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1 The Necosad Study, introduction

The Necosadstudy (NEderlandse COoperatieve Studie naar de Adequaatheid
van Dialyse) [3] is a large observational study in which patients are followed
after starting renal dialysis.

Healthy kidneys clean the blood by removing excess fluid, minerals, and
wastes. They also make hormones that keep the bones strong and the blood
healthy. When kidneys fail, harmful wastes build up in the body, blood
pressure may rise, and the body may retain excess fluid and not make enough
red blood cells. When this happens, treatment is needed to replace the work
of the failed kidneys.

In hemodialysis (hd), blood is allowed to flow, about 100 grammes at
a time, through a special filter that removes wastes and extra fluids. The
clean blood is then returned to the body. Removing the harmful wastes
and extra salt and fluids helps control blood pressure and keep the proper
balance of chemicals like potassium and sodium in the body.

Patients undergoing hemodialysis treatment follow a strict schedule.
Most patients go to a clinic three times a week for 3 to 5 or more hours
each visit.

In peritoneal dialysis (pd), a soft tube called a catheter is used to fill the
abdomen with a cleansing liquid called dialysis solution. The walls of the
abdominal cavity are lined with a membrane called the peritoneum, which
allows waste products and extra fluid to pass from the blood into the dialysis
solution. The solution contains a sugar called dextrose that will pull wastes
and extra fluid into the abdominal cavity. These wastes and fluid then leave
the body when the dialysis solution is drained. The used solution, containing
wastes and extra fluid, is then thrown away. The process of draining and
filling takes about 30 to 40 minutes.

Since the patient doesn’t have to schedule dialysis sessions at a center,
pd gives the patient more control. Treatments are possible at home, at
work, or on trips.

The data registered by the Necosad study in patients in the month before
the start of dialysis, include demographic data (date of birth, sex, ethnic
origin), initial therapy and the reason for choosing this, comorbidity, height,
body weight and residual urine volume.

At the start of the therapy the kidney usually exhibits some residual func-
tion. At regular intervals (3, 6, 12, 18 etc months) the Residual Glomerular
Filtration Rate (gfr), or short filtration rate is measured. gfr is the best
overall index of kidney function and describes the flow rate of filtered fluid
through the kidney. The filtration rate is corrected for body surface area
and is measured in mL/min/m2.

The normal filtration rate varies according to age, sex, and body size,
and declines with age. When dialysis therapy starts, gfr will also depend
on the method of dialysis, hemodialysis or peritoneal dialysis.
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As a rule, gfr slowly decreases over time, until renal functioning com-
pletely breaks down and gfr reaches the value 0. The patient is from then
on anuric.

In this thesis we will model repeated measurements of the gfr over time;
this is called longitudinal analysis. Such models are complicated by the fact
that as soon as the patient is anuric (gfr = 0), the kidney remains in this
state (absorbing state), that is, as a random variable, gfr is not distributed
normally.

Several models will be studied:

• Longitudinal analysis of multivariate distributed outcomes. In which
we will assume the existence of an underlying latent variable, normally
distributed.

• Markov models in which we model the expected value of gfr at a
point in time, given the value at an earlier point in time. This we will
implement with and without zero as a special absorbing state.

The original data base is in spss format. spss is the standard statistical
software package used in the lumc. In this thesis, spss is used to perform
standard analysis. R is used for more advanced analysis.

2 The dataset

2.1 Cleaning of the dataset

In behalf of the Necosad study, data were collected for 1780 patients.
As the very first step in validation, for each point in time the variable

gfr cor, which is the gfr discussed in this thesis, was set to zero if the
variable diures was less than 200 mL/24h.

The original data base is in wide format which means that each patient is
assigned a row and each value of gfr is a separate variable. We transformed
it to long format in which each measurement of gfr is a row in the data
base.

The following patients were excluded:

• Patients for which urine never was collected (variable diures missing
on all visits, even though the patient participated in the study),

• Patient is already anuric at the start of the therapy, that is, has gfr
missing or equal to 0 at the first two measurement occasions.

After exclusion of these patients the data set (wide format) contained
N = 1428 patients. This is the data set of patients we will use in this thesis.

Each record in the original data base contains measurements made on
16 occasions, which we call visits. However, in this study we will only use
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the measurements made in the first two years, corresponding to n = 6 visits,
including the data gathered at the start of the study (baseline). The reason
is that over time more and more patients drop out of the study, due to kidney
transplant, death of the patient, or the patient leaving the Necosad study.
When plotting the mean observed gfr for hd and pd for the 16 visits, it is
clear that from about visit 6, the effect of therapy on filtration rate becomes
less unambiguous. More advanced methods will then be required to study
the group effect on gfr.

The 6 measurements are made at 0, 3, 6, 12, 18 and 24 months after the
start of the therapy. In the sequel these points in time will be coded j =
1, 2, 3, 4, 5, 6 where j = 1 stands for the baseline data.

We checked for typos and other errors in the data. Table (1) shows the
range of some patient parameters. There were some obvious errors, e.g. a
body length of 1.78 cm, which were corrected by multiplying by 100. In some
cases values of the Body Mass Index (bmi) are high, but this can occur. If
a bmi of greater than 60 is found, a correction is applied.

Values of the gfr of 50 and higher are peculiar, but we decided not
to adjust them since we do not expect that our results will be influenced
significantly.

We could not find unrealistic data in other patient parameters.

2.2 General patient characteristics at start of therapy

Table (1) displays some general characteristics about the population in the
trial, excluding patients who are anuric at baseline.

To check that the differences between hd and pd are not due to chance,
we performed statistical tests, the outcomes of which are also shown in the
table.

Patients starting on hemodialysis are 10 years older on average than pa-
tients in whom peritoneal dialysis was started. hd patients also had more
comorbidity. In patients starting on hd the underlying renal disease was
more often related to vascular suffering than in pd patients. In the latter
group the incidence of glomerulonephritis was relatively greater. The inci-
dence of diabetes mellitus as the cause of the renal insufficiency was equal
in both groups. The gfr in pd patients at the start of dialysis was slightly
higher on average.

2.3 Sample graphs of the filtration rate over time

To get a feeling for the filtration rate over time, we plotted the filtration
rate over the first two years for 20 randomly selected patients, see figure 1.
For each sample, the curves for each indivual are plotted and the means for
hd and pd.
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All HD PD Test (p-value)
patients (chronic) (chronic)

Number of patients 1428 840 588
Gender (% men) 63 59 67
Age av. (sd) 59.0 (15.2) 63.2 (14.0) 53.1 (14.8) t-test (< 0.001)

(min, max) (18.3,91.6)
Kahn comorbidity score (%) Low 40 31 54 χ2(< 0.001)

Medium 33 37 28
High 26 32 18

Primary Renal Disease (%) Diabetes 16 16 16 χ2(< 0.001)
Glomerulonephritis 14 9 20
Renal Vascular 18 22 12
Conditions
Other 53 53 52

gfr av. (sd) 5.42 (3.51) 5.13 (3.69) 5.78 (3.24) t-test (0.003)
(min, max) (0.0, 51.7)

bmi av. (sd) 25.0 (4.7) 25.0 (4.4) 25.0 (5.0) t-test (> 0.50)
(min, max) (14.9, 94.5)

length (cm) av. (sd) 172 (10) 170 (10) 173 (11) t-test (< 0.001)
(min, max) (77, 207)

weight (kg) av. (sd) 73.5 (14.3) 72.6 (14.2) 74.9 (14.5) t-test (0.004)
(min, max) (34.0, 150.0)

Table 1: Patient characteristics at the start of the treatment, excluding
patients who are anuric at baseline

For some patients, gfr can be seen to remain zero from a certain point
in time, which means kidney function completely brakes down. As referred
to in the introduction, the kidney then enters an absorbing state, illustrating
the complication that gfr is continuous, but not normally distributed.

In other cases, gfr curves are interrupted, due to kidney transplant,
death of the patient, or the patient leaving the Necosad study. This is also
illustrated in figure 2, which shows the decreasing number of patients still
participating in the study. The small number of measurements after visit 6,
explains why we use only data for the first 2 years (first 6 visits, including
baseline). Returning to the complete data set (after cleaning up), figure 3
displays a graph of the observed mean gfr by therapy; patients who are
anuric from the start of the treatment, are excluded (N = 1428).

2.4 Defining patients as anuric

In the Necosad study, a patient is said to be anuric, that is, has kidneys
that no longer function, if he or she has gfr = 0 at two consecutive visits.

Figure 4 shows the number patients who are for the first time anuric. pj
is the estimated probability of a patient who is not anuric at time tj−1 to
become anuric at time tj

pj =
# persons for the first time anuric

# persons for the first time anuric + # persons not yet anuric
.

ρj is the estimated probability to be not yet anuric at time tj
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Figure 1: gfr and mean gfr by therapy (bottom)for 20 randomly selected
patients. (Visit 1 =baseline)
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Figure 2: Number of patients with a gfr measurement (gfr ≥ 0), excluding
patients who are anuric at baseline.

Figure 3: Observed mean gfr, excluding patients who are anuric at baseline.
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Figure 4: Number of patients who are for the first time anuric.

patients patients
becoming not yet

Visit j anuric anuric pj ρj
1 (= baseline) 0 1028 0 1.00
2 0 1263 0 1.00
3 63 1039 0.0572 0.943
4 68 808 0.0776 0.870
5 68 588 0.104 0.779
6 63 405 0.135 0.675

Table 2: Probability for a patient to become anuric

ρ1 = (1−p1), ρ2 = (1−p1)(1−p2), . . . , ρj = (1−p1) . . . (1−pj), j = 1, . . . , n.
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Figure 5: Estimated probability to be not yet anuric.
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3 Models for longitudinal data, some general as-
pects

This outline is based on [1], Part II, in particular chapters 3, 4 and 5. This
is the standard approach to the analysis of repeated measurements which
also can be executed by standard software packages like spss

Assumption: longitunal responses have a multivariate normal distribu-
tion. Theory is based on this assumption, but is not required (asymptotic
behaviour). In this section we will use notation and terminology employed
by Fitzmaurice et al: the participants are referred to as individuals or sub-
jects. The individuals are measured repeatedly at different occasions or
times.

3.1 Notation

Consider a sample of N subjects, measured repeatedly over time. In this
study, all measurements are scheduled to take place on the same n occasions
(balanced design). Let Yij denote the random response variable (e.g. kidney
filtration rate), for the ith subject (i = 1, . . . , N) on the jth measurement
occasion (j = 1, . . . , n).

Due to missing data and drop outs, usually not all subjects are measured
at all time points. The term drop out refers to the special case where, if Yik is
missing, then Yi,k+1, . . . , Yin are also missing. In the Necosad study, patients
“drop out” when they leave the study, die, or have a kidney transplant. Drop
outs will not be discussed, but missing data will be examined in section 3.3.2

We now first consider the model without missing data.
We group the responses for subject i in the vector

Yi =


Yi1
Yi2
...
Yin

 , i = 1, . . . , N

We may expect the random variables Yi to be independent of each other,
e.g. it is not to be expected that the set of n observed filtration rates for one
patient, will influence those of other patients. But, the repeated measures on
the same patient are certainly not expected to be independent observations.

Associated with each respons Yij , there is a p-vector of covariates

Xij =


Xij1

Xij2
...

Xijp

 , i = 1, . . . , N ; j = 1, . . . , n,
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in which each element corresponds to a different covariate. Covariates can
be grouped into two main types: those whose value do not change for the
duration of the study and covariates whose values change over time. To the
first group belong parameters like gender and fixed experimental treatments,
e.g. mode of dialysis at the start of the study.

Now consider a linear regression model for changes in the mean response
over time and for relating the changes to the covariates,

(1) Yij |Xij = β1Xij1 + β2Xij2 + · · ·+ βpXijp + eij , j = 1, . . . , n,

where β1, . . . , βp are unknown regression coefficients, relating the mean of
Yij to its corresponding covariates. The eij are random errors, with mean
zero. Taking the mean:

(2) E(Yij |Xij) = µij = β1Xij1 + β2Xij2 + · · ·+ βpXijp

If Xij = 1, for all subjects i and all time points j, then β1 is the intercept
term in the model.

There are n separate regression equations for the response variables and
the regression model can be expressed in the compact form

(3) Yi = Xiβ + ei

in which

Xi =


Xi11 Xi12 . . . Xi1p

Xi21 Xi22 . . . Xi2p
...

...
. . .

...
Xin1 Xin2 . . . Xinp

 ,

β = (β1, β2, · · ·βp)′ and ei = (ei1, ei2, . . . , ein)′ (The ′ denotes the tranpose
of a vector or matrix). Xi is often called the design matrix. The mean of Yi
is

(4) E(Yi|Xi) = µi = Xiβ,

where µi = (µi1, . . . , µin)′ is the vector of means for the ith individual.

3.2 Distributional assumptions

As stated before, we suppose that for each individual i the repeated mea-
surements have a multivariate normal distribution. This is in fact the dis-
tribution of the random variables ei ∼ N(0,Σi), but with mean µ=Xiβ.

Yi ∼ N(µi,Σi),
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in which Σi is the covariance matrix for this individual:
(5)

Σi = Cov(Yi) = Cov


Yi1
Yi2
...
Yin

 =


V ar(Yi1) Cov(Yi1, Yi2) . . . Cov(Yi1, Yin)

Cov(Yi2, Yi1) V ar(Yi2) . . . Cov(Yi2, Yin)
...

...
. . .

...
Cov(Yin, Yi1) Cov(Yin, Yi2) . . . V ar(Yin).

 .

We assume the Yi to be independent of each other, but we consider the
repeated measures on the same subject i to be dependent; in general, Σi

will not be a diagonal matrix.
In this study, where all participants have the same number n of repeated

measures, obtained at a common set of occasions, and where there is no
dependence of the covariance matrix on the covariates, we can drop the the
index i and simply denote the covariance matrix by Σ:

Σ = Σi = Cov(Yi), i = 1, . . . , N.

The assumption of the homogeneity of covariance, is the multi-variate analog
of the of the assumption of homogeneity of variance in linear regression for
a univariate response.

3.3 The multi-variate normal distribution

The multivariate normal joint probability density function for Yi equals

f(yi) = f(yi1, . . . , yij , . . . , yin)(6)

=
1

(2π)n/2
√

detΣ
e−

1
2

(yi−µi)′Σ−1(yi−µi),

where −∞ < yij <∞.

3.3.1 Estimating regression parameters and the covariance ma-
trix

All of the models for longitudinal data analysis can be expressed in terms
of a general linear regression model for the mean response vector

E(Yi|Xi) = µi = Xiβ,

where the response vector Yi is assumed to arise from a multivariate normal
distribution. We consider a balanced design without missing data ni =
n, i = 1, . . . , N in which all subjects to have the same covariance matrix

(7) Cov(Yi) = Σi = Σ(θ),

in which θ is a vector of length q. If the covariance matrix is unstructured
as in section (3.5.1), the elements of q are the n variances and n(n − 1)/2
pairwise covariances stacked in a single q-vector, where q = n(n+ 1)/2.

In this section we discuss methods for estimating the unknown parame-
ters β and θ (or Σ).
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The method of maximum likelihood for correlated observations
The responses Yi are multivariate normally distributed and entirely specified
by the mean vector Xiβ and covariance matrix Σ(θ). In order to build a
model that explains the data these quantities have to be estimated. A very
general approach to estimation is the method of maximum likelihood. We
give an introduction and refer for more details to e.g. [4].

The maximum likelihood estimates of β and θ are those values of β and
θ that maximize the joint probability of the response variables evaluated at
their observed values. The probability of the response variables evaluated
at the fixed set of observed values and regarded as functions of β and θ, is
known as the likelihood function. Taking the log we obtain the log-likelihood
function l. Thus β and θ are estimated by maximizing l. The estimates for
β and Σ(θ) thus obtained are usually denoted by β̂ and Σ̂(θ).

When there are n repeated measurements on the same individual, it can-
not be assumed that these are independent. As a result we need to consider
joint probability density function for the vector of repeated measurements,
as expressed by (6). We assumed that the vectors of repeated measures for
different subjects are independent of one another. Thus, the log-likelihood
function l can be expressed as a sum of the individual multivariate normal
probability density functions for Yi.

To find the maximum likelihood estimate (mle) of β in the repeated
measurements setting, we first suppose that θ is known. and therefore does
not need to be estimated. Later we will relax this assumption. To determine
the estimate of β, we must maximize the following log-likelihood function:
(8)

l = −nN
2
log(2π)− 1

2

N∑
i=1

log(detΣ(θ))− 1
2

{
N∑
i=1

(yi − µi)′Σ(θ)−1(yi − µi)

}
.

We see that maximizing l with respect to β is equivalent to minimizing{
(yi − µi)′Σ(θ)−1(yi − µi)

}
The estimator of β that minimizes this expression is known as the generalized
least squares (gls) estimator of β and can be expressed as

(9) β̂ =

{
N∑
i=1

(X ′iΣ(θ)−1Xi)

}−1 N∑
i=1

(X ′iΣ(θ)−1yi).

Usually however, we do not know θ. Instead we typically must estimate
Σ(θ) from the data at hand. Maximum likelihood estimation of θ proceeds
in the same way as with estimation of β and is obtained by maximizing the
log-likelihood with respect to θ. To this end we take the derivative with
respect to θ and the result, called the score function, and equate the result
to zero. Unfortunately, this equation is non-linear and it is generally not
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possible to write the estimator of θ in closed form. Instead we have to rely
on iterative techniques. Computer algorithms have been developed to find
the solution.

Note, that with unstructured covariance matrices, when responses are
measured at the same n occasions, that the elements of the covariance matrix
are simply the empirical covariances!

Once the estimate of θ has been obtained, we then simply substitute of
Σ(θ), which we write as Σ̂ = Σ(θ̂), into the estimator of β given by (9) to
obtain the following mle of β:

(10) β̂ =

{
N∑
i=1

(X ′iΣ̂
−1Xi)

}−1 N∑
i=1

(X ′iΣ̂
−1yi).

The mle β̂ of β has some interesting and important large sample properties:

• The mle is a consistent estimator of β, that is, it converges in prob-
ability to the true value of β, voor all β (blz 91). If the distribution
of the errors ei is normal or even just symmetric, then β̂ is also an
unbiased estimator of β.

• The mle is asymptotically unbiased : its bias tends to zero as the
sample size increases to infinity.

• The mle is asymptotically efficient. This means that no asymptot-
ically unbiased estimator has lower asymptotic mean squared error
than the mle.

• The mle is asymptotically normal. The distribution for large samples
is multivariate normal, with mean β and covariance

Cov(β̂) =

{
N∑
i=1

(X ′iΣ(θ)−1Xi)

}−1

,

in which Σ is estimated from the data.

Asymptotic normality extends to the incomplete data setting, when cer-
tain assumptions about missingnes hold.

Restricted Maximum Likelihood Estimate When estimating regres-
sion parameters with spss, choosing Linear Mixed Models, we employ an
alternative mle, namely Restricted Maximum Likelihood Estimate (reml).
In essence, the reml method deals with linear combinations of the observed
values whose expectations are zero. These “error contrasts” are free of any
fixed effects in the model. In contrast to maximum likelihood estimates,
reml estimates of variances and covariances are known to be unbiased—of
particular importance when dealing with small samples.
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reml estimates in balanced designs are identical to Analysis of Variance
estimates.

reml estimates of variance components are known to be unbiased in
balanced designs and have the same asymptotic distributional properties
as maximum likelihood estimates. These properties can be used to test
hypotheses about population variances and covariances, provided sample
sizes are sufficiently large.

3.3.2 The problem of missing values in longitudinal data

This discussion is in large part based on [2], page 208 ff.
The key question for analyses with missing data is, under what circum-

stances, if any, do the analyses we would perform if the data set were fully
observed lead to valid answers?

Let Y ∗ denote the complete set of measurements, e.g. gfr over time,
which would be have been obtained were there no missing values and par-
tition this set into Y ∗ = (Y (o), Y (m)) with Y (o) denoting the measurements
actually obtained and Y (m) the measurements which would have been avail-
able had they not been missing, for whatever cause. Finally, let R denote
the set of indicator random variables, denoting which elements of Y ∗ fall
into Y (o) and which into Y (m).

A probability model for the missing value mechanism is a specification
of the probability distribution of R conditional on Y ∗ = (Y (o), Y (m)). The
missing value mechanism can be classified as:

• completely random if R is independent of both Y (o) and Y (m). The
abbreviation used is mcar (Missing Completely At Random). If data
are mcar, then consistent results with missing data can be obtained by
performing the analyses we would have used had their been no missing
data, although there will generally be some loss of information. In
practice this means that, under mcar, the analysis of only those units
with complete data gives valid inferences.

Example: In the Necosad setting, when staff measures the gfr, but
then lose the data, these data are mcar: the reason for missing data
is not related to the outcome of the measurement.

• random (Missing At Random, mar)if R is independent of Y (m). This
is equivalent to saying that the behavior of two subjects who share
measured values have the same statistical behavior on the other ob-
servations, whether observed or not. Under mar, the probability of
a value being missing will generally depend on measured values, so it
does not correspond to the intuitive notion of “random”.

Example: It is decided that the patient receives a kidney tranplanta-
tion, based on the observed value of gfr.
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• informative (or Missing Not At Random, mnar)if R is dependent of
Y (m). Even accounting for all the available observed information, the
reason for measurements being missing still depends on the unseen
measurements themselves.

Example: Replacing the zero value of gfr in the anuric phase of a
patient by the code for missing value.

Drop out refers to a special case of missing data where if Yik is missing, then
Yi,k+1, . . . , Yin are also missing. A patient in the Necosad study “drops out”,
e.g. due to kidney transplant, death of the patient, or the patient leaving
the study.

We now show that for likelihood-based inference, the crucial distinc-
tion is between random and informative missing values. To see this, let
f(y(o), y(m), r) be the joint probability density function of (Y (o), Y (m), R)
and use the standard factorization to express this as

(11) f(y(o), y(m), r) = f(y(o), y(m))f(r|y(o), y(m))

For a likelihood based analysis, we need the joint pdf of the observable
random variables (Y (o), R), which we obtain by integrating (11):

(12) f(y(o), r) =
∫
f(y(o), y(m))f(r|y(o), y(m))dy(m)

Now if the missing value mechanism is random, f(r|y(o), y(m)) does not
depend on y(m) and (12) becomes

f(y(o), r) = f(r|y(o))
∫
f(y(o), y(m))dy(m)(13)

= f(r|y(o))f(y(o))

If we now take logarithms in the last display, the log-likelihood function is

(14) l = logf(r|y(o)) + logf(y(o)),

which is maximized by separate maximization of the two terms on the right
hand side. Since the first term contains no information about the distribu-
tion of Y (o), we can ignore it for the purpose of making inferences about Y (o).
This explains why the maximum likelihood estimator of β given by (10), ex-
tends to the incomplete data setting when the missing value mechanism
is random; see section 3.3.1. However, in general non-likelihood methods
(e.g. based on individuals with fully observed data, moments, estimating
equations & including generalized estimating equations) are not valid under
mar, although some can be “fixed up”. In particular, ordinary means, and
other simple summary statistics from measured data, will be biased.

Because of the above result, both completely random and random miss-
ing value mechanisms are sometimes referred to without distinction as ig-
norable.
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3.4 Modeling the mean response over time

Much of the focus in the analysis of longitudinal data is on the mean response
µi. There are two approaches for modeling the mean response over time:
the analysis of response profiles and parametric or semi-parametric curves,
e.g, piecewise linear curves. The analysis of response profiles is an example
of a non-parametric approach and offers a model free calculation of the the
mean response.

3.4.1 Non-parametric curves: the analysis of response profiles

Methods for analyzing response profiles are appealing when there is a single
categorical covariate (e.g. denoting a different therapy) and when no specific
a priori pattern for the differences in the response profiles between groups
can be specified. When repeated measures are obtained at the same sequence
of occasions, the data can be summarized by the estimated mean response
at each occasion, stratified by levels of the group factor. At any given level
of the group factor, the sequence of means over time is referred to as the
mean response profile. The analysis of response profiles can also handle
incompleteness due to missing data.

3.4.2 Parametric curves

Here we presume a parametric curve, e.g. a linear or quadratic trend, for the
mean response over time. This allows for a dramatically reduced number of
model parameters; by their very nature, parametric curves provide a very
parsimonious description of trends in the mean response over time, and of
covariate effects on then mean response in time. For example, a linear trend
in the mean response can be characterized by a single regression parameter
that has an interpretation in terms of the constant rate of change in the
mean response.

In addition, parametric curves describe the mean as an explicit function
of time. As a result, and in contrast to profile analysis, there is no necessity
to require that all cases in the study have been measured at the same time
points. However, parametric curves impose an explicit structure on the
mean responses.

Linear trend over time is the simplest parametric curve that can be used
to describe changes in the mean response over time.

3.5 Modeling the covariance

The defining feature of longitudinal data, is that repeated responses are
obtained on the same individuals over time and the responses on the same
individual are correlated. Accounting for the correlation among repeated
measures completes the specification of any regression model for longitudinal
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data and usually increases efficiency with which the regression parameters
can be estimated. In addition, when there are missing data, correct modeling
of the covariance is often a requirement for obtaining valid estimates of the
regression parameters.

Longitudinal data present us with two aspects of the data that require
modeling: the mean response over time and the covariance among repeated
measures on the same individuals. These two aspects of the data are interre-
lated and the choice of models for the mean response and the covariance are
interdependent. This interdependence arises because the vector of residuals
depends upon the specification of the model for the mean.

The covariance among repeated measures can be modeled in three differ-
ent ways: unstructured covariance, covariance pattern models and random
effects covariance structures, which we will not discuss.

3.5.1 Unstructured covariance

This allows for any arbitrary pattern of covariance among the repeated mea-
sures. This is referred to as unstructured covariance: no explicit structure
is assumed, other than the homogeneity of covariance.

Thus, when there are n repeated measurements, n variances and n ×
(n− 1)/2 pairwise covariances (or correlations) are estimated.

There are two potential drawbacks with this technique. First, the num-
ber of covariance parameters can be quite large; with n measurements, the
n × n covariance matrix has n × (n + 1)/2 unique parameters. Thus in a
longitudinal study with 10 measurement occasions, an unstructured covari-
ance has 55 parameters (10 variances and 45 covariances). And, when the
number of covariance parameters to be estimated is large relative to the
sample size, estimates are likely to be unstable, due to errors adding up. In
the second place, such an approach only makes sense when all subjects are
measured at the same occasions.

In section 4 this model is applied to the gfr data set.

3.5.2 Covariance pattern models

This approach borrows ideas from the statistical literature on time series
analysis. Time series analysis follows a single subject and tries to summarize,
in as few parameters as possible, the trend in time of the quantity of interest.
In longitudinal analysis a (large) group of subjects is followed, but now group
properties like mean response for a given subgroup are important. Both
analyses share a common feature: the repeated measures are (positively)
correlated. Also, if the measurements are taken closer in time, usually they
are more highly correlated than repeated measurements; thus correlations
decay as the time separation increases.
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When attempting to impose some structure on the covariance a balance
needs to be struck. If too little structure is imposed there will be too many
parameters to estimate with the limited amount of data at hand and this will
adversely affect the precision the precision with which the main parameter
of interest, the vector β of covariates, can be estimated. This is one of the
drawbacks of the unstructured covariance considered in the previous section.

When structure is imposed on the covariance, it is possible to improve
the precision with which β can be estimated. However, if too much structure
is imposed, there is a risk of model misspecification, that could ultimately
result in misleading inferences concerning β; this is the classic trade off
between bias and precision.

Quite often, the correlation among repeated measures is expressed as
an explicit function of the distance in time, in which case these models can
be used with unequally spaced observations. Many of the models assume
stationarity, in which variance does not change as a function of time. This
way, we can model the covariance structure with only a few parameters.

Here are some examples:

Compound symmetry covariance matrix With compound symmetry
covariance, it is assumed that the variance σ2 is constant across occasions
and subjects i and Corr(Yij , Yik) = ρ for all i, j and k and j 6= k. For j = k,
the correlation is equal to 1. That is,

Σ = Cov(Yi) = σ2


1 ρ ρ . . . ρ
ρ 1 ρ . . . ρ
ρ ρ 1 . . . ρ
...

...
...

. . .
...

ρ ρ ρ . . . 1.

 ,

with the constraint that ρ ≥ 0. The compound symmetry covariance is very
parsimonious, with only two parameters, regardless of the number of obser-
vations. However, it makes the assumption that the correlation between any
pair of measurements is the same regardless of the time interval between the
measurements, which is rather unrealistic, given the empirical fact that for
most longitudinal data, the correlations are expected to decay with time.
Also, the assumption of constant variance across time is unrealistic in many
settings.

Toeplitz covariance This pattern makes the assumption that any pair
of responses that are equally separated in time have the same correlation.
It is assumed that the variance σ2 is constant across measurement occasions
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and subjects i and that Corr(Yij , Yi,j+k) = ρk for all i, j and k, j 6= k:

Σ = Cov(Yi) = σ2


1 ρ1 ρ2 . . . ρn−1

ρ1 1 ρ1 . . . ρn−2

ρ2 ρ 1 . . . ρn−3
...

...
...

. . .
...

ρn−1 ρn−2 ρn−3 . . . 1.

 ,

with ρk ≥ 0. This structure is only appropriate when the observations are
made at equal (or approximately) intervals of time. Note that the Toeplitz
covariance has n parameters. A special case of Toeplitz covariance is the
(first-order) autoregressive covariance.

Autoregressive covariance The variance σ2 is constant across time and
subjects i and Corr(Yij , Yi,j+k) = ρk for all i, j and k, j 6= k, and ρ ≥ 0:

Σ = Cov(Yi) = σ2


1 ρ ρ2 . . . ρn−1

ρ 1 ρ . . . ρn−2

ρ2 ρ 1 . . . ρn−3

...
...

...
. . .

...
ρn−1 ρn−2 ρn−3 . . . 1

 .

There are only two parameters. The correlations decline over time as the
separation between pairs of repeated measures increases, but in many set-
tings the correlations rarely decay that quickly.

The autoregressive process is said to be first order (AR(1)) because
the error eij in the observation Yij only depends on the previous error
ei,j−1; dependence on the two previous errors would yield a second-order
autoregressive process. The first-order autoregressive covariance is a pro-
cess where the error term at the jth occasion is a deterministic function
of the error at the previous occasion (i.e. the recent past predicts the
present), plus an additional (and independent) source of random error, wij :
eij = ρei,j−1 + wij . For such a process, it can be shown that V ar(eij) = ρ2

and Cov(eij , eik) = σ2ρ|j−k|.
The Markov model for the mean response of the filtration rate gfr over

time, to be discussed in section 5, is an example of a first order autoregressive
process.

Banded, exponential and hybrid models The banded covariance pat-
terns make the assumption that the correlation is zero beyond some specified
interval. It is possible to apply an banded pattern to any of the covariance
pattern models considered so far. In longitudinal studies in the health sci-
ences, it is rare for the correlation to decay to zero, even in studies where
there is a lengthy period of follow up.
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In the exponential covariance model, the correlation between any pair
of repeated measures decreases exponentially with the time separation be-
tween them. This is a generalization of autoregression, suitable when the
measurement times are not equally spaced over time. Let ti1, . . . , tin denote
the observation times for the ith subject and assume that the variance σ2 is
constant across measurements and subjects i. Then the correlation between
observations Yij and Yik could be written as Corr(Yij , Yik) = ρ|tij−tik| and
for the covariance we would have Cov(Yij , Yik) = σ2 exp(−θ|tij − tik|) for
some θ ≥ 0.

A distinctive feature of the exponential model is that it assumes that the
correlation is one if measurements for an individual are made repeatedly at
the same occasion. This corresponds to the assumption that the responses
are measured without error; an unrealistic assumption in most longitudinal
studies in the health sciences.

In hybrid models, autoregressive and compound symmetry models are
combined, thereby overcoming the less appealing aspects of these models for
longitudinal data. In this model,

V ar(Yij) = σ2
1 + σ2

2,

Cov(Yij , Yik) = ρ1σ
2
1 + ρ

|tij−tik|
2 σ2

2,

Corr(Yij , Yik) =
ρ1σ

2
1 + ρ

|tij−tik|
2 σ2

2

σ2
1 + σ2

2

.

This implies that the correlation between replicate measurements on an
individual obtained at the same occasion is

ρ1σ
2
1 + σ2

2

σ2
1 + σ2

2

,

which is less than one when ρ1 < 1. The correlation no longer decays to
zero but has a minimum of

ρ1σ
2
1

σ2
1 + σ2

2

,

which is greater than zero provided ρ1 > 0.

4 Models for longitudinal data analysis applied to
the GFR data set

In this chapter we apply the theory of longitudinal analysis, as discussed in
chapter 3, to the gfr data set.

lumc epidemiologists analyze the gfr data over time, modeling the non-
anuric phase of the kidney (see section 2.4). Measurements after anury are
discarded and the researchers assume that these measurements are missing
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at random. This way, the extrapolated gfr measurements are allowed to
become negative.

The assumption that the data in the anuric phase are mar is not realis-
tic; it can hardly be maintained that data are missing at random after such
a deliberate act. This means that the mle no longer has the nice properties
listed in section 3.3.1.

lumc epidemiologists start with performing an analysis of response pro-
files. When the curve of mean responses looks reasonably linear, they try
to fit a linear model, but now with time as continuous covariate. If this is
not the case, another approach to modeling has to be found.

We will discuss both techniques in this chapter.

4.1 Modeling GFR using analysis of response profiles

If Yij represents the filtration rate for patient i at time j, the mean gfr for
patient i at visit j obeys the general model

µij = E(Yij |Xij) = β1Xij1 + β2Xij2 + · · ·+ βpXijp i = 1, . . . , N ; j = 1, . . . , n.

In our example, the regression coefficients βk (k = 1, . . . , p) refer to intercept,
time, group or group×time interaction; Xij1 ≡ 1 and Xij2 = 0 if patient i
was assigned to hd, 1, if the patient was assigned to pd. The other covariates
are indicator variables referring to time or group×time interaction. This
way, we can test for main effects of group and time or for a group×time
interaction effect. E.g. when testing for group×time interaction effects the
null hypothesis is of parallel mean response profiles; see section 3.4.1.

With n = 6 measurement occasions we would have p = 2n + 2 = 14
regression coefficients and the above expression for µij would read as

(15) µij = β1 + β2groupi + β3[time = 1] + · · ·+ β8[time = 6]
+ β9[time = 1]× groupi + · · ·+ β14[time = 6]× groupi,

where groupi = 1 if the i-th patient was receiving hd therapy and groupi = 0
otherwise. This model is succinctly written as

gfr = group + time + group*time.

Table 3 lists the estimates for the regressions coefficients, calculated by
spss. Let us try to reproduce the estimated means for gfr by using
the estimates in table 3, as calculated by spss. We will do this manually for
two time points. Add the estimated regression coefficients from the table,
substituting in (15), for baseline and hd:

β1 + β2 × 1 + β3 × 1 + · · ·+ β8 × 0 + β9 × 1× 1 + · · ·+ β14 × 0× 1 =
= 2.475061− 1.004013 + 3.428899 + 0.376508
= 5.276455.
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Figure 6: Observed means and means calculated by the analysis of response
profiles.
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Parameter Therapy Visit Regr coeff β̂ Std. Error p
Intercept β1 2.475061 0.154212 < 0.0001
Therapy hd β2 -1.004013 0.212971 < 0.0001
Visit (1 = baseline) 1 β3 3.428899 0.189173 < 0.0001
Visit 2 β4 2.005964 0.160903 < 0.0001
Visit 3 β5 1.447851 0.149859 < 0.0001
Visit 4 β6 0.856431 0.124339 < 0.0001
Visit 5 β7 0.305941 0.118182 0.01
Visit 6 β8 0 0 .
Visit x therapy hd 1 β9 0.376508 0.260523 0.15
Visit x therapy hd 2 β10 0.248392 0.222019 0.26
Visit x therapy hd 3 β11 0.238306 0.209800 0.26
Visit x therapy hd 4 β12 0.132406 0.176525 0.45
Visit x therapy hd 5 β13 0.266403 0.168878 0.12
Visit x therapy hd 6 β14 0 0 .

Table 3: Estimated regression coefficients based on analysis of response
profiles of gfr for baseline and first 5 visits

The same calculation for baseline and pd:

β1 + β2 × 0 + β3 × 1 + · · ·+ β8 × 0 + β9 × 1× 0 + · · ·+ β14 × 0× 0
= 2.475061 + 3.428899
= 5.90396.

Visit 6 and hd:

β1 + β2 × 1 + β3 × 0 + · · ·+ β8 × 1 + β9 × 0× 1 + · · ·+ β14 × 1× 1 =
= 2.475061− 1.004013
= 1.471048.

Visit 6 and pd:

β1 + β2 × 0 + β3 × 0 + · · ·+ β8 × 1 + β9 × 0× 0 + · · ·+ β14 × 0× 1
= 2.475061

It is possible to let spss do this job (“estimated marginal means”); the
results are displayed in table 9. Figure 6 compares the estimates with the
observed means. We notice that patients undergoing pd therapy (chronic)
have a consistently higher value for the mean gfr than hd patients. This
can be readily explained if we realize that pd therapy is usually given at an
earlier stage, which by and large coincides with the patients being younger
and healthier.
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How do we explain the differences between the observed and the es-
timated means? Our model allows negative values for the filtration rate,
whereas the observed values are non-negative by definition. This will result
in a lower value for the estimated mean gfr across time. Next, we test
the estimates for effects of group and time and for group×time interaction.
It is obvious from figure 6 that the null-hypotheses of no group and/or no
time effects have to be rejected; this is also born out by table 5. Figure 6
is inconclusive with respect to group×time interaction; indeed, according to
table 4 the null hypothesis of no group×time interaction cannot be rejected.
Table 6 lists the reml estimated (unstructured) covariance matrix for gfr,

Parameter Numerator df Denominator df F p
Visit 5 738.666 171.367 < 0.0001
Therapy 1 1128.244 30.914 < 0.0001
Therapy×visit 5 738.666 0.743 > 0.50

Table 4: Test of group×time interaction, based on the analysis of response
profiles of gfr.

Parameter Numerator df Denominator df F p
Visit 5 744.719 173.241 < 0.0001
Therapy 1 1259.516 30.792 < 0.0001

Table 5: Test of main effects based on the analysis of response profiles for
gfr.

which we assume to be equal for all patients (see section 3.2). The covari-
ance between two measurements of the filtration rate decreases with time,
as is to be expected with longitudinal data ([1], page 115).

The decreasing variance of the estimated mean is less easy to explain; one
would expect greater variability in the data, due to missing data and drop
out. The analysis of response profiles looks reasonably linear, suggesting the
viability of a linear trend model.

4.2 Modeling GFR with linear trend over time

Linear trend over time is an example of parametric regression. This is not
to be confused with linear regression, where we track a single patient and
where no covariance is assumed between repeated measures. In spss we
choose mixed models and select time as covariate.

We write the model as

(16) µij = E(Yij) = α+ βtimej + γgroupi + δtimej × groupi
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Visit 1 Visit 2 Visit 3 Visit 4 Visit 5 Visit 6
Visit 1 (= baseline) 12.376362 4.894658 4.629420 3.984655 4.211130 4.020289
Visit 2 4.894658 9.356327 6.047510 5.227131 5.022917 4.243854
Visit 3 4.629420 6.047510 9.529696 6.120570 5.600444 5.336974
Visit 4 3.984655 5.227131 6.120570 8.342014 6.783093 6.385844
Visit 5 4.211130 5.022917 5.600444 6.783093 8.407177 6.714562
Visit 6 4.020289 4.243854 5.336974 6.385844 6.714562 7.985493

Table 6: Analysis of response profiles: reml estimate of the covariance
matrix Σ of gfr, for baseline and first 5 visits.

where groupi = 1 if the ith patient was assigned to hd and groupi = 0 if
assigned to pd. timej denotes the jth visit.

Table 7 lists the regression parameters as calculated by spss. In table 8,

Parameter Therapy Estimate
Intercept (α) 5.038446
Time (β) -0.115565
Group (γ) hd -0.692984
Time x group (δ) hd -0.011129

Table 7: Estimated regression coefficients for gfrwith time as a continuous
parameter.

the reml estimate of the covariance matrix, based on linear regression, is
diplayed. The values in the matrix differ from those in table 6, but overall
the same pattern for the variance and covariance can be seen. The estimated

Time (month) 0 3 6 12 18 24
0 12.849629 4.402299 3.959676 3.238345 4.009179 4.234776
3 4.402299 9.398535 6.080113 5.231483 5.035871 4.345453
6 3.959676 6.080113 9.622230 6.155329 5.631603 5.451241
12 3.238345 5.231483 6.155329 8.330531 6.787102 6.499060
18 4.009179 5.035871 5.631603 6.787102 8.473863 6.997186
24 4.234776 4.345453 5.451241 6.499060 6.997186 8.487421

Table 8: Linear trend model: reml estimate of the covariance matrix Σ for
gfr, for baseline and first 5 visits

means can now be calculated, in a manner similar to the calculations for the
analysis of response profiles. The results are shown in table 9. Figure 7
compares the estimates with the observed values.
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Resp profiles Linear trend
Visit (Month) hd pd hd pd

1 (0) 5.276455 5.903960 4.345476 5.038460
2 (3) 3.725404 4.481025 3.965394 4.691765
3 (6) 3.157205 3.922911 3.585312 4.345070
4 (12) 2.459885 3.331491 2.825148 3.651680
5 (18) 2.043392 2.781002 2.064984 2.958290
6 (24) 1.471048 2.475061 1.304820 2.264900

Table 9: Estimated mean gfr.

Figure 7: Observed means and the linear trend model.
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Parameter Numerator df Denominator df F p
time 1 641.297 686.220 < 0.0001
Therapy 1 1293.032 20.370 < 0.001
Therapy×time 1 641.297 1.448 > 0.20

Table 10: Test of group×time interaction, based on the linear trend model
for gfr.

As observed above (section 4.1), pd patients have a consistently higher
value for the estimated mean gfr. And just as with the analysis of response
profiles, figure 7 is inconclusive with respect to group×time interaction; in-
deed, according to table 10 the null hypothesis of no group×time interaction
cannot be rejected. Figure 8 and table 9 compare the analysis of response
profiles with linear trend.

4.3 Goodness of fit: comparing the models for response pro-
files and linear trend

Figures 6 and 7 give visual clues of how well both modeling approaches fit
the data. But it is difficult to draw conclusions this way.

More is to be expected from a likelihood ratio test. If we denote the
maximum likelihood for the analysis of response profiles and linear trend
by respectively likresp and liklin, then we know from theory ([1], page 97)
that

(17) −2 log
likresp
liklin

= −2 log likresp − (−2 log liklin) ∼ χ2
df

with df := degrees of freedom, the difference in number of parameters be-
tween the models.

The maximum likelihood can be found in the output generated by spss,
under the header “Information Criteria”, but for a proper analysis we have
to select Maximum Likelihood (ml) as Method in the Estimation panel for
Linear Mixed Models, rather than reml which should be used if the two
models have the same fixed parts and differ only in their random part(s);
the random part in our model being the covariance matrix. The likelihood
obtained using ml gives the overall likelihood, which is what we require
here and which we use instead.

−2 log likresp − (−2 log liklin) = 23695.96− 23852.857 = −156.897

The number of parameters for the profile model is 14 (table 3), but two
regression parameters are zero and do not contribute to the dimensionality
of the predicted hyperplane, so 12 degrees of freedom remain. From table 7
we have 4 parameters for the linear trend model. With quantile 156.897,
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Figure 8: Estimated means: comparing the analysis of response profiles with
the linear trend model.
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the p-value for a χ2 distribution with 12 − 4 = 8 degrees of freedom is
p = 8× 10−13. This shows that the profile model fits the data significantly
better than the linear trend model.

4.4 Limitations of response profiles and parametric curves

The two approaches to modeling the gfr have some obvious drawbacks:

• The epidemiologists suppress the zeros for the gfr in the anuric phase
and then assume that the data are missing at random. Obviously they
are not: when suppressing the data intentionally, they are certainly
not missing at random! This has ramifications for the quality of the
maximum likelihood estimates.

• Usually the observed and calculated mean response will not coincide;
both models allow negative extrapolated values for the filtration rate,
whereas the observed values are non-negative by definition. This will
result in a lower value for the estimated mean gfr across time.

The (re)introduction of “absorbing zeros” for the gfr in section 6 offers
a more realistic description of the data and contributes to more accurate
calculations of the mean response.

This is done in combination with a Markov model which is comparatively
simple to implement.

5 Markov models

5.1 Introduction. Why Markov models?

In section 3 our approach was to model the response Yi for an individual i
as

Yi = (Yi1, . . . , Yin)′ ∼ N(µi,Σ) i = 1, . . . , N,

with µi = (µi1, . . . , µin)′ the vector of means for occasions j = 1, . . . , n and
Σ the covariance matrix which is shared by all individuals i. The mean
response µi is calculated by the analysis of response profiles or by fitting a
parametric curve; see section 3.4.

The covariance is unstructered or a structure can be imposed as in sec-
tion 3.5.

We now try to model an observation in terms of its values at preceding
times. In the language of signal analysis, our model would be an autoregres-
sion model of order 1 :

Y = AR(1) + terms

The advantage of this Markov model is the relative ease with which it can
be executed.
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The joint density f(yi) of Yi can be written as

f(yi) = f(yi1, . . . , yin)
= f(yi1, . . . , yi,n−1)f(yi,n|yi1, . . . , yi,n−1)
= f(yi1, . . . , yi,n−2)f(yi,n−1|yi1, . . . , yi,n−2)f(yi,n|yi1, . . . , yi,n−1).

By induction

f(yi) = f(yi1)f(yi2|yi1)f(yi3|yi2, yi1), . . . , f(yi,n|yi1, . . . , yi,n−1).

We model

f(yi1)
f(yi2|yi1)
f(yi3|yi1, yi2)
....

If we assume that the Markov property holds,

f(yij |yi1, . . . , yi,j−1) = f(yij |yi,j−1),

then this yields for the density

(18) f(yi) = f(yi1)
n∏
j=2

f(yij |yi,j−1).

We try to find a simple model for f(yij |yi,j−1), that gives a good description
of the data, for example a linear regression model E(Yij |Yi,j−1) = α+βYi,j−1.

We first show that the Markov model and the analysis of response profiles
for modeling the mean are equivalent in case n = 2.

5.2 Comparing the analysis of response profiles and the Markov
model for two time points

We consider repeated measurements on one subject, with response vector
Y = (Y1, Y2)′, Y1 and Y2 being the responses at times j = 1 and j = 2. The
response Y is bivariate normally distributed,

Y ∼ N(µ,Σ),

with Y = (Y1, Y2)′, µ = (µ1, µ2)′, µ1 = EY1, µ2 = EY2 and Σ = Cov((Y1, Y2)′).
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5.2.1 Mean and covariance of bivariate normal Y

The density is:

f(y) = f(y1, y2)

=
1

(2π)
√

detΣ
e−

1
2

(y−µ)′Σ−1(y−µ).

The covariance is

(19) Σ =
(

σ2
1 Cov(Y1, Y2)

Cov(Y1, Y2) σ2
2

)
=
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

5.2.2 The Markov model

The density can be written as

(20) f(y) = f(y1, y2) = f(y1)f(y2|y1).

We assume that

Y1 ∼ N(µ1, σ
2
1)(21)

Y2|Y1 ∼ N(α+ βY1, σ
2
ε ).(22)

The expression for the distribution of Y2|Y1 is motivated by [4], Example B
page 136 and Example A, page 140:

(23) E(Y2|Y1) = µ2 + ρ
σ2

σ1
(Y1 − µ1),

with µ1 and µ2 as above. This suggests the following model for Y2|Y1:

Y2|Y1 = α+ βY1 + ε, in which ε ∼ N(0, σ2
ε ).

Note that the noise term ε is mandatory, otherwise Y2 would be “hard wired”
to Y1. σ2

ε is unknown.
The mean µ2 is

µ2 = EY2 = E(E(Y2|Y1))
= E(α+ βY1)(24)
= α+ βµ1.

Let us calculate Σ in terms of σ1, β and σε.

Cov(Y1, Y2) = EY1Y2 − EY1EY2 = EY1Y2 − µ1µ2

Y2Y1 = (α+ βY1 + ε)Y1 = αY1 + βY 2
1 + εY1

36



⇒ EY2Y1 = αµ1 + βEY 2
1 + EεEY1

= αµ1 + β(V arY1 + (EY1)2)

= αµ1 + βσ2
1 + βµ2

1.

Combining, we obtain

Cov(Y1, Y2) = EY1Y2 − µ1µ2

= αµ1 + βσ2
1 + βµ2

1 − µ1(α+ βµ1)

= βσ2
1.

We still have to calculate σ2
2.

σ2
2 = V arY2 = V ar(α+ βY1 + ε) = β2σ2

1 + σ2
ε .

The covariance Σ is:

(25) Σ =
(

σ2
1 Cov(Y1, Y2)

Cov(Y1, Y2) σ2
2

)
=
(
σ2

1 βσ2
1

βσ2
1 β2σ2

1 + σ2
ε .

)
In the following section we apply both methods to the gfr data.

5.2.3 Applying the models to the GFR data and comparing the
results for two time points

We do not take the effect of therapy (hd of pd) into account.

The analysis of response profiles The model for the mean response is
similar to (15), however, we are not interested in the (main) effect of group
(therapy), nor in group×time interaction :

µj = α̃+ β̃[j = 1], j = 1, 2.

The spss estimates of the coefficients can be found in the first column of
table 11. Note that before we convert the data set to long format, we first
select only those patients which have non-missing data for both the first two
visits (base line counts as the first visit, as usual). Only then we can expect
the results for the estimated means to agree.

spss estimates (reml) the covariance matrix as

(26) Σ̂ =
(

12.604898 5.051108
5.051108 9.713908

)
.

The Markov model The parameters estimated by spss can be found
in table 11, second column; the results show that there is good (overall)
agreement between the quantities.
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Resp profiles Markov approach
µ̂1 (*) 5.430272 µ̂1 5.430272
µ̂2 (*) 3.832424 µ̂2 3.832425 (24)

α̂ 1.656374
β̂ 0.400726

σ̂1 3.550338 (19) σ̂1 3.550338
σ̂2 3.116714 (19) σ̂2 3.118147 (25)
σ̂ε — σ̂ε 2.774658

Ĉov(Y1, Y2) 5.051108 Ĉov(Y1, Y2) 5.051111 (25)
ρ̂ 0.4564782 (19) ρ̂ 0.4562686 (25)

(19) formula used. (*) µ̂2 = ˆ̃α, µ̂1 − µ̂2 = ˆ̃
β

Table 11: Estimates for the bivariate distribution Y = (Y1, Y2): comparing
response profiles and the Markov model.

6 Modeling GFR over time using Markov models
in which GFR is censored

We found that for two time points, repeated measures (under the guise of
response profiles) and Markov models are equivalent.

In the following we will extent Markov to more than two time points.
An extra complication is, that the gfr can be not smaller than zero and
remains zero when a patient becomes anuric.

6.1 Principles of latency and censoring

When modeling the filtration rate over time, we presume that the values are
multivariate normally distributed. The gfr is by definition definite non-
negative. When modeling the gfr in time with regression models which
require negative values for gfr, we therefore presume a latent variable, nor-
mally distributed.

When renal function breaks down, gfr obtains the value 0 and enters an
absorbing state, as discussed in the Introduction to this thesis. Over time,
the number of patients whose gfr enter this absorbing state, increases, and
so the frequency of the value 0 increases; see figure 9. The cdf of the observed
values Y for the gfr is therefore continuous, but mass accumulates in the
point Y = 0 and for Y > 0, Y is normally distributed. Censoring occurs
when exact values for a random variable Y are known only outside certain
intervals (see [5], chapter 3). The filtration rate gfr is the observed result
of a left censored random variable. We observe Y = max(Z, 0) in which Z

38



(a) (b)

(c) (d)

(e) (f)

Figure 9: Frequency distributions of gfr at (a) visit 1 (= baseline), (b)
visit 2, (c) visit 3, (d) visit 4, (e) visit 5, (f) visit 6. Data after cleaning up
according to section 2.1.
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Figure 10: Illustrating latency and censoring of gfr (Y,Z). Left: densities
of Y (observed gfr) and Z (latent to Y) at early visit of patients. Right:
As left, but at later visit. The vertical bar measures the censored gfr.

is the latent variable:

Z > 0⇒ Y = Z(27)
Z ≤ 0⇒ Y = 0.(28)

Figure 10 illustrates the concepts of censoring and latent variables: the
vertical bar is a measure of the censored “mass” of the random variable Y .

6.1.1 The Method of Maximum Likelihood for the Markov model
with censoring

We continue the discussion of section 5.1 and first consider the case without
censoring.

There are N individuals labeled i, i = 1, . . . , N and n occasions j, j =
1, . . . , n. Let Yi be the response vector of subject i; Yi = (Yi1, . . . , Yin).
If the measurements of different individuals are independent and f(Yi) =
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f(Yi1, . . . , Yin) is the density, then the likelihood is

lik(θ) =
N∏
i=1

f(Yi; θ)(29)

=
N∏
i=1

[
f(Yi1)

n∏
j=2

f(Yij |Yi,j−1; θ)
]
,(30)

under the Markov assumption; see (18).
Now let Y be censored, with latent variable Z. Then the factors f(Yij |Yi,j−1; θ)

in (29) assume the following values, depending on the “state” of Yi,j−1 and
Yij :

(31) f(Yij |Yi,j−1; θ) =


fZ(Yij |Yi,j−1; θ) if Yij > 0 and Yi,j−1 > 0,
FZ(0|Yi,j−1; θ) if Yij = 0 and Yi,j−1 > 0,
1 if Yij = 0 and Yi,j−1 = 0,
0 if Yij > 0 and Yi,j−1 = 0,

Diagram 11 explains the states in our Markov chain.
(31) yields as likelihood

(32)

lik(θ) =
N∏
i=1

[
fZ(Yi1)δi1(FZ(0))1−δi1

n∏
j=2

fZ(Yij |Yi,j−1; θ)δijFZ(0|Yi,j−1; θ)1−δij
]
.

in which

(33) δi1 =

{
1 if Yi1 > 0,
0 if Yi1 = 0.

and

(34) δij =

{
1 if Yij > 0 and Yi,j−1 > 0,
0 if Yij = 0 and Yi,j−1 > 0.

The log likelihood L is

(35) L(θ) = log lik(θ),

We will use the likelihood to find estimates for the regression coefficients in
the Markov model

(36) Zj |Zj−1 = α+ βZj−1 + ε, j = 2, . . . , 6; ε ∼ N(0, σ2
ε ).

Here θ = (α, β, σε).
To obtain the maximum likelihoods estimates, this likelihood has to be

optimized.
We start assuming that α, β and σε are equal for all visits. Later we will

examine if this is the case in our data set.
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Figure 11: Diagram of transition densities

6.1.2 Estimating the regression coefficients in the Markov model

So far we used spss to perform the calculations, but this package is not
suited for the kind of analysis we will now embark on. Therefore, we resort
to the statistical package R. The script file can be found at the end of this
document.

In order to find the regression parameters in our model, we can optimize
the likelihood (32) using a numerical optimization procedure like for example
the R function optim. However our problem with censored observations
is similar to survival analysis with censored survival times. Therefore we
can also use routines for parametric survival analysis like the R function
survreg. Indeed, we performed several experiments with both routines and
concluded that they give the same results. However, working with survreg
has several advantages: we do not need carefully chosen initial values as
with optim. Also, survreg estimates standard errors and returns a lot of
diagnostic data, which are difficult to extract when optimizing with optim.
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patient nr. group time/visit Y_2 Y_1
(id gw) (therap0) (Index1) (gfr cor) (lag gfr)

1 2 1 0 .
1 2 2 0.943796 0
1 2 3 1.244697 0.943796
1 2 4 0.895639 1.244697
1 2 5 0 0.895639
2 2 1 1.888399 .
3 1 1 2.168828 .
3 1 2 2.171048 2.168828
3 1 3 1.562232 2.171048
3 1 4 0 1.562232

Table 12: Start of data set, after transposing to long format. (Variable
names in parentheses.)

We will use the following basic format for survreg:

(37) survreg(formula, dist="gaussian")

On behalf of this analysis, the data set has to be transposed to long format,
an operation we already performed in section 2.1. Thus, the data set has
the format shown in table 12, in which entries for the first 3 patients and
the first 6 visits are included: When performing linear regression without
censoring to find the coefficients in (36), we use the R function lm and then
formula would assume the basic form Y_2 ∼ Y_1. With (right) censoring,
formula assumes the more complicated command

(38) Surv(Y_2, event) ∼ Y_1

The response variable in formula is a survival object created by the R func-
tion Surv. In the language of survival analysis, the first argument to Surv
is the follow up time, which in our study, with Y2 and Y1 being the actual
measured value of gfr, is the positive value of Y2. event is the status in-
dicator, a binary vector: 0 if the subject is “alive” and 1 if “dead”. In our
study, 1 codes for Y2 > 0 and 0 otherwise.

In survival analysis, variables can be right censored. We have left cen-
sored data. We accommodate left censored data by adding the switch
type="left" as argument to the function Surv.

The second argument to survreg is the distribution of the survival time,
in our study this is the distribution of the latent variable underlying gfr,
which we assume to be normal. survreg then, returns information about
the latent variable; with the coefficients returned, we can calculate E(Zj)
(given the value of Zj−1).
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6.1.3 Markov model with fixed regression coefficients: results
over the first 6 visits.

Model without group variable We first consider the model without di-
viding the patients in therapy groups. This model has one intercept and one
slope for all patients and is model 1 in table 15. If we execute command (37),
the summary prints as:

> event<-as.numeric(Y_2 > 0)
> diagn <-survreg(Surv(Y_2, event, type="left")~Y_1, dist="gaussian")
> summary(diagn)

Call:
survreg(formula = Surv(Y_2, event, type = "left") ~ Y_1, dist = "gaussian")

Value Std. Error z p
(Intercept) 0.505 0.0760 6.64 3.09e-11
Y_1 0.614 0.0143 42.96 0.00e+00
Log(scale) 0.962 0.0128 75.05 0.00e+00

Scale= 2.62

Gaussian distribution
Loglik(model)= -8131.4 Loglik(intercept only)= -8882.4

Chisq= 1501.97 on 1 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 4
n= 3703

The output shows that Y1 significantly contributes to Y2.

Model for HD patients We repeat the analysis, but now select only
patients with hd therapy:

> event<-as.numeric(Y_2 > 0)
> diagn <-survreg(Surv(Y_2, event, type="left")~Y_1, dist="gaussian")
> summary(diagn)

Call:
survreg(formula = Surv(Y_2, event, type = "left") ~ Y_1, dist = "gaussian")

Value Std. Error z p
(Intercept) 0.406 0.1008 4.03 5.69e-05
Y_1 0.577 0.0198 29.16 6.12e-187
Log(scale) 0.954 0.0182 52.54 0.00e+00

Scale= 2.60

Gaussian distribution
Loglik(model)= -4155.9 Loglik(intercept only)= -4509.5

Chisq= 707.27 on 1 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 4
n= 1945
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As with the overall model, Y1 significantly contributes to Y2.

Model for PD patients

> event<-as.numeric(Y_2 > 0)
> diagn <-survreg(Surv(Y_2, event, type="left")~Y_1, dist="gaussian")
> summary(diagn)

Call:
survreg(formula = Surv(Y_2, event, type = "left") ~ Y_1, dist = "gaussian")

Value Std. Error z p
(Intercept) 0.674 0.1144 5.89 3.88e-09
Y_1 0.637 0.0206 30.87 3.06e-209
Log(scale) 0.958 0.0181 53.00 0.00e+00

Scale= 2.61

Gaussian distribution
Loglik(model)= -3955.2 Loglik(intercept only)= -4336.8

Chisq= 763.2 on 1 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 4
n= 1758

>

The output shows that Y1 significantly contributes to Y2.
Table 13 summarizes the output for the three models. Note the difference

Parameter Overall estimate Estimate for hd Estimate for pd

α 0.505 0.406 0.674
β 0.614 0.577 0.637
σε 2.62 2.60 2.61

log lik −8131.4 −4155.9 −3955.2

Table 13: Markov model with fixed regression coefficients and censored gfr;
first 6 visits

between the log likelihood for the overall estimate (−8131.4) and the sum for
hd and pd −4155.9− 3955.2 = −8111.1. The discrepancy can be explained
if we realize that the overall model estimates a combined covariance matrix
and combined effects for hd and pd and that the models for each group
estimate a separate covariance matrix and separate effects.

Instead of separate analyses for the two groups, we can also differentiate
between groups (therapies) in one overall analysis (model 2 in table 15).
Therefore we extend model (36) with an interaction of (chronic) therapy
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(hd, pd) with gfr, and modify the R command accordingly:

(39) diagn <- survreg(Surv(Y 2, event, type="left")

∼ Y 1*as.factor(therap0), dist="gaussian"),

with summary:

> summary(diagn)

Call:
survreg(formula = Surv(Y_2, event, type = "left") ~ Y_1 * as.factor(therap0),

dist = "gaussian")
Value Std. Error z p

(Intercept) 0.4047 0.1007 4.02 5.82e-05
Y_1 0.5774 0.0198 29.14 1.06e-186
as.factor(therap0)2 0.2695 0.1519 1.77 7.60e-02
Y_1:as.factor(therap0)2 0.0592 0.0286 2.07 3.80e-02
Log(scale) 0.9561 0.0128 74.63 0.00e+00

Scale= 2.6

Gaussian distribution
Loglik(model)= -8111.1 Loglik(intercept only)= -8882.4

Chisq= 1542.55 on 3 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 4
n= 3703

>

Note that the interaction between therapy and lag gfr is significant.
Let us verify if we can reconstruct the estimated regression coefficients

for the aggregate model (36) separately, from the model with interaction.
First we verify the estimates in column hd (therap0 = 1):

Zj = 0.4047 + 0.5774Zj−1 + 0 + 0Zj−1

= 0.4047 + 0.5774Zj−1.

For pd (therap0 = 2):

Zj = 0.4047 + 0.5774Zj−1 + 0.2695 + 0.0592Zj−1

= 0.6742 + 0.6366Zj−1.

There is good agreement with the values in table 13. With respect to gfr
pd patients start higher and also decrease slower with time.

6.1.4 The Markov model with censoring and separate intercept
for each 6 time points

So far we have assumed one intercept and one slope for all visits. We will
now check if this assumption is not too strong (model 3 in table 15).
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The R command (39) is modified to accommodate a separate intercept
for each visit:

(40) diagn <- survreg(Surv(Y 2, event, type="left")

∼ Y 1*as.factor(therap0)+ time, dist="gaussian"),

in which time represents the visit number and is treated as a continuous
parameter (linear trend model).

> summary(diagn)

Call:
survreg(formula = Surv(Y_2, event, type = "left") ~ Y_1 * as.factor(therap0) +

time, dist = "gaussian")
Value Std. Error z p

(Intercept) 0.5643 0.1701 3.32 9.08e-04
Y_1 0.5736 0.0201 28.57 1.39e-179
as.factor(therap0)2 0.2751 0.1520 1.81 7.02e-02
time -0.0402 0.0345 -1.16 2.45e-01
Y_1:as.factor(therap0)2 0.0591 0.0286 2.07 3.85e-02
Log(scale) 0.9559 0.0128 74.62 0.00e+00

Scale= 2.6

Gaussian distribution
Loglik(model)= -8110.5 Loglik(intercept only)= -8882.4

Chisq= 1543.9 on 4 degrees of freedom, p= 0
Number of Newton-Raphson Iterations: 4
n= 3703

>

From the output we may conclude that the main effect for time is not sig-
nificant.

We combine the coefficients for effects and interaction for hd (therap0 = 1):

Zj = 0.5643 + 0.5736Zj−1 + 0 + 0Zj−1

= 0.5643 + 0.5736Zj−1.

And for pd (therap0 = 2):

Zj = 0.5643 + 0.5736Zj−1 + 0.2751 + 0.0591Zj−1

= 0.8394 + 0.6327Zj−1.

Table 14 summarizes the results for time dependent intercept. As stated
above, the contributions of time to the intercept (γ) are not significant.
This suggests that models without time varying intercept offer an adequate
description.
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Parameter Estimate for hd Estimate for pd

α 0.5643 0.8394
β 0.5736 0.6327
γ −0.0402 (p > 0.20) -0.0402 (p > 0.20)

Table 14: As table 13 but with time dependent intercept.

Model −2 log likelihood # regression parameters
1. One intercept, one slope (36), (38) 16262.8 2
2. Interaction therapy*Y 1 (39) 16222.2 4
3. Idem, with time as linear covariate (40) 16221 5
(36) Equation

Table 15: Likelihoods for Markov models with censoring

6.1.5 Which model fits the data best?

Table 15 lists the likelihoods of the models we encountered so far. We
conduct an analysis of the models along the line of section 4.3, using equa-
tion (17). Let us compare models 3 and 2 in table. With quantile 16222.2−
16221 = 1.2 , the p-value for a χ2 distribution with 5 − 4 = 1 degrees of
freedom is p = 0.27, far from significant.

Comparing models 3 and 1, we find as quantile: 16262.8− 16221 = 41.8.
For a χ2

3-distribution, this is highly significant, so we reject model 1.
Therefore we adopt model 2, equation (39). It shows that with respect

to gfr pd patients start higher and also decrease slower with time. This is
also reflected by figure 3.

7 Evaluating the performance of the selected model

In section 6.1.5 we arrived at a model which we think best describes the mean
gfr. How does it compare with the observed means shown in figure 3?

Because model (36) assumes that the gfr for each visit has a normal
distribution — which it has not, see section 2.1—, the values for the expecta-
tions thus calculated for visits j = 2, . . . , 6, come out to low. This is not the
case though for the expectation at baseline (j = 1): if EY1 is the expectation
of the observed gfr at baseline and if EZ1 is the expectation of the (normal)
variable Z1 latent to Y1 (see figure 10), then we may equate EZ1 = EY1,
because patients who are already anuric at baseline were removed from the
data set.

For visit j = 2 the EY2 is calculated as follows (the data base at this point
is in long format as described in section 2.1). Equation (44) (appendix B)
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calculates the expectation for the truncation Y of the latent normal distri-
bution Z ∼ N(µ, σ). To obtain EY2 we substitute in (44):

µ = E(Z2|Z1) = α+ βZ1

σ = the standard deviation returned by the output of model (39)
EY = E(Y2|Y1),

in which α, β and σ depend on the therapy (hd or pd) to which the patient
is subjected. We then have

(41) E(Y2|Y1) = E(Y2|Z1) =
σ√
2π
e
− 1

2

(
α+βZ1
σ

)2

+ (α+ βZ1)(1− FZ2|Z1
(0)),

in which FZ2|Z1
is the cumulative distribution function of Z2|Z1 ∼ N(α +

βZ1, σ
2). From this

(42) EY2 = E(E(Y2|Y1)) = E
(

σ√
2π
e
− 1

2

(
α+βZ1
σ

)2)
+(α+βEZ1)(1−FZ2(0)).

Another complication arises if we want to compute E(Yj+1|Yj) for j ≥ 2.
Then we have to take into account that in case of kidney failure at visit j,
that is, gfr = 0 at visit j, it remains in that state from then on. This can
be expressed as:

E(Yj+1|Yj) = E(Yj+1|Zj) if Yj > 0(43)
= 0 if Yj = 0.

We can however find EY2 in (42), by using numerical techniques. Either by
calculating the integrals with classical numerical methods or by simulation.
Solving the integrals by numerical methods requires quite some effort for
which we do not have time.

We can also employ simulation techniques, as follows: Draw Z1 = Y1

from a normal distribution. Then draw Z2 from the conditional distribution
Z2|Z1, determine Y2 from Y2|Y1 = Y2|Z1 (see (42)). If Y2 = 0, then Y3 = 0.
Otherwise calculate Y3 by drawing Z3 from Z3|Z2, etc.

If this is repeated a relevant number of times, it is possible to calculate
the averages Y1, Y2, Y3, . . . from the simulation. We performed this simu-
lation by simulating a data set with 10000 patients whose gfr at baseline
are normally distributed, with as parameters the observed mean gfr and
observed standard deviation at baseline. This was done separately for each
therapy. E.g., for hd the R code for the first 3 visits reads as follows:

N <- 10000
Y_1<- rnorm(N, mean=EY1_HD, sd=sdY_HD ) #Z_1=Y_1

Z_2 <- aHD + bHD*Y_1 + rnorm(N, 0, sdInter) # Z_2|Z_1 ~ a + bZ_1 + eps
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Y_2 <- pmax(Z_2,0)
EY_2 <-mean(Y_2)) #E(Y_2|Y_1

Z_3 <- aHD + bHD*Z_2 + rnorm(N, 0, sdInter)
Y_3 <- ifelse(Y_2 > 0, pmax(Z_3,0) ,0)
EY_3 <-mean(Y_3)

Note how conditional expectation (43) is implemented by the ifelse con-
struction. sdInter is the standard deviation found in the diagnostics of
command (39) and the regression parameters are from section 6.1.3.

The results are plotted in figure 12. One sees that the simulated gfr
for pd starts higher and decreases slower with time, consistent with earlier
observations.

Figure 12: Observed means compared with simulated Markov model.

Can we improve on this result? A possible explanation for the difference
between observed and predicted filtration rate, is drop out due to death of
patients. Probably these are persons in a bad condition with gfr= 0. This
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amounts to selective drop out which is why the observed gfr probably is
somewhat to high.

This means that by replacing the missing values of the observed gfr of
anuric patients with the value zero, our model corrects for missing data, as
shown by figure 13.

Figure 13: Observed means compared with simulated Markov model.

8 Summary and Conclusions

Patients undergoing kidney dialysis experience a deteriorating performance
of their kidneys. The best index of kidney function is the Residual Glomeru-
lar Filtration Rate, gfr for short, a continuous response variable.

In this thesis we discuss several statistical techniques to model the de-
crease of the mean gfr over time, in particular the effect of (chronic) therapy
(hemodialysis hd or peritoneal dialysis pd) on the baseline value of the gfr
and the speed with which the filtration rate decreases. The models discussed
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are examples of Linear Mixed Models, which are likelihood based and which
are robust against data missing at random. This requires that we tranpose
the data set (of patients) to long format.

In behalf of the statistical analysis, a patient is considered anuric, when
gfr = 0 at two consecutive visits. From then on, the gfr at each visit is
considered missing (at random), rather than set to zero; this allows the gfr
to be extrapolated and assume negative values.

From visit 6 on, the effect of therapy on gfr becomes less unambiguous
due to increased patient drop out. Therefore, we restricted our analysis to
the first 6 observations (including the baseline values) to make computations
easier.

We started with an Analysis of Response Profiles, a saturated model, in
which all main effects (time and group, that is: visit and therapy) and all
interactions (time*group) are considered. This is implemented by the SPSS
command MIXED, with time as category and with unstructured covariance
matrix. Plotting the gfr for both groups shows a reasonably linear decrease
with time without a noticeable group*time interaction (figure 6). This is
born out by a statistical analysis (table 4).

This approach results in many regression parameters which have to be
communicated to researchers (table 3).

We considered the same saturated model, but now with time as contin-
uous covariate, which we called linear trend over time. Just as with the
analysis of response profiles, there is no clear group*time interaction (fig-
ure 7) and this is confirmed by table 10.

Though both models are not equivalent statistically, the linear trend
model requires considerable fewer parameters to communicate to others, see
table 7.

The statistical methods above have some drawbacks. The data in the
anuric phase are considered missing at random. Of course they are not,
considering that suppressing data can hardly be considered a random act!
This has ramifications for the quality of the maximum likelihood estimates.

These drawbacks are addressed by a comparatively simple Markov model,
in which we try to model an observation Yij for the gfr of patient i at
time j linearly in terms of its value Yi,j−1 at the preceding visit (“lagged
gfr”). In behalf of this analysis, the data in the anuric phase are no longer
considered missing, but are set to zero (“absorbing zeros”, “censored gfr”
of “censored observations”). Now, the gfr can no longer be considered
normally distributed, and we have to work with a normally distributed latent
variable, latent to the gfr.

The state space in this Markov “chain” consists of the values for Yij and
Yi,j−1. The two possible “states” are 0 and “positive” and are represented
in equation (31). Note that we are talking not so much about transition
probabilities, but rather transition conditional expectations.

In order to find the regression parameters in the simple linear recursive

52



Markov model (36), we note that the problem with censored observations
is similar to survival analysis with censored survival times. We used the R
package (function survreg) to find the regression coefficients. We investi-
gated 3 models: with one intercept and one slope, with main effects and
interaction of therapy and lag gfr and models with interaction and time as
linear covariate, that is, a separate intercept for each visit. Analysis of the
diagnostic data (table 15) shows that the second model, with interaction
but without separate intercept, suits are our purpose well. It shows that
with respect to the gfr pd patients start higher and decrease slower with
time. From a clinical perspective, this can be explained if we realize that
pd therapy is usually given at an earlier stage, which by and large coincides
with the patients being younger and healthier.

We then compared this model for the mean gfr with the observed means.
The naive approach is to plug in the observed gfr at baseline in the linear
recursive model and then recursively calculate the values for the other visits.
That way, the calculated filtration rate would come out to low. The correct
procedure is to calculate the mean value for the truncated latent variable
(see figure 10 and appendix B). We can numerically calculate the integrals
involved or we can resort to simulation. We chose the last option, and
simulated a data set with 10000 patients whose gfr at baseline are normally
distributed.

This thesis is the fruit of an internship at the lumc which gave me
the opportunity to get acquainted with several facets of modern statistical
practice: Linear Mixed Models, SPSS, programming in R etc. However,
after being for years immersed of in a sea of abstract mathematical thought,
the transition to a more data oriented environment took some adapting.

9 Suggestions for further research

• Study the effect of other covariates on the gfr, e.g. age or age brack-
ets, Primary Renal Disease (see table 1), etc,

• Consider covariance pattern models other than “unstructured” (see
section 3.5.2),

• Transform the data: maximum likelihood is reasonably robust, but,
with time, patients leave the study and data become more and more
skewed (figure 9). To increase the accuracy of the estimates, trans-
forming the data should be considered, e.g. take the square root of
the gfr,

• Consider higher order regression. In this thesis we considered only first
order regression (36) when we delt with the Markov model. It might
be interesting to involve earlier visits: Yj = α+βj−1Yj−1 +βj−2Yj−2 +
· · ·+ βj−kYj−k + ε,
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• In the simulation, a fixed standard deviation is assumed. This may
not be the case,

• In the state diagram, transition probabilities (see (31)) are calculated
in a simple consistent way; however, this may not be the correct model.

A Some statistical background

The expression for a first order linear regression model with fixed covariate
x is:

Y = α+ βx+ ε,

with noise term ε ∼ N(0, σ2
ε ). The estimated respons is

Ŷ = α̂+ β̂x.

If the covariate is a random variable X ∼ N(µ, σ2
X), we write

Y = α+ βX + ε.

The (conditional) expectations and variances are:

E(Y |X) = E(α+ βX + ε|X)
= E(α|X) + E(βX|X) + E(ε|X)
= α+ βX + 0

EY = E(E(Y |X)) = α+ βµ

V ar(Y |X) = 0 + βV ar(X|X) + V ar(ε|X)) = σ2
ε

V arY = β2σ2
X + σ2

ε

So, conditionally,
Y |X ∼ N(α+ βX, σ2

ε ),

and marginally:
Y ∼ N(α+ βµ, β2σ2

X + σ2
ε ).

B Calculation of the mean of a left censored nor-
mal variable

Let Y be the left censored normal variable and Z its latent variable, with
density fZ(z) and distribution function FZ(z)

Z ∼ N(µ, σ2)
Y ∼ max(Z, 0).
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We calculate the mean EY :

EY =
∫ ∞

0
zfZ(z)dz

=
1

σ
√

2π

∫ ∞
0

(z − µ)e−
1
2

( z−µ
σ

)2dz +
µ

σ
√

2π

∫ ∞
0

e−
1
2

( z−µ
σ

)2dz.

and we obtain

(44) EY =
σ√
2π
e−

1
2

(µ
σ

)2 + µ(1− FZ(0)).

C SPSS syntax and R scripts

C.1 SPSS syntax

*=====================================================================.

*Mathematics thesis G.G.A. Westhoff, student nr 0140481, Leiden University.

*Modelling GFR.

* Supervisor Dr. S. LeCessie, Med Stat, LUMC.

*=====================================================================.

* ********** Load data set (raw data).

GET FILE=’H:\MasterProject\werkbestand.sav’.

*GET FILE=’D:\UniLeiden\MasterProject\Database\werkbestand.sav’.

DATASET NAME DataSet2 WINDOW=FRONT.

/keep= id_gw bmi0 diures0 gesl0 gewich0 gfr_cor0 kahnkl0 lengte0 lf_str0

rook0 str_th0 therap0 u24_vo0 u_100ml u_misl mtpnt1 dagmtp1 gfr_cor1 mtpnt2 dagmtp2 gfr_cor2

mtpnt3 dagmtp3 gfr_cor3

mtpnt4 dagmtp4 gfr_cor4

mtpnt5 dagmtp5 gfr_cor5

mtpnt6 dagmtp6 gfr_cor6

mtpnt7 dagmtp7 gfr_cor7

mtpnt8 dagmtp8 gfr_cor8

mtpnt9 dagmtp9 gfr_cor9

mtpnt10 dagmtp10 gfr_co10

mtpnt11 dagmtp11 gfr_co11

mtpnt12 dagmtp12 gfr_co12

mtpnt13 dagmtp13 gfr_co13

mtpnt14 dagmtp14 gfr_co14

mtpnt15 dagmtp15 gfr_co15

uitred dagen dood dag3m.

DATASET NAME DataSet2 WINDOW=FRONT.

*Section {S:exclusion}.

*checkin for typos and other errors in the data, .

IF (lengte0<100) lengte0=lengte0+100.

EXECUTE.

IF (bmi0>60) bmi0=10000*gewich0/(lengte0*lengte0).

execute.

* Force gfr_cor0=0 if diures < 200 ml/24h:.
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if (diures0 < 200) gfr_cor0 = 0.

if (diures1 < 200) gfr_cor1 = 0.

if (diures2 < 200) gfr_cor2 = 0.

if (diures3 < 200) gfr_cor3 = 0.

if (diures4 < 200) gfr_cor4 = 0.

if (diures5 < 200) gfr_cor5 = 0.

if (diures6 < 200) gfr_cor6 = 0.

if (diures7 < 200) gfr_cor7 = 0.

if (diures8 < 200) gfr_cor8 = 0.

if (diures9 < 200) gfr_cor9 = 0.

if (diures10 < 200) gfr_co10 = 0.

if (diures11< 200) gfr_co11 = 0.

if (diures12 < 200) gfr_co12 = 0.

if (diures13 < 200) gfr_co13 = 0.

if (diures14 < 200) gfr_co14 = 0.

if (diures15 < 200) gfr_co15 = 0.

*********** Exclude patients (from data set).

* (1) for which urine never was collected (variable diures missing on all visits, even though the patient participated in the study),.

* or (2) Patient is already anuric at the start of the therapy, that is, has gfr missing or equal to 0 at the first two measurement occasions.

FILTER OFF.

USE ALL.

SELECT IF (~((gfr_cor0 < 0 & gfr_cor1< 0 & gfr_cor2< 0 & gfr_cor3 < 0 & gfr_cor4 < 0 &

gfr_cor5< 0 & gfr_cor6< 0 & gfr_cor7< 0 & gfr_cor8< 0 & gfr_cor9< 0 & gfr_co10<0 & gfr_co11<0 &

gfr_co12<0 & gfr_co13<0 & gfr_co14<0 & gfr_co15<0) | (gfr_cor0=0 & gfr_cor1=0)|(gfr_cor0<0 &

gfr_cor1<0))).

EXECUTE.

*********** Switch on the two following lines, when comparing two approaches for two time points (see below).

*select if (not(missing(gfr_cor0)) & not(missing(gfr_cor1))).

*execute.

*********** Table {T:baseline_data2} General patient characteristics at base line after exclusion

* Basic Tables.

CROSSTABS

/TABLES= therap0 BY kahnkl0 gesl0 pnkl40

/FORMAT=AVALUE TABLES

/CELLS=COUNT ROW

/COUNT ROUND CELL.

TABLES

/FORMAT BLANK MISSING(’.’)

/OBSERVATION lf_str0 gfr_cor0 bmi0 lengte0 gewich0 diures0

/TABLES (lf_str0 + gfr_cor0 + bmi0 + lengte0 + gewich0 + diures0)

BY therap0 > (STATISTICS)

/STATISTICS

mean( )

stddev( )

min( )

max( ).

*Average age, gfr0, bmi0, length0, weight0, Residual renal function0, etc. *all* patients.

DESCRIPTIVES VARIABLES=lf_str0 gfr_cor0 bmi0 lengte0 gewich0 diures0

/STATISTICS=MEAN STDDEV min max.

*Testing.

T-TEST GROUPS=therap0(1 2)

/MISSING=ANALYSIS

/VARIABLES=gfr_cor0 lf_str0 bmi0 lengte0 gewich0

/CRITERIA=CI(.95).
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* Chi square for categorical variables at baseline.

* Prim Renal Disease.

CROSSTABS

/TABLES=therap0 BY pnkl40

/FORMAT=AVALUE TABLES

/STATISTICS=CHISQ

/CELLS=COUNT

/COUNT ROUND CELL.

*Comorbidity.

CROSSTABS

/TABLES=therap0 BY kahnkl0

/FORMAT=AVALUE TABLES

/STATISTICS=CHISQ

/CELLS=COUNT

/COUNT ROUND CELL.

********** END table {T:baseline_data2} .

********* Figure {F:histo_gfr} (in section {S:lat_cens}) ****************.

GRAPH

/HISTOGRAM=gfr_cor0.

GRAPH

/HISTOGRAM=gfr_cor1.

GRAPH

/HISTOGRAM=gfr_cor2.

GRAPH

/HISTOGRAM=gfr_cor3.

GRAPH

/HISTOGRAM=gfr_cor4.

GRAPH

/HISTOGRAM=gfr_cor5.

*** End fig.

*********************** Transform to long format: variables become cases *************************.

** Note: Index1 is variable containing the vsist number (1 =baseline).

compute mtpnt0=0.

compute dagmtp0=0.

VARSTOCASES

/MAKE gfr_cor FROM gfr_cor0 gfr_cor1 gfr_cor2 gfr_cor3 gfr_cor4 gfr_cor5 gfr_cor6 gfr_cor7

gfr_cor8 gfr_cor9 gfr_co10 gfr_co11 gfr_co12 gfr_co13 gfr_co14 gfr_co15

/Make dagmtpnt FROM dagmtp0 dagmtp1 dagmtp2 dagmtp3 dagmtp4 dagmtp5 dagmtp6 dagmtp7 dagmtp8 dagmtp9 dagmtp10

dagmtp11 dagmtp12 dagmtp13 dagmtp14 dagmtp15

/Make diures FROM diures0 diures1 diures2 diures3 diures4 diures5 diures6 diures7 diures8 diures9 diures10 diures11 diures12 diures13

diures14 diures15

/INDEX=Index1(16)

/KEEP=id_gw bmi0 gesl0 gewich0 kahnkl0 lengte0 lf_str0 rook0 str_th0 therap0 u24_vo0 u_100ml

u_misl mtpnt1 uitred dagen dood dag3m

/NULL=KEEP.

********** Figure (F:mean_1428) Observed mean gfr, excluding patients who are anuric at baseline.

* Includes anurische patients; see section {S:anuric}.

* Visits with missing data not yet removed.

GRAPH

57



/LINE(MULTIPLE)=MEAN(gfr_cor) BY Index1 BY therap0.

*********** Figure (F:participants): Number of patients with a gfr >= 0 measurement, excluding patients who are anuric at baseline.

temporary.

select if (not(missing( gfr_cor))).

FREQUENCIES VARIABLES=Index1

/HISTOGRAM

/ORDER=ANALYSIS.

* *********** Look for patients which are anuric from certain visit:.

* get rid of missing data.

select if (not(missing(gfr_cor))).

execute.

******** We also have to calculate the observed mean (displayed in figure {F:mean_1428}) in R;.......

*.....to that end we present the data to R by way of the following file:.

save outfile = ’H:\MasterProject\werkbest_long_with_zeroes.sav’.

*save outfile = ’D:\UniLeiden\MasterProject\Database\werkbest_long_with_zeroes.sav’.

*sort cases by id_gw Index1. LAG_GFR is set to missing on encountering new patient.

if (lag(id_gw) = id_gw) lag_gfr = lag(gfr_cor).

execute

* Set new variable BOOL to 1, if two consecutive visits are zero.

compute bool=((gfr_cor=0) & (lag_gfr=0)).

execute.

* Increment CUMBOOL as long as same patient and visits have zero GFR.

* Careful! This is not matter of pure parallelism; SPSS scans the lines top to bottom and....

*........ compares LAG with CURRENt in a looping fashion! I always get mixed up!!!.

compute cumbool=0.

if (lag( id_gw)=id_gw) cumbool = lag(cumbool)+bool.

execute.

********* Select first 6 visits.

select if (Index1 < 7).

EXECUTE.

**********Figure {F:first_time_anuric0}. Number of patients who are for the first time anuric.

compute cumbool_1=0.

if (cumbool=1) cumbool_1=1.

execute.

* We still have to label X- and Y-axis:.

* X: Visit (1 = baseline); Y: # of patients for the first time anuric.

GRAPH

/BAR(SIMPLE)=SUM(cumbool_1) BY Index1.

****** END Figure {F:first_time_anuric0}.

********** Table {T:prob_not_anuric} : Probability for a patient to become anuric T:.

* Count patients becoming anuric at any point in time:.

CROSSTABS

/TABLES=Index1 BY cumbool

/FORMAT=AVALUE TABLES

/CELLS=COUNT

/COUNT ROUND CELL.

**********.

*******!!!!! Only execute in behalf fig {F:rho_j}.

*select if ((cumbool<=1) ).

*execute.
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*save outfile = ’D:\UniLeiden\MasterProject\patients_becoming_anuric’.

*save outfile = ’H:\MasterProject\patients_becoming_anuric’.

*save outfile =’D:\onderwijs\afstudeerproject gerard\patients_becoming_anuric’.

******** END "Only.....".

******* Select only patients in non-anuric stage.

select if (cumbool=0).

execute.

save outfile = ’D:\UniLeiden\MasterProject\Database\werkbest na pat selectie_data_to_cases.sav’.

*save outfile = ’H:\MasterProject\werkbest na pat selectie_data_to_cases.sav’.

****************************** Chapter {S:lin_models} ******************************.

*Table {T:est_coeff}: Estimated regression coefficients based on analysis of response:.

* First check for significant group*time interaction.

* Procedure MIXED of SPSS fits the Linear Mixed model (LMM) which is direct generalization.....

* ......of the LM to repeated measurements. The method is likelihood based....

*.....(Course Rep Measures, page 50).

recode Index1(1=0)(2=3)(3=6)(4=12)(5=18)(6=24) into time.

MIXED gfr_cor BY Index1 therap0

/CRITERIA=CIN(95) MXITER(100) MXSTEP(5) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0,

ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)

/FIXED=Index1 therap0 Index1*therap0 | SSTYPE(3)

/METHOD=ML

/PRINT=R SOLUTION

/REPEATED=Index1 | SUBJECT(id_gw) COVTYPE(UN)

/EMMEANS=TABLES(Index1*therap0) .

* Table {T:fixed_main}.

* Skip the interaction and then check for main effects in group and time.

MIXED gfr_cor BY Index1 therap0

/CRITERIA=CIN(95) MXITER(100) MXSTEP(5) SCORING(1) SINGULAR(0.000000000001)

HCONVERGE(0, ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)

/FIXED=Index1 therap0 | SSTYPE(3)

/METHOD=ML

/REPEATED=Index1 | SUBJECT(id_gw) COVTYPE(UN).

************* Table{T:est_coeff_cont}: Estimated regression coefficients for gfrwith time as a continuous.

MIXED gfr_cor BY therap0 WITH Index1

/CRITERIA=CIN(95) MXITER(100) MXSTEP(5) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0,

ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)

/FIXED=therap0 Index1 therap0*Index1 | SSTYPE(3)

/METHOD=ML

/PRINT=R SOLUTION

/REPEATED=Index1 | SUBJECT(id_gw) COVTYPE(UN).

* /EMMEANS=TABLES(Index1*therap0) .

*********** End chapter {S:lin_models} ***********.

*************************** Chapter { S:markov} M A R K O V M O D E L S ********************.

******** Section {S:est_Y_1Y_2_gfr} : .

*Comparing the analysis of response profiles and the Markov model for FIRST TWO VISITS. Do NOT distinguish between PD and HD.

*Make sure that database contains only two time points.

*Results in table {T:gfr_est_2}.

*GET file = ’H:\MasterProject\werkbest na pat selectie_data_to_cases.sav’.

GET file=’D:\UniLeiden\MasterProject\Database\werkbest na pat selectie_data_to_cases_2.sav’.
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********* Y_2 = \alpha + \beta*tijd.

*time as factor rather than linear covariate!! (niet: MIXED lead WITH time!!).

MIXED gfr_cor BY Index1

/CRITERIA=CIN(95) MXITER(100) MXSTEP(5) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0,

ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)

/FIXED=Index1 | SSTYPE(3)

/METHOD=REML

/PRINT=R SOLUTION

/REPEATED=Index1 | SUBJECT(id_gw) COVTYPE(UN)

/EMMEANS=TABLES(Index1) .

******* Markov: Y_2 recursief in Y_1.

*f(Y_1, Y_2) = f(Y_1). F(Y_2|Y_1).

REGRESSION

/DESCRIPTIVES MEAN STDDEV CORR SIG N

/MISSING LISTWISE

/STATISTICS COEFF OUTS R ANOVA

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT gfr_cor

/METHOD=ENTER lag_gfr.

*Bepaal nu gemiddelde van Y_1=gfr_cor0:.

DESCRIPTIVES VARIABLES=gfr_cor

/STATISTICS=MEAN STDDEV MIN MAX.

C.2 R script

#=============================================================

########## Masterproject G.G.A. Westhoff 2008/2009

#Modelling Repeated Measurements of Renal

#Function during Haemodialysis

#with cut off due to complete kidney failure

#

#University Leiden

# Supervisors Dr. S. LeCessie (LUMC), Prof. DR. R. Gill (Snellius Instute)

#=============================================================

#!!!!This script is divided in 3 broad sections: Calculations, Figures, Functions.

#===================== Loading packages and reading data set====================.

require("foreign")

require("survival")

#SPSS-data set "werkbest na pat selectie_data_to_cases.sav" is the....

#.... is the work horse of this project and is the data set "werkbestand.sav" ...

#... after cleaning up and transposing to long format.

filepath="H://MasterProject//werkbest na pat selectie_data_to_cases.sav"

#filepath="D://UniLeiden//MasterProject//Database//werkbest na pat selectie_data_to_cases.sav"

#filepath="H://MasterProject//werkbest_long_with_zeroes.sav"

gfr<-read.spss(file=filepath,use.value.labels=FALSE,to.data.frame=TRUE,

max.value.labels=Inf,

trim.factor.names=FALSE)

#Then execute functions at end of script file!!

#========================= CALCULATIONS ========================================.

#==========Section {S:anuric} Defining patients as anuric

filepath="H://MasterProject//patients_becoming_anuric"
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#filepath="D://UniLeiden//MasterProject//Database//patients_becoming_anuric"

result<-read.spss(file=filepath,use.value.labels=FALSE,to.data.frame=TRUE,

max.value.labels=Inf,

trim.factor.names=FALSE)

(visit<-result$INDEX1)

(max_visit<-max(visit))

#N=size original data set (short format) excl patients which are anuric at baseline; ....

#...see SECTION {S:exclusion}

freq<-table(visit,result$CUMBOOL)

p_j <- freq[,2]/(freq[,1]+freq[,2])

(rho_j<-cumprod(1 - p_j))

barplot(rho_j, xlab= "Visit (1 = baseline)",

ylab="rho_j Estimated probability to be not yet anuric",

names.arg=c("1", "2", "3", "4", "5" ,"6"))

#Ch {S:gfr_zeroes} "Modeling GFR over time using Markov models in which GFR is censored"

#===========Section: Markov models with censored GFR

gfr2 <- gfr[!is.na(gfr$LAG_GFR),] # Throw out rows with missing values.

#Y_2<-gfr2$GFR_COR #

#gfr_cor <- Y_2

#Y_1 <-gfr2$LAG_GFR #

#lag_gfr <- Y_1

#Index1 <- gfr2$INDEX1

#therap0 <- gfr2$THERAP0

# ======== ============.

#Aggregate model (without group var):

diagn <-gfr_survreg(gfr2$LAG_GFR, gfr2$GFR_COR )#Idem

diagn

summary(diagn)

#Same analysis, but select patients HD=1

gfrHD<- gfr[(gfr$THERAP0==1)&!is.na(gfr$LAG_GFR),] # Throw out rows with missing values.

(diagnHD <-gfr_survreg(gfrHD$LAG_GFR, gfrHD$GFR_COR ))#Idem

summary(diagnHD)

#diagnHD[[1]]: regression coeffs

aHD <- diagnHD[[1]][1]# surv regr coeffs: intercept

bHD <- diagnHD[[1]][2] # Idem slope

sdHD <- diagnHD[[8]] # stand dev of latent var Z1, Z2,...,Z6.

#Same analysis, but select patients PD=2

gfrPD <- gfr[(gfr$THERAP0==2)&!is.na(gfr$LAG_GFR),] # Throw out rows with missing values.

(diagnPD <-gfr_survreg(gfrPD$LAG_GFR, gfrPD$GFR_COR ))#Idem

#diagnPD[[1]]

aPD <- diagnPD[[1]][1]# surv regr coeffs: intercept

bPD <- diagnPD[[1]][2] # Idem slope

sdPD <- diagnPD[[8]] # stand dev of latent var Z1, Z2,...,Z6.

#Interaction between GFR and therapy:

(diagnInter <-gfr_survreg2(gfr2$LAG_GFR, gfr2$GFR_COR , gfr2$THERAP0))

summary(diagnInter)

sdInter<-diagnInter[[8]]
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#As ’gfr_survreg2’ with TIME as continuous param: =====

(diagnTime <-gfr_survreg3(gfr2$LAG_GFR, gfr2$GFR_COR , gfr2$THERAP0, gfr2$INDEX1))

summary(diagnTime)

#??? fooPred<-data.frame(THERAP0, INDEX1,PredPD, PredHD)

#========= Section: Performance of the selected model=============.

filepath3="H://MasterProject//werkbest_long_with_zeroes.sav"

#filepath3="D://UniLeiden//MasterProject//Database//werkbest_long_with_zeroes.sav"

gfr3<-read.spss(file=filepath3,use.value.labels=FALSE,to.data.frame=TRUE,

max.value.labels=Inf,

trim.factor.names=FALSE)

gfr3<-gfr3[gfr3$INDEX1 < 7,]

#attach(gfr3)

summary(gfr3)

#Observed as in fig {F:mean_1428}:

(aggr_mean<-tapply(gfr3$GFR_COR, list(gfr3$INDEX1, gfr3$THERAP0), mean)) #

(aggr_sd <- tapply(gfr3$GFR_COR, list(gfr3$INDEX1, gfr3$THERAP0), sd)) #

(EY1_HD <- aggr_mean[1,1])# EZ1=EY1. Z1 is latent of Y1, the truncation of Z1.

(sdY_HD <- aggr_sd[1,1])

(EY1_PD <- aggr_mean[1,2])#

(sdY_PD <- aggr_sd[1,2])

#Simulation for ******HD =1*******:

#Simulate N patients.

N <- 10000

Y_1<- rnorm(N, mean=EY1_HD, sd=sdY_HD ) #Z_1=Y_1

Z_2 <- aHD + bHD*Y_1 + rnorm(N, 0, sdInter) # Z_2|Z_1 ~ a + bZ_1 + eps

Y_2 <- pmax(Z_2,0)

EY_2 <-mean(Y_2))#E(Y_2|Y_1

Z_3 <- aHD + bHD*Z_2 + rnorm(N, 0, sdInter)

Y_3 <- ifelse(Y_2 > 0, pmax(Z_3,0) ,0)

EY_3 <-mean(Y_3)

Z_4 <- aHD + bHD*Z_3 + rnorm(N, 0, sdInter)

Y_4 <- ifelse(Y_3>0, pmax(Z_4,0) ,0)

(EY_4 <-mean(Y_4))

Z_5 <- aHD + bHD*Z_4 + rnorm(N, 0, sdInter)

Y_5 <- ifelse(Y_4 > 0, pmax(Z_5,0) ,0)

(EY_5 <-mean(Y_5))

Z_6 <- aHD + bHD*Z_5 + rnorm(N, 0, sdInter)

Y_6 <- ifelse(Y_5>0, pmax(Z_6,0) ,0)

(EY_6 <-mean(Y_6))

# Transport to FIGURE section below:

(PredHD.trunc <- c(EY1_HD, EY_2, EY_3, EY_4, EY_5, EY_6))

#****** PD=2 *********

Y_1<- rnorm(N, mean=EY1_PD, sd=sdY_PD ) #Z_1=Y_1

mean(Y_1)

EY1_PD

Z_2 <- aPD + bPD*Y_1 +rnorm(N, 0, sdInter) # Z_2|Z_1 ~ a + bZ_1 + eps
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Y_2 <- pmax(Z_2,0)

(EY_2 <-mean(Y_2))#E(Y_2|Y_1)

Z_3 <- aPD + bPD*Z_2 + rnorm(N, 0, sdInter)

Y_3 <- ifelse(Y_2 > 0, pmax(Z_3,0) ,0)

(EY_3 <-mean(Y_3))

Z_4 <- aPD + bPD*Z_3 + rnorm(N, 0, sdInter)

Y_4 <- ifelse(Y_3>0, pmax(Z_4,0) ,0)

(EY_4 <-mean(Y_4))

Z_5 <- aPD + bPD*Z_4 + rnorm(N, 0, sdInter)

Y_5 <- ifelse(Y_4 > 0, pmax(Z_5,0) ,0)

(EY_5 <-mean(Y_5))

Z_6 <- aPD + bPD*Z_5 + rnorm(N, 0, sdInter)

Y_6 <- ifelse(Y_5>0, pmax(Z_6,0) ,0)

(EY_6 <-mean(Y_6))

# Transport to FIGURE section below:

(PredPD.trunc <- c(EY1_PD, EY_2, EY_3, EY_4, EY_5, EY_6))

#==================================FIGURES============================================.

#======== Figure{F:latent_vars} "Illustrating latency and censoring"

#

old_par <- par(mfrow = c(1,2))

par(mfrow =c(1,2))

theta<-c(2, 1.5)#mean and sigma of Y

y<-seq(0, 8, .1)

f_Y<-dnorm(y, theta[1], theta[2])

z <- seq(-4,0,.1)

f_Z <- dnorm(z, theta[1], theta[2])

plot(seq(-4, 8,.1), seq(0, .3, .0025), type="n", xlab="y,z (GFR)", ylab="density of Y and Z")

points( c(0,0), c(0,.2), lty=1, type="l", lwd=4) #vertical bar measuring censored zeroes

#points( c(0,0), c(0,.4), lty=1, type="l", lwd=1) #vertical axis (

points(y, f_Y, type="l") #Observed GFR

points( z, f_Z, lty=2, type="l") # Latent GFR

legend( x="topright", c("Y, Z if Y > 0", "Z if Y < 0",

"P(Y=0) = F_Z(0)"), lty=c(1,2,1), lwd=c(1,1,4), inset=.01)

# As above, but give GFR higher mean; this will decrease the value P(Y=0)

theta<-c(4, 1.5) #mean and sigma of Y

y<-seq(0, 8, .1)

f_Y<-dnorm(y, theta[1], theta[2])

z <- seq(-4,0,.1)

f_Z <- dnorm(z, theta[1], theta[2])

plot(seq(-4, 8,.1), seq(0, .3, .0025), type="n", xlab="y,z (GFR)", ylab="density of Y and Z")

points( c(0,0), c(0,.025), lty=1, type="l", lwd=4) #vertical bar measuring censored zeroes

#points( c(0,0), c(0,.4), lty=1, type="l", lwd=1) #vertical axis (

points(y, f_Y, type="l") #Observed GFR

points( z, f_Z, lty=2, type="l") # Latent GFR

legend( x="topright", c("Y, Z if Y > 0", "Z if Y < 0",

"P(Y=0) = F_Z(0)"), lty=c(1,2,1), lwd=c(1,1,4), inset=.01)

# ============ END demonstrating concepts of latency and ================

#======== Table {T:est_coeff_cont}, cols time as cont covariate =========

a<- 5.980107

b<- -0.624122

c<- -0.623639

d<- -0.055291
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tijd <- 1:6

grp <- 1 # HD

est_hd_cont<- a + b*tijd + c*grp + d*tijd*grp

grp<-0

est_pd_cont<- a + b*tijd + c*grp + d*tijd*grp

#Ditto, time as category (response profiles) table {T: est_mean_gfr}

est_hd_catg <- c(5.276455, 3.725404, 3.157205, 2.459885, 2.043392, 1.471048)

est_pd_catg <- c(5.903960, 4.481025, 3.922911, 3.331491, 2.781002, 2.475061)

# ==== Figure {F:obs_est_resp_profiles} compare observed means with response profiles

plot(1:6, 1:6, type="n", xlab="visit (1 = baseline)", ylab="mean gfr")

points(1:6, aggr_mean[,1], lty=2, lwd=2, col=2, type="o") #

points( 1:6, aggr_mean[,2], lty=1, lwd=2, col=1, type="o")#

points( 1:6, est_hd_catg,lty=4, lwd=2, col=4, type="o")#

points( 1:6, est_pd_catg,lty=3, lwd=2, col=3, type="o")#

legend(x="bottomleft", c("PD, observed means", "HD, observed means", "PD, analysis of resp profiles",

"HD, analysis of resp profiles"), col=1:4, lty=1:4, inset=.05)

#===== Figure {F:obs_est_cont} compare observed means with time as cont covariate

plot(1:6, 1:6, type="n", xlab="visit (1 = baseline)", ylab="mean gfr")

points(1:6, aggr_mean[,1], lty=2, lwd=2, col=2, type="o") #

points( 1:6, aggr_mean[,2], lty=1, lwd=2, col=1, type="o")#

points( 1:6, est_hd_cont,lty=4, lwd=2, col=4, type="o")#

points( 1:6, est_pd_cont,lty=3, lwd=2, col=3, type="o")#

legend(x="bottomleft", c("PD, observed means", "HD, observed means", "PD, time as cont covariate",

"HD, time as cont covariate"), col=1:4, lty=1:4, inset=.05)

#===== Figure {F:est_mean_gfrplot} estimates response profiles and lin trend model.

plot(1:6, 1:6, type="n", xlab="visit (1 = baseline)", ylab="estimated mean gfr")

points(1:6, est_hd_catg, lty=2, lwd=2, col=2, type="o") #

points( 1:6, est_pd_catg, lty=1, lwd=2, col=1, type="o")#

points( 1:6, est_hd_cont,lty=4, lwd=2, col=4, type="o")#

points( 1:6, est_pd_cont,lty=3, lwd=2, col=3, type="o")#

legend(x="bottomleft", c("PD, analysis of resp profiles", "HD, analysis of resp profiles",

"PD, continuous time", "HD, continuous time"), col=1:4, lty=1:4, inset=.05)

#!Coefficients from table {T:lik_regression}

(coeffHD<-c(diagnHD[[1]],aggr_mean[1,1]))#HD=1

(PredHD.cens<-PredMarkov(coeffHD)) #Predicted Means

(coeffPD<-c(diagnPD[[1]],aggr_mean[1,2])) #Idem

(PredPD.cens<-PredMarkov(coeffPD))

oldpar <- par(mfrow=c(2,2))

#=== Figures describing Markov models with censoring ======

#=== Figure {F:Observed_Modeled} Obs and modeled means

plot(c(0,rownames(aggr_mean)), 0:6, type="n", xlab="visit (1=baseline)", ylab="GFR")

points( row.names(aggr_mean), aggr_mean[,1], lty=2, lwd=2, col=2, type="o") # Observed 1=HD

points( row.names(aggr_mean), aggr_mean[,2], lty=1, lwd=2, col=1, type="o")#Observed PD

points( row.names(aggr_mean), PredHD.cens,lty=4, lwd=2, col=4, type="o")# Calaculated HD

points( row.names(aggr_mean), PredPD.cens, aggr_mean[,2],lty=3, lwd=2, col=3, type="o")#Calculated PD

legend(x="bottomleft", c("Observed PD", "Observed HD", "PD Markov model with censored GFR",

"HD Markov model with censored GFR"), col=1:4, lwd=2, lty=c(1,2,3,5),inset=.05)

# ======== Censored zeroes, with truncated distrib

#(PredHD.trunc <- EY_trunc (PredHD.cens, aggr_sdHD))# Erik’s gemiddelden.

#(PredPD.trunc <- EY_trunc (PredPD.cens, aggr_sdPD))
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#PredHD.trunc

#PredHD.cens

#==== Figure {F:Observed_Modeled_Max}. EY_1 is observed mean.

plot(c(0,rownames(aggr_mean)), 0:6, type="n", xlab="visit (1=baseline)", ylab="GFR")

points( row.names(aggr_mean), aggr_mean[,1], lty=2, lwd=2, col=2, type="o") # Observed 1=HD

points( row.names(aggr_mean), aggr_mean[,2], lty=1, lwd=2, col=1, type="o")#Observed PD

points( row.names(aggr_mean), PredHD.trunc,lty=4, lwd=2, col=4, type="o")# Calaculated HD

points( row.names(aggr_mean), PredPD.trunc, aggr_mean[,2],lty=3, lwd=2, col=3, type="o")#Calculated PD

legend(x="bottomleft", c("Observed PD", "Observed HD", "PD Markov model (simulation)",

"HD Markov model (simulation)"), col=1:4, lwd=2, lty=c(1,2,3,5), inset=.05)

#==== Figure {F:max_cens}

plot(c(0,rownames(aggr_mean)), 0:6, type="n", xlab="visit (1=baseline)", ylab="GFR")

points( row.names(aggr_mean), PredHD.cens, lty=2, lwd=2, col=2, type="o") # Observed 1=HD

points( row.names(aggr_mean), PredPD.cens, lty=1, lwd=2, col=1, type="o")#Observed PD

points( row.names(aggr_mean), PredHD.trunc,lty=4, lwd=2, col=4, type="o")# Calaculated HD

points( row.names(aggr_mean), PredPD.trunc, aggr_mean[,2],lty=3, lwd=2, col=3, type="o")#Calculated PD

legend(x="bottomleft", c("PD censored GFR", "HD censored GFR", "PD truncated Gaussian",

"HD truncated Gaussian"), col=1:4, lwd=2, lty=c(1,2,3,5), inset=.05)

par(oldpar)

#lty (0=blank, 1=solid, 2=dashed, 3=dotted, 4=dotdash, 5=longdash, 6=twodash)

#or as one of the character strings "blank", "solid", "dashed", "dotted", "dotdash",

#"longdash", or "twodash", where "blank" uses invisible lines (i.e., does not draw them

#========================== *NO* censored zeroes ==========================

#coeffHD<-c( 1.271, 0.519, - 0.086, 5.201058)#a, b, c, Y_1

#PredHD<-PredMarkov(coeffHD)

#coeffPD<-c( 1.058,0.598 , - 0.014, 5.800045 ) #Idem

#PredPD<-PredMarkov(coeffPD)

#plot(c(0,rownames(aggr_mean)), 0:6, type="n", xlab="visit (1=baseline)", ylab="filtration rate gfr")

#points( row.names(aggr_mean), aggr_mean[,1], lty=2, type="o") # 1=HD

#points( row.names(aggr_mean), aggr_mean[,2],type="o")#PD

#points( row.names(aggr_mean), PredHD,lty=4, type="o")#HD

#points( row.names(aggr_mean), PredPD, aggr_mean[,2],lty=3, type="o")#PD

#legend(x="bottomleft", c("PD", "HD", "PD Markov model(*), NO censored zeroes",

# "HD Markov model(*), NO censored zeroes",

# "*: Y_i = alpha + beta Y_{i-1} + ganma*i + epsilon"), lty=1:4, inset=.05)

#================

#==================== END FIGURES ===============================

#============================== FUNCTION DEFINITIONS ==================================

gfr_survreg <- function(Y_1, Y_2){

# Survival regression Y_2 ~Y_1

#Formula’s {E:survreg} and {E:formula}

event<-as.numeric(Y_2 > 0)

survreg(Surv(Y_2, event, type="left")~Y_1, dist="gaussian")

}

gfr_survreg2 <- function(Y_1, Y_2, therap0){

#As ’gfr_survreg’, but with interactions.

#

# Survival regression Y_2 ~Y_1*group

#Formula {E:survreg2}

event<-as.numeric(Y_2 > 0)

survreg(Surv(Y_2, event, type="left")~Y_1*as.factor(therap0), dist="gaussian")

}
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gfr_survreg3 <- function(Y_1, Y_2, therap0, time){

#As ’gfr_survreg2’, but with time as linear covariate.

#Formula {E:survreg2_time}

event<-as.numeric(Y_2 > 0)

survreg(Surv(Y_2, event, type="left")~Y_1*as.factor(therap0) + time, dist="gaussian")

}

gfr_survreg_time <- function(Y_1, Y_2, time){

#foo2

#As gfr_survreg, but include time as covariate

event<-as.numeric(Y_2 > 0)

#return(event)

#Z_2 <- -Y_2; Z_1 <- -Y_1 #Negate, so data become right censored

#return(Surv(Z_2, event))

survreg(Surv(Y_2, event, type="left")~Y_1 + time, dist="gaussian")

#survreg(Surv(Z_2, event)~Z_1 + time, dist="gaussian")

}

PredMarkov<-function(coeff){

#Recursive definition.

a<-coeff[1]; b<-coeff[2];Y_i_1<-coeff[3]

visits<-6

Y_i<- rep(0,visits)

Y_i[1]<-Y_i_1

for (i in 2:6){

Y_i[i]<-a +b*Y_i_1

Y_i_1<-Y_i[i]

}

return(Y_i)

}

EY_trunc <-function(mu, sigma)

{

(sigma/(sqrt(2*pi)))*exp(-.5*(mu/sigma)^2) + mu*(1-pnorm(0,mean=mu,sd=sigma))

}

#======================== END FUNCTIONS ===========================

D Glossary of terms

References

[1] Fitzmaurice, G.M., Laird, N.M and Ware, J.H. (2004). Applied Longi-
tudinal Analysis, Wiley Interscience.

[2] Diggle, P.J., Liang, K.-Y. and Zeger, S.L. (1994). Analysis of Longitu-
dinal Data. New York: Oxford University Press.

[3] Boeschoten, Dr. E.W. (2003). Necosad Eindverslag,
http://necosad.nl/files/reports/final report necosad.pdf.

[4] Rice, J.A. (1995). Mathematical Statistics and Data Analysis, 2-nd ed.
Duxbury Press

[5] Klein, J.P. and Moeschberger, M.L. (1997). Survival Analysis. New
York: Springer

66


