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Introduction

Tolto dunque un uovo, tutti qu’ maestri si provarono
per farlo star ritto, ma nessuno trovò il modo.

Onde, essendo detto a Filippo ch’e’ lo fermasse,
egli con grazia lo prese, e datoli un colpo

del culo in sul piano del marmo, lo fece star ritto.
G. Vasari

At the core of this work are Multicategories and the theory of Dendroidal Sets.
Operads and multicategories (of which operads are the one object version) were introduced
about at the same time by May ([Ma1]) for the study of infinite loop spaces, and by Lambek
([La]) in order to describe deductive systems. Multicategories are, roughly, an extension of
categories obtained by allowing arrows with any finite number of inputs, so to get an adjunction

j! : Cat � Multicat : j∗ (1)

between the category of (small) categories and that of (symmetric) multicategories.
Following this line, during the last few years Ieke Moerdijk and Ittay Weiss developed the
theory of Dendroidal Sets ([MW1],[MW2]), which extends the well known theory of Simplicial
Sets. More in detail, dendroidal sets are presheaves over a certain category Ω, in which the
simplicial category ∆ naturally embeds, leading to an adjunction

i! : SSet � dSet : i∗ (2)

The notion of a dendroidal nerve of a multicategory, analogous to that of the nerve of a
category, finally provides the following square which links the adjunctions 1 and 2

Cat
j! //

N
��

Multicat
j∗

oo

Nd

��
SSet

τ

OO

i! // dSet
i∗

oo

τd

OO

Motivations and main contributions

It is well known that simplicial sets can be transformed into topological spaces by means
of the geometric realization functor

| · | : SSet → Top (3)
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When I was first reading of dendroidal sets, the absence of a “dendroidal” analog of the
above functor immediately caught my eyes, becoming the subject of this work and one of my
obsessions during the last few months.

Not much later I became aware of the works of May ([Ma1]) and of Thomason ([Th2]);
their results convinced me of the fact that a geometric realization is not just a question of
consistency with respect to simplical sets, but really a need, a must, and a natural port for
the theory developed by Moerdijk and Weiss.
In fact, multicategories (or, better, operads) are intimately related to infinite loop spaces;
similarly, there is a tight link between infinite loop spaces and symmetric monoidal categories.
The triangle is closed once we notice that any (symmetric) monoidal category can be naturally
viewed as a (symmetric) multicategory. In practice, one should have in mind a sort of Trinity
of the form

Monoidal Categories

RRRRRRRRRRRRR Multicategories

nnnnnnnnnnnn

Infinite loop spaces

In order to make things clear and disappoint the reader, I have to admit that no geometric
realization has been constructed yet (as far as I know, and for sure not by me). Unfortunately,
the problem turned out to be much more difficult than what I originally thought.
On the other hand, the difficulties that I encountered, together with the above remarks, have
been a source of ideas in order to pave the way towards a “dendroidal geometric realization”,
and suggested a new perspective from which consider dendroidal sets.

In section 6.1 I conjecture the existence of a category StrTop of topological spaces with
structure, which should extend the category of topological spaces; I will describe some proper-
ties that such category should satisfy, in the form of diagrams relating StrTop to the category
Top of topological spaces and to the category E∞-Spaces of E∞-spaces. Subsequently I will
sketch in 6.1.1 the shape of a “dendroidal geometric realization” functor | · |d : dSet → StrTop
with target this new category. Under these assumptions, it is easily seen (6.1.3) that the
dendroidal classifying space of a monoidal category (i.e. the dendroidal classifying space of
the multicategory underlying it) is an E∞-space.

The main result of this work appears in section 6.3. Having in mind that simplicial sets
are a good replacement for topological spaces, in this section it should become clear what I
mean by a category of topological spaces with structures.
In 6.3.1 I will present dendroidal sets from a new perspective. Any dendroidal set X has
an underlying simplicial set i∗X, the simplicial part of X; the question is to understand the
role of those “gadgets” that the functor i∗ forgets. It turns out that the dendroidal part of
X (i.e. the complement of i∗X in X), provides sort of operations on the simplicial set i∗X.
In particular, as explained in 6.3.2, when X is the dendroidal nerve of a monoidal category
(M,⊗), such operations are intimately related to the product defined by the tensor ⊗ on the
usual (simplicial) nerve NM.
The philosophy behind the point of view I propose, is that dendroidal sets should be thought
of as simplicial sets endowed with an algebraic structure, and such structure is already encoded
in the dendroidal set.



ix

In other words, a dendroidal set X forms a unicum, it suffices to itself; it is able to sustain
itself, just like Brunelleschi’s egg.
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Chapter 1

Category Theory

I recall here few concepts and results from category theory; this is mostly an opportunity
to fix notations, nothing should be new. Throughout this thesis I will often make use of
theorem 1.4.4 and of the notion of a monoidal category, defined in section 1.5; monads and
their algebras, defined in 1.3, will be also of importance.

1.1 Categories, functors, natural transformations

Definition 1.1.1. A category C consists of:

(i) a collection C0 (or ob(C)) of objects denoted by A,B,C, . . . ,X, Y, . . . or a, b, c, . . .

(ii) a class C1 of arrows (or morphisms) denoted by f, g, h . . . To each arrow f are associated
a unique object s(f) and a unique object t(f), the source and target of f . I denote by
C(A,B) the set of arrows having source A and target B

(iii) for each object A there is given an arrow 1A in C(A,A), the identity of A

(iv) for all objects A,B,C a composition law µ : C(B,C) × C(A,B) → C(A,C) sending a
pair (g, f) of arrows to their composite, written g ◦ f or simply gf .

The above data are subject to axioms:

1. Associativity: given arrows h ∈ C(C,D), g ∈ C(B,C), f ∈ C(A,B) one has (h ◦ g) ◦ f =
h ◦ (g ◦ f)

2. Identity: for all arrows f ∈ C(A,B) and g ∈ C(B,C) hold 1B ◦ f = f and g ◦ 1B = g

In the following, for a category C, I will simply write A ∈ C to say that A is an object
of the category. In the above definition is assumed that a category is locally small, i.e each
C(X,Y ) is a set; one says that a category C is small if both the classes C0 of objects and C1

of arrows are sets.

Example 1.1.2. The following categories will occur throughout this work:

(i) Set : the category of sets, whose objects are sets and arrows the maps of sets

(ii) Top: the category of topological spaces and continuous functions
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(iii) Top∗: the category of pointed topological spaces and continuous base-point preserving
functions

(iv) given a category C, denote by Cop the opposite category of C. Then Cop has the same
objects as C has, but Cop(X,Y ) = C(Y,X) for any pair of objects X,Y

For a category C, one says that an arrow f : X → Y is a monomorphism (mono) if
whenever fg = fh for arrows g, h : Z → X, one has g = h. The dual notion is that of
epimorphism (epi), while an isomorphism (iso) is an arrow X

f−→ Y having both right and
left inverse.

Definition 1.1.3. Given categories C and D a (covariant) functor F : C → D consists of

- a map F0 : C0 → D0 taking an object X to F0(X) or just F0X.

- for each pair of objects X and Y of C, a map F1 : C(X,Y )→ D(F0(X), F0(Y )), taking
an arrow f to F0(f) or simply F0f .

These data respect the category structure, in the sense that

1. for every pair of composable arrows g ∈ C(Y, Z), f ∈ C(X,Y ), holds the equality
F1(g ◦ f) = F1(g) ◦ F1(f)

2. for every object X of C, F1(1X) = 1F0X

A contravariant functor F : C → D is a covariant functor F : Cop → D.

I will suppress indexes and write simply F both for F0 and F1.

Definition 1.1.4. Given functors F,G : C → D a natural transformation α : F ⇒ G is
a collection of arrows (αX)X∈C0 , αX : FX → GX of D, such that that, for every arrow
f : X → Y in C the following diagram commutes

FX

αX

��

Ff // FY

αY

��
GX

Gf
// GY

For natural transformations α : F ⇒ G, β : G ⇒ H, there is an obvious way of composing
them, the vertical composition, given at the component X by (α ◦ β)X = αX ◦ βX .

Example 1.1.5. With the last two definitions in mind we obtain

(i) Cat : the category of small categories and functors.

(ii) For a small category J and a category D, denote byDJ , the functor category of covariant
functors F : J → D and natural transformations.

Recall that

Definition 1.1.6. A functor F : C → D is said

(i) full if ∀X,Y ∈ C F : C(X,Y )→ D(F (X), F (Y )) is surjective
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(ii) faithful if ∀X,Y ∈ C F : C(X,Y )→ D(F (X), F (Y )) is injective

(iii) essentially surjective if every object D in D is isomorphic to an object FC for C in C

(iv) an isomorphism if there is a functor G : D → C such that FG = 1D and GF = 1C ; then
the categories are isomorphic, in symbols C ∼= D

(v) an equivalence of categories if there is a functor G : D → C and natural isomorphisms
ε : FG→ 1D and η : 1C → GF ; then the categories are said to be equivalent, C ' D

It is well known that (v) is equivalent to F being full, faithful and essentially surjective.

A notable kind of functor categories appears when J is the opposite category Cop of a small
category C and D = Set . In this case the functor category SetC

op
of contravariant functors

F : C → Set is often denoted by Ĉ and called the presheaf category of C. In particular,
any small category C can be embedded into its presheaf category by means of the Yoneda
embedding

C[·] : C → SetC
op

which takes an object X in C to the representable functor C[X] = C(·, X).
Functor categories, presheaf categories and representable functors have remarkable properties
as we shall see in the next section, and will be central in this work.
The fact that the Yoneda embedding is actually an embedding (i.e. full, faithful and injective
on objects), follows from

Yoneda Lemma 1.1.7. For every object F in SetC
op

and every object X in C, there is a
bijection

y : SetC
op

(C(·, X), F ) ∼= F (X)

sending a natural tranformation α ∈ SetC
op

(C(·, X), F ) to the element αX(1X) of FX.

Proof. Let α : C(·, X) ⇒ F a natural transformation. Then α is uniquely determined by the
element a = αX(1X); in fact, for any element f ∈ C(Y,X), f = 1X ◦ f = C(f,X)(1X) and
by naturality of α we have that αY (f) = αY ◦ C(f,X)(1X) = Ff ◦ αX(1X) = Ff(a) as the
following diagram shows

C(X,X)

αX

��

C(f,X)// C(Y,X)

αY

��
FX

Ff
// FY

Then, the isomorphism y is specified by sending α to the element αX(1X) ∈ FX, while y−1

takes an element a ∈ FX to the unique natural transformation determined by the datum
αX(1X) = a.

Corollary 1.1.8. The functor C[·] : C → SetC
op
, C[X] = C(·, X) is full, faithful and injective

on objects.

Proof. By the Yoneda’s Lemma we have

SetC
op

(C(·, X), C(·, Y )) ∼= C(X,Y )

Injectivity on objects follows from 1.1.1,(ii).
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1.2 Adjoint functors, limits, colimits

In the previous section I defined a functor F : C → D to be an equivalence of categories if
it has a pseudo inverse G : D → C . This is part of a more general situation, where the pair
of functors (F,G) are said to be adjoint, in the following sense.

Definition 1.2.1 (Adjoint functors). Let F : C → D and G : D → C be functors. Then F
is said left adjoint to G, F a G, and G right adjoint to F if one of the following equivalent
conditions holds

(i) for every X ∈ C, Y ∈ D, there exist an isomorphism φ : D(FX, Y )→ C(X,GY ), natural
in both variables X,Y in the sense that the square

D(FX, Y )

D(Ff,g)
��

φ // C(X,GY )

C(f,Gg)
��

D(FX ′, Y ′)
φ
// C(X ′, GY ′)

is commutative for every X,X ′ ∈ C, Y, Y ′ ∈ D and arrows X ′ f−→ X ∈ C, Y g−→ Y ′ ∈ D

(ii) there are natural tranformations ε : FG ⇒ 1 and η : 1 ⇒ GF such that the following
diagrams commute

G

1G �&
FFFFFFFF

FFFFFFFF
ηG +3 GFG

Gε
��
G

F

1F �&
FFFFFFFF

FFFFFFFF
Fη +3 FGF

εF

��
F

In the above cases one says that F and G are part of an adjunction, denoted by (F,G, φ),
(F,G, ε, η) or F : C � D : G. The natural transformations ε and η are called the counit and
unit of the adjunction.
Maps f : FX → Y and g : X → GY corresponding under φ are said transposes.
The isomorphisms φ : D(FX, Y ) → C(X,GY ) are completely determined by the maps ηX =
φ(1FX) : X → GFX, which in fact define the unit of the adjunction. Using an argument
similar to that of the Yoneda’s Lemma, we find that for an arrow f : FX → Y , φ(f) is given
by the composite

X
ηX−−→ GFX

Gf−−→ GY

Conversely, the counit ε is given by the maps φ−1(1GY ) : FGY → Y , and for g : X → GY ,
φ−1(g) is

FX
Fg−−→ FGY

εY−→ Y

I will briefly recall the definition of limits and colimits; then, after listing some of them, I
will recall some important properties of adjoint pairs of functors.
Let C and D categories. For an object X of D, denote by ∆X the constant functor at
X, sending every object of C to X and every arrow to de identity arrow on X. Then, the
assignment X 7→ ∆X defines a functor ∆ : D → DC .
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Definition 1.2.2. Let F : C → D a functor.
If it exists, the limit of F is an object limF of D such that

DC(∆X,F ) ∼= D(X, limF )

and the above isomorphism is natural in the variable X.

Dually, we have the notion of colimit.

Definition 1.2.3. Let F : C → D a functor.
If it exists, the colimit of F is an object colimF of D such that

D(colimF,X) ∼= DC(F,∆X)

and the above isomorphism is natural in the variable X.

One says that

Definition 1.2.4. A category D has all (co)limits of type C if every functor F : C → D admits
a (co)limit.

In the above situation, the assignments F 7→ limF and F 7→ colimF give rise to functors
DC → C, so that the previous definition can be rephrased as

Definition 1.2.5. A category D has all (co)limits of type C if the functor ∆ : C → DC has a
(left) right adjoint.

Finally, we say that

Definition 1.2.6. A category D is complete if the functor ∆ : C → DC has a right adjoint,
for every small category C. A category D is cocomplete if the functor ∆ : C → DC has a left
adjoint, for every small category C. A category D is bicomplete if it is both complete and
cocomplete.

Example 1.2.7. Many classical limits will occur throughout this work, such as products and
pullbacks.
For objects X,Y in a category C, the product X × Y is the limit of the functor F from the
category 2 consisting of only two objects 0, 1 and identity arrows

0id 99 1 idee

assigning X to 0 and Y to 1.
Then, the natural isomorphism in 1.2.2 gives us the projections πX and πY and the universal
property

Y

Z

//

//

//___ X × Z

πY

;;wwwwwwwww

πX ##GGGGGGGGG

X

An equalizer for maps f, g : X → Y in a category C is a limit K for the functor F taking the
category

0id 99
//
// 1 idee
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to the diagram X
f //

g
// Y , so to get the usual universal property depicted as

K // X
f //

g
// Y

Z

OO�
�
�

>>}}}}}}}}

Similarly, a pullback (or fiber product) is a limit for a functor F on the category

1 idee

p

��
2id 99 q

// 0 idee

and one obtains the well known diagram

W

  

&&$$I
I

I
I

I

X ×Z Y

��

// X

p

��
Y q

// Z

By reversing arrows in the above diagrams one has then the dual notions of coproduct,
coequalizer and pushout.
Recall the known criterion for a category to be (co)complete:

Proposition 1.2.8. A category C is (co)complete if, and only if, it has (co)products and
(co)equalizers.

A remarkable property of adjoint functors is that they preserve limits, as is made precise
by the following

Proposition 1.2.9. Let F : C � D : G a pair of adjoint functors. Then F preserves colimits
existing in C, while G preserves limits existing in D.

Proof. Let H : E → C a functor and assume that colimH exists in C; we want to prove that
colimFH exits and can be chosen to be F (colimH).
We have

DE(FH,∆X) ∼=CE(H,G∆X) = CE(H,∆GX) ∼=
∼=C(colimH,GX) ∼= D(F colimH,X)

where the isomorphism DE(FH,∆X) ∼= CE(H,G∆X) is induced by the isomorphism φ :
D(FX, Y ) → C(X,GY ) of 1.2.1 and makes sense by the naturality assumption. This proves
the first part of the proposition; the fact that G preserves limits is dual.
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Very important examples of adjunction are provided by the product in Set and Cat .
It is well known that there is an adjunction between the product functor · × B and the
exponential (·)B for any set B ∈ Set

Set(A×B,C) ∼= Set(A,CB)

obtained by sending a function f : A×B → C to the map f̃ : A→ CB defined by

a 7→ (b 7→ f(a, b))

Recall that the product C × D of two categories is the category with set of objects C0 × D0

and arrows the pairs (f, g) for f ∈ C and g ∈ D and the obvious composition (f, f ′)(g, g′) =
(fg, f ′g′). Noting that a set can be viewed as a small category with only identity arrows, the
above adjunction becomes just a particular case of the following

Example 1.2.10. For any small category D the functor · × D : Cat → Cat has as right
adjoint the functor (·)D assigning to a small category E the functor category ED.
One easily constructs the isomorphism

Cat(C × D, E) ∼= Cat(C, ED)

Let H : C × D → E a functor. Define the functor Ĥ : C → ED sending an object C to the
functor HC

D
� HC// H(C,D) , (f : D → D′) �HC // H(1C , f)

while an arrow f : C → C ′ gives the natural transformation φ = Ĥ(f)

φD = H(f, 1D) : H(C,D)→ H(C ′, D)

On the other hand, given a functor G : C → ED, one constructs the functor G̃ : C ×D → E by
sending an object (C,D) to G̃(C,D) = G(C)(D), while for an arrow (f, g) : (C,D)→ (C ′, D′),
G̃(f, g) is just the diagonal in the naturality square

G(C)(D)
G(C)(g) //

G(f)D

��

G̃(f,g)

))SSSSSSS
G(C)(D′)

G(f)D′
��

G(C ′)(D)
G(C′)(g)

// G(C ′)(D′)

The above constructions are then obviously inverses one to the other, so that we have the
adjunction.

With the language of section 1.5 this makes Cat and Set into closed symmetric monoidal
categories.

1.3 Monads

In this section I will recall a couple of definitions and constructions concerning monads
and their algebras. We will need the concepts explained below only in chapter 5 but, due to
the purely categorical flavour, I find this the most appropriate place to introduce them.
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Definition 1.3.1. Let C a category. A monad on C consists of a functor T : C → C and
natural transformations η : 1C ⇒ T , µ : T 2 ⇒ T such that the following diagrams commute

T 3
Tµ +3

µT

��

T 2

µ

��
T 2

µ
+3 T

T
Tη +3

1T �$
AAAAAAA

AAAAAAA T 2

µ

��

T
ηTks

1Tz� }}}}}}}

}}}}}}}

T

As a first example, I recall that any pair of adjoint functors F : C � D : G gives rise to a
monad GF on C where η is the unit of the adjunction and µ = GεF . The requirements on µ
and η are in fact fulfilled since

GFGFGF
GFGεF +3

GεFGF

��

GFGF

GεF

��
GFGF

GεF

+3 GF

simply express naturality of Gε : GFG ⇒ G with respect to ε : FG ⇒ 1D. Similarly the
diagrams

GF
GFη+3

1GF  (JJJJJJJJJ

JJJJJJJJJ GFGF

GεF

��

GF
ηGFks

1GFv~ uuuuuuuuu

uuuuuuuuu

GF

commute by definition of unit and counit of the adjunction in 1.2.1.

One can obviously make monads into a category (or, even better, into a strict 2-category).

Definition 1.3.2. Let (T, η, µ), (T ′, η′, µ′) be monads on C and C′. A lax map of monads
between them is a pair (Q,φ) where Q : C → C′ is a functor and φ : T ′Q ⇒ QT a natural
transformation, such that the following diagrams commute

T ′2Q

µQ

��

T ′φ +3 T ′QT
φT +3 QT 2

Qµ

��
T ′Q

φ
+3 QT

Q

η′Q
��

Q

Qη

��
T ′Q

φ
+3 QT

One can also define colax and weak maps of monads, by inverting in the above definition the
direction of φ or choosing it to be an isomorphism.

The idea behind a monad is that of encoding a certain algebraic structure in the data of a
functor, a unit element and a multiplication. Given such a “skeleton” for an algebraic theory
in the shape of a monad, models are then given by the algebras for the monad, as made precise
by the following

Definition 1.3.3. Let (T, η, µ) a monad on a category C.
An algebra for T is a pair (X, ξ) with X ∈ C and ξ : TX → X an arrow in C such that the
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following diagrams commute

T 2X

µX

��

Tξ // TX

ξ

��
TX

ξ
// X

X
ηX //

DDDDDDDD

DDDDDDDD TX

ξ
��
X

Given algebras (X, ξ) and (X ′, ξ′) for the monad T , an arrow between them is an arrow
X

f−→ X ′ in C making the following square commute

TX
Tf //

ξ

��

TX ′

ξ′

��
X

f
// X ′

Denote by T -Alg the category of algebras for the monad T and their morphisms as just defined.

It is easily seen that there is an adjunction

F : C � T -Alg : U

where U sends an algebra (X, ξ) to X, while F sends an object X of C to the free algebra
(TX, µX).

I end the section with a standard example, which will make clear the above concepts and
will be useful later on.

Example 1.3.4. (Free monoid monad)
Consider on Set the following functor

X 7→ TX =
∞∐
n=0

Xn

TX is the collection of words on the set X. One can make T into a monad with unit η given
by

ηX : x 7→ 〈x〉

sending an element of X to the word 〈x〉 of lenght 1 consisting of the letter x. The multipli-
cation

T 2X =
∞∐
k=0

(
∞∐
m=0

Xm)k
µX−−→ TX =

∞∐
n=0

Xn

amounts to “eliminating” parenthesis, so that an element 〈〈x1
1, . . . , x

1
n1
〉, . . . , 〈xk1, . . . , xknk

〉〉 of
T 2X is sent to 〈x1

1, . . . , x
1
n1
, . . . , xk1, . . . , x

k
nk
〉. An algebra (X, ξ) for the monad T means the

choice of a setX and a product ξ onX. The multiplication µ of the monad ensures associativity
of the product ξ, while the image e = ξ(〈〉) of the unique element 〈〉(the empty word) in X0

is the unit for the product, in fact:

ξ(〈x, e〉) = ξ(〈ξ(〈x〉), ξ(〈〉)〉) = ξTξ(〈〈x〉, 〈〉〉) = ξµ(〈〈x〉, 〈〉〉) = ξ(〈x〉) = x



10 Category Theory

where we used the axioms for the algebras

ξ ◦ Tξ = ξ ◦ µX and ξ ◦ ηX = 1X

It can be shown then that monoids are exactly the algebras for the monad T .

1.4 More on categories of functors

I already mentioned categories of functors at the end of the first section. I will now
concentrate more on them and give some fundamental results, some of which will be essential
tools in the following chapters. Recall that, for categories C and D, with C small, DC is the
category whose objects are the covariant functors F : C → D and morphisms are the natural
transformations with the vertical composition.
As usual, the first thing one cares of is the existence of limits. A sufficient criterion is given
by the following.

Proposition 1.4.1. Let C and D categories, and assume that D has (co)limits of type J for
a category J . Then so does DC.

Proof. The result is easily proved by means of universal diagrams.
Let H : J → DC . Then H amounts to functors Hj : C → D for j ∈ J and natural
transformations γ : Hj ⇒ Hj′ for j

g−→ j′ in J .
Define for C in C HC : J → D taking j to Hj(C).
By the assumption on D it is possible to define a functor H in DC as H(C) = limHC . I claim
that H is the limit of H.
Let F in DC be a functor together with natural transformations φj : F ⇒ Hj for every j ∈ J
and compatible with the transformations γ = H(g), in the sense that

Hj

γ=H(g)

��

F

φj
:B}}}}}}}

}}}}}}}

φj′ �$
AAAAAAA

AAAAAAA

Hj′

commutes for every j, j′ and j g−→ j′ in J .
Then at each component C the arrows φj,C factor as

Hj(C)

γC

��

F (C)

φj,C

22

φj′,C ++

pC // H(C)

πj,C

::uuuuuuuuu

πj′,C

$$IIIIIIIII

Hj′(C)
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so to get the desired natural transformation p depicted below

Hj

γ

��

F

φj

/7

φj′ '/

p +3 H

πj

:B}}}}}}}

}}}}}}}

πj′

�$
AAAAAAA

AAAAAAA

Hj′

The proof for colimits is dual.

Corollary 1.4.2. Any presheaf category SetC
op

is both complete and cocomplete.

I shall now specialize to presheaf categories, and prove two important results, to which I
will refer quite often in the following pages. They provide the tools for realization and a way
to describe presheaves as colimits over a suitable category. The proofs follow those in [MM].
Recall that for a category C, I denote by C[C] the representable presheaf C(·, C). Let me also
define the category mentioned above.

Definition 1.4.3. Let P : Cop → Set be a functor. The category of elements of P is the
category

∫
C P , whose objects are the pairs (C, p) for c ∈ C and p ∈ P (C) and an arrow

(C, p)
f−→ (C ′, p′) is an arrow C

f−→ C ′ of C such that Pf(p′) = p.

There is then a “projection” functor∫
C
P

πP−−→ C (C, p) 7→ C

Theorem 1.4.4. Let F : C → D be a functor from a small category C to a cocomplete category
D.
Then the functor R : D → SetC

op
defined by

R(D)(C) = D(F (C), D)

has a left adjoint L : SetC
op → D sending a presheaf P to the colimit

L(P ) = colim(
∫
C
P

πP−−→ C F−→ D)

Proof. We have to prove the isomorphism

D(L(P ), D) ∼= SetC
op

(P,R(D))

Let φ : P ⇒ R(D) a natural tranformation. This means having arrows (φC)C∈C satisfying
naturality squares as below for every C f−→ C ′

P (C ′)
φC′//

Pf

��

D(F (C ′), D)

(·)◦Ff
��

P (C)
φC

// D(F (C), D)
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Now note that each φC gives arrows φC(p) : F (C)→ D varying p ∈ P (C), so we can consider
φ as a family of arrows φC(p) indexed over the elements (C, p) of

∫
C P . Finally the above

square gives commutative triangles

FπP (C,Pf(p′)) = FC
φC(Pf(p′))

!!CCCCCCCC

Ff

��

D

FπP (C ′, p′) = FC ′
φC′ (p

′)

=={{{{{{{{

and by universality of the colimit there is a unique arrow φ̂ : L(P )→ D, giving the adjunction
isomorphism.

Remark 1.4.5. Notice that in the previous theorem we have for P = C[X] that L(P ) ∼= FX.
Suppose in fact that we are given a category T with a terminal object 1 and a functor
F : T → C; then colimF exists and can be chosen to be F1.
In fact for all C ∈ T we have a map FC F !−→ F1, where ! is the unique map in T from C to
the terminal object 1; in particular F1→ F1 is the identity. Now suppose Z is a colimit of F
and let ε1 the map F1 → Z; then the usual diagram expressing Z as a colimit of F has the
following form

FC
F !

""EEEEEEEE εC

((
Ff

��

F1
1 // F1

ε1 // Z

FC ′
F !

<<yyyyyyyy εC′

66

This shows that F1 is a limit for F , and ε1 is iso.
In the particular case when P = C[X] the category of elements of P ,

∫
C P , has objects the

pairs (A, p) with A ∈ C and p ∈ P (A) = C(A,X). An arrow (A, p) → (B, q) in
∫
C P is then

an arrow A
r−→ B of C making the following triangle commute

A
r //

p ��??? B

q�����

X

so that
∫
C P is nothing but the slice category C/X of objects over X, with terminal object

(X, 1X). The argument above proves then the claim.

Corollary 1.4.6. Every presheaf is a colimit of representable presheaves.

Proof. In the previous theorem let D be the presheaf category SetC
op

and F = C[·] the Yoneda
embedding. Then, letting D = P a presheaf we have by the Yoneda Lemma 1.1.7

R(P )(C) = SetC
op

(C[C], P ) ∼= P (C)
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so that R is isomorphic to the identity. By the uniqueness(up to iso) of adjoints we have that
also L is isomorphic to the identity and

P ∼= L(P ) = colim(
∫
C
P

πP−−→ C F−→ D) = colim
(C,p)∈

R
C P
C[C]

1.5 Monoidal Categories

We close the chapter with a glance atmonoidal categories. A monoidal category is, roughly,
a category with a notion of product.
Most of the categories we are used to are monoidal (e.g. Set and Top with the cartesian
product, Ab with the tensor product), and most category of interest are closed monoidal or
in some sense “equivalent” to a closed monoidal one.
The cases I just mentioned (and many others) motivate the rest of this section and the following
definitions.

Definition 1.5.1. A monoidal category is a categoryM = (M,⊗, I, α, λ, ρ) equipped with

(i) a bifunctor ⊗ :M×M→M, (X,Y ) 7→ X ⊗ Y , the tensor

(ii) a distinguished object I ofM, the unit of the tensor

(iii) natural isomorphisms

α = (αX,Y,Z : X ⊗ (Y ⊗ Z)→ (X ⊗ Y )⊗ Z))X,Y,Z∈M
λ = (λX : I ⊗X → X)X∈M
ρ = (ρX : X ⊗ I → X)X∈M

The above isomorphisms are such that the following diagrams commute

W ⊗ (X ⊗ (Y ⊗ Z))

1⊗α
��

α // (W ⊗X)⊗ (Y ⊗ Z) α // ((W ⊗X)⊗ Y )⊗ Z

W ⊗ ((X ⊗ Y )⊗ Z) α
// (W ⊗ (X ⊗ Y ))⊗ Z

α⊗1

OO

X ⊗ (I ⊗ Y )

1⊗λ ''NNNNNNNNNNN
α // (X ⊗ I)⊗ Y

ρ⊗1wwppppppppppp

X ⊗ Y
for every W,X, Y, Z inM. Also, one requires that

λI = ρI : I ⊗ I → I

Sometimes monoidal categories, as just defined, are referred to as weak monoidal categories,
as opposed to the notion of a strict monoidal category, that is a weak monoidal category in
which the natural isomorphisms α, λ and ρ are identities.
Such distinction is not so necessary, since every weak monoidal category is equivalent to a
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strict one as proved in [JS].
There are also notions of lax, colax monoidal categories, but this doesn’t need to bother us
here; more about them can be found in [Le].
Before passing to symmetric and closed monoidal categories, which are for us of more interest,
let me recall the notions of monoidal functors and transformations between them.

Definition 1.5.2. Let M = (M,⊗, I, α, λ, ρ) and M′ = (M′,⊗, I, α, λ, ρ) monoidal cate-
gories.
A lax monoidal functor F = (F, φ) :M→M′ consists of a functor F :M→M′ and arrows

φX,Y : FX ⊗ FY → F (X ⊗ Y ) φ : I → FI

the first of which is natural in X,Y , and such that for every X,Y, Z ∈ M the following
diagrams commute

FX ⊗ (FY ⊗ FZ)

αFX,FY,FZ

��

1⊗φX,Y // FX ⊗ F (Y ⊗ Z)
φX,Y⊗Z// F (X ⊗ (Y ⊗ Z))

FαX,Y,Z

��
(FX ⊗ FY )⊗ FZ

φX,Y ⊗1
// F (X ⊗ Y )⊗ FZ

φX⊗Y,Z

//// F ((X ⊗ Y )⊗ Z)

FX ⊗ I

ρFX &&NNNNNNNNNNN
1⊗φ // FX ⊗ FI

φX,I // F (X ⊗ I)

FρXwwppppppppppp

FX

I ⊗ FX

λFX &&NNNNNNNNNNN
φ⊗1 // FI ⊗ FX

φI,X // F (I ⊗X)

FλXwwppppppppppp

FX

The obvious notions of colax, weak, strict functors are given by inverting the direction of the
arrows or requiring them to be isos or identities.

With the notion of (strict) monoidal categories and monoidal functors we can define the
categories

MonCatstr: monoidal categories and strict functors

MonCatwk: monoidal categories and weak functors

MonCat lax: monoidal categories and lax functors

MonCatcolax: monoidal categories and colax functors

and similarly for the strict monoidal categories, so to get categories StrMonCatstr, StrMonCatwk,
StrMonCat lax, StrMonCatcolax.
Of course, one can define natural transformations of monoidal functors.
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Definition 1.5.3. Let (F, φ), (G,ψ) : M → M′ be lax monoidal functors. A monoidal
transformation (F, φ)⇒ (G,ψ) is a natural transformation θ : F ⇒ G such that the following
diagrams commute for all X,Y ∈M

FX ⊗ FY
φX,Y

��

θX⊗θY // GX ⊗GY
ψX,Y

��
F (X ⊗ Y )

θX⊗Y // G(X ⊗ Y )

I
φ

~~}}}}}}}}
ψ

  AAAAAAAA

FI
θI

// GI

Thinking of strict monoidal categories as categories with a sort of monoid structure on
objects, naturally leads to the notion of free strict monoidal category. More precisely , we can
force a monoidal structure on a category C, getting an adjunction

F : Cat
//
StrMonCatstr : Uoo

The right adjoint U is of course the forgetful functor. The functor F simply constructs a strict
monoidal category FC with objects the free monoid on C0 and forces it to agree with arrows
so that we have a map A1 . . . An

f−→ B1 . . . Bm if and only if n = m and is given by arrows
Ai

fi−→ Bi; of course A1 . . . An is the word on the objects A1, . . . , An and the product is given
by concatenation of words.
As one could imagine, the above free monoidal category functor is actually induced by the
usual free monoid functor on Set . Such link is probably better understood when considering
generalized multicategories ([Le]) or monoids ([ML]), but it is not the purpose of this work to
deal with such generality.

In the same fashion one can consider free commutative monoids, the categorical version of
which is given by the following.

Definition 1.5.4. A symmetric monoidal category is a monoidal categoryM equipped with
natural isomorphisms

τX,Y : X ⊗ Y → Y ⊗X

making the following diagrams commute

X ⊗ Y

KKKKKKKKKK

KKKKKKKKKK

τX,Y // Y ⊗X
τY,X

��
X ⊗ Y

I ⊗X
λX

��

X ⊗ I

ρX
yytttttttttt

τX,Ioo

X

X ⊗ (Y ⊗ Z)

1⊗τ
��

α // (X ⊗ Y )⊗ Z τ // Z ⊗ (X ⊗ Y )

α

��
X ⊗ (Z ⊗ Y ) α

// (X ⊗ Z)⊗ Y
τ⊗1
// (Z ⊗X)⊗ Y )

Again, after defining suitable functors, we obtain a list of categories as above, just adding
the property of being symmetric and varying on the theme SymmMonCat and SymmStrMonCat
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Definition 1.5.5. A lax symmetric monoidal functor F : M → M′ between symmetric
monoidal categoriesM andM′ is a lax monoidal functor F = (F, φ) such that the following
diagram commutes

FX ⊗ FY τ ′ //

φX,Y

��

FY ⊗ FX
φY,X

��
F (X ⊗ Y )

Fτ
// F (Y ⊗X)

where τ and τ ′ are the twist maps inM andM′

Clearly one has then the notion of colax,weak and strict symmetric monoidal functor.

At the beginning of the section I mentioned as examples of monoidal categories Set and Ab.
The monoidal structure on them is given respectively by the cartesian product (so that Set is
actually cartesian monoidal) and by the tensor product; it is well known that both functors
· × X on Set and · ⊗ X on Ab have a right adjoint, given by hom-sets. Such phenomena
happen in many other categories and are of great importance (think just of the suspension-
loop adjunction in topology); they go under the name of closed monoidal categories.

Definition 1.5.6. A right closed monoidal category M is a monoidal categoryM such that
for every object Y ∈ M the functor · ⊗ Y has a right adjoint Mr(Y, ·), so to obtain an
isomorphism

π :M(X ⊗ Y,Z) ∼=M(X,Mr(Y, Z)) (1.1)

A monoidal category is left closed if for every object X ∈ M the functor X ⊗ · has a right
adjoint Ml(X, ·) A monoidal category is closed if both the functors · ⊗ Y and X ⊗ · have a
right adjointMr(Y, ·) andMl(X, ·), for every X,Y .

Note that a right (left) closed symmetric monoidal category is closed and the two above
functors are isomorphic,Mr(X, ·) ∼=Ml(X, ·) =M(X, ·).
In the literature closed monoidal category often stands for closed symmetric monoidal category
and I will concentrate on the last one.
As I mentioned, commonly known cases of closed monoidal categories are Set and Ab; there,
the right adjoint to a product X ⊗ Y is exactly the hom functor. With this example in mind,
the more general right adjointM(X, ·), the internal hom, should be a good replacement for the
hom functor. In more categorical terms, this says that a closed symmetric monoidal category
can be enriched over itself ([Ke]).
I will try to now to give a brief explanation of the argument above.
Recall that the usual hom sets of a small category C and rules amount to have for objects X,Y
in C a set C(X,Y ). For every triple of objects X,Y, Z a map m : C(Y, Z)×C(X,Y )→ C(X,Z)
and for every object X a distinguished arrow, the identity, given by ιX : {∗} → C(X,X). Note
that {∗} is the identity for the product in Set . The axioms for associativity and identity can be
stated in terms of the following commutative diagrams, where a denotes the associativity map
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for the cartesian product of sets, l and r are the isomorphisms {∗}×X → X and X×{∗} → X

(C(Z,W )× C(Y, Z))× C(X,Y ) a //

m×1
��

C(Z,W )× (C(Y,Z)× C(X,Y ))

1×m
��

C(Y,W )× C(X,Y )

m
**TTTTTTTTTTTTTTTT

C(Z,W )× C(X,Z)

m
ttjjjjjjjjjjjjjjjj

C(X,W )

C(Y, Y )× C(X,Y )m // C(X,Y ) C(X,Y )× C(X,X)moo

{∗} × C(X,Y )

ιY ×1

OO

l

66mmmmmmmmmmmm
C(X,Y )× {∗}

r

hhQQQQQQQQQQQQQ
1×ιX

OO

The idea now is that the above hom sets should be replaced by the internal homsM(·, ·),
and the composition and identity maps recovered from the adjunction 1.1. Of course the
cartesian product is replaced by the tensor product ⊗, {∗} by the unit element I of M and
the associativity is the associativity α of the tensor.
The “internal” composition law is the map corresponding under our adjunction to

(M(Y,Z)⊗M(X,Y ))⊗X α−→M(Y,Z)⊗ (M(X,Y )⊗X) 1⊗ε−−→ (M(Y,Z)⊗X) ε−→ Z

where ε is the counit of the adjunction 1.1. The identity is then the map

I
λ̃−→M(X,X)

obtained by adjunction from the map

I ⊗X λ−→ X
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Chapter 2

Simplicial Sets

In this chapter I will review the basic theory of Simplicial Sets, the category of contravari-
ant Set-valued functors on the category of finite totally ordered sets, ∆. As we shall see in
Chapter 4, Simplicial Sets are the basis of the theory of Dendroidal Sets, and some of their
properties motivated my point of view on the latter.
Simplicial sets provide a very pervasive tool in various branches of mathematics, from topology
to homological algebra and category theory itself. Probably one of the most beautiful aspects
is how they capture the classical homotopy theory of topological spaces, leading then to the
general (categorical) homotopy theory.
Unfortunately, this is not the place to treat and discuss a too large topic such as model cat-
egories; roughly speaking, a model category is a category C admitting a particular structure
which allows a “homotopy theory” in a fashion similar to that of topological spaces. In partic-
ular, simplicial sets do carry such a structure and it is possible to prove that, at the homotopy
level, the category of simplicial sets is equivalent to that of topological spaces. For more about
this fascinating subject I refer to [GJ],[Ho] and [Qu1].

2.1 The Simplicial Category ∆

As I mentioned, the category of simplicial sets is the category of presheaves on the category
∆. There are three possible equivalent definitions of ∆, which I list below.

Definition 2.1.1. Algebraic definition
∆ is the category with objects the finite totally ordered sets [n] = {0, . . . , n} and arrows the
monotone maps.

It is well known that any partially ordered set P can be naturally viewed as a category P
having as set of objects the set underlying P and for objects p, q there exists a unique arrow
p→ q if, and only if, p ≤ q as elements of P .
It is then natural to think of ∆ in the following way

Definition 2.1.2. Categorical definition
∆ is the full subcategory of Cat consisting of the categories [n] with n+ 1 objects and only
one arrow between them

0→ 1→ · · · → n

The algebraic definition translates then quite naturally in the following
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Definition 2.1.3. Topological definition
∆ is the category with objects the standard topological n-simplexes

∆n = {(x0, . . . , xn) ∈ Rn+1|
∑

xi = 1, xi ≥ 0}

that is, the convex hull of the points vi = (0, . . . , 0, 1, 0, . . . , 0), for i = 0, . . . , n (vi has n+ 1
entries all 0 but for the i-th one); arrows are the linear maps induced by the data vi 7→ vf(i)

for f a monotone map f : [m]→ [n].

I shall now describe two special classes of maps in ∆, which are essential to the stucture
of ∆ and of simplicial sets.

Definition 2.1.4. Among the maps f : [n]→ [m] in ∆ there are distinguished ones

the cofaces di : [n − 1] → [n], 0 ≤ i ≤ n, defined by di(j) = j if j < i and di(j) = j + 1 if
j ≥ i

the codegeneracies si : [n+1]→ [n], 0 ≤ i ≤ n, defined by si(j) = j if j ≤ i and si(j) = j−1
for j > i

Thinking by means of the categorical definition, the coface di skips i and for 0 < i < n
composes the arrows i− 1→ i→ i+ 1 giving

0→ 1→ . . .→ i− 1→ i+ 1→ . . .→ n

while si sends i+ 1 to i and the arrow i→ i+ 1 to the identity

0→ 1→ . . .→ i
1−→ i+ 1→ . . .→ n

For example, consider d2 : [2]→ [3] and s2 : [3]→ [2]

3

0

@@�������
//

��>>>>>>> 2

^^>>>>>>>

1

OO

@@�������

then d2 embeds 0→ 1→ 2 as the face 0→ 1→ 3 while s2 collapses 0→ 1→ 2→ 3 onto
0→ 1→ 2. In particular, applying s2 after d2 gives the identity on [2].
This is just a particular instance of the following relations, verified by the codegeneracies and
cofaces, the cosimplicial identities

djdi = didj−1 i < j
sjsi = sisj+1 i ≤ j
sjdi = disj−1 i < j
sjdi = 1 i = j, j + 1
sjdi = di−1sj i > j + 1

(2.1)

We end the section by showing how maps in ∆ can be described by means of faces and
degeneracies.
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Proposition 2.1.5. Every monotone map f : [m]→ [n] can be written in a unique way as

f = di1 . . . ditsj1 . . . sju

where n ≥ i1 . . . ≥ it ≥ 0, m ≥ ju . . . ≥ j1 ≥ 0 and m+ t = n+ u.

Proof. A monotone function f is determined by the sets {j|f(j) = f(j + 1)} (that is, those
intervals [jk, . . . , jl] that f collapses to a point) and the image f([m]) ⊆ [n] (or equivalently
its complement {it ≤ . . . ≤ i1}, i.e. the set of elements in [n] skipped by f). Then f can be
rewritten as above by first collapsing each interval [jk ≤ . . . ≤ jl] and then embedding via the
maps di. The choice of the order in the indexes assures that the above representation for f is
unique.

Thanks to the previous proposition and equations 2.1 we see that arrows in ∆ are generated
by the coface and codegeneracy map, fact that will be very useful when studying simplicial
sets.

2.2 The category SSet of Simplicial Sets

Definition 2.2.1. The category SSet of simplicial sets is the presheaf category Set∆op
of

contravariant set-valued functors on the simplicial category ∆.

For a simplicial set X ∈ SSet , one usually denotes its value at [n] by Xn instead of X([n]).
Then, thanks to 2.1.5 and the equations 2.1, a simplicial set X amounts to data

- sets Xn, n ∈ N, whose elements are called the n-simplices

- maps di : Xn → Xn−1, the face maps

- maps si : Xn−1 → Xn, the degeneracy maps

where the maps di, si satisfy the simplicial identities, induced by the cosimplicial ones.

didj = dj−1di i < j
sisj = sj+1si i ≤ j
disj = sj−1di i < j
disj = 1 i = j, j + 1
disj = sjdi−1 i > j + 1

(2.2)

For a simplex x of a simplicial set X we call face of x the image of x under iterations of
face maps. On the other hand we say that a simplex x is degenerate if there is a simplex y
such that x is the image of y under an iteration of degeneracy maps, so that x is a degeneracy
of y; it is easy to prove that any simplex is the degeneracy of a unique non-degenerate simplex.

We give a first important result on simplicial sets

Proposition 2.2.2. The category SSet admits the structure of a closed symmetric monoidal
category.
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Proof. As a presheaf category in fact, SSet admits finite products, which commute with col-
imits. This provides us with a symmetric product
Now consider, for a simplicial set K, the functor

K ×∆[·] : ∆→ SSet

Thanks to 1.4.4 we obtain the pair of adjoint functors K × · a SSet(K, ·). For a simplicial set
X, K×X is simply the product , while 1.4.4 tells that SSet(K,X) is given by SSet(K,X)n =
SSet(K ×∆[n], X) .

Before going further I recall some easy concepts and important constructions in the cate-
gory SSet , which will be crucial in the next session.

Definition 2.2.3. Let X,Y simplicial sets. We say that X is a subsimplicial set of Y if there
are monomorphisms fn : Xn → Yn which are compatible with the face and degeneracy maps,
i.e. both X and Y are presheaves on ∆ and there is a natural transformation f : X ⇒ Y
which is componentwise injective.
If X ′ is a set of simplices of a simplicial set X , the simplicial set generated by X ′ is the
subsimplicial set given by taking all the degeneracies and faces of the simplices in X ′.

Recall, that for a presheaf category SetC
op
, there are distinguished functors, the repre-

sentable presheaves C[X] = C(·, X).
In the case of simplicial sets, the representable presheaf ∆[n] is sometimes called the standard
simplicial n-simplex. There are other notable kinds of simplicial sets:

Definition 2.2.4. The boundary of ∆[n] is the subsimplicial set ∂∆[n] of ∆[n] generated by
the faces di(1[n]), 0 ≤ i ≤ n, that is by the (n− 1)-simplices ∆[n](di)(1[n]) = 1[n] ◦ di.
The kth horn Λk[n] is the subsimplicial set of ∆[n] generated by the faces di(1[n]) except the
kth face dk(1[n]); that is, Λk[n] is generated by those faces which do not miss the vertex k.

Anticipating results from realization, one should think of ∂∆[n] as the boundary of the
standard topological n-simplex.
To make this clearer, note that one can express the boundary ∂∆[n] as a coequalizer∐

0≤i<j≤n
∆[n− 2] ⇒

∐
0≤i≤n

∆[n− 1]→ ∂∆[n] (2.3)

where the two maps are induced by ∆[dj−1] : ∆[n−2]i,j → ∆[n−1]i and ∆[di] : ∆[n−2]i,j →
∆[n − 1]j , while the coequalizer map is induced by the maps ∆[di] : ∆[n − 1]i → ∂∆[n].
The result follows by the cosimplicial identity djdi = didj−1, i < j. This is just the same as
gluing the faces of a topological n-simplex ∆n along their edges, so to obtain its boundary ∂∆n.

We know from 1.4.6 that any simplicial set X can be expressed as a colimit of representable
functors ∆[n], indexed over the natural transformations ∆[n] ⇒ X. There is another way of
describing X which will be useful later.

Definition 2.2.5. Let X a simplicial set. The nth skeleton of X is the subsimplicial set SknX
of X generated by the simplices of degree ≤ n.
For every n, Skn−1X embeds into SknX and X turns out to be the union of its skeleta.

Denote by NXn the set of non degenerate n-simplices of X. One could give a more
illuminating and useful way of describing the skeleta of X, as the following proposition shows.
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Proposition 2.2.6. Let X a simplicial set. For every n there is a pushout diagram∐
NXn

∂∆[n] //

��

Skn−1X

��∐
NXn

∆[n] // SknX

Proof. From 1.4.1 we prove it levelwise, that is by proving that for each m

∂∆[n]m //

��

Skn−1Xm

��
∆[n]m // SknXm

is a pushout. For m < n it is, since the vertical arrows are isos by definition of skeleta.
Form = n the complement of ∂∆[n]n in ∆[n]n is the singleton {1[n]} so that the complement of∐
NXn

∂∆[n]n in
∐
NXn

∆[n]n is isomorphic toNXn. On the other hand, SknXn = SknXn−1∪
NXn. Thus the above diagram is a pushout also at level n.

The above proposition tells that one can construct the skeleta of a simplicial set X by
induction, in a way very similar to that of CW complexes; that is, by attaching “cells” to the
nth skeleton in a suitable way in order to construct the (n+ 1)th skeleton.

To conclude this section, note that one can define for any category C the functor category
C∆op ; an object of C∆op is said a simplicial object in C. I stress the following

Example 2.2.7. Let Z : SSet → Ab be the functor taking a simplicial set X to the simplicial
abelian group ZX, where ZXn is the free abelian group on Xn. Then to ZX is associated a
chain complex

· · · d−→ ZX2
d−→ ZX1

d−→ ZX0

where

d =
i=n∑
i=0

(−1)idi

WhenX = SY for a topological space Y (as explained below), by applying homology we obtain
the homology groups of Y with coefficients in Z, H∗(Y ; Z).

2.3 Geometric Realization

Here we finally show how simplicial sets are related to topological spaces, in particular to
CW complexes.

Recall, for example from [Ma3], that

Definition 2.3.1. A CW complex is a space X constructed as the colimit of a sequence of
spaces X0 ⊂ X1 ⊂ X2 ⊂ · · · such that

X0 is a discrete set of points
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Xn+1 is obtained from Xn by attaching to it disks Dn+1 along attaching maps j : Sn → Xn.
That is, Xn+1 is the pushout

∐
j∈Jn+1

Sn
‘
j //

��

Xn

��∐
j∈Jn+1

Dn+1 // Xn+1

where Jn+1 is the discrete set of the attaching maps j.

The topology on the colimits appearing above is the compactly generated topology. A subset
of the CW complex X is closed if and only if it is closed in every Xn.
Note that in general Jn+1 is not a subset of Top(Sn, Xn): we can have more copies of the
same map j, i.e. more disks attached along the same boundary.

The topological definition 2.1.3 of ∆ gives us a functor | · | : ∆→ Top, sending [n] to the
affine n-simplex

∆n = {
n∑
i=0

tiei|ti ≥ 0, t0 + · · ·+ tn = 1} ⊂ Rn+1

and a map f : [m] → [n] to the linear map induced by ei 7→ ef(i), where the ei’s clearly are
the vectors of the standard basis of Rn+1.

By 1.4.4, we obtain an adjunction

| · | : SSet � Top : S (2.4)

The right adjoint S is the singular complex functor, which takes a topological space X to
its singular complex SXn = Top(∆n, X).

The functor | · | is the geometric realization functor, on which this section concentrates.
I will first prove that it takes simplicial sets to CW complexes and then prove the invaluable
fact that it preserves finite products.
Let me first show that the geometric realization |∂∆[n]| is the boundary of the affine n-simplex
∆n. By 1.4.5 we know that |∆[n]| = ∆n. Having a right adjoint | · | preserves colimits, in
particular the realization of 2.3 is the coequalizer in Top

∐
0≤i<j≤n∆n−2

|u| //

|v|
//
∐

0≤i≤n∆n−1 |p| // |∂∆[n]|

Now observe that |u|(|v|) embeds ∆n−2
i,j in ∆n−1

i (∆n−1
j ) as the face opposite to the (j−1)th(ith)

vertex. The coequalizer of |u| and |v| is then the quotient of
∐

0≤i≤n ∆n−1 obtained by gluing
along such faces, that is the boundary ∂∆n of the n-simplex.

It follows now that the geometric realization of a simplicial set is a CW complex. Consider
in fact a simplicial set as the colimit of its skeleta. Using 2.2.5 the realization |X| is the colimit
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of spaces Xn = |SknX| given as pushouts∐
NXn

∂∆n+1 //

��

Xn

��∐
NXn

∆n+1 // Xn+1

Since the pairs (Dn+1, Sn), (∆n+1, ∂∆n+1) are homeomorphic and X0 = |Sk0X| is discrete,
we have that |X| is a CW complex.
It is then reasonable to restrict the codomain of the realization functor to the category U of
compactly generated spaces, to wich CW-complexes belong. Recall that

Definition 2.3.2. A space X is said compactly generated if it is a weak Hausdorff k-space.
That is

i) g(K) is closed in X for every K g−→ X with K compact

ii) every subspace A ⊂ X such that f−1(A) is closed in K for any K f−→ X with K compact,
is closed in X.

The advantage of the category U of compactly generated spaces over Top is that U is
cartesian closed (i.e. the product functor has a right adjoint), but still it is equivalent to Top
at the homotopy level.
Once we restrict our attention to U , we have that geometric realization preserves finite prod-
ucts: this is the statement of theorem 2.3.5. The proof I give here follows both the one in [GZ]
and that given in [Ho], each one having its advantages over the other. We use the fact that | · |
preserves colimits, and that the product of representable simplicial sets can be expressed as
a coequalizer. Finally, one needs commutativity of the product with respect to colimits; this
doesn’t usually happen in Top, but it holds in U , hence the restriction to compactly generated
spaces.

The first step towards the proof of theorem 2.3.5 is to understand the product ∆[m]×∆[n]
of representables.

Lemma 2.3.3. The product ∆[m] ×∆[n] of the representable simplicial sets ∆[m],∆[n] can
be expressed as a coequalizer∐

∆[nc(i)∩c(j)] ⇒
∐

∆[nc(i)]→ ∆[m]×∆[n]

for certain indexing sets c(i).

Proof. Consider the presheaves ∆[m],∆[n]. A p-simplex x of ∆[m] × ∆[n] is an element of
∆([p], [m]) × ∆([p], [m]) ∼= Cat([p], [m]) × Cat([p], [n]) ∼= Cat([p], [m] × [n]). Then x can be
viewed as a chain of lenght p in the partially ordered set [m]× [n]; we know it is sufficient to
consider non-degenerate simplex.
The idea is that, as for CW complexes, the p-simplices of ∆[m]×∆[n] should come from pairs
of q-simplices and r-simplices such that q + r = p.
Also notice that any chain of lenght p in [m] × [n] can be expanded to a chain of lenght
m + n; that is any non degenerate p-simplex is a face of an (m+n)-simplex. As an example
let m = 3,n = 2
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• • • •

• • // • // •

OO

• // •

OO

• •
The picture above shows a 3-simplex, which should be thought as arising from the hor-

izontal 2-simplex of [3] and the vertical 1-simplex of [2] . The dotted lines show a possible
way of extending it to a 5-simplex. To understand better what goes on below, consider again
the rectangle [3] × [2]. Now, labelling the lattice [m] × [n] we have that a maximal chain is
determined by the labels at the end of its horizontal segments . Then, maximal chains are in
1-1 correspondence with the subsets of {1, . . . ,m+ n} of cardinality m, for a total of

(
m+n
m

)
.

Finally, denote by c(i), 0 ≤ i ≤
(
m+n
m

)
the maximal chains in [m]× [n]; for a chain c let nc be

the number of edges of c. Consider the diagram∐
0≤i<j≤(m+n

m )∆[nc(i)∩c(j)]
u //

v
//
∐

0≤i≤(m+n
m )∆[nc(i)]

p // ∆[m]×∆[n] (2.5)

here u and v are induced by the inclusions of c(i)∩c(j) in c(i) or c(j). LetX be a coequalizer of
u and v, then the (m+n)-simplices of X are given by the identities 1nc(i)

glued along the faces
u(1nc(i)∩c(j)

) and v(1nc(i)∩c(j)
); all the other identifications of cells are induced by these and the

other simplices of X are just obtained from them as faces and degeneracies. Comparing with
the discussion above, follows that ∆[m]×∆[n] is the coequalizer of u and v.

I guess it would be worth to have an example in mind.

Example 2.3.4. Take the case m = 2 and n = 1. Pictorially, ∆[2] and ∆[1] are the triangle
and the unit interval

2

0 //

??����
1

__????
1

0

OO

Intuitively, the product ∆[2]×∆[1] should look like

(2, 1)

(0, 1) //

;;wwwwwwww
(1, 1)

ccGGGGGGGG

(2, 0)

OO�
�
�
�
�
�
�
�
�
�

(0, 0)

;;w
w

w
w

??���������������������������

OO

//

II�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
(1, 0)

ccG
G

G
G

OO

UU*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

Going through the argument above, we have in the retangle [2]× [1] three maximal chains,
given by the paths {(0, 0)(0, 1)(1, 1)(2, 1)}, {(0, 0)(1, 0)(2, 0)(2, 1)} and {(0, 0)(1, 0)(1, 1)(2, 1)}
to which correspond three copies of ∆[3]
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(2, 1)

(0, 1) //

;;wwwwwwww
(1, 1)

ccGGGGGGGG

(0, 0)

OO

II�
�

�
�

�
�

�
�

�
�

�
�

�
�

>>}}}}}}}}}}}}}}}}}}}}}}}}}

(2, 1)

(2, 0)

OO�
�
�
�
�
�
�
�
�

(0, 0)

;;w
w

w
w

//

II���������������������������
(1, 0)

ccG
G

G
G

UU+++++++++++++++++++++++++++

(2, 1)

(1, 1)

ccGGGGGGGG

(0, 0)

>>}}}}}}}}}}}}}}}}}}}}}}}}}
//

II���������������������������
(1, 0)

OO

UU+
+

+
+

+
+

+
+

+
+

+
+

+
+

The intersection of the maximal chains give one 1-cell {(0, 0)(2, 1)} and 2-cells {(0, 0)(1, 0)(2, 1)}
and {(0, 0)(1, 1)(2, 1)} . Gluing along these cells we obtain us the prism representing ∆[2] ×
∆[1].

In order to see that geometric realization preserves products, let me define the n-simplex
∆n as the convex hull of the points (1, . . . , 1), (0, 1, . . . , 1), . . . , (0 . . . 0), that is the set of points
(u1, . . . , un) ∈ Rn such that 0 ≤ u1 ≤ . . . ≤ un ≤ 1. It is clear that ∆n is homeomorphic to
∆n defined before.
Recall that a maximal chain c(i) is a sequence i1 ≤ · · · ≤ im in {1, . . . ,m + n}; denote its
complement by j1 ≤ · · · ≤ jn. Define now the maps fi : ∆c(i) → ∆m×∆n by (u1, . . . , um+n) 7→
(ui1 , . . . , uim ;uj1 , . . . , ujn). We obtain a coequalizing diagram

∐
0≤i<j≤(m+n

m )∆nc(i)∩c(j)

|u| //

|v|
//
∐

0≤i≤(m+n
m )∆nc(i)

f // ∆m ×∆n

where f is induced by the maps fi. Then f is onto and the points identified by f correspond
to the images under |u| and |v| of the same point in ∆nc(i)∩c(j)

.
Finally, having restricted the codomain of | · | to U , since the product in U commutes with
colimits the following equalities hold

|X × Y | = |(colim ∆[m])× (colim ∆[n])| = | colim(∆[m]×∆[n])| = colim(|∆[m]×∆[n]|) =
= colim(|∆[m]| × |∆[n]|) = (colim |∆[m]|)× (colim |∆[n]|) = |X| × |Y |

and we conclude that

Theorem 2.3.5. The geometric realization functor | · | : SSet → U preserves finite products.

In particular | · | : SSet → U is a monoidal functor, where on U the symmetric monoidal
structure is given by the product, while the internal hom is given by the space U(X,Y ) with
the compact-open topology (cf. [ML] or [Ma3]).
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2.4 Classifying Spaces

We are now left to investigate the categorical definition 2.1.2 of the simplicial category ∆.
As usual, thanks to 1.4.4 and the inclusion ∆ ↪→ Cat we obtain a pair of adjoint functors

τ : SSet � Cat : N (2.6)

The functor N above is the nerve functor, taking a category C to the simplicial set NC,
whose n-simplices are chains of length n of composable arrows in C

NCn = {C0
f1−→ C1

f2−→ · · · fn−→ Cn}

The face and degeneracies operators are given, as one would expect, by composition of arrows
and by inserting identities.
The nerve functor is probably better known when associated to the geometric realization
functor of the previous section. By this I mean the composition | · | ◦ N : Cat → Top, the
classifying space functor, usually denoted by B, as studied by Segal in [Se1].
Then, for a category C, BC is a CW complex with vertices the objects of C, 1-cells the

morphisms, 2-cells the commutative triangles and so on...
As I shall recall later, the classifying space is an important tool in the theory of infinite loop
spaces and spectra ([Ad2],[Ma1],[Se2],[Th1],[Th2]).
Moreover, the classifying space is also fundamental in algebraic K-theory as spelled out in
[Qu2].

Of course, in this section I am far from investigating classifying spaces or any of the above
results. I only recall a simple result from [Qu2] that caught my eyes, on which I will comment
later.
Let C a small category and E a covering of its classifying space BC. Denoting by E(X) the
fiber of E over a vertex X, an arrow X

f−→ X ′ defines a path in BC and hence an isomorphism
E(X) → E(X ′). The assignment X 7→ E(X) clearly defines a functor E : C → Set which is
morphism-inverting. More in detail, one has

Proposition 2.4.1. The category of covering spaces of BC is canonically equivalent to the
category of morphism-inverting functors F : C → Set .

In a very naive way, one could look at the CW complex BC as a localization of C; here the
arrows of C are brought to paths which can be walked both ways, giving so inverses.
To underline more the fascinating interplay between topology, homotopy, simplicial sets and
(higher) category theory, one could look at a CW complex as encoding the structure of a weak
n-category, n ≤ ∞, given the n-morphisms by the n-cells of the CW complex. The “invertibil-
ity” translates then into the concept of ∞-groupoid. The relation between ∞-groupoids and
homotopy types (hence CW complexes) was suggested by Grothendieck and studied by Kapra-
nov and Voevodsky in [KV], while a description of weak n-categories by means of simplicial
sets was given by Tamsamani in [Ta].



Chapter 3

Multicategory Theory

With this chapter we finally start dealing with the main subject of this work.
Multicategories are nothing mysterious; in the same way as we have been taught about maps
of one or more variables, it is natural to think of “categories” where arrows have more than
one input. The idea is to redefine a category so to get maps from a (finite) string of objects
(X1, . . . , Xn) to an output object X; of course one needs a few more axioms than just “n-
arity”, as we shall see in the following.
Notice that the output consists of only one object. One could obviously think of arrows with
more outputs, i.e. of polycategories or PROPs, but this will not bother us here.

3.1 Trees

In this preliminary section I shall give an overview of the basic concepts about trees. Trees
provide in fact a very nice language for describing multicategories, and will be the main tool
in the theory of dendroidal sets.
Trees will be defined as certain kind of graphs; I immediately point out the fact that the
definitions of graphs and trees below slightly differs from the usual one (see for example [Di]).
In the present setting a vertex of a tree should represent a multiarrow in a multicategory;
to emphasize this, a graph will be defined starting from the set E of edges (which represent
objects), and the set V of vertices will appear as a subset of the powerset of E. In particular
in our trees an edge often happens to be incident to only one vertex. The latter fact is in
contrast with the usual definition of trees and graphs, where the set E of edges is a subset of
the set V 2 of pairs of vertices, so that an edge e = (v1, v2) necessarily belongs to two vertices.

Definition 3.1.1. A graph G is a pair (E, V ) consisting of a set E of edges and a set V ⊆ P (E)
of vertices, such that an edge e ∈ E belongs to at most two vertices.
Edges belonging to two vertices are called inner, while those belonging to one vertex are called
outer. Two edges e1, e2 belonging to the same vertex v are said linked by v.

Definition 3.1.2. Given edges e1 and en in a graph G, a path from e1 to en is a sequence
(e1, v1, e2, . . . , vn−1, en) of edges ei and vertices vj , such that ei, ei+1 ∈ vi and vi 6= vj for i 6= j.
A path with at least three edges such that e1 = en is called a cycle. A graph G in which for
any two edges e, e′ there is a path from e to e′ is called connected.
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Example 3.1.3. Let E = {1, 2, 3, 4, 5} and V = {v1, v2, v3, v4} where v1 = {1}, v2 =
{1, 2, 3}, v3 = {3, 4}, v4 = {2, 4, 5}. The corresponding graph is

•
2

v4

~~~~~~~
4

@@@@@@@
5

•
v1

1 •
v2 3 v3

•

with a cycle (2, v2, 3, v3, 4, v4, 2).

Definition 3.1.4. A tree is a connected graph with no cycles and a chosen outer edge called
the root, such that each vertex v is a non-empty finite set. The outer edges other than the
root are called leaves.

The choice of a root defines a direction on the tree and hence for each vertex v a set in(v)
of incoming edges (inputs) and an outgoing edge out(v), the output. Trees will be drawn with
the root at the bottom, directed towards the root. For example in the tree

d
v

???????

e||||||||

w•

b
u

@@@@@@@ •

c
~~~~~~~

•
a

the vertex v has inputs the edges d, e and output b, while w has output c and no inputs, and
a is the root.
A tree T is then determined by the triple (E(T ), V (T ), out(T )), where out(T ) denotes the
root of T , while the leaves are denoted by in(T ).
An important operation on trees is the grafting

Definition 3.1.5. Let T and S be trees such that E(S) ∩ E(T ) = {r} where r is the root
of S and a leaf of T . The grafting T ◦ S of S on T along r is the tree (E(S) ∪ E(T ), V (S) ∪
V (T ), out(T )).

In particular, suppose the vertex v containing the root r of a tree T has inputs e1, . . . , en;
denoting by Tei the subtree of T having ei as root and by Tr the tree consisting only of the
vertex v one can decompose T as the grafting

T = Tr ◦ (Te1 , . . . , Ten)

that is the iterated grafting of Tei along the leaf ei of the tree Tr ◦ (Te1 ◦ · · · ◦ Tei−1). This is
known as the fundamental decomposition of trees and follows by definition of grafting and the
fact that E(Tei) ∩ E(Tej ) = ∅ if i 6= j while E(Tei) ∩ E(Tr) = ei.

A kind of tree that will occur quite often is the following

Definition 3.1.6. A planar tree T , is a tree T together with a linear ordering of in(v) for
each vertex v.
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In the case of planar trees, in particular, it is possible to define an order on the leaves and
hence to graft planar trees along the i-th leaf.
Given planar trees T and S, the grafting T ◦i S of S along the i-th leaf of T , is defined by
renaming the edges of S so that its root coincides with the i-th leaf of T and then apply the
usual grafting.

3.2 Planar Multicategories

In this section I will give the definition of planar, or non-symmetric, multicategories and
functors between them. Some examples will also be given, though the main ones will appear
later when talking of symmetric multicategories.

Definition 3.2.1. A planar multicategory P consists of

(i) a class of objects P0.

(ii) for each n ∈ N, n ≥ 0 and objects p1, . . . , pn, p a set P(p1, . . . , pn; p), the operations
(or arrows). It is assumed that if P(p1, . . . , pn; p0) ∩ P(q1, . . . , qm; q0) 6= ∅, then n = m
and pi = qi∀i = 0, . . . n. Notice that also are allowed operations of arity 0, whose set is
denoted by P(; p).

(iii) for each object p there is given an operation 1p ∈ P(p; p), the identity on p.

(iv ) given p1, . . . , pn, p and for each 1 ≤ i ≤ n a sequence pi1, . . . , pimi
, there is given a

composition map

P(p1 . . . pn; p)× P(p1
1, . . . , p

1
m1

; p1)× · · · × P(pn1 , . . . , p
n
mn

; pn)

µ

��
P(p1

1, . . . , p
1
m1
, . . . , pn1 , . . . , p

n
mn

; p)

taking (ψ,ψ1, . . . ψn) to ψ ◦ (ψ1, . . . ψn) or ψ(ψ1, . . . ψn)

Composition and identities are required to satisfy the obvious axioms

1. Identity : each time the composition makes sense, one has that

1p(ψ) = ψ φ(1p1 , . . . , 1pn) = φ

2. Associativity : given ψ ∈ P(p1 . . . pn; p), arrows ψi ∈ P(pi1, . . . , p
i
mi

; pi) for 1 ≤ i ≤ n and
arrows ψiji for 1 ≤ i ≤ n and 1 ≤ ji ≤ mi with output piji , the following equality holds

ψ(ψ1(ψ1
1, . . . , ψ

1
m1

), . . . , ψn(ψn1 , . . . , ψ
n
mn

)) = (ψ(ψ1, . . . , ψn))(ψ1
1, . . . , ψ

n
mn

)

There is another way of defining composition in multicategories, by means of the ◦i-
composition. The idea is that of composing operations step by step at each instance i.
More in detail, let φ ∈ P(p1, . . . , pi, . . . , pn; p) and ψ ∈ P(q1, . . . , qm; pi); define the ◦i-
composition of φ and ψ as

φ ◦i ψ = φ ◦ (id, . . . , id, ψ, id, . . . , id) ∈ P(p1, . . . , pi−1, q1, . . . , qm, pi+1, . . . , pn; p)
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It is clear that by iterated use of the ◦i one recovers the previous notion of composition, and
the order in which the operations are composed does not affect the final result.

The above definitions are better understood if using labelled planar trees. Given a planar
multicategory P one can create a labelled planar tree T by labeling its edges with the objects of
P and its vertices with the operations of P. That is, given an operation ψ ∈ P(p1 . . . pn; p) one
constructs a node with vertex ψ, input edges in(ψ) = (p1 . . . pn) and output edge out(ψ) = p.
For example, the composition map µ can be pictured as taking the tree

p11
ψ1

??????? ···

p1m1�������

pn
1

??????? ···

pn
mn

ψn

�������

•

p1

ψ

NNNNNNNNNNNNN ··· •

pn
ppppppppppppp

•
p

to the corolla

p11 TTTTTTTTTTTTTTTTTT ···
p1m1

NNNNNNNNNNNNN ···
pn
1

ppppppppppppp ···

pn
mnjjjjjjjjjjjjjjjjjj

•
p

while the identity arrow at an object p has the form

p

In particular, an operation of arity 0 in P(; p) is depicted as

•
p

0-ary operations should be thought of as constants as is probably made better clear by the
following example

Example 3.2.2. Let M be the planar multicategory with only one object X and only one
operation µn for each arity n.
M encodes the structure of a monoid X with neutral element given by the 0-ary operation µ0

and product by the maps µn≥2. The fact that µ0 gives us the identity element simply comes
by the composition µ2(1, µ0) = µ2(µ0, 1) = 1X ∈ M(X,X) = {µ1 = 1X}. Associativity of
the product is imposed by the fact that eachM(X, . . . ,X;X) consists of only one element.
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Example 3.2.2 introduced a particular kind of (planar) multicategories, the planar operads,
important enough to have their own name. In our settings, operads are nothing but multi-
categories with one object. The best known definition sounds a bit different, though clearly
equivalent

Definition 3.2.3. A planar operad P is a collection of sets P(n), n ≥ 0 together with a
distinguished element id ∈ P(1) and maps

P(n)× P(k1)× · · · × P(kn)
µ−→ P(k1 + . . .+ kn)

such that for maps ψ ∈ P(n), ψi ∈ P(ki) 1 ≤ i ≤ n, ψiji ∈ P(kji) 1 ≤ ji ≤ ki

µ(ψ, µ(ψ1, ψ
1
1, . . . , ψ

1
k1

), . . . , µ(ψn, ψn1 , . . . , ψ
n
kn

))

µ(µ(ψ,ψ1, . . . , ψn), ψ1
1, . . . , ψ

1
k1
, . . . , ψn1 , . . . ψ

n
kn

)

and
µ(ψ, id, . . . , id) = ψ = µ(id, ψ)

It is desirable that multicategories (and operads) form a category. To this aim, let’s first
define the obvious notion of functor between multicategories.

Definition 3.2.4. Let P and Q be planar multicategories. A functor F : P → Q between
them consists of

(i) a function F : P0 → Q0 taking an object p of P to Fp

(ii) a map F : P(p1, . . . , pn; p) → Q(Fp1, . . . , Fpn;Fp) for each sequence (p1, . . . , pn, p) of
objects of P, such that F (ψ(ψ1, . . . ψn)) = Fψ(Fψ1, . . . Fψn), and for every object p of
P F (idp) = idFp

Denote now by Multicatπ the category of planar multicategories and by Operadπ its full
subcategory with objects the planar operads. It is of course possible to define natural trans-
formations between functors of multicategories.

Definition 3.2.5. Let F,G : P → Q be functors between planar multicategories. A natural
tranformation α : F ⇒ G is a collection (αp)p∈P of unary operations αp ∈ Q(Fp;Gp) such
that for any operation ψ ∈ P(p1, . . . , pn; p) in P the following equality holds

Gψ(αp1 , . . . , αpn) = αp(Fψ)

When planar multicategories are replaced by symmetric ones, we will see that it is possible
to define natural transformations with more inputs, so that the functors from P to Q form
actually a symmetric multicategory and not merely a category.

There is an obvious adjunction

j! : Cat � Multicatπ : j∗

sending a multicategory P to its underlying category consisting of the unary operations, and
a category C to the planar multicategory with only unary operations, so that Cat is embedded
into Multicatπ.
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A much more interesting adjunction is that between monoidal categories and planar multicat-
egories.
Given a strict monoidal categoryM, this can be regarded as a planar multicategory M with
set of arrows M (p1, . . . , pn; p) =M(p1 ⊗ · · · ⊗ pn, p). On the other hand, given a planar mul-
ticategory M , one can construct a monoidal categoryM with set of objects the free monoid
on M0 and arrowsM(p1⊗ · · ·⊗ pn, p) = M (p1, . . . , pn; p), where the tensor is clearly given by
concatenation of words. We obtain an adjunction

F : Multicatπ � MonCat : U

The above adjunction shows one of the possible ways of linking monoidal categories and
multicategories. Another one was implicit in 3.2.2; the idea is that monoidal categories give
models for the structures described by multicategories. More precisely

Definition 3.2.6. Let P a multicategory and E a monoidal category.
An algebra for P in E is a functor P → E , where E is viewed as a multicategory.

For example, taking E = Set and P to be the monoid multicategoryM of 3.2.2, an algebra
for it is exactly a set with a monoid structure.

3.3 Symmetric multicategories

In this and the next section I review definitions and some properties of symmetric multi-
categories and symmetric operads, which are the target of Dendroidal Sets, the main subject of
this work. As for the previous section, in contrast with [MW1], I prefer to keep the distinction
between operads and multicategories.

Definition 3.3.1. A (symmetric) multicategory P is a planar multicategory together with a
right action of the symmetric groups Σn on each set P(p1, . . . , pn; p).
This means that

for a permutation σ ∈ Σn and an operation ψ ∈ P(p1, . . . , pn; p) there is a function σ∗ :
P(p1, . . . , pn; p)→ P(pσ1, . . . , pσn; p)

(στ)∗ = τ∗σ∗ (σ, τ ∈ Σn) and id∗ = id

The action of the symmetric groups is compatible with the composition:
given operations ψ0, ψ1, . . . , ψn (with ψ0 of arity n, ψi of arity ki) such that the composition
ψ0(ψ1, . . . , ψn) is defined and permutations σ0, . . . , σn (σ0 ∈ Σn, σi ∈ Σki

)

σ∗0(ψ0)(σ∗1(ψ1), . . . , σ∗n(ψn) = (σ0(σ1, . . . , σn))∗(ψ0(ψ1, . . . , ψn))

where σ = σ0(σ1, . . . , σn) ∈ Σk1+...kn is the permutation product obtained by considering
{1, . . . , k1 + . . .+kn} as divided into n intervals of lenght ki, permuting the elements of the ith

interval according to σi and the intervals according to σ0. In formulas, noting that an element
of {1, . . . , k1 + . . . kn} has the form k1 + . . . ki−1 + j (1 ≤ i ≤ n,1 ≤ j ≤ ki) and letting k0 = 0

σ(k1 + . . . ki−1 + j) = kσ−1
0 (1) + . . . kσ−1

0 (σ0(i))−1) + σi(j)

As one would expect, the notion of functor and natural transformation extend to symmetric
multicategories
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Definition 3.3.2. Let P and Q be symmetric multicategories. A functor of symmetric
multicategories F : P → Q consists of

(i) a function F : P0 → Q0 taking an object p of P to Fp

(ii) a function F : P(p1, . . . , pn; p)→ Q(Fp1, . . . , Fpn;Fp) for each sequence (p1, . . . , pn, p)
of objects of P, such that

F (ψ(ψ1, . . . ψn)) = Fψ(Fψ1, . . . Fψn)

whenever the composition ψ(ψ1, . . . ψn)) makes sense. Moreover for every object p of P
F (idp) = idFp and

F (σ∗(ψ)) = σ∗(F (ψ))

for any n-ary operation ψ and σ ∈ Σn

Definition 3.3.3. Let Fi : P → Q, 1 ≤ i ≤ n and F : P → Q be functors between symmetric
multicategories. A natural tranformation α from (F1, . . . , Fn) to F is a collection (αp)p∈P
with αp ∈ Q(F1p, . . . , Fnp;Fp) such that for any operation ψ ∈ P(p1, . . . , pm; p) we have that

σ∗m,nFψ(αp1 , . . . , αpm) = αp(F1ψ, . . . , Fnψ)

where σm,n is the permutation equating the inputs of the composite operation Fψ(αp1 , . . . , αpm)
to those of αp(F1ψ, . . . , Fnψ).

As anticipated in the previous section, the set of functors Func(P,Q) should form a sym-
metric multicategory. Let α : (F1, . . . , Fn) ⇒ F and βi : (F i1, . . . , F

i
ki

) ⇒ Fi, 1 ≤ i ≤ n be
natural transformations. Define the composite α(β1, . . . , βn) to be the natural transformation
with components

(α(β1, . . . , βn))p = αp(β1
p , . . . , β

n
p )

To see that naturality holds, notice that for an operation ψ ∈ P(p1, . . . , pm; p)

(αp(β1
p , . . . , β

n
p ))(F 1

1ψ, . . . , F
1
k1
ψ, . . . , Fn1 ψ, . . . , F

n
kn
ψ)

αp(β1
p(F 1

1ψ, . . . , F
1
k1
ψ), . . . , βnp (Fn1 ψ, . . . , F

n
kn
ψ))

αp(σ∗1(F1ψ(β1
p1 , . . . , β

1
pm

)), . . . , σ∗n(Fnψ(βnp1 , . . . , β
n
pm

)))

σ∗(αp(F1ψ(β1
p1 , . . . , β

1
pm

), . . . , Fnψ(βnp1 , . . . , β
n
pm

)))

σ∗(αp(F1ψ, . . . , Fnψ)(β1
p1 , . . . , β

1
pm
, . . . , βnp1 , . . . , β

n
pm

))

σ∗(τ∗α(Fψ(αp1 , . . . , αpm))(β1
p1 , . . . , β

1
pm
, . . . , βnp1 , . . . , β

n
pm

))

σ∗τ∗(Fψ(αp1 , . . . , αpm)(β1
p1 , . . . , β

n
p1 , . . . , β

1
pm
, . . . , βnpm

))

Here the permutations involved in the equations are those coming from the definitions of natu-
ral tranformation and composition in symmetric multicategories: σ and τ are the permutation
products id(σ1, . . . , σn) and τα(id, . . . , id).
The fact that composition of natural transformation is associative comes from the associativ-
ity in multicategories. Clearly the unit is given by the natural transformation which is the
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identity at every component p.
It follows, as claimed, that the set Func(P,Q) is a symmetric multicategory.

One denotes by Multicat the category whose objects are the symmetric multicategories
and arrows the functors between them. Thanks to the last arguments one can extend the
1-category Multicat to a strict 2-category with the peculiarity that 2-morphisms again form a
multicategory; in some sense one has a “2-multicategory”.
As for the planar case one denotes by Operad the full subcategory of Multicat consisting
of (symmetric) operads, i.e. multicategories with only one object. Again, one could define
operads separately without mentioning multicategories; the definition is just the same as for
the planar case, with the difference that one requires an action by the symmetric groups. More
in detail one has:

Definition 3.3.4. A (symmetric) operad P is a planar operad P together with an action
of the symmetric group Σk on P(k) compatible with composition, in the sense that for ψ ∈
P(k), σ ∈ Σk and ψi ∈ P(ni), σi ∈ Σni holds

µ(σ∗ψ, σ∗1ψ1 . . . , σ
∗
kψk) = (σ(σ1, . . . , σk))∗µ(ψ,ψ1, . . . , ψk)

where σ(σ1, . . . , σk) ∈ Σn1+...+nk
is the product defined in 3.3.1.

We have seen in the previous section that there is an adjunction between Cat and Multicatπ.
Denoting by Multicat the category of symmetric multicategories and functors, we obtain a simi-
lar adjunction. To complete the triangle, I shall now describe the functor Symm : Multicatπ →
Multicat , the symmetrization functor.
Let P a planar multicategory. Symm(P) is the symmetric multicategory with set of objects
that of P and for objects p1 . . . , pn, p

Symm(P)(p1 . . . , pn; p) =
∐
σ∈Σn

Pσ(p1 . . . , pn; p)

where
Pσ(p1 . . . , pn; p) = {σ} × P(pσ−1(1) . . . , pσ−1(n); p)

The right action by Σn is given as follows:
for (σ, ψ) ∈ {σ} × P(pσ−1(1) . . . , pσ−1(n); p) and τ ∈ Σn

τ∗(σ, ψ) = (στ, ψ) ∈ Pστ (pτ(1) . . . , pτ(n); p) = {στ} × P(pσ−1(1) . . . , pσ−1(n); p)

Composition in induced by that in P:
suppose given operations ψ0 ∈ Symm(P)(p1 . . . , pn; p) and ψi ∈ Symm(P)(pi1 . . . , p

i
ki

; pi),
i = 1 . . . n, represented by pairs (σ0, ψ0), ψ0 ∈ P(pσ−1(1) . . . , pσ−1(n); p) and (σi, ψi), ψi ∈
P(pσ−1

i (1) . . . , pσ−1
i (ki)

; pi).
Looking at the definition of the product σ = σ0(σ1, . . . , σn), we have that the composition
ψ = ψ0(ψσ−1

0 (1), . . . , ψσ−1
0 (n)) in P gives the desired pair (σ, ψ) ∈ Symm(P)(p1

1, . . . , p
n
kn

; p).
It follows that the functor Symm is left adjoint to the forgetful functor from symmetric to
planar multicategories.
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We obtain finally the diagram mentioned above

Cat

j!yyssssssssss

j! %%JJJJJJJJJJ

Multicatπ

j∗
99ssssssssss Symm // Multicat
U

oo

j∗
eeJJJJJJJJJJ

in which both the inner and outer triangle commute.

Probably the reader would like now to touchons between planar and symmetric multicat-
egories.

Example 3.3.5. Let A∞ denote the symmetric operad given by A∞(n) = Σn and let the
symmetric groups Σn act freely (by multiplication). The resulting operad is nothing but
Symm(M), where M is the operad defined in 3.2.2, and describes monoids; the free action
of the symmetric groups just records all the possible ways one could multiply n elements.
Let now E∞ denote the symmetric multicategory with only one object X and one operation
for each E∞(n), but where the action of the symmetric groups Σn is trivial. This means that
multiplication of n elements does not depend on the order, in other words one has commutative
monoids.
Notice in particular that it would not have been possible to define “commutative structures”
in a planar setting.

Note that any symmetric monoidal categoryM has an underlying symmetric multicategory
M̃. M̃ is just the planar multicategory underlyingM, with action of the symmetric groups
given by applying the twist isomorphism τ of definition 1.5.4.
We then have the symmetric analog of 3.2.6

Definition 3.3.6. Let P a symmetric multicategory andM a symmetric monoidal category.
An algebra for P inM is a functor P →M, whereM is viewed as a symmetric multicategory.

For example, an algebra in Set for the above operad E∞ is clearly a commutative monoid.

3.4 (co)completeness of Multicat

As the title suggests, in this section it will be shown that the category Multicat of symmet-
ric multicategories is both complete and cocomplete. In order to do that, we first outline how
to construct free multicategories in a way that resembles the construction of categories out of
directed graphs. Such construction will be crucial also in the next section, when constructing
a tensor product on Multicat .
Let me first give a definition, then it will be quite obvious how to proceed.

Definition 3.4.1. Given a set A, a collection C on A is a family of sets C(a1, . . . , an; a0), for
ai ∈ A and n ≥ 0 a natural number. Given collections (A,C), (A′, C ′) an arrow f between
them consists of a family of functions

C(a1, . . . , an; a0)
f−→ C(f(a1), . . . , f(an); f(a0))

Denote by Col the category of collections and arrows between them.
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Clearly any (planar) multicategory has an underlying collection; this defines a forgetful
functor U : Multicatπ → Col . Its left adjoint Fπ will be then the free planar multicategory
functor which I will now describe.
Let (A,C) a collection. The easiest way of defining the free multicategory FπC is by using
trees. The set of objects of FπC is clearly A.
Let T be a planar tree; label its edges by elements of A, and label any vertex v of T with
inputs in(v) = (a1, . . . , an) and output out(v) = (a) with an element cv of C(a1, . . . , an; a).
Define LT to be the set of all such labelled planar trees; for T ∈ LT denote by in(T ) the
(labelled) leaves of T and by out(T ) its (labelled) root. It is clear that these trees should be
the composition schemes in our free multicategory P = FπC. The operations of FπC are in
fact given by

FπC(a1, . . . , an; a) = {T ∈ LT |in(T ) = (a1, . . . , an), out(T ) = (a)}

Composition in FπC is clearly given by grafting trees, which corresponds to the circle-i com-
position.
As one would expect, the free symmetric multicategory is obtained from a collection (A,C)
by applying first Fπ and then Symm.
We are able now to construct more "sophisticated" (planar) multicategories. Regard the oper-
ations obtained from a collection as generators. For a collection C a relation in the planar mul-
ticategory FπC is a family of sets R = {Ra1,...,an,a0} of relations on the sets FπC(a1, . . . , an; a0).
Such relation is called normal if each Ra1,...,an,a0 is an equivalence relation and it is compatible
with composition, in the sense that

φ0 ◦ (φ1, . . . , φn) ∼ φ′0 ◦ (φ′1, . . . , φ
′
n)

whenever φi ∼ φ′i.
Given any relation R, one can of course construct a normal relation R′, the normal relation
generated by R, as the intersection of all the normal relations containingR. Hence the following

Definition 3.4.2. Let C a collection on a set A and R a relation in the planar multicategory
FπC; denote by R′ the normal relation generated by R. The planar multicategory (FπC/R′)
with objects A and operations (FπC/R′)(a1, . . . , an; a) = FπC(a1, . . . , an; a)/ ∼R′ , is called
the planar multicategory generated by the generators C and the relations R.

In order to obtain a similar construction in the symmetric case, we must require an addi-
tional property. One says that a relation R in the free symmetric multicategory Symm(FπC)
is a normal relation if it is normal in the planar sense and it respects the action of the Σn’s;
i.e. for φ ∼ φ′, one has

σ∗φ = σ∗φ′

Defining again the sets of operations as quotients, we have

Definition 3.4.3. Let C a collection on a set A and R a relation in the symmetric multi-
category Symm(FπC); denote by R′ the normal relation generated by R. The multicategory
Symm(FπC)/R′ is called the symmetric multicategory generated by the generators C and the
relations R.

We are now able to prove that Multicat is both complete and cocomplete. The idea is
to construct limits in Multicat by limits in Set for the objects and sets of operations of the
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multicategories involved. We know also that (co)completeness is equivalent to the existence
of (co)equalizers and (co)products, and this will be the way we will prove the following two
theorems.

Theorem 3.4.4. The category Multicat is complete.

Proof. Suppose we have a diagram

P
f //

g
// Q

The equalizer of f and g is the multicategory R constructed as follows:

The set of objects of R is the equalizer in Set of ob(P)
f //

g
// ob(Q) .

For objects p0, . . . , pn, R(p1, . . . , pn; p0) is the equalizer

R(p1, . . . , pn; p0) e // P(p1, . . . , pn; p0)
f //

g
// Q(p′1, . . . , p

′
n; p′0)

where p′i = f(pi) = g(pi).

The sets of objects and operations of R are subsets of those of P, and the multicategory
structure is induced by that of P.
The product of a family {Pi} is computed in the obvious way, taking products of objects and
vectors of arrows.
Having products and equalizers, the theorem follows.

Theorem 3.4.5. The category Multicat is cocomplete.

Proof. Suppose we are given arrows in Multicat

P
f //

g
// Q

Consider the collection C underlying Q and create the free symmetric multicategory con-
structed out of the collection C with relations R those describing Q and the new relations

f(φ) = g(φ)

for an operation φ of P. Notice that this forces the identifications f(p) = g(p) at the level of
objects. The resulting multicategory Symm(FπC)/R is then the coequalizer of f and g.
For coproducts, just follow the same line. Given a collection {Pi} of multicategories one
takes the free symmetric multicategory on the collection given by the union of the collections
underlying the Pi’s and relations those generated by the union of the relations describing
them.
Again, the above construction ensures the cocompleteness of Multicat .



40 Multicategory Theory

3.5 Closed monoidal structure in Multicat

With this last section I show how the category Multicat admits a closed monoidal structure,
which extends that of Cat . Let me first define the tensor on Multicat ; concluding that it has
a right adjoint will be then quite easy.

Definition 3.5.1 (Boardman-Vogt tensor product). Let P and Q symmetric multicategories.
Define the Boardman-Vogt tensor product P ⊗bv Q to be the symmetric multicategory given
by the collection C and relations R described below. ob(P ⊗bv Q) = ob(P) × ob(Q); for
an operation φ ∈ P(p1, . . . , pn; p) and an object q ∈ Q there is a generator φ ⊗bv q ∈
C((p1, q), . . . (pn, q); (p, q)) and for ψ ∈ Q(q1, . . . , qn; q), p ∈ P there is a generator p ⊗bv ψ ∈
C((p, q1), . . . (p, qn); (p, q)). Relations are generated by the following

(i) (φ⊗bv q) ◦ ((φ1 ⊗bv q), . . . , (φn ⊗bv q)) = (φ ◦ (φ1, . . . , φn))⊗bv q

(ii) σ∗(φ)⊗bv q = σ∗(φ⊗bv q)

(iii) (p⊗bv ψ) ◦ ((p⊗bv ψ1), . . . , (p⊗bv ψn)) = p⊗bv (φ ◦ (ψ1, . . . , ψn))

(iv) p⊗bv σ∗(ψ) = σ∗(p⊗bv ψ)

(v) (φ⊗bv q) ◦ ((p1 ⊗bv ψ), . . . , (pn ⊗bv ψ)) = σ∗m,n((p⊗bv ψ) ◦ ((φ⊗bv q1), . . . , (φ⊗bv qm)))

The relations generated by (i),(ii) and those generated by (iii),(iv) naturally give functors

P Fq−→ P ⊗bv Q, p 7→ (p, q) and Q Fp−→ P ⊗bv Q. The permutation in (v) is the same we saw
in 3.3.3; relations of type (v) state that after reordering the inputs the following composition
schemes are equal

(p1,q1)

p1⊗bvψ

???????

(p1,qm)�������

(pn,q1) ???????

(pn,qm)

pn⊗bvψ
�������

•

(p1,q)

φ⊗bvq

NNNNNNNNNNNNN •

(pn,q)ppppppppppppp

•
(p,q)

(p1,q1)

φ⊗bvq1

???????

(pn,q1)�������

(p1,qm) ???????

(pn,qm)

φ⊗bvqm
�������

•

(p,q1)

p⊗bvψ

NNNNNNNNNNNNN •

(p,qm)
ppppppppppppp

•
(p,q)

Theorem 3.5.2. Multicat with the Boardman-Vogt tensor product is a closed symmetric
monoidal category.
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Proof. The above tensor makes Multicat into a symmetric monoidal category. The claim now
is that the internal hom is given by

Multicat(P,Q) = Func(P,Q)

In other words we need a natural isomorphism

Multicat(P ⊗bv Q,R) ∼= Multicat(P,Func(Q,R))

This goes just like the case of categories.
A functor H : P ⊗bv Q → R is taken to the functor

p 7−→ Hp = (Q Fp−→ P ⊗bv Q
H−→ R)

while an operation φ : (p1, . . . , pn)→ p of P is brought to the natural transformation

α : (Hp1 , . . . ,Hpn)→ Hp αq = H(φ⊗bv q)

The relation (v) in the previous definition and σ-invariance of H ensure that α is a natural
transformation.
Now suppose we have a functor G : P → Func(Q,R). Define H : P ⊗bv Q → R by

H(p, q) = G(p)(q)

for an object (p, q) ∈ P ⊗bv Q. For a generator p⊗bv ψ

H(p⊗bv ψ) = G(p)(ψ)

while for a generator φ⊗bv q take the component at q of the natural transformation G(p)(φ)

H(φ⊗bv q) = (G(p)(ψ))q

Relations (i)-(iv) in 3.5.1 follow by functoriality of G and Gp. Relation (v) is respected by
definition of natural transformation.
The two assignments just defined are then clearly inverses to each other, and the theorem
follows.
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Chapter 4

Dendroidal Sets

In this chapter I finally present the main subject of this thesis.
Dendroidal Sets have been recently introduced by Ieke Moerdijk and Ittay Weiss in [MW1]
and [MW2]. Not long later, in [CM], Denis-Charles Cisinski and Ieke Moerdijk proved that
the category of dendroidal sets admits a Quillen Model Structure, problem which was left
open.
We have seen how multicategories extend categories, passing from a “linear” to a “multilinear”
world. Following the same stream, dendroidal sets are an extension of simplicial sets. In
fact, simplicial sets do embed in the category of dendroidal sets, in a way that agrees with
the embedding of Cat into Multicat and the adjunction SSet � Cat . Moreover, the model
structure on dendroidal sets, as constructed in [CM], agrees with Joyal’s model structure on
SSet .
I can not cover here the whole theory of dendroidal sets; anyway the definitions and results in
the following sections should suffice to understand the main concepts about dendroidal sets
and to the purposes of the present work. I will present the basics of the theory, following
as close as possible the chapter on simplicial sets. As for simplicial sets, dendroidal sets
are presheaves on some category, the dendroidal category, which should expand the known
simplicial category, and will be the subject of the first section.

4.1 The dendroidal category Ω

Recall that the definition of the simplicial category ∆ made use of finite totally ordered
sets, or equivalently of categories with a finite set of objects of the form 0→ · · · → n .
Such ordered sets, in the linear world of categories, should catch, and depict, a possible
composition chain of morphism.
Now that we are dealing with multicategories, what we need is something that describes
arrows with any number of inputs and the ways one could compose them. In the previous
chapter trees made the job, and in fact one possible definition of the dendroidal category
is based on trees; in order to extend the algebraic definition of ∆ one needs some kind of
"ramified" orderings, which should resemble to the composition schemes given by trees. They
are described here below.
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4.1.1 Algebraic definition of Ω

For a set A, denote by A∗ the free monoid on A, i.e. the set of words on A with product
given by concatenation of words and neutral element given by the empty word

A∗ =
∞⋃
n=0

An

denote a word in A∗ by −→a and write a ∈ −→a to say that a is an entry of the word −→a . Moreover
the symmetric groups act from the right on A∗: if −→a = (a1, . . . , an) is a word of length n and
σ ∈ Σn, define σ∗(−→a ) = (aσ(1), . . . , aσ(n)). A broad relation is a pair (A,R) with R ⊂ A×A∗;
if the pair (a,−→a ) is in R one writes aR−→a .

Definition 4.1.1. A broad poset is a set A together with a broad relation (A,≤) satisfying
the following properties:

i) reflexivity : a ≤ (a) for all a ∈ A

ii) transitivity : if a ≤ (a1, . . . , an) and ai ≤
−→
bi for 1 ≤ i ≤ n, then a ≤

−→
b1 · . . . ·

−→
bn

iii) anti-symmetry : if a ≤
−→
b and b ≤ −→a with a ∈ −→a , b ∈

−→
b , then a = b

iv) permutability : if a ≤ −→a with −→a of lenght n and σ ∈ Σn, then a ≤ σ∗−→a

Condition iv) is clearly the analog of symmetries for multicategories; when dropped one
calls the above planar broad poset.
There is an obvious notion of map of broad posets, i.e. a map A

f−→ B such that f(a) ≤
(f(a1), . . . , f(an)) whenever a ≤ (a1, . . . , an). This makes broad posets into a category,
BrdPoset , of which Ω will be a full subcategory.

Definition 4.1.2. Let A a broad poset and a, b elements of A.
One says that a is dominated by b, a ≤d b if there is a word

−→
b such that b ∈

−→
b and a ≤

−→
b .

An element r ∈ A which is minimal in A under ≤d is called a root of A.

Note that, by anti-symmetry, if it exists, the root is unique. Moreover the above relation
makes A into a poset.
The broad relation ≤ also makes A∗ into a poset: given −→a = (a1, . . . , an) and

−→
b , define

−→a ≤
−→
b if there are

−→
b1 ,. . . ,

−→
bn such that ai ≤

−→
bi and

−→
b =

−→
b1 · . . . ·

−→
bn.

For a ∈ A define â = {−→a |a < −→a }.

Definition 4.1.3. Let A a broad poset and a ∈ A. Assume that â as a sub-poset of A∗ has a
minimal element unique up to symmetry. One denotes it by s(a) and calls it a representative
for the successor of a.
In the case when â is empty, one calls a a leaf.

Notice that in the above definition unicity is required, for in general there can be minimal
elements which are distinct even after permutations.

Definition 4.1.4. A broad poset (A,≤) is called finite if the set ≤ of relations is finite.
A is called minimal if whenever

a ≤ (a1, . . . , an)

ai 6= aj for i 6= j.
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Definition 4.1.5. Let A a broad poset. A is called dendroidally ordered if

i) A is finite

ii) A is minimal

iii) A has a root

iv) for every a ∈ A either a has a successor or a is a leaf.

Definition 4.1.6. The dendroidal category Ω is the full subcategory of BrdPoset consisting
of the dendroidally ordered sets and maps between them.

Regarding finite totally orered sets as dendroidally ordered ones the category ∆ then
embeds in Ω, making Ω as just defined the multicategorical extension of the simplicial category.

4.1.2 Operadic definition of Ω

As mentioned at the beginning of the chapter, trees provide a useful tool to describe
multicategories. It shouldn’t surprise then that the analog of the categorical definition of ∆
is based on some special kind of multicategories, those arising from trees.

Given a planar tree T , one can define a collection CT = (A,C) as follows: the set A is the
set E(T ) of edges of T , while C(e1, . . . , en; e0) consists of only one point if there is a vertex v
of T with in(v) = (e1, . . . , en) and output e0, and it is empty otherwise.

Definition 4.1.7. The planar multicategory generated by T , Ωπ(T ) is the free multicategory
FπCT on the collection CT .

Definition 4.1.8. Let T a non-planar tree. The multicategory Ω(T ) generated by T is

Ω(T ) = Symm(Ωπ(T ))

where T is a planar representative for T .

A different choice for T above simply amounts to a different choice for the generating
operation, which doesn’t affect the result after symmetrization.

Definition 4.1.9. The dendroidal category Ω is the full subcategory of Multicat spanned by
the multicategories of the form Ω(T ), fot T a non-planar tree.

Note that ∆ is embedded in Ω, by taking [n] to the linear tree Ln

0

•
1

•

•
n−1

•
n
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4.1.3 Equivalence of the definitions

Now that we have two definitions of Ω, of course one expects them to be equivalent. In
order to prove it we need to develop a little bit more the algebraic definition of the dendroidal
category. It should be already enough evident that the above described dendroidal orders are
the algebraic analog of trees; what is needed in order to prove the equivalence is an “algebraic”
notion of grafting. This will permit a decomposition of dendroidally ordered sets quite similar
to that of trees, and hence a proof by induction.

Definition 4.1.10. Grafting of dendroidally ordered sets
Let A and B dendroidally ordered sets such that the intersection A∩B = {y} is the root of B
and a leaf of A. The grafting A ◦B of B on A along y, is the dendroidally ordered set A ∪B
with broad relation given by x ≤ (x1, . . . , xn) if

i) x ≤ (x1, . . . , xn) holds in A

ii) x ≤ (x1, . . . , xn) holds in B

iii) x ∈ A and (x1, . . . , xn) = −→a1 ·
−→
b · −→a2 for −→a1,

−→a2 ∈ A∗,
−→
b ∈ B∗ with

x ≤ −→a1 · −→y · −→a2

in A, and
y ≤
−→
b

in B

As we did for trees, one can define an operation on dendroidally ordered sets by repeatedly
grafting, so that for dendroidally ordered sets Bi with root {yi},i = 1 . . . n and a tree A with
leaves {y1, . . . , yn} one defines a tree

A ◦ (B1, . . . , Bn)

Following the arguments and constructions for trees, one obtains a decomposition for den-
droidally ordered sets.
Let A a dendroidally ordered set; define for a ∈ A

Aa = {a′ ∈ A|a ≤d a′}

and, if the root r of A has successor s(r) = (x1, . . . , xn), let

Ar = {r, x1, . . . , xn}

Then A clearly induces a dendroidal order on the above sets. It is now possible to state the
following

Proposition 4.1.11 (Fundamental decomposition of dendroidally ordered sets). Let A a
dendroidally ordered set with root r and s(r) = (a1, . . . , an). Then A decomposes as

A = Ar ◦ (Aa1 , . . . , Aan)
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Proof. One must first show that the grafting in the statement is well defined, i.e. Ai ∩ Ar =
{ai}. For suppose there is another a 6= ai in such intersection; then a appears in some
word −→a with ai ≤ −→a and a = aj ∈ s(r) for j 6= i. Using transitivity of A we obtain
r ≤ (a1, . . . ai−1,

−→a , ai+1, . . . , an) with aj appearing twice, a contradiction.
Secondly, one must have that, as sets, A = Ar ∪A1 ∪ · · · ∪An. One inclusion is obvious. Pick
a ∈ A; then r ≤d a, so that a ∈ −→a for a word r ≤ −→a . If a 6= r or a /∈ s(r), then we must have
−→a ∈ r̂ and s(r) < −→a , so that −→a has the form −→a = −→a1 · . . .−→an with ai ≤ −→ai ; thus a belongs to
some Ai.
Finally, by definition of grafting follows that the dendroidal orders on A and Ar◦(Aa1 , . . . , Aan)
are the same.

We now proceed to show that the two definitions of Ω are equivalent, in the sense that
the two categories defined in 4.1.6 and 4.1.9 are isomorphic. The idea is to create first a
correspondence between dendroidally ordered sets and trees; this in turn will provide the
required isomorphism.
Recall that by ηe one denotes the tree with only one edge e and no vertices

e

while an n-corolla Cn is the tree consisting of only one vertex with n inputs

a1 ??????? ...

an�������

•
a

Definition 4.1.12. Let T a finite planar tree. The dendroidally ordered set [T ] has as
underlying set the set of edges E(T ) of T and is defined by induction on the number k of
vertices as follows.
For k = 0, T = η and [T ] is just the dendroidally ordered set {e ≤ e}. For k = 1 T
is an n-corolla with root r and leaves {a1, . . . , an}; the corresponding dendroidally ordered
set is given by the relations a ≤ −→a where −→a is any possible permutation of (a1, . . . , an).
Let now T be a tree with more than 1 vertex; decomposing it as Tr ◦ (Ta1 , . . . , Tan) define
[T ] = [Tr] ◦ ([Ta1 ], . . . , [Tan ]) using the grafting of dendroidally ordered sets.

The inverse construction, as one would expect, is made by induction on the broad relations.
More precisely, for a dendroidally ordered set A call a pair (a,−→a ) a link if a < −→a and there
is no

−→
b such that a <

−→
b < −→a ; two links (a,−→a ) and (a,−→a ′) are said equivalent if σ∗−→a ′ = −→a

for a permutation σ. Define the degree of a dendroidally ordered set A, |A|, to be the number
of equivalence classes of links in A.

Definition 4.1.13. Let A a dendroidally ordered set. Define a tree Tr(A) by induction on
the degree of A. If |A| = 0, then A = {a ≤ a} and Tr(A) = ηa; if |A| = 1, then Tr(A) is an
n-corolla. For |A| ≥ 1 define Tr(A) to be the grafting Tr(Ar) ◦ (Tr(Aa1), . . . , T r(Aan)).

Theorem 4.1.14. The above constructions, associating to a dendroidally ordered set A a tree
Tr(A) and to a tree T a dendroidally ordered set [T ], satisfy the following properties:
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i) [Tr(A)] = A

ii) Tr([T ]) = T

iii) Whenever one side of the equation [T ◦ S] = [T ] ◦ [S] is defined, so is the other; and in
that case the equality holds

iv) Whenever one side of the equation Tr(A ◦ B) = Tr(A) ◦ Tr(B) is defined, so is the
other; and in that case the equality holds

v) The two constructions [·] and Tr(·) are unique with respect to i)-iv)

Proof. The first point follows by induction on the degree of A and definition of the two
constructions. For |A| = 0, A = {a ≤ a} and [Tr(A)] = [ηa] = {a ≤ a} = A. If
|A| = 1, A = {a ≤ σ∗(a1, . . . , an)|σ ∈ Σn}, Tr(A) is the an n-corolla with root a and
leaves {a1, . . . , an}, so that [Tr(A)] consists of the relations a ≤ σ∗(a1, . . . , an) and the
identity holds. By induction if |A| > 1, [Tr(A)] = [Tr(Ar) ◦ (Tr(Aa1), . . . , T r(Aan))] =
[Tr(Ar)] ◦ ([Tr(Aa1)], . . . , [Tr(Aan)]) = Ar ◦ (Aa1 , . . . , Aan) = A. Point ii) is just the same.
Point iii) (and similarly point iv) again follows by induction and the equalities [T ◦ S] =
[(Tr◦(T1, . . . , Tn))◦(Sr◦(S1, . . . , Sm))] = [Tr◦(T1, . . . , (Tj ◦Sr◦(S1, . . . , Sm)), . . . , Tn)] = [Tr]◦
([T1], . . . , ([Tj ]◦[Sr]◦([S1], . . . , [Sm])), . . . , [Tn]) = [(Tr]◦([T1], . . . , [Tn]))◦([Sr]◦([S1], . . . , [Sm])) =
[T ] ◦ [S].
Suppose now that 〈·〉 and Tr′(·) satisfy i)− iv). One first shows that they agree on the unit
η and the n-corollas, then by iii) and iv) the constructions must concide. Suppose |〈η〉| > 0;
then 〈η〉 can be written as T ◦ S and η = Tr′(〈η〉) = Tr′(T ) ◦ Tr′(S) contradicting the fact
that η has no vertices. The same argument shows that 〈Cn〉 consists only of n leaves and the
root. It follows that 〈·〉 = [·]; similarly we obtain that Tr′(·) = Tr(·).

At this point the equivalence we want to prove should be obvious.

Theorem 4.1.15. The algebraic and operadic definition of Ω are equivalent.

Proof. Denote by ΩO the category Ω as defined in 4.1.9 and by ΩA the one defined in 4.1.6.
The multicategories Ω(T ) are by definition in bijection with the planar trees T ; such bijection
composes with the ones defined above, giving an isomorphism of categories ΩA

∼= ΩO.

Thanks to the above results, one can consider Ω as a category of trees, just like in ∆ one
often states results by means of easily visualized graphs.
For a tree T , the multicategory Ω(T ) will be often referred to just as T .

4.1.4 Faces and degeneracies

To end this section on the dendroidal category, I recall now how the arrows in Ω can
be characterized in a way similar to that of the simplicial category. Face and degeneracy
maps will be presented first following the operadic definition of Ω; the less intuitive algebraic
approach is then needed to prove the analog of proposition 2.1.5.
Recall that in ∆ a degeneracy map [n+ 1]→ [n] creates a chain of morphism of lenght n+ 1
in [n] by inserting an identity, while a face map [n− 1]→ [n] creates a chain of lenght n− 1
in [n] by composing arrows; exactly the same occurs here, in terms of ◦i composition.
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Definition 4.1.16. Let T a tree and v ∈ T a vertex of valence 1 with input in(v) = e and
output out(v) = e′. Denote by T/v the tree obtained from T by deleting the vertex v and
the edge e′. The arrow sv : Ω(T )→ Ω(T/v) between the corresponding multicategories in Ω,
sending the object e′ to e and the operation generated by v to 1e is called a degeneracy map.
In pictures this means

????? ...

�����
????? ...

�����

•
e
v

????
????? ...

����� •

e
???????????

????? ...

�����

•

e′
???? •

����
sv // •

����

• •

In the case of a linear tree Ln one precisely recovers the degeneracy maps of ∆.

For the face maps, it is useful to preliminary distinguish between inner and outer ones.
Recall that an edge is said to be inner if it is not a leaf nor the root, otherwise it is called
outer.

Definition 4.1.17. Let T a tree and v ∈ T a vertex with exactly one inner edge attached to
it. Create a new tree T/v by deleting from T the vertex v and all the outer edges attached to
it. The inclusion dv : Ω(T/v)→ Ω(T ) is called an outer face . For example

e

v
???????

f||||||||

b
r

========

c
d�������� •

b
r

@@@@@@@

c
d��������

•
a

dv // •
a

and

e

v
???????

f||||||||

e

v
========

f�������� •

b
r

@@@@@@@

c
d��������

•
b

dr // •
a

are outer faces.
For a tree T and an inner edge e, let T/e the tree obtained by contracting the edge e. If e
is the output of a vertex v and the i-th input of a vertex u, Ω(T/e) is obtained from T by
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composing u ◦i v and the inclusion de : Ω(T/e)→ Ω(T ) is called a inner face. For example

e

v
???????

f||||||||

e

u
MMMMMMMMMMMMM
f

========
c

��������

d
qqqqqqqqqqqqq •

b
r

@@@@@@@

c
d��������

•
a

db // •
a

is an inner face map with u = r ◦1 v.

Using the correspondence between trees and dendroidally ordered sets, it is quite easy now
to understand the algebraic definitions of face and degeneracy maps.
As for the trees, given a dendroidally ordered set A, an element is called outer if it is either
a leaf or the root, otherwise is called inner. Also, denote by A/B the dendroidally ordered
set with underlying set A \ B and order induced by A. If A has degree n, then for a cluster
C(that is a set of n outer elements in a link (a, (a1, . . . , an))) or an inner element a, the trees
A/C and A/a := A/{a} have degree n − 1: in fact in both cases one eliminates only one
equivalence class of links, without affecting the others. On the other hand, a dendroidally
ordered subset of A with degree n− 1 must be of the form A/C or A/a, for a cluster C or an
inner element a. It is also obvious that the construction Tr(·) brings inner elements to inner
edges and clusters to clusters.
It makes sense then giving the following definitions.

Definition 4.1.18. Let A a dendroidally ordered set of degree n. Any inclusion B → A of a
dendroidally ordered subset of degree n− 1 is called a face map .

Definition 4.1.19. Let A a dendroidally ordered set and v = (a1, a2) a unary link in A. The
map sv : A→ A/a1

sv(x) =
{

x x 6= a1

a2 x = a1

is called a degeneracy map .

Note that one can “graft” degeneracies and faces, to obtain again degeneracies and faces.
More generallly, suppose we are given maps of dendroidally ordered sets f : A → A′ and
g : B → B′ such that B can be grafted on A along a and B′ can be grafted on A′ along
f(a) = g(a). Then the map f ◦ g

f ◦ g(x) =
{
f(x) x ∈ A
g(x) x ∈ B

is a map of a dendroidally ordered sets.
In particular, when f is the identity and g a face (degeneracy, isomorphism), then f ◦ g is also
a face (degeneracy, isomorphism), denoted by A ◦ g.

It is possible now to see how maps in Ω factor as a composition of degeneracies and faces.
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Theorem 4.1.20. Any arrow f : A→ B in Ω decomposes uniquely as

A

δ
��

f // B

A′ π
// B′

φ

OO

where δ is a composition of degenracies, π an isomorphism and φ a composition of face maps.

Proof. The proof goes by induction on the degree n = |A| + |B|. For n = 0, |A| = |B| = 0
and A and B are isomorphic. For n = 1, either A = ηa and f is the inclusion of the edge a,
or A consists of the unary link a < b and f is the degeneracy which identifies a and b.
Assume the theorem is proved for any 1 ≤ n < m and |A|+ |B| = m. There are four distinct
cases.
i) f(rA) = b 6= rB (where clearly rA and rB are the roots of A and B). Then f restricts to a
map f̃ : A→ Bb. By induction, f̃ factors as

A

δ
��

f̃ // B

A′ π
// B′

φ

OO

On the other hand, the inclusion Bb ↪→ B can be factored as a sequence of faces, by repeatedly
eliminating links from the root up to b.
ii) f(rA) = rB and f(s(rA)) = s(rB). Let s(rA) = (a1, . . . , ak) and s(rB) = (b1, . . . , bk).
We then obtain maps fi : Aai → Bbi and fr : Ar → Br (where Ar = {rA, a1, . . . , ak}, Br =
{rB, b1, . . . , bk} with order induced by A and B) such that f is the grafting f = fr◦(f1, . . . , fk).
Each fi decomposes as

Ai

δi
��

fi // Bi

A′i πi

// B′i

φi

OO

By the argument above the graftings Ar ◦ (δ1, . . . , δk), Ar ◦ (π1, . . . , πk), Br ◦ (φ1, . . . , φk) give
the desired decomposition for f .
iii) f(s(rA)) 6= s(rB) and f(x) 6= rB) for any x ∈ A. Let s(rA) = (a1, . . . , ak) and bi = f(ai);
then any element y ∈ B with rB <d y <d bi is inner and does not belong to the image of f .
By repeatedly removing such elements y one obtains a dendroidally ordered subset B̂ of B
and a composition of inner face maps φ̂ : B̂ → B. Then clearly f factors as

A

f̂ ��???????
f // B

B̂

φ̂

OO
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Since |B̂| < |B| and f(s(rA)) 6= s(rB), by inductive hypothesis and ii) f̂ decomposes as

A

δ
��

f̂ // B

A′ π
// B′

φ

OO

Composing with φ̂ gives the decomposition for f .
iv) f(rA) = rB, f(s(rA)) 6= s(rB) and there is x ∈ A, x 6= rA such that f(x) = rB.
In this case s(rA) must be a single element a; for,if not, rA ≤ (x, a1, . . . , an) and rB ≤
(rB, f(a1), . . . , f(an)), a contradiction. Let s(rA) = a with link (rA, a); also, we must have
f(a) = rB. Let σ : A→ A′ the degeneracy collapsing a to rA, so that f factors as

A

f   @@@@@@@@
σ // A′

f ′

��
B

By induction, we obtain the desired decomposition of f .

4.2 The category dSet of Dendroidal Sets

In this session will be finally presented the category of dendroidal sets. Most results and
constructions extend those of simplicial sets, from which get the names.

Definition 4.2.1. The category dSet of dendroidal sets is the category SetΩop
of presheaves

on the dendroidal category Ω.

For a dendroidal set X one denotes by XT the value of X at Ω(T ); an element of XT is
then called a dendrex of shape T or a T-dendrex.

As for any presheaf category, a special role is played by the representable functors

Definition 4.2.2. For a tree T , the representable presheaf Ω(·, T ) : Ωop → Set is denoted by
Ω[T ] and called the standard T-dendrex.

We know that any dendroidal set X, being a presheaf, can be written as a colimit of
representables, while the T-dendrices of X correspond to natural transformations Ω[T ]⇒ X.
For a dendroidal set X, a dendroidal subset Y of X is a collection of subsets YT ⊂ XT such
that the dendroidal structure of X makes Y into a dendroidal set. On the other hand, given
a dendroidal set X and a collection Y of subsets YT ⊂ XT , the dendroidal set generated by Y
is the smallest dendroidal subset Y of X containing Y .
Recall from the previous section that there is an embedding i of the simplicial category ∆ into
Ω. This clearly defines, by restriction, a functor

i∗ : dSet → SSet

sending a dendroidal set X to its underlying simplicial set i∗(X)n = XLn . In turn the left
adjoint to i∗ is the functor i! sending a simplicial set X to the dendroidal set i!(X) defined by

i!(X)T =
{
Xn T = Ln
∅ otherwise
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Just like for simplicial sets, the representable presheaves Ω[T ] have two distinguished
dendroidal subsets, the boundary and horns.

Definition 4.2.3. Let T a tree and α : S → T a face map. The α-face, ∂αΩ[T ], is the
dendroidal subset of Ω[T ] given by the image of Ω[S] through the map Ω[α].

In other words ∂αΩ[T ] is a copy of Ω[S], viewed as a dendroidal subset of Ω[T ] thanks to
Ω[α], so that its dendrices of shape R are

∂αΩ[T ]R = {R x−→ S
α−→ T |x ∈ Ω[S]R}

When α is of the form de, i.e. obtained by contracting an edge e of T , the α-face of T is
denoted by ∂eΩ[T ].

Definition 4.2.4. Let T a tree. The boundary of Ω[T ], ∂Ω[T ], is the dendroidal subset of
Ω[T ] generated by the union of all its faces.

∂Ω[T ] =
⋃

α∈Φ(T )

∂αΩ[T ]

where Φ(T ) denotes the set of faces of T .

Definition 4.2.5. Let T a tree and α a face of T . The α-horn of T is the dendroidal subset
Λα[T ] of Ω[T ] given by the union of all the faces of T except α

Λα[T ] =
⋃

β 6=α∈Φ(T )

∂αΩ[T ]

As for the boundaries, an α-horn is called inner horn when α is an inner face and outer
otherwise; also, one denotes an α-horn by Λe[T ] when α corresponds to the contraction of an
edge e.

Recall that the arrows in the simplicial category(and hence in SSet) are characterized by
special identities, in particular we had for i < j that djdi = didj−1; an equality analogous to
the latter holds in the case of dendroidal sets.
If T0 → · · · → Tn is a sequence of n face maps, call their composition a subface of Tn of
codimension n; also, denote by Φn(T ) the set of subfaces of T of codimension n.
As for simplicial sets, given a map α : S → T and a dendrex x ∈ XT for a dendroidal set X,
one calls the S-dendrex α∗x = X(α)(x)

- a face of x if α is a face of T .

- a subface of x if α is a subface of T .

- a degeneracy of x if α is a composition of degeneracies. A generic dendrex y of X is
called degenerate if it is a degeneracy of some dendrex x.

Proposition 4.2.6. Let S i−→ T a subface of T of codimension 2. Then i decomposes in
exactly two ways as a composition of face maps.
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Proof. One can distinguish three ways in which S is viewed as a subtree of T . In one case, S
is obtained by contracting two inner edges e, e′ of T , in the second case one removes a cluster
C from T and again a cluster C ′ from the so obtained tree T ′, while the last case involves the
contraction of an edge and removing a cluster. In pictures, the first case is for example the
following

?????

�����
?????

�����

OOOOOOOOO

?????

�����

ooooooooo •

e′
????

����� •
e ????

�����

•
de′ // • de // •

e′
????

�����

•

while an example of the second case is given by

v
?????

�����

r
?????

�����

v′
?????

����� •
e

v′
????

�����

•
dv′ // •

r
????

�����
dv // •

r
????

�����

• •

The third case can be pictured as

v
?????

�����

v
?????

�����

?????

����� •
????

����� •
????

�����

• dv // • de // •
e ????

�����

•

The two possible decompositions for i, corresponding to the above cases are then given by
the following

T/e
de

��???

S

de′ ??���

de
��???
i // T

T/e′
de′

??���

T/Cv dv

��???

S

dv′ ??���

du
��???
i // T

T/e
de

??���

T/e
de

��???

S

dv ??���

de
��???
i // T

T/Cv
dv

??���

The above result simply asserts that, viewed as multicategories, a subtree S of degree n−2
of a tree T with |T | = n is the intersection of two, and only two, subtrees T1 and T2 of T of
degree n− 1.
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The construction of the boundary ∂Ω[T ] as the union of this faces implicitly keeps track of
such intersections, that is of the fact that two faces Ω[T1],Ω[T2] must agree on the common
subface Ω[S]. This is made precise by the following, which generalizes the formula 2.3

Lemma 4.2.7. Let T a tree. The boundary ∂Ω[T ] is the coequalizer∐
S→T∈Φ2(T )

Ω(S) ⇒
∐

R→T∈Φ1(T )

Ω(R)→ ∂Ω[T ]

where the two arrows are induced by the two factorizations S βi−→ Ti
αi−→ T of an arrow i : S →

T .

To conclude this section, I show how dendroidal sets can be presented by means of skeleta
in the same way as simplicial sets do (definition 2.2.5).
Recall that for a tree T , the degree of T is the number of vertices of T and is denoted by |T |;
similarly, for a dendrex x of shape T define the degree of x to be the degree of T .

Definition 4.2.8. LetX a dendroidal set. The n-skeleton ofX is the dendroidal set Skn(X) ⊆
X generated by the dendrices of X of degree ≤ n.

One has then a filtration for X, the skeletal filtration

Sk0(X) ⊆ Sk1(X) ⊆ · · · ⊆ Skn(X) ⊆ · · · ⊆ X =
∞⋃
n=0

Skn(X)

There are also commutative diagrams∐
(t,T )∂Ω[T ] //

��

Skn−1X

��∐
(t,T )Ω[T ] // SknX

where the pairs (t, T ) are representatives for the isomorphism classes of non degenerate T -
dendrices of degree n.

Unlike simplicial sets, the above diagram is not a pushout in general.

Definition 4.2.9. Let X a dendroidal set. The skeletal filtration of X is said normal if for
every n ≥ 0 the above square is a pushout. In that case, X is said normal.

4.3 Nerve of a Multicategory

As for the inclusion ∆ ↪→ Cat , the operadic definition 4.1.9 of the dendroidal category
implies that Ω embeds in Multicat ; the usual argument, using theorem 1.4.4, provides us with
the adjunction

τd : dSet � Multicat : Nd

Definition 4.3.1. The functor Nd : Multicat → dSet is the dendroidal nerve functor. For a
symmetric multicategory P one has

Nd(P)T = Multicat(Ω(T ),P)
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On the other hand, for a dendroidal set X, the functor τd constructs the multicategory
τd(X) as follows

- the objects of τd(X) are the dendrices of shape η, where η is the unit tree with no
vertices

η

- an arrow of τd(X)(p1, . . . , pn; p) is given by a dendrex of shape an n-corolla

p1
????? ...

pn�����

•
p

- composition is induced by gluing along faces

It is then clear that there is an isomorphism τdNd
∼= id, analog to the isomorphism τN ∼= id.

As one would expect, the dendroidal nerve construction agrees with the nerve construction
defined in 2.6, in the sense that in the square

Cat
j! //

N
��

Multicat
j∗

oo

Nd

��
SSet

τ

OO

i! // dSet
i∗

oo

τd

OO

hold the isomorphisms

j!τ ∼= τdi!

Nj∗ ∼= i∗Nd

i!N ∼= Ndj!

4.4 Closed Monoidal structure on dSet

In this section it will be shown that the category of dendroidal sets carries a closed monoidal
structure, which naturally extends that of simplicial sets and reflects the Boardman-Vogt
tensor product of multicategories (3.5.1).

Proposition 4.4.1. There is a unique (up to isomorphism) symmetric closed monoidal struc-
ture on dSet with the property that Ω[S]⊗ Ω[T ] ∼= Nd(Ω(S)⊗bv Ω(T )) for any Ω(S),Ω(T ) in
Ω.

Proof. The tensor will be constructed using theorem 1.4.4, as usual.
Let X a dendroidal set; then X = colim Ω(T ) where the colimit is indexed over the category
of elements of X. Define the functor · ⊗X : Ω→ dSet by

Ω[S]⊗X = colimNd(Ω(S)⊗bv Ω(T ))
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Notice first that for X = Ω[T ], by 1.4.5,
∫

ΩX has a terminal object and

Ω[S]⊗ Ω[T ] = colimNd(Ω(S)⊗bv Ω(T )) ∼= Nd(Ω(S)⊗bv Ω(T ))

Hence the above definition of tensor is a good candidate.
Using theorem 1.4.4 we can extend the above tensor to all of dSet obtaining

Y ⊗X = colim colimNd(Ω(S)⊗bv Ω(T ))

where the double colimit is taken over the categories of elements of X and Y . The internal
hom, right adjoint to · ⊗X is then given by

dSet(X,Y )S = dSet(Ω[S]⊗X,Y )

as one can check using the formula of theorem 1.4.4.
The fact that the above tensor is symmetric simply follows by symmetry of the Boardman-Vogt
tensor ⊗bv.

The following two results, which conclude this section, state that the functors τd : dSet →
Multicat and i! : SSet → dSet are weak monoidal functors, that is they respect (up to
isomorphism) the monoidal structures.

Proposition 4.4.2. The functor τd : dSet → Multicat is weak monoidal. That is, for den-
droidal sets X and Y there is a natural isomorphism

τd(X ⊗ Y ) ∼= τd(X)⊗bv τd(Y )

Proof. Recall the isomorphism τdNd
∼= id and the fact that the functors τd and ⊗bv, being left

adjoints, preserve colimits. Therefore we have

τd(X ⊗ Y ) =τd(colim colimNd(Ω(S)⊗bv Ω(T ))) ∼= colim colim τdNd(Ω(S)⊗bv Ω(T )) ∼=
∼= colim colim(Ω(S)⊗bv Ω(T )) ∼= colim Ω(S)⊗bv colim Ω(T ) ∼= τd(X)⊗bv τd(Y )

where the last isomorphism simply follows by the definition of τd(X) as the colimit colim Ω(S)
over the category of elements of X.

A similar argument proves that the functor i! is weak monoidal:
first, notice that the inclusion j! : Cat → Multicat is also a monoidal functor: for categories
C,D, the Boardman-Vogt tensor product C ⊗bv D has set of objects the product C0 ×D0 and
arrows generated by the pairs φ⊗bv d,c⊗bv ψ for φ ∈ C(c1, c2), ψ ∈ D(d1, d2) and c, d objects
of C and D. Relations are generated by the equalities (φ ⊗bv d) ◦ (φ′ ⊗bv d) = (φφ′ ⊗bv d)
and (c⊗bv ψ) ◦ (c⊗bv ψ′) = c⊗bv ψψ′, while the symmetric groups play no role being all the
operations unary. Under the obvious identifications (φ⊗bvd) = (φ, idd) and (c⊗bvψ) = (idc, ψ)
one has

j!(C × D) ∼= j!(C)⊗bv j!(D)

Proposition 4.4.3. For any two simplicial sets X,Y and any dendroidal set D, there are
natural isomorphisms
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i) i!(X × Y ) ∼= i!(X)⊗bv i!(Y )

ii) i∗dSet(i!(X), D) ∼= SSet(X, i∗(D))

iii) i∗dSet(i!(X), i!(Y )) ∼= SSet(X,Y )

Proof. Point i) is proved by the following isomorphisms, and the fact that left adjoints preserve
colimits, while right adjoints preserve products

i!(X × Y ) ∼=i!(colim ∆[n]× colim ∆[m]) ∼= colim colim i!(∆[n]×∆[m]) ∼=
∼= colim colim i!(N [n]×N [m]) ∼= colim colim i!(N([n]× [m])) ∼=
∼= colim colimNdj!([n]× [m]) ∼= colim colimNdj!([n]× [m]) ∼=
∼= colim colimNd(j![n]⊗bv j![m]) ∼= colim colimNd(Ln ⊗bv Lm) ∼=
∼=i!(X)⊗bv i!(Y )

To prove ii), pick any simplicial set Z and consider the following isomorphism provided by the
adjunctions i! a i∗,× a SSet(·, ·),⊗ a dSet(·, ·) and the fact that i! is monoidal

SSet(Z, i∗dSet(i!X,D)) ∼=dSet(i!Z, dSet(i!X,D)) ∼= dSet(i!Z ⊗ i!X,D) ∼=
∼=dSet(i!(Z × Y ), D) ∼= SSet(Z ×X, i∗D) ∼=
∼=SSet(Z,SSet(X, i∗D))

By the Yoneda’s Lemma follows that i∗dSet(i!(X), D) ∼= SSet(X, i∗(D)).
The third point then is just a consequence of ii), once D is replaced by i!Y and noting that
i∗i! ∼= id.

With the same argument one also proves that the dendroidal nerve Nd commutes with
internal homs.

Proposition 4.4.4. For any two multicategories P and Q there is a natural isomorphism

dSet(Nd(P), Nd(Q)) ∼= Nd(Multicat(P,Q))

Proof. Again, consider a dendroidal set X and the sequence of isomorphisms

dSet(X,Nd(Multicat(P,Q))) ∼=Multicat(τdX,Multicat(P,Q)) ∼= Multicat(τdX ⊗bv P,Q) ∼=
∼=Multicat(τd ⊗bv τdNd(P),Q) ∼= Multicat(τd(X ⊗Nd(P)),Q) ∼=
∼=dSet(X ⊗Nd(P), Nd(Q)) ∼= dSet(X, dSet(Nd(P), Nd(Q)))



Chapter 5

Infinite Loop Spaces, Spectra and
May’s Operads

I will recall here few facts about the theory of infinite loop spaces. The study of infinite
loop spaces is one (probably the most known) of the branches of mathematics in which operads
and multicategories arose, as we shall see in section 5.2.
The following lines are by no means a detailed exposition of the theory of loop spaces and
spectra. I will only review a couple of definitions and results, which convinced me of the fact
that dendroidal sets should be thought of inside a certain framework, as I will make clear in
the last part of this thesis. I hope and believe that the reader, once read these few pages, will
already guess my point of view and agree with me.
A nice account of the topics I will consider here is given in [Ad2], while more detailed treat-
ments can be found in [Ad1],[Ma1],[Ma2],[Th1],[Th2].

5.1 Spectra and infinite loop spaces

In this section we will work with based spaces. That is, pairs (X, ∗) whereX is a topological
space and ∗ ∈ X is a distinguished point. Given pointed spaces (X,x) and (Y, y), a map
f : (X,x) → (Y, y) is a map f : X → Y in Top such that f(x) = y. Denote by Top∗ the
category of pointed spaces.

Recall the following constructions from algebraic topology.

Definition 5.1.1. Let (X,x), (Y, y) ∈ Top∗. The smash product of (X,x) and (Y, y) is the
quotient space

X ∧ Y =
X × Y

(X × {y}) ∪ ({x} × Y )

with base point (X × {y}) ∪ ({x} × Y ).

In the case when (Y, y) is the 1-sphere S1 = I/∂I with base point ∂I = ∂[0, 1] one obtains

Definition 5.1.2. For a pointed space (X,x) the reduced suspension SX of X is the space

SX = X ∧ S1 =
X × I

X × {0, 1} ∪ {x} × I

On the other hand we have
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Definition 5.1.3. For a based space (X,x), the loop space of X at x is the space

ΩX = Top∗(S1, X)

with base point the constant map sending S1 to x.

The topology on ΩX is the compact-open topology:

Definition 5.1.4. For spaces X and Y , the compact-open topology on Y X = Top(X,Y ) is
the topology generated by the subsets

{f |f(K) ⊂ U}

for K ⊂ X compact and U ⊂ Y open.

Noting that SSn = Sn+1 (where Sn is the n-sphere), the above constructions can be it-
erated and give rise to adjoint functors Sk and Ωk, the k-th suspension and k-fold loop space
functor .
Going back to non based spaces, recall that a map f : X → Y between topological spaces
is said to be a weak equivalence, if it induces an isomorphism between the homotopy groups
πk(X) and πk(Y ) for all base points x ∈ X, y ∈ Y and every k ≥ 1 and an isomorphism
between the sets π0(X) and π0(Y ) of connected components of X and Y .

We now have all the terminology needed in order to define spectra and infinite loop spaces.

Definition 5.1.5. A spectrum is a sequence of based spaces Xi, i ∈ Z, together with maps

ε : SXi → Xi+1

or equivalently, by adjunction, maps

ε̃ : Xi → ΩXi+1

What we are actually interested in is a particular kind of spectra:

Definition 5.1.6. A bounded Ω-spectrum is a sequence {(Xi, fi)|i ≥ 0} of based spaces,
together with weak equivalences

fi : Xi → ΩXi+1

Following [Ma1] and [Th2], by an abuse of terminology, I will refer to bounded Ω-spectra
just as spectra, and restrict the attention to a special class among them.

Definition 5.1.7. A spectrum {(Xi, fi)|i ≥ 0} is said −1-connective if each space Xi is i− 1
connected, i.e. πj(Xi) = 1 for j < i.

As always, one wishes to define maps between spectra and hence get a category. This can
be easily done, so that a map g : X → Y amounts to maps gi : Xi → Yi which are compatible
with the structure maps, in the sense that the diagram

Xi
fi //

gi

��

ΩXi+1

Ωgi+1

��
Yi

f ′i // ΩYi+1
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is homotopy commutative for every i, i.e. the maps f ′i ◦ gi and Ωgi+1 ◦ fi are homotopic.

Denote then by Spectra the category of −1-connective spectra and maps as just defined.

The above definitions now naturally lead to the following

Definition 5.1.8. A based space X is said an infinite loop space if there is a spectrum {Xi, fi}
such that X = X0.

It is known that spectra play a crucial role in generalized (co)homology theories as well
as in stable homotopy theory ; anyway it is not the purpose of this chapter to address these
topics. On the other hand, the importance of spectra and their close connection with infinite
loop spaces imposes the need of determining conditions on a space X to be of the homotopy
type of an infinite loop space. To this aim come in fact operads, as we shall see below.

5.2 May’s machinery

J.P. May introduced operads in [Ma1], in a form that now would go under the name of
topological operads, in order to recognize infinite loop spaces and, in case, to build a spectrum
{Xi, fi} such that X0 is of the homotopy type of a given space X. Such procedure is now
known as May’s machinery and basically takes advantage of the following

i) Any operad P in a category C can be transformed into a monad (P, η, µ) on C.

ii) Given a monad (T, η, µ) and an algebra TX → X, one can construct a simplicial object
in C, the simplicial resolution of X.

What May considered are certain operads Cn in the category U of compactly generated spaces,
and hence the corresponding monads Cn. Roughly speaking, given an algebraX for the monad
Cn, the geometric realization of the simplicial space arising as in ii) turns out to be a n-th
de-looping of the given space X; iterating, one can determine whether X is of the homotopy
type of an infinite loop space Y0 and find a spectrum with zeroth space Y0.

Definition 5.2.1 (J.P. May). An operad P consists of spaces P(k) ∈ U for k ≥ 0 such that
P(0) = {∗} is a singleton, together with

i) continuous functions µ : P(k)× P(n1)× · · · × P(nk)→ P(n1 + . . .+ nk) such that the
associativity formula

µ(µ(c, d1, . . . , dk), d1
1, . . . , d

1
n1
, . . . , dk1, . . . , d

k
nk

)

µ(c, µ(d1, d
1
1, . . . , d

1
n1

), . . . , µ(d1, d
k
1, . . . , d

k
nk

)

is satisfied.

ii) An identity element 1 ∈ P(1) such that µ(1, d) = d and µ(d, 1, . . . , 1) = d.

iii) An action of the symmetric group Σk on P(k) compatible with composition, in the sense
that for c ∈ P(k), σ ∈ Σk and di ∈ P(ni), σi ∈ Σni holds

µ(σ∗c, σ∗1d1 . . . , σ
∗
kdk) = (σ(σ1, . . . , σk))∗µ(c, d1, . . . , dk)
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where σ(σ1, . . . , σk) ∈ Σn1+...+nk
is the product defined in 3.3.1.

Let me now show how to associate to an operad P as defined in 3.3.4 a monad P .

Construction 5.2.2. (Monad associated to an operad)
Let X a set. Define

PX =
∞∐
j=0

(P(j)×Xj)

The unit η and multiplication µ are defined in the obvious way. We have

X
η // PX

x � // (1, x)

where 1 is the unit of the operad and (1, x) ∈ P(1)×X.
Noting that P 2X =

∐
P(n)×(

∐
P(j)×Xj)n ∼=

∐
(P(n)×(P(j1)×Xj1)×· · ·×(P(jk)×Xjn) ∼=∐

P(n)× P(j1)× · · · × P(jn)×Xk for k = j1 + . . .+ jn, one defines

P 2X
µ // PX

(p, p1, . . . , pn,
−→x ) � // (µ(p, p1, . . . , pn),−→x )

The axioms for the operad finally ensure that P is a monad. It is also easily seen that maps
of operads translate into maps of monads; given a map of operads φ = (φj) : P → Q, the
corrisponding map of monads is φ̃X =

∐
φj × idjX .

Finally, an algebra PX f−→ X for the monad P amounts to maps fj : P(j) × Xj → X, or
equivalently to maps f̃j : P(j) → XXj . In other words, the algebras for the monad P are in
1 : 1 correspondence with the algebras for the operad P.

�

Definition 5.2.3. Let (T, µ, η) a monad on a category C. A right T -functor is a colax map
of monads (F, φ) : T → 1C′ from T to the identity monad on a category C′.

Construction 5.2.4. Now let given a right T -functor F : C → C′, a monad (T, µ, η) and an
algebra TX h−→ X. We can associate to the triple (F, T,X), functorially in each variable, a
simplicial object in C′, Bar(F, T,X), defined as

Bar(F, T,X)q = FT qX

with faces and degeneracies given by

d0 = λ λ : FT qX → FT q−1X

di = FT i−1µ µ : T q−i+1X → T q−iX, 0 < i < q

dq = FT q−1h h : TX → X

si = FT iη η : T q−iX → T q−i+1X

�
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Note in particular that (T, µ) itself is a right T -functor. Given a T -algebra TX h−→ X, we
have then the simplicial object and augmentation h

· · · //
//// T 2X

// // TX
h // X

More generallly, for a simplicial object Y∗ and an object X in C, there is a 1 : 1 corre-
spondence between maps h : Y0 → X such that hd0 = hd1 and maps of simplicial objects
Y∗ → X∗, where X∗ is the constant simplicial object.

The last ingredients we need are the operads Cn cited above, also known as little n-cubes
operads.

Definition 5.2.5 (Little n-cubes operad). Denote by In the unit n-cube, and let Jn its
interior. A little n-cube is a linear embedding of Jn into itself. Define Cn(k) to be the set of
k-tuples (c1, . . . , ck) of little n-cubes with pairwise disjoint images. Then (c1, . . . , ck) can be
regarded as a map from the disjoint union

∐
Jn of k copies of Jn to Jn.

The unit if the operad is just the identity on Jn. The action of the symmetric groups is given
by σ∗(c1, . . . , ck) = (cσ1, . . . , cσk), while composition of operations is induced by the universal
poroperty of the coproduct.
The topology on the spaces Cn(k) is that of a subspace of the space of continuous functions∐
Jn → Jn.

There are two facts, concerning the above operads, that are crucial in the work of May.
The operads Cn are connected by morphisms σn : Cn → Cn+1, embedding Cn in Cn+1. These
are given by σn,k(c1, . . . , ck) = (c1 × 1, . . . , ck × 1). Thanks to them it is possible to define an
operad C∞ as a colimit colim Cn.
Using the corresponding monads, one can define a morphism of algebras CnX

αn−−→ ΩnSnX as
the composite

CnX
Cnη−−→ CnΩnSnX

θn−→ ΩnSnX

where Ωn is the n-fold loop functor, Sn the n-fold suspension and η the unit of the cor-
responding adjunction; θn is the obvious action of the operad Cn on an n-fold loop space
ΩnX = Top∗(Sn, X).

Recall that given an operad P, by a P-space one means an algebra for P in Top∗.
Also, remind that in the present section we are dealing with topological operads and more
generally with constructions over Top∗. We have seen in 5.2.2 how to associate a monad to
an operad in Set ; the same can be done with any topological operad P, provided that we take
care of the topologies already present on the P(j)’s. Similarly, one can define a geometric
realization for simplicial spaces, as the one constructed in 5.2.4.
We can now state the main theorem of this chapter

Recognition Theorem 5.2.6 (J.P. May). Every n-fold loop space is a Cn-space and every
connected Cn-space has the weak homotopy type of an n-fold loop space, n ≤ ∞.

We don’t need here to see the proof in detail. Briefly, given a Cn-space X, one uses the
above constructions in order to get a diagram

X
h←− Bar(Cn, Cn, X)

Bar(αn,1,1)−−−−−−−→ Bar(ΩnSn, Cn, X)→ ΩnBar(Sn, Cn, X) (5.1)
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Applying geometric realization, the above arrows are brought to weak homotopy equivalences
and |Bar(Sn, Cn, X)| appears as the n-th delooping of X.
The ∞ case follows, roughly, by passage to limits.

The above result only takes care of connected spaces. Before stating the more general
version it is useful to recall a few definitions from [Ma1] and [Ma2].

Definition 5.2.7. An H-space is a spaceX with a base point e and a product mapX×X µ−→ X
such that both left and right multiplication by e are homotopic to the identity. An H-space
X is said to be grouplike if π0(X) is a group under the product induced by µ.

The spaces we are iterested in (namely, algebras for the operads Cn), are usually not
grouplike, despite the fact that obviously any loop space is (in fact if Y = ΩX, then π0(Y ) ∼=
π1(X), and ΩX is an H-space under concatenation of loops). Anyway, one can still construct
a grouplike space Y out of a given H-space X, in a way that is unique up to (weak) homotopy
equivalences. Such space Y is then called the group completion of X.

Definition 5.2.8. A morphism of operads ψ : P → Q is said a local (Σ-)equivalence if each
ψj is a (Σj-equivariant) homotopy equivalence.

Definition 5.2.9. An operad over a discrete operad D is an operad P together with a
morphism (an augmentation) ε : P → D, such that π0ε : π0P → D is an isomorphism of
operads.

Definition 5.2.10. Regard the operads A∞ and E∞ defined in example 3.3.5 as topological
operads:

- An A∞ operad is a Σ-free operad P over the operad A∞ such that the augmentation
ε : P → A∞ is a local Σ equivalence. An A∞-space is a P-space for an A∞ operad P.

- An E∞ operad is a Σ-free operad P over the operad E∞ such that the augmentation
ε : P → A∞ is a local equivalence. An E∞-space is a P-space for an E∞ operad P.

It turns out in particular that the operads C1 and C∞ are respectively A∞ and E∞ operads.

Finally, replacing the connected space of theorem 5.2.6 by any E∞-space X, one has (cf.
[Ma2]) that the map Bar(αn, 1, 1) in the diagram 5.1 displays a group completion (and hence
a weak homotopy equivalence in the case when X is grouplike), so that |Bar(Sn, Cn, X)|
appears as the n-th delooping of the group completion of X.
In practice, E∞-spaces describe infinite loop spaces. In fact any infinite loop space is an
E∞-space; on the other hand an E∞-space determines an infinite loop space uniquely up to
homotopy.

5.2.1 Connection with Monoidal Categories

Recall from section 1.5 that a strict monoidal category is a commutative monoid in Cat ;
equivalently, a monoidal categoryM is an algebra in Cat for the operad E∞.
This perspective allows us to place the theory of monoidal categories in the context of operads
and in particular of infinite loop spaces.
We can in fact apply the classifying space functor to M, in order to obtain a space BM,
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naturally endowed with an action by the (topological) operad E∞. In other words we have
the following

Proposition 5.2.11. The classifying space BM of a strict monoidal categoryM is an E∞-
space. That is, the restriction of B to StrSymmMonCat factors as

StrSymmMonCat

))SSSSSSSSSSSSSS
ι // Cat

B // Top

E∞ − spaces
U

88qqqqqqqqqqq

Thanks to the above factorization and the machinery developed by May, one can construct
a functor Spt : StrSymmMonCat → Spectra. The most interesting result, due to Thomason
([Th1], [Th2]), is that the functor Spt defines an equivalence between suitable localizations of
the two categories StrSymmMonCat and Spectra.

Definition 5.2.12. Let (Xi, fi) a spectrum. The weak equivalences fi : Xi → ΩXi+1 induce
isomorphisms

πk+n(Xn) ∼= πk+n+1(Xn+1)

Define the stable homotopy groups of the spectrum X as

πsk(X) = colim
n

πk+n(Xn) ∼= πk(X0)

Definition 5.2.13. A map f : X → Y of spectra is a stable weak equivalence if the induced
map πsk(f) : πsk(X)→ πsk(Y ) is an isomorphism for all k.

We can now state Thomason’s result more precisely

Theorem 5.2.14 (R.W. Thomason). The functor Spt : StrSymmMonCat → Spectra defines
an equivalence of categories between the localization of Spectra with respect to the stable weak
equivalences and of StrSymmMonCat with respect to the maps that Spt takes to stable weak
equivalences.
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Chapter 6

Conclusions

The main subject of this final chapter is the problem of a geometric realization for den-
droidal sets. I stress immediately the fact that the name “geometric realization” is, if not
wrong, at least misleading; I simply borrow it from the theory of simplicial sets. I believe
anyway that, once the meaning is made precise, none will complain. I will refer to a dendroidal
geometric realization, dropping the adjective dendroidal when the context is clear; such con-
struction should appear as an extension of the well known geometric realization of simplicial
sets.

In the first section I list the desiderata for a geometric realization functor; I will then give
a definition and deduce an easy result, behaving as if a geometric realization really exists. In
section 6.2 I will present a naive approach to the problem; the comments following it will jus-
tify my choices of section 6.1 and introduce section 6.3, where I will finally present Dendroidal
Sets under a new light.

6.1 The problem of Realization

Recall the main properties of the geometric realization functor | · | : SSet → Top of section
2.3:

i) | · | is a monoidal functor, where the monoidal structure on SSet and Top is given by the
cartesian product.

ii) | · | preserves finite limits.

iii) | · | is conservative (i.e. |f | isomorphism ⇒ f isomorphism).

The dendroidal geometric realization functor should obviously satisfy properties analogous
to the above. What makes the difference, is that my geometric realization does not take values
in Top; I will motivate this later, after illustrating my first attempt in constructing a geometric
realization. By now, I simply conjecture the existence of a monoidal biclosed category of
structured topological spaces, which I denote by StrTop, together with an adjunction

ι : Top � StrTop : υ
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so that StrTop comes as an extension of topological spaces, just like dendroidal sets extend
simplicial ones, and multicategories extend categories; roughly, the objects of StrTop should
be topological spaces carrying some sort of algebraic structure. It seems also appropriate to
require ι to be (weak) monoidal.
I also require that topological spaces of interest, such as A∞-Spaces and E∞-Spaces are objects
of this category, so to get the following embeddings and factorizations

A∞-Spaces
α //

U &&NNNNNNNNNNN StrTop

υ

��
Top

E∞-Spaces
ε //

U &&NNNNNNNNNNN StrTop

υ

��
Top

where clearly α and ε are embeddings, and U is the forgetful functor.
We can pass now to our wishes, hoping that Christmas will come soon.

Desiderata 6.1.1. There is a functor, the dendroidal geometric realization, denoted by | · |d

| · |d : dSet → StrTop

such that:

i) | · |d is monoidal, where the monoidal structure on dSet is given by the tensor product
defined in 4.4.1.

ii) | · |d preserves finite limits.

iii) | · |d is conservative.

Furthermore, | · |d agrees with the geometric realization | · | of simplicial sets, in the sense that
the following diagrams commute up to isomorphism

SSet

|·|
��

dSet
i∗oo

|·|d
��

Top StrTopυ
oo

SSet

|·|
��

i! // dSet

|·|d
��

Top ι
// StrTop

Let me now assume that somewhere someone constructed a functor as the one above.

Definition 6.1.2. The dendroidal classifying space of a symmetric multicategory P is the
structured space dBP obtained by the composite

Multicat Nd−−→ dSet
|·|d−−→ StrTop

As I wrote, the dendroidal geometric realization should take in account the results by
Thomason and May. We obtain in fact

Proposition 6.1.3. The dendroidal classifying space of a symmetric monoidal category is an
E∞-space.
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Proof. The statement is analogous to say that

StrSymmMonCat U //

B

��

))RRRRRRRRRRRRR Multicat

dB

��

E∞-Spaces
U

vvlllllllllllllll
ε

''NNNNNNNNNNN

Top StrTopυ
oo

is a commutative diagram. But in fact the outer square is given by the following:

StrSymmMonCat U //

N
��

Multicat

Nd

��
SSet

|·|
��

dSet
i∗

oo

|·|d
��

Top StrTopυ
oo

and the upper rectangle commutes thanks to the following subdivision

StrSymmMonCat U //

N

��

''PPPPPPPPPPPP Multicat

Nd

��

j∗

yytttttttttt

Cat
N

vvnnnnnnnnnnnnn

SSet dSet
i∗

oo

6.2 A first approach

I will now sketch a possible technique to solve our problem. It is a very naive construction,
and in fact seems to fail our aim: the main question is that it closely imitates the geometric
realization for simplicial sets rather than extending it; such construction was suggested by the
theory of opetopes(cf. [Le]) and by the Stasheff Associahedron.
Recall that, to define a geometric realization, it suffices to give a functor on Ω.

Construction 6.2.1. Define a dendroidal geometric ralization | · |d : dSet → Top to take
values directly in Top. To understand better the construction, notice that an operation w of
the form

a1

w
NNNNNNNNNNNNN a2

??????? ... an−1

������� an

ppppppppppppp

•
a
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can also be represented as

•

a
66666666666666

a1 •a2 an−1• an•

��������������

�� ��
�� w

•

It should be then quite clear how to proceed. An operation of arity n is sent to a topological
n-simplex. This takes care of the n-corollas. For the other trees , we must also consider their
height, which should be thought of as the length of a composition chain. For example a tree

a3

w
???????

a4||||||||

•

a1

v
@@@@@@@

a2��������

•
a

expresses the compositon v ◦1 w. This should be sent to a 4-dimensional simplex with faces

a1

AAAAAAAA a2

}}}}}}}}

a

a3

BBBBBBBB a4

||||||||

a1

a4

a3

||||||||

CCCCCCCC a2

BBBBBBBB

a

{{{{{{{{

�

Though complicated, the above construction still sounds reasonable. There are three points
that actually can convince the reader to not even try to develop it in detail.
The first question concerns 0-ary operations: the only acceptable representative in Top for a
tree

•
u

a

seems to be a point. But points should represent dendrices of shape η, that is 0-simplices.
This is just a particular case of the second problem, that is the above realization does not
satisfy point (iii) of 6.1.1. In fact, according to the above, the image under | · |d of a dendrex
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of shape

0

•
1

•

•
n

is the same of one of shape an n-corolla. In practice, we can not distinguish between n-ary
operations, composition chains of 1-ary arrows and composition schemes.
The last point finally should explain the reason of changing the target category. Recall
Quillen’s result (2.4.1) asserting that the covering spaces of the classifying space of a cat-
egory C are in correspondence with the localizations of C. If we try to construct a geometric
realization in a way resembling to the one above, we would then get something like a “localized
multicategory”. There is only one simple obstruction to that: arrows in multicategories are n
to 1, hence a similar result wouldn’t make any sense.

6.3 Dendroidal Sets as Simplicial Sets with structure

I will now give a picture of the second approach to our problem; it follows the slogan
“multicategories describe algebraic structures”.
We have seen in the previous section good motivations for considering | · |d as a functor with
values in a category larger than Top, still provided that such category contains Top in a
reasonable way. Having in mind that topological spaces can be replaced by simplicial sets, the
idea is now to view dendroidal sets as simplicial sets with some extra property.
Recall that every dendroidal set X has an underlying simplicial set i∗X; I refer to it as the
“simplicial part” of X, and the dendrices of shape a linear tree will be simply called simplices.
The goal is to use dendrices of shape non-linear trees in order to define operations on i∗X.
Moreover, I want such operations to be as closest as possible to maps of simplicial sets; this
means that I will define them level-wise, in a way that respects faces and degeneracies. Doing
so, in the special case of the multicategoryM underlying a monoidal category, we recover the
monoid structure induced by the tensor on the nerve NM.
I will work first in complete generality, then consider the special case of monoidal categories
and comment on the construction.

Construction 6.3.1. Let X a dendroidal set; I refer to the operations on the n-simplices as
n-operations.

Step 1. 0-operations
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Let x1, . . . , xn 0-simplices; there can be a dendrex w of shape an n-corolla

x1 ??????? ...

xn�������

•
w

x

Define an operation ⊗w on x1, . . . , xn by x1 ⊗w · · · ⊗w xn = x.
Trees with more than one vertex serve then to gather operations and control them; in some
sense they provide associativity laws. For example the dendrex

x1 ??????? ...

xn�������

y1 ??????? ...

ym�������

•
u

x
NNNNNNNNNNNNN •

v

y
ppppppppppppp

•
w

z

has faces (i.e. products) x1 ⊗u · · · ⊗u xn = x, y1 ⊗v · · · ⊗v ym = y, x ⊗w y = z and the
“associativity law” (x1⊗u · · ·⊗uxn)⊗w (y1⊗v · · ·⊗v ym) = x1⊗t · · ·⊗txn⊗t y1⊗t · · ·⊗t ym = z,
where t is the face

x1 NNNNNNNNNNNNN ···
xn

???????
y1

������� ···

ym
ppppppppppppp

•
t

z

Step 2. 1-operations
Suppose we are given 1-simplices f1, · · · , fn

xi

fi•
yi

and n-corollas

x1

v
??????? ...

xn�������

•
x1⊗v ···⊗vxn

y1
w

??????? ...

yn�������

•
y1⊗w···⊗wyn



6.3 Dendroidal Sets as Simplicial Sets with structure 73

What we would like to get is a 1-simplex

x1⊗v ···⊗vxn

f1⊗v,w···⊗v,wfn•
y1⊗w···⊗wyn

We say therefore that the (v, w)-product of the fi’s exists if there are dendrices and faces of
the form

x1

v
BBBBBBBB ...

xn||||||||

•
x1⊗v ···⊗vxn

f1⊗v,w···⊗v,wfn &&LLLLLLLLLLLLL

•
y1⊗w···⊗wyn x1 ======== ...

xn��������

•
y1⊗w···⊗wyn

u

x1

f1

xn

fn•

y1

w
@@@@@@@ ··· •

yn~~~~~~~

88ppppppppppppp

•
y1⊗w···⊗wyn

(6.1)

so that u = w ◦ (f1, . . . , fn) = (f1 ⊗v,w · · · ⊗v,w fn) ◦ v.

Step 3. 2-operations
Here the situation already gets a little complicated.
Suppose we are given a collection of n 2-simplices

xi

fi•
yi

gi•
zi
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and n-corollas

x1

u
??????? ...

xn�������

•
x1⊗u···⊗uxn

y1
v

??????? ...

yn�������

•
y1⊗v ···⊗vyn

z1
w

??????? ...

zn�������

•
z1⊗w···⊗wzn

Again, we want to get back a 2-simplex of the form

x1⊗u···⊗uxn

f1⊗u,v,w···⊗u,v,wfn•
y1⊗v ···⊗vyn

g1⊗u,v,w···⊗u,v,wgn•
z1⊗w···⊗wzn

In a way similar to the 1-case, one says that the (u, v, w)-product of the above 2-simplices
exists if we have dendrices and faces of the form

x1

u
BBBBBBBB ...

xn||||||||

•
x1⊗u···⊗uxn x1 @@@@@@@@ ...

xn~~~~~~~~

•
y1⊗v ···⊗vyn

// •
y1⊗v ···⊗vyn

•
z1⊗w···⊗wzn

•
z1⊗w···⊗wzn

&&NNNNNNNNNNNNN

x1 ??????? ...

xn�������

x1

f1

xn

fn

•
z1⊗w···⊗wzn

•
y1

g1

•
yn

gn

x1

f1

xn

fn•

z1

w
@@@@@@@ ... •

zn~~~~~~~
// •

y1 @@@@@@@ ... •

yn~~~~~~~

88rrrrrrrrrrrrr

•
z1⊗w···⊗wzn

•
z1⊗w···⊗wzn

(6.2)
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We also have to make sure that the above (u, v, w)-product agrees with the products of the
faces

xi

fi•
yi

yi

gi•
zi

xi

gi◦fi•
zi

Therefore we need diagrams

x1 ??????? ...

xn||||||||

•
y1⊗v ···⊗vyn

x1

u
??????? ...

>>||||||||

xn�������
x1

f1

aaDDDDDDDD

xn

fn•
x1⊗u···⊗uxn

f1⊗u,v ···⊗u,vfn

•

y1

v
@@@@@@@ ... •

yn~~~~~~~

•
y1⊗v ···⊗vyn

•
y1⊗v ···⊗vyn

for the top row of 6.2, ensuring compatibility with the (u, v)-product, while at the bottom
row we grant compatibility with the (v, w)-product by requiring that

y1 ??????? ...

yn||||||||

•
z1⊗v ···⊗vzn

y1
v

??????? ...

>>||||||||

yn�������
y1

g1

aaDDDDDDDD

yn

gn•
y1⊗v ···⊗vyn

g1⊗v,w···⊗v,wgn

•

z1

w
@@@@@@@ ... •

zn~~~~~~~

•
z1⊗w···⊗wzn

•
z1⊗w···⊗wzn
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Finally, compatibility with the (u,w)-product

x1⊗u···⊗uxn

(g1◦f1)⊗u,w···⊗u,w(gn◦fn)•
z1⊗w···⊗wzn

was already granted by diagram 6.2.

The case of higher simplices is just the same, with the only difference that one requires
more compatibilities with the lower products.

�

In favor of the above construction, let me show what happens when we consider the den-
droidal nerve of a (strict) symmetric monoidal category.

Example 6.3.2. Recall that a strict symmetric monoidal category is a categoryM together
with a bifunctor ⊗ :M×M→M, the tensor, and an object I ∈M such that the following
equalities hold:

• X ⊗ Y = Y ⊗X ∀X,Y ∈M

• (X ⊗ Y )⊗ Z = X ⊗ (Y ⊗ Z) ∀X,Y, Z ∈M

• I ⊗X = X ⊗ I = X ∀X ∈M

The tensor then defines a monoid structure on the nerve NM, so that a k-tuple of n-simplices

xi
0

f i
1•

f i
n

�
�
�

•
xi

n

is brought to the n-simplex

x1
0⊗···⊗xk

0

f1
1⊗···⊗fk

1•

f1
n⊗···⊗fk

n

�
�
�

•
x1

n⊗···⊗xk
n

Any symmetric monoidal categoryM naturally becomes a multicategory M̃ if we define

M̃(x1, . . . , xn;x) =M(x1 ⊗ · · · ⊗ xn, x)
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In particular, under this correspondence the identity on x1 ⊗ · · · ⊗ xn can be viewed as a
multiarrow ι : (x1, . . . , xn)→ x1 ⊗ · · · ⊗ xn.
The following step is obvious.
When applying the construction 6.3.1 to the dendroidal nerve NdM = NdM̃ of M, these
distinguished operations ι define on i∗NdM = NM the same monoid structure defined by the
tensor product ofM. In fact, given any k-tuple of n-simplices

xi
0

f i
1•

f i
n

�
�
�

•
xi

n

the k-corollas

x1
j

ι
??????? ...

xk
j�������

•
x1

j⊗···⊗xk
j

given by the operations of type ι provide the dendrices needed to get the desired output

x1
0⊗···⊗xk

0

f1
1⊗···⊗fk

1•

f1
n⊗···⊗fk

n

�
�
�

•
x1

n⊗···⊗xk
n

�

The above example shows a very nice situation.
To avoid unmotivated enthusiasm, notice that the system of operations that we get on i∗X
is not a well behaved structure in general; given 0-simplices (x1, . . . , xn) there is in fact no
reason for a “product” x1 ⊗ · · · ⊗ xn to exist.
The structure becomes then even poorer when we raise the dimension of the simplices, be-
cause of the many dendrices and compatibility conditions involved. Let me point out that
such conditions are needed in order to determine products of simplices in a satisfactory way.
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Suppose in fact that I defined the product of 1-simplices

xi

fi•
yi

just as the output simplex of a dendrex

x1

v
??????? ...

xn�������

•
x1⊗v ···⊗vxn

f1⊗v,w···⊗v,wfn•
y1⊗w···⊗wyn

instead of the combination of faces described in 6.1. Then in the case of the dendroidal
nerve of a monoidal category, with v and w equal to the above operations ι, any arrow
g : x1⊗ · · · ⊗ xn → y1⊗ · · · ⊗ yn would appear as the (tensor) product of the arrows fi, which
is not what we would like to get.

It is true that construction 6.3.1 doesn’t really define an algebraic structure on i∗X; I
would better say that it describes local behaviors of simplices, just like multicategories offer
“algebraic-like” structures in general.

On the other hand I have shown how the product induced by the tensor on NM is encoded
in NdM and completely described by its dendrices. This is probably the main advantage of
the point of view I propose, and what makes me believe that the construction I just gave is a
step in the right direction.

I imagine anyway that the perspective I suggest should be placed in a larger context, not
necessarily connected to algebraic topology which has no reasons to play a privileged role.
After all, multicategories arose from disciplines in principle very distant: logic on one side,
topology on the other.
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