , xm) are chart coordinates for some x ∈ X and ξi = dxi for all i.
Then the analytic index χ(P ) of P is equal to its topological index indt(P ) where

indt(P ) := {ch (P ) · td (η)}[T ∗X].

ch (P ) is defined as the Chern character of the difference bundle associated to
the operator P . This will be constructed later in this chapter.1

1. Elements of topological K-theory

Definition 1.1. Let X be a compact topological space. It can be shown that the
isomorphism classes of continuous complex vector bundles over X form an Abelian
semi-group with semi-group operation ⊕.

The induced Abelian group is called the topological K-group K(X) of X.2 If E
is a vector bundle over X the element of K(X) associated to E is denoted by [E].

We will sometimes refer to an element of K(X) as a virtual bundle over X.

Example 1.2. For a point space {x} we have K({x}) ∼= Z since two complex
vector spaces are isomorphic if and only if they have the same dimension.

Remark 1.3. The elements of K(X) are the classes of formal differences of the
form E − F where E,F are complex vector bundles on X.

E−F is equivalent to E′−F ′ if and only if there exists another complex bundle
G on X such that

E ⊕ F ′ ⊕G ∼= E′ ⊕ F ⊕G.

The bundle G is necessary to ensure transitivity of the relation since the can-
cellation rule as in Z doesn’t, in general, apply to vector bundles. That is, it is not,
in general the case that a+ c = b+ c⇒ a = b where a, b, c are isomorphism classes
of complex bundles over a compact manifold X.

It is straightforward to show that K(X) is, in fact, a ring under the operations
of tensor product ⊗ and sum ⊕.

1For an elliptic complex E, we can associate a differential operator PE to E and then the

Atiyah-Singer index formula says that inda(E) = indt(PE). This will be discussed briefly in the
appendix, page 81.

2K-theory was introduced by Grothendieck in 1957. The definitions here are part of the
topological K-theory refined by Hirzebruch and Atiyah in 1959, rather than the more general

algebraic K-theory still associated with Grothendieck and further developed from the 1960’s.

67
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Remark 1.4. Let X, X ′ be compact spaces and f : X → X ′ a continuous map.
Then f induces in a natural fashion a ring homomorphism f ! : K(X ′) → K(X) as
follows:

Let {Ui}i be an open covering for X ′ and E′ → X ′ a vector bundle over X ′

given by transition functions {gi,j}i,j with respect to {Ui}i. Since f is continuous,
{f−1Ui}i is a cover for X and we can define a vector bundle E → X by transition
functions {gi,j}i,j with gi,j := g′i,j ◦f |Ui∩Uj . Then f ! : K(X ′) → K(X) is the group
homomorphism induced by the semi-group map f !([E′]) := [E].

Proposition 1.5. Let X,X ′ be homotopy equivalent compact spaces with ho-
motopy equivalence f : X → X ′. Then, f ! : K(X ′) → K(X) is an isomorphism.

Proof. [At, 16-18]. �

Definition 1.6. If we choose x0 ∈ X, then the inclusion ι : x0 ↪→ X in-
duces a homomorphism ι! : K(X) → K({x0}) ∼= Z. When X is connected, this is
independent of the choice of basepoint x0. We define

K̃(X) := Ker ι!.

Now, let Y ⊂ X be a closed non-empty subspace. The space obtained by con-
tracting Y to a basepoint y0 ∈ Y is denoted by X/

Y , and ι : {y0} → X/
Y is the

inclusion map. We define the relative K-group K(X,Y ) by

K(X,Y ) := K̃
(
X/
Y

)
.

In particular, K(X,Y ) is an ideal of K
(
X/
Y

)
.

If Y = ∅, we define X/
∅ as the disjoint sum X + {p} of X and a point {p}.

Then

K(X, ∅) = K̃(X + {p}) = Ker (ι! : K(X + {p}) → K({p})) = K(X).

Definition 1.7. For a locally compact space W we define K(W ) := K̃(W+)
where W+ := W + {p} is the one-point compactification of W and

K̃(W+) := Ker (ι! : K(W+) → K({p})).
Using this definition, if X is a compact or locally compact space and f : W → X

is a proper map (that is f−1(K) ⊂ W is compact for all K ⊂ X compact), we can
define f ! : K(X) → K(W ) as in remark 6.1.4.

2. The difference bundle associated to an elliptic operator

Let Y ⊂ X be a closed subset of a compact manifold X and let E0, E1 be con-
tinuous vector bundles over X such that there is an isomorphism α : E0|Y → E1|Y .
We construct the difference bundle d(E0, E1, α). This will be an element of the
relative K-group K(X,Y ).

Let
Z := (X × 0) ∪ (X × 1) ∪ (Y × I) ⊂ X × I

where I = [0, 1] is the closed unit interval. p : X × I → X is the projection. We
define a vector bundle E over Z as follows:

Z is covered by the open sets

Z0 = (X × 0) ∪ (Y × [0, 1)) and Z1 = (X × 1) ∪ (Y × (0, 1]).
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For i = 0, 1, the restriction of p to Zi is pi := p|Zi
.

Then p∗iEi is a vector bundle over the open set Zi and p∗α is an isomorphism
on the open set Z0 ∩ Z1. Identifying p∗Ei via p∗α : p∗E0|Y×(0,1)

∼−→ p∗E1|Y×(0,1)

on Z0 ∩ Z1, we glue these together to obtained the desired bundle E → Z.
The projection τ : Z → Z/

(X × 0) induces a homomorphism

τ ! : K
(
Z/

(X × 0)
)
→ K(Z)

and the inclusion ι : X = X × 0 → Z induces a homomorphism

ι! : K(Z) → K(X × 0)) = K(X).

Lemma 2.1. The sequence

0 → K
(
Z/
X × 0

)
τ !−−→ K(Z) ι!−→ K(X) → 0

is exact.

Proof. Given a vector bundle E on X we form a bundle p∗(E) on Z ⊂ X× I,
by taking one copy of E over X×0 and another over X×1 and gluing them together
with the identity map on Y × (0, 1). So ι! is surjective.

Given a trivial virtual bundle E over Z, we observe that its restriction E|U to
any open U ⊂ Z is also trivial. In particular E|Z−(X×0) is trivial. So

(τ !)−1(0K(Z)) = 0
K

„
Z
/
X × 0

«.
In other words, τ ! is injective.

Finally, let V be a vector bundle over Z. Then ι!([V ]) = 0 if and only if V is
isomorphic to a bundle which is trivial over X × 0 ⊂ Z. That is [V ] ∈ Im (τ !).

�

Lemma 2.2. The exact sequence

(2.1) 0 → K
(
Z/

(X × 0)
)

τ !−−→ K(Z) ι!−→ K(X) → 0

splits. So, there is a homomorphism g! : K(Z) → K
(
Z/

(X × 0)
)

such that g! ◦ τ !

is the identity on K
(
Z/

(X × 0)
)
.

Proof. Let f : Z → X = (X×0) be given by f(x, t) = (x, 0) for all (x, t) ∈ Z.
Then f is a deformation retraction and f ! : K(X) → K(Z) is a group homomor-
phism such that ι! ◦ f ! is the identity on K(X). Now, given a ∈ K(Z),

a− (f ! ◦ ι!)(a) ∈ Ker (ι!) = Im (τ !)

since ι!(a− (f ! ◦ ι!)(a)) = ι!(a)− ι!(a) = 0. Therefore, since τ ! is injective, there is a
unique b ∈ K

(
Z/

(X × 0)
)
, such that τ !(b) = a− (f ! ◦ ι!)(a). We define g!(a) := b.

Then

τ !(g1 ◦ f ! ◦ ι!(a)) = (f ! ◦ ι!)(a)− (f ! ◦ ι! ◦ f ! ◦ ι!(a)) = (f ! ◦ ι!(a))− (f ! ◦ ι!)(a) = 0

and therefore, since τ ! is injective

(g! ◦ f ! ◦ ι!)(a) = 0.
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So, for b ∈ K
(
Z/

(X × 0)
)
,

g! ◦ τ !(b) = b

and g! : K(Z) → K
(
Z/

(X × 0)
)

is the required homomorphism.
�

Remark 2.3. Since E|X×0 = p∗0E0, the virtual bundle E− p∗E0 is trivial over
X = X × 0, and therefore E − p∗E0 ∈ Ker ι!.

In particular g!(E − p∗E0) ∈ K
(
Z/
X × 0

)
is trivial near the base-point x0.

I.e. g!(E − p∗E0) ∈ Ker
(
K
(
Z/
X × 0

)
→ K({x0})

)
.

Lemma 2.4. K(Z,X × 0) is isomorphic to K(X,Y ).

Proof. [At, 69] �

Definition 2.5. By the above remark 6.2.3, g!(E − p∗E0) ∈ K(Z, (X × 0)).
The difference bundle d(E0, E1, α) is defined as the image of the virtual bundle
g!(E − p∗E0) ∈ K(Z,X × 0) ⊂ K

(
Z/

(X × 0)
)

in K(X,Y ) ⊂ K
(
X/
Y

)
.

Proposition 2.6. Let X,X ′ be compact spaces and Y ⊂ X,Y ′ ⊂ X ′ closed
subspaces. Let E,F and E′, F ′ be vector bundles over X and X ′ respectively, and
α : E|Y → F |Y , α′ : E′|′Y → F ′|′Y be isomorphisms.

(1) If f : (X,Y ) → (X ′, Y ′) is a map, then

d(f∗E′, f∗F ′, f∗α′) = f !d(E′, F ′, α′).

(2) d(E,F, α) is only dependent on the homotopy class of α.
(3) If Y is the empty set then d(E,F, α) = E − F .
(4) Let j : (X, ∅) → (X,Y ) be inclusion. j induces naturally a homomorphism

j! : K(X,Y ) → (K(X, ∅) = K(X)). If E and F are vector bundles over
X and α : E|Y → F |Y is an isomorphism, then

j!d(E,F, α) = E − F.

(5) d(E,F, α) = 0 if and only if there is a bundle G→ X such that α⊕ id|G|Y
extends to an isomorphism E ⊕G→ F ⊕G over the whole of X.

(6) d(E ⊕ E′, F ⊕ F ′, α⊕ α′) = d(E,F, α) + d(E′, F ′, α′).
(7) d(E,F, α) + d(E,F, α−1) = 0.
(8) If G is a bundle over X and β : F |Y → G|Y is an isomorphism, then

d(E,G, β ◦ α) = d(E,F, α) + d(F,G, β).

Proof. [AH, 33-34]. �

Definition 2.7. If W is a rank k vector bundle over a compact manifold X
of dimension n and W is equipped with a metric, then we define the disk bundle
B(W ) ⊂ W as the closed n+ k dimensional submanifold with boundary consisting
of the vectors ξ ∈W such that |ξ| ≤ 1. Similarly, the sphere bundle S(W ) of W is
the embedded n + k − 1 dimensional compact sub-manifold of B(W ) consisting of
elements ξ of W with |ξ| = 1.

We define B(X) := B(T ∗X) (where T ∗X is the real cotangent bundle of X)
and similarly S(X) := S(T ∗X).
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Let π : B(X) → X be the canonical projection. By definition, if E and F are
complex bundles over X and P : E(E) → E(F ) is an elliptic operator, the symbol,
σP : π∗E → π∗F is an isomorphism on S(X) := S(T ∗X). Here, we let σP denote
the restriction of the sumbol σ(P ) to the sphere bundle S(X). Therefore, we can
construct the difference bundle d(P ) := d(π∗E, π∗F, σP ).

In particular we have already seen in example 2.2.6 that the Dolbeault operator
∂L : E(L) → E(L⊗T), where X is a Riemann surface and L is a holomorphic line
bundle on X, is an elliptic operator. So we can construct the associated difference
bundle d(π∗(, π∗(L⊗T), σ∂L

).
We will return to this shortly.

3. The Thom Isomorphism

3.1. The Thom isomorphism in topological K-theory. Let X be a com-
pact space and p : W → X a vector bundle.

Proposition 3.1. There is an isomorphism

ϕ! : K(X) → K(W )

called the Thom isomorphism.

Proof. [AS1, 494]. �

(Note that, since W is only locally compact, K(W ) := K(W + {p}, {p}) as in
definition 6.1.7 above.)

Remark 3.2. For a vector bundle E → X over X, the pullback bundle p!E
over W is well defined. Therefore, K(W ) can be regarded as a module over K(X).

Corollary 3.3. For X compact, there is a Thom isomorphism

ϕ! : K(X) → K(B(X), S(X))

Proof. There is a natural isomorphism (T ∗(X))+ ∼= B(X)/
S(X). The result

then follows from the definitions 6.1.6 and 6.1.7 together with the above proposition.
�

In particular, since K(T ∗X) is a module over K(X), K(B(X), S(X)) is a mod-
ule over K(X).

3.2. The Thom isomorphism for cohomology. LetX be a compact space.
By theorem 4.1.2 we can view the Chern character of a vector bundle E → X as
an element of H∗(X,R) :=

⊕
k H

k(X,R).

Lemma 3.4. The Chern character is a semi-group homorphism on the semi-
group of isomorphism classes of complex vector bundles over X. It extends naturally
to a ring homomorphism

ch : K(X) → H∗(X,R).

Proof. [Hi, 177]
�
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Lemma 3.5. Let f : X → X ′ be a continuous map between compact spaces. If
U = {Ui}i is an open cover for X ′ then {f−1Ui}i is an open cover for X and we
can define a homomorphism

f∗ : H∗(X ′,R) → H∗(X,R)

induced by
f∗({αi0,...,iq

}i0,...,iq
) := {αi0,...,iq

f}i0,...,iq

where αi0,...,iq
◦ f is defined on f−1(Ui0 ∩ · · · ∩ Uiq

).
The diagram

(3.1)

K(X ′)
f !

- K(X)

H∗(X ′,R)

ch

?

f∗
- H∗(X,R)

ch

?

commutes

Proof. [Hi, 177].
�

In particular, if X is a compact space and Y ι−→ X is a closed subspace, with
inclusion map ι, and {y0} ι′−→ X/

Y the inclusion of the basepoint {y0} in X/
Y ,

then

(3.2)

K(X,Y ) - K
(
X/
Y

) (ι′)! - K({y0})

H∗
(
X/
Y ,R

)
ch

?

(ι′)∗
- H∗({y0},R).

ch

?

commutes. And since K(X,Y ) is contained in K
(
X/
Y

)
, the restriction of the

Chern character is a well-defined homomorphism

ch |K(X,Y ) : K(X,Y ) → H∗
(
X/
Y ,R

)
such that Im (ch |K(X,Y )) ⊂ Ker ((ι′)∗).

Definition 3.6. Let X be a compact space and Y ι−→ X a closed subspace, with
inclusion map ι. For k = 0, 1, . . . , the relative cohomology groups Hk(X,Y,R) are
defined by means of the long exact sequence

· · · → Hk(X,Y,R) → Hk(X,R) ι∗−−→ Hk(Y,R) → Hk+1(X,Y,R) → . . . .

Proposition 3.7. The Poincaré duality theorem
Let X be an oriented manifold of real dimension n. Then there is an isomor-

phism
Hk

deRh(X) ∼= (Hn−k
c (X))∗

for each k ≤ n.
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Proof. [BT, 44-46]. �

Now if X is a real manifold of dimension n and ι : Y ↪→ X a closed orientable
submanifold of dimension k (ι is the inclusion map), Poincaré duality says that there
exists a unique cohomology class [ηY ] ∈ Hn−k

deRh(X) called the closed Poincaré dual
of Y in X, such that, if ηY is a representative for [ηY ]∫

Y

ι∗ω =
∫

X

ω ∧ ηY

for every closed k-form ω with compact support on X.
If Y is compact in X, then ∫

Y

ι∗ω

is well-defined for any differential k-form on X, not just those with compact sup-
port, and so n defines a functional

∫
Y

on Hk
deRh(X). I.e Y defines an element

of (Hk
deRh(X))∗ and so by, Poincaré duality, there exists a corresponding [η′Y ] ∈

Hn−k
c (X) called the compact Poincaré dual of Y .

If the differential (n− k)-form with compact support η′Y is a representative of
[η′Y ], then we have the unique characterisation∫

Y

ι∗ω =
∫

X

ω ∧ ηY

for every closed k-form ω on X.
Now, if η′Y is a representative for [η′Y ] then clearly it is also a representative for

[ηY ]. So, when Y ⊂ X is a compact submanifold, it is possible to ensure that the
closed Poincaré dual [ηY ] has compact support.

For simplicity of notation, we will henceforth (except for extra emphasis) make
no distinction between a closed form η and its class [η] in the de Rham cohomology
H∗

deRh(X), and denote them both simply by η.

Lemma 3.8. Let ι : Y ↪→ X be a k-dimensional compact orientable submanifold
of an n-dimensional orientable manifold X, and η′Y its compact Poincaré dual in
X. Then the support of η′Y may be shrunk into any open neighbourhood U ⊃ Y of
Y in X.

Proof. Let η′Y,U be the compact Poincaré dual of Y in U . This has compact
support in U so we can extend it by 0 to a form η′Y ∈ Hn−k

c (X). Now, for ω ∈
Hk(X), ∫

Y

ι∗ω =
∫

U

ω ∧ η′Y,U =
∫

X

ω ∧ η′Y

so η′Y is the compact Poincaré dual of Y in X. �

Let π : W → X be a real vector bundle of rank r over a compact manifold
X of dimension n. We view X as a compact submanifold of W , ι : X ↪→ W , by
embedding it as the zero-section in W .

By Poincaré duality, the map

Hn
deRh(X) 3 [ω] 7→ [π∗ω ∧ ηX ] ∈ Hr+n

c (W )

is well-defined. In fact, the following proposition tells us that this map is an iso-
morphism, and that Hk

deRh(X) ∼= Hk+r
c (W ) for all k ≥ 0.
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Proposition 3.9. There exists a Thom isomorphism

φ∗ : Hk
deRh(X) → Hk+r

c (W )

given by
φ∗([ω]) = [π∗ω ∧ ηX ]

where ω is representative for [ω] ∈ Hk
deRh(X) and ηX is a representative for [ηX ]

the Poincaré dual of X.3

Proof. [BT, 63-64]. �

Henceforth we will denote both ηX and [ηX ] by Φ and call Φ the Thom class
of W . It should be clear from the context whether we mean the class or its repre-
sentative.

By lemma 6.3.8 we can shrink the support of Φ to any open neighbourhood of
X ⊂W . In particular, we can ensure that the support of Φ is contained in B(W ).

Proposition 3.10. Let W → X be a real vector bundle of rank r. Then

Hk+r
c (W ) ∼= Hk+r(B(W ), S(W ),R)

for all k ≥ 0.

Proof. [LM, 239]. �

By proposition 6.3.10, we may regard the Thom class Φ ∈ Hr
c (W ) of W as an

element of Hr(B(W ), S(W ),R). We denote this also by Φ. In particular, we can
also write the Thom isomorphism

φ∗ : Hk
deRh(X) → Hk+r

c (W )

as an isomorphism

φ∗ : Hk(X,R) → Hk+r(B(W ), S(W ),R).

We will use these two forms of the Thom isomorphism interchangeably in what
follows.

Definition 3.11. As usual, ι : X ↪→ W is the embedding of X as the zero
section in W . The Euler class e(W ) of W is the pullback ι∗Φ of Φ to X.

Proposition 3.12. For a complex vector bundle E of rank q over a compact
manifold X, the Euler class e(W ) of the underlying real manifold W is equal to the
top Chern class cq(E) of E.

Proof. [AS3, 550]. �

Now let E be a complex vector bundle of rank q over X and π : W → X
the underlying real vector bundle. Further let j : (B(W ), ∅) → (B(W ), S(W )) be
the natural embedding. The defining exact sequences of H∗(B(W ), S(W ),R) and
H∗(B(W ), ∅,R) = H∗(B(W ),R) induce a homomorphism

j∗ : H∗(B(W ), S(W ),R) → H∗(B(W ), ∅,R) = H∗(B(W ),R).

Lemma 3.13. H∗(B(W ), S(W ),R) is a module over H∗(B(W ),R) = H∗(W,R)
and j∗ : H∗(B(W ), S(W ),R) → H∗(B(W ),R) is a module homomorphism.

3If X is not compact we can use cohomology with compact vertical support instead and the
following arguments can be carried over to apply to this case.
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Proof. [Hi, 180]. �

Remark 3.14. Let X is a compact manifold and E,F complex vector bundles
over X with P : E(E) → E(F ) an elliptic operator. Furthermore, let d(P ) ∈
K(B(X), S(X)) be the difference bundle associated to P . Then ([Hi, 187])

ch (d(P )) ∈ H∗(B(X), S(X),R).

In particular, if η ∈ H∗(T ∗X) then, by the above lemma 6.3.13, η · ch (d(P )) ∈
H∗(B(X), S(X),R) and so, by proposition 6.3.10, we may evaluate the form of
η · ch (d(P )) over the fundamental class of T ∗X. That is,

{η · ch (d(P ))}[T ∗X]

is well-defined.

Lemma 3.15. π∗ : Hk
deRh(X) → Hk

deRh(W ) ∼= H∗(B(W ),R) is an isomor-
phism.

Proof. If X is embedded as the zero-section of W , then, F : W × [0, 1] →W
given by ((x, ξ), t) 7→ (x, (1 − t)ξ), x ∈ X, ξ ∈ Wx, t ∈ [0, 1], is a deformation
retraction (as is F |B(W )). So W , B(W ) and X are homotopy equivalent and the
conclusion follows by application of lemma 4.1.5 and then theorem 4.1.2.

�

We assume the support of Φ is contained in the interior of B(W ) (that this
is permitted follows from lemma 6.3.8). Denote the restriction of π : W → X to
B(W ) also by π.

Corollary 3.16. Using the notation above,

j∗Φ = π∗e(W ) = π∗cq(E).

This gives
j∗(φ∗(ω)) = π∗(ω · cq(E))

for ω ∈ H∗
deRh(X).

Proof. The following diagram naturally commutes:

(3.3)

H∗(B(W ), S(W ),R)
j∗- H∗(B(W ),R)

H∗(X,R).

ι∗

?
π
∗

-

In particular, we have already seen in proposition 6.3.10 that we can regard Φ
as an element of H∗(B(W ), S(W ),R). So

(3.4) j∗Φ = (π∗ ◦ ι∗)Φ = π∗e(W ) = π∗cq(E).

Therefore for ω ∈ H∗(X,R) = H∗
deRh(X),

j∗(φ∗(ω)) = j∗(π∗ω · Φ) = π∗ω · j∗Φ = π∗(ω · ι∗Φ) = π∗(ω · e(W )) = π∗(ω · cq(E))

where the second equality follows from lemma 6.3.13 and the third from equation
6.(3.4) above. �

We will need the following lemma in the next section.
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Corollary 3.17. Let E and F be complex vector bundles over a compact
complex manifold X and let W be a even-dimensional real oriented vector bundle
over X, with disc and sphere bundles B(W ) and S(W ) respectively and projection
π : B(W ) → X. Furthermore, let α : π∗E|S(W ) → π∗F |S(W ) be an isomorphism.
Then,

e(W ) · φ−1
∗ (ch d(π∗E, π∗F, α)) = ch (E)− ch (F ).

Proof. By proposition 6.2.6, 4 above,

j∗(ch (d(π∗E, π∗F, α)) = ch (j!(d(π∗E, π∗F, α))) = ch (π∗E)− ch (π∗F ).

Using corollary 6.3.16,

π∗(ch (E)− ch (F )) = ch (π∗E)− ch (π∗F ) = j∗φ∗φ
−1
∗ ch (d(π∗E, π∗F, α))

= π∗(φ−1
∗ ch (d(π∗E, π∗F, α)) · e(W )).

Since π∗ is an isomorphism,

e(W ) · φ−1
∗ ch (d(π∗E, π∗F, α)) = ch (E)− ch (F )

as required. �

4. The Todd genus is a special case of the topological index

In the following we are interested in the case W = T ∗X the real cotangent
bundle over X.

Let X be an n-dimensional complex compact manifold, so an (m = 2n)-
dimensional real compact manifold. We choose a Hermitian metric h and frame e on
the complex tangent bundle T such that T , and therefore T(= T ∗), are described
by unitary transition functions. Furthermore, the real tangent and cotangent bun-
dles TX and T ∗X are described by orthogonal transition functions under the real
bundle metric g induced by h (as in remark 1.1.18) and relative to the frame of the
underlying real bundle induced by e.

If TX is the real tangent bundle of X, and T ∗X the total space of the real
cotangent bundle, with projection π : T ∗X → X, then T ∗X is a 2m-dimensional
manifold with tangent bundle π∗(TX) ⊕ π∗(T ∗X). The real metric induced by h
gives an isomorphism TX ∼= T ∗X.

Recall the maps 1.(1.5) υ : O(m) → U(m) (the complexification of O(m),
obtained by simply expressing a matrix with real coefficients as one with complex
coefficients) and 1.(1.4) ψ : U(m) → O(2m). By proposition 1.1.24, if W is a real
bundle described by orthogonal transition functions,

(ψ ◦ υ)(W ) ∼= W ⊕W.

Therefore,

π∗TX ⊕ π∗T ∗X ∼= π∗TX ⊕ π∗TX = ψ(π∗υ(TX)).

In particular, the GL(m,C)) bundle, η = π∗υ(TX) is an almost complex structure
for T ∗X.4

4Note that we could equivalently have chosen to define the almost complex structure for T ∗X
in terms of T ∗X rather than TX. The choice of convention here is for simplicity in the last stage

of the paper.
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Now, by proposition 1.1.28, equation (1.6), the complexfication
υ(TX) = TXC(∼= TX ⊕ TX) of TX is isomorphic to T ⊕ T , so η ∼= π∗(T ⊕ T ).

Remark 4.1. Note that for a given complex manifold M of real dimension m
and complex dimension n the orientation of TMC differs by a factor
(−1)m(m−1)/2 = (−1)n(2n−1) = (−1)n from T (M) ⊕ T (M). Namely, if the orien-
ation of TMC is given by the coordinates z1, ξ1, . . . , zm, ξm (with (z1, . . . , zm)
chart coordinates for some z ∈ X and (ξ1, · · · , ξm) ∈ T ∗zX), the orientation of
T (M)⊕ T (M) is given by the coordinates ξ1, . . . ξm, z1, . . . , zm.

Lemma 4.2. Given an elliptic operator P : E → F with E,F complex vector
bundles over the n = m

2 -dimensional complex manifold X, it holds

indt(P ) := 2m{ch (P ) · td (η)}[T ∗X]

= (−1)n{φ−1
∗ (ch (P )) · td (T ) · td (T )}[X](4.1)

Proof. By Poincaré duality, proposition 6.3.7 and the definition of the Thom
isomorphism in proposition 6.3.9

2m{ch (P ) · td (η)}[T ∗X] = (−1)n{φ−1
∗ (ch (P ) · td (η))}[X].

Now ch (P ) ∈ H∗
c (T ∗X) so φ−1

∗ (ch (P )) is well defined and, by definition

ch (P ) = φ∗(φ−1
∗ (ch (P ))) = π∗(φ−1

∗ (ch (P ))) · Φ.
Therefore

ch (P )td (η) = π∗(φ−1
∗ (ch (P ))) · Φ · td η = π∗(φ−1

∗ (ch (P )) · (π∗)−1(td (η))) · Φ
= φ∗(π∗(φ−1

∗ (ch (P ))) · Φ · (π∗)−1(td (η)))
since π∗ is an isomorphism (lemma 6.3.15) and therefore (π∗)−1(td (η)) = td (υ(T ∗X))
is well-defined.

Finally, by lemma 5.3.1, td (υ(T ∗X)) = td (T ⊕ T ) = td (T ) · td (T ). Putting
this together we get

indt(P ) := 2m{ch (P ) · td (η)}[T ∗X]
= (−1)n{φ−1

∗ (ch (P ) · td (η))}[X]
= (−1)n{φ−1

∗ (ch (P )) · td (υ(T ∗X))}[X]

= (−1)n{φ−1
∗ (ch (P )) · td (T ) · td (T )}[X].(4.2)

�

Now let X be a compact Riemann surface with holomorphic cotangent bundle
T, and L→ X a holomorphic line bundle. Then E(L⊗T) = E0,1(L). In definition
2.2.5, we have defined the operator

∂L : E(L) → E(L⊗T)

and shown that it is an elliptic differential operator of order 1. As before we choose
a Hermitian metric and a frame on T so that T is described by unitary transition
functions, and we let T ∗X be the real cotangent bundle on X, with T ∗XC its
complexification.

By corollary 1.1.29, T ∗X ∼= T so we may identify the (real) disc bundle B(X) =
B(T ∗X) with B(T). We calculated the symbol σ(∂L) in example 2.2.6. Since
B(T ∗X) ∼= B(T), we can express the symbol as

σ(∂)(s(x), ∂f(x)) = (is(x)∂f(x), ∂f(x))
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for s ∈ E(L) and f a non-constant differentiable function on X such that f(x) = 0
and ∂f is non-zero on a neighbourhood U of x ∈ X. In particular, σ(∂)|S(T is an
isomorphism.

So σ(∂L) = (iβ̃, id ) in relation to B(T) where β̃ : L × T → L ⊗ T is the
natural map (s(x), ∂f(x)) 7→ s(x) · ∂f(x).

Now, since for a vector bundle E → X, E ∼= iE with the orientation unchanged,
we can henceforth ignore the factor i in the symbol isomorphism.

Lemma 4.3.

(4.3) d(π∗L, (π∗L)⊗ (π∗T), β) = π∗L⊗ d(π∗C, π∗T, β).

Proof. We simply follow the general construction of the difference bundle
given above. The map

β : π∗C|S(T) → π∗T|S(T)

is given by β(z, α, x) := (z ·α, α, x) for z ∈ C, α ∈ S(T)|x over x ∈ X. In particular,
since α 6= 0, this is an isomorphism.

Let Z = (B(T)× 0) ∪ (B(T)× 1) ∪ (S(T)× I) and p : (B(T)× I) → B(T) be
the projection onto B(T). Z is covered by the open sets

Z0 = (B(T)× 0) ∪ (S(T)× [0, 1))

and
Z1 = (B(T)× 1) ∪ (S(T)× (0, 1]),

with pi := p|Zi , i = 0, 1 the restriction map.
Then p∗0(π

∗L) = p∗0(π
∗(L⊗ C)) is a vector bundle over the open set Z0, and

p1π
∗(L ⊗ T)is a vector bundle over Z1. p∗β̃ = idπ∗L ⊗ p∗β is an isomorphism on

the open set Z0 ∩ Z1.
We can therefore glue the bundles p∗0(π

∗(L⊗C)) over Z0 and p1π
∗(L⊗T) over

Z1 together with the isomorphism idπ∗L⊗p∗β on Z0∩Z1 to obtain a vector bundle
E(L,L⊗T, β̃) over Z.

Since L = L ⊗ C and the maps π∗, p∗i and p∗ are homomorphisms, we have
E(L,L⊗T, β̃) = p∗π∗L⊗E(C,T, β) over Z and E(L,L⊗T, β̃)−p∗π∗L) is trivial

over Z0. Applying the splitting map g! : K(Z) → K

(
Z/

(T× 0)

)
(see lemma

6.2.1 above) to this bundle, we obtain

g!
(
E(L,L⊗T, β̃)− p∗π∗L

)
= g!

(
p∗π∗L⊗ E(C,T, β)− p∗π∗(L⊗ C)

)
= g!p∗π∗L⊗ g!

(
E(C,TT, β)− p∗π∗C

)
= π∗L⊗ d(π∗C, π∗T, β).

as required.
�

So, if φ∗ : Hi
deRh(X) → Hi+2

deRh(B(T)/S(T)) is the Thom isomorphism

φ−1
∗ ch (∂L) = φ−1

∗ ch d(π∗L, π∗(L⊗T), β) = φ−1
∗ ch (L⊗ d(π∗C, π∗T, β)).

Lemma 4.4.

φ−1
∗ (ch (d(π∗L, π∗(L⊗T), β))) = φ−1

∗
(
ch (π∗L) · ch (d(π∗C, π∗T, β))

)
= ch (L)

(
φ−1
∗ ch (d(π∗C, π∗T, β))

)
.(4.4)
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Proof. This follows from the definition of the Thom isomorphism and the fact
that ch is a homomorphism. �

Lemma 4.5.

φ−1
∗ (ch (d(π∗C, π∗T, β))) = −(td (T ))−1.

Proof. [Hi, 181-182]
�

Combining all the above we arrive at

Theorem 4.6. If X is a compact Riemann surface and L a holomorphic line
bundle over X, then

indt(∂L) = T (L)
where T (L) is the Todd genus of L.

Proof. Let T be the complex cotangent bundle of X and η ∼= T ⊕ T be an
almost complex structure for T ∗X, the real cotangent bundle of X. By the above

indt(∂L) := 2{ch (∂L) · td η}[T ∗X]

= (−1){φ−1
∗ ch (∂L) · td η))}[X](4.5)

= (−1)(−1){ch (L)(td (T ))−1) · td (T )td (T )}[X](4.6)
= {ch (L) · td (T )}[X] = T (L).(4.7)

Here 6.(4.5) follows from lemma 6.4.2 and 6.(4.6) follows from lemmas 6.4.4
and 6.4.5

�

We have therefore proved that, in the case that E is a holomorphic line bundle
over a Rieman surface X, the T-characteristic T (E) of E is equal to the topological
index indt(E) of E. In doing so we have shown that the classical Riemann Roch
theorem 3.2.2 is a special case of the Atiyah-Singer index formula 6.0.5.





Appendix: Elliptic complexes and the topological
index

In the introduction (page 5) it was mentioned that the Atiyah-Singer index
formula can be applied to elliptic complexes (definition 2.2.1) defined on compact
complex manifolds. If E is an elliptic complex on a compact complex manifold X
then, analogue to the operator case, the Atiyah-Singer index formula says that

inda(E) = indt(E).

The analytic index inda(E) of an elliptic complex E has been defined in def-
inition 2.2.10. In this appendix we shall give a definition of the topological index
indt(E) of an elliptic complex E over a compact complex manifold X which cor-
responds to the definition already given in chapter 6, page 67 for the operator
case.

For the sake of completion, we shall briefly mention the Dolbeault complex
∂(E) associated to a holomorphic vector bundle E of rank r over a compact complex
manifold X of dimension n, and its corresponding operator. Of course, since the
Hirzebruch-Riemann-Roch theorem is a special case of the Atiyah-Singer index
formula and we have seen that the analytic index of the Dolbeault complex ∂(E) of
E is equal to the Euler characteristic χ(E) of E (theorem 3.3.5), it then also holds
that T (E) = indt(∂(E)).

Proposition 7.7. Let (E, h), (F, h′) be Hermitian bundles over a compact com-
plex manifold X and P ∈ Diff k(E,F ) a differential operator. Then P has a unique
formal adjoint P ∗ ∈ Diff k(F,E) with respect to the metrics h, h′. That is, we can
define an inner product 〈·, ·〉 on E(E) and an inner product 〈·, ·〉′ on E(F ) by

〈ξ, η〉 =
∫

X

h(ξ(x), η(x))dvol, ξ, η ∈ E(E)

and
〈ξ′, η′〉′ =

∫
X

h′(ξ′(x), η′(x))dvol, ξ′, η′ ∈ E(F )

where dvol is a volume form on X induced by the underlying Riemannian structure.
Then, there exists an unique operator P ∗ : E(F ) → E(E) such that

〈P (ξ), η′〉′ = 〈ξ, P ∗(η′)〉, for all ξ ∈ E(E), η′ ∈ E(F ).

Furthermore, it holds that, if σk(P )∗ is the adjoint of the linear map σk(P )(·, vx) :
Ex → Fx,

σk(P ∗) = σk(P )∗.
In particular, P ∗ is elliptic if and only if P is elliptic.

Proof. [We, 117-118]. The last statement follows immediately from the defi-
nitions and the first two statements. �

81
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Lemma 7.8. If (E, h), (F, h′) are Hermitian bundles over a complex manifold
X and P ∈ Diff k(E,F ) has adjoint P ∗ ∈ Diff k(F,E), then

Ker (P ∗) = Coker (P )

and
Ker (P ) = Coker (P ∗).

Proof. Given η ∈ E(F ),

η ∈ Ker (P ∗) ⇔ P ∗(η) = 0
⇔ 〈(ξ, P ∗(η)〉 = 0, for all ξ ∈ E(E)
⇔ 〈(P (ξ), (η)〉′ = 0, for all ξ ∈ E(E)
⇔ η ∈ Coker (P ).

The proof of the second statement follows exactly the same method. �

Given an elliptic complex E = (Ei, di)l
i=0 (of length l + 1) over a compact

complex manifold X:

0 → E(E0) d0−−→ E(E1) d1−−→ . . . dl−1−−−→ E(El) dl−−→ → 0,

we can define a unique operator PE : E(F ) → (F ′) by

F :=
⊕
k=0
2k≤l

E2k

F ′ :=
⊕
k=0
2k≤l

E2k+1

and

PE := d0 ⊕

⊕
k=1
2k≤l

(
d2k + d∗2k−1

) : E(F ) → E(F ′).

That is
PE(ξ0, ξ2, . . . ) = (d0(ξ0) + d∗1(ξ2), d2(ξ2) + d∗3(ξ4), . . . ).

Since PE is a direct sum of elliptic differential operators, it is itself an elliptic
differential operator and therefore the analytic index inda(PE) and the topological
index indt(PE) of PE are defined.

Remark 7.9. If we view an elliptic operator P as a complex EP of length 1,
then trivially PEP

= P .

Example 7.10. If L is a holomorphic line bundle over a compact Riemann
surface X, then L has Dolbeault sequence ∂(L) given by

0 → E(L) ∂L−−→ E(L⊗T) → 0

and so P∂(L) = ∂L.

Proposition 7.11. The analytic index of the operator PE is equal to the an-
alytic index of the complex E. In particular, the analytic index inda(PE) is inde-
pendent of the choice of metrics hi on Ei.
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Proof. This follows from the definitions 2.2.10 and lemma A.7.8 above: Say,
ξk and ξk+2 are such that dk(ξk) ≡ ±d∗k+1(ξk+2) . Then, for all x in X,

|dk(ξk)(x)|2 = hk+1(dk(ξk)(x), dk(ξk)(x))
= ±hk(dk(ξk)(x), d∗k+1(ξk+2)(x))
= ±hk+1(dk+1dk(ξk)(x), ξk+2)(x))
= 0.

So Im (d∗k+1) ∩ Im (dk) ≡ {0} and the dimensions of the kernel and cokernel of PE

are obatained by summing the dimensions of the respective kernels and cokernels
of the constituent maps d0, d

∗
1, d2, d

∗
3, . . . . Therefore,

inda(PE) := dim Ker (PE)− dim Coker (PE)

=

dim Ker (d0) +
∑
k=1
2k≤l

(
dim Ker (d2k) + dim Ker (d∗2k−1)

)
−

dim Coker (d0) +
∑
k=1
2k≤l

(
dim Coker (d2k + dim Coker (d∗2k−1

)
=

dim Ker (d0) +
∑
k=1
2k≤l

(dim Ker (d2k) + dim Coker (d2k−1))


−

dim Coker (d0) +
∑
k=1
2k≤l

(dim Coker (d2k) + dim Ker (d2k−1))


= (dim Ker (d0)− dim Coker (d0)) +

∑
k=1
2k≤l

(dim Ker (d2k)− dim Coker (d2k))

− (dim Ker (d2k−1)− dim Coker (d2k−1))

=
l∑

i=0

(dim Ker (di)− dim Coker (di))

=: inda(E)

as required.
�

Definition 7.12. The topological index indt(E) of an elliptic complex E on
a compact complex manifold X is defined as

indt(E) := indt(PE).

Proposition 7.13. The topological index indt(E) is independent of the choice
of metrics hi on Ei, i = 0, . . . , l.

Proof. For more details on the construction see [AS1, 489-508], [AS3, 552-
559].

�
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If (E, h) is a holomorphic Hermitian bundle over a complact complex manifold
X with rkE = r, as before, the Dolbeault complex, ∂(E), of E is given by

0 → E0,0(E) ∂E−−→ E0,1(E) ∂E−−→ . . . ∂E−−→ E0,q(E) → 0

Proposition 7.14. The topological index of ∂(E) is equal to T-charateristic
T (E).

Proof. [Hi, 189-190]. �

In particular, the Hirzebruch-Riemann-Roch theorem (theorem 5.4.3) is a spe-
cial case of the Atiyah-Singer index formula (theorem 6.0.5).

Remark 7.15. Here we have defined the topological index of an elliptic complex
by reducing the complex to an operator between vector bundles. In chapter 6, the
topological K-group of a compact manifold X was defined (definition 6.1.1) as the
Abelian group induced by the semi-group of isomorphism classes of vector bundles.
Equivalently, K(X) can be defined as the group of certain equivalence classes of
complexes over X. Using this definition, the topological index of an elliptic complex
is obtained directly without first reducing to the operator case. This was also the
approach taken by Atiyah and Singer in their proof of the Atiyah-Singer index
formula using topological K-theory. See [AS1, AS3]
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