
Congruence conditions on supersingular primes
Brau, J.

Citation
Brau, J. (2009). Congruence conditions on supersingular primes.
 
Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in the
Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3597466
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3597466


Julio Brau

Congruence conditions on supersingular

primes

Master’s thesis, defended on June 22, 2009

Thesis advisor: Peter Stevenhagen

Mathematisch Instituut

Universiteit Leiden



Contents

1 Introduction 1
1.1 Motivating problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Elliptic Curves and Galois Representations . . . . . . . . . . . . . . 1

2 The Galois representation of Y 2 = (X + 1)(X2 + 4) 4
2.1 Computation of G` for ` > 5 . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Computation of G` for ` = 2 and ` = 3 . . . . . . . . . . . . . . . . . 7
2.3 Computation of a split and stable m . . . . . . . . . . . . . . . . . . 15

3 Congruence conditions on the supersingular primes 19



1 Introduction

1.1 Motivating problem

The origin of this thesis lies in an email by A. Berkovich dated June 26th 2007,
which posed the following question: what are the primes p such that S(p) = 0?
Here

S(p) =
p−1∑
x=0

(
(x+ 1)(x2 + 4)

p

)
.

We have that S(p) = 0 whenever (x+1)(x2 +4) is a square mod p not divisible by p
for exactly the same amount of residues x for which it is a non-square. The first
primes for which this happens are 2, 11, 131, 251, 491, 599, 1439, 3371, 5639, 5879,
and 6971. It was also noted by Berkovich that for primes greater than 2, these are
−1 or 11 mod 120. Does this always hold, and if so, why is this the case?

This is the motivating question behind this work, as this question which is posed
in a simple manner can be rephrased in terms of elliptic curves. In answering it we
will naturally be led to study Galois representations associated to elliptic curves.
As we will see, finding the complete Galois representation of a certain elliptic curve
will show something even stronger, and in particular answer the question posed at
the start.

1.2 Elliptic Curves and Galois Representations

As we mentioned, we would like to rephrase the above problem in the language of
elliptic curves and Galois representations. To do so, we will first recall some basic
facts and definitions, as well as establishing the notation we will use throughout this
paper.

Let E be an elliptic curve over Q given by the equation Y 2 = f(X) with ∈ Z[X]
monic of degree 3. Recall that for primes of good reduction p, that is, primes such
that vp(∆) = 0 holds, we may reduce the curve mod p so as to obtain an elliptic
curve Ẽ over Fp. Hasse’s theorem gives an estimate for the number of Fp-rational
points on Ẽ. More specifically, we have

|#Ẽ(Fp)− p− 1| 6 2
√
p.

We can determine #Ẽ(Fp) by checking for each x ∈ Fp whether f(x) is a non-zero
square, zero, or a non-square in Fp, which will yield respectively two, one or zero
Fp-rational points on Ẽ. The Legendre symbol

(f(x)
p

)
will have the value 1, 0 or −1

respectively in each case, hence we may write

#Ẽ(Fp) = p+ 1 + S(p)

where S(p) is as in 1.1. Recall also that if we denote the Frobenius endomorphism
of Ẽ by σp, then it satisfies the quadratic equation

σ2
p − tpσp + p = 0 in End(Ẽ),
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where the integer tp satisfies #Ẽ(Fp) = p+ 1− tp and is referred to as the trace of
Frobenius. We see then that we have S(p) = −tp.

With all this in mind, the problem posed in 1.1 can be rephrased by asking for
the elliptic curve given by the equation Y 2 = (X + 1)(X2 + 4), for which primes p
is the trace of Frobenius tp equal to zero, or equivalently, for which primes p do we
have #Ẽ(Fp) = p+ 1? Primes p with this property are called supersingular primes
of E.

When E does not have complex multiplication over Q̄, its set of supersingular
primes is somewhat mysterious, and several open questions regarding this special
set of primes still remain. Serre has shown that the set of supersingular primes for
E has density 0, but it is still not known what their asymptotic growth is. There is
however a conjecture of Lang and Trotter which says that

#{p < x : p is supersingular} ∼ c
√
x

log x

as x → ∞, where c > 0 is a constant depending on E. Even though supersingular
primes for E are quite rare, Elkies has shown that nonetheless there are infinitely
many.

Looking back at the motivating question, it appears that for the specific curve
given by Y 2 = (X + 1)(X2 + 4), we have the somewhat surprising observation that
odd supersingular primes seem to satisfy a congruence condition, namely they all
seem to be in the residue class of −1 or 11 mod 120. Since this curve has no
complex multiplication, we immediately see that, by Dirichlet’s Theorem on primes
in arithmetic progressions, the converse to this observation cannot hold.

We are interested in studying the set of primes p such that the trace of Frobenius
tp is 0. As we will now see, this naturally leads us to study the Galois representation
attached to E, since in this way we will be able to realize tp as the trace of a matrix
of the Frobenius element.

Recall that if we denote by E[m] the m-torsion subgroup of E, then each element
of G = Gal(Q̄/Q) acts on E[m]. In particular G acts on E[`n] for a prime ` and a
positive integer n, hence it also acts on the `-adic Tate module

T`(E) = lim←−
n

E[`n]

of E. For each prime ` denote by

ρ` : G −→ Aut(T`(E)) ' GL2(Z`)

the representation given by the action of G on T`(E), where the isomorphism on the
right involves choosing a basis for T`(E). Taking the product T (E) =

∏
` T`(E) over

all primes ` gives the complete Galois representation attached E, which we denote
by

ρ : G −→ Aut(T (E)) '
∏
`

GL2(Z`) = GL2(Ẑ).
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For each positive integer m we may reduce GL2(Ẑ) mod m, thereby obtaining a
representation

ρ(m) : G −→ Aut(E[m]) ' GL2(Z/mZ)

for a certain choice of basis. LetG(m) denote its image, so thatG(m) ⊂ GL2(Z/mZ).
This representation is given by the action of G on E[m]. The fixed field of Kerρ(m)

is the m-torsion field of Q, that is, the finite extension of Q obtained by adjoining
the coordinates of all m-torsion points of E, which we shall denote by Q(E[m]). We
have then that G(m) ' G/Ker ρ(m) ' Gal(Q(E[m])/Q).

Note that since Q(ζm) ⊂ Q(E[m]), then G(m) acts on ζm. This action is via the
determinant, that is, the element σ ∈ G(m) acts on ζm by ζm 7→ ζdet(σ)

m . From this
it follows that the composite map

ρ : G −→ GL2(Ẑ) det−→ Ẑ∗

is surjective: it is the cyclotomic character.
Also, let Gm denote the projection of ρ(G) into the finite product∏

`|m

GL2(Z`).

Then we have Gm = Gal(Km/Q), where Km is the m-power torsion field, that is,
the infinite extension of Q obtained by adjoining the coordinates of all mn-torsion
points of E for all n.

The main result in the theory of Galois representations of elliptic curves over
the rationals without CM is the following theorem of Serre, proved in [6].

Theorem 1.1 (Serre). Let E be an elliptic curve over Q without CM. Then ρ(G)
is a subgroup of finite index of GL2(Ẑ).

This is equivalent to the following two conditions holding simultaneously:

(i) G` is of finite index in GL2(Z`) for all `.

(ii) G` = GL2(Z`) for almost all `.

It is also equivalent to saying that there is an integer m such that the following
holds:

(i) ρ(G) = Gm ×
∏
`-m

GL2(Z`).

(ii) Gm = π−1
m (G(m)), where

πm :
∏
`|m

GL2(Z`) −→ GL2(Z/mZ)

denotes the reduction map.
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When (i) holds we say m splits ρ, and when (ii) holds we say m is stable. Note
that m splitting ρ depends only on the primes dividing ` and not on the powers
to which these primes occur, and m being stable depends on the primes dividing
m and their respective powers. Given a split and stable m, the complete Galois
representation of E is completely determined at a finite level, that is, it suffices to
know G(m), since

ρ(G) = Gm ×
∏
`-m

GL2(Z`)

and Gm = π−1
m (G(m)).

Given a prime p such that p - `∆, we recall that Ip acts trivially on T`(E), where
Ip denotes the inertia subgroup of p in G. Then we say that ρ` is unramified at p and
its Frobenius element σp is well defined (up to conjugation) in ρ`(G). The element
ρ`(σp) has characteristic polynomial

Φp(X) = X2 − tpX + p ∈ Z[X],

which does not depend on the choice of basis. Here tp is the trace of the matrix
ρ`(σp) and p is the determinant. We see then how Frobenius elements of unramified
primes allow us to realize tp as the trace of a matrix ρ`(σp) in GL2(Z`).

In the following section we find a split and stable m for the elliptic curve men-
tioned in the introduction. This gives us the complete Galois representation of our
curve, and so helps us study the behaviour of its supersingular primes.

2 The Galois representation of Y 2 = (X + 1)(X2 + 4)

2.1 Computation of G` for ` > 5

In this section we compute the complete Galois representation of the elliptic curve
given by Y 2 = (X + 1)(X2 + 4). Since it is more convenient to have the rational
2-torsion point be the origin, we make the substitution x 7→ x + 1, thus obtaining
the curve given by Y 2 = X(X2 − 2X + 5). This will be the curve of interest for the
rest of the paper.

Our first step is to compute G(`) for all primes `. As we will see, for almost
all primes this group will be the full GL2(F`). Note first that our curve E has
discriminant ∆ = −2852 and j-invariant j = 28113/52, hence it does not have CM
and it has bad reduction at 2 and 5. It has multiplicative (semi-stable) reduction at
5 and additive reduction at 2. It follows from [8], pg. 357, that E is isomorphic to
a Tate curve over an unramified quadratic extension of Q5. The following result of
Serre tells us that such Tate curves give elements of order ` in G(`). See [5], §IV-20,
for the proof.

Lemma 2.1. Suppose that an elliptic curve E has multiplicative reduction at p,
and let ` be a prime that does not divide −vp(j). Then ρ(`)(Ip) ⊂ G(`) contains an
element of order `.
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Since for our curve we have that v5(j) = −2, the lemma implies that G(`) has
en element of order ` for ` > 3. This fact will be useful in conjunction with the
following proposition, which tells us that if G(`) has an element of order `, there are
only two possibilities for G(`). We say that a subgroup of GL2(F`) is Borel if it is
upper triangular.

Proposition 2.2. Let H be a subgroup of GL2(F`) of order divisible by `. Then
either H contains SL2(F`) or H is contained in a Borel subgroup of GL2(F`).

Proof. See [6], §2.4.

Using Lemma 2.1 and Proposition 2.2 we see that for ` > 3 either G(`) is
contained in a Borel subgroup or it contains SL2(F`). The surjectivity of the deter-
minant map thus implies that if G(`) is not contained in a Borel subgroup, then it
must equal GL2(F`), so to show that G(`) = GL2(F`) holds for almost all `, it suffices
to see that for almost all ` we cannot have G(`) contained in a Borel subgroup.

Let us see what happens if G(`) is contained in a Borel subgroup, that is, the
elements of G(`) can be represented by upper triangular matrices. Note that the
diagonal entries of these matrices are given by characters of G, which we denote by
χ′ and χ′′. Thus G(`) can be represented by matrices of the form(

χ′ ∗
0 χ′′

)
,

where χ′, χ′′ : G→ F∗` are characters of G mapping to F∗` . Since F∗` is abelian, by the
Kronecker-Weber Theorem these characters factor through Ẑ∗ = Gal(Q(ζ∞)/Q).
Further, since the image of these characters is finite, they factor through finite
quotients of Ẑ∗, and hence can be viewed as Dirichlet characters

χ′ : (Z/f ′Z)∗ −→ F∗` and χ′′ : (Z/f ′′Z)∗ −→ F∗`

where f ′ and f ′′ are the conductors of χ′ and χ′′. Write

f ′ =
∏
p

pn
′(p) and f ′′ =

∏
p

pn
′′(p).

Then
(Z/f ′Z)∗ '

∏
p

(Z/pn
′(p)Z)∗ and (Z/f ′′Z)∗ '

∏
p

(Z/pn
′′(p)Z)∗

Denote the restriction of χ′ to its p-th factor (Z/pn′(p)Z)∗ by χ′p and note that since
Gal(Q(ζp∞) is unramified outside p, then χ′ maps Ip to

Z∗p ' Gal(Q(ζp∞)/Q)

hence the diagram
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Ip

(Z/pn′(p)Z)∗

F∗`

χ′|Ip

χ′|Ip

χ′p

is commutative. We define χ′′p in the same manner.
Let p be a prime of potential good reduction of E, that is, one such that vp(j) > 0

holds. Let Qnr
p denote the maximal unramified extension of Qp, and let L be the

smallest extension of Qnr
p over which E acquires good reduction. Also let v be the

normalized valuation on L. Then for ` 6= p we have that Iv acts trivially on T`(E),
hence the action of Ip on T`(E) factors through the finite quotient

Ip/Iv ' Gal(L/Qnr
p )

and this quotient is independent of `. The following proposition is proved by Serre
in [6], §5.6.

Proposition 2.3. Let ` > 5 and let p 6= ` be a prime of bad reduction at which E
is not semi-stable. Then the images of χ′p and χ′′p in F∗p are isomorphic to the group
Gal(L/Qnr

p ).

We are now ready to prove the following

Theorem 2.4. For our curve E we have G(`) = GL2(F`) for ` > 5.

Proof. As we have already seen, for ` > 3 the image of the inertia group I5 in G(`)
contains an element of order `, hence if G(`) 6= GL2(F`) holds then G(`) is contained
in a Borel subgroup. Also, note that we have potential good reduction at 2 , hence
v(∆) ≡ 0 (mod 12). Since v2(∆) = 8, we must have that 3|Gal(L/Qnr

2 ). It follows
by Proposition 2.3 that if G(`) is contained in a Borel subgroup, and if ` > 5 then
χ′2, χ

′′
2 have image in F∗` of order divisible by 3, a contradiction, since no quotient

of
(
Z/2nZ

)∗ has order divisible by 3. This shows that we have G(`) = GL2(F`) for
` > 5.

Lemma 2.5. Let ` > 5 and H be a closed subgroup of GL2(Z`) for which the
reduction mod ` contains SL2(F`). Then H contains SL2(Z`).

Proof. See [2], Chapter 17, §4.

Corollary 2.6. For our curve E we have G` = GL2(Z`) for ` > 5.

Proof. By Theorem 2.4 we have G(`) = GL2(F`), and so by Lemma 2.5 we have
SL2(Z`) ⊂ G`. But det : G` → F∗` is surjective, hence the result.
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2.2 Computation of G` for ` = 2 and ` = 3

Now we must deal with the exceptional cases ` = 2, 3. In these cases we know that
G(`) will not be all of GL2(F`), since E has rational 2 and 3-torsion points that are
fixed by G. The idea for determining G` will be to recover it as the inverse image
under the reduction map of G(`n) for some n, that is, finding an n such that `n is
stable and computing G(`n) for that n.

For now we fix a prime `. By successively adjoining to Q the `-power torsion of
E we obtain a tower of field extensions Q ⊂ Q(E[`]) ⊂ Q(E[`2]) ⊂ · · · ⊂ Q(E[`∞]).
Let us look more closely at the different Galois groups that arise in such a tower.
Let M = M2(Z`) denote the set of all 2× 2 matrices with coefficients in Z`, and let

Vn = I + `nM

= Ker π`n

where π`n is the reduction map mod `n. Also, let

Un = G` ∩ Vn = Gal(Q(E[`∞])/Q(E[`n])).

Note that we have G`/Un ' G(`n) = Gal(Q(E[`n])/Q). We obtain in this manner
a filtration G` ⊃ U1 ⊃ U2 ⊃ · · · ⊃ {1}. Consider now the map

M/`M −→ Vn/Vn+1

X mod `M 7−→ I + `nX mod Vn+1

Since mod `n+1 we have (I + `nX)(I + `nY ) = I + `n(X + Y ) with X,Y ∈M2(F`),
this is seen to be a group isomorphism, and M/`M ' M2(F`) is a vector space
of dimension 4. From this we see that working in Vn/Vn+1 is essentially doing
linear algebra over a vector space of dimension 4. If we look at the extension
Q(E[`n+1])/Q(E[`n]), its Galois group Un/Un+1 is naturally a subspace of Vn/Vn+1,
hence it follows that [Q(E[`n+1]) : Q(E[`n])] divides `4. We will refer to Un/Un+1

as the vector space associated to Un. It has dimension at most 4 over F`.
As was already remarked, Theorem 1.1 implies that G` = GL2(Z`) holds for

almost all `. For all such ` we have G(`n) = GL2(Z/`nZ) for all n, hence the
associated vector space to Un has dimension 4 for all n. It could happen however
that G` ( GL2(Z`), for example if G(`) ( GL2(F`). In such cases the following
lemma allows us to reduce the problem of determining G` to a finite computation,
namely, that of determining the smallest n such that Un/Un+1 has dimension 4. It
is separated into two cases depending on whether ` is even or odd.

Lemma 2.7. (i) Let ` > 3. With the notation introduced above, suppose that for
some n > 1 the vector space associated to Un has dimension 4. Then we have
Un = Vn.
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(ii) Let ` = 2. Suppose that for some n > 2 the vector space associated to Un has
dimension 4. Then Un = Vn. If the vector spaces associated to U1 and U2 each
have dimension 4, then we have U1 = V1.

Proof. This is essentially the same as Lemma 2 in [4], §6.

Remark 2.8. From Un = Vn it follows that G` = π−1
` (G(`n)), in other words, `n

is stable. Of course we want to find the smallest n for which this holds in order to
reduce computations as much as possible.

To use Lemma 2.7 we will need to show that for some n, the space Un/Un+1 has
dimension 4. It will then suffice to produce four elements Yi ∈ G` such that

Yi ≡ I + `nXi (mod `n+1)

for 1 6 i 6 4, and such that the Xi are linearly independent mod `. The way to
do this is by means of Frobenius elements at unramified primes, since we know that
their characteristic equation looks like

Φp(X) = X2 − tpX + p

and we can compute tp by counting the Fp-rational points of Ẽ. This can be done
easily using machine computation, and in this manner we can explicitly write down
matrices of elements in G`, which we can then reduce mod a suitable `n.

Lemma 2.9. The group G(3) is of order 6, given explicitly under a suitable basis,
by {(

1 a
0 b

)
| a ∈ F3, b ∈ F∗3

}
.

It is isomorphic to S3.

Proof. Since E has a rational 3-torsion point, there is a basis such that the elements
of G(3) are matrices of the form(

1 a
0 b

)
a, b ∈ F3

so it suffices to determine which values a and b can take. Since det : G(3) → F∗3
is surjective, we know that b must take both of the values ±1. The 3-division
polynomial of E factors over Q as

(x− 1)(3x3 − 5x2 + 25x+ 25)

and the splitting field of 3x3−5x2+25x+25 has degree 6 over Q, hence #G(3) > 6 so
we conclude #G(3) = 6, proving the Lemma. This last part could also be concluded
from Lemma 2.1 since this gives that G(3) has an element of order 3.
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Theorem 2.10. The integer 3 is stable, in other words we have G3 = π−1
3 (G(3)).

Proof. By Lemma 2.7 it suffices to find four elements Yi in G3 such that

Yi ≡ I + 3Xi (mod 9)

for 1 6 i 6 4, and such that the Xi are linearly independent over F3. We exhibit
these by means of Frobenius elements.

Take p = 17. Machine computation gives Φ17(X) = X2 + 6X + 17. Since

Φ17(X) ≡ (X − 7)(X − 5) (mod 9),

it follows by Hensel that we can lift these roots to Z3 and so we can diagonalize σ17

over Z3, so for a suitable basis we have

σ17 ≡
(

7 0
0 5

)
(mod 9).

We obtain

σ2
17 ≡ I + 3

(
1 0
0 2

)
(mod 9),

which is our first Yi.
Next, take p = 11, which has characteristic polynomial

Φ11(X) = X2 + 11 ≡ (X − 4)(X − 5) (mod 9)

hence σ11 is diagonalizable. Since

42 ≡ 52 ≡ 7 (mod 9)

we have
σ2

11 ≡ 7I ≡ I + 3 · 2I (mod 9),

hence σ2
11 is a scalar mod 9 over any basis, in particular the basis we used to

diagonalize σ17. It follows that these two elements are linearly independent in U1/U2,
and they span the diagonal matrices.

For our third element pick p = 79. As the 3-division polynomial splits completely
mod 79, Frobenius acts trivially on its splitting field, which is the 3-torsion field. It
follows that

σ79 = I + 3Z, Z ∈ Mat2(Z3).

Plugging this into Φ79(X), we see that Z satisfies the characteristic equation

Z2 + Z + 2 = 0
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which is irreducible mod 3, hence Z is not triangular with respect to any basis.
Since σ2

17 and σ2
11 span the diagonal elements, we can obtain a third element Y3 of

the form

I + 3
(

0 x
y 0

)
x, y 6= 0 (mod 3),

which is linearly independent of the first two. Finally, the space of matrices Y
(mod 3) such that I + 3Y belongs to G3 (mod 9) is invariant under conjugation by
G3. Also, we have (

1 0
0 u

)(
0 x
y 0

)(
1 0
0 u

)−1

=
(

0 u−1x
uy 0

)
and all u ∈ (Z/3Z)∗ arise in elements of G3, hence we can obtain a fourth linearly
independent matrix, completing the proof.

The 2-torsion case is the most complicated, and computing G2 requires consid-
erably more work. The reason for this is that, as we will see, the smallest n for
which the vector space associated to Un has level 4 is n = 3, hence it is necessary
to compute G(8).

We know E has a rational 2-torsion point, namely (0, 0), hence if we choose a
basis for E[2] that includes P2 = (0, 0), then G(2) can be represented by matrices
of the form (

1 a
0 1

)
a ∈ F2.

The x-coordinates of the other two non-zero points in E[2] are given by roots of

X2 − 2X + 5 = 0,

which does not have rational roots, hence a can take both values of F2 and G(2) is
cyclic of order 2, namely

G(2) '
〈(

1 1
0 1

)〉
' {±1}.

The splitting field of X2 − 2X + 5 is Q(i), hence Q(E[2]) = Q(i).
In determining G(4), recall that for every elliptic curve E/Q the fourth root of

unity i = ζ4 is contained in Q(E[4]), but for our curve E it is already contained
in Q(E[2]). We have that the group G(4) acts on i via the determinant and also
via its projection on G(2). These actions must be compatible, hence this imposes a
restriction on the elements in G(4), which is the reason we don’t get all 16 lifts to
G(4) of each element of G(2). It follows that we have [Q(E[4]) : Q(E[2])] 6 8. To see
how many lifts there are for each element in G(2), we determine explicitly the field
Q(E[4]) using 2-descent, as in [1]. To this end choose a basis for E[2] to consist of
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P2 = (0, 0) and Q2 = (1+2i, 0). Let E′ be the curve given by Y 2 = X(X2+4X−16)
and consider the 2-isogeny φ : E → E′ given by

φ(x, y) =
(
y2

x2
, y − 5y

x2

)
and its dual isogeny φ̂ : E′ → E given by

φ̂(u, v) =
(
v2

4u2
,
1
8

(
v +

16v
u2

))
so that φ̂ ◦ φ is the multiplication by 2 map. We find points P4, Q4 ∈ E[4] such
that 2P4 = P2 and 2Q4 = Q2, hence which form a basis for E[4]. Starting with P2,
we see that the two points in E′ that map to P2 are (−2 ± 2

√
5, 0) and the points

in E that map to these are (±
√

5,±2
√

5ε), where ε = (−1 +
√

5)/2. These are the
four points of order 4 that map to P2 under multiplication by 2. Since we want to
choose a basis for E[4] we pick one of these four points to be our first basis element,
so let P4 = (

√
5, 2
√

5ε). We do the same thing with Q2. The points in E′ that map
to Q2 are (4i,±8i

√
π) for π = 1 + 2i, and the points in E that map to these are

(π ± 2ζ8
√
π, 2ζ8(π ± 2ζ8

√
π)), where we choose one of these to be our second basis

element. We then obtain a basis for E[4] consisting of the two points

P4 = (
√

5, 2
√

5ε) Q4 = (π + 2ζ8
√
π, 2ζ8(π + 2ζ8

√
π)).

Now the 4-division polynomial of our curve E is

ψ4(X) = 2X6 − 8X5 + 50X4 − 250X2 + 200X − 250

which factors over Q as

ψ4(X) = 2(X2 − 5)(X4 − 4X3 + 30X2 − 20X + 25).

The roots of the right hand factor are π ± 2ζ8
√
π and π ± 2ζ8

√
−π. Note then that

Q(ζ8
√
π, ζ8
√
−π) is the splitting field of ψ4(X). We also have that ζ8 ∈ Q(E[4]) and

the degree of Q(ζ8
√
π, ζ8
√
−π̄, ζ8) over Q(i) is 8 hence we conclude that

Q(E[4]) = Q(ζ8
√
π, ζ8
√
−π̄, ζ8) = Q(i,

√
π,
√
π̄, ζ8).

For general m denote the splitting field of ψm(X) by Q(E[m]x). If Q(E[m]x)
contains the square roots of f(αi), where αi are the roots of ψm(X) and E is given
by the equation Y 2 = f(X), then it will equal the full m-torsion field Q(E[m]). If
this is not the case, then adjoining the square root of f(α) for one root α of ψm(X)
will give a quadratic extension of Q(E[m]x) which will contain the square roots of
f(αi) for all roots αi of ψm(X), hence will be equal to Q(E[m]). We have then
that Q(E[m]) is either equal to Q(E[m]x) or a quadratic extension of it, and the
Galois group Gal(Q(E[m])/Q(E[m]x)) equals G(m) ∩ {±I}. For our curve we have
just seen that Q(E[4]) has degree 2 over Q(E[4]x) since ζ8 is in Q(E[4]) but not in
Q(E[4]x).

The following figure shows the situation for the 4-torsion.
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Q

Q(
√

5)Q(
√
−5)Q(i)

Q(i,
√

5)Q(ζ8
√
−π̄)Q(ζ8

√
π)

Q(E[4]x)

Q(E[4])

2
2

2

2
2

2
2

2

2
2

2

2

From the previous remarks on the compatibility of the action of G(2) and G(4)
on i we conclude that if we choose as basis {P4, Q4} then G(4) can be represented
by those matrices X ∈ GL2(Z/4Z) which satisfy the following two conditions:

(i) X ≡
(

1 a
0 1

)
(mod 2) with a ∈ F2.

(ii) detX ≡ (−1)a (mod 4).

Next we determine G(8). Here we have a similar situation as with G(4), since
as we saw ζ8 is already contained in Q(E[4]), so again we don’t get all possible lifts
from elements in G(4), and the degree of Q(E[8]) over Q(E[4]) is at most 8. We
have then that there exists a surjective map φ8 : G(4) � (Z/8Z)∗. We determine
explicitly what this map is. If we denote the x and y coordinates of Q by xQ and
yQ respectively, then

yQ
2xQ

= ζ8,

hence the action of en element of G(4) on ζ8 depends only on its action on the second
basis element Q. It suffices then to determine where φ maps matrices of the form(

∗ b
∗ d

)
where b ∈ Z/4Z and d ∈ (Z/4Z)∗.

Since = Q(i,
√
π,
√
π̄)/Q is aD4 extension and Q(i,

√
π,
√
π̄, ζ8) = Q(i,

√
π,
√
π̄,
√

2)
it follows that

G(4) ' D4 × C2.

Note that G(4)′ = [G(4), G(4)] has index 8 in G(4) and

G(4)/G(4)′ = G(4)ab = Gal(Q(i,
√

2,
√

5)/Q)
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is of exponent 2, hence we have G(4)2 = G(4)′. It follows that G(4)′ consists of the
of elements of G(4) that fix everything that is abelian over Q and act non-trivially
on elements of Q(E[4]) that are not. Let σ be the non-trivial element of G(4)2. We
see from the explicit coordinates of P4 and Q4 that σ has to map P4 to −P4. Also,
elements in G(4)2 are of determinant 1 and different from −I by the same argument
so we conclude then

G(4)2 =
〈(
−1 2
0 −1

)〉
.

This can also be verified by direct computation. It follows that the matrix

A =
(
−1 2
0 −1

)
is in the kernel of φ8. If B is an element with d = −1 then AB will have d = 1 and
φ8(AB) = φ8(A), hence φ8 is completely determined by its action on matrices of
the form (

∗ b
∗ 1

)
.

Matrices with b = 0 fix Q4 and hence map to the identity in (Z/8Z)∗. Matrices with
b = 2 reduce to the identity mod 2 hence fix i = ζ2

8 and so map to 5 ∈ (Z/8Z)∗.
Matrices with the other two possibilities for b map to the other two elements of
(Z/8Z)∗, that is, either b = 1 7→ (ζ8 7→ ζ3

8 ) and b = 3 7→ (ζ8 7→ ζ7
8 ) or b = 1 7→ (ζ8 7→

ζ7
8 ) and b = 3 7→ (ζ8 7→ ζ3

8 ). Which one of these occurs depends on the basis that
we choose. Both can occur since one is obtained from the other by the change of
basis transformation (

−1 0
0 1

)
.

Elements in G(8) act on ζ8 via the determinant, and also via their reduction to
G(4) with the action we just described. Note that −I /∈ G(8) holds, since it has
determinant 1 hence would act as the identity on ζ8. However via reduction mod
4 it would act as ζ8 7→ ζ5

8 . This implies that Q(E[8]) = Q(E[8]x), so Q(E[8]) is of
degree at most 8 over Q(E[4]). Finally, we want to show that Q(E[8]) is of degree
exactly 8 over Q(E[4]). Using machine computation we see that ψ8(X) factors over
Q as

ψ8(X) = ψ4(X)f1(X)f2(X)

where f1 is of degree 8 and f2 is of degree 16. Also, f2 factors over Q(E[4]x) as
f2 = g1g2g3g4 where each gi is of degree 4. If [Q(E[8]) : Q(E[4])] < 8 holds then any
root α of gi would generate Q(E[8]) over Q(E[4]). Using machine computation we
see that the prime 89 splits completely in Q(E[4]) and g1 has exactly one root mod
89. This shows that Q(E[4])(α) is not normal over Q, where α is a root of g1. In
particular, it is not equal to Q(E[8]). We conclude that Q(E[8]) is of degree 8 over
Q(E[4]) and so G(8) is the subgroup of elements X in GL2(Z/8Z) that satisfy

13



(i) (X mod 4) ∈ G(4).

(ii) detX = φ(X mod 4) ∈ (Z/8Z)∗

where φ is the map from G(4) to (Z/8Z)∗. The following theorem will tell us that
one can recover the full group G2 from its reduction mod 8.

Theorem 2.11. The integer 8 is stable, that is, G2 = π−1
2 (G(8)).

Proof. We proceed exactly as we did in showing the stability of ` = 3. Again using
Lemma 2.7 we must exhibit four elements Yi in G2 such that

Yi ≡ I + 8Xi (mod 16)

for 1 6 i 6 4, and such that the Xi are linearly independent over F2. For p = 19,
the Frobenius element σ19 has characteristic polynomial

Φ19(X) = X2 + 4X + 19

which has distinct roots in Z2 since its discriminant is 42 − 4 · 19 = 4(−15) and
−15 ≡ 1 (mod 8), hence the discriminant is a square in Z2. It follows that we can
diagonalize σ19 over Z2 and reducing mod 16 gives that for a certain choice of basis
we have

σ19 ≡
(

5 0
0 7

)
(mod 16).

We then obtain

σ2
19 ≡

(
9 0
0 1

)
≡ I + 8

(
1 0
0 0

)
(mod 16).

Next we take p = 79 with characteristic polynomial

Φ79(X) = X2 − 8X + 79 ≡ (X − 3)(X − 5) (mod 16).

The discriminant of Φ79(X) is 4(−63) so Φ79 is diagonalizable over Z2 and we obtain
that

σ79 ≡
(

3 0
0 5

)
(mod 16)

hence
σ2

79 ≡ 9I ≡ I + 8I (mod 16),

which is a scalar matrix with respect to any basis, hence we obtain an element
linearly independent from the first one, and these two elements span the diagonal
matrices.

Now take p = 2441. Since ψ8(X) splits completely mod 2441, we can write

σ2441 = I + 8Z Z ∈ Mat2(Z2)

14



and plugging this into the characteristic equation gives

Z2 + 7Z + 39 = 0

which is irreducible over Z2, hence Z is not diagonalizable over any basis. This
implies we obtain a third element of the form

I + 8
(

0 x
y 0

)
x, y 6= 0 (mod 2).

Finally, we obtain the fourth linearly independent element by conjugating(
0 x
y 0

)
by

(
1 1
0 1

)
and this completes the proof.

2.3 Computation of a split and stable m

Now that we have computed G` for all `, we would like to split ρ at some integer
m, so as to reduce the problem to computing Gm. We would expect such an m to
be divisible by at least the primes 2, 3 and 5, since at ` ∈ {2, 3} we don’t get all
of GL2(Z`), and the 5-power torsion field is not independent of the 2-power torsion
field, as they both contain

√
5. We will see in what follows that these three primes

already split ρ.
Let M be an integer and L the set of primes ` such that ` - M . Let GL denote

the image of the representation

ρL : G −→
∏
`∈L

GL2(Z`).

Then by definition ρ(G) is a subgroup of GM × GL whose projections on the two
factors are surjective. The following lemma of Goursat will prove to be very useful
in determining the image ρ(G).

Lemma 2.12 (Goursat’s lemma). Let G1 and G2 be groups and let G be a subgroup
of G1 × G2 such that the two projections p1 : G → G1 and p2 : G → G2 are
surjective. Let N1 be the kernel of p2 and N2 be the kernel of p1. We can identify
N1 as a normal subgroup of G1 and N2 as a normal subgroup of G2. Then there is
an isomorphism

ϕ : G1/N1 −→ G2/N2

such that
G = {(a, b) ∈ G1 ×G2 | ϕ(aN1) = bN2}.
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We refer to the normal subgroups N1 and N2 in the Goursat’s Lemma as Goursat
subgroups. It follows from Goursat’s lemma that for a given integer M , determining
ρ(G) 6 GM × GL can be achieved by determining the possible Goursat subgroups
of GM and GL, or what is equivalent, the possible isomorphisms from a quotient of
GM with a quotient of GL. Note that G is the full product G1 × G2 if and only if
N1 = G1 and N2 = G2 hold. We see then that M splits ρ if NM = GM and

GL =
∏
`∈L

GL2(Z`).

In determining possible isomorphisms of finite quotients of two groups we nat-
urally encounter Jordan-Hölder constituents. We will say that a prime occurs in a
group if it divides the order of some solvable Jordan-Hölder constituent.

Theorem 2.13. Let m be divisible by 2, 3 and all primes of bad reduction of an
elliptic curve E/Q. Suppose also that:

(i) G(`) = GL2(F`) for all ` - m.

(ii) If ` - m then ` does not occur in Gm.

Then m splits ρ.

Proof. See [4], §6.

Corollary 2.14. The integer 30 splits ρ, that is,

ρ(G) = G30 ×
∏
`>5

GL2(Z`).

Proof. We certainly have that G(`) = GL2(F`) for ` > 5. Also, the only prime that
occurs in G2 is 2, the primes that occur in G3 are 2 and 3, and the primes that
occur in G5 are 2 and 5, hence these are the only primes that occur in G30 and the
conclusion follows from Theorem 2.13.

We are left then with determining G30. To do this we proceed in two steps. The
first step will be to determine G10, which is the Galois group of the 10-power torsion
field, that is K10, which is the composite of the fields K2 and K5. By Goursat’s
lemma we have that

G10 = {(σ, τ) | σ|K2∩K5 = τ |K2∩K5} ⊂ G2 ×G5

so determining G10 amounts to determining K2 ∩K5.
Let N2 and N5 be the corresponding Goursat subgroups, so that

G2/N2 ' G5/N5.
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Let U = Gal(K5/Q(E[5])) and map U to G2/N2 via

U −→ G5/N5
∼−→ G2/N2.

Since G2 is a pro-2 group and U is a pro-5 group it follows that U must map to
the identity in G2/N2 hence also in G5/N5, so we have U ⊂ N5. This implies that
K2 ∩K5 ⊂ Q(E[5]), so it suffices to find the intersection of K2 with Q(E[5]).

Lemma 2.15. Q(ζ5) ⊂ K2 ∩K5.

Proof. It suffices to show that ζ5 ∈ Q(E[8]). We have the following field inclusions:

Q(
√

5)

Q(ζ5)Q(ζ20 + ζ−1
20 )Q(i,

√
5)

Q(ζ20)

22
2

2
2

2

The minimal polynomial of ζ20 + ζ−1
20 over Q is X4 − 5X2 + 5 which has roots

±

√
5±
√

5
2

which all lie in Q(ζ20 + ζ−1
20 ) since it is Galois over Q.

On the other hand, we have already seen using 2-descent that

P4 = (
√

5, 2
√

5ε) ∈ E[4]. (1)

Both coordinates of P4 lie in Q(E[4]) hence in Q(E[8]). Using 2-descent again, we
find that 4

√
5 lies in Q(E[8]), hence so does

2 4
√

5
√

5ε = 2
√

5

√
5−
√

5
2

Since i ∈ Q(E[8]) we conclude that

Q(ζ20) = Q
(
i,

√
5−
√

5
2

)
⊂ Q(E[8])

so ζ5 ∈ Q(E[8]), as desired.

Using this lemma we are now ready to prove
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Theorem 2.16. K2 ∩K5 = Q(ζ5) and

G10 = {(σ, τ) | σ(ζ5) = τ(ζ5)} ⊂ G2 ×G5.

Proof. By the previous lemma and the remarks preceding it we have the following
lattice of subfields:

Q

2

Q(
√

5)

2

Q(ζ5)

60

Q(E[5]x)

2

Q(E[5])

SL2(F5)

SL2(F5)/{±1} ' A5

8

Q(E[4])

8

Q(E[8])

32

Let L = K2 ∩Q(E[5]) and suppose the inclusion Q(ζ5) ⊂ L is strict. Since L is
Galois over Q(ζ5), it follows that L 6⊂ Q(E[5]x), for if it were it would correspond
to a non-trivial normal subgroup of

Gal(Q(E[5]x)/Q(ζ5) ' A5

contradicting the simplicity of A5. Since every finite subfield of K2 is of degree a
power of 2 and L is not contained in Q(E[5]x), it must be that L is quadratic over
Q(ζ5), and so

SL2(F5) ' Gal(Q(E[5])/Q(ζ5)) ' A5 × {±1}

which is not true. This contradiction shows that L = Q(ζ5). The fact that

G10 = {(σ, τ) | σ(ζ5) = τ(ζ5)} ⊂ G2 ×G5

is an immediate consequence, proving the theorem.

To find G30 we again use Goursat, since G30 ⊂ G3 ×G10.

Theorem 2.17. K3 ∩K10 = Q and G30 = G3 ×G10.
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Proof. Again let N3 and N10 denote the corresponding Goursat subgroups. We
know K3 has a unique quadratic subfield, which is Q(ζ3). Note that this subfield is
not contained in K3 ∩K10, since 3 ramifies in Q(ζ3) and K10 is unramified outside
2 and 5. From this it follows that G3/N3 is a 3-group. Let U = Gal(K10/Q(E[5])),
and map U to G3/N3 via

U −→ G10/N10
∼−→ G3/N3.

Since G2 is a pro-2 group and Gal(K5/Q(E[5])) is a pro-5 group, any finite quotient
of U has order of the form 2α5β, hence U must map to the identity in G3/N3, from
which U ⊂ N10 follows.

Let L = K3∩K10 = K3∩Q(E[5]) and let N be the normal subgroup of GL2(F5)
corresponding to L. As we previously saw, the field L must be a 3-power extension
of Q, hence

#GL2(F5)/N = 3k,

The Jordan-Hölder constituents of GL2(F5) are C2, C2, A5, C2, and A5 is the only
group from this list that has order divisible by 3, however it is simple and different
from C3, so it follows that no quotient of GL2(F5) has order a power of 3, so we
must have N = GL2(F5) and the conclusion follows.

Now that we know G30, we know the complete Galois representation of our
curve E. We summarize the results of this section in the following theorem.

Theorem 2.18. The integer m = 120 = 23 ·3 ·5 splits and stabilizes ρ, and we have

ρ(G) = G30 ×
∏
`>5

GL2(Z`),

where G30 = G120 = π−1(G(120)) with

G(120) = {(σ8, σ3, σ5) ∈ G(8)×G(3)×G(5) | σ8(ζ5) = σ5(ζ5)}.

The index of ρ(G) in GL2(Ẑ) equals 384.

3 Congruence conditions on the supersingular primes
of Y 2 = (X + 1)(X2 + 4)

We conclude by using the now known complete Galois representation of our curve
E to determine congruence conditions on its supersingular primes. We will see that
something even stronger holds, namely, we find congruence relations between the
trace of Frobenius tp and p modulo primes dividing m.

The complete Galois representation of E tells us that for the primes 2, 3 and 5
there are certain restrictions on the matrices one can get. The 3-power torsion field
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is independent of the 10-power torsion field, however there are still restrictions since
as we have seen we do not obtain all of GL2(Z3). With the 2-power torsion field
there are restrictions coming from the fact that we do not obtain all of GL2(Z2),
and additional restrictions coming from the intersection of the 2-power torsion field
with the 5-tower torsion field. We will see how these restrictions imply congruence
relations between tp and p for unramified primes p, modulo 2, 3 and 5.

We start with the prime 3 as this gives the simplest relations.

Proposition 3.1. Let p > 5 be a prime. Then we have tp ≡ 1 + p (mod 3).

Proof. Let σp be the Frobenius element at p. Then by Lemma 2.9 and theorem 2.10
we have that

ρ3(σp) ≡
(

1 a
0 b

)
(mod 3)

hence

1 + b ≡ tp (mod 3)
b ≡ p (mod 3)

from where tp ≡ 1 + p (mod 3) follows.

Remark 3.2. The previous proposition is also immediate from the fact that E has
a rational 3-torsion point, hence we have

p+ 1− tp ≡ #Ẽ(Fp) ≡ 0 (mod 3).

The congruence conditions that we will now derive are however more subtle.

Theorem 3.3. Let p > 5 be a prime. Then tp ≡ 0 (mod 8) implies p ≡ −1 or 11
(mod 40).

Proof. Let σp be the Frobenius element at p and suppose that tp ≡ 0 (mod 8). Then
as we have seen we have

ρ2(σp) ≡
(
a b
c d

)
(mod 4)

where (
a b
c d

)
≡
(

1 x
0 1

)
(mod 2)

and p ≡ ad − bc ≡ (−1)x (mod 4). Since tp ≡ 0 holds, we have a + d ≡ 0 (mod 4)
and so

−d2 − bc ≡ p (mod 4).

Suppose x = 0, that is, p ≡ 1 (mod 4). Then b ≡ 0 or 2, hence bc ≡ 0 (mod 4) and
so

−d2 ≡ 1 (mod 4),
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a contradiction, hence p ≡ −1 (mod 4).
Since p ≡ −1 (mod 4), it follows that ρ2(σp) does not act trivially on Q(i) =

Q(E[2]), hence Ẽ does not have full 2-torsion over Fp, in fact Ẽ(Fp)[2∞] is cyclic,
where Ẽ(Fp)[2∞] denotes the subgroup of all Fp-rational points having order a power
of 2. We do have however that

#Ẽ(Fp) = p+ 1− tp ≡ 0 (mod 4)

so Ẽ must have an point of order 4 over Fp. Let’s look at the lattice of subfields
arising from the 2-power and 5-power torsion.

Q

Q(
√

5)Q(
√
−5)Q(i)

Q(i,
√

5)Q(ζ8
√
−π)Q(ζ8

√
π)

Q(E[4]x)

Q(E[4])

Q(ζ5)Q(ζ20 + ζ−1
20 )

Q(ζ20)

Q(E[5])

Q(E[8])

Q(E[40])

2
2

2

2
2

2
2

2

2
2

2

2

2
2

2
2

2

8

16

120

Let P0 be a point of order 4 over Fp. Then there is a point P0 of order 4 over an
extension K of Q such that P0 maps to P0 under the reduction map E → Ẽ = (E
mod p), where p ⊂ K is a prime of good reduction above p. It follows that P0 is
defined over Fp precisely when the Frobenius element at p acts trivially on K.

It follows that one of ζ8
√
−π, ζ8

√
π,
√

5 is defined over Fp, hence ρ2(σp) acts
trivially on one of Q(ζ8

√
−π),Q(ζ8

√
π),Q(

√
5). Since p ≡ −1 (mod 4) holds,

ρ2(σp)(i) = −i follows and hence it must be
√

5 defined over Fp and it is the x-
coordinate of the Fp-rational point of order 4. It follows that σp acts trivially on
Q(
√

5), and since ρ5(σp) acts on Q(ζ5) via its determinant, it follows that

p = det ρ5(σp) ≡ ±1 (mod 5).
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So far we have shown that tp ≡ 0 (mod 8) implies p ≡ −1 (mod 4) and p ≡ ±1
(mod 5). We now see what happens mod 8. Since p is −1 mod 4 it is either 3 or
−1 mod 8. We show that

p ≡ −1 (mod 8) =⇒ p ≡ −1 (mod 5).

Suppose then that that 8|p+1. Note then that 8|#Ẽ(Fp). Since Ẽ(Fp)[2∞] is cyclic,
it follows that Ẽ must also have an Fp-rational point P8 of order 8. If we denote
by P4 the torsion point of order 4 over Fp, then P8 must satisfy that 2P8 = P4.
By computing P8 from P4 using 2-descent, it follows from (1), §2.3, that we have
Q(ζ20 + ζ−1

20 ) = Q(β), where β is the x-coordinate of P8.
We conclude then that ρ2(σp) acts trivially on Q(ζ20 + ζ−1

20 ), so it cannot act
trivially on Q(ζ5), for if it did it would also act trivially on Q(i), which is not the
case. Since ρ5(σp) acts on ζ5 via its determinant and it does not fix ζ5, we conclude
p ≡ −1 (mod 5).

Finally suppose p ≡ 3 (mod 8). This implies that Ẽ does not have a rational
point of order 8, hence ρ2(σp) does not fix Q(ζ20 + ζ−1

20 ). We know it also does not
fix Q(i,

√
5), which means that p does not split completely in either of these two

fields. This tells us that p is inert going from Q(
√

5) to Q(i,
√

5) and also going from
Q(
√

5) to Q(ζ20 + ζ−1
20 ). However, since Q(ζ20)/Q(

√
5) is a V4 extension and p is

unramified, this implies that p splits in Q(ζ5), hence p ≡ 1 (mod 5). This concludes
the proof of the theorem.

We are now ready to answer the question posed at the beginning of this thesis.

Corollary 3.4. Let p > 5 be a supersingular prime of the curve

E : Y 2 = X(X2 − 2X + 5).

Then p ≡ −1 or 11 (mod 120).

Proof. If p is supersingular, then tp = 0, hence tp is 0 mod 3 and mod 8. The result
then follows by putting together the congruence conditions obtained in Proposition
3.1 and Theorem 3.3.
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