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Introduction

Let S be a set. An S-group is a group G together with a map S → G, which
we shall usually denote with the empty symbol (i.e. the image of s ∈ S in
G is denote s). A map of S-groups is a group homomorphism between two
S-groups which respects this map. The free group F (S) on S is universal
among S-groups in the sense that given any S-group G there exists a unique
S-groups map F (S)→ G (section 1.4).

A set of group relations on S is a subset R of F (S)× F (S). An S-R-group
G is an S-group such that, for ϕ : F (S) → G the unique map of S-groups,
one has ϕ(x) = ϕ(y) for all (x, y) ∈ R. There exist a universal S-R-group,
unique up to unique S-group isomorphisms, which will be denoted 〈S|R〉
(section 1.5). The following theorem helps us to recognize 〈S|R〉 (theorem
3.1.1).

Theorem. Let S be a set, and let R be a set of group relations on S. Let G
be a set and let 1G ∈ G be an element. Suppose for every s ∈ S a bijection
πs : G→ G is given. Then the following are equivalent:

(1) There is an S-R-group with underlying set G and neutral element 1G
such that for all s ∈ S and x ∈ G one has sx = πs(x). This S-R-group
is isomorphic, as an S-R-group, to 〈S|R〉.

(2) The following three conditions are satisfied:

(i) For each S-R-group G′ there exists a map ϕ : G → G′ such that
ϕ(1G) is the neutral element of G′ and one has ϕ(πs(x)) = sϕ(x)
for all s ∈ S and x ∈ G.

(ii) The group Sym(G) of all permutations of G together with the map
S → Sym(G) defined by s 7→ πs is an S-R-group.

(iii) The only subset T ⊆ G with 1G ∈ T such that for all s ∈ S one
has πs(T ) = T is T = G.

The main goal of this thesis is to give a proof of this theorem. The theorem
is a formalized version of what is called “Van der Waerden’s trick” which
is used to check if a given set is a set of normal forms for the elements of
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Introduction

〈S|R〉. In section 1.5 we will see that 〈S|R〉 is a quotient of F (S) so we have
a surjective map F (S) � 〈S|R〉. We say that a subset V of F (S) is a set of
normal forms for the elements of 〈S|R〉 if the restriction of the above map to
V is bijective. To do this in practice without using this method we should
first find such a set and define a multiplication and then check if what we
get is isomorphic to 〈S|R〉. Usually it is not easy to prove that the defined
multiplication is associative. The idea of Van der Waerden allows us to prove
that we can define an S-R-group structure on V such that it is isomorphic to
〈S|R〉, without proving associativity. In fact we do not even have to define
a multiplication for every pair of elements, but only the left multiplication
by a generator. If we do this and then we check that conditions (i), (ii) and
(iii) are satisfied G has an S-R-group structure that is isomorphic to 〈S|R〉.
Van der Waerden’s method cannot be used to find such a structure, it is
only useful to check, when we have a guess, if the guess is right.

The method can be applied not only to groups, but also to other associative
algebraic structures which can be presented with generators and relations.
In this thesis we will treat monoids, groups and rings. We will begin in
the first chapter by proving the existence of structures as above for each S
and R. Then we will go through the proof of the theorems and we present
some examples. Originally Van der Waerden used his method for proving,
more efficiently than had been done before, that we can give a normal form
to the elements of the sum of groups (see [1]). Later he applied it to a
construction regarding rings, namely the Clifford algebra (see [2]). The
method has subsequently been used to prove that under certain assumptions
we can find a normal form for the elements of an amalgamated sum of groups
over a subgroup (this can be found in Serre’s book [3] and Kurosh’s [4], for
example) and, also by Serre in the same book as an exercise, for some
particular kind of amalgamated sums of rings. In the notes by Bergman
([6]) Van der Waerden’s method is used frequently for proving normal forms
for a lot of constructions of this kind in the case of groups, rings and also
monoids. I could not find in the literature a statement of the method as a
theorem valid for all sets S and for all sets of relations R, as the theorems
we are proving in this thesis.

In section 2.3 we will build a normal form for the elments of some amal-
gamated sums of monoids over a submonoid. In this case we will not be
able to give a completely explicit normal form, but we will show that we
can understand the structure of the amalgamated sum by proving a theorem
(theorem 2.3.8) about it. In section 4.2 we state a possible generalisation of
Van der Waerden’s discussion of Clifford Algebras.

v



Chapter 1

Generators and relations

Before introducing Van der Waerden’s method we discuss free structures
and structures presented by generators and relations. The theorem in fact,
at least in the form we will state it, does not prove the existence of such
structures. We prove it by showing how to build them up, but we will not
be able to see what the elements of these structures look like. In order to
understand what will follow, we first recall some basic facts about category
theory that will be used in the following sections, before going into the
details of each algebraic structure.

1.1 Category theory

Let us recall what a category is and then we will recall some other basic
facts about categories.

Definition 1.1.1. (Category) A category consists of:

• A class C , whose elements are called objects.

• For each pair of objects (A,B) a set Hom(A,B) whose elements are
called morphisms and are denoted by arrows: f ∈ Hom(A,B) is de-
noted f : A→ B.

• For any three objects A,B and C an operation ◦ : Hom(B,C) ×
Hom(A,B)→ Hom(A,C), called composition law. As usual one writes
◦(f, g) = f ◦ g.

The above items are such that the following conditions are satisfied:

(1). For each object A there is an element IdA ∈ Hom(A,A), called the
identity of A, such that for each morphism f ∈ Hom(A,B) we have
f ◦IdA = f and for each morphism g ∈ Hom(B,A) we have IdA◦g = g.

1



1.1 Category theory Generators and relations

(2). The composition law is an associative operation.

As examples of categories think about sets and maps between sets, groups
and homomorphisms of groups or, more generally, algebraic structures and
set maps which respect the operations. Some definitions we give separately
in different settings have a generalization in a general category. For example
in set theory one defines the cartesian product of A and B by saying that
it is the set of all pairs of elements in which the first one is in A and the
second in B. One can then prove that this particular set has a universal
property, namely: there are two maps πA : A×B → A and πB : A×B → B
such that for each set C with two maps fA : C → A and fB : C → B there
exists a unique map fA × fB : C → A×B such that the following diagram
commutes

A×B
πB

##G
GG

GG
GG

GG
πA

{{xx
xx

xx
xx

x

A B

C

fA

ccGGGGGGGGG fB

;;wwwwwwwww

fA×fB

OO

This property can be taken as a definition of the cartesian product of A
and B. In general we say that two objects A and B of a category have a
product and that their product is A

∏
B if this object satisfies the same

universal property. For example for two groups their categorical product is
their direct product.

If in a category we have an object with some universal property then it can
be seen as an initial object in some ad hoc built category:

Definition 1.1.2. (Initial objects) Let C be a category and let A be one
of its objects. We say that A is an initial object in C if for each object B
there exists a unique morphism A→ B.

We did this brief introduction to category theory because all the structures
presented by generators and relations have some universal property and to
prove their existence we will use this idea: first define a category in which
those structures are initial objects and then prove that there is such an
object in these categories. To conclude the section we prove that initial
objects are unique so that we will not have to prove uniqueness in each case
in the rest of the chapter. First recall that an isomorphism between two
objects A and B in a category is a morphism f : A → B such that there
exists a morphism g : B → A such that the compositions f ◦ g and g ◦ f are
both the identity (of B and A respectively).

Lemma 1.1.3. Let C be a category and let A be an initial object. Then, if B
is another initial object for C , there exists a unique isomorphism f : A→ B.
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1.2 Free monoids Generators and relations

Proof. Since A is initial there is a unique morphism A → A and this must
be the identity IdA. The same is true for B. Moreover since they are both
initial we have two unique morphisms f : A → B and g : B → A. The
compositions f ◦g and g ◦f are morphisms and they are B → B and A→ A
respectively. So it follows, from what we said before, that f ◦ g = IdB and
g ◦ f = IdA. Then f is a unique isomorphism from A to B.

1.2 Free monoids

Let us start with the simplest structure for which we can use Van der Waer-
den’s method, namely, monoids. We will first recall what a monoid is and
then define the category of S-monoids, in which the free monoid is an initial
object.

Definition 1.2.1. (Category of monoids) A monoid M is a set which has
an associative operation (which we will usually denote multiplicatively) with
a neutral element (which will usually be denoted by 1M ). If M ′ is also a
monoid, a morphism M →M ′ is a map which respects both the multiplica-
tion and the unit element.

Definition 1.2.2. (Category of S-monoids) Given a set S, an S-monoid
is a monoid M together with a map S → M . This map will be usually
denoted by the empty symbol (i.e. the image of s ∈ S in M is denoted s).
An S-monoid morphism (or S-map) M

ϕ→ M ′ is a monoid morphism such
that the following diagram commutes:

S //

��

M

ϕ
}}{{

{{
{{

{{

M ′

Notice that the identity IdM of a monoid M is clearly an S-map which
satisfies condition (1) in definition 1.1.1 and the composition of two S-maps,
when possible, is again an S-map, so these define a category.

We remark that the map S →M is not assumed to be injective. The initial
object, if it exists, in this category is the free monoid over the set S. We
will denote such an object as FMon(S) or F (S), if no confusion can arise. In
the case of monoids is very easy to show that this object exists, and we will
do it in the next proposition.

Proposition 1.2.3. For each set S the category of S-monoids has an initial
object.

3



1.3 Relations Generators and relations

Proof. Since we do not have any relation we can just consider the set of all
finite words taking S as an alphabet (we consider the empty word as a word
of length zero); we will denote it again by F (S). This is a monoid with
concatenation of words as multiplication and the empty word as a neutral
element. It is also an S-monoid by mapping s ∈ S to the word of length one
s in F (S).

We now show it is initial in the category of S-monoids. First we notice
that an element of F (S) can be written as s1 · · · sn, with each si ∈ S and
n ≥ 0. We want to prove that given any S-monoid M , we have a unique map
ϕ : F (S)→M . We define that maps ϕ(s1 · · · sn) to be the product s1 · · · sn
in M and the empty word in the neutral element of M . This is a monoid
map, in fact the unit element is respected by definition and if x = s1 · · · sn
and y = s′1 · · · s′n in F (S) we have

ϕ(xy) = ϕ(s1 · · · sns′1 · · · s′n) = s1 · · · sns′1 · · · s′n (product in M).

By the associative law in M we can consider the last product above as
(s1 · · · sn)(s′1 · · · s′n), which is ϕ(x)ϕ(y) so also the multiplication is respected
by ϕ. Moreover, by definition, if we take a word of length one then ϕ(s) = s
so ϕ is also an S-map. Let us suppose that ψ is another S-map from F (S) to
M . By definition we have ψ(1) = 1 = ϕ(1) and ψ(s) = s = ϕ(s) for s ∈ S.
On a word x = s1 · · · sn with n ≥ 1 we have, since ψ respects products:

ψ(x) = ψ(s1 · · · sn) = ψ(s1) · · ·ψ(sn) =
= ϕ(s1) · · ·ϕ(sn) = ϕ(s1 · · · sn) = ϕ(x).

So ψ = ϕ and ϕ is unique, so F (S) is the initial object in the category of
S-monoids.

1.3 Relations

Before starting to consider further free structures we discuss relations on
monoids. Someone who is familiar with relations on groups may be used to
see relations given by one word. In the case of monoids this is not possible.
A relation for us will then always be (even in the case of groups or rings) a
pair of elements of the free object. More precisely:

Definition 1.3.1. (Monoid relation on S) Let S be a set. A monoid relation
between the elements of S is an element of F (S)×F (S) (cartesian product);
a set of monoid relations for the elements of S is then a set R ⊆ F (S)×F (S).
In the following we will sometimes write relations for monoid relations, if
no confusion can arise.

4



1.3 Relations Generators and relations

We can now define the category of S-R-monoids, in which the monoid
〈S|R〉Mon, given with set of generators S and set of relations R, is an initial
object.

Definition 1.3.2. (Category of S-R-monoids) Given a set S and a set R of
relations on S an S-R-monoid M is an S-monoid with the property that for
all pairs (w1, w2) ∈ R the unique morphism ϕ : F (S)→M satisfies ϕ(w1) =
ϕ(w2). An S-R-monoid morphism is an S-monoid morphism between two
S-R-monoids.

As before, if no confusion can arise, we will use the notation 〈S|R〉 for
〈S|R〉Mon. The existence of one initial object in this category is proved
again by exhibiting one monoid with the required property; first we have to
define, given a set of relations R, an equivalence relation on F (S):

Definition 1.3.3. (Relation ∼R) Let S be a set and let R be a set of
relations for S. Let x, y ∈ F (S) and define x ∼R y if and only if for all
S-R-monoids M one has ϕ(x) = ϕ(y), where ϕ is the map F (S)→M .

Notice that by the definition of S-R-monoid we have that when the pair
(w1, w2) ∈ R then ϕ(w1) = ϕ(w2) and so w1 ∼R w2.

Proposition 1.3.4. The relation ∼R is an equivalence relation and if x ∼R
x′ and y ∼R y′ then xy ∼R x′y′.

Proof. Reflexivity, symmetry and transitivity are clear so it is an equivalence
relation. Now suppose we have x ∼R x′ and y ∼R y′, then we can write:

ϕ(xy) = ϕ(x)ϕ(y) = ϕ(x′)ϕ(y′) = ϕ(x′y′)

since ϕ is a homomorphism, so the proposition is proved.

The property we proved implies that the operation on F (S) induces an op-
eration on F (S)/∼R which becomes a monoid. Our claim is that F (S)/∼R
is the monoid 〈S|R〉.

Proposition 1.3.5. For every set S the monoid F (S)/∼R is an initial
object in the category of S-R-monoids.

Proof. We show first that F (S)/∼R is an S-R-monoid and next that there is
a unique morphism to each S-R-monoid. We can define the map from the set
S by composing the map S → F (S) with the projection F (S)→ F (S)/∼R .
Let us take a pair (w1, w2) ∈ R, we have to show that the unique S-map
πR : F (S)→ F (S)/∼R , which is the projection, satisfies πR(w1) = πR(w2),

5



1.4 Free groups Generators and relations

and this is true by the definition of ∼R. So F (S)/∼R is an S-R-monoid.
We can notice that given any S-monoid M we have an injection

HomS(F (S)/∼R,M) ↪→ HomS(F (S),M)

namely the one that sends a map f to the composition f̃ = f ◦πR. So there
is at most one map from F (S)/∼R to any S-monoid, since the right hand
side is a set with one element. We now show that we have at least one map
from F (S)/∼R to an S-R-monoid M . Let ϕ : F (S) → M be the unique
S-map from F (S) to M . It is clear from the definition of ∼R that the map
ϕ̃ : F (S)/∼R→ M induced by ϕ, namely the map ϕ̃([x]) = ϕ(x), is well
defined. So there exist exactly one morphism from F (S)/∼R to any S-R-
monoid and so F (S)/∼R is an initial object in the category of S-R-monoids,
as we wanted to prove.

We can now notice that, even if we proved the existence of 〈S|R〉 in every
possible case, we do not have an idea what its elements look like. When we
are able to guess a normal form for one of these monoids, Van der Waerden’s
method will help us checking if our guess is right. Before going on we prove
some results that will be used later on.

Proposition 1.3.6. Let M be a sub-S-monoid of 〈S|R〉. Then M = 〈S|R〉.

Proof. Since the multiplication in M is the same as in 〈S|R〉 the S-monoid
M is also an S-R-monoid. So there exists a unique S-map 〈S|R〉 → M .
Since M is a subset of 〈S|R〉 we also have the inclusion map M ↪→ 〈S|R〉,
which is also an S-map. The composition is an S-map from 〈S|R〉 in itself,
so it must be the identity. So the inclusion is surjective and M = 〈S|R〉.

Before stating and proving the main theorems we will discuss groups and
rings presented by generators and relations.

1.4 Free groups

As for monoids we start by defining a category where the free group on the
set S is an initial object.

Definition 1.4.1. (Category of S-groups) Given a set S an S-group is a
group G together with a map S → G. Morphisms (called also S-maps) are
group morphisms G

ϕ→ G′ such that the following diagram commutes:

S //

��

G

ϕ
~~}}

}}
}}

}

G′
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1.4 Free groups Generators and relations

Since the identity is an S-map which satisfies condition (1) of definition 1.1.1
and the composition of two S-maps is an S-map these define a category.

We define the free group on a set S by taking a particular monoid 〈S̃|R〉Mon

and showing that it is an initial object in the category of S-groups. The
set S̃ is the disjoint union of the set S with a set S−1 which is disjoint
from it and is endowed with a bijection S → S−1 which will be denoted by
s 7→ s−1. We will denote also the inverse map with the same symbol so that
(s−1)−1 = s for all s ∈ S̃. The set of relations is the set

R = {(ss−1, 1) : s ∈ S̃}

which tells us that s and s−1 are inverses. Notice that this structure has a
non-trivial set of relations, even if we claim it is the free group on the set
S. This can be explained by considering that being “free” for an algebraic
structure means that the only relations satisfied are the ones that follow
from its defining properties. Then a structure which is free as a group is
not free as a monoid because the relations that are necessary for groups
(imposing that each element has an inverse) are not necessarily satisfied in
a monoid. We will denote the monoid 〈S̃|R〉Mon as F (S)Grp or only F (S) if
no confusion can arise. To show that the monoid defined above is the free
group on the set S we first prove that it is a group and then that it is an
initial object in the category of S-groups.

Proposition 1.4.2. The monoid 〈S̃|R〉Mon is an S-group.

Proof. We know that 〈S̃|R〉Mon is an S-monoid so we already have the map
S → 〈S̃|R〉Mon and then in order to conclude we just have to show that
it is a group. Given any monoid M we can consider the set of invertible
elements, denoted M∗, which is a group. The set S̃ is contained, according
to the relations, in 〈S̃|R〉∗Mon and by proposition 1.3.6 one has 〈S̃|R〉∗Mon =
〈S̃|R〉Mon so 〈S̃|R〉Mon is a group.

Proposition 1.4.3. For every set S, the group 〈S̃|R〉Mon = F (S)Grp is an
initial object in the category of S-groups.

Proof. Let G be an S-group; the image of s ∈ S is invertible in G, since it
is a group, so there is a unique element s−1 in G which is the inverse of s.
We can then build a map S̃ → G, so G is an S̃-monoid. The relations in R
are satisfied in G (since ss−1 = s−1s = 1 because s and s−1 are inverses) so
G is also an S̃-R-monoid. Then there is a unique S̃-map ϕ : 〈S̃|R〉Mon → G.
The map ϕ is also an S-map since S is a subset of S̃ and the map S̃ → G
coincides with S → G on S. So 〈S̃|R〉Mon is initial.

At this point one can notice again that we do not have an idea of what the
elements of this group look like. We know each is an equivalence class for

7



1.5 Relations on groups Generators and relations

some equivalence relation on the free monoid F (S)Mon, but we do not know
their shape. With Van der Waerden’s method for groups we will be able to
prove that each element has a normal form. More precisely we will prove
that in each class we can choose a representative with the following form:

w = 1 or w = x1x2 · · ·xn

with each xi ∈ S̃ and no two successive letters are inverse to each other.

1.5 Relations on groups

We can define S-R-groups and build the universal group with generators S
and relations R exactly as we did for monoids, namely the group 〈S|R〉Grp

is a quotient of F (S)Grp. We start as before with the definition of relations.

Definition 1.5.1. (Group relation on S) Let S be a set. A group relation
between the elements of S is an element of F (S) × F (S); a set of group
relations for the elements of S is then a set R ⊆ F (S) × F (S). We will
sometimes write relations for group relations, if no confusion can arise.

Definition 1.5.2. (Category of S-R-groups) Let S be a given set and let
R be a set of group relations between the elements of S. An S-group G is
called an S-R-group if for each pair (w1, w2) ∈ R one has ϕ(w1) = ϕ(w2)
where ϕ is the unique morphism F (S)→ G. A morphism of S-R-groups is
an S-map between two S-R-groups.

The definitions and the proofs are exactly as for monoids.

Definition 1.5.3. (Relation ∼R) Let x, y ∈ F (S) and define x ∼R y if and
only if for every S-R-group G we have ϕ(x) = ϕ(y) where ϕ is the unique
map F (S)→ G.

Proposition 1.5.4. The relation ∼R is an equivalence relation and if x ∼R
x′ and y ∼R y′ then xy ∼R x′y′.

Proposition 1.5.4 implies that the quotient F (S)/∼R is a group, and of
course also an S-group. One can prove as before that F (S)/∼R is also an
S-R-group and then that it is an initial object in the category of S-R-groups.

Proposition 1.5.5. For every set S and for every set of group relations R
on S, the group F (S)/∼R is an initial object in the category of S-R-groups.

Proof. The proof goes exactly as for monoids. As we said F (S)/∼R is
an S-group and the fact that the relations in R are respected follows, as
we did for monoids, from the definition of ∼R, since the unique S-map

8



1.5 Relations on groups Generators and relations

F (S) → F (S)/∼R is the projection so F (S)/∼R is also an S-R-group.
Given any S-group G we have an injection

HomS(F (S)/∼R, G) ↪→ HomS(F (S), G)

so there is at most one map from F (S)/∼R to any S-group. We can exhibit
one map from F (S)/∼R to G, when G is an S-R-group, as before. Let
ϕ : F (S) → G be the unique S-map from F (S); by the definition of the
relation ∼R the map ϕ̃ : F (S)/∼R→ G induced by ϕ is well defined so
it is in HomS(F (S)/∼R, G). So there exists exactly one morphism from
F (S)/∼R to any S-R-group and so F (S)/∼R is an initial object, as we
wanted to prove.

It can be interesting at this point to show that the usual way of presenting
groups with generators and relations is in fact equivalent to the one we
defined. This is what the following proposition states.

Proposition 1.5.6. Let S be a set and R a set of group relations on S.
Let M be the group 〈S|R〉 and H be the smallest normal subgroup of F (S)
containing the elements which can be written xy−1 with the pair (x, y) in R.
Then M is isomorphic to F (S)/H .

Proof. We want to show that F (S)/H is an initial S-R-group. Let M ′ be an
S-R-group. Since M ′ is an S-group there exist a unique S-map ϕ : F (S)→
M ′. We want to show that this induces a map ψ : F (S)/H → M ′ so we
have to show that ϕ(x) = 1 for x in H. We show that this is true for the
generators of H and this implies the claim. Let xy−1 be a generator of H
so (x, y) ∈ R and then, by the definition of ∼R, we have ϕ(x) = ϕ(y) so
ϕ(xy−1) = 1. Then there exists a map ψ as above. This is an S-group map
since ψ([s]) = ϕ(s) = s and we show that it is unique. Let ψ′ be another
S-map from F (S)/H to M ′. Then we have:

ψ′([s1 · · · sn]) = ψ′([s1] · · · [sn]) = ψ′([s1]) · · ·ψ′([sn]) = s1 · · · sn =
= ϕ(s1) · · ·ϕ(sn) = ϕ(s1 · · · sn) = ψ([s1 · · · sn]).

So F (S)/H is initial and hence isomorphic to M .

As we did for monoids we prove here that the set S generates the group
〈S|R〉.

Proposition 1.5.7. Let G be a sub-S-group of 〈S|R〉. Then G = 〈S|R〉.

Proof. Can be done as for monoids. The multiplication in G is the same
as in 〈S|R〉 so it is also an S-R-group. Then there exists a unique S-map
〈S|R〉 → G, but G is a subset of 〈S|R〉 so there exists also the inclusion map

9



1.6 Free k-algebras Generators and relations

M ↪→ 〈S|R〉, which is an S-map. The composition is also an S-map from
〈S|R〉 in itself, so it must be the identity. So the inclusion is surjective and
G = 〈S|R〉.

1.6 Free k-algebras

In the remainder of this chapter we will discuss rings presented by generators
and relations. By a ring we will always mean an associative ring with a
multiplicative neutral element, but not necessarily commutative. Since the
theory for rings (which are Z-algebras) is not easier than the more general
theory for k-algebras where k is a commutative ring, we will consider this
latter case. We will then from now on suppose to have a fixed commutative
base ring k. We start by giving some definitions.

Definition 1.6.1. (Center of a ring) Let A be any ring. The center of A
is the subset of the elements which commute with all the elements in A:

Z(A) = {x ∈ A|∀y ∈ A, xy = yx}

It is a commutative subring of A.

Definition 1.6.2. (Category of k-algebras) An object in the category of
k-algebras is a ring A together with a ring homomorphism f : k → A such
that f(k) ⊆ Z(A). A morphism between two k-algebras A and B is a ring
homomorphism f : A→ B such that the following diagram commutes:

k

��
@@

@@
@@

@@

��

A
f
// B

Definition 1.6.3. (Category of S-k-algebras) Given a set S we define an
S-k-algebra A to be a k-algebra together with a map S → A. As usual
morphisms of S-k-algebras are morphisms of k-algebras which respect this
map.

Definition 1.6.4. (Free k-algebra over S) Given a set S an initial object in
the category of S-k-algebras is called the free k-algebra over the set S and
is denoted k〈S〉.

In order to prove the existence of free k-algebras we will make use of free
modules over a ring. We then recall briefly the definition of a module and
the construction of a free module.

10



1.6 Free k-algebras Generators and relations

Definition 1.6.5. (A-module) Let A be a ring. We define a left module
M over A to be an abelian group together with a map f : A ×M → M ,
which is denoted with the empty symbol so that f(a,m) = am, such that
the following conditions are satisfied:

• 1Am = m for every m ∈M .

• (a+ b)m = am+ bm for every m ∈M and a, b ∈ A.

• (ab)m = a(bm) for every m ∈M and a, b ∈ A.

• a(m+m′) = am+ am′ for every m,m′ ∈M and a ∈ A.

Remark 1.6.6. 1. Let us notice that each k-algebra A is a k-module with
the multiplication defined by hx = f(h)x where h ∈ k, the map f :
k → A is the map that gives A the structure of a k-algebra and the
multiplication in the right hand side is taken in A. All the properties
are trivial and follow from the definition of a ring.

2. On a general ring A one can define similarly right A-modules and A-A-
bimodules. Bimodules have both a structure of right and left A-module
and these structures are compatible in the sense that a(xb) = (ax)b
for every a, b ∈ A and x in the module. It is important for us to
point out that in the case A is a k-algebra over a commutative ring
k if we define a left k-module structure as we saw above and a right
k-module structure in a similar way then, since k maps to the center
by definition, these structures coincide and give A the structure of a
k-k-bimodule.

We now recall the definition of a free left A-module over some set S. Before
giving the definition recall that given a collection of left modules over the
same ring A we can build their direct sum (as abelian groups) and give it a
left A-module structure in this way:

ax = a(x1 + . . .+ xn) = ax1 + . . .+ axn.

The verifications of the properties are straightforward.

Definition 1.6.7. (free left A-module over the set S) Let A be a ring and S
be a set. We can define the category of S-A-modules as we did for monoids
and groups, so the objects are A-modules M with a map S → M and
morphism are maps of modules that respect the map from S. The initial
object in this category is called the free left A-module over the set S and
can be realized by considering the abelian group

M =
⊕
s∈S

A

11
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with multiplication induced by the multiplication in A. One can show that
this A-module is an S-A-module with the map s 7→ 1A (in the copy of A
corresponding to the element s) and that it is initial.

With these constructions we are now able to prove existence of free k-
algebras.

Proposition 1.6.8. Let S be a set and let k be a commutative ring. Then
there exists an initial object in the category of S-k-algebras.

Proof. Let us consider the free monoid F (S) and denote by k〈S〉 the free
k-module over F (S). If w and w′ are elements of F (S) and h and h′ are
elements of k we define a multiplication on k〈S〉 in this way: (hw)(h′w′) =
(hh′)(ww′). Extending this multiplication by k-linearity, one can show that
this is a k-algebra with the map h ∈ k 7→ h1 ∈ k〈S〉 (as usual 1 denotes
the empty word). We can define a map S → k〈S〉 by sending s ∈ S to
1ks, so that k〈S〉 is an S-k-algebra. Now we want to show that given any
S-k-algebra A there is a unique map ϕ : k〈S〉 → A. Let us prove existence
first. We need to make both these diagrams commutative:

k〈S〉 ϕ
// A k〈S〉 ϕ

// A

S

fS

OO

gS

=={{{{{{{{{
k

f

OO

g

=={{{{{{{{{

We can see that the multiplicative monoid of any S-k-algebra A is naturally
an S-monoid and we denote it by M . Since M is an S-monoid there exists
a unique map ϕM : F (S) → M . We define ϕ over 1kF (S) to be ϕ(1kw) =
ϕM (w). In particular ϕ(1ks) = ϕM (s) = gS(s) so the first diagram is
commutative. We extend ϕ by k-linearity (so that ϕ(h1x1 + . . . + hnxn) =
h1ϕ(x1)+. . . hnϕ(xn)) and we get the commutativity of the second diagram:

ϕ(h1) = hϕ(1) = hϕM (1) = h1A = g(h)1A = g(h).

So ϕ becomes a map of S-k-algebras defined on the whole k〈S〉.
We now want to show that ϕ is unique. Suppose that ϕ′ is another S-k-
algebra morphism from k〈S〉 to A. For the commutativity of the diagrams
above we must have ϕ′(1ks) = ϕ(1ks) for all s ∈ S. Since ϕ′ has to respect
the multiplication in k〈S〉 we get that ϕ′ is equal to ϕ on the whole subset
1kF (S). Then ϕ′ = ϕ everywhere since ϕ′ is k-linear.

1.7 Relations on k-algebras

We have now a definition of free k-algebra on a set for every S and we want
to introduce relations on it. The way we do it is very similar to what we
did for monoids and groups.

12
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Definition 1.7.1. (k-algebra relation on S) Let S be a set. A k-algebra
relation on S is an element of k〈S〉 × k〈S〉. A set of k-algebra relations is
then a subset of k〈S〉×k〈S〉. We will sometimes write relation for k-algebra
relation, if no confusion can arise.

Definition 1.7.2. (Category of S-R-k-algebras) Given a set S and a set of
relations on k〈S〉 we define an S-R-k-algebra to be an S-k-algebra A such
that the unique map ϕ : k〈S〉 → A satisfies ϕ(x) = ϕ(y) for every pair
(x, y) ∈ R. A morphism of S-R-k-algebras is a morphism of S-k-algebras
between two S-R-k-algebras.

Definition 1.7.3. (Relation ∼R) Let S be a set and let R be a set of
relations on k〈S〉. We define an equivalence relation ∼R on k〈S〉, by saying
that x ∼R y if and only if for all S-R-k-algebras A one has ϕ(x) = ϕ(y)
where ϕ is the unique S-k-algebra morphism k〈S〉 → A.

We can prove that we can define a k-algebra structure on the quotient of
k〈S〉 by ∼R. We do this in the following proposition.

Proposition 1.7.4. The relation ∼R is an equivalence relation and if x ∼R
x′ and y ∼R y′ then x+ y ∼R x′ + y′ and xy ∼R x′y′.

Proof. The fact that ∼R is an equivalence relation is clear. The other prop-
erties follow from the fact that ϕ is a morphism of rings.

We want now to show that the k-algebra that we have just defined is an
initial object in the category of S-R-k-algebras. The way we will do it is
very similar to what we did for monoids and groups.

Proposition 1.7.5. For every set S the k-algebra k〈S〉/∼R is an initial
object in the category of S-R-k-algebras.

Proof. It is clear from proposition 1.7.4 that k〈S〉/∼R is an S-R-k-algebra.
Let A be any S-k-algebra, we have an injection

Hom(k〈S〉/∼R , G) ↪→ Hom(k〈S〉, G)

so there exists at most one S-R-k-algebra map from k〈S〉/∼R to any S-k-
algebra. Suppose now that A is an S-R-k-algebra. We can induce a map
k〈S〉/∼R→ A from the unique map k〈S〉 → A, and this is a well defined S-
R-k-algebra map. By what we said it is unique so the proof is complete.

As for groups also in the case of k-algebras, since congruences correspond to
two sided ideals, we could have defined the relation ∼R to be the congruence
corresponding to the smallest two sided ideal of k〈S〉 consisting of all the
elements k1x1 + . . . + knxn − k′1y1 − . . . − k′mym if the pair (k1x1 + . . . +
knxn, k

′
1y1 + . . .+ k′mym) is in ∼R. We state the proposition without proof:

13
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Proposition 1.7.6. Let S be a set and R a set of k-algebra relations on S.
Let A be the k-algebra 〈S|R〉 and I be the two-sided ideal of k〈S〉 generated
by the elements x− y with x and y in k〈S〉 such that (x, y) ∈ R. Then A is
isomorphic to k〈S〉/I .

We conclude this section by proving a proposition similar to proposition
1.3.6, which we will use in proving theorem 4.1.1.

Proposition 1.7.7. Let A be a sub-S-k-algebra of 〈S|R〉. Then A = 〈S|R〉.

Proof. The proof is the same as the one we did in the monoid case. The
multiplication in A is the same as in 〈S|R〉 so A is also an S-R-k-algebra. So
there exist a unique morphism 〈S|R〉 → A. Since A is contained in 〈S|R〉 we
also have the inclusion map A ↪→ 〈S|R〉. This is clearly a morphism and so
it is the composition. Since the composition is a morphism of 〈S|R〉 in itself,
it must be the identity. Then the inclusion is surjective and A = 〈S|R〉.

14



Chapter 2

The monoid case

2.1 The statement of the theorem

Let us begin by stating the theorem. After the statement we will give some
examples to understand what the conditions we require mean in practice
and then we will proceed to the proof. From now on we use the convention
that an empty product is equal to the neutral element of the structure it
belongs to. So in the next theorem when n = 0 the composition πs1 ◦. . .◦πsn

is equal to IdM and the product s1 · · · sn equals 1. In the same way when
we will state the theorem for rings an empty sum will be the zero element.

Theorem 2.1.1. Let S be a set, and let R be a set of monoid relations on
S. Let M be a set and let 1M ∈M be an element. Suppose for every s ∈ S
a map πs : M →M is given. Then the following are equivalent:

(1) There exists an S-monoid structure on M such that the multiplication
∗ : M ×M → M has neutral element 1M and satisfies s ∗ x = πs(x)
for all s ∈ S and x ∈ M , and the pair (M,S → M) is a universal
S-R-monoid.

(2) The following three conditions are satisfied:

(i) For all S-R-monoids M ′ there exists a map ϕ : M → M ′ such
that ϕ(1M ) = 1M ′ and ϕ(πs(x)) = sϕ(x) for all s ∈ S and x ∈
M .

(ii) The collection of maps (πs)s∈S has the following property: if the
pair (s1 · · · sn, s′1 · · · s′m) ∈ R for n,m ≥ 0 then πs1 ◦ . . . ◦ πsn =
πs′1 ◦ . . . ◦ πs′m in MM .

(iii) The only subset T ⊆M with 1M ∈ T such that for all s ∈ S one
has πs(T ) ⊆ T is T = M .
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2.1 The statement of the theorem The monoid case

Moreover if there exists an S-monoid structure on M , with the required unit
and translations, then it is unique.

As we already have mentioned Van der Waerden’s method (theorem 2.1.1)
is used, when we think that a certain set is a set of normal forms for the
elements of a monoid given by generators and relations, to check if this is
true. In the theorem the set of generators is S and the set of relations is
R. So we are given the monoid 〈S|R〉 and our goal is to find a normal form
for it. To do this we need a candidate and this is the role of the set M , in
the notation of theorem 2.1.1. In this set we are requested to choose a unit
element and to define the left multiplication by a generator. If we do that,
by verifying properties (i), (ii) and (iii), we prove that condition (1) is true
and so M has a monoid structure and is a universal S-R-monoid so M is in
particular isomorphic to 〈S|R〉. If one among properties (i), (ii) and (iii) is
not satisfied we should change the set of normal forms. We see now three
examples to see that none of the three conditions is implied by the other
two.

Example 2.1.2. In this example we will show that condition (i) does not
follow from the other two.
Let S = {s} and R = ∅. Let us take as M the set {1M} and πs = IdM .
Then if we take in property (i) the S-R-monoid M ′ to be the free monoid
F (S) we are not able to construct a map ϕ : M → F (S) with the required
properties. In fact there is only one map M → F (S) such that 1M 7→ 1
and we have ϕ(πs(1M )) = ϕ(1M ) = 1 6= s = s1 = sϕ(1M ). Notice that
both conditions (ii) and (iii) are clearly satisfied here. In this case M is an
S-R-monoid which is not isomorphic to 〈S|R〉 since the map 〈S|R〉� M is
surjective but not injective because we know that 〈S|R〉 6= {1}.
Example 2.1.3. In this example we will show that condition (ii) does not
follow from the other two.
Let S = {s} and R = {(s, 1)}. Let us take as M the set F (S), with 1M = 1
and πs the usual multiplication on the left by s in F (S). Then condition (ii)
is not satisfied since πs 6= IdM. Condition (iii) is clearly true. Also condition
(i) is satisfied since if M ′ is a S-R-monoid there is a unique S-map M →M ′,
since M is the free monoid on the set S. In this case M is a monoid with a
surjective map M � 〈S|R〉 which is not injective.

Example 2.1.4. In this example we will show that condition (iii) does not
follow from the other two.
Let S = ∅ and R = ∅. Let us take as M the set F ({x}), where x is some
symbol, with unit element 1. Then condition (iii) is not satisfied since the
requirement πs(T ) ⊆ T for all s ∈ S is empty so the set T = {1} is a
strict subset of M containing the neutral element and satisfying the above
condition. Notice that here (ii) is empty and in (i) we can take φ(w) = 1M ′
for every S-R-monoid M ′. In this case M is an S-R-monoid and the map
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〈S|R〉 ↪→M is injective but not surjective.

We can now go on with the proof of the theorem and then we will see how
to apply it in practice.

2.2 The proof of the theorem

The implication (1)⇒(2) is easy. The idea of the proof of the converse is
the following: we prove that there is a submonoid of the monoid of all maps
M → M , namely the submonoid generated by the πs, which is in bijection
with M and so we have an induced multiplication on M . Then we prove
that this multiplication makes M into an initial object in the category of
S-R-monoids. This is the generalization of the idea of Van der Waerden
on the free product of groups. The most useful feature of this method is
that, since we define the multiplication on the set of normal forms from the
composition on MM , we do not have to prove associativity. We now see the
proof in detail and then we will give an example to understand how to use
it.

Proof. Assume (1) holds. Then (i) comes from the universal property, even
with a unique ϕ. For (ii) suppose the pair (x, y) ∈ R and let τx and τy be
the left multiplication maps by x and by y respectively, in MM . These maps
are equal, since x = y in M so, if x = s1 · · · sn and y = s′1 · · · s′m, we have

πs1 ◦ . . . ◦ πsn = τx = τy = πs′1 ◦ . . . ◦ πs′m .

This is true also if one among x and y is the empty word. Let now T be
a set satisfying the conditions in (iii). Then the set {x ∈ M |xT ⊆ T} is a
submonoid of M containing S and so, by proposition 1.3.6, it is equal to M .
So for all x ∈ M the element x = x1M is in the set xT and so it is in T .
Then x ∈ T , and condition (iii) holds.
Now assume the three conditions (i), (ii) and (iii) are satisfied. Let us
consider the set MM = L of the set maps M → M . This set is clearly a
monoid (the neutral element is IdM and the operation is the composition)
and the map s 7→ πs makes it into an S-R-monoid by condition (ii). So
from condition (i) we have a map ϕ : M → L such that ϕ(1M ) = IdM
and ϕ(πs(x)) = πs ◦ ϕ(x) for s ∈ S and x ∈ M . Let H = 〈πs : s ∈ S〉
be the submonoid of L generated by the maps πs. We want to show that
ϕ(M) = H. Let us consider the set {f ∈ L|f ◦ ϕ(M) ⊆ ϕ(M)}. This is
clearly a submonoid of L and it contains IdM and all the maps πs for s ∈ S,
since πs ◦ ϕ(M) = ϕ ◦ πs(M), so it contains the set H. Then we have:
H = H ◦ IdM ⊆ ϕ(M). To prove the converse we prove that M = ϕ−1(H).
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Let us consider the set T = ϕ−1(H) and apply condition (iii). We have that
1M ∈ T and if x ∈ T and s ∈ S then also πs(x) ∈ T since:

x ∈ T ⇔ x ∈ ϕ−1(H)⇔ ϕ(x) ∈ H ⇒ πs ◦ ϕ(x) ∈ H ⇔
⇔ ϕ(πs(x)) ∈ H ⇔ πs(x) ∈ ϕ−1(H)⇔ πs(x) ∈ T.

By condition (iii) we then get T = M and we proved that ϕ(M) ⊆ H and
so they are equal since we proved the other inclusion before.
Define now the map ψ : L→M by f 7→ f(1M ). We claim that this map is
a left inverse for ϕ. We use again condition (iii), on the set

T = {x ∈M : ψ ◦ ϕ(x) = x}.

It is clear that 1M ∈ T since ψ ◦ ϕ(1M ) = ψ(IdM ) = IdM (1M ) = 1M . Let
now x ∈M and s ∈ S; we have:

x ∈ T ⇔ ϕ(x)(1M ) = x⇒ (πs ◦ ϕ(x))(1M ) = πs(x)⇔
⇔ ϕ(πs(x))(1M ) = πs(x)⇔ πs(x) ∈ T.

So T = M and ψ is a left inverse for ϕ.
From this we know that the restriction ψ : H →M is bijective and its inverse
is ϕ. This fact allow us to conclude the proof. Since H is an S-R-monoid we
can induce a monoid multiplication on M , namely x1∗x2 = ψ(ϕ(x1)◦ϕ(x2))
and this multiplication makes M also into an S-R-monoid. The map from S
comes from the map S → H so it is the map s 7→ ψ(s). Since H is generated
by the πs we have that M is generated by the image of S in M and from this
we get that the map in (i) is unique and hence M is a universal S-R-monoid.
We notice explicitly that the translation maps are as we wanted:

s ∗ x = ψ(πs ◦ ϕ(x)) = ψ(ϕ(πs(x))) = πs(x).

We still have to prove the uniqueness of the S-monoid structure. Suppose
that # also makes M into a universal S-R-monoid, with the required unit
and translations. Then the map S →M must be the same by the condition
on the translations applied to x = 1M in fact

s ∗ 1M = πs(1M ) = s#1M .

We now prove that the multiplications coincide. Let us consider, for each
x ∈M , the set Ty = {x ∈M : x ∗ y = x#y}. For all y ∈M one has 1 ∈ Ty
and:

x ∗ y = x#y ⇒ πs(x ∗ y) = πs(x#y)⇔ s ∗ (x ∗ y) = s#(x#y)⇔
⇔ (s ∗ x) ∗ y = (s#x)#y ⇔ (πs(x)) ∗ y = (πs(x))#y

so from condition (iii) we get, for every x ∈M , that Ty = M . So # = ∗.
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2.3 Examples

Amalgamated sum

We will consider the amalgamated sum of monoids. In general by amalga-
mated sum we mean the colimit of a diagram of this kind

ϕi : H →Mi

for each i in a given set I. The situation is then the following: we have
a collection of monoids and they all have a map from a fixed monoid H.
Clearly in the category of monoids, as in the category of groups, this colimit
always exists, and it is also clear how to present it, as we are going to explain
here. We choose a presentation for the monoids involved: H = 〈H|RH〉, and
Mi = 〈Mi|Ri〉 where

RH = {(xy, z) if xy = z in H} t {(1H , 1)}

with 1 the empty word in FMon(H), and Ri is defined in the same way
for the monoids Mi. The symbol t denotes the disjoint union. With this
presentation the amalgamated sum of the Mi over H is the monoid

M =
〈
H t

⊔
i∈I

Mi|RH t
⊔
i∈I

Ri tRϕ
〉

where Rϕ = {(x, ϕj(x))|i ∈ I, x ∈ H}. We will from now on write M =
〈S|R〉. The fact that this presentation is correct can be seen very easily.
The colimit of a diagram as the one we are considering in the category of
monoids is a monoid together with a monoid map from every Mi, a monoid
map ϕ : H →M and all these maps, should be compatible in the sense that
all the squares like the one below commute

H
ϕ

//

ϕi

  B
BB

BB
BB

B M.

Mi

=={{{{{{{{

The colimit should also be universal with respect to this property which
means that for every monoid M ′ satisfying the same requirements there
should be a unique monoid map M → M ′ which respect all the maps in-
volved. This is equivalent to look for an initial object in a category where
objects are monoids given together with monoid maps from all Mi and from
H with compatibility requirements. It is not difficult to realize that this is
exactly the category of S-R-monoids. Giving a map Mi → M and a map
from H makes M into an S-monoid and the fact that these must be monoid
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morphisms makes M into an S-R′-monoid where R′ = R \Rϕ. Finally, the
relations in Rϕ are equivalent to the commutativity of the diagrams above.

We will consider the case in which H is a subgroup and all ϕi are injective
maps. We will show, using theorem 2.1.1, that in this case we can give a
more explicit form to this monoid which will help to prove some properties
about the amalgamated sum. The construction is the same as the one for
groups, but in that case what we get is a completely explicit form (in the
sense that it is in bijection with the set of equivalence classes), because of
the fact that the action of a subgroup on a group is free. We will see later
on how this is related to the word problem. Let us start constructing the
set of normal forms by defining our main tool.

Definition 2.3.1. (H-sets and compositions) Let H be a group and X be
a set. We say that X is a left H-set if we have an action of H on X which
is a map H×X → X (the image of (h, x) is denoted hx) such that 1Hx = x
for all x ∈ X and h(h′x) = (hh′)x for h, h′ ∈ H and x ∈ X. One can define
right H-set in a similar way. We also have a notion of a H-G-biset (where
G is another group, possibly equal to H) which are sets with a left H-action
and a right G-action such that h(xg) = (hx)g where h is an element of H,
where x is in X and g ∈ G. If X is a right H-set and Y is a left H-set then
X ×H Y is called the composition of X and Y over H and is defined to be
the quotient of X × Y under the left action of H defined in this way:

σ(x, y) = (xσ−1, σy).

It is easily verified that this is a left action of H on X×Y . When one among
X and Y is a biset we can give more structure to X ×H Y . For example if
X is a G-H-biset then X ×H Y is a left G-set with the action given by

g[x, y] = [gx, y].

It is easy to verify that this is a well-defined left action of G on X ×H Y .
If Y is an H-K-biset we can define in a similar way a right action of K on
X×HY . Finally, if both X and Y are bisets as above, then their composition
is a G-K-biset.

Notice that in X×H Y we have [xσ, y] = [x, σy] since σ(xσ, y) = (xσσ−1, σy)
and this is (x, σy). We will use this property very often in the construction
of the amalgamated sum. We remark that one can define also an action of
a monoid on a set, in the same way as for groups, but in general if M is a
monoid acting on the left on X the relation x ∼ y if and only if there exists
σ ∈ M such that x = σy is not an equivalence relation. In particular we
cannot define a composition as we did for groups.

Definition 2.3.2. (Morphism of H-sets) Let X and Y be two left H-sets.
A morphism of H-sets is a map f : X → Y such that f(hx) = hf(x) for
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each h ∈ H and x ∈ X. Similarly we define morphisms of right H-sets and
of H-G-bisets.

With the definitions we gave left H-sets form a category, and so it is for
right H-sets and bisets over two fixed groups. In our discussion we will
use bisets which have both the left and the right action on the same group
H. In the following propositions we will prove some properties of the above
constructions which we will use later on.

Proposition 2.3.3. Let X be a K1-H-biset, Y an H-G-biset and let Z be a
G-K2-biset, then there exists an isomorphism of K1-K2-bisets X ×H (Y ×G
Z) ∼= (X ×H Y )×G Z.

Proof. We show that both (X ×H Y ) ×G Z and X ×H (Y ×G Z) are in
bijection with the same quotient of X × Y × Z. Let us consider the case
(X ×H Y )×G Z. We have surjective maps

X × Y × Z
f1
� (X ×H Y )× Z

f2
� (X ×H Y )×G Z

(x, y, z) 7→ ([x, y], z) 7→ [[x, y], z].

We then know that the right hand side is a quotient of X×Y ×Z and we want
now to show that it is a quotient modulo a left action ofH×G. We know that
to make the map induced on the quotient by f = f2◦f1 into an isomorphism
we have to consider the equivalence relation (x, y, z) ∼ (x′, y′, z′) if and only
if f(x, y, z) = f(x′, y′, z′). Let us suppose that f1(x, y, z) = f1(x′, y′, z′).
Then we must have z = z′ and there exists an h ∈ H such that x′ = xh−1

and y′ = hy. Similarly f2([x, y], z) = f2([x′, y′], z′) if and only if there exists
a g ∈ G such that [x′, y′] = [x, y]g−1 = [x, yg−1] and z′ = gz. The first
condition is equivalent to the existence of an h ∈ H such that x′ = xh−1

and y′ = hyg−1. We can notice that f(x, y, z) = f(x′, y′, z′) if and only if the
conditions for f2 are satisfied, since the conditions on f1 are more restrictive.
Then the equivalence class of the element (x, y, z) in X × Y × Z is the set
(xh−1, hyg−1, gz) and we can consider (X ×H Y ) ×G Z as the quotient of
X×Y ×Z by the action of H×G defined (h, g)(x, y, z) = (xh−1, hyg−1, gz).
Exactly the same argument prove that the same is true also for X×H (Y ×G
Z) so they are in bijection, and the map is [[x, y], z] 7→ [x, [y, z]]. The fact
that the actions are respected is straightforward.

Proposition 2.3.4. Let X,X ′ be right K1-H-sets and Y, Y ′ be left H-K2-
sets. Let f : X → X ′ and g : Y → Y ′ be morphisms of K1-H-bisets and
H-K2-bisets respectively. Then the map f×g : X×H Y → X ′×H Y ′ defined
f × g([x, y]) = [f(x), g(y)] is a morphism of K1-K2-bisets.
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Proof. It is clear that f × g is well defined. We prove that it respects the
actions of K1 and K2: let σ ∈ K1 and τ ∈ K2, we then have

f × g(σ[x, y]τ) = f × g([σx, τy]) = [f(σx), g(τy)] =
= [σf(x), g(y)τ ] = σ[f(x), g(y)]τ = σf × g([x, y])τ

for x ∈ X and y ∈ Y . So f × g is a morphism of K1-K2-bisets as we wanted
to show.

Proposition 2.3.5. Let I be a set of indices and X =
⊔
i∈I Xi be a K1-H-

set such that also Xi is a K1-H-biset for each i ∈ I. Let Y be an H-K2-set.
Then we have a K1-K2-biset isomorphism X ×H Y ∼=

⊔
i∈I(Xi ×H Y ).

Proof. The map f , gluing of the immersions of all the sets Xi in X times
the identity of Y , namely the map

[x, y] ∈
⊔
i∈I

(Xi ×H Y ) 7→ [x, y] ∈ X ×H Y

is a well defined bijection. The fact that it respects the actions of K1 and
K2 follows immediately: let h ∈ K1 and g ∈ K2 and let x, y in X and Y
respectively, we have

f(h[x, y]g) = f([hx, yg]) = [hx, yg] = h[x, y]g = hf([x, y])g

so the proposition is proved.

Proposition 2.3.6. Let K be a group isomorphic to H and let X be an
H-H-biset. Then K is an H-H-biset and we have K ×H X ∼= X as H-H-
bisets.

Proof. Let us fix an isomorphism ϕ : H → K. We give to K an H-H-biset
structure induced from ϕ, namely hkg = ϕ(h)kϕ(g). This makes ϕ−1 into
an H-H-biset morphism since, for k ∈ K and h, g ∈ H we have

ϕ−1(gkh) = ϕ−1(ϕ(h)kϕ(g)) = hϕ−1(k)g.

Let k ∈ K and x ∈ X, we have [k, x] = [1Kϕ−1(k), x] = [1K , ϕ−1(k)x]
and we define a map f which sends [k, x] ∈ K ×H X to ϕ−1(k)x ∈ X.
The map f is well defined since f([kh, x]) = ϕ−1(kh)x = ϕ−1(k)hx =
f([k, hx]). The map f is surjective since x = f([1K , x]). Suppose f([k, x]) =
f([k′, x′]) then we have ϕ−1(k)x = ϕ−1(k′)x′ and so [k, x] = [1K , ϕ−1(k)x] =
[1K , ϕ−1(k′)x′] = [k′, x′] so f is also injective. We conclude by proving that
f is also a morphism of H-H-bisets: for h, g ∈ H we have

f(h[k, x]g) = f([hk, xg]) = f([h, ϕ−1(k)(xg)]) =

= f([1K , hϕ−1(k)(xg)]) = hϕ−1(k)(xg) = h(ϕ−1(k)x)g = hf([k, x])g.
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We are now ready to start the construction of the amalgamated sum of
monoids. We recall that we have a collection of monoids Mi, for i in a set
of indices I and each of these monoids has a subgroup isomorphic to a fixed
group H via an injection H →Mi which we denote ϕi. Let us consider the
set Σ of all words w on the alphabet I with the following property:

w = i1 · · · in with n ≥ 0, with ik ∈ I for k = 1, . . . , n
and ik 6= ik+1 for all k = 1, . . . , n− 1.

For n = 0 the word w is the empty word 1. For i ∈ I we will denote with
Σi the set of words in Σ which do not start with i. Now to each w ∈ Σ we
associate an H-H-set Lw. We define it by induction:

• For w = 1 we define L1 = H.

• If w = i is a word of length 1 we define Li = Mi \ϕi(H) and we point
out explicitly that this, since H is a group, is an H-H-biset; this may
not be true if H is a general submonoid.

• If Lw is defined and is an H-H-biset for some word w of length n− 1
(not starting with i) then we define Liw = Li ×H Lw, which is again
an H-H-biset.

By the same argument that we used in proposition 2.3.3 we can prove that
each composition over H of three or more H-H-bisets can be seen as a
quotient of the cartesian product of the underlying sets. In particular here
we have a surjective map Li1 × . . .× Lin � Lw for every w = i1 · · · in ∈ Σ.
We will write x = [x1, . . . , xn] for x ∈ Lw.

We now want to prove that we can give a more explicit form to the amalga-
mated sum of the monoids Mi over the subgroup H using Van der Waerden’s
method. This will be done in the following theorem:

Theorem 2.3.7. Let H be a group and I be a set. For each i ∈ I let Mi

be a monoid given together with an injective map ϕi : H → Mi. Let M
be the amalgamated sum of the monoids Mi over the subgroup H. Then for
every w = i1 · · · in ∈ Σ there exists a unique bijection f making the following
diagram commutative:

Li1 × . . .× Lin // //
� _

��

Lw
� � //

⊔
v∈Σ Lv

f
{{

Mi1 × . . .×Min
//M

where the map Li1 × . . .× Lin � Lw is the projection, the map Mi1 × . . .×
Min →M is the map (x1, . . . , xn) 7→ x1 · · ·xn where the product is taken in
M and all the products are considered to be H if n = 0.
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Proof. We want to prove this theorem using theorem 2.1.1. We denote with
M the set

⊔
v∈Σ Lv and we prove that we can endow it with an S-R-monoid

structure making it universal. To apply the theorem we first need to define
the maps πg for g in some set Mi or in H and to choose a neutral element
for M . As neutral element we take the element 1H ∈ L1. To define the
translations we define the H-H-bisets

Xi =
⊔
w∈Σi

Lw and Zi =
⊔
w∈Σi

Liw.

We are now going to build an H-H-bisets isomorphism λi : Mi×H Xi →M
for each i ∈ I. By proposition 2.3.5 we haveMi×HXi = (Litϕi(H))×HXi

∼=
(Li ×H Xi) t (ϕi(H)×H Xi) and

Zi =
⊔
w∈Σi

Liw =
⊔
w∈Σi

(Li ×H Lw) ∼= Li ×H
( ⊔
w∈Σi

Lw

)
∼= Li ×H Xi.

So we have

Mi ×H Yi ∼= (Li ×H Xi) t (ϕi(H)×H Xi) ∼= Zi tXi = M.

Here we used in the last isomorphism proposition 2.3.6. The H-H-bisets
isomorphism above is the map

λi([σ, x]) =
{
ϕ−1
i (σ)x ∈ Lw if σ ∈ ϕiH

[σ, x] ∈ Liw if σ ∈ Li

for x ∈ Lw with w ∈ Σi and σ ∈ Mi. Now that we have these bijections
λi we can induce maps πs with s ∈ Mi and, by using different λi’s, we are
able to define all the translations for s ∈ Mi. We will use, for s ∈ Mi, the
map π′s : Mi ×H Xi → Mi ×H Xi defined π′s([σ, x]) = [sσ, x], so we have
πs(x) = λi(π′s(λ

−1
i (x))). If s ∈ H we define πs to be just the left action of

H that we have on the set M .
We now have to prove that conditions (i), (ii) and (iii) of theorem 2.1.1 are
satisfied. Let us start with condition (iii). Let T be a subset of M and
suppose that T 3 1H and πs(T ) ⊆ T for all s ∈ S. Every element of M can
be built by multiplication from the left by elements in the monoids Mi or in
H, so by the properties of T every element of M is in T and T = M . We
now prove condition (i). Let M ′ be an S-R-monoid. We want to build a map
ϕ : M → M ′ such that ϕ(πs(x)) = sϕ(x) for all s ∈ S and ϕ(1H) = 1M ′ .
We define ϕ on 1H to be 1M ′ and we define ϕ(x) = x for each x in L1 or
in Li for some i ∈ I. We define ϕ on Lw by induction on the length of w.
Supposing it is defined on Lw for w a word of length n, let [x, x′] ∈ Liw. We
define ϕ([x, x′]) to be ϕ(x)ϕ(x′). Notice that ϕ is an H-H-biset map. Then
we have

ϕ([xσ, σ−1x′]) = ϕ(xσ)ϕ(σ−1x) = ϕ(x)σσ−1ϕ(x′) = ϕ(x)ϕ(x′) = ϕ([x, x′])

24



2.3 Examples The monoid case

so ϕ is well defined. We have to show that ϕ respects the action of Mi on
M for all i ∈ I. We notice first that for the maps λi we have:

πs(λi([σ, y])) = λi(π′s(λ
−1
i (λi([σ, y])))) = λi(π′s([σ, x]))

so the maps λi respect the action of Mi on Mi ×H Yi, given by the π′s. We
now consider the composition f = ϕ ◦ λi. If we prove that f is an Mi-
morphism then we are done since ϕ = f ◦ λ−1

i is a composition of Mi-maps
and hence an Mi-map. Given [σ, y] ∈Mi ×H Yi we have

[σ, y] 7→
{
ϕ−1
i (σ)y 7→ ϕ−1

i (σ)ϕ(y) = σϕ(y) = σy if σ ∈ ϕi(H)
[σ, y] 7→ ϕ(σ)ϕ(y) = σy otherwise.

So f is in either case the map [σ, y] 7→ σy. It is very easy now to see that
this map respects the action of Mi since

f(π′s([σ, y])) = f([sσ, y]) = (sσ)y = s(σy) = sf([σ, y]).

So (i) is proved. To show that M has property (ii) we note that we have two
kinds of relations: relations in Ri and in RH and relations in Rϕ. Regarding
the first set of relations is easy to see that if s1s2 = s3 in one of the Mi or
in H then πs1 ◦πs2 = πs3 (this is true for the π′s and hence it is true for πs).
The fact that the second kind of relations is respected follows easily from
the fact that the λi are H-set morphisms: for all i ∈ I we have

πϕi(h)(x) = λi ◦ π′ϕi(h) ◦ λ
−1
i (x) = λi(hλ−1

i (x)) = hλi(λ−1
i (x)) = hx.

So M has a structure which makes it in a universal S-R-monoid. We still
have to prove that the diagram above commutes. In particular we should
prove that given x = (x1, . . . , xn) ∈ Li1 × . . . × Lin and we map it to Lw
and then to M we get the same as if we map x to Mi1 × . . . ×Min and
then to M with the multiplication map. We can prove it by induction on
n. If n = 0 then x ∈ H and there is nothing to prove. Let us suppose that
the statement is true for n < m and suppose that x = (x1, . . . , xm). Let
x′ = (x2, . . . , xm), we know by induction hypothesis that x′ has the same
image in M if we take it in the two different ways. This means that the
product x2 · · ·xm equals [x2, . . . , xm] in M . Then we can write

x1 · · ·xm = x1(x2 · · ·xm) = x1[x2, . . . , xm] = πx1([x2, . . . , xm]) = [x1, . . . , xm]

since w ∈ Σ. So the proof is complete.

These easy verifications that we have done imply that the set M , with the
multiplication induced by the maps πs, is the initial object among S-R-
monoids and so it is the amalgamated sum of the Mi with amalgamated
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subgroup H. In the general case this is not a completely explicit form, in
the sense that we still can have two words x1 and x2 in M which are different,
but represent the same element. When the action of H over the monoids
Mi is free (for example if all the monoids are cancellative, which means that
xa = ya implies x = y and ax = ay implies x = y for all x, y, a in Mi) we
can take a unique representative for each element of the amalgamated sum.
To do this first we should choose a representative for each left coset of H
in each of the Mi. For each x ∈ Mi we can see in which coset of H it is
and consider the chosen representative, which will be denoted by x. Since
in this case the action is free, there exists a unique h ∈ H such that x = hx.
In this way, given x ∈M , we can find a process to write it in a unique way
in the form x = h[y1, . . . , yn].
What we are going to do in the following is to prove a theorem about this
amalgamated sum in the general case to see that even if we are not deal-
ing with a completely explicit form we are able to understand some of its
structure.

Theorem 2.3.8. Let M be the amalgamated sum of the monoids (Mi)i∈I
with amalgamated subgroup H. Let M∗ be the subgroup of invertible elements
of M , let M∗r be the submonoid of elements of M which have a right inverse
and M∗l the submonoid of elements of M which have a left inverse. Then
M∗ is equal to the amalgamated sum of the monoids M∗i over the subgroup
H and similarly for M∗r and M∗l .

Proof. Let x ∈ M and suppose that x ∈ Lw and that y ∈ Lv is such that
xy = 1H . We have to show that if x = [x1, . . . , xn] then each of letters
xk ∈Mik for k = 1, . . . , n has a right inverse. Since the statement is clear if
x ∈ H or if x ∈ Li for some i ∈ I, let us suppose that w is a word of length
at least 2 and that the statement is true for w of length strictly less than n.
Let y ∈ M be [ym, . . . , y1]. We know that m ≥ 1 since if y is in H and x is
not, as we supposed, it cannot be xy = 1H . Moreover we have that xn and
ym must be in the same monoid Min and the product xnyn in this monoid
is an element of ϕin(H) (but not necessarily ϕin(1H)) because we need xn
to cancel out. We will denote the product xnym by hn. This implies that
xn has a right inverse in Min since

xn(ymh−1
n ) = (xnym)h−1

n = hnh
−1
n = 1Min

.

Now x′ = [x1, . . . , xn−1] is in Lw′ where w′ is w without the last letter in.
Since w′ has length strictly less than n and y′ = [hnym−1, . . . , y1] is a right
inverse for x′ all the elements xk for k = 1, . . . , n− 1 are right invertible by
the induction hypothesis and so we proved our claim.
The part concerning elements with a left inverse can be shown in the same
way. For invertible elements we just have to put the results together since an
element is invertible if and only if it has both a right and a left inverse.
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Chapter 3

The group case

3.1 Van der Waerden’s theorem

Let us now consider the case of Van der Waerden’s theorem for groups. The
proof of the theorem is very similar to the one we gave for monoids.

Theorem 3.1.1. Let S be a set, and let R be a set of group relations on
S. Let G be a set and let 1G ∈ G be an element. Suppose for every s ∈ S a
bijection πs : G→ G is given. Then the following are equivalent:

(1) There exists an S-group structure on G such that the multiplication
∗ : G×G→ G has neutral element 1G and satisfies s ∗ x = πs(x) for
all s ∈ S and x ∈ G and the pair (G,S → G) is a universal S-R-group.

(2) The following three conditions are satisfied:

(i) For all S-R-group G′ there exists a map ϕ : G → G′ such that
ϕ(1G) = 1G ′ and ϕ(πs(x)) = sϕ(x) for all s ∈ S and x ∈ G.

(ii) Let si, s′j ∈ S for i = 1, . . . , n and j = 1, . . . ,m with n,m ≥ 0 and
let (sε11 · · · sεn

n , s
′δ1
1 · · · s′δmm ) be in R with εi, δj equal plus or minus

1 for every i = 1, . . . , n and j = 1, . . . ,m. Then πε1s1 ◦ . . . ◦ π
εn
sn

=
πδ1
s′1
◦ . . . ◦ πδms′m in Sym(G).

(iii) The only subset T ⊆ G with 1G ∈ T such that for all s ∈ S one
has πs(T ) = T is T = G.

Moreover if there exists an S-group structure on G, with the required unit
and translations, then it is unique.

Proof. The implication (1)⇒ (2) can be done exactly as for monoids. In
fact condition (i) comes also in this case immediately from the universal
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property. Condition (ii) can be verified again using the translation maps
for G as we did in the monoid case. To prove condition (iii) let T be a set
satisfying the conditions in (iii). Here we take the set {x ∈ G|xT = T} and
this is a subgroup of G containing S and so, by proposition 1.5.7, it is equal
to G. Then we conclude that T = G as we did for monoids.
Now assume the three conditions (i), (ii) and (iii) are satisfied. We consider
the set Sym(G) = L of the set bijections G → G. This set is clearly a
group and by condition (ii) the map s 7→ πs makes it into an S-R-group.
So from condition (i) we have a map ϕ : G → L such that ϕ(1G) = IdG
and ϕ(πs(x)) = πs ◦ ϕ(x) for s ∈ S and x ∈ G. We call H the subgroup
of L generated by the maps πs, namely the set 〈πs : s ∈ S〉. We want
to show that ϕ(G) = H. Since πs is surjective, we have πs(G) = G so
ϕ(G) = ϕ(πs(G)) = πs ◦ ϕ(G) and since IdG ∈ ϕ(G) this implies that
πs ∈ ϕ(G) for all s ∈ S so H ⊆ ϕ(G). To prove the converse we prove that
G = ϕ−1(H). Let us consider the set T = ϕ−1(H) and apply condition (iii).
We have that 1G ∈ T and x ∈ T if and only if πs(x) ∈ T for s ∈ S in fact:

x ∈ T ⇔ x ∈ ϕ−1(H)⇔ ϕ(x) ∈ H ⇔ πs ◦ ϕ(x) ∈ H ⇔
⇔ ϕ(πs(x)) ∈ H ⇔ πs(x) ∈ ϕ−1(H)⇔ πs(x) ∈ T.

So by condition (iii) we get T = G and we proved that ϕ(G) ⊆ H and so
they are equal.
We define now the map ψ : f ∈ L 7→ f(1G) ∈ G and we claim that also in
this case ψ is a left inverse for ϕ. We use again condition (iii), on the set

T = {x ∈ G : ψ ◦ ϕ(x) = x}.

We clearly have 1G ∈ T and if x ∈ G and s ∈ S we have:

x ∈ T ⇔ ϕ(x)(1G) = x⇔ (πs ◦ ϕ(x))(1G) = πs(x)⇔
⇔ ϕ(πs(x))(1G) = πs(x)⇔ πs(x) ∈ T.

So T = G and ψ is a left inverse for ϕ.
By this as for monoids we know that the restriction ψ : H → G is bijective
and its inverse is ϕ and also in this case this allows us to conclude the proof.
Since H is an S-R-group we can induce a group multiplication on G, namely
x1 ∗ x2 = ψ(ϕ(x1) ◦ ϕ(x2)) and this multiplication makes G also into an S-
R-group, since H was an S-R-group. The map from S comes from the map
S → H so it is the map s 7→ ψ(s). Since H is generated by the πs we have
that G is generated by the image of S in G and from this we get that the
map in (i) is unique and hence G is a universal S-R-group. We prove again
explicitly that the translation maps are as we wanted:

s ∗ x = ψ(πs ◦ ϕ(x)) = ψ(ϕ(πs(x))) = πs(x).

We still have to prove the uniqueness of the S-group structure. Suppose
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that # also makes G into a universal S-R-group, with the required unit and
translations. Then the map S → G must be the same by the condition on
the translations applied to x = 1G in fact

s ∗ 1G = πs(1G) = s#1G.

We now prove that the multiplications coincide. Let us consider, for each
x ∈ G, the set Ty = {x ∈ G : x ∗ y = x#y}. For all y ∈ G one has 1 ∈ Ty
and:

x ∗ y = x#y ⇔ πs(x ∗ y) = πs(x#y)⇔ s ∗ (x ∗ y) = s#(x#y)⇔
⇔ (s ∗ x) ∗ y = (s#x)#y ⇔ (πs(x)) ∗ y = (πs(x))#y

so from condition (iii) we get, for every x ∈ G, that Ty = G. So # = ∗.

3.2 Examples

Free group

As we said when discussing free groups let us start by discussing the normal
form for the group F (S). In 1.4 we showed that the initial object in the
category of S-groups is the monoid 〈S̃|R〉Mon where S̃ was the disjoint union
of the set S and a set of “inverses” for the elements of S and R was the set
of relations which told us that ss−1 = s−1s = 1. We want now to give to
this group an explicit presentation. Let us consider the set of words in the
alphabet S̃ with the property that two characters which are next to each
other are never equal one to s and the other one to s−1 for some s ∈ S̃.
We call this set G and we define the translations in the obvious way: for
s1, . . . , sn ∈ S̃ we have

πs(s1s2 · · · sn) =
{
s2 · · · sn If s1 = s−1

ss1s2 · · · sn otherwise.

We have to show that all these maps are bijections G → G. We show that
each πs is invertible and its inverse is πs−1 . Let w = s1 · · · sn ∈ G, we have

πs(πs−1(w)) =
{
πs(s2 · · · sn) = ss2 · · · sn = w If s1 = s
πs(s−1w) = w otherwise.

notice that s2 6= s−1 in the first case since if it is so then the word w /∈ G.
We have now to verify conditions (i), (ii) and (iii). Condition (ii) is empty,
since there are no relations. Condition (iii) can be easily shown by induction
on the length of a word. For condition (i) we can define ϕ : G → G′ for
an S-R-group G′ to be 1G′ on 1G and ϕ(s1 · · · sn) = ϕ(s1) · · ·ϕ(sn) where
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ϕ(s) = s for s ∈ S. To prove the condition on the translation maps we
should distinguish two cases. Suppose first that s = s−1

1 then we have:

ϕ(πs(s1 · · · sn)) = ϕ(s2 · · · sn) = ϕ(s2) · · ·ϕ(sn) = s2 · · · sn =
= (ss1)s2 · · · sn = s(s1 · · · sn) = sϕ(s1 · · · sn).

If s 6= s−1
1 we have

ϕ(πs(s1 · · · sn)) = ϕ(ss1 · · · sn) = ϕ(s)ϕ(s1) · · ·ϕ(sn) = sϕ(s1 · · · sn).

This concludes the proof of the normal form for the free group.

Sum of groups

In this example we will consider the case of the sum of a family of groups,
what Van der Waerden called free product. This case is easier than the
one we did in section 2.3, but it is important since is the one we find in
the original paper by Van der Waerden ([1]). Let us suppose to have a
collection of groups (Gi)i∈I for some index set I. We want to construct
their sum, also called coproduct in categorical terms. The idea is similar
to what we did for amalgamated sum of monoids and in fact this can be
viewed as an amalgamated sum with amalgamated subgroup isomorphic to
the trivial group. Let us take a presentation of the groups Gi = 〈Gi|Ri〉
where Ri = {(xy, z)|xy = z as a product in Gi}. With this presentation for
the groups the sum can be presented as 〈S =

⊔
i∈I Gi|R =

⊔
i∈I Ri〉, and

we can prove this as we did for the amalgamated sum of monoids. We now
want to find a set of normal forms for this group. Consider the set Σ of all
words w = x1 · · ·xn with xk ∈ I for k = 1, . . . , n and n ≥ 0 such that for
each k we have xk 6= xk+1. We will denote by Σi the set of words in Σ which
do not start with i ∈ I. Let w ∈ Σ be the word x1 · · ·xn, we define Lw to
be the product Lx1 × . . . × Lxn where Li = Gi \ {1Gi} for every i ∈ I and
L1 = {1}. We define as for monoids the sets G and Xi as follows:

G =
⊔
w∈Σ

Lw Xi =
⊔
w∈Σi

Lw.

We define now a bijection λi : Gi ×Xi → G for each i ∈ I in the following
way: let g ∈ Gi and w ∈ Xi then

λi(g, w) =
{

(g, w) if g 6= 1Gi

w if g = 1Gi .

In this case it is easy to prove that the maps λi are bijective. We can then
induce for each s ∈ S, using the maps π′s defined as we did above, a map
πs : G → G which is our multiplication by s in G. Defined in this way,
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namely πs(x) = λi(π′s(λ
−1
i (x))) for s ∈ Gi, it is clear that πs is invertible,

since it is the composition of invertible maps. So we can go on with the
verification of conditions (i), (ii) and (iii). Condition (iii) can be proved
as for monoids. Let G′ be an S-R-group and we define the map ϕ to be
ϕ(1) = 1′G on L1, on words of length one ϕ(x) = x and on longer words
ϕ(x1, . . . , xn) = x1 · · ·xn. Let us fix an arbitrary s ∈ Li (since if s = 1Gi

the property is clearly satisfied) and take an element x = (x1, . . . , xn) ∈ G.
Suppose first that x1 is not in Li; we have:

ϕ(πs(x1, . . . , xn)) = ϕ(λi(π′s(λ
−1
i (x1, . . . , xn)))) = ϕ(λi(π′s(1, x1, . . . , xn)))=

= ϕ(λi(s, x1, . . . , xn)) = ϕ(s, x1, . . . , sn) = sx1 · · ·xn =
= s(x1 · · ·xn) = sϕ(x1, . . . , xn).

In case x1 ∈ Li and the product sx1 6= 1Gi we can write:

ϕ(πs(x1, . . . , xn)) = ϕ(λi(π′s(λ
−1
i (x1, . . . , xn)))) = ϕ(λi(π′s(x1, . . . , xn))) =

= ϕ(λi((sx1), . . . , xn)) = ϕ((sx1), . . . , xn) =
= (sx1) · · ·xn = s(x1 · · ·xn) = sϕ(x1, . . . , xn).

The only remaining case is when x1 ∈ Li and s = x−1
1 . We have:

ϕ(πs(x1, . . . , xn)) = ϕ(λi(π′s(λ
−1
i (x1, . . . , xn)))) = ϕ(λi(π′s(x1, . . . , xn))) =

= ϕ(λi(1Gi , . . . , xn)) = ϕ(x2, . . . , xn) = x2 · · ·xn =

= x−1
1 x1x2 · · ·xn = sϕ(x1, . . . , xn).

So condition (i) is satisfied. We still need to prove condition (ii), which
follows immediately from the fact that π′s1 ◦ π

′
s2 = π′s3 if s1s2 = s3 in one of

the Gi.

Amalgamated sum

We could also build amalgamated sum for groups, but there is no difference
with the construction we saw in the monoid case. As we pointed out in sec-
tion 2.3 in the case of an amalgamated sum of groups we get a completely
explicit form, after we choose representatives for the left cosets of the amal-
gamated subgroup H in the Gi. Van der Waerden’s method was used in this
case also by Serre (see [3]) and Kurosh (see [4]).
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Chapter 4

The ring case

4.1 Van der Waerden’s theorem

We now discuss the version of Van der Waerden’s theorem in the case of
rings. As we already discussed in section 1.6 we will consider the more
general case of k-algebras over a fixed commutative ring k. Let us start by
stating Van der Waerden’s theorem in this case. To simplify the notation in
condition (ii) we will write πx for x ∈ F (S)Mon\{1}meaning the composition
πs1 ◦ . . . ◦ πsn if x = s1 · · · sn for n ≥ 1.

Theorem 4.1.1. Let S be a set, k a commutative ring and let R be a set of
k-algebra relations on S. Let A be a k-module and let 1A ∈ A be an element.
Suppose for every s ∈ S a k-module morphism πs : A → A is given. Then
the following are equivalent:

(1) There exists an S-k-algebra structure on A such that the k-module
structure is preserved and the multiplication ∗ : A×A→ A has neutral
element 1A and satisfies s ∗ x = πs(x) for all s ∈ S and x ∈ A and the
pair (A,S → A) is a universal S-R-k-algebra.

(2) The following three conditions are satisfied:

(i) For all S-R-k-algebras A′ there exists a k-linear map ϕ : A →
A′ such that ϕ(1A) = 1A′ and ϕ(πs(x)) = sϕ(x) for all s ∈
S and x ∈ A.

(ii) The collection of maps (πs)s∈S has the following property: if the
pair (h1x1 + . . .+hnxn, h

′
1y1 + . . .+h′mym) ∈ R, for some xi and

yj in F (S), the hi and h′j in k for i = 1, . . . , n and j = 1, . . . ,m
and for n,m ≥ 0, then h1πx1 + . . .+hnπxn = h′1πy1 + . . .+h′mπym

in Endk(A).
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(iii) The only k-submodule T ⊆ A with 1A ∈ T such that for all s ∈ S
one has πs(T ) ⊆ T is T = A.

Moreover if there exists an S-structure on A, with the required unit and
translations, then it is unique.

The proof of theorem 4.1.1 is done in the same way as the one we did
for monoids and we are going to write it down explicitly. Before starting
with the proof let us make some remarks about the theorem. Notice that
in this case the set of normal forms is required to have more structure
than for monoids and groups, it should be a k-module and the translation
maps should respect this further structure. The key point is that Van der
Waerden’s theorem is useful to define associative multiplications. So, if we
want to apply it, we should have an object such that if we add an associative
multiplication it becomes the algebraic structure we wanted. So for monoids
we just need a set with a unit and translations can be just maps. For groups
we need again a set, but when defining translations we should require them
to be bijections in order to ensure an inverse for each element of the group.
For k-algebras we need to start with a k-module and the multiplication that
we are going to define needs to be distributive with respect to the addition
in its abelian group structure and this is exactly what is encoded in the
k-linearity requirement. To simplify the theorem we start with a lemma

Lemma 4.1.2. Let M be a k-module. The set of k-linear maps M → M ,
denoted Endk(M) = L is a k-algebra.

Proof. Let us denote the neutral element of M by 0M . We define the map
0M which sends every x ∈ M to 0M which is a k-linear map. We define an
addition on L induced from the one in M , namely (f + g)(x) = f(x) + g(x).
It is clear that the map f + g is again a k-linear map and that 0M is a
neutral element for this addition. Each map f ∈ L has an additive inverse,
namely the map x 7→ −f(x) so L is an abelian group. One can show that
the composition of maps is distributive with respect to this addition and
that IdL is a neutral element for the composition so L is a ring.
We define a map k → L by sending h ∈ k to the multiplication by h, which
is a k-linear map since k is commutative, in fact if f is the multiplication
by h we have:

f(h′x) = h(h′x) = hh′x = h′hx = h′(hx) = h′f(x).

It is again easy to show that the image of the map k → L is contained in
the center of the ring L so the lemma is proved.

We can now start with the proof of theorem 4.1.1.
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Proof. Assume (1) holds. Then (i) comes immediately from the universal
property. For (ii) we consider the map A → Endk(A) which sends each
element a ∈ A to the multiplication by a. This is a k-algebra homomorphism
and respects the set S (the element πs(1A) ∈ A is sent to the multiplication
by πs(1A) so to the map πs) so also Endk(A) is an S-R-k-algebra and (ii)
is satisfied. Let now T be a set that satisfies the requirements of condition
(iii). Then the set {x ∈ A|xT ⊆ T} is a subalgebra of A containing S and so,
by proposition 1.7.7, it is equal to A. So for all x ∈ A the element x = x1A
is in the set xT and so it is in T . Then x ∈ T , and condition (iii) holds.
Now assume the three conditions (i), (ii) and (iii) are satisfied. Let us
consider the set Endk(A) = L of k-linear maps A → A. This set is a
k-algebra by lemma 4.1.2 and the map s 7→ πs makes it into an S-R-k-
algebra by condition (ii). So from condition (i) we have a map ϕ : A → L
such that ϕ(1A) = IdA and ϕ(πs(x)) = πs ◦ ϕ(x) for s ∈ S and x ∈ A. Let
H = 〈πs : s ∈ S〉 be the subalgebra of L generated by the maps πs. We want
to show that ϕ(A) = H. Let us consider the set {f ∈ L|f ◦ ϕ(A) ⊆ ϕ(A)}.
This is a subalgebra of L and it contains all the maps πs for s ∈ S, so it
contains the set H. Then we have: H = H ◦ IdA ⊆ ϕ(A). To prove the
converse we prove that A = ϕ−1(H). Let us consider the set T = ϕ−1(H)
and apply condition (iii). We have that 1 ∈ T and if x ∈ T and s ∈ S then
also πs(x) ∈ T since

x ∈ T ⇔ x ∈ ϕ−1(H)⇔ ϕ(x) ∈ H ⇒ πs ◦ ϕ(x) ∈ H ⇔
⇔ ϕ(πs(x)) ∈ H ⇔ πs(x) ∈ ϕ−1(H)⇔ πs(x) ∈ T.

By condition (iii) we then have T = A and we proved that ϕ(A) ⊆ H and
so they are equal.

Define now the map ψ : L → A which sends a map f to its value on the
element of A we have chosen as a unit, so f 7→ f(1A). We claim that this
map is a left inverse for ϕ. We use again condition (iii), on the set

T = {x ∈ A : ψ ◦ ϕ(x) = x}.

It is clear that 1A ∈ T since ψ ◦ ϕ(1A) = ψ(IdA) = IdA(1A) = 1A. Let now
x ∈ A and s ∈ S; we have:

x ∈ T ⇔ ϕ(x)(1A) = x⇒ (πs ◦ ϕ(x))(1A) = πs(x)⇔
⇔ ϕ(πs(x))(1A) = πs(x)⇔ πs(x) ∈ T.

So T = A and ψ is a left inverse for ϕ.

By this we know that the restriction ψ : H → A is bijective and its inverse
is ϕ. As for monoids this is all that we need to finish the proof. Since H
is an S-R-k-algebra we can induce a k-bilinear multiplication on A, namely
x1 ∗ x2 = ψ(ϕ(x1) ◦ϕ(x2)) which makes A into an S-R-k-algebra. The map
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from S comes from the map from S in H so it is the map s 7→ ψ(s). Since
H is generated by the πs we have that A is generated by the image of S
in A and from this we get that the map in (i) is unique and hence A is a
universal S-R-monoid. We notice explicitly that the translation maps are
as we wanted:

s ∗ x = ψ(πs ◦ ϕ(x)) = ψ(ϕ(πs(x))) = πs(x).

We still have to prove the uniqueness of ∗. Suppose that # also makes A
into a universal S-R-k-algebra, with the required unit and multiplication.
Let us consider, for each y ∈ A, the set Ty = {x ∈ A : x ∗ y = x#y}. For all
y ∈ A one has 1 ∈ Ty and:

x ∗ y = x#y ⇒ πs(x ∗ y) = πs(x#y)⇔ s ∗ (x ∗ y) = s#(x#y)⇔
⇔ (s ∗ x) ∗ y = (s#x)#y ⇔ (πs(x)) ∗ y = (πs(x))#y

so from condition (iii) we get, for every x ∈ A, that Ty = A. So # = ∗.

4.2 Examples

Tensor Algebra

In this example we define the tensor algebra of a k-module over k. Given
a commutative ring k let M be a left k-module. The tensor algebra of M
over k is defined to be the k-module T =

⊕
n≥0M

⊗n. This is a k-algebra
with the obvious multiplication and we can see that it can be presented as
〈M |R〉 with

R = {(x+ y, w)|x, y, w ∈M, if x+ y = w in M}∪
∪ {(hx, z)|x, z ∈M,h ∈ k, if hx = z in M}

using theorem 4.1.1. Notice that in R we have Let us consider the k-module
T with neutral element 1k and translations given by πx(y) = x⊗ y for every
y ∈ T and x ∈ M . The verifications of property (i), (ii) and (iii) are very
easy. For (i) let T ′ be an M -R-k-algebra and define ϕ : T → T ′, by

ϕ(h0 + h1y
1
1 + . . .+ hny

1
n ⊗ . . .⊗ ynn) = h0 + h1y

1
1 + . . .+ hny

1
n · · · ynn

with all yji in M and hr in k for r = 0, . . . , n. For x ∈M it is very easy, using
the defining properties of a ring, to prove that ϕ(πx(y)) = xϕ(y) for every
y ∈ T . Condition (ii) follows from the properties of the tensor product: let
y be in T and let m,m′ ∈M with m+m′ = z, we have:
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πm(y) + πm′(y) = m⊗ (h0 + h1y
1
1 + . . .+ hny

1
n ⊗ . . .⊗ ynn)+

+m′ ⊗ (h0 + h1y
1
1 + . . .+ hny

1
n ⊗ . . .⊗ ynn) =

= (m+m′)h0 + h1(m+m′)⊗ y1
1 + . . .+

+ hn(m+m′)⊗ y1
n ⊗ . . .⊗ ynn = πm+m′(y) = πz(y).

We can do in a similar way also for the other relations, for h ∈ k and m ∈M
and for hm = w we have:

hπm(y) = hm⊗ (h0 + h1y
1
1 + . . .+ hny

1
n ⊗ . . .⊗ ynn) =

= (hm)⊗ (h0 + h1y
1
1 + . . .+ hny

1
n ⊗ . . .⊗ ynn) =

= πhm(y) = πw(y).

Condition (iii) follows by induction: let S be a submodule of T with 1 ∈ S
and πx(S) ⊆ S. Let us suppose that all the elements of M⊗n are in S
for some n. Then also M⊗n+1 is contained is S since all the generators of
its k-module structure can be written as πx(w) for some x ∈ M and some
w ∈ M⊗n. So S equals T because it is a submodule and it contains all
the sets M⊗n so it contains also sums of elements of those sets and their
multiplications by elments of k. So we can define an M -k-algebra structure
on T and T with this structures will be isomorphic to 〈M |R〉. We have to
show that the multiplication induced on T by these translations is the one
that we have on the tensor algebra but this is clear since the neutral element
and the translations are the same.

Amalgamated sum

As for groups and monoids also in the case of k-algebras we can prove a
normal form theorem for some particular kind of amalgamated sum. We
will not discuss it in great detail, but we will give an idea of how this can be
done. We will do it in the case which is considered also by Serre in [3], but we
point out that in the paper by Cohn, see [5], a normal form is found also in
a more general case. Let us suppose to have a collection of k-algebras Ri for
i in some index set I and let us suppose that there exist a k-algebra K with
an injective morphism of k-algebras, denoted ϕi, to each of the Ri. Since
in this case we cannot generalize the construction if we just consider the
set-theoretic difference Ri \ ϕi(K), we can ask the further requirement that
Ri = ϕi(K)⊕Bi as K-K-bimodules for some complementary K-K-bimodule
Bi. If we make this assumption the construction and the proofs can be done
exactly as for monoids and for groups by considering the tensor product over
K in the place of the H-H-bisets composition. Notice that, as required by
the theorem, in this case all the objects we are considering are modules over
K and so they are also modules over k and the πs are endomorphisms of
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k-modules. What is made weaker by Cohn is the requirement that for all i
the sub-K-K-bimodule ϕi(K) is a direct summand of Ri, by requiring that
the K-K-bimodule Ri/ϕi(K) is left flat which means that the sequence

0→M ′ ⊗K (Ri/ϕi(K))→M ⊗K (Ri/ϕi(K))

is an exact sequence of right K-modules for all right K-modules M,M ′ such
that M ′ is a submodule of M .

Clifford algebras

In this example we will consider briefly the case of Clifford algebras treated
by Van der Waerden in [2] and then we will discuss a possible generalization.
In his article Van der Waerden considers the case of a vector space V over
a field k given together with a quadratic form Q with values in the field. A
quadratic form on a vector space is a map Q : V → k such that Q(hx) =
h2Q(x) for all h ∈ k and x ∈ V and such that the map LQ : V × V → k
defined LQ(x, y) = Q(x + y) − Q(x) − Q(y) is a k-bilinear map. Suppose
now that v1, . . . , vn form a basis for V over k. Here one defines the Clifford
algebra corresponding to Q to be the quotient C of the tensor algebra of V
by the two sided ideal I, generated by the elements x⊗ x−Q(x) for x ∈ V .
In the article Van der Waerden proves that the elements vi1 ⊗ vi2 ⊗ . . .⊗ vik
with k = 1, . . . , n, ij ∈ {1, . . . , n} for all j and such that ij < ij+1 for all j,
form a basis of C over k. This was proved before, with a different method, by
Chevalley in [7] and according to Van der Waerden the proof by Chevalley
was the first one which was valid in the case of fields of characteristic 2. The
difference between the two cases is that in characteristic different from 2 it is
possible to diagonalize the quadratic form Q and the computations become
easier. In the article of Van der Waerden he uses instead his method on
the k-algebra with generators v1, . . . , vn (which is isomorphic to the tensor
algebra of V ) and with the relations that we can derive from x⊗x−Q(x) = 0,
namely:

vkvk = Q(vk) and vivk + vkvi = LQ(vi, vk).

The second type of relations is obtained by considering the quadratic form
on x+ y and the relation on x2 in this way:

Q(x+ y) = (x+ y)(x+ y) = x2 + xy + yx+ y2 = Q(x) +Q(y) + xy + yx.

We will not discuss this case in further detail, but we suggest a generalization
of this example. Suppose that we are given a module M over a commutative
ring k together with a linear form T : M → k and a quadratic form Q :
M → k. We define a quadratic form on a module as we did for vector spaces
over fields. We consider the tensor algebra of M over k and we quotient by
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the two sided ideal generated by the elements x2−T (x)x+Q(x) for x ∈M .
For some M it should be possible to prove a theorem similar to the one
proved by Van der Waerden. Let us consider for example M free of rank 2
over k. Let a, b be generators for M , we can prove that the k-algebra

〈a, b|(a2, T (a)a−Q(a)), (b2, T (b)b−Q(b)), (ab+ba, T (b)a+T (a)b−LQ(a, b))〉

has the set {1, a, b, ab} as a basis over k (the other relations follows from the
ones that we have written above). To simplify notations we will write the
above as 〈a, b|R〉 where

R = {(a2, taa− qa), (b2, tbb− qb), (ab+ ba, tba+ tab− l)} (*)

for some arbitrary ta, tb, qa, qb and l in k. To explain how this example
can arise let us consider the matrix ring M2(k) of two by two matrices
with coefficients in k as M and the trace and the determinant as T and Q
respectively. By Cayley-Hamilton theorem we haveX2−Tr(X)X+det(X) =
0 for all X ∈M2(k) so the relations above are satisfied with ta = T (X) and
so on. We can see that the matrix ring M2(k) can be generated as a k-
module by the set {Id, X, Y,XY } if X and Y are generators of the ring.
Using Van der Waerden’s method we will prove that in the more general
case of a k-algebra with generators and relations as above the set {1,a,b,ab}
is a k-basis for the ring A.

Theorem 4.2.1. The k-module structure of the k-algebra 〈a, b|R〉 with the
notation we defined in (*) is free with basis {1, a, b, ab}.

Proof. Let A be the free k-module over the set {1, a, b, ab}. Since we want to
apply Van der Waerden’s method we need to choose a neutral element and
some translations πa and πb. As neutral element we choose the element 1.
We define the translations and prove condition (i) at the same time. Given
an (a, b)-R-k-algebra A′ we define a k-linear map ϕ : A → A′: on the basis
it is

ϕ(1) = 1A′ , ϕ(a) = a, ϕ(b) = b, ϕ(ab) = ab

and we extend it on A′ by k-linearity. We have from the relations that
a2 = taa− qa in A′ so we have:

ϕ(taa− qa) = taϕ(a)− qaϕ(1) = taa− qa = a2 = aa = aϕ(a).

Then if we define πa(a) = taa − qa we get ϕ(πa(a)) = aϕ(a) for every A′.
Similarly for πa(ab) we have

ϕ(taab− qab) = taϕ(ab)− qaϕ(b) = taab− qab = a2b = a(ab) = aϕ(ab)
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and if we define πa(ab) = taab− qab we get ϕ(πa(ab)) = aϕ(ab). So we can
define πa on the basis: 

πa(1) = a
πa(a) = taa− qa
πa(b) = ab
πa(ab) = taab− qab

and extend it by k-linearity on the whole A. For πb we can proceed in the
same way. By the relations we have that ba = −ab + tba + tab − l in A′ so
we have:

ϕ(−ab+ tba+ tab− l) = −ϕ(ab) + tbϕ(a) + taϕ(b)− l =
= −ab+ tba+ tab− l = ba = bϕ(a)

and by the same reasoning as above we define πb(a) = −ab + tba + tab − l.
For πb(ab) we consider the product bab in A′. We have

b(ab) = (ba)b = (−ab+ tba+ tab− l)b =
= −a(tbb− qb) + tbab+ ta(tbb− qb)− lb = −taqb + qba+ (tatb − l)b

and with the same argument we get
πb(1) = b
πb(a) = −ab+ tba+ tab− l
πb(b) = tbb− qb
πb(ab) = −taqb + qba+ (tatb − l)b

which we extend by k-linearity to A. Then we have defined the transla-
tion and the proof of (i) follows immediately. We have now to show that
conditions (ii) and (iii) are satisfied. For proving condition (iii) let T be a
submodule of A with 1 ∈ T and suppose that πa(T ) ⊆ T and πb(T ) ⊆ T .
Then we have a ∈ T since a = πa(1) and also b ∈ T since b = πb(1). Then
also ab ∈ T since ab = πa(b). So T is a submodule of A and contains all the
elements of a basis so T = A. Let us now consider condition (ii). We have
to show that πa ◦ πa(x) = taπa(x) − qaId(x) for all x ∈ A and similarly for
πb and also that πa ◦ πb(x) + πb ◦ πa(x) = tbπa(x) + taπb(x) − l. We prove
that this is true on the elements of the basis. It is clear for πa(πa(1)) and
πb(πb(1)). For the first kind of relations the other cases are similar and we
are going to write explicitly only πb(πb(ab)). We have:

πb(πb(ab)) = πb(−taqb + qba+ (tatb − l)b) =
= −taqbb+ qb(−ab+ tba+ tab− l) + (tatb − l)(tbb− qb) =
= tb(−taqq + qba+ (tatb − l)b)− qbab =
= tbπb(ab)− qbId(ab).
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4.2 Examples The ring case

Also for the other relation we have to prove the equalities above for the basis
elements. We do it for ab:

πa(πb(ab)) + πb(πa(ab)) = πa(−taqb + qha+ tatbb− lb) + πb(taab− qab) =
= −qbqa + tatbab− lab+ taπb(ab)− qa(tbb− qb) =
= taπb(ab) + tb(taab− qab)− lab = taπb(ab) + tbπa(ab) + lId(ab).

So we proved the claim and A with the multiplication induced by the maps
πa and πb is the (a, b)-R-k-algebra 〈a, b|R〉.

Even for free modules computations in the higher dimensional case can be
very long, but it should be possible in general to have a normal form as the
one above.
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