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Preface

This thesis investigates the chromatic number of the Erdős-Rényi graph and its or-
thogonality subgraph. We try to understand the behavior of lower bounds and upper
bounds for the chromatic number and we will make an attempt to improve the bounds
by covering the vertex set of the Erdős-Rényi graph with suitable sized independent sets.
Therefore independent sets of the Erdős-Rényi graph are of particular interest to us and
we will give explicit constructions of them as well.

This thesis is in the field of discrete mathematics and combinatorial optimization and
uses basic abstract (linear) algebra and try & search with the computer package MAGMA
to obtain results.

I would like to thank Kallenberg, Peeters, Edixhoven, Bosma, Williford and Godsil
voor non-published information and feedback.
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Chapter 1

Introduction

We will introduce the discrete and algebraic structures needed for this thesis together
with their properties.

1.1 Graphs

The graphs in this thesis are finite and undirected. Although we will rarely mention
them explicitly the vertex set and the edge set of a graph G = (V,E) are V and E
respectively. Parallel edges are not allowed neither do we allow loops (that is edges
that connect a vertex to itself) unless stated otherwise. Some terminology to start with:

• A clique is a subset of the vertex set of G such that every pair of vertices in the
subset is adjacent. The size of the largest clique in G is named the clique number
and is denoted by ω(G).

• An independent set (also known as coclique or stable set) is a subset of the
vertex set of G such that none of the vertices in the subset are adjacent. The size
of the largest independent set is denoted by α(G).

• A k-coloring of G is a coloring of the vertex set with k colors such that every two
vertices which are adjacent have a different color. An equivalent definition is that
of partitioning the vertex set in k independent sets. The smallest number k such
that a graph is still k-colorable is called the chromatic number and is denoted
by γ(G).

As an example the graph G from Figure 1.1 is given. The subset {2, 3, 6} is a clique
and it is of maximal cardinality so ω(G) = 3. Note there is another clique which has
maximal cardinality as well, it is the subset {2, 5, 6}. An example of an independent
set is the subset {1, 6}, it is not of maximal cardinality as {1, 5, 4} has size 3 and is
an independent set as well. It is not difficult to see that α(G) = 3. An example of a
minimal coloring possible is {1, 6}, {3, 5}, {2, 4} so γ(G) = 3.

A straightforward relation between α(G) and ω(G) is given by

α(G) = ω(G),

where G is the complementary graph of G. In general determining ω(G), α(G) and γ(G)
is not an easy task. This has been given the mathematical formulation which can be
found in many books among which [17] (it are the Theorems 64.1 and 64.2 and Corollary
64.1a).
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Figure 1.1: Example

Theorem 1.1. In general determining ω(G), α(G) and γ(G) is NP-complete.

Some exceptions for which determining γ(G) is easy:

• γ(G) = 2 when G is an even cycle and γ(G) = 3 when G is an odd cycle.

• γ(G) = n in the case G is a clique on n vertices.

• γ(G) = 2 in the case G is bipartite and the edge set is non-empty..

We also have the well known 4-coloring theorem by Appel and Haken which states:

Theorem 1.2. If G is planar then γ(G) ≤ 4.

However it is NP-complete to decide whether a planar graph is 3-colorable [3].

For every vertex v ∈ V we define a vertex w ∈ V to be a neighbor of v if w is adjacent
to v. The degree deg(v) is the number of neighbors of v. A well known relation between
the cardinality of the edge set E and the degree of the vertices of a graph without loops
is

∑
v∈V

deg(v) = 2|E|. (1.1)

The diameter d(G) of a graph is the maximum of lengths (that is the number of edges
in a path) of all shortest paths between any two vertices in G:

d(G) = max{length of shortest path between v and w : v, w ∈ V }.

The example we gave at the beginning of this section has diameter 3. Given a graph
G the adjacency matrix is the matrix A such that for two vertices u and v in G we
have Auv = 1 if u and v are adjacent and Auv = 0 if u and v are not adjacent. Note the
adjacency matrix is a real symmetric matrix. The adjacency matrix of our example is
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0 0 1 0 0 0

0 0 1 0 1 1

1 1 0 1 0 1

0 0 1 0 0 0

0 1 0 0 0 1

0 1 1 0 1 0


. (1.2)

The adjacency matrix may have 1s on the diagonal. This is the case when the graph
has loops.

A (graph) isomorphism of graphs G and G′ is a bijection f : V −→ V ′ of the
vertex sets such that for every distinct u,w ∈ V holds

u and w are adjacent⇐⇒ f(u) and f(w) are adjacent.

A useful fact which helps us to reason on isomorphisms and images of isomorphisms is

deg(v) = deg(f(v)), for every v ∈ V . (1.3)

If G = G′ then f is called an (graph) automorphism. The set of all automorphisms,
we write Aut(G), of a graph is obviously a group and it is a subgroup of the symmetry
group Sym(V ) of V . The automorphism group of our example in the beginning of the
section is

〈(1 4), (2 6)〉.

Because the automorphism group acts on the vertex set of a graph we can use a result
from the theory of groups to introduce a trick to find the order of the automorphism
group of a graph. For every vertex v ∈ V we have

|Aut(G)| = |Aut(G)v| · |Aut(G)v|.

Here Aut(G)v ⊆ Aut(G) is the stabilizer of v and Aut(G)v ⊆ V the orbit of v. So by
fixing a suitable vertex of G we might be able to find |Aut(G)|. Applying this technique
to our example we fix vertex v = 1 so |Aut(G)v| = 2 and |Aut(G)v| = 2 giving us
|Aut(G)| = 4. Similarly we find |Aut(Cn)| = 2n.

1.2 Groups and fields

This section recalls some results from basic abstract algebra which are worth mentioning
regarding this thesis. The first result enables us to reason about the existence of rth
roots of elements in Fq and can be found in almost any book on algebra. We give a
short elegant proof from [11].

Proposition 1.3. The group of units F∗q of a finite field Fq is a cyclic group of order
q − 1.

6



Proof. We know F∗q is, with respect to multiplication, an abelian group of order q − 1.
For each maximal primepower pr dividing q− 1 there is a subgroup Upr ⊆ F∗q (Sylow).
Write F∗q as a product of these subgroups Upr (exercise 13 and the accompanying exam-
ple in Chapter I of [11]).

First we will show each Upr is cyclic. Let a ∈ Upr be an element of maximal order
pk. So for every x ∈ Upr holds xp

k

= 1 and therefore all elements in Upr are roots of the
polynomial equation

Xpk

= 1.

The cyclic group generated by a has pk elements. If this cyclic group is not equal to
Upr then our polynomial has more than pk roots, which is impossible. So Upr is cyclic.
Because the orders of the subgroups Upr are all coprime the product of them is cyclic
(Proposition 4.3(v) in Chapter I of [11]) so F∗q is cyclic.

As a reminder. A generator of F∗q , where q is not a prime, can act as a solution of the
minimum-polynomial which defines a finite field Fq.

An x ∈ F (this definition is for infinite fields too) is called a square if there exists
a y ∈ F such that x = y2. An application of this definition and the previous proposition
is the next proposition which is about the number of squares in a finite field.

Proposition 1.4. Given arbitrary finite field Fq.

(i) If q is even then every element in Fq is a square (we say Fq is perfect).

(ii) If q is odd then there are exactly (q + 1)/2 squares in Fq.

(iii) If q is odd then for every k ∈ Fq there exists c, d ∈ Fq such that c2 + d2 = k.

Proof. We have:

(i) If q is even then F∗q = 〈α〉 is a cyclic group of odd order q − 1. If for arbitrary
αt ∈ 〈α〉 holds t is even then αt is a square. If t is odd then

αt = αtαq−1 = αt+q−1.

Now t + q − 1 is even so there exists an integer j such that 2j = t + q − 1 so
(αj)2 = αt so αt is a square.

(ii) For q is odd F∗q = 〈α〉 is of even order q− 1. So there are (q− 1)/2 elements in 〈α〉
which are a square. The elements of the form α2t+1 are not a square as for every
element αi holds (αi)2 = α2i+(q−1)m where 2t+ 1 is odd and 2i+ (q− 1)m is even
for every i or m.

(iii) If you range over all c ∈ Fq then k − c2 takes (q + 1)/2 different values. As there
are (q − 1)/2 non-squares in Fq one of the values k − c2 is a square so k can be
written as the sum of two squares.

The argument used in the proof of Proposition 1.4(iii) is in combinatorics often referred
to as ’the pigeonhole principle’. Some other well known small results are:
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Proposition 1.5. Given a prime power q = pn we have

(i) For an arbitrary element x ∈ Fq (the algebraic closure of Fq) holds: xq = x ⇐⇒
x ∈ Fq.

(ii) For every x, y ∈ Fq holds (x+ y)p = xp + yp.

(iii) The automorphism group Aut(Fq) is cyclic of order n and is generated by x 7→ xp.

Proof. We have:

(i) As F∗q is, with respect to multiplication, a group of order q−1 we have for arbitrary
x ∈ F∗q that holds xq−1 = 1 so every x ∈ Fq satisfies

Xq = X. (1.4)

Because every polynomial of degree q has q solutions in Fq this means all the
solutions of (1.4) are in Fq. So an element in Fq not in Fq won’t satisfy (1.4).

(ii) The justification is that all, except two, binomial-coefficients in the expansion of
(x + y)p are divisible by p. For i = 0, p we have

(
p
i

)
= 1. For an integer i with

0 < i < p we have
(
p
i

)
an integer which is divisible by p because as p is prime p does

not divide i! nor (p− i)!. Now p is the characteristic of Fq so (x+ y)p = xp + yp.

(iii) See Theorem 5.3 (Chapter V) in [11].

Note that we can apply the statement in Proposition 1.5(ii) repeatedly so for every
integer k and any x, y ∈ Fq we have

(x+ y)p
k

= xp
k

+ yp
k

. (1.5)

Now we have enough results for our last proposition.

Proposition 1.6. Given an odd prime-power q.

(i) q ≡ 1 mod 4 ⇐⇒ -1 is a square in Fq.

(ii) q ≡ 1, 3 mod 8 ⇐⇒ -2 is a square in Fq.

(iii) q ≡ 1, 7 mod 8 ⇐⇒ +2 is a square in Fq.

Proof. Proof of the three cases:

(i) (⇒) F∗q is a cyclic group of order q − 1 = 4t (for an integer t) with respect to
multiplication so there is a 4th root of unity ζ4 ∈ Fq for which holds (ζ2

4 )2 = 1
so ζ2

4 = −1 so -1 is a square in Fq.

(⇐) When q ≡ 3 mod 4 we have q− 1 = 4t+ 2 (for an integer t) so there is no 4th
root of unity in Fq.
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(ii) (⇒) There is an integer t such that q = 8t + 1 (this case is for q ≡ 1 mod 8). As
F∗q2 is a cyclic group of order q2 − 1 = 8(8t2 + 2t) this means there is an 8th
root of unity ζ8 ∈ Fq2 . We have

(ζ8 + ζ3
8 )2 = ζ2

8 + 2ζ4
8 + ζ6

8 = −2.

This is easy to see because (ζ4
8 )2 = 1 and (ζ2

8 + ζ6
8 )2 = 0. By observing

(ζ8 + ζ3
8 )q =(1.5) ζ

q
8 + ζ3q

8 = ζ8t+1
8 + ζ24t+3

8 = ζ8 + ζ3
8 ,

and Proposition 1.5(i) we find ζ8 + ζ3
8 ∈ Fq so -2 is a square in Fq.

(⇐) When q ≡ 5, 7 mod 8 we have ζ8 ∈ Fq2 so ζ8 + ζ3
8 ∈ Fq2 . But now (in both

cases of q)

(ζ8 + ζ3
8 )q = ζ5

8 + ζ7
8 = −(ζ8 + ζ3

8 ) 6= ζ8 + ζ3
8

so (by Proposition 1.5(i)) ζ8 + ζ3
8 /∈ Fq so −2 is not a square in Fq.

(iii) This case goes similar to showing when -2 is a square but now consider the element
ζ8 + ζ−1

8 ∈ Fq2 .

1.3 Linear algebra

We start with a well known useful result on the eigenvalues of a real symmetric matrix
which can, for example, be found in [12] as an exercise.

Proposition 1.7. If A is a real symmetric n× n matrix then every eigenvalue of A is
real.

Proof. Let x ∈ Cn be a vector. Define β = xTAx. Then

β = xTAx = xTAx = xTAx = (xTAx)T = xTATx = xTAx = β.

So β = xTAx is a real number. If x is an eigenvector corresponding to an eigenvalue
λ ∈ C of A then we have Ax = λx and we compute

xTAx = xTλx = λ · xTx.

Because xTAx is real and xTx is real this implies λ is real.

The previous proposition holds for Hermitian (A = AT ) matrices too. For the proof
we can use the same β. We have another result which can be found in most books on
(linear)algebra. For every complex n× n matrix A with eigenvalues λ1, . . . , λn (not all
necessarily distinct), the sum of the eigenvalues equals the trace. That is

trA =
n∑
i=1

λi. (1.6)
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This is by the fact that for two square matrices A and B holds trAB = trBA and Jor-
dan’s decomposition theorem (Theorem 5.20 in [10]).

Given a vector space W . A subset B ⊆ W is a basis for W if 〈B〉 = W and any
v1, . . . , vk ∈ B are linearly independent. The cardinality of a basis for W is called the
dimension of W . If the cardinality is finite the we say W is finite dimensional. In
this thesis all vector spaces are finite dimensional.

Given a subspace of a finite dimensional vector space V ⊆ W we can extend a ba-
sis of V to a basis of W by the following procedure. Pick a vector w1 ∈ V c. Next pick
a vector w2 ∈ 〈V ∪ {w1}〉c. Repeat this till you have extended a basis of V to a basis of
W with new extra basis vectors w1, w2, . . . , wk. This way we can construct a basis for
V too by taking the vector space {0} as a starting point.

The next proposition gives an overview of some statements about dimensions of vec-
tor spaces which can be found in many books such as in [10], [11] or [16].

Proposition 1.8. Given subspace and finite dimensional vector space V ⊆W .

(i) dim(V ) ≤ dim(W ).

(ii) If dim(V ) = dim(W ) then V = W .

(iii) dim(W ) = dim(V ) + dim(W/V )

Proof. Basis extension is the key concept in the proofs of the items.

A direct consequence of Proposition 1.8(ii) is the next proposition

Proposition 1.9. Given a linear function ψ : W −→ W̃ where W and W̃ are finite
dimensional and dim(W ) = dim(W̃ ). If ψ is injective then ψ is surjective.

The following proposition allows us to reason on dimensions of two subspaces U, S ⊆W
of a vector space. Here U +S is the set of the sum of all elements in U and S and U ⊕S
is the direct sum.

Proposition 1.10. Given subspaces and finite dimensional vector space U, S ⊆W .

(i) If W = U ⊕ S then dim(W ) = dim(U) + dim(S).

(ii) dim(U) + dim(S) = dim(U + S) + dim(U ∩ S).

Proof. We have:

(i) Let BU be a basis for U and BS be a basis for S. Then by definition of direct
sum W = 〈BU ∪ BS〉. Pick an arbitrary linear combination u 6= 0 of BU and an
arbitrary linear combination s 6= 0 of BS . U and S are, with respect to addition,
groups. As their intersection equals 0 (by definition) this implies u /∈ S and s /∈ U
so u+ s /∈ U ∪ S so u+ s 6= 0 so BU ∪ BS is linearly independent so BU ∪ BS is a
basis for W .

(ii) (About the notation in this proof. The symbols for sum and intersection have
stronger binding than the symbol for the factor group) By definition of direct sum
(see notation index) we have

(U/U ∩ S)⊕ (S/U ∩ S) = U + S/U ∩ S. (1.7)
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The set U ∩ S acts as a zero element in (1.7). From (1.7) and (i) we deduce

dim(U/U ∩ S) + dim(S/U ∩ S) = dim(U + S/U ∩ S) (1.8)

From Proposition 1.8(iii) we deduce

dim(U) = dim(U ∩ S) + dim(U/U ∩ S),
dim(S) = dim(U ∩ S) + dim(S/U ∩ S).

Combining these two identities with (1.8) we get our desired equality.

1.4 Bilinear forms

Given a vector space W over a field F. By a bilinear form we define a function
W ×W −→ F, denoted by 〈·, ·〉, such that for all u, v, w ∈W and all c ∈ F holds

(BF1) 〈u, v + w〉 = 〈u, v〉+ 〈u,w〉;

(BF2) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉;

(BF3) 〈cu, v〉 = c〈u, v〉;

(BF4) 〈u, cv〉 = c〈u, v〉.

From our definition we immediately deduce (note we can use (BF1) and (BF2) or (BF3)
and (BF4)) that for every w ∈W holds

〈w, 0〉 = 0 = 〈0, w〉.

From (BF1) we can proof the first identity.

〈w, 0〉 = 〈w, 0 + 0〉 = 〈w, 0〉+ 〈w, 0〉

so 〈w, 0〉 = 0. An example of a bilinear form on x, y ∈ Fn is the multiplication by an
n× n matrix A over the field F:

〈x, y〉 := xTAy. (1.9)

In fact, every bilinear form on a vector space Fn can be written as the multiplication
with an n× n matrix over the field F like in (1.9). Now we list some definitions:

• A bilinear form is called symmetric if for all v, w ∈W holds 〈v, w〉 = 〈w, v〉.

• A symmetric bilinear form is called non-degenerate if for every non-zero v ∈W
there is a non-zero w ∈W such that 〈v, w〉 6= 0.
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• Two vectors v, w ∈ W are orthogonal if 〈v, w〉 = 0. This not necessarily implies
〈w, v〉 = 0 which can be seen by finding a counterexample:

v =

[
1

−1

]
,M =

[
1 2

0 3

]
, w =

[
1

1

]
.

We have vTMw = 0 there wTMv = −4.

• Two subspaces S,U ⊆ W are orthogonal subspaces, and we write S⊥U , if for
all s ∈ S and all u ∈ U holds 〈s, u〉 = 0.

• The orthogonal complement of a subspace U ⊆W is the subset U⊥ ⊆W of all
vectors w ∈W which are orthogonal to every vector in U :

U⊥ := {w ∈W : 〈w, u〉 = 0 for all u ∈ U}.

It is easy to verify U⊥ is a subspace of W .

We continue with a short proposition.

Proposition 1.11. Given a symmetric bilinear form induced by a symmetric matrix A
on a vector space W . Then A is invertible ⇐⇒ the bilinear form is non-degenerate.

Proof. We Have:

(⇒) A is invertible. Pick an arbitrary non-zero vector w ∈W . Because w 6= 0 there is
an integer i such that wT ei 6= 0 (here ei is the vector with the ith entry equal to
1 and the other entries equal to 0). Because A is invertible the equation Ax = ei
has a non-zero solution x ∈W . Now

〈w, x〉 = wTAx = wT ei 6= 0

so the bilinear form is non-degenerate.

(⇐) We prove the negation. If A is not invertible then there is a non-zero x ∈W such
that Ax = 0 so the bilinear form is not non-degenerate.

The next proposition gives a relation between the dimensions of U , U⊥ and W . Its proof
can by found in [10] or [16].

Proposition 1.12. If the symmetric bilinear-form on the finite dimensional vector space
W is non-degenerate then for every subspace U ⊆W holds

dim(U) + dim(U⊥) = dim(W ).

Proof. We introduce the dual space U ′ of U . That is the set of all linear functions
U −→ F. Now introduce the function

ψ : W −→ U ′

w 7−→ (u 7→ 〈u,w〉).
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For the kernel and the image of ψ we claim

kerψ = U⊥, (1.10)
im ψ = U ′. (1.11)

(1.10) follows from the definition of U⊥. (1.11) requires some work. We start by choosing
a subspace Ũ ⊆ W (to construct Ũ use the concept of basis extension to obtain basis
vectors for Ũ) such that

W = U ⊕ Ũ . (1.12)

Next pick arbitrary u′ ∈ U ′ and define a function w′ by

w′ =
{
u′ on U ,
0 on Ũ .

By (1.12) it is safe to say w′ ∈ W ′ (the dual space). Since the bilinear form 〈·, ·〉 is
non-degenerate the linear function

ϕ : W −→ W ′

w 7−→ (v 7→ 〈v, w〉)

is a surjection (see supporting proof ). Thus we can choose w ∈ W with ϕ(w) = w′.
Then for all u ∈ U ,

ψ(w)(u) = 〈u,w〉 = ϕ(w)(u) = w′(u) = u′(u)

and hence ψ(w) = u′. Therefore im ψ = U ′ and we conclude that

dim(W ) = dim(kerψ) + dim(im ψ) (1.13)
= dim(U⊥) + dim(U ′)
= dim(U⊥) + dim(U).

(1.13) is Theorem 2.8 in [16].

supporting proof: We have dim(W ) = dim(W ′). This is because W has a finite ba-
sis b1, . . . , bn ∈W . So for all T ∈W ′ and every c1b1 + · · ·+ cnbn ∈W holds

T (c1b1 + · · ·+ cnbn) = c1T (b1) + · · ·+ cnT (bn).

As all T (bi) are scalars we can with fixed elements b′1, . . . , b
′
n ∈ Fq and for every T

suitable scalars s1, . . . , sn obtain any element from W ′. The only way to create the
zero-map is by picking s1, . . . , sn = 0 so by definition our elements b′1, . . . , b

′
n form a

basis and we have dim(W ) = dim(W ′).

Because ϕ is a homomorphism of (additive) groups with kerϕ = 0 (follows from the
bilinear form which is non-degenerate) ϕ is injective so we can apply Proposition 1.9 to
show ϕ is a surjection.
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A small result which follows from this proposition is the following

Proposition 1.13. For a symmetric non-degenerate bilinear form on a subspace and
finite dimensional vector space U ⊆W holds U⊥⊥ = U .

Proof. From Proposition 1.12 we deduce dim(U⊥⊥) = dim(U). We also have U ⊆ U⊥⊥
so by Proposition 1.8(ii) we have equality.

Now we give an example of a vector space W , a non-degenerate bilinear form and a
subspace U ⊆ W such that U ∩ U⊥ is non-zero (opposed to a real or complex inner-
product space where the intersection equals 0). Take W = R2, a bilinear form defined
on any x, y ∈ R2 by

〈x, y〉 := xT

[
1 0

0 −1

]
y = x1y1 − x2y2,

and the subspace U = {(c, c) : c ∈ R}. Now U⊥ = U so U ∩ U⊥ is non-zero.
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Chapter 2

Projective planes

This chapter will introduce projective planes and their relation with subspaces of F3
q.

This chapter is needed to show some important properties of our subject of study which
we will present in the chapter after this one.

2.1 Projective planes an polarities

A projective plane Π is a finite set of points and a finite set of lines such that:

(PP1) Every pair of points are exactly on (set theoretic membership or inclusion) one
line.

(PP2) Every pair of lines intersects (set theoretic intersection) in exactly one point.

(PP3) There are four points such that no three of them are on the same line.

An example of a projective plane is the vector space F3
q where the 1-dimensional sub-

spaces of F3
q are the points and the 2-dimensional subspaces of F3

q are the lines. For
(PP2) one might want to use Proposition 1.10(ii). For (PP3) we can take the vectors
e1, e2, e3, 1 ∈ F3

q. In the literature F3
q, when viewed as a projective plane, is often re-

ferred to as PG(2, q). Figure 2.1 shows PG(2, 2). See also [9] for an extensive treatise
on projective planes.

001 011 010

101

111

110

100

Figure 2.1: The projective plane PG(2, 2), also called the Fano plane

15



Proposition 2.1. In every projective plane there are 4 lines such that no three of them
intersects in the same point.

Proof. By (PP3) there are four points A, B, C and D such that no three of them are
on the same line. Therefore by (PP1) we have 4 distinct lines AB, BC, CD and DA.
If any three of those lines (say AB,BC and CD) intersect in a point P then this would
violate (PP2). So we have 4 lines such that no three of them intersect in one point.

By the previous proposition lines of a projective plane Π can be seen as ”points” and
points of Π as ”lines”. We call this projective plane Π∗ the dual of Π. In some cases
reasoning on the dual Π∗ might give us short proofs of propositions for Π.

Proposition 2.2. Not all points are on two lines.

Proof. Assume all points are on two lines L andM. By (PP3) we have 4 distinct points
L1, L2 on L and M1,M2 onM. The lines L1M1 and L2M2 intersect by (PP2) in a point
P not equal to L1, L2,M1 or M2 (by (PP3)). If P is on L then the line L1M1 intersects
L twice, violating (PP2). If P is onM then the line L1M1 intersectsM twice, violating
(PP2) again. So there is a point not on L or M.

Another proposition is

Proposition 2.3. For a projective plane we have:

(i) Every line contains the same number of points.

(ii) Every point is on the same number of lines.

(iii) The number of lines which intersects a point equals the number of points on a line.

Proof. We have:

(i) Follows from Proposition 2.2 and (PP1) and (PP2).

(ii) By (i) and the dual.

(iii) Pick a line L and a point P not on L. For every point on L there is by (PP1) a
line which intersects that point and P . As every line P is on intersects, by (PP2),
L this implies the number of lines which intersects a point equals the number of
points on a line.

With Proposition 2.3 we have the next proposition:

Proposition 2.4. For a projective plane we have:

(i) On every line are n+ 1 points.

(ii) Every point is on n+ 1 lines.

(iii) There are n2 + n+ 1 points.

(iv) There are n2 + n+ 1 lines.

Proof. We have:

(i) By Proposition 2.3(i) we are free to say there are n+ 1 points on every line.

(ii) By (i) and the dual.
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(iii) By the previous two items we have n+ 1 points on a line L and every point on L
is on n+ 1 lines. So there are (n+ 1)n lines which intersect L so including L there
are n2 + n+ 1 lines.

(iv) By (iii) and the dual.

By Proposition 2.4 we say a projective plane is of order n.

Given a projective plane Π = (X,L) (here X is the set of points, L is the set of lines) a
polarity is a function φ : X ∪ L −→ X ∪ L such that holds:

(Po1) for every point x ∈ X we have φ(x) ∈ L;

(Po2) for every line l ∈ L we have φ(l) ∈ X;

(Po3) the composition φ2 = φ ◦ φ is the identity function on X ∪ L.

On the projective plane PG(2, q) = (X,L) (here X is the set of all 1-dimensional sub-
spaces of F3

q and L is the set of all 2-dimensional subspaces of F3
q) we define a polarity

φ on any U ∈ X ∪ L by:

U 7−→ U⊥ (2.1)

From Proposition 1.12 we easily deduce that for any U ∈ X ∪ L holds

dim(φ(U)) = dim(U⊥) = 2 when dim(U) = 1,
dim(φ(U)) = dim(U⊥) = 1 when dim(U) = 2.

This makes our φ satisfying (Po1) and (Po2). Proposition 1.13 makes our φ satisfies
(Po3).

2.2 Subspaces of Fn
q

In the previous section we gave F3
q as an example of a projective plane. It satisfies:

(PP1′) For every two distinct 1-dimensional subspaces (points) X and Y there is exactly
one 2-dimensional subspace (line) U such that X,Y ⊆ U .

(PP2′) For every two distinct 2-dimensional subspaces (lines) U and S the intersection
U ∩ S contains one unique 1-dimensional subspace (point).

(PP3′) There exist four distinct 1-dimensional subspaces (points) such that no three of
them are contained in the same 2-dimensional subspace (line).

We can use the propositions from section 2.1 to learn about the subspaces of F3
q. This

section contains two propositions to derive the same claims without the theory of pro-
jective planes.

Proposition 2.5. The number of subspaces of dimension k in a vector space Fnq is

(qn − 1) . . . (q2 − 1)(q − 1)
(qk − 1) . . . (q2 − 1)(q − 1) · (qn−k − 1) . . . (q2 − 1)(q − 1)

.
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Proof. By S we define a subset S ⊆ Fnq with |S| = k and all the vectors in S linearly
independent (so S is a basis for a k-dimensional subspace). Then the number of subsets
S contained in Fnq is

(qn − 1)(qn − q)(qn − q2) . . . (qn − qk−1)
k!

. (2.2)

This is easy to see as we have qn−1 choices for our first vector. This leaves us with qn−q
choices for our second vector. This goes on till we have the numerator of (2.2). See also
the concept of basis extension mentioned in section 1.3. We avoid double counting by
putting k! in the denominator of (2.2).

From (2.2) we also deduce that the number of subsets S ⊆ W ⊆ Fnq (here W is a
subspace with dim(W ) = k) is

(qk − 1)(qk − q)(qk − q2) . . . (qk − qk−1)
k!

. (2.3)

If N is the total number of subspaces W ⊆ Fnq of dimension k then combining (2.2) and
(2.3) gives the following counting relation for S:

(qk − 1) . . . (qk − qk−1)
k!

·N =
(qn − 1) . . . (qn − qk−1)

k!
.

This is because (PP1′): an S can not be contained in two different subspaces. So we
deduce

N =
(qn − 1)(qn − q)(qn − q2) . . . (qn − qk−1)
(qk − 1)(qk − q)(qk − q2) . . . (qk − qk−1)

.

By induction we can show N equals our desired identity. For k = 1 it is obvious the
equality holds for all n. By multiplying with

qk(qn+1 − 1)
qk(qk+1 − 1)

,

we can proof that when the equality holds for n and k it becomes valid for n + 1 and
k + 1.

So with the previous proposition we can state the next proposition which summarizes
the relation between 1-dimensional and 2-dimensional subspaces of F3

q.

Proposition 2.6. For F3
q we have:

(i) q2 + q + 1 subspaces of dimension 1.

(ii) q2 + q + 1 subspaces of dimension 2.

(iii) Each 2-dimensional subspace has q + 1 subspaces of dimension 1.

(iv) Every 1-dimensional subspace is contained in q + 1 subspaces of dimension 2.
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Proof. The items (i), (ii) and (iii) follow form the previous proposition. For the last
item let N be the number of 2-dimensional subspaces of F3

q which contain an arbitrary
1-dimensional subspace U ⊆ F3

q. Then, by the previous items and (PP1′), we have the
following counting relation for N :

(q + 1)N −N + 1 = q2 + q + 1.

From this relation we deduce N = q + 1.

2.3 Ovals of PG(2, q)

An oval O is a set of n+ 1 points in a projective plane Π of order n such that no three
points in O are on the same line. Given a set S of points of PG(2, q). A line which
intersects S in

• 0 points is called an external line ;

• 1 point is called a unisecant ;

• 2 points is called a bisecant .

With these new definitions we have the following proposition.

Proposition 2.7. For q is odd: in PG(2, q) every point not in an oval O lies on exactly
two or no unisecants of O.

Proof. Lemma 8.10 in [8].

We will now introduce two other definitions. For odd q a point of PG(2, q) is called
external if it lies on two unisecants of an oval O in PG(2, q). A point is called internal
if it lies on no unisecants ofO. Now we can, for odd q, classify lines and points of PG(2, q)
with respect to an oval O by the following proposition:

Proposition 2.8. Let q be odd. With respect to an oval O in PG(2, q) we have:

(i) q + 1 unisecants;

(ii) q(q + 1)/2 bisecants;

(iii) q(q − 1)/2 external lines.

Proof. We have:

(i) Let P be arbitrary point in O, we have |O| = q + 1 so by (PP1) we have q lines
with P on it accompanied by another point from O. By 2.4(ii) there must be one
other line P is on, as O is an oval that line must be a unisecant. We have q + 1
such points so q + 1 unisecants.

(ii) There are q(q + 1)/2 ways to choose 2 out of q + 1 points. By (PP1) there is a
line which intersects any 2 points in O. By definition of oval any such line can not
intersect other points of O.

(iii) As we have a total of q2 + q + 1 lines there are, by (i) and (ii), q(q − 1)/2 external
lines.
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For the points of PG(2, q) we have

Proposition 2.9. Let q be odd. With respect to an oval O in PG(2, q) we have:

(i) q + 1 points on O;

(ii) q(q + 1)/2 external points;

(iii) q(q − 1)/2 internal points.

Proof. We have:

(i) By definition.

(ii) There are q(q + 1)/2 ways to choose 2 out of q + 1 points of O. So there are
q(q + 1)/2 ways to pick 2 unisecants. A pair of unisecants intersects in a point P
(not in O as the lines are unisecants). There is by Proposition 2.7 no 3rd unisecant
which intersects in P . So there are, by definition of external point, q(q + 1)/2
external points.

(iii) We have q2 +q+1 points so from (i) and (ii) we deduce we have q(q−1)/2 internal
points.

Next we present the useful Tables 2.1 and 2.2:

Point of O External point Internal point
Unisecant 1 q 0
Bisecant 2 (q − 1)/2 (q − 1)/2
External line 0 (q + 1)/2 (q + 1)/2

Table 2.1: How many points of each type lie on each line

The proof of Table 2.1 is:

Proof. We reason as follows to show there are (q − 1)/2 external points on a bisecant:
If we have a bisecant B with 2 points of O then there are (q + 1)− 2 = q − 1 points of
O not on B. The q − 1 unisecants trough those points intersect B in an external point
(because on every unisecant are q external points). As every external point is on exactly
2 unisecants (by Proposition 2.7) this implies there are (q − 1)/2 external points on B.

Showing there are (q + 1)/2 external points on every external line goes similar.

Dually we have Table 2.2.

Unisecant Bisecant External line
Point of O 1 q 0
External point 2 (q − 1)/2 (q − 1)/2
Internal point 0 (q + 1)/2 (q + 1)/2

Table 2.2: How many lines of each type intersects each point

In the coming chapter we will give an example of an oval in PG(2, q).
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Chapter 3

Introduction to ERq

Here we will introduce the Erdős-Rényi graph, the subject of our study, together with
its properties.

3.1 Definition of the Erdős-Rényi graph

In this section we will describe the graph which plays a central role in this thesis: the
Erdős-Rényi graph. The proofs of the propositions in this section will rely heavily upon
Proposition 1.12.

On elements x, y ∈ F3
q we have the bilinear form in which I is the identity matrix:

〈x, y〉 := xT Iy = xT y. (3.1)

We define the Erdős-Rényi graph ERq as follows. Given the vector space F3
q and

the bilinear form defined by (3.1) on it. Then the vertex set of ERq is the set of all
1-dimensional subspaces of F3

q. Two distinct 1-dimensional subspaces U, V ⊆ F3
q are

adjacent if and only if U⊥V . 1-dimensional subspaces V ⊆ F3
q for which holds V⊥V

are called absolute points. If we allow edges which connect the absolute points with
themselves (we called these kind of edges loops in section 1.1) to be part of the edge set
too then we write ERoq .

Most of the time we will not talk about 1-dimensional subspaces but about the non-zero
left normalized (that is: the first non-zero element in a vector equals 1) element which
represents the 1-dimensional subspace. Now two distinct vertices x and y are adjacent
if and only if

〈x, y〉 = 0.

Given the symmetric matrix

I ′ :=


0 0 1

0 −1 0

1 0 0

 , (3.2)
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we define on any two vertices x = (x0, x1, x2) and y = (y0, y1, y2) in ERq a new bilinear
form by

〈x, y〉 := xT I ′y = xT


0 0 1

0 −1 0

1 0 0

 y = x0y2 + x2y0 − x1y1.

Now this new bilinear form defines whether vertices are adjacent and absolute. This
new graph ER∗q allows us for easy algebraic manipulations.

An alternative definition is given by PG(2, q) = (X,L) and the defined polarity φ from
(2.1). We define ERq by the vertex set equal to X and two distinct U, S ∈ X adjacent
if and only if U ⊆ φ(S) = S⊥.

The orthogonality graph OGq is the subgraph of the Erdős-Rényi graph which is
induced by all its non-absolute points.

Figures 3.2 and 3.1 give graphical examples for the case q = 2. Section A.1 contains an
example of ER3.

Figure 3.1: The Erdős-Rényi graph ER2 with absolute points (1, 1, 0), (1, 0, 1) and
(0, 1, 1)

Our next proposition tells us that ERq and ER∗q are isomorph. As mentioned before,
the bilinear form of ER∗q allows us for easy algebraic manipulations. Therefore we will
use this bilinear form most of the time in the thesis. However we will always name
the graph ERq despite most of the times we mean ER∗q .

Proposition 3.1. ERq is isomorphic to ER∗q .

Proof. We need to find a matrix C such that CI ′CT = λI for a non-zero λ ∈ Fq. We
distinguish the following cases, the last three cases supported by the results from section
1.2:

22



Figure 3.2: The Erdős-Rényi graph ER∗2 with absolute points (1, 0, 0), (1, 0, 1) and
(0, 0, 1)

(q ≡ 0 mod 2)

C2 =


1 1 1

0 1 1

1 1 0

 .
(q ≡ 1 mod 4) Pick an i ∈ Fq such that i2 = −1.

C1 =


1+i
2 0 1−i

2

0 i 0
−1+i

2 0 − 1+i
2

 .
(q ≡ 3 mod 8) Pick an a ∈ Fq such that a2 = −2.

C3 =


a
2 a a

2

−1 −1 −1

−a2 0 a
2

 .
(q ≡ 7 mod 8) Take b, c, d,∈ Fq such that b2 = 2, c2 + d2 = −1.

C7 =


1
b 0 1

b

−db c d
b

c
b d − cb

 .
Note λ = 1 in all four cases.

The points (1, 0, 0) and (0, 0, 1) in ER∗q are, for every q, absolute points so the set of
absolute points is non-empty.
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3.2 Basic properties

This section gives some basis properties of ERq (using the bilinear form for ER∗q) which
can also be found in [18]. As our bilinear form is, by Proposition 1.11, non-degenerate
we will use Proposition 1.12 in the proofs of the majority of the propositions in this
section. Proposition 1.12 backs up our geometric intuition we have for ERq.

So most of the proofs in this section are based on linear algebra over finite fields. This is
a different approach compared to [18] where finite geometry is used. Another approach
is to prove the propositions with elementary algebra. We will only do this for the next
proposition as for all the other propositions our linear algebra proofs are much shorter.
However we will mention when an elementary algebraic proof is possible.

Proposition 3.2. ERq has q + 1 absolute points, q2 non-absolute points for a total of
q2 + q + 1 points.

Proof. In this proof we are, by the previous proposition, free to choose the alternative
inner-product of ER∗q . First we count the absolute points, that is the points x =
(x0, x1, x2) for which holds

〈x, x〉 = 2x0x2 − x2
1 = 0.

If q is a power of 2 then this equation reduces to x2
1 = 0 so x1 = 0. So all absolute

points are of the form (x0, 0, x2) and as they are normalized we have q + 1 of them. If
q is odd then x0 = 0 implies x1 = 0 and x2 = 1 giving one solution. For x0 = 1 we have
2x2 = x2

1 where we are free to choose x1 giving q additional solutions so we have a total
of q + 1 solutions.

We have a total of q2 + q+ 1 non-zero normalized elements in F3
q (this is by Proposition

2.6(i)). Now we immediately deduce we have (q2 + q + 1) − (q + 1) = q2 non-absolute
points.

The next proposition is on the degree of the vertices of ERq.

Proposition 3.3. The absolute points of ERq have degree q while the non-absolute
points have degree q + 1.

Proof. A vertex x in ERq can be interpreted as a 1-dimensional subspace U ⊆ F3
q. So

by Proposition 1.12 we have

dim(U) + dim(U⊥) = 3.

So U⊥ is 2-dimensional with (by Proposition 2.6(iii)) q + 1 normalized points so if x is
not absolute then x is adjacent to q + 1 other vertices in ERq. If x is absolute then
x ∈ U⊥ and therefore x is adjacent to q other vertices in ERq.

By making case distinction on (1, x1, x2), (0, 1, x2), (0, 0, 1) ∈ ERq we can give an elemen-
tary algebraic proof of Proposition 3.3. From Proposition 3.3 we deduce the following
result for the cardinality of the edge set of ERq.

Proposition 3.4. ERq has q(q + 1)2/2 edges.
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Proof. By identity (1.1) and the previous propositions we have

∑
v∈V

deg(v) = (q + 1)q2 + q(q + 1) = q(q + 1)2 = 2|E|,

so we find ERq has q(q + 1)2/2 edges.

We do not have enough information to say anything about the cardinality of the edge
set of the orthogonality subgraph. The following proposition helps us with it.

Proposition 3.5. The absolute points from ERq form an independent set.

Proof. Pick two distinct absolute points x and y in ERq. Because they are absolute we
have

〈x, x〉 = 0 and 〈y, y〉 = 0.

Now x and y span a 2-dimensional subspace U ⊆ F3
q so by Proposition 1.12 dim(U⊥) = 1.

If x and y are adjacent then 〈x, y〉 = 0. Now we reach a contradiction because x, y ∈ U⊥
which is not possible because U⊥ is of dimension 1 and x and y are different. So x and
y are not adjacent and the absolute points form an independent set.

By making a case distinction between even q and odd q we can give an elementary
algebraic proof of the proposition above as well. So now we can deduce the orthogonality
subgraph has q(q + 1)(q − 1)/2 edges.

Proposition 3.6. We have:

(i) Every two distinct adjacent vertices x and y in ERq have at most one common
neighbor. We have: x is absolute or y is absolute ⇐⇒ x and y do not have a
(unique) common neighbor.

(ii) Every two distinct non-adjacent vertices x and y in ERq have a unique common
neighbor.

(iii) Every two distinct vertices x and y in ERoq have one unique common neighbor
(possibly x or y itself as ERoq has loops).

Proof. Proposition 1.12 says that for every subspace U ⊆ F3
q holds

dim(U) + dim(U⊥) = 3.

Now every two distinct vertices x and y in ERq are two distinct points in F3
q which span

a plane U which has dimension 2 so U⊥ has dimension 1 so all elements in U⊥ only
differs a non-zero scalar c ∈ Fq.

If x and y are adjacent and x or y is absolute then x or y is in U⊥ so there is no
common neighbor. If x nor y is absolute then there is a unique common neighbor. If x
and y are not adjacent than x nor y is in U⊥ so there is a unique common neighbor.

Because ERoq has loops x and y have a unique common neighbor, probably x or y
it self.
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From the proposition above we immediately deduce ERq is of diameter 2. We mention
the link with the ’friendship theorem’ which can, for example, be found in [1]. It says
that in any graph in which two distinct vertices have one unique common neighbor there
is a vertex which is adjacent to all other vertices. ERoq satisfies this claim however it
has loops and the friendship theorem is for graphs which does not have loops.

Proposition 3.7. We have:

(i) ERq contains a triangle which does not meet the absolute points.

(ii) Every absolute point is not contained in a triangle.

(iii) Every edge which does not have an absolute point as an endpoint is contained in a
unique triangle.

(iv) ERq does not contain C4 as a subgraph.

Proof. Using the bilinear form for ERq (so we use the identity matrix) we have 3 non-
absolute points which are adjacent to each other

(1, 0, 0) (0, 1, 0) (0, 0, 1),

and therefore form a triangle. The other items follow directly from Proposition 3.6.

More properties of ERq can be found in [18].

3.3 Absolute, external and internal points

This section is strongly supported by the results from section 2.3. For the absolute
points R of ERq we have the following proposition:

Proposition 3.8. For the absolute points of ERq we have:

(i) For even q the set R is a line.

(ii) For odd q the set R is an oval.

Proof. See Proposition 3.20 and 3.21 in [18].

We will now define two other kind of points. But before we are allowed to do so a
proposition which puts a relation between external points as defined in section 2.3 and
non-absolute points adjacent to absolute points.

Proposition 3.9. For odd q we have with respect to the oval R of absolute points:

(i) For an absolute point P we have P⊥ is the unisecant P is on.

(ii) The set of non-absolute points of ERq adjacent to an absolute point equals the set
of external points of PG(2, q).

Proof. We have:

(i) When we have a unisecant it is one of the q+ 1 lines which an absolute point P is
on. Also, as P ⊆ P⊥, P⊥ is one of the q + 1 lines P is on. By Proposition 3.5 no
other absolute point than P can be on P⊥ so this proves our assertion.

(ii) By (i) and the fact that external point are the points on unisecant of R by Propo-
sition 2.7.
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So now we can apply our definitions of section 2.3 to ERq. Given a non-absolute point
x in ERq. We say x is external if it is adjacent to an absolute point. We write L for
the set of all external points of ERq. We say x is internal if it is not adjacent to an
absolute point. We write M for the set of all internal points of ERq. The following
two propositions shines some light on the structure of ERq with respect to our new
definitions.

Figure 3.3: Supporting figure for Proposition 3.10

Proposition 3.10. In case q is even we have

(i) There is one non-absolute vertex, it is the vertex S0 = (0, 1, 0), that is adjacent
with all absolute vertices.

(ii) Every non-absolute vertex not equal to S0 is adjacent to exactly one absolute vertex.

So every non-absolute vertex is external.

Proof. As every vertex of the form (1, 0, x) is absolute and (0, 0, 1) is absolute as well we
have q+1 absolute vertices this way and by Proposition 3.2 we have categorized them all.

The non-absolute vertex (0, 1, 0) is adjacent to every absolute vertex and as (0, 1, 0)
has degree q + 1 and because we have q + 1 absolute vertices this implies (0, 1, 0) is
adjacent to absolute vertices only.

Now pick an arbitrary non-absolute vertex (1, y1, y2) (so y1 6= 0). It is not adjacent
to (0, 0, 1), but the bilinear form with (1, 0, x) gives x + y2 = 0 so every non-absolute
vertex of the form (1, y1, y2) is adjacent to exactly one absolute vertex. The non-absolute
point (0, 1, y) (with y 6= 0) is not adjacent to any point (1, 0, x) but it is adjacent to
(0, 0, 1) so every non-absolute vertex of the form (0, 1, y) (with y 6= 0) is also adjacent
to exactly one absolute vertex.

For q is even we have that Fq is perfect so saying an x in ERq is external is equivalent
to saying that 〈x, x〉 = −〈x, x〉 is a non-zero square (as a reminder: we use the bilinear
form for ER∗q). When q is odd it is more difficult to obtain results. The proof of the
following proposition relies on Proposition 3.9 and Table 2.1.

Proposition 3.11. In case q is odd we have:

(i) Given a vertex x in ERq: x is external ⇐⇒ −〈x, x〉 is a non-zero square in Fq.

(ii) There are q(q + 1)/2 external vertices. Every external vertex is adjacent to 2
absolute vertices, (q − 1)/2 other external vertices and (q − 1)/2 internal vertices.

(iii) There are q(q−1)/2 internal vertices. Every internal vertex is adjacent to (q+1)/2
other internal vertices and (q + 1)/2 external vertices.

27



Figure 3.4: Supporting figure for Proposition 3.11

Proof. Pick a vertex of the form (0, 1, x), note it is not absolute. We are going to count
how many absolute vertices (1, y1, y2) (note 2y2 = y2

1) are adjacent to it. An absolute
vertex is adjacent if and only if

x− y1 = 0.

So given x there is one absolute point of the form (1, y1, y2) which is adjacent to it. Also
(0, 1, x) is adjacent to the absolute point (0, 0, 1) so every point of the form (0, 1, x) is
an external point adjacent to exactly 2 absolute vertices and we have q of them. Also

−〈(0, 1, x), (0, 1, x)〉 = 1

which is a square in Fq.

Pick a non-absolute vertex of the form (1, x1, x2), so 2x2 6= x2
1. We are going to count

how many absolute vertices (1, y1, y2) (note 2y2 = y2
1) are adjacent to it. An absolute

vertex is adjacent if and only if

y2 + x2 − x1y1 = 0.

By substituting y2
1/2 for y2 we get

y2
1 − 2x1y1 + 2x2 = 0.

We have the solutions

y1 = x1 ±
√
x2

1 − 2x2 = x1 ±
√
−〈x, x〉. (3.3)

This implies (1, x1, x2) is external if and only if −〈x, x〉 is a non-zero square. From (3.3)
we also deduce that if (1, x1, x2) is external then it is adjacent to exactly 2 absolute
points. So any external point of ERq is adjacent to exactly 2 absolute points.

From Proposition 2.9 and Proposition 3.9(ii) we deduce we have q(q + 1)/2 external
points and therefore q(q− 1)/2 internal points. Because an external point U is adjacent
to 2 absolute points this implies U⊥ is a bisecant with respect to R so U is, by Table
2.1, adjacent to (q − 1)/2 external points and (q − 1)/2 internal points.

For an internal point T we have T⊥ contains no absolute points so it is an external
line with respect to R so T is by Table 2.1 adjacent to (q + 1)/2 internal points and
(q + 1)/2 external points.
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The proposition above can also be found in [15] which relies on results from [2]. To
summarize. For odd q we can partition the vertex set of ERq by

R = {vertices x in ERq : 〈x, x〉 = 0},
L = {vertices x in ERq : 〈x, x〉 6= 0,−〈x, x〉 is a square},
M = {vertices x in ERq : 〈x, x〉 6= 0,−〈x, x〉 is a non-square}.

When q is even M = ∅ and for all r ∈ Fq holds −x = x so this gives the partition

R = {vertices x in ERq : 〈x, x〉 = 0},
L = {vertices x in ERq : 〈x, x〉 is a non-zero square}.

3.4 An inequality

Given subfield and field Fq ⊆ Fq2 we have that ERq is a subgraph of ERq2 . It is obvious
we have

γ(ERq) ≤ γ(ERq2). (3.4)

We wonder whether it would be possible to obtain a strict inequality. The following
proposition supports us with this question.

Proposition 3.12. We have:

(i) There is no vertex y in ERq2 which is not in ERq and is adjacent to every vertex
in ERq.

(ii) There is no vertex y in OGq2 which is not in OGq and is adjacent to every vertex
in ERq.

Proof. From Proposition 3.7(i) we know ERq and OG3 have a triangle so if x is adjacent
to every vertex in and ERq and OGq then it is adjacent to every vertex in the triangle
and this would mean there are two different vertices which have 2 common neighbors
which is by Proposition 3.6(iv) not true so a contradiction.

If there was a vertex in ERq2 not in ERq which is adjacent to every vertex in ERq then
(3.4) would become a strict inequality. The proposition tells us no such vertex exist so
whether (3.4) is strict is still open. In section 5.3 we will elaborate on

γ(OGq) ≤ γ(OGq2). (3.5)
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Chapter 4

Automorphisms of ERq

A seperated chapter is dedicated to the automorphisms of the Erdős-Rényi graph.

4.1 Constructing some automorphisms

Figure 4.1: ER2 with an alternate labeling

In this section we will present some info of the automorphism group of ERq. The
automorphism group of ER2, when labeled according to Figure 4.1, is

〈(1 2)(4 5), (2 3)(5 6)〉 ' Sym(3).

We will now construct some automorphisms of ERq. Define the orthogonal group
O(n,F) to be the set of all n × n matrices N over a field F such that NTN = I. It
is a subgroup of the general linear group GL(n,F) which is the set of all invertible
n × n matrices over F. The projective orthogonal group PO(n,F) is the group
O(n,F)/{cI : c ∈ F∗}.

Now we can construct automorphisms of ERq ourself. We need to find a 3 × 3 ma-
trix M over Fq such that for a non-zero λ ∈ Fq holds MI ′MT = λI ′. By applying the
determinant to this identity we have

det(M)2 = det(MI ′MT ) = det(λI ′) = λ3.

So λ has to be square so we can distribute it over M and MT . Therefore it is sufficient
to take λ = 1 so we are interested in a 3× 3 matrix M over Fq such that holds
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MI ′MT = I ′. (4.1)

From the proof of Proposition 3.1 we can extract for each q a 3 × 3 matrix C over Fq
such that we have the next two equivalent identities

CI ′CT = I, (4.2)
(C−1)(C−1)T = I ′. (4.3)

Define for an N ∈ O(3,Fq) a matrix

M := C−1NC.

By definition of O(3,Fq) and (4.2) and (4.3) it is easy to verify M satisfies (4.1) so
we have constructed an element of Aut(ERq). The next section tells whether we can
construct all automorphisms this way.

4.2 All automorphisms

Proposition 4.1. We have:

(i) If q is even then Aut(ERq) ' O(3, q) o Aut(Fq).

(ii) If q is odd then Aut(ERq) ' PO(3, q) o Aut(Fq).

Proof. This is Theorem 2 in [15]. The proofs are spread out over section 3 and 6 in
[15].

When q is even then M = ∅ and the vertex S0 in ERq is the external vertices adjacent
to all the absolute vertices (so is isolated from the other external vertices), see also
Proposition 3.10.

Proposition 4.2. We have:

(i) When q is even then for every two vertices x, y ∈ L\{S0} there exists an f ∈
Aut(ERq) such that f(x) = y.

(ii) When q is odd then for every external vertex x and y there is an f ∈ Aut(ERq)
such that f(x) = y. This holds for internal vertices too.

Proof. For odd q it is Corollary 4 in [15]. For even q it is section 6 from [15]. The proof
of Corollary 4 in [15] is spread out over the whole article.

Corollary 4 in [15] is also used to show that, for odd q, the graphs GL and GM induced
by L andM are transitive (that is for every x, y ∈ L there is an f ∈ Aut(GL) such that
f(x) = y, the same for M).

Proposition 4.3. The automorphism group Aut(ERq) of ERq acts on the vertex set
of ERq in the following way:

(i) Let q be even. Then Aut(ERq) partitions the vertex set of ERq in three orbits R,
L\{S0} and {S0}.
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(ii) Let q be odd. Then Aut(ERq) partitions the vertex set of ERq in three orbits R,
L and M.

Proof. We have:

(i) It is obvious that S0 is an orbit on its own. By (1.3) and Proposition 3.3 we de-
duce that for every external vertex x ∈ L\{S0} and every f ∈ Aut(ERq) holds
that f(x) ∈ L\{S0}. So by Proposition 4.2(ii) L\{S0} is an orbit.

For every absolute vertex x in ERq we have f(x) is absolute. This is because
the absolute vertices have degree q there the non-absolute vertices have degree
q + 1. So by (1.3) we have f(x) is absolute;

Next pick two arbitrary distinct absolute vertices r and r′. Pick two external
distinct vertices x, x′ 6= S0 such that x is a neighbor of r and x′ is a neighbor of
r′. By Proposition 3.10(ii) every external vertex not equal to S0 is adjacent to
exactly one absolute vertex so x is not adjacent to r′ nor is x′ adjacent to r. By
Proposition 4.2(i) there is an f ∈ Aut(ERq) such that f(x) = x′ so by definition
of automorphism f(r) = r′ so the absolute vertices R form a single orbit.

(ii) Pick an arbitrary f ∈ Aut(ERq). Then

• for every absolute vertex x in ERq we have f(x) is absolute. This is the same
argument as we used in (i);

• for every external vertex y in ERq we have f(y) is external. This is because
y is, by definition of external, adjacent to an absolute vertex u. By definition
of automorphism f(y) and f(u) are adjacent. The previous item tells us f(u)
is absolute so f(y) is external;

• for every internal vertex z in ERq we have f(z) is internal. This is because f
is a bijection and the previous two items.

So by Proposition 4.2(ii) we have found the orbits L and M.

Next pick two arbitrary distinct absolute vertices r and r′ in ERq. If r and r′

do not have a common neighbor then we pick arbitrary external neighbor x of r
and arbitrary external neighbor x′ of r′ (so x 6= x′). By Proposition 4.2(ii) x can
be mapped to y so by the definition of automorphism r is mapped to r′. If r and
r′ do have a common neighbor z (by Proposition 3.7(iv) it is unique) then pick
arbitrary external neighbor x of r with x 6= z and arbitrary external neighbor x′

of r′ with x′ 6= z. As x can be mapped to x′ and by definition of automorphism
r can be mapped to r′. So the absolute vertices R are a single orbit under the
automorphism group of ERq.

We have enough results to construct automorphisms of ERq ourself. However MAGMA
has a build-in function called AutomorphismGroup which computes the automorphism
group of a graph. The code is based on ideas of McKay which can be found in [13]. Info
including an extensive manual is on the website

http://cs.anu.edu.au/~bdm/nauty/

Independent of [15] the partitioning of the vertex set of ERq into three orbits by
Aut(ERq) was shown in [18] by cleverly constructing some automorphisms.
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Chapter 5

Eigenvalues and bounds

This chapter puts a relation between eigenvalues and bounds on the chromatic number
and the size of the largest independent set of a graph.

5.1 Eigenvalues

In section 1.1 we introduced the adjacency matrix of a graph. This brings us to the
eigenvalues of a graph G which are the eigenvalues of the adjacency matrix of a graph.
The eigenvalues of (1.2), the adjacency matrix of the graph we gave as an example in
section 1.1, are

√
3 + 1, 1, 0, −

√
3 + 1, −1, −2.

Because the adjacency matrix has size 6 all multiplicities are 1. As a real symmetric
n × n matrix A has (by Proposition 1.7) real eigenvalues λi(A) we can write them in
descending order

λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A). (5.1)

When it is obvious which matrix we are talking about we will just write λi. By λi(G)
we mean of course the ith eigenvalue of the adjacency matrix of G. A short relation is

−λi(A) = λn+1−i(−A). (5.2)

As the eigenvalues are labeled according to (5.1) and u1, . . . , un is an orthonormal set
of eigenvectors for A such that for every i holds Aui = λiui (see Theorem 8.4.5 in [4])
we can easily prove the following result by Rayleigh:

uTAu

uTu
≥ λi, for non-zero u ∈ 〈u1, . . . , ui〉;

uTAu

uTu
≤ λi, for non-zero u ∈ 〈u1, . . . , ui−1〉⊥ = 〈ui, . . . , un〉.

We introduce a new definition. Consider two sequences of real numbers:

λ1 ≥ λ2 ≥ . . . ≥ λn,
µ1 ≥ µ2 ≥ . . . ≥ µm,
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with n > m. We say the second sequence interlace the first sequence if

λi ≥ µi ≥ λi+n−m, for i = 1, . . . ,m.

This gives rise to the following proposition which can be found in [7]:

Proposition 5.1. Let S be a real n ×m matrix with n > m such that STS = I and
let A be a real symmetric n × n matrix. Let B = STAS. Then the eigenvalues of B
interlace the eigenvalues of A.

Proof. A has orthonormal eigenvectors u1, . . . , un. B has orthonormal eigenvectors
v1, . . . , vm. For arbitrary integer i with 1 ≤ i ≤ m we pick a non-zero vector

si ∈ 〈STu1, . . . , S
Tui−1〉⊥ ∩ 〈v1, . . . , vi〉.

The intersection is non-zero because the dimension is at least 1. This is because
〈STu1, . . . , S

Tui−1〉 has dimension at most i−1 so 〈STu1, . . . , S
Tui−1〉⊥ has (by Propo-

sition 1.12) dimension at least m+ 1− i. As 〈v1, . . . , vi〉 has dimension i we deduce by
Proposition 1.10(ii) that the intersection has dimension at least 1 so there is a non-zero
vector in the intersection.

So Ssi ∈ 〈u1, . . . , un−1〉⊥ (si is orthogonal to every element in 〈STu1, . . . , S
Tui−1〉

therefore Ssi is orthogonal to every element in 〈u1, . . . , un−1〉) and si ∈ 〈v1, . . . , vi〉
so by Rayleigh we have

λi(A) ≥ (Ssi)TA(Ssi)
(Ssi)T (Ssi)

=
sTi (STAS)si

sTi si
=
sTi Bsi
sTi si

≥ λi(B).

Applying the above equation to −A and −B and using identity (5.2) we get

−λn+1−i(A) = λi(−A) ≥ µi(−B) = −λm+1−i(B).

From this we deduce λn+1−i(A) ≤ λm+1−i(B). Substituting i = m + 1 − i′ we get
λn−m+i′(A) ≤ λi′(B) and therefore by definition the eigenvalues of B interlace the
eigenvalues of A.

From this we can deduce the following proposition.

Proposition 5.2. If B is a principal submatrix of A then the eigenvalues of B interlace
the eigenvalues of A.

Proof. Use S = [I O]T in Proposition 5.1.

We can see this proposition in action for ER2 and its orthogonality subgraph OG2. For
the small adjacency matrix of OG2 we can give exact results so the eigenvalues of OG2

are

eigenvalue multiplicity
-1 2
0 1
2 1

The eigenvalues of ER2 are
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eigenvalue multiplicity
-1.86620 1
-1.61803 2
0.61803 2
1.21076 1
2.65544 1

An unpublished result by Godsil, which uses Rayleigh, is the following proposition.

Proposition 5.3. Let G be a graph of average degree d. Then

d ≤ λ1 ≤ ∆(G),

with (if G is connected) λ1 = ∆(G) if and only if G is regular.

Proof. WithA the adjacency matrix (of size n) and orthonormal eigenvectors u1, . . . , unwe
have Rn = 〈u1, . . . , un〉 (so 1 ∈ 〈u1, . . . , un〉) so with Rayleigh we find

d =
1TA1
1T 1

≤ λ1.

For the second inequality let z be an eigenvector for λ1, that is Az = λ1z. Then for
every i holds

λ1zi =
∑
j∼i

zj . (5.3)

If we choose i such that zi is maximal and di is the degree of vertex i then λ1zi ≤ dizi
and therefore λ1 ≤ di ≤ ∆(G). Now assume G is connected. (⇐) because G is regular
we have d = ∆(G) so λ1 = ∆(G). For (⇒) we have λ1 = ∆(G) so by (5.3) we have

∆(G)zi =
∑
j∼i

zj . (5.4)

If we choose zi to be maximal in (5.4) then we immediately deduce G is regular.

Another tool to reason on the eigenvalues is the following theorem.

Theorem 5.4. Let A and B be real symmetric matrices of size m. Then

λi−j(A) + λ1+j(B) ≥ λi(A+B) ≥ λi+j(A) + λm−j(B).

for i = 1, . . . ,m and 0 ≤ j ≤ min(i− 1,m− i).

Proof. Define

C =

[
A− λi−j(A)I 0

0 B − λ1+j(B)I

]
,

S =
1
2

√
2

[
Im

Im

]
.
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Then we have

λi−j(A− λi−j(A)I) = 0,
λ1+j(B − λ1+j(B)I) = 0.

From this we deduce λi(C) = λi+1(C) = 0. A quick verification tells us

STCS =
A+B − (λi−j(A) + λi+j(B))I

2
.

With Proposition 5.1 we now have

λi(A+B)− λi−j(A)− λ1+j(B) = 2λi(STCS) ≤ 2λi(C) = 0.

If we replace A by −A and B by −B we obtain the second inequality.

The proof of the previous proposition can be found in [7] and the theorem is originally
from Weyl.

5.2 Applications to ERq

Our first result is on the eigenvalues of ERoq and its proof can be found in [1] as well as
in [18].

Proposition 5.5. The eigenvalues of the adjacency matrix A of ERoq are q+ 1 (multi-
plicity 1) and ±√q (both cases multiplicity of q(q + 1)/2).

Proof. We first compute A2. Because ERoq is (q + 1)-regular and every two distinct
vertices have one unique common neighbor (see Proposition 3.6(iii)) we have:

A2 =


q + 1 1 . . . 1

1 q + 1 . . . 1

. . . . . . . . .

1 1 . . . q + 1

 = qI + J.

By adding all the rows of A2 to the first row (note that A is of size q2+q+1 by q2+q+1)
we get the matrix:


(q + 1)2 (q + 1)2 . . . (q + 1)2

1 q + 1 . . . 1

. . . . . . . . .

1 1 . . . q + 1

 .

Subtracting the first row divided by (q + 1)2 from all other rows we have the upper
triangular matrix:
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(q + 1)2 (q + 1)2 . . . (q + 1)2

0 q . . . 0

. . . . . . . . .

0 0 . . . q

 .

This matrix has characteristic polynomial

(λ− (q + 1)2)(λ− q)q
2+q.

Therefore A2 has eigenvalues (q + 1)2 (multiplicity 1) and q (multiplicity q2 + q). As A
is a symmetric matrix it can be written as A = PDPT for a diagonal matrix D with
all the eigenvalues of A on the diagonal and a square matrix P such that PTP = I.
This implies A2 = PD2PT . So A2 and D2 are similar and therefore (Theorem 4 in §5.2
of [12]) have the same eigenvalues. So D has q2 + q eigenvalues ±√q so A has q2 + q
eigenvalues ±√q. The other eigenvalue of A is q + 1 (easy to check as the vector full of
1s is an eigenvector). So we have found all the eigenvalues of A. Because trA = q + 1
the eigenvalues

√
q and −√q both have multiplicity (q2 + q)/2 by (1.6).

We now have enough to make a claim about the eigenvalues of the orthogonality graph
OGq.

Proposition 5.6. For every q > 2 we have for the eigenvalues of OGq

λ1 = q, λ2 =
√
q, λq2 = −√q.

Proof. We make case distinction.
If q is odd:
Partition the adjacency matrix of OGq by a matrix A which is the adjacency matrix
for all the internal vertices, B the matrix for adjacency relation between external and
internal vertices and C is the matrix adjacency matrix for the external vertices. Then
by Proposition 3.11 we have:



A B

BT C





a

. . .

a

b

. . .

b


=



(a+ b)(q + 1)/2

. . .

(a+ b)(q + 1)/2

(a+ b)(q − 1)/2

. . .

(a+ b)(q − 1)/2


= s



a

. . .

a

b

. . .

b


.

We derive the equalities

(a+ b)(q + 1) = 2sa, (5.5)
(a+ b)(q − 1) = 2sb. (5.6)

By adding them together we find s = q so q is an eigenvalue of OGq.
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Because the adjacency matrix of OGq is a principal submatrix of the adjacency ma-
trix of ERoq we can use Proposition 5.2 to write down an interlacing relation.

λi ≥ µi ≥ λi+q+1, for i = 1, . . . , q2.

By Proposition 5.5 we have λ2 =
√
q (multiplicity q(q + 1)/2) so for i = q(q + 1)/2− q

we have λq(q+1)/2+1 =
√
q so

µ2 = . . . = µq(q+1)/2−q =
√
q.

We already stated q is an eigenvalue so now we can say

µ1 = q.

Analogue to finding
√
q we can argue −√q is an eigenvalue of OGq:

µq(q+1)/2+2 = . . . = µq2 = −√q.

If q is even:
Analog as in the case of q is odd.

From the proof above we can extract that the multiplicity of λ2 and λq2 is at least
q(q − 1)/2− 1. Also in the case q is odd we find that 0 is an eigenvalue (use −a = b in
(5.5) and (5.6)).

For ERq we can give some useful bounds on some of its eigenvalues.

Proposition 5.7. For the eigenvalues of the Erdős-Rényi graph we have:

q ≤ λ1 < q + 1;√
q − 1 ≤ λ2 ≤ √

q;
−√q − 1 ≤ λn ≤ −√q.

Here n = q2 + q + 1.

Proof. If A is the adjacency matrix of ERq and Ao is the adjacency matrix of ERoq then
we have a matrix H with 0s and 1s on the diagonal and 0 outside the diagonal such that
A+H = Ao. As the eigenvalues of H are 1 (multiplicity q+1) and 0 (multiplicity q2) we
can use Theorem 5.4 to obtain the relations for the eigenvalues of ERq. We demonstrate
the case for λ1. Choose i = 1. This implies j = 0. So we have

λ1(A) + λ1(H) ≥ λ1(Ao) ≥ λ1(A) + λn(H).

There λ1(H) = 1, λn(H) = 0 and λ1(Ao) = q + 1 we have

λ1(A) + 1 ≥ q + 1 ≥ λ1(A).

From this we easily deduce

q ≤ λ1(A) ≤ q + 1.

Because ERq is not regular by Proposition 5.3 we deduce λ1(A) 6= q + 1. So we have
λ1(A) < q + 1.
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We would like to stress that Godsil (together with Royle) has, in unpublished conference
notes, computed the characteristic polynomial of the adjacency matrices of ERq and
OGq. They are respectively:

(x3 − qx2 − 2qx+ q2 + q)(x2 + x+ 1− q)q(x2 − q)(q
2−q−2)/2,

(x− q)x(x+ 1)q(x2 − q)(q
2−q−2)/2.

5.3 Bounds

This section gives some bounds for the size of the maximum independent set and the
chromatic number of ERq. Some well known bounds to start with:

• α(G)γ(G) ≥ n where n is the number of vertices of G.

• γ(G) ≤ ∆(G) + 1. This is easy to see. If we have ∆(G) + 1 colors then for any
vertex of G we can pick a color as the degree of the picked vertex equals ∆(G) or
less.

• γ(G) ≤ ∆(G) if G is not a complete graph or an odd cycle. This is a well known
theorem by Brooks. A proof can be found in [17].

• ω(G) ≤ γ(G).

Because of the last item we wonder whether lower bounds for ω(G) would help us finding
a lower bound for γ(G).

Proposition 5.8. ω(ERq) = 3, that is, the largest clique in ERq is a triangle.

Proof. From Proposition 3.7(i) we have that ERq contains a triangle so ω(ERq) ≥ 3.
proposition 3.7(iv) also says C4 is not a subgraph so the largest clique can not exceed
size 3 so ω(ERq) ≤ 3 hence ω(ERq) = 3.

So bounding γ(ERq) below by bounding ω(ERq) would not give us any useful results.
Some more advanced bounds which use the eigenvalues of a graph, labeled as in (5.1),
for bounds on the chromatic number:

• Wilf bound: γ(G) ≤ 1 + λ1.

Proof. When G′ is an induced subgraph of G then (by Proposition 5.2) λ1(G′) ≤
λ1(G). With this we can easily prove the induction hypothesis.

If G has a vertex set of cardinality n then there exists a vertex v in G such
that deg(v) ≤ λ1(G) (by Proposition 5.3). As G− v has a vertex set of cardinality
n − 1 it is colorable by λ1(G − v) + 1 colors (induction hypothesis). So G − v is
colorable with λ1(G) + 1 colors. Because deg(v) ≤ λ1(G) we have G is colorable
with λ1(G) + 1 colors (just join the vertex v and its initial edges with G− v).

• Hoffman bound: γ(G) ≥ 1−λ1/λn. A generalization of this bound can be found
in [7].

• Haemers bound: if γ(G) is bounded above by the multiplicity of λn then γ(G) ≥
1− λn/λ2. See also [7].

For bounds on the size of a maximum independent set we can use eigenvalues as well.

39



• If G is a d-regular graph on n vertices then a bound for α(G) can be found by a
result of Hoffman and Delsarte

α(G) ≤ nλn
λn − d

.

A proof can be found in [5].

• Godsil and Newman [5] recently found the upper bound for a graph which can
be made d-regular by adding a number of l loops to certain vertices.

α(G) ≤ n
−λn +

√
λ2
n + 4d−λn

n l

2(d− λn)
.

Note the eigenvalue λn is the eigenvalue of the adjacency matrix of the graph we
get by adding loops there the independence number is for the graph without loops.

• For a d-regular graph G on n vertices Sarnak says

α(G) ≤ nλ2

d
.

A proof can be found in [5].

So by Proposition 5.7 Wilf gives us for ERq an upper bound, which can also be deduced
from Brooks and Proposition 3.3,

γ(ERq) ≤ q + 1.

Similarly we have for the orthogonality subgraph OGq:

γ(OGq) ≤ q, if q is even and q 6= 2;
γ(OGq) ≤ q + 1, if q is odd. (5.7)

For q is even we use that every external point is adjacent to exactly one absolute point (by
Proposition 3.10) which gives ∆(OGq) = q, see Proposition 3.11 for q is odd. Hoffman
and Proposition 5.7 tells us

1 +
q

√
q + 1

≤ γ(ERq).

Similarly Hoffman and Proposition 5.6 gives us a slightly better bound

1 +
√
q ≤ γ(OGq) ≤ γ(ERq). (5.8)

Summarized we have:

O(
√
q) ≤ γ(ERq) ≤ O(q).
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For ERq the bound by Godsil and Newman turns out to be α(ERq) ≤ O(q
√
q) (using

Proposition 5.5). So combining it with the bound α(ERq)γ(ERq) ≥ q2 + q + 1 we find
γ(ERq) ≥ O(

√
q). A result we just obtained by Hoffman. We also have been able to

partly solve (3.5). Because by (5.7) and (5.8) we have for even q

γ(OGq) < γ(OGq2).
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Chapter 6

Constructions of independent
sets

This chapter is dedicated to constructions of independent sets in ERq for all q.

6.1 Overview

As a coloring is a partition of the vertex set in disjoint independent sets we are particulary
interested in independent sets in ERq of suitable large size. The following theorem by
[14] gives a lower bound for α(ERq) of order O(q

√
q).

Theorem 6.1. Given a prime power q = pn. Then

α(ERq) ≥ q
√
q − q +

√
q for p = 2, n is even;

α(ERq) ≥ q
√
q

2
√

2
for p = 2, n is odd;

α(ERq) ≥ q
√
q+q+2

2 for p > 2, n is even;
α(ERq) ≥ 120q

√
q

73
√

73
for p > 2, n is odd.

In all cases α(ERq) ≥
120q
√
q

73
√

73
> 0.19239q

√
q.

We also have the special case

Theorem 6.2. If n is even for q = 2n then α(OGq) = q
√
q − q +

√
q.

Which is a result from [14]. The sections which will follow prove Theorem 6.1 by giving
explicit constructions of our desired independent sets which we obtained from [14]. This
enables us to put them in MAGMA, a computer programming language dedicated for
algebraic en discrete structures (see Appendix D.1). Together with the results from the
previous section we now have

α(ERq) = O(q
√
q).

From the constructions we derive that for all q ≥ 3 the independent sets do not have
absolute points. The exception is when p > 2 and n is even. In that case the independent
sets contain all the absolute points.
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6.2 p = 2 and n is even

Here we give a proof for the case p = 2 and n is even (for q = pn). We want to prove

α(ERq) ≥ q
√
q − q +

√
q.

We start with an irreducible polynomial x2 + x + s over Fq. First we elaborate on the
existence of such an s ∈ Fq. Introduce a function

f : Fq −→ Fq
x 7−→ x2 + x

We claim f is a homomorphism as for arbitrary x, y ∈ Fq holds

(x+ y)2 + (x+ y) = x2 + x+ y2 + y.

The kernel of f is the set {0, 1}, this is easy to see as x2 +x = x(x+ 1) and Fq is a field.
From undergraduate algebra we know

Fq/ker(f) = Fq/{0, 1} ' f(Fq).

This means f(Fq) is of index 2 in Fq and hence this proves the existence of an s ∈ Fq
which is not in f(Fq) so for this s holds x2 +x+s is irreducible. From this we can easily
state the following lemma:

Lemma 6.3. Given an irreducible polynomial x2 +x+s over Fq. Then the image under
x2 + x+ s is disjoint from the subfield F√q.

Proof. The only extra we need is that F√q is contained in the image of x2 +x (as defined
by f). Pick arbitrary c ∈ F√q. Then x2 +x = c leads to x2 +x+ c = 0. As c ∈ F√q and
our polynomial is quadratic this means it has a solution in Fq and therefore the image
of x2 + x contains F√q .

Now let I be the set of points (x0, x1, x2) ∈ ERq for which there exists a λ ∈ F√q such
that

x2
2 + x2x0 + sx2

0 + λx2
1 = 0. (6.1)

Next we show |I| = q
√
q − q +

√
q. To do this we make a case distinction:

(λ = 0) As the elements in I are normalized this means x0 = 0 or x0 = 1. x0 = 1 would
mean we would have a solution of x2

2 + x2 + s = 0 which is a contradiction. So we
have x0 = 0. So what is left is x2

2 = 0, however this implies x1 = 1 (because our
elements are normalized) which gives us one point which satisfies (6.1).

(λ 6= 0) We now make a second case distinction:

(x0 = 0) This immediately implies x1 = 1 (x1 = 0 would imply x2 = 0, a con-
tradiction as our elements are normalized) which leaves us with x2

2 + λ = 0
which is (as our field has characteristic 2) equivalent to x2

2 = λ which gives
us
√
q − 1 solutions x2 ∈ Fq (for every non-zero λ ∈ F√q a solution).
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(x0 = 1) This implies x2
1 = λ−1(x2

2 + x2 + s) and any choice of λ 6= 0 and x2

uniquely determines x1, yielding q(
√
q − 1) solutions.

So we conclude we have 1 +
√
q − 1 + q(

√
q − 1) = q

√
q − q +

√
q solutions so |I| =

q
√
q − q +

√
q.

We also claim I is an independent set. Assume two points (x0, x1, x2) and (y0, y1, y2)
are adjacent. Then for some λ, λ̃ ∈ F√q the equations below are satisfied

x2
2 + x2x0 + sx2

0 + λx2
1 = 0,

y2
2 + y2y0 + sy2

0 + λ̃y2
1 = 0,

x2y0 + x0y2 = x1y1.

Case distinction:

(x1 = 0) Then we have x2
2 + x2x0 + sx2

0 = 0. This forces x0 = 1 which leads to a
contradiction as our polynomial is irreducible.

(λ = 0) Then we have x2
2 + x2x0 + sx2

0 = 0. This forces (x0, x1, x2) = (0, 1, 0). This
means y1 = 0. From this we obtain y2

2 + y2y0 + sy2
0 = 0 which is, as in the case of

x1 = 0, not possible.

(y1 = 0) Analogue as in the case of x1 = 0.

(λ̃ = 0) Analogue as in the case of λ = 0.

(λ, λ̃, x1, y1 6= 0) We then rewrite the equations

λ−1(x2
2 + x2x0 + sx2

0) = x2
1,

λ̃−1(y2
2 + y2y0 + sy2

0) = y2
1 ,

x2y0 + x0y2 = x1y1.

Squaring the third equation and substituting, we get:

(x2y0 + x0y2)2 =
1
λλ̃

(x2
2 + x2x0 + sx2

0)(y2
2 + y2y0 + sy2

0).

The quantity x2y0 + x0y2 6= 0 since x1, y1 6= 0, therefore we obtain:

λλ̃ =
(x2

2 + x2x0 + sx2
0)(y2

2 + y2y0 + sy2
0)

(x2y0 + x0y2)2
.

If x0 = 0 then y0 = 1 (by x2y0 + x0y2 6= 0). This gives us y2
2 + y2 + s = λλ̃

which is impossible by the lemma as λλ̃ ∈ F√q. Similarly y0 = 0 also lead to a
contradiction. For x0 = y0 = 1 we have

λλ̃ =
(x2

2 + x2 + s)(y2
2 + y2 + s)

(x2 + y2)2
. (6.2)
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Note that x2 6= y2. We write y2 = 1/w + x2 = (1 + wx2)/w for a w ∈ Fq and
substitute it in (6.2). After expanding we get:

(x2
2 + x2 + s)(( 1+wx2

w )2 + 1+wx2
w + s)

(x2 + 1/w + x2)2
=

w2(x2
2 + x2 + s)

((
1 + wx2

w

)2

+
1 + wx2

w
+ s

)
=

(x2
2 + x2 + s)((1 + wx2)2 + w(1 + wx2) + sw2) =

(x2
2 + x2 + s)(1 + w2x2

2 + w + w2x2 + sw2) =
(x2

2 + x2 + s)(1 + w2(x2
2 + x2 + s) + w) =

(x2
2 + x2 + s) + w2(x2

2 + x2 + s)2 + w(x2
2 + x2 + s) =

((x2
2 + x2 + s)w + x2)2 + ((x2

2 + x2 + s)w + x2) + s ∈ F√q.

(The member relation is by (6.2) and the fact that λ, λ̃ ∈ F√q) This is impossible
by Lemma 6.3.

All cases accounted for, we have that no two distinct points in I are adjacent. Then we
have α(ERq) ≥ q

√
q − q +

√
q as desired.

6.3 p = 2 and n is odd

Here we give a proof for the case p = 2 and n is odd (for q = pn). We want to prove

α(ERq) ≥
q
√
q

2
√

2
.

Let µ ∈ F∗q be a primitive element. Write x ∈ Fq in the form

x = x0 + x1µ+ x2µ
2 + · · ·+ xn−1µ

n−1

where all xi ∈ F2. Construct two sets where m = (n− 1)/2

S = {x ∈ Fq : xn−1 = 0},
T = {x ∈ Fq : xm = 1, if i > m then xi = 0}.

They have the following cardinality

|S| = 2n−1 = q/2,
|T | = 2m =

√
q/
√

2.

Then we have an independent set (we use the inner-product for ER∗q)

I = {(1, t, s) : t ∈ T, s ∈ S}

of cardinality |I| = |S||T | = q
√
q

2
√

2
.
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6.4 p > 2 and n is even

Here we give a proof for the case p > 2 and n is even (for q = pn). We want to prove

α(ERq) ≥
q
√
q + q + 2

2
.

Let µ ∈ F∗q be a primitive element. Introduce the set

R =
{
µ(
√
q+1)k : integer k ∈

[
0,
√
q − 3
2

]}
∪ {0}.

It has the following properties:

• |R| = (
√
q + 1)/2. As µ is primitive µ generates F∗q (which has cardinality q − 1)

and the largest element in the interval is (
√
q − 3)/2 for which holds

(
√
q + 1) ·

√
q − 3
2

< q − 1,

so if you range over the interval [0, (
√
q − 3)/2] you will get (

√
q − 3)/2− 0 + 1 =

(
√
q−1)/2 different elements. Together with |{0}| = 1 we have (

√
q+1)/2 elements.

• For every non-zero x ∈ R we have −x /∈ R. We can proof this by using −1 =
µ(q−1)/2 (〈µ〉 is a group of even order q − 1). For arbitrary k ∈ [0, (

√
q − 3)/2] we

have

−x = µ(q−1)/2 · µ(
√
q+1)k = µ(

√
q+1)(k+(

√
q−1)/2) /∈ R

because (k + (
√
q − 1)/2) /∈

[
0,
√
q−3

2

]
.

• R is isomorphic to a subset of F√q. Because F∗√q is a subgroup of F∗q of cardinality
√
q − 1 and 〈µ

√
q+1〉 is also of cardinality (q − 1)/(

√
q + 1) =

√
q − 1 this means

〈µ
√
q+1〉 = F∗√q which means R must be isomorphic to a subset of F√q.

We introduce another set

I =
{(

1, t,
t2 − µr

2

)
: t ∈ Fq, r ∈ R

}
∪ {(0, 0, 1)}.

We make two claims about it which complete the proof.

I is an independent set in ERq. By using the inner-product for ER∗q we have im-
mediately that (0, 0, 1) is not adjacent to any other vertex in I. Next pick two arbitrary
vertices in I of the form

(
1, t,

t2 − µr
2

)
,

(
1, t̃,

t̃2 − µr̃
2

)
.

By computing their inner-product (using the inner-product for ER∗q) we set
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0 =
t̃2 − µr̃

2
− tt̃+

t2 − µr
2

which is equiv. to

0 = t̃2 − µr̃ − 2tt̃+ t2 − µr which is equiv. to
µ(r̃ + r) = t̃2 − 2tt̃+ t2 = (t− t̃)2.

We know r̃+r is a square (as R is isomorphic to a subset of F√q, r̃+r could be a square
in F√q and therefore in Fq, in case it is not square in F√q it is square in Fq because
that is a quadratic extension of F√q) and because (t− t̃)2 is a square too µ(r̃+ r) must
be a square too. However this is only possible when t = t̃ and −r = r̃, which implies
r = r̃ = 0 so the two vertices we picked are equal so I is an independent set.

It is easy to see

|I| = |Fq||R|+ 1 = q ·
√
q + 1
2

+ 1 =
q
√
q + q + 2

2
.

6.5 p > 2 and n is odd

Here we give a proof for the case p > 2 and n is odd (for q = pn). We want to prove

α(ERq) ≥
120q
√
q

73
√

73
.

Let µ ∈ F∗q be a primitive element. Write x ∈ Fq in the form

x = x0 + x1µ+ x2µ
2 + · · ·+ xn−1µ

n−1

where all xi ∈ Fp. Introduce the following subsets of Z

A = [dp/6e, bp/2c],
B = [0, b

√
p/3c].

Next we construct two other sets where m = (n− 1)/2

S = {x ∈ Fq : xn−1 ∈ A},
T = {x ∈ Fq : xm ∈ B, if i > m then xi = 0}.

They have the following cardinality

|S| = pn−1|A|,
|T | = pm|B|.

Now we have two claims
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• For all s, s̃ ∈ S we have (s+ s̃)n−1 ∈ [d(p+ 1)/3e, p− 1]. This is easy to see in the
case p = 3. For p > 3 it is sufficient to prove d(p+ 1)/3e ≤ 2dp/6e which can be
shown by combining

d(p+ 1)/3e = dp/3e,
dp/3e ≤ 2dp/6e.

• For all t, t̃ ∈ T we have (tt̃)n−1 = tmt̃m ∈ [0, bp/3c]. This is easy to see because in
general for all real r ≥ 0 holds brc2 ≤ br2c (write r = k + l for an integer k and a
real l with 0 ≥ l < 1).

As bp/3c < d(p+ 1)/3e (for p > 3 write p = 3j + 1 or p = 3j + 2) the sets [0, bp/3c] and
[d(p+ 1)/3e, p− 1] are disjoint and therefore the following set

I = {(1, t, s) : t ∈ T, s ∈ S}

is an independent set (again we use the bilinear form for ER∗q) of cardinality

|I| = |S||T | = |A||B|pm+n−1 = |A||B|qp
m

p
= |A||B|

q
√
q

p
√
p
.

We will modify the term |A||B|/p√p to something more useful. To do this we first
introduce the bound bellow:

|A||B| · 1
p
√
p

=
(⌊p

2

⌋
−
⌈p

6

⌉
+ 1
)

(b
√
p/3c+ 1) · 1

p
√
p
>

p− 1
3
·
√
p
√

3
· 1
p
√
p

=
1− 1/p

3
√

3
.

Justifications for the bound(s):

• Write p/6 = r + j for an integer r and a real j with 0 < j ≤ 1, then

|A| =
⌊p

2

⌋
−
⌈p

6

⌉
+ 1 =

p− 1
2
− dr + je+ 1 =

p− 1
2
− (r + 1) + 1 =

p− 1
2
− r ≥

p− 1
2
− (r + j) +

1
6

=
p− 1

2
− p

6
+

1
6

=
p− 1

3
.

• For |B| we have

|B| = b
√
p/3c+ 1 >

√
p/3.

So |A||B|/p√p is bounded below by the strict increasing function (1 − 1/p)/3
√

3 so
|A||B|/p√p attains a minimum. In [18] a computer search was done to find the minimum
is attained at p = 73 where |A||B|/p√p = 120/73

√
73 so

α(ERq) ≥
120q
√
q

73
√

73
.
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Chapter 7

Improved constructions for
odd q

In the previous chapter we gave constructions for independent sets in ERq bounded
below by O(q

√
q). In this section we will introduce for odd q two new constructions. In

practice these constructions provide us with independent sets in ERq larger than the
constructions from chapter 6, see Appendix B.2 for a comparison table. The construc-
tions come from [18].

7.1 Method 1

Given a subset R ⊆ Fq such that every r ∈ R is a non-square and for any distinct
r, r̃ ∈ R holds r + r̃ is a non-square (note this implies for every r ∈ R holds −r /∈ R).
We then construct the set

I := {(1, t, (t2 − r)/2) : t ∈ Fq, r ∈ R ∪ {0}} ∪ {(0, 0, 1)}.

Now pick arbitrary (1, t, (t2−r)/2), (1, t̃, (t̃2− r̃)/2) ∈ I. If these two points are adjacent
then

〈(1, t, (t2 − r)/2), (1, t̃, (t̃2 − r̃)/2)〉 = 0, ⇐⇒
t2 − r + t̃2 − r̃ = 2tt̃, ⇐⇒
t2 − 2tt̃+ t̃2 = r̃ + r, ⇐⇒

(t− t̃)2 = r̃ + r (7.1)

For r 6= r̃, by construction of our R, (7.1) can not hold. So we assume r = r̃. This gives
us

(t− t̃)2 = 2r. (7.2)

We make case distinction on q.

• For q ≡ 1, 7 mod 8 we have (by Proposition 1.6(iii)) 2 is a square in Fq. Now we
write 2 = µ2i and r = µ2j+1 so 2µ is a non-square. So we can only satisfy (7.2) if
r = 0 and t = t̃. So we conclude I is an independent set
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• For q ≡ 3, 5 mod 8 we have 2 is not a square in Fq so 2r is a square. Now we
deduce from (7.2):

t̃ = t±
√

2r.

For r = 0 we find t = t̃. For r 6= 0 we conclude the point (1, t, (t2 − r)/2) is of
degree 2 in I. So we conclude every vertex in I has degree 0 or 2. This implies I
consists of isolated points or cycles, Figure 7.1 gives the MAGMA construction in
the case q = 11. From this we can easily find a subset of I which is an independent
set.

The appendix has MAGMA code which returns on a given q an independent set con-
structed with this method. It also contains code for finding an optimal R. One of the
properties of I is that for every x ∈ I holds

−〈x, x〉 = r (7.3)

which equals 0 or a non-square by our construction of R so by Proposition 3.11(i) I does
not contain external points. From (7.3) we also deduce I contains all the q+ 1 absolute
points.

Figure 7.1: MAGMA construction of I for q = 11

7.2 Method 2

We start with a subset R ⊆ Fq such that for all distinct r, r̃ ∈ R holds 1 − rr̃ is a
non-square. This immediately implies 0 /∈ R. Now introduce the set

I := {(1, t, rt2/2) : t ∈ Fq, r ∈ R} ∪ {(0, 0, 1)}.
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Pick two points (1, t, rt2/2), (1, t̃, r̃t̃2/2) ∈ I. If these two points are adjacent then we
have

〈(1, t, rt2/2), (1, t̃, r̃t̃2/2)〉 = 0, ⇐⇒
rt2/2 + r̃t̃2/2 = tt̃, ⇐⇒

r̃t̃2 − 2tt̃ = −rt2, ⇐⇒

t̃2 − 2tt̃
r̃

= −rt
2

r̃
, ⇐⇒(

t̃− t

r̃

)2

= −rt
2

r̃
− t2

r̃2
, ⇐⇒(

t̃− t

r̃

)2

= (1− rr̃) ·
(
t

r̃

)2

. (7.4)

Which is only possible if 1 − rr̃ is a square. So when r 6= r̃ (7.4) will not hold, by
construction of our R. Assume r = r̃. If 1 − r2 = a2 for some a ∈ Fq then from (7.4)
we derive

(
t̃− t

r

)2

=
(
at

r

)2

.

This equation has solutions

t̃ =
(

1 + a

r

)
t,

(
1− a
r

)
t.

by (1 + a)/r · (1− a)/r = 1 this becomes

t̃ =
(

1 + a

r

)
t,

(
1 + a

r

)−1

t.

So for a given t ∈ Fq there are two points in I adjacent to it. So every element in I has
degree 0 or 2 (in I) so I contains only isolated points and cycles. Cycles have length
l equal the order of (1 + a)/r in F∗q . If l is even then the cycle provides us with l/2
isolated points. If l is odd then the cycle provides us with (l− 1)/2 isolated points. For
a concrete construction we are free to pick any non-zero t ∈ Fq as a starting point.

Because F∗q has a generating element µ we can write t = µi and (1 + a)/r = µj for
integers i and j. So a cycle looks like

{(
1 + a

r

)
,

(
1 + a

r

)2

, . . . ,

(
1 + a

r

)l}
= {µj , µ2j , . . . , µlj}.

As the order is l we have (q− 1)/l cycles which can be constructed by scaling our initial
cycle with 1, µ, µ2, . . . , µ(q−1)/l−1.

Just as for method 1 we have implemented this construction in MAGMA too. We
restrict ourself to sets R for which holds 1 ∈ R and with this restriction the code gen-
erates an R such that I contains a largest independent set. With the restriction that
1 ∈ R we have for every x ∈ I
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−〈x, x〉 = t2(1− r) (7.5)

which equals 0 or a non-square by our construction of R so I does not contain external
points just as in the case of method 1. From (7.5) we also deduce I contains all the q+1
absolute points.

By modifying our code and leaving the restriction 1 ∈ R out we did found larger inde-
pendent sets. Our results are given in the table below which shows all odd q ≤ 150 were
leaving the restriction out gives us a larger independent set (note in that case 1 /∈ R).

q 1 ∈ R 1 /∈ R
31 107 122
61 302 332
71 352 387
73 398 434

113 730 786
125 808 870
127 758 821
131 782 912
139 899 968
149 1038 1112
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Chapter 8

Try and search

Opposed to the previous two chapters, where for all q we were able to give a construction
of an independent set, we will in this chapter introduce some heuristics which can be
used to find independent sets and colorings.

8.1 Heuristics

As finding a maximal clique, independent set or optimal coloring of the vertex set of a
graph G on n vertices is NP-complete we introduce two heuristics. The results might not
be optimal but gives us extra feedback for reasoning on independent sets and optimal
colorings.

The first heuristic is for finding a large clique in G (applying the heuristic to G gives us
an independent set in G). The concept is as follows:

1. Put the vertices of G in random order.

2. Create with the first vertex a clique of cardinality 1.

3. If the 2nd vertex is adjacent to all vertices in the clique then join the 2nd vertex
with the clique.

4. Repeat the previous step for the 3rd, 4th, . . . , nth vertex.

The algorithm can be repeated as many times as desirable, every time with a new ran-
dom sequence of the vertices. This provides us with a lower-bound for ω(G).

The second heuristic is for finding an upper-bound for the chromatic number γ(G)
of a graph. The heuristic is called sequential coloring. The concept of the algorithm
is similar to that of finding a clique:

1. Put the vertices of G in random order.

2. Assuming the first i vertices are colored with k colors, try to color the (i + 1)th
vertex with one of the k colors (choose the smallest color available). If this is not
possible then color the (i+ 1)th vertex with a new color k + 1.

3. Repeat the previous step for i = 1, 2, . . . , n− 1.
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We can repeat this as many times as we want, every time with a new random sequence
of the vertices.

We implemented these heuristics in MAGMA. The programs can be found in the ap-
pendix. We optimized the algorithms as best as we can which might result in less
readable code. The algorithms for finding a clique or an independent set will return
the clique or independent set itself. The algorithm for the chromatic number will only
return the number of colors which were used and it will always be ∆(G) + 1 or less by
the way the algorithm works.

8.2 Searching for good colorings

Given an independent set I of the graph OGq we construct a set

Vq := {f(I) : f ∈ Aut(OGq)}.

Note I ∈ Vq and every set in Vq is an independent set by definition of graph automor-
phism. With this set Vq we can construct a graph where two distinct vertices fi(I) and
fj(I) are adjacent if and only if

|fi(I) ∩ fj(I)| ≤ k, (8.1)

for a given integer k ≥ 0. Finding suitable sized cliques in the graph might give us a
coloring of the vertex set of G. We have made an attempt for the following cases:

(q = 3)
By inspection we find an independent set in OG3 of size 3:

{(110), (102), (120)}.

See Appendix A.1 for a complete list of vertices and adjacency relations of OG3

including a figure as well. The images of this independent set under all elements
of Aut(OG3) are:

A = {(110), (102), (120)},
B = {(010), (111), (012)},
C = {(111), (101), (120)},
D = {(111), (101), (012)},
E = {(011), (121), (010)},
F = {(110), (121), (101)},
G = {(010), (111), (120)},
H = {(011), (102), (120)},
I = {(011), (121), (101)},
J = {(011), (102), (012)},
K = {(110), (102), (012)},
L = {(110), (121), (010)}.
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Figure 8.1 shows whether independent sets (now seen as vertices themselves) meet
(k = 0 in (8.1)). Any vertices from Figure 8.1 which form a clique of size 3 cover
the whole vertexset of OG3 so OG3 is 3 colorable. .

Figure 8.1: Independent sets of OG3 and their intersection relation

(q = 9)
For q = 9 we found, by our heuristic from section 8.1, an independent set I in OG9

with |I| = 19. There 4 · 19 < 92 and we were already able to color the vertexset
of OG9 with 5 colors by sequential coloring (see Appendix B.3) we will not obtain
any new results this way. Other independent set constructions do not supply us
with independent sets for OG9 with more than 19 vertices. Method 2 gives us
an independent of size 22 (see Appendix B.2) however it contains the 10 absolute
points which are not part of OG9.

(q = 11)
With our heuristic from section 8.1 we find an independent set I in OG11 with
|I| = 28. Constructing a graph for various k in (8.1) we found the following clique
sizes:

k size clique
0 1
1 1
2 2
3 3
4 5
5 6

When k = 2 our procedure gives us a clique of size 2 with the union of the 2
subsets of the vertexset of OG11 equal to 54. Sequential coloring colored the re-
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maning 112− 54 = 67 vertices with 4 colors so OG11 is 2 + 4 = 6 colorable. When
k = 3 our procedure gives us a clique of size 3 with the union of the 3 subsets
of the vertexset of OG11 equal to 77. Sequential coloring colored the remaining
112 − 77 = 44 vertices with 3 colors so OG11 is 3 + 3 = 6 colorable. When
k = 4 our procedure gives us a clique of size 5 with the union of the 3 subsets
of the vertexset of OG11 equal to 105. In none of the cases we improved sequen-
tial coloring which colored the vertexset of OG11 with 6 colors (see Appendix B.3).

The construction from chapter 6 gives us an independent set of size 8. There
OG11 has 121 vertices we will not be able to cover the vertexset with 6 indepen-
dent sets as 8 · 6 < 121.

(q = 13)
We repeated the steps from the case when q = 11. We did not improve the
sequential coloring algorithm which colored OG13 with 7 colors. Our table of
clique sizes is:

k size clique
0 1
1 3
2 3
3 4
4 5
5 5
6 8

(q = 16)
With an independent set I with |I| = 44, constructed by our heuristic from section
8.1, we construct the vertexset V16. It turns out that |V16| = 16320. It took
MAGMA over 39 minutes to construct the corresponding edge set. When we
apply our procedure to the independent set I with |I| = 52 from chapter 6 we
have a much smaller vertexset of size 120 therefore we were able to give the next
table:

k size clique
0 1
1 1
2 1
3 1
4 4
5 4
6 4

The union of the 4 independent sets for k = 4 in (8.1) equals 187. Not coloring
the whole vertexset of 256 vertices. Applying sequential coloring to the remaining
vertices (that is the vertices that are not covered by the 4 independet sets) we
were able to color them with 3 colors so OG16 is colorable with 3 + 4 = 7 colors.
An improvement over sequential coloring which had to use 8 colors (see Appendix
B.3). Appendix C.1 gives every element of the coloring.

(q = 17)
Applying Method 1 from section 7 we obtain an independent set I with |I| = 52.
Of the 52 vertices 18 of them are absolute so 34 are non-absolute. However as
8 · 34 < 172 and sequential coloring colors OG17 with 9 colors we fail in beating
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sequential coloring.

Applying the sequential independent set heuristic from section 8.1 to OG17 gives
us an independent set I with |I| = 47. If we choose k = 3 in (8.1) then we found 4
images of I in our graph which colored 171 vertices. The remaining 172−171 = 118
vertices are 4 colorable by sequential coloring so OG17 is 4 + 4 = 8 colorable, an
improvement over sequential coloring which needed 9 colors. Appendix C.2 gives
every element of the coloring.

We would like to state that for bigger q we needed more and more CPU-time. Therefore
our search stops for q = 17. For odd q our Methods from chapter 7 only provides us
with internal and absolute points so by Proposition 4.3(ii) we can not cover the external
points.
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Chapter 9

Motivation, conclusions and
recommendations

This chapter shines some light on the motivation for our study of the Erdős-Rényi graph
together with conlusions for further research.

9.1 Motivation

Given arbitrary field F. Let G be a graph on n vertices. An n× n matrix over F with
all diagonal elements non-zero and Aij = 0 if i and j are adjacent in G is said to fit G.

A clique in G corresponds with a diagonal submatrix of A therefore rank(A) ≥ ω(G).
There also exists a matrix A that fits G for which holds rank(A) = γ(G).

Proposition 9.1. There exists a matrix A over F that fits G such that rank(A) = γ(G).

Proof. Let G be colored with γ(G) colors. Now define the matrix A by

Aij =
{

1 if i and j are in the same color class,
0 otherwise.

Note for all i holds Aii = 1. Then A fits G (by definition) and rank(A) = γ(G) (A can
be partitioned as a block matrix with blocks of 1s on the diagonal and 0s outside the
diagonal).

Next we introduce a number which was first introduced by Haemers.

η(G) = min{rank(A) : matrix A over F which fits G}.

So by Proposition 9.1 we have

ω(G) ≤ η(G) ≤(∗) γ(G).

Notice the exact value η(G) depends on the field F. One of the questions that arises:
how large can the gap (*) be? An approach to answer this question is by fixing a rank r
and look what the largest chromatic number and its accompanying graph can be. The
next two numbers M1 and M2 together with a theorem which is from unpublished notes
from Peeters helps us with the answer of this new question.
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M1(F, r) = max{γ(G) : all graphs G on n vertices
such that there exists an n× n matrix A over F
which fits G, is symmetric and rank(A) ≤ r},

M2(F, r) = max{γ(G) : all orthogonality graphs G which are defined by a
non-degenerate bilinear form on Fn}.

Theorem 9.2. Given arbitray field F and arbitrary integer r > 0. Then

M1(F, r) = M2(F, r).

Recall that an orthogonality graph is a graph where the vertex set are all the 1-
dimensional subspaces U ⊆ Fm such that U is not orthogonal to itself (the ortogonality
relation is defined by a non-degenerate bilinear form on Fm) and two distinct subspaces
U and S are adjacent if and only if U⊥S.

This thesis has special attention for the case r = 3 and the bilinear form defined by
the matrix from (3.2).

9.2 Conclusions and recommendations

For further research we would suggest to try to tweak Methods 1 and 2 from chapter 7
such that you will get independent sets with external points. This might be a fruitful
path to walk as the table from Appendix B.2 shows that, despite the independens sets
contain the absolute points, they have still much more points than the independent sets
generated by our heuristic from section 8.1.

The stuctured search we did in section 8.2 for OG16 and OG17 beats sequential col-
oring by 1. So one might want to consider this strategy when one wants to search for a
good upperbound for ERq or OGq.

The table in Appendix B.3 with exact chromatic numbers for ERq only has one value.
The function in MAGMA which can find exact chromatic numbers appears to be some-
what slow. Using something like CPLEX or comparable strategies as described in [6]
might be a better way to find exact chromatic numbers for small cases.

Figure 8.1 suggests the graphs which are constructued in section 8.2 have a beautiful
structure. Further research might lead to large cliques.
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Appendix A

An example

A.1 ER3

This section will give some properties and facts of ER3. The table bellow shows the
vertices and the relation between them: + corresponds to adjacent vertices where blank
means two vertices are not adjacent.

1

0

0

1

0

1

1

0

2

1

1

0

1

1

1

1

1

2

1

2

0

1

2

1

1

2

2

0

1

0

0

1

1

0

1

2

0

0

1
1 0 0 + + +
1 0 1 + + + +
1 0 2 + + + +
1 1 0 + + + +
1 1 1 + + + +
1 1 2 + + +
1 2 0 + + + +
1 2 1 + + + +
1 2 2 + + +
0 1 0 + + + +
0 1 1 + + + +
0 1 2 + + + +
0 0 1 + + +

The absolute points are (1 0 0), (0 0 1), (1 2 2) and (1 1 2). A graphical representation
of OG3 is given below
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Figure A.1: The orthogonality graph OG3
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Appendix B

Independent set and coloring
tables

B.1 Distribution of points in ERq

This table shows how many absolute points R, external points L and internal pointsM
each graph ERq contains. Propositions 3.2, 3.10, 3.11(ii) and 3.11(iii) tell us how much
points of each type we have. See also the supporting Figures 3.3 and 3.4. When q is
even we have

q + 1 absolute points,
q2 external points.

When q is odd we have

q + 1 absolute points,
q(q + 1)/2 external points,
q(q − 1)/2 internal points.

This gives us the table
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q R L M
3 4 6 3
4 5 16 0
5 6 15 10
7 8 28 21
8 9 64 0
9 10 45 36

11 12 66 55
13 14 91 78
16 17 256 0
17 18 153 136
19 20 190 171
23 24 276 253
25 26 325 300
27 28 378 351
29 30 435 406
31 32 496 465
32 33 1024 0
37 38 703 666
41 42 861 820
43 44 946 903
47 48 1128 1081
49 50 1225 1176

B.2 Independent sets

The table in this section gives sizes of independent sets in ERq constructed by the
various methods we have described in this thesis. Columns 2, 3 and 4 are chapter 6 and
Methods 1 and 2 from chapter 7. The results from the last four columns are by our
sequential heuristic from section 8.1 applied to the given graphs.
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q chapter 6 Method 1 Method 2 ERq OGq GLq GMq

3 2 5 5 5 3 3 1
4 6 - - 7 6 - -
5 4 8 10 10 7 5 4
7 4 15 14 15 13 12 7
8 8 - - 17 16 - -
9 19 19 22 22 19 15 12

11 8 22 27 28 28 24 17
13 12 32 38 35 36 29 24
16 52 - - 45 46 - -
17 18 52 50 48 47 44 37
19 18 47 56 55 54 51 41
23 24 70 79 71 70 64 55
25 76 101 86 79 78 69 60
27 54 55 106 86 87 77 65
29 40 72 114 96 96 79 76
31 40 125 107 104 103 92 80
32 64 - - 108 107 - -
37 48 110 164 130 129 111 105
41 56 165 182 150 148 125 119
43 56 128 170 158 155 138 122
47 64 189 209 176 174 155 139
49 197 246 218 185 185 155 151
53 90 184 262 203 202 174 168
59 100 205 292 233 235 209 186
61 100 212 302 242 244 207 202
64 456 - - 259 258 - -
67 110 233 332 273 272 239 220
71 120 356 352 292 294 258 237
73 120 366 398 303 301 260 254
79 156 396 431 335 332 293 272
81 406 487 442 346 345 295 292
83 168 330 453 355 357 311 292
89 180 535 530 388 388 330 329
97 192 583 578 431 431 369 365

B.3 Bounds on chromatic numbers

This section has tables with bounds on the chromatic numbers of OGq and ERq. The
3rd column of each table is the Hoffman bound from section 5.3 applied to both graphs,
giving us lower bounds for the chromatic numbers γ(OGq) and γ(ERq). Upperbounds
are given by our sequential coloring heuristic from section 8.1 and the Wilf bound from
section 5.3. The column with exact values of γ(OGq) are results from [6]. The column
labeled by γ(OGq and γ(ERq) is the best interval we have for the chromatic concluding
from other columns.
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q γ(OGq) Hoffman exact Sequential Wilf section 8.2
3 3 3 3 3 4 -
4 4 3 4 4 5 -
5 4 4 4 4 6 -
7 4 4 4 4 8 -
8 5 4 5 5 9 -
9 5 4 5 5 10 -

11 5-6 5 - 6 12 -
13 5-7 5 - 7 14 -
16 5-7 5 - 8 17 7
17 6-8 6 - 9 18 8
19 6-9 6 - 9 20 -
23 6-11 6 - 11 24 -
25 6-12 6 - 12 26 -

Next table is for ERq. The only exact value comes from MAGMA, for larger q it took
too much computer time.

q γ(ERq) Hoffman exact Sequential Wilf section 8.2
3 4 3 4 4 4 -
4 4(1) 3 - 4 5 -
5 4 4 - 4 6 -
7 4-5 4 - 5 8 -
8 5-6(2) 4 - 6 9 -
9 5-6(3) 4 - 6 10 -

11 5-7 5 - 7 12 -
13 5-8 5 - 8 14 -
16 5-8(4) 5 - 9 17 -
17 6-9(5) 5 - 9 18 -
19 6-10 6 - 10 20 -
23 6-12 6 - 12 24 -
25 6-12 6 - 12 26 -

(1) is because of γ(OG4) = 4.
(2) is because of γ(OG8) = 5.
(3) is because of γ(OG9) = 5.
(4) is because of γ(OG16) =5-7.
(5) is because of γ(OG17) ≥ 6.

65



Appendix C

Colorings

Two concrete colorings for OG16 and OG17.

C.1 OG16

(i) { (1 : µ8 : µ14), (1 : µ14 : µ2), (1 : µ7 : 1), (1 : µ3 : µ), (1 : µ11 : µ10), (1 : µ6 : µ10),
(0 : 1 : 1), (1 : µ7 : µ13), (1 : µ13 : µ), (1 : µ12 : 0), (1 : µ4 : µ8), (1 : µ12 : µ6),
(1 : µ9 : µ8), (1 : µ2 : 1), (1 : µ11 : µ5), (1 : µ4 : µ7), (1 : µ6 : µ5), (1 : µ : µ5),
(1 : µ13 : µ14), (1 : µ2 : µ13), (1 : µ9 : µ7), (1 : µ3 : µ14), (1 : µ8 : µ3), (1 : µ14 : µ8),
(1 : µ : µ12), (1 : µ7 : 0), (1 : µ8 : µ4), (0 : 1 : 0), (1 : µ2 : 0), (1 : µ7 : µ6),
(1 : µ4 : µ2), (1 : µ9 : µ9), (1 : µ14 : µ7), (1 : µ11 : µ12), (1 : µ6 : µ12), (1 : µ3 : µ3),
(1 : µ2 : µ6), (1 : µ9 : µ2), (1 : µ4 : µ9), (0 : 1 : µ10), (1 : µ13 : µ4), (1 : µ12 : 1),
(1 : µ13 : µ3), (1 : µ11 : µ11), (1 : µ6 : µ11), (1 : µ12 : µ13), (1 : µ3 : µ4), (0 : 1 : µ5),
(1 : µ8 : µ), (1 : µ : µ11), (1 : µ : µ10), (1 : µ14 : µ9) };

(ii) { (1 : µ10 : µ14), (1 : µ7 : µ2), (1 : µ8 : µ10), (1 : µ2 : µ2), (1 : µ9 : µ), (1 : µ14 : 1),
(1 : µ9 : µ11), (1 : µ4 : µ), (1 : µ3 : 0), (1 : µ14 : µ13), (1 : µ2 : µ9), (1 : µ13 : 0),
(1 : µ4 : µ11), (1 : µ5 : µ4), (1 : µ3 : µ10), (1 : µ13 : µ10), (1 : 1 : µ6), (1 : µ12 : µ8),
(1 : µ12 : µ7), (0 : 1 : µ11), (1 : 1 : µ14), (1 : µ10 : µ5), (0 : 1 : µ6), (1 : µ8 : µ3),
(1 : µ14 : µ), (1 : µ7 : µ8), (1 : µ10 : µ4), (0 : 1 : µ), (0 : 1 : 0), (1 : µ14 : µ11),
(1 : 1 : µ5), (1 : µ8 : µ12), (1 : µ7 : µ7), (1 : µ5 : µ6), (1 : µ3 : µ3), (1 : µ2 : µ8),
(1 : µ12 : µ9), (1 : µ12 : µ2), (1 : µ13 : µ3), (1 : µ4 : µ13), (1 : 1 : µ4), (1 : µ2 : µ7),
(1 : µ5 : µ14), (1 : µ4 : 1), (1 : µ3 : µ12), (1 : µ13 : µ12), (1 : µ9 : µ13), (1 : µ9 : 1),
(1 : µ8 : 0), (1 : µ10 : µ6), (1 : µ7 : µ9), (1 : µ5 : µ5) };

(iii) { (1 : µ7 : µ3), (1 : µ8 : µ7), (1 : µ7 : µ4), (1 : µ11 : µ14), (1 : µ : µ14), (1 : µ11 : µ10),
(1 : µ6 : µ10), (0 : 1 : µ4), (1 : µ6 : µ14), (1 : µ3 : µ6), (1 : 1 : µ), (1 : 1 : 0),
(1 : µ12 : µ11), (1 : µ2 : µ3), (1 : µ13 : µ6), (1 : µ2 : µ4), (1 : µ12 : µ8), (1 : µ13 : µ7),
(1 : µ5 : µ12), (1 : µ : µ9), (1 : µ11 : µ2), (1 : µ5 : µ13), (1 : µ : µ2), (1 : µ6 : µ2),
(1 : µ8 : µ5), (1 : µ3 : µ7), (1 : µ11 : µ9), (1 : µ6 : µ9), (1 : µ7 : µ8), (1 : µ5 : µ),
(0 : 1 : 0), (1 : µ7 : µ11), (1 : µ5 : 0), (1 : µ10 : µ12), (1 : µ8 : 1), (1 : µ10 : µ13),
(1 : µ2 : µ11), (1 : µ3 : µ5), (0 : 1 : µ14), (1 : µ2 : µ8), (1 : µ12 : µ4), (1 : µ13 : µ5),
(1 : µ12 : µ3), (1 : 1 : µ12), (1 : µ13 : 1), (1 : 1 : µ13), (1 : µ10 : µ), (1 : µ3 : 1),
(1 : µ10 : 0), (1 : µ : µ10), (1 : µ8 : µ6), (0 : 1 : µ9) };

(iv) { (1 : µ7 : µ3), (1 : µ2 : µ5), (1 : µ7 : µ5), (1 : µ14 : µ4), (1 : µ5 : µ2), (1 : µ8 : µ8),
(1 : µ3 : µ), (1 : µ9 : 0), (1 : µ9 : µ6), (1 : µ14 : µ12), (1 : µ13 : µ), (1 : µ4 : 0),
(1 : µ2 : µ3), (1 : 1 : µ11), (1 : µ12 : µ10), (1 : µ4 : µ6), (1 : µ5 : 1), (1 : µ3 : µ8),
(1 : µ13 : µ8), (1 : µ12 : µ14), (1 : 1 : µ7), (0 : 1 : µ11), (1 : µ8 : µ9), (1 : µ7 : µ10),
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(1 : µ10 : µ2), (0 : 1 : µ6), (0 : 1 : µ), (0 : 1 : 0), (1 : µ14 : 0), (1 : µ10 : 1),
(1 : µ14 : µ6), (1 : 1 : µ2), (1 : µ5 : µ11), (1 : µ8 : µ13), (1 : µ3 : µ9), (1 : µ7 : µ14),
(1 : µ2 : µ10), (1 : µ13 : µ9), (1 : µ12 : µ5), (1 : µ4 : µ12), (1 : µ12 : µ3), (1 : µ5 : µ7),
(1 : µ4 : µ4), (1 : µ9 : µ12), (1 : 1 : 1), (1 : µ2 : µ14), (1 : µ9 : µ4), (1 : µ3 : µ13),
(1 : µ13 : µ13), (1 : µ8 : µ), (1 : µ10 : µ11), (1 : µ10 : µ7) };

(v) { (1 : µ11 : µ6), (1 : µ6 : µ6), (1 : µ10 : µ10), (0 : 1 : µ2), (1 : µ : µ8), (1 : µ11 : µ8),
(1 : µ7 : µ12), (1 : µ4 : µ10), (1 : 1 : µ8), (1 : µ10 : µ9), (1 : µ11 : µ13), (1 : µ6 : µ13),
(0 : 1 : µ8), (1 : µ13 : µ2), (1 : µ11 : µ), (1 : µ : µ7), (1 : µ11 : 0), (1 : µ3 : µ11),
(0 : 1 : µ12), (1 : µ11 : µ4), (1 : µ11 : 1), (1 : µ14 : µ14), (1 : 1 : µ9), (1 : µ : 0) }

(vi) { (1 : µ14 : µ5), (1 : µ6 : 1), (1 : µ : µ3), (0 : 1 : µ3), (1 : µ : µ), (1 : µ2 : µ),
(1 : µ11 : µ3), (1 : µ6 : µ3), (1 : µ13 : µ11), (0 : 1 : µ7), (1 : µ9 : µ5), (1 : µ6 : µ7),
(1 : µ12 : µ) };

(vii) { (1 : µ10 : µ8), (1 : µ14 : µ3), (1 : µ6 : µ8), (1 : µ11 : µ7), (1 : µ5 : µ9), (1 : µ5 : µ3),
(1 : µ2 : µ12), (1 : 1 : µ10), (1 : µ8 : µ2), (1 : µ9 : µ10), (1 : µ : µ4), (1 : µ : 1),
(1 : µ10 : µ3), (1 : µ14 : µ10), (1 : µ : µ13), (1 : µ4 : µ5), (1 : µ3 : µ2), (1 : µ9 : µ3),
(1 : µ5 : µ10), (1 : µ12 : µ12), (1 : µ5 : µ8), (1 : µ : µ6), (1 : µ8 : µ11), (1 : µ6 : µ),
(1 : µ6 : 0), (0 : 1 : µ13), (1 : µ4 : µ14), (1 : µ9 : µ14), (1 : µ7 : µ), (1 : µ6 : µ4),
(1 : µ4 : µ3), (1 : 1 : µ3) }.

C.2 OG17

(i) { (1 : 8 : 0), (1 : 15 : 14), (1 : 3 : 3), (1 : 3 : 0), (1 : 10 : 6), (1 : 10 : 5), (1 : 15 : 15),
(1 : 10 : 3), (1 : 12 : 8), (1 : 7 : 12), (1 : 7 : 11), (1 : 2 : 1), (1 : 4 : 4), (0 : 1 : 14),
(1 : 16 : 7), (1 : 11 : 7), (1 : 1 : 14), (1 : 1 : 11), (1 : 11 : 8), (1 : 6 : 10), (1 : 8 : 16),
(1 : 8 : 1), (1 : 13 : 13), (1 : 3 : 4), (1 : 9 : 8), (0 : 1 : 5), (1 : 6 : 2), (1 : 1 : 15),
(1 : 1 : 2), (1 : 13 : 4), (1 : 15 : 10), (1 : 8 : 5), (1 : 12 : 3), (1 : 4 : 13), (1 : 2 : 7),
(1 : 9 : 9), (1 : 16 : 13), (1 : 6 : 16), (1 : 3 : 12), (1 : 1 : 6), (1 : 9 : 14), (1 : 9 : 13),
(0 : 1 : 0), (1 : 1 : 10), (1 : 16 : 3), (1 : 3 : 15), (1 : 13 : 9) };

(ii) { (1 : 13 : 10), (1 : 3 : 1), (1 : 2 : 1), (1 : 9 : 4), (1 : 9 : 16), (1 : 16 : 5), (1 : 4 : 6),
(1 : 6 : 9), (1 : 11 : 9), (1 : 4 : 5), (0 : 1 : 15), (1 : 13 : 2), (1 : 1 : 12), (1 : 5 : 11),
(1 : 10 : 8), (1 : 2 : 4), (1 : 14 : 4), (1 : 9 : 6), (1 : 6 : 15), (1 : 16 : 10), (0 : 1 : 7),
(1 : 11 : 11), (1 : 11 : 12), (1 : 1 : 4), (1 : 10 : 10), (1 : 5 : 13), (1 : 0 : 3), (1 : 5 : 0),
(1 : 2 : 8), (1 : 2 : 6), (1 : 4 : 12), (1 : 11 : 3), (1 : 6 : 5), (1 : 16 : 0), (1 : 1 : 7),
(0 : 1 : 8), (1 : 11 : 2), (1 : 13 : 7), (1 : 3 : 10), (1 : 5 : 16), (1 : 5 : 3), (1 : 14 : 12),
(1 : 9 : 1), (1 : 2 : 9), (1 : 16 : 15), (0 : 1 : 12), (1 : 6 : 7) };

(iii) { (1 : 13 : 10), (1 : 3 : 2), (1 : 3 : 14), (1 : 10 : 5), (1 : 5 : 5), (1 : 5 : 6), (1 : 0 : 8),
(1 : 7 : 10), (1 : 16 : 5), (1 : 16 : 8), (1 : 14 : 1), (0 : 1 : 1), (1 : 13 : 15), (1 : 13 : 12),
(1 : 13 : 14), (1 : 8 : 14), (1 : 3 : 16), (0 : 1 : 2), (1 : 15 : 6), (1 : 3 : 4), (1 : 10 : 7),
(1 : 7 : 15), (1 : 7 : 1), (0 : 1 : 6), (1 : 8 : 6), (1 : 10 : 12), (1 : 5 : 14), (1 : 5 : 12),
(1 : 0 : 14), (1 : 12 : 16), (1 : 12 : 2), (1 : 4 : 0), (1 : 16 : 1), (0 : 1 : 9), (1 : 13 : 7),
(1 : 15 : 0), (1 : 0 : 6), (1 : 12 : 7), (1 : 5 : 15), (1 : 10 : 0), (1 : 0 : 4), (1 : 14 : 10),
(1 : 16 : 4), (1 : 16 : 16), (1 : 4 : 2), (1 : 11 : 4), (1 : 15 : 16) };

(iv) { (1 : 8 : 12), (1 : 10 : 3), (1 : 0 : 9), (1 : 12 : 9), (1 : 14 : 0), (1 : 4 : 6), (1 : 11 : 10),
(1 : 8 : 14), (1 : 1 : 0), (1 : 8 : 4), (1 : 1 : 12), (1 : 8 : 3), (1 : 15 : 7), (1 : 3 : 5),
(1 : 7 : 3), (1 : 7 : 15), (1 : 2 : 5), (1 : 2 : 3), (1 : 16 : 11), (1 : 14 : 5), (0 : 1 : 5),
(1 : 6 : 14), (1 : 3 : 9), (1 : 3 : 7), (1 : 15 : 9), (1 : 0 : 16), (1 : 7 : 6), (1 : 9 : 11),
(1 : 9 : 10), (1 : 11 : 14), (1 : 11 : 15), (1 : 16 : 0), (1 : 6 : 3), (1 : 6 : 4), (1 : 15 : 13),
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(1 : 3 : 11), (1 : 10 : 14), (1 : 12 : 6), (1 : 4 : 16), (1 : 14 : 11), (1 : 9 : 12), (0 : 1 : 13),
(1 : 4 : 14), (1 : 4 : 15), (1 : 16 : 2), (1 : 1 : 10), (1 : 15 : 16) };

(v) { (1 : 15 : 12), (1 : 0 : 10), (1 : 7 : 13), (1 : 2 : 15), (1 : 9 : 0), (1 : 11 : 5), (1 : 10 : 4),
(1 : 2 : 13), (1 : 14 : 14), (1 : 1 : 1), (1 : 12 : 12), (1 : 7 : 14), (1 : 6 : 0), (1 : 13 : 16),
(1 : 13 : 3), (1 : 5 : 1), (1 : 4 : 11), (1 : 8 : 10), (1 : 16 : 12), (1 : 13 : 6), (1 : 7 : 9),
(1 : 2 : 11), (1 : 10 : 13), (1 : 11 : 6), (1 : 5 : 2), (1 : 6 : 8), (1 : 15 : 3), (1 : 6 : 6),
(1 : 8 : 11), (1 : 14 : 2), (0 : 1 : 3), (1 : 9 : 2), (1 : 1 : 13), (1 : 5 : 10), (1 : 4 : 9),
(1 : 1 : 16), (1 : 7 : 5) };

(vi) { (1 : 12 : 10), (1 : 15 : 4), (1 : 2 : 16), (1 : 14 : 15), (1 : 12 : 11), (1 : 7 : 0),
(1 : 7 : 4), (1 : 9 : 5), (1 : 6 : 12), (0 : 1 : 4), (1 : 1 : 5), (1 : 9 : 7), (1 : 8 : 8),
(1 : 0 : 15), (1 : 14 : 6), (1 : 11 : 13), (1 : 11 : 0), (1 : 13 : 5), (1 : 7 : 8), (1 : 11 : 16),
(1 : 2 : 12), (0 : 1 : 10), (1 : 9 : 3), (1 : 13 : 0), (1 : 15 : 5), (1 : 5 : 7) };

(vii) { (1 : 2 : 14), (1 : 5 : 8), (1 : 6 : 13), (0 : 1 : 16), (1 : 6 : 11), (1 : 15 : 8), (1 : 13 : 1),
(1 : 0 : 1), (1 : 0 : 12), (1 : 4 : 7), (1 : 12 : 13), (1 : 14 : 7), (1 : 7 : 2), (1 : 10 : 9),
(1 : 1 : 3), (1 : 0 : 13), (1 : 3 : 8), (1 : 10 : 11), (1 : 0 : 2), (1 : 7 : 7), (1 : 4 : 10),
(1 : 14 : 8), (0 : 1 : 11), (1 : 8 : 9), (1 : 8 : 7), (1 : 10 : 1), (1 : 14 : 9), (1 : 2 : 10),
(1 : 10 : 2), (1 : 2 : 0), (1 : 4 : 3), (1 : 8 : 13), (1 : 5 : 9), (1 : 0 : 11) };

(viii) { (1 : 10 : 15), (1 : 14 : 16), (1 : 12 : 15), (1 : 14 : 3), (1 : 13 : 11), (1 : 0 : 5),
(1 : 3 : 6), (1 : 15 : 11), (1 : 12 : 14), (1 : 12 : 1), (1 : 12 : 5), (1 : 4 : 1), (1 : 16 : 6),
(1 : 1 : 8), (1 : 8 : 2), (1 : 12 : 0), (1 : 15 : 1), (1 : 0 : 7), (1 : 16 : 14) }.
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Appendix D

MAGMA

D.1 The MAGMA language

MAGMA is an imperative programming language with in-build mathematical structures
from the field of algebra and discrete mathematics. The homepage which is also a
resource for help and documentation contains a free online demo:

http://magma.maths.usyd.edu.au/magma/

Basic structures are sets and lists. Creating and assigning these two structures can be
done by

> set := {1, 2, 3};
> list := [1 .. 100];

Here we used a console and not the demo on the website. Some basic operations we can
do

> set; // print the set
{ 1, 2, 3 }
> list[50]; // return the element at position 50
50
> #set; // gives the cardinality of the set
3

Taking the union of (multiple) sets is done by the join function.

> {1, 2} join {1, 3, 5};
{ 1, 2, 3, 5 }
> &join [ {1, 2}, {1, 3, 5}, {6} ];
{ 1, 2, 3, 5, 6 }

Taking the intersection is done by the meet function. Now we give the construction
our Erdős-Rényi graph is based on: a 3-dimensional vector space over Fq (q = 4 in our
code).

> F<mu> := FiniteField(4);
> W := VectorSpace(F, 3);
> W ! [0, 1, 0];
( 0 1 0)
> mu := PrimitiveElement(F);
> mu^3;
1
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Two new concepts here. By V ! [0, 1, 0] we construct the element (0, 1, 0) in our
vector space. With F<mu> we capture the root of the minimal-polynomial which defines
Fq and call it mu. A function can return multiple values:

> IsPrimePower(25);
true 5 2
> _, p, n := IsPrimePower(64);
> p, n;
2 6

The construction of sets is almost identical to what we now from mathematics:

> { x : x in [2 .. 100] | IsEven(x) and IsSquare(x) };
{ 4, 16, 36, 64, 100 }

Graphs are important for our research. We will show how we constructed the example
in section 1.1:

> V := {1 .. 6};
> E := { {1, 3}, {2, 3}, {2, 6}, {2, 5}, {3, 4}, {3, 6}, {5, 6} };
> G := Graph< V | E >;
> G;
Graph
Vertex Neighbors

1 3 ;
2 3 5 6 ;
3 1 2 4 6 ;
4 3 ;
5 2 6 ;
6 2 3 5 ;

For relation testing MAGMA uses the following code:

Mathematics MAGMA
< lt
≤ le
= eq
≥ ge
> gt

We might want to do arithmetic with the vertices of our graph. However when a graph
is created the vertex set will lose some of its structure. We make a subset of the vertex
set of the graph we just constructed:

> T := { v : v in VertexSet(G) | Degree(v) eq 3 }; T;
{ 2, 6 }

Picking a vertex out of T and do arithmetic with it will give an error. However we know
the mathematical structure the graph is created from. We can just recall that structure
and ask whether elements from it are in T.

> S := { n : n in {1 .. 6} | n in T }; S;
{ 2, 6 }
> Representative(S) + 1;
3
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A word of warning is in its place. When we let MAGMA calculate the eigenvalues it
will only find the eigenvalues in the ring for which we defined the entries of the matrix.
That means for the adjacency matrix (1.2) of our example we would, without instructing
MAGMA, find eigenvalues -2, -1, 0 and 1. So we have to tell MAGMA the entries of
the adjacency matrix are in RealField(), the real field R. A trick which speeds up the
calculation process for computing the eigenvalues of large matrices is given by Bosma,
the code can be found in the appendix and is called BosmaTruuk.

D.2 Source code

This section contains the MAGMA source code which was used doing our research. The
link below provides the code in a more suitable file format:

http://www.math.leidenuniv.nl/~edeckere/thesis/

This MAGMA code constructs the cocliques from section 6, q ≥ 3.

func t i on CreateCoc l ique ( q )
, p , n := IsPrimePower ( q ) ;

F<mu> := F i n i t e F i e l d ( q ) ;
mu := Primit iveElement (F) ;
V := VectorSpace (F , 3) ;

i f ( p eq 2 and IsEven ( n ) ) then
FF := F i n i t e F i e l d ( 2 ˆ (n div 2) ) ;

S := Set (F) d i f f { xˆ2 + x : x in F } ;
s := Repre sentat ive (S) ;

I := { V ! [ 1 , x1 , x2 ] : x1 in F , x2 in F
|

e x i s t s (u) { lambda : lambda in
FF | x2ˆ2 + x2 + s + lambda
∗ x1ˆ2 eq 0 } } j o i n

{ V ! [ 0 , 1 , x2 ] : x2 in F
|
e x i s t s (u) { lambda : lambda in

FF | x2ˆ2 + lambda
eq 0 } } ;

end i f ;

i f ( p eq 2 and IsOdd ( n ) ) then
m := (n − 1) div 2 ;

// Construct S
S := {0 , 1} ;

f o r i in [ 1 . . n − 2 ] do
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S := { r r + r ∗ mu ˆ i : r r in S , r in
{0 , 1} } ;

end f o r ;

// cons t ruc t T
T := {0 , 1} ;

f o r i in [ 1 . . m − 1 ] do
T := { r r + r ∗ mu ˆ i : r r in T, r in

{0 , 1} } ;
end f o r ;

T := { r r + mu ˆ m : r r in T} ;

//
I := { V ! [ 1 , t , s ] : t in T, s in S } ;

end i f ;

i f ( p gt 2 and IsEven ( n ) ) then
, Rootq := IsSquare ( q ) ;

R := { mu ˆ ( ( Rootq + 1) ∗ k ) : k
in [ 0 . . ( Rootq − 3) div 2 ] } j o i n { 0 } ;

I := { V ! [ 1 , t , ( t ˆ2 − mu∗ r ) /2 ]
: t in F , r in R } j o i n { V ! [ 0 , 0 , 1 ] } ;

end i f ;

i f ( p gt 2 and IsOdd ( n ) ) then
m := (n − 1) div 2 ;

A := [ C e i l i n g ( p/6 ) . . Floor ( p/2 ) ] ;
B := [ 0 . . Floor ( SquareRoot ( p/3 ) ) ] ;

i f (n eq 1) then
S := A;
T := B;

e l s e
// cons t ruc t S
S := [ 0 . . p − 1 ] ;

f o r i in [ 1 . . n − 2 ] do
S := { r r + r ∗ mu ˆ i : r r in

S , r in [ 0 . . p − 1 ] } ;
end f o r ;

S := { r r + r ∗ mu ˆ (n − 1) : r r in S ,
r in A } ;

// cons t ruc t T
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T := [ 0 . . p − 1 ] ;

f o r i in [ 1 . . m − 1 ] do
T := { r r + r ∗ mu ˆ i : r r in

T, r in [ 0 . . p − 1 ] } ;
end f o r ;

T := { r r + r ∗ mu ˆ m : r r in T, r in
B} ;

end i f ;

I := { V ! [ 1 , t , s ] : t in T, s in S } ;
end i f ;

r e turn I ;
end func t i on ;

MAGMA code with several functions, most of them have an (in)direct relation to ERq.

// A func t i on which r e tu rn s a l l the prime powers between m and
mm

func t i on PrimePowers (m, mm)
return [ n : n in [m . . mm] | IsPrimePower (n) ] ;

end func t i on ;

// Some f u n c t i o n s about adjacency f o r ERq us ing the
innerproduct o f ERq∗

f unc t i on Bil inearForm ( PuntA , PuntB )
return PuntA [ 1 ] ∗ PuntB [ 3 ] − PuntA [ 2 ] ∗ PuntB [ 2 ] +

PuntA [ 3 ] ∗ PuntB [ 1 ] ;
end func t i on ;

func t i on Adjacent ( PuntA , PuntB )
return Bil inearForm ( PuntA , PuntB ) eq 0 ;

end func t i on ;

func t i on I sAbso lute ( Punt )
t := Bil inearForm ( Punt , Punt ) ;

r e turn t eq 0 ;
end func t i on ;
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f unc t i on I sExte rna l ( Punt )
t := Bil inearForm ( Punt , Punt ) ;

r e turn t ne 0 and IsSquare (−t ) ;
end func t i on ;

func t i on I s I n t e r n a l ( Punt )
t := Bil inearForm ( Punt , Punt ) ;

r e turn t ne 0 and ( not IsSquare (−t ) ) ;
end func t i on ;

// Functions r e l a t e d to ( co ) c l i q u e t e s t i n g , the f i r s t i s f o r
any graph , the second i s ded icated f o r

// e lements in VectorSpace (Fq , 3)
func t i on I sC l i que (C)

return f o r a l l (u , v ) { <u , v> : u , v in C | u eq v or u
adj v } ;

end func t i on ;

func t i on Is IndependentSet ( I )
re turn f o r a l l (u , v ) { <u , v> : u , v in I | u eq v or u

notadj v } ;
end func t i on ;

func t i on I sC l iqueFas t (C)
return f o r a l l (u , v ) { <u , v> : u , v in C | u eq v or

Adjacent (u , v ) } ;
end func t i on ;

func t i on Is IndependentSetFast ( I )
re turn f o r a l l (u , v ) { <u , v> : u , v in I | u eq v or

not Adjacent (u , v ) } ;
end func t i on ;

// Two f u n c t i o n s who return ERq and the o r tho gon a l i t y subgraph
func t i on NormPoints ( q )

F<mu> := F i n i t e F i e l d ( q ) ;
mu := Primit iveElement (F) ;
W := VectorSpace (F , 3) ;
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re turn { Normalize (w) : w in W | w ne 0 } , mu;
end func t i on ;

func t i on ER Graph( q )
V := NormPoints ( q ) ;
E := { {u , v} : u in V, v in V | u ne v and

Adjacent (u , v ) } ;

r e turn Graph< V | E >;
end func t i on ;

func t i on Ortho Graph ( q )
V := NormPoints ( q ) ;
V := { v : v in V | not I sAbso lute ( v ) } ; //

f i l t e r the abso lu t e po in t s out o f V
E := { {u , v} : u in V, v in V | u ne v and

Adjacent (u , v ) } ;

r e turn Graph< V | E >;
end func t i on ;

func t i on ExternalPointGraph ( q ) ;
V := NormPoints ( q ) ;
V := { v : v in V | I sExte rna l ( v ) } ; // f i l t e r

the non−e x t e r n a l po in t s out o f V
E := { {u , v} : u in V, v in V | u ne v and

Adjacent (u , v ) } ;

r e turn Graph< V | E >;
end func t i on ;

func t i on InternalPointGraph ( q ) ;
V := NormPoints ( q ) ;
V := { v : v in V | I s I n t e r n a l ( v ) } ; // f i l t e r

the non−i n t e r n a l po in t s out o f V
E := { {u , v} : u in V, v in V | u ne v and

Adjacent (u , v ) } ;

r e turn Graph< V | E >;
end func t i on ;
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// A t r i c k b i j W. Bosma (Radboud Un ive r s i ty ) f o r f i n d i n g the
e i g e n v a l u e s o f a matrix

func t i on BosmaTruuk(M) ;
C := Charac t e r i s t i cPo lynomia l (M) ;
e i g e n v a l := Roots (C, Rea lF ie ld (10) ) ;

r e turn Sort ( e i g e n v a l ) ;
end func t i on ;

The two methods from section 7, q must be odd. The functions return the independent
set itself.

// f o r a subset o f the ver tex s e t which i s a c y c l e (>= 3 or
equal 1) i t r e tu rn s the maximum independent s e t .

f unc t i on CycleCoc l ique (C)
i f #C eq 1 then

Answ := C;
e l s e

v := Representat ive (C) ; // p ick a
ver tex out o f the vertex−s e t o f C

Answ := { v } ;
C := C d i f f ( Neighbours ( v ) j o i n {v}) ; //

remove v and i t s two neighbours out o f C

whi le #C gt 0 do
:= e x i s t s (w) { w : w in C | #(

Neighbours (w) meet C) l e 1 } ; //
f i n d s an element in C which has
degree

// 0 or 1 . Watch out , i t f i n d the
element in C, not in G as in G the
degree w i l l always be 2 .

C := C d i f f ( Neighbours (w) j o i n {
w}) ;

Answ := Answ j o i n { w } ;
end whi l e ;

end i f ;

r e turn Answ ;
end func t i on ;

func t i on Method1 ( q )
F<mu> := F i n i t e F i e l d ( q ) ;
mu := Primit iveElement (F) ;
W := VectorSpace (F , 3) ;

// Construct our b i g g e s t R
V := { y : y in F | not IsSquare ( y ) } ;
E := { {y , z} : y , z in V | not IsSquare ( y + z )

and y ne z } ;
G := Graph< V | E >;
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i f Order (G) eq 0 then
RR := {} ;

e l s e
RR := MaximumClique (G) ;

end i f ;

// Find a l a r g e s t independent s e t
R := { r : r in V | r in RR } ;
I := { W ! [ 1 , t , ( t ˆ2 − r ) /2 ] : t in F , r in R

j o i n {0} } j o i n { W ! [ 0 , 0 , 1 ] } ;

i f not I sSquare (F ! 2) then
GI := Graph< I | { {u , v} : u , v in I | u

ne v and Adjacent (u , v ) } >;
Temp := &j o i n [ Cyc leCoc l ique (Comp) : Comp

in Components (GI) ] ;
I := { v : v in I | v in Temp } ;

end i f ;

r e turn I ;
end func t i on ;

func t i on Method2 ( q )
F<mu> := F i n i t e F i e l d ( q ) ;
mu := Primit iveElement (F) ;
W := VectorSpace (F , 3) ;

// Construct candidate subse t s R
V := { y : y in F | not IsSquare (1 − 1∗y ) and y

ne 0 } ; // we assume 1 i s in R.
E := { {y , z} : y , z in V | not IsSquare (1 − y∗z )

and y ne z } ;
G := Graph< V | E >;

A := Al lC l i que s (G) ;

// f i n d a l a r g e s t independent s e t
MaxI := {} ;

f o r RR in A do
R := { x : x in V | x in RR } j o i n { 1 } ;
R1 := { x : x in R | not IsSquare (1 − xˆ2

) or x eq 1 } ; // the se e lements s a t i s f y
our c r i t e r i a

R2 := R d i f f R1 ;
I A := { W ! [ 1 , t , r ∗ t ˆ2 / 2 ] : t in F ,

r in R1 } ;
I B := {} ;
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f o r r in R2 do
, ra := IsSquare (1 − r ˆ2) ;

keyElem := (1 + ra ) / r ;
ora := Order ( keyElem ) ;

Z := ora mod 2 ; //
r e p l a c e s an i f−then−e l s e ( on even/
odd ) c o n s t ru c t i o n

Cykel := { keyElem ˆ (2∗ i +
1) : i in [ 0 . . ( ora − Z) /2 − 1 ] } ;
// c r e a t e one cyke l

Cykels := [ { mu ˆ j ∗ x : x in Cykel
} : j in [ 0 . . (#F − 1) / ora − 1 ] ] ;
// c r e a t e a l l c y k e l s

union := &j o i n Cykels ;

I Bb := { W ! [ 1 , t , r ∗ t ˆ2/2 ] : t in
union } ; // c r e a t e with cur rent r

the subset
I B := I B j o i n I Bb ;

end f o r ;

I := I A j o i n I B j o i n {W ! [ 0 , 0 , 1 ] } ;

i f #I gt #MaxI then
MaxI := I ;

end i f ;
end f o r ;

r e turn MaxI ;
end func t i on ;

Three heuristics which work for any graph. The first algorithm finds a large clique, it
returns the clique set it self. The second algorithm finds a large independent set. The
third algorithm performs sequential coloring and only returns the coloring number. The
user can, by passing a number of seconds to it, decide how long the algorithm will run.
60 seconds is a good starting point.

f unc t i on Sequent i a lC l i que (G, seconds )
V := Set ( VertexSet (G) ) ;
bes t := [ Representat ive (V) ] ; // a c l i q u e ( o f s i z e

1) to s t a r t with .
t := Cputime ( ) ;

whi l e ( Cputime ( t ) l e seconds ) do
perm := Random(Sym(V) ) ; // Random

permutation
W := [ v ˆ perm : v in V ] ; //

Random permutation o f the v e r t i c e s
c l i q u e := [ W[ 1 ] ] ;
counter := 2 ;
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whi le ( counter l e #V) do
// Tests wetter the s e l l e c t e d ( by

counter ) ver tex in the sequence W i s
adjacent

// to any other ver tex in the
independent s e t

i f f o r a l l { w : w in c l i q u e | w adj W[
counter ] } then

Append(˜ c l i que , W[ counter ] ) ;
end i f ;

counter := counter + 1 ;
end whi le ;

i f (# c l i q u e gt #best ) then
best := c l i q u e ;

end i f ;
end whi l e ;

r e turn Set ( bes t ) ;
end func t i on ;

func t i on Sequent i a lCoc l i que (G, seconds )
I := Sequent i a lC l i que ( Complement (G) , seconds ) ;

r e turn Set ({ v : v in VertexSet (G) | v in I }) ;
end func t i on ;

func t i on Sequent i a lCo lo r ing (G, seconds )
V := Set ( VertexSet (G) ) ;
bes t := #V; // The best number o f c o l o r s to s t a r t

with
t := Cputime ( ) ;

whi l e Cputime ( t ) l e seconds do
perm := Random(Sym(V) ) ; // Random

permutation
W := [ v ˆ perm : v in V ] ; //

Random permutation o f the v e r t i c e s
Colors := [ 1 ] ;
MaxColors := 1 ;

whi l e ( MaxColors l t bes t and #Colors l t #V)
do

// Set o f the non−a v a i l a b l e c o l o r s
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NonAvailable := Set ( [ Colors [ j ] : j
in [ 1 . . #Colors ] | W[# Colors + 1 ]
adj W[ j ] ] ) ;

// Set o f the a v a i l a b l e c o l o r s
Ava i l ab l e := {1 . .

MaxColors} d i f f NonAvailable ;

i f IsEmpty ( Ava i l ab l e ) then
MaxColors := MaxColors + 1 ;
Append(˜ Colors , MaxColors ) ;

e l s e
Append(˜ Colors , Minimum(

Ava i l ab l e ) ) ;
end i f ;

end whi l e ;

bes t := Minimum( best , MaxColors ) ;
end whi l e ;

r e turn best ;
end func t i on ;
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Notation index

Sets

∅ The empty set.

|S| If S is a finite set then |S| is the number of elements in S.

U\S The set {u ∈ U : u /∈ S}.

Sc Given S as a subset of a larger set U then Sc is the complement of S in U . That
is Sc = {u ∈ U : u /∈ S}.

Sym(X) The set of all bijections X −→ X.

Sym(n) The set of all bijections {1, . . . , n} −→ {1, . . . , n}.

Numbers

dre The ceiling of a real number r. That is the smallest integer n such that r ≤ n.

brc The floor of a real number r. That is the largest integer n such that r ≥ n.

z The complex conjugate of a complex number z.

Algebra

F Field.

R Field of real numbers.

C Field of complex numbers.

Fq Finite field of q elements.

F∗ The group of units. That is the set of all non-zero x in the field F.

F The algebraic closure of the field F.

G/H The factor group of G and a normal subgroup H.

o The semi-direct product.

Graphs

G Graph complement. The graph G has the same vertex set V as G but now any
two vertices u, v ∈ V are adjacent if and only if they are not adjacent in G.

Aut(G) The automorphism group of a graph.

i ∼ j Vertex i is adjacent to vertex j.
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ERq The Erdős-Rényi graph.

ER∗q The Erdős-Rényi graph with a different bilinear form.

ERoq The Erdős-Rényi graph with loops to the absolute vertices.

OGq The orthogonality graph.

R The absolute points.

L The external points.

M The internal points.

GLq The graph induced by all the external points.

GMq The graph induced by all the internal points.

∆(G) The maximum degree of a vertex in G.

α(G) The size of the largest independent set in G.

ω(G) The size of the largest clique in G.

γ(G) The chromatic number of G.

Cn Cycle of n vertices.

G− v The subgraph of G = (V,E) induced by the vertices V \{v}.

λi(G) The ith eigenvalue of a graph G where λ1(G) is the largest eigenvalue and λn(G)
the smallest.

Linear Algebra

U⊥ The orthogonal complement of a subspace U ⊆W .

ei The vector with the ith entry equal to 1 and the other entries equal to 0.

J Matrix where every entry equals 1.

U + S When U, S ⊆W are subspaces then the sum U+S is the set {u+s : u ∈ U, s ∈ S}.

U ⊕ S When U, S ⊆ W are subspaces and U + S = W and U ∩ S = 0 then U ⊕ S is
notation for W . We call U ⊕ S the direct sum .

MT The transposed of a matrix M .

〈·, ·〉 Bilinear form.

U⊥S U is orthogonal to S.

M The matrix by taking the complex conjugate of all the entries in M .

〈U〉 For a subset U of a vector space this is the set of all linear combinations of every
finite subset of U . We will occasionally omit the set brackets.

Projective Planes

PG(2, q) The projective plane where points are defined by 1-dimensional subspaces of F3
q

and lines by 2-dimensional subspaces of F3
q.
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