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1 General Introduction

This master thesis considers a topic that is located at the intersection of probability
theory, functional analysis and semigroup theory, and inspired by biology. It presents
the construction of a stochastic process that appears in biological population, as a
kind of a ’stochastically switched stochastic process’, that we will describe below in
more detail. The work was motivated by a cell-cycle model, as found in [11] and [4],
and its generalizations, as given in [5] and [3]. These articles are about deterministic
structured population models, and although they assume implicitly the existence of
an underlying stochastic process, it is not clear whether there is one or not. A full
description of the conditions for the process is given in Section 3, but here we will
give a rough outline.

Suppose one has a population of living organisms (cells, bacteria), capable of
growing and dividing, depending on nutrients. One can ask in what amounts new
nutrients should be applied to optimize the growth of these organisms.

Every individual of this population is assumed to have a state. For instance, when
individual means cell, a possible state could be its size. To make analysis possible,
we assume that the individual’s state is, at every time t ∈ R+, an element of a state
space S, which is a separable metric space.

In A cell cycle model, the state is assumed to be the cell size, and the following
assumptions are made:

(1) The growth of a cell from its birthsize is deterministic.

(2) The time at which a cell either divides or dies is random.

(3) Given that a cell divides, its size is halved and the size of the daughter cell is
halve the size of the mother just before birth. In case of death, the individual
attains a special dead-state.

In [11], [4], an integral equation is derived for the time evolution of the measure
on the state space S, (that is, the ’size space’, ) say µt, such that for any measurable
Γ ⊂ S, µt(Γ) is the expected number of individuals with state (i.e. size) in Γ at time
t. Although not explicitly stated, essentially, using [5] and [3], it is a variation of
constants formula, of the form

µt(Γ) = (T (t)µ0) (Γ) +

∫ t

0

(T (t− s)F (µs)) (Γ)ds, (1)

where (T (t))t≥0 is a semigroup in the space of finite Borel measures on S, denoted
by M(S), and F : M(S) →M(S) a map. The semigroup (T (t))t≥0 and the pertur-
bation F are are based on a description of parts (1), (2) and (3) above.

Two issues arose. On the one hand, equation 1 is a pointwise equation, that is, all
measures involved are evaluated in a measurable set Γ. It is customary to consider
such equations in an appropriate Banach space of measures. One of the objectives
was to understand equation 1 as an equation in a Banach sapce of measures, using
the Bochner integral, such that the pointwise version 1 follows. In this we succeeded,
see Proposition 5.9, using the Banach space SBL that contains the set P(S) of all
probability measures on S. This Banach space is described in Section 2.1.3.
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On the other hand, we were interested in the way equation 1 was derived directly
from processes (1), (2) and (3), using the details of the stochastic processes involved.
It seemed that this path had not been taken into account in [11], [4], [5] and [3].
After some time we discovered that this is still an open problem. We decided to
proceed further, and investigate the situation.

Our idea, in line with [5] and [3], to get an understanding of the dynamics of
the population, is to first make a model of the evolution of the law of the stochastic
process for an individidual. Then one may try to “sum those” to obtain a suitable
population description.

This thesis is only about the first part, that is, to give a description for the law of
a stochastic process that is build for the assumptions (1),(2) and (3), above. However,
while constructing a model of the evolution of the individual we keep in mind that
there is an environment, partially consisting of the population, surrounding the
individual.

Since we only consider one individual, we will only look at one of the two daughter
cells, in case a cell divides. Or, one may argue that we only follow the fate of the
mother before and after division.

Although the assumptions are made in A cell cycle mode, our assumptions will
be more general. Generalizations are:

• The deterministic growth process is replaced by a stochastic growth process,
with càdlàg sample trajectories.

• The deterministic jump in state space, assumption (3), may be random as well,
i.e., is a measurable function.

The outline of this thesis is as follows. Section 2 consists of two subjects. First
metric spaces and Lipschitz functions are introduced, and how measures can be
viewed as functionals. The second subject is about products, finite and infinite, of
probability spaces, and how one can define probability measures on those spaces.
In Section 3, it is explained how the space of all trajectories is viewed as an in-
finite product of probability spaces, and how a probability measure P , the law of
the underlying stochastic process, is constructed. The two main objectives in the
remainder of that section is first to show that a certain subset R of the collection of
all trajectories, this subset being the collection of all realistic trajectories, is mea-
surable. Second, that the law P is concentrated on this subset R, that is, we will
prove that we have P (R) = 1. In Section 4 the model is simplified, using techniques
of Bochner integration.
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2 Preliminaries

2.1 Metric spaces

In this section we will give a definition and some examples of metric spaces. Metric
spaces are important in this thesis, since the state space we will be working at is
one. We will also show some ways of how to make new metric space from a given
metric space. We will be using this several times further on.

Definition 2.1 A metric d on a set S is a function d : S × S → R such that for
all x, y, z ∈ S
i) d(x, y) = 0 ⇐⇒ x = y;

ii) d(x, y) = d(y, x);

iii) d(x, z) ≤ d(x, y) + d(y, z).

In this case, the pair (S, d) is called a metric space.

The second condition is often called symmetry, and the third is called the triangle
inequality.

Lemma 2.2 Let (S, d) be a metric space. We have d(x, y) ≥ 0 for all x, y ∈ S.

Proof: For x, y ∈ S set z = x in iii). We see that

0 = d(x, x) ≤ d(x, y) + d(y, x) = 2d(x, y).

Hence d(x, y) ≥ 0

Examples are S = R with metric d(x, y) = |x − y|, or more general S = Rn with
d(x, y) =

√∑n
k=1(xi − yi)2. It should be familiar that any normed space X is a

metric space with metric d(x, y) = ‖x − y‖. In the following lemma’s we will show
how to make new metrics out of existing ones.

Lemma 2.3 Let (S, d) be a metric space, and let c ∈ R+ = (0,∞). Then dc defined
by dc(x, y) = min(d(x, y), c) is a metric on S.

Proof: It is obvious that dc(x, y) = 0 ⇐⇒ x = y and that dc(x, y) = dc(y, x).
For the triangle inequality, suppose dc(x, z) = c. It follows that c ≤ d(x, z) ≤
d(x, y) + d(y, z). So

dc(x, y) + dc(y, z) =





d(x, y) + d(y, z) if d(x, y) ≤ c, d(y, z) ≤ c,
d(x, y) + c if d(x, y) ≤ c, d(y, z) > c,
d(y, z) + c if d(x, y) > c, d(y, z) ≤ c,
2c if d(x, y) > c, d(y, z) > c.

In particular, it follows that dc(x, y) + dc(y, z) ≥ c. Hence in this case, the triangle
inequality follows. On the other hand, if dc(x, z) < c, then

dc(x, z) = d(x, z) ≤ d(x, y) + d(y, z) = dc(x, y) + dc(y, z).

So also in this case, the triangle inequality follows. Hence dc is a metric on S.
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Definition 2.4 Given a metric space (S, d) we define the diameter of a subset A ⊂
S as

diam(A) = sup{d(x, y) : x, y ∈ A} ∈ [0,∞].

If (S, d) is a metric space, then one can always define a new metric such that
diam(S) ≤ 1 for this new metric. First we will show how to create a new metric via
a function.

Lemma 2.5 Let (S, d) be a metric space. If ϕ : R+ → R+ satisfies the following
three conditions

i) ϕ(x) = 0 ⇐⇒ x = 0;

ii) ϕ is non-decreasing;

iii) ϕ is subadditive, that is, ϕ(x+ y) ≤ ϕ(x) + ϕ(y) for all x, y ∈ R+;

then dϕ defined by dϕ(x, y) = ϕ(d(x, y)) is a metric on S.

Proof: We have

dϕ(x, y) = 0 ⇐⇒ ϕ(d(x, y)) = 0 ⇐⇒ d(y, x) = 0 ⇐⇒ x = y.

Symmetry is also immediate; dϕ(x, y) = ϕ(d(x, y)) = ϕ(d(y, x)) = dϕ(y, x). The
triangle inequality follows from assumptions ii) and iii). Indeed, we have

dϕ(x, z) = ϕ(d(x, z)) ≤ ϕ(d(x, y) + d(y, z))

≤ ϕ(d(x, y)) + ϕ(d(y, z)) = dϕ(x, y) + dϕ(y, z).

The following lemma gives us certain conditions on a function f , so that it is non-
decreasing and subadditive.

Lemma 2.6 If ϕ : R+ → R+ has a continuous derivative, ϕ(0) = 0 and ϕ′ is
non-increasing, then ϕ is non-decreasing and subadditive.

Proof: That ϕ is non-decreasing follows from the condition that ϕ′ is non-increasing.
Suppose, by contradiction, that there are a, b ∈ R+ such that a ≥ b and ϕ(b) < ϕ(a).
Then, by the Mean Value Theorem, there exists x ∈ [a, b] such that ϕ′(x) =
ϕ(b)−ϕ(a)

b−a
< 0. But since the image of ϕ is bounded from below, it is obvious that

there must exist a y > x such that ϕ′(y) > ϕ′(x), but this cannot happen since ϕ′

is non-increasing. Therefore ϕ is non-decreasing.
Since we assume that ϕ(0) = 0 we have by the Fundamental Theorem of Calculus,

∫ x

0

ϕ′(t)dt = ϕ(x).
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Now let x, y ∈ R+. Without loss of generality we may assume that x ≥ y. Since ϕ′

is non-increasing it follows that

ϕ(x+ y) =

∫ x+y

0

ϕ′(t)dt =

∫ x

0

ϕ′(t)dt+

∫ x+y

x

ϕ′(t)dt

=

∫ x

0

ϕ′(t)dt+

∫ y

0

ϕ′(u+ x)du

≤
∫ x

0

ϕ′(t)dt+

∫ y

0

ϕ′(u)du

= ϕ(x) + ϕ(y).

Hence ϕ is subadditive.

It is now clear that if ϕ : R+ → R+ satisfies the conditions in Lemma 2.6, together
with the condition ϕ(x) = 0 ⇐⇒ x = 0, then dϕ as in Lemma 2.5 is a metric. It is
now possible, given a metric d, to create a new metric d′ such that diam(S) ≤ 1 for
d′.

Corollary 2.7 If (S, d) is a metric space, then the map d′ : S × S → R defined by

d′(x, y) =
d(x, y)

1 + d(x, y)

is a metric on S such that diam(S) ≤ 1.

Proof: Note that d′ is exactly dϕ where

ϕ(x) =
x

1 + x
.

It is clear that ϕ(0) = 0 and ϕ′(x) = 1
(1+x)2

is continuous and non-increasing. It
follows from Lemma 2.5 and Lemma 2.6 that dϕ is a metric. It is obvious that
dϕ(x, y) < 1 for all x, y ∈ S, so diam(S) ≤ 1.

Although the space with its new metric dϕ could become bounded, as long as ϕ
is strictly increasing and right-continuous at 0, the collection of open sets has not
changed.

Lemma 2.8 U ⊂ S is open with respect to d if and only if U is open with respect
to dϕ, whenever ϕ is strictly increasing.

Proof: Let U be open with respect to the metric d. If x ∈ U , then there exists an
r > 0 such that {y :∈ S : d(x, y) < r} ⊂ E. Set rϕ = ϕ(r). By the assumptions on
ϕ we have

{y ∈ S : dϕ(x, y) < rϕ} = {y ∈ S : ϕ(d(x, y)) < ϕ(r)}
= {y ∈ S : d(x, y) < r} ⊂ U.

So we have that U is open with respect to d′.
Since we assumed that ϕ is strictly increasing, it follows that ϕ is injective. So one
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can consider its inverse ϕ−1 defined on domain ϕ(R+). Suppose that U ⊂ S is open
with respect to dϕ. If x ∈ U , then there is an r ∈ ϕ(R+) such that {y ∈ X :
dϕ(x, y) < r} ⊂ U . Set rϕ−1 = ϕ−1(r). We have

{y ∈ S : d(x, y) < r} = {y ∈ S : dϕ(x, y)) < ϕ(rϕ−1) = r} ⊂ U.

Note that the new metric in Corollary 2.7 does not change the underlying topology,
since the ϕ used in the proof is strictly increasing, so the previous lemma 2.8 holds.
For a metric space (S, d) with a finite diameter, such that S consists of more than
one point, it is possible to add a point ∞, such that the new space S ′ = S ∪ {∞} is

again metric and the new point ∞ has distance c = diam(S)
2

to all other points. The
new metric d′ will be defined as

d′(x, y) =





d(x, y) if x, y ∈ S,
c if x ∈ S, y = ∞,
c if y ∈ S, x = ∞,
0 if x = y = ∞.

A metric space (S, d) which consists of only one point can also be extended in the
same way, by taking an arbitrary positive number c.
Given a metric space (S, d), possibly with infinite diameter, it is also possible to
add a point, say ∞, and extend the metric. This can be done by applying Corollary
2.7, add infinity and construct d′ as above. Although after applying Corollary 2.7
the underlying topology does not change, sometimes it is better not to change the
metric d in the first place. In that case, one can still add a point infinity and make
S ∪ {∞} into a metric space. Therefore, fix c ∈ S, and define

d′(x, y) =





d(x, y) if x, y ∈ S,
d(x, c) + 1 if x ∈ S, y = ∞,
d(y, c) + 1 if y ∈ S, x = ∞,

0 if x = y = ∞.

In the next lemma it is explained that a product of n metric spaces is again a metric
space.

Lemma 2.9 Let (S1, d1), . . . , (Sn, dn) be n metric spaces. Then S1 × . . . × Sn is a
metric space with metric d defined as

d((x1, . . . , xn), (y1 . . . , yn)) = max{d1(x1, y1), . . . , dn(xn, yn)}.

Proof: Let x = (x1, . . . , xn), y = (y1, . . . , yn) and z = (z1, . . . , zn). It is obvious
that d(x, y) ≥ 0 and that d(x, y) = 0 if and only if x = y. It is also obvious that
d(x, y) = d(y, x). By the triangle inequality at each di, it follows that

di(xi, zi) ≤ max{d1(x1, y1), . . . , dn(xn, yn)}+ max{d1(y1, z1), . . . , dn(yn, zn)},

for every i = 1, . . . , n. Hence

d(x, z) = max{d1(x1, z1), . . . , dn(xn, zn)} ≤ d(x, y) + d(y, z).
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The metric d defined as in the previous Lemma 2.9 is called the product metric.
A sequence {xn} in a metric space (S, d) is called convergent if there is an element
x ∈ S such that d(x, xn) → 0 as n → ∞. A sequence {xn} is called a Cauchy
sequence when d(xm, xn) → 0 as n→∞.
A subset A ⊂ S is called dense when its closure A equals S.

Definition 2.10 A metric space (S, d) is called complete when every Cauchy se-
quence is convergent.

Definition 2.11 A metric space (S, d) is called separable when there exists a
countable dense subset A.

2.1.1 Lipschitz functions

A Lipschitz function is a special kind of continuous functions, namely one that
cannot change too fast. Lipschitz functions will be used when creating a certain
metric, described in the next section. Also, the set of all bounded Lipschitz functions
turns out to be a vector space. Its dual space plays a central role in section 2.1.3.

Definition 2.12 Let (S, d) be a metric space. A function f : S → R is called a
(globally) Lipschitz continuous function if there exists a constant L such that

|f(x)− f(y)| ≤ Ld(x, y)

for all x, y ∈ S. The smallest L for which the inequality holds will be denoted by |f |L
and is called the Lipschitz constant.

One easily verifies that

|f |L = sup

{ |f(x)− f(y)|
d(x, y)

: x 6= y, x, y ∈ S
}
.

We will now give a few examples of Lipschitz functions, and how to create new
Lipschitz functions from existing ones.

Lemma 2.13 Given an element x0 ∈ S, the function f : S → R defined by f(x) =
d(x, x0) is Lipschitz continuous with |f |L ≤ 1.

Proof: From the triangle-inequality it follows that

d(x, x0)− d(y, x0) ≤ d(x, y),

d(y, x0)− d(x, x0) ≤ d(x, y).

Given x, y ∈ S, we thus have

|f(x)− f(y)| = |d(x, x0)− d(y, x0)| ≤ d(x, y).

Lemma 2.14 Given a closed subset C ⊂ S, the function f : S → R defined by
f(x) = d(x,C) = infy∈C d(x, y) is Lipschitz continuous with |f |L ≤ 1.
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Proof: Suppose x 6= y. By definition we have

|f(x)− f(y)|
d(x, y)

=
|infz∈C d(x, z)− infz∈C d(y, z)|

d(x, y)
.

Fix z ∈ C. Observe that

inf
z′∈C

d(x, z′)− inf
z′∈C

d(y, z′) ≤ d(x, z)− infz′∈Cd(y, z
′)

= inf
z′∈C

[d(x, z)− d(y, z′)]

≤ inf
z′∈C

[d(x, z′) + d(z, z′)− d(y, z′)]

≤ inf
z′∈C

[d(x, y) + d(z, z′)]

= d(x, y) + inf
z′∈C

d(z, z′)

= d(x, y)

So infz′∈C d(x, z
′) − infz′∈C d(y, z

′) ≤ d(x, y). It also follows that infz′∈C d(x, z
′) −

infz′∈C d(y, z
′) ≥ −d(x, y), since this is true if and only if infz′∈C d(y, z

′)−infz′∈C d(x, z
′) ≤

d(x, y) which is obviously true. We conclude that

|infz∈C d(x, z)− infz∈C d(y, z)|
d(x, y)

≤ 1.

Let Lip(S) be the set of all Lipschitz continuous functions from S to R.

Lemma 2.15 Lip(S) is a vector space and | · |L : Lip(S) → R+ is a seminorm.

Proof: Suppose f is Lipschitz with Lipschitz constant |f |L and g is Lipschitz with
Lipschitz constant |g|L. Then, given x, y ∈ S.

|(f + g)(x)− (f + g)(y)| = |f(x)− f(y) + g(x)− g(y)|
≤ |f(x)− f(y)|+ |g(x)− g(y)|
≤ (|f |L + |g|L)d(x, y).

Hence f + g is Lipschitz. Clearly, if f is Lipschitz with constant |f |L, then for every
λ ∈ R we have that λf is again Lipschitz with constant |λf |L = |λ||f |L.

We will conclude this section with giving examples of Lipschitz functions as well as
showing how to make new Lipschitz functions out of existing ones.

Definition 2.16 Given two functions f and g, both from S to R, we define f ∨ g
and f ∧ g : S → R as

(f ∨ g)(x) = max(f(x), g(x)),

and
(f ∧ g)(x) = min(f(x), g(x)).

Lemma 2.17 For any finite sequence f1, . . . , fn of Lipschitz functions, we have that
both f = f1 ∨ . . . ∨ fn and g = f1 ∧ . . . ∧ fn are Lipschitz functions with Lipschitz
constants |f |L ≤ max(|f1|L, . . . |fn|L) and |g|L ≤ max(|f1|L, . . . |fn|L).
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Proof: Set f = f1 ∨ . . . ∨ fn, and let x, y ∈ S. Then we have f(x) = fi(x), f(y) =
fj(y) for some i, j. First suppose that i = j. Then we have

|f(x)− f(y)| = |fi(x)− fi(y)| ≤ |fi|Ld(x, y).
Now suppose i 6= j. Then we have either fj(y) > fi(x), fj(y) < fi(x), or fj(y) =
fi(x). In the first case, we have |fi(x)− fj(y)| ≤ |fj(x)− fj(y)| ≤ |fj|Ld(x, y) while
in the second case we have |fi(x)−fj(y) ≤ |fi(x)−fi(y)| ≤ |fi|Ld(x, y). In the third
case we already have |fi(x)− fj(y)| = 0. From this we conclude that

|f(x)− f(y)| ≤ max(|fi|L, |fj|L)d(x, y).

When x and y vary over S, i and j will vary in {1, 2, . . . , n}. Therefore, for any
x, y ∈ S, we have

|g(x)− g(y)| ≤ max(|fi|L, . . . , |fn|L)d(x, y).

A similar argument holds for g = f1 ∧ . . . ∧ fn. Indeed, let x, y ∈ S. Then there
are i and j such that g(x) = fi(x) and g(y) = fj(y). If i = j, then |g(x) − g(y)| =
|fi(x)− fi(y)| ≤ |fi|Ld(X, y). If i 6= j, then we have in case fi(x) < fj(y) that

|fi(x)− fj(y)| ≤ |fi(x)− fi(y)| ≤ |fi|Ld(x, y),
and in case fi(x) > fj(y),

|fi(x)− fj(y)| ≤ |fj(x)− fj(y)| ≤ |fj|Ld(x, y).
So for any x, y ∈ S, |g(x)− g(y)| ≤ max(|f1|L, . . . , |fn|L)d(x, y)

Lemma 2.18 If diam(S) <∞, then given an element x0 ∈ S, the function f : S →
R defined by f(x) = d(x, x0) is bounded. Otherwise, f will not be bounded.

Proof: Suppose diam(S) < ∞. Then d(x, x0) ≤ diam(S) < ∞. If diam(S) is not
bounded, then for every M there will be a pair x, y ∈ S such that d(x, y) > 2M .
Because of the triangle-inequality d(x, y) ≤ d(x, x0) + d(y, x0), we conclude that at
least one of the terms, d(x, x0) or d(y, x0) is greater than M . Hence f is not bounded.

Lemma 2.19 For every c ∈ R and x0 ∈ S, the function f : S → R defined by
f(x) = c ∧ d(x, x0), is a Lipschitz function which is also bounded.

Proof: For any c ∈ R, the constant function g : S → R, g(x) = c for all x ∈ S, is
a Lipschitz functions, since |g(x) − g(y)| = |c − c| = 0. The functions h : S → R
defined by h(x) = d(x, x0) is also a Lipschitz by Lemma 2.13. Hence, by Lemma
2.17, it follows that f is Lipschitz. f is also bounded, because |f(x)| ≤ c.

Lemma 2.20 If f : R → R and g : R → R are both Lipschitz continuous functions,
then f ◦ g is also a Lipschitz continuous function.

Proof: Just note that

|f(g(x))− f(g(y))| ≤ |f |L|g(x)− g(y)| ≤ |f |L|g|L|x− y|.

9



2.1.2 Càdlàg functions

Definition 2.21 Let (S, d) be a metric space. A function f : E → S, where E ⊂ R,
is a càdlàg function if for every t ∈ E we have

• the left limit f(t−) := lims↑t f(s) exists;

• the right limit f(t+) := lims↓t f(s) exists and f(t+) = f(t).

g

time t

S

2.6 6.3

Figure 1: A possible càdlàg-function

So f is right-continuous with left limits. The term càdlàg stands for the French “
continue à droite, limite à gauche”.

Càdlàg functions are important in this thesis. We denote by DS the space of all
càdlàg-functions f : R+ → S.

We are interested in making DS a measurable space. Fortunately, there exists a
metric on the space, called the Skorohod metric, such that it is separable and
complete, as long as S is separable and complete. The construction of this metric is
rather complicated, and the proof that the constructed function d is indeed a metric
is omitted. For a proof and a more detailed treatment, we refer to [9]
Let d′ be a new metric on S defined by d′(x, y) = d(x, y) ∧ 1. By Lemma 2.3, it
follows that d′ is a metric on S. Consider the collection Λ′ of strictly increasing
surjective functions f : [0,∞) → [0,∞). Note that f is continuous, f(0) = 0 and
limt→∞ f(t) = ∞. Consider the subset Λ ⊂ Λ′ of Lipschitz continuous functions f
such that

γ(f) = ess sup
t≥0

| log f ′(t)| = sup
s>t≥0

∣∣∣∣log
f(s)− f(t)

s− t

∣∣∣∣ <∞.

For x, y ∈ DS, f ∈ Λ and u ∈ [0,∞), define

ϕ(x, y, f, u) = sup
t≥0

d′(x(t ∧ u), y(f(t) ∧ u)).

For x, y ∈ DS, define dD on DS as

dD(x, y) = inf
f∈Λ

[
γ(f) ∨

∫ ∞

0

e−ud′(x, y, f, u)du
]
.
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Theorem 2.22 Let (S, d) be a metric space. The space DS together with dD defined
above is a metric space, such that the following properties hold.

i) If S is separable, then DS is separable;

ii) If S is complete, then DS is complete;

iii) If S is separable, then the Borel-σ-algebra of DS equals the smallest σ-algebra
such that for every t ≥ 0, the evaluation function evt : DS → S, defined by
evt(f) := f(t), is measurable. In other words, the Borel-σ-algebra B(DS) is
generated by

{ev−1
t (E) : t ≥ 0, E ⊂ S measurable}

2.1.3 Measures on metric spaces viewed as functionals

Definition 2.23 Let (S, d) be a metric space. The space of bounded Lipschitz func-
tions, denoted by BL(S, d), is the normed space

BL(S, d) = {f : S → R : f is Lipschitz continuous and ‖f‖∞ <∞},
‖f‖BL = max(‖f‖∞, |f |L).

Since BL(S, d) is a normed space, its dual BL(S, d)∗ is a Banach space. Consider
the Dirac measure δx defined by

δx(A) =

{
1 x ∈ A;
0 x 6∈ A.

Then we have, for every measurable function f : S → R,
∫

S

f(y) dδx(y) = f(x).

One can prove this by beginning with the characteristic function f = 1A on a mea-
surable set A, noting that 1A(x) = δx(A). Then use linearity of the integral and the
Monotone Convergence Theorem.

We can view the measure δx as a function from BL(S) to R by writing

δx(f) :=

∫

S

f(y) dδx(y) = f(x), f ∈ BL(S).

Lemma 2.24 For every x ∈ S, we have that δx ∈ BL(S)∗ and ‖δx‖BL∗ = 1.

Proof: Let x ∈ S, and ϕ ∈ BL(S). Since ϕ(x) < ∞ for all ϕ ∈ BL(S), it follows
that δx is bounded, and hence δx ∈ BL(S)∗. Now suppose ‖ϕ‖BL = 1. In particular,
we have that ‖ϕ‖∞ ≤ 1 and hence

‖δx‖BL∗ = sup
‖ϕ‖BL=1

|δx(ϕ)| = sup
‖ϕ‖BL=1

|ϕ(x)| ≤ 1.

Now take ϕ ∈ BL(S) defined by ϕ(x) = 1 for all x. Then ‖ϕBL‖ = 1 and

|δx(ϕ)| = |ϕ(x)| = 1,

so it follows that ‖δx‖BL∗ = 1.

11



Lemma 2.25 For every x, y ∈ S, we have

1 ∧ d(x, y) ≤ ‖δx − δy‖BL∗ ≤ 2 ∧ d(x, y).

Proof: Otherwise trivially, suppose that x 6= y. In any case we have

‖δx − δy‖BL∗ ≤ ‖δx‖BL∗ + ‖δy‖BL∗ = 2.

And, for any ϕ with norm 1, it automatically follows that |ϕ|L ≤ 1, from which it
follows that

‖δx − δy‖BL∗ = sup
‖ϕ‖BL=1

|δx(ϕ)− δy(ϕ)| = sup
‖ϕ‖BL=1

|ϕ(x)− ϕ(y)| ≤ d(x, y).

From these two inequalities we have the first inequality

‖δx − δy‖BL∗ ≤ 2 ∧ d(x, y).
Now consider the function ϕ : s 7→ d(s, y)∧1 from S to R. By Lemma 2.19, we have
that ϕ ∈ BL(S). Furthermore we claim that ‖ϕ‖BL ≤ 1. To see this, first note that
by Lemma 2.17 we have |ϕ|L ≤ max(|d(·, y)|L, |1|L), where |d(·, y)|L is the Lipschitz
constant of the function s 7→ d(s, y). Since |1|L = 0, it follows from Lemma 2.13
that |ϕ|L ≤ 1. It is also clear that ‖ϕ‖∞ ≤ 1. Hence ‖ϕ‖BL ≤ 1. From this, we get
the following result: If d(x, y) < 1, then this will give us |ϕ(x) − ϕ(y)| = |d(x, y) −
d(y, y)| = d(x, y). Otherwise, if d(x, y) ≥ 1, then |ϕ(x) − ϕ(y)| = |1 − d(y, y)| = 1.
From this we conclude the first inequality

1 ∧ d(x, y) = |ϕ(x)− ϕ(y)| ≤ sup
‖ϕ‖≤1

|(δx − δy)(ϕ)| = ‖δx − δy‖BL∗ .

Corollary 2.26 If diam(S) ≤ 1 then ‖δx − δy‖BL∗ = d(x, y).

Now define

D := spanR{δx : x ∈ S},
D+ := spanR+

{δx : x ∈ S},

furthermore define SBL as the closure of D in BL(S)∗ and S+
BL as the closure of D+.

Proposition 2.27 If S is a separable metric space, then SBL is separable.

Proof: Let A be a countable set such that its closure A equals S. Consider

Γ = spanQ{δy : y ∈ A} =

{
n∑

k=1

αkδyk
, n ∈ N, αk ∈ Q, yk ∈ A

}
.

We will prove that Γ is countable and Γ = SBL. First we will prove that Γ is
countable. Therefore note that

Γ =
∞⋃

n=1

{
n∑

k=1

αkδyk
, αk ∈ Q, yk ∈ A

}
.

12



We have that {αkδyk
, αk ∈ Q, yk ∈ A} is countable, since this set equals Q× A. So

it follows that for every n ∈ N the set {∑n
k=1 αkδyk

, αk ∈ Q, yk ∈ A} is countable.
Hence also ∪∞n=1{

∑n
k=1 αkδyk

, αk ∈ Q, yk ∈ A}. So we proved that Γ is countable.

Now we prove Γ = SBL. We obviously have Γ ⊂ SBL, and since SBL is closed,
we have Γ ⊂ SBL. So we only need to prove that SBL ⊂ Γ. Therefore, let x ∈ SBL.
Then either x =

∑n
k=1 αkδyk

, with n ∈ N, αk ∈ R and yk ∈ S, or x is a limit point
of such elements. First suppose that x =

∑n
k=1 αkδyk

. Then, for every k there exists

a sequence (β
(k)
j ) such that β

(k)
j → αk, j → ∞, and a sequence (z

(k)
j ) such that

δ
z
(k)
j
→ δyk

, j →∞. The latter convergence is in BL(S)∗. So for every k we have

‖β(k)
j δ

z
(k)
j
− αkδyk

‖BL∗ ≤ ‖β(k)
j δ

z
(k)
j
− αkδz(k)

j
‖+ ‖αkδz(k)

j
− αkδyk

‖
= ‖(β(k)

j − αk)δz(k)
j
‖+ ‖αk(δz(k)

j
− δyk

)‖
= |(β(k)

j − αk)|‖δz(k)
j
‖+ |αk|‖δz(k)

j
− δyk

‖.

The last term converges to 0 as j → ∞, since ‖δ
z
(k)
j
‖BL∗ = 1 for all j, by Lemma

2.24. It follows that the sequence (β
(k)
j δ

z
(k)
j

) is a sequence in Γ converging to αkδyk
.

So we have x ∈ Γ.
Now suppose x ∈ SBL where x = limn→∞ xm, with xm =

∑n
k=1 α

(m)
k δ

(m)
yk . We already

proved that xm ∈ Γ for every m, so the sequence (xm) is actually a sequence in Γ.
Since Γ is closed, it follows that its limit point x is an element of Γ. We conclude that
SBL ⊂ Γ, and hence Γ = SBL. Since Γ is countable, it follows that SBL is separable.

Let M+
s (S) the set of all positive Borel measures on S, such that there exists a

separable Borel measurable subset E ⊂ S with µ(S \E) = 0. The following theorem
is taken from [13, Theorem 3.9, p11]. The proof can be found there.

Theorem 2.28 M+
s (S) ⊂ S+

BL.

Corollary 2.29 Let (S, d) be a separable metric space. The space P(S) of all prob-
ability measures on S, is a subset of SBL.

Proof: Since S is separable, we have M+
s (S) = M+(S). We always have P(S) ⊂

M+(S), so by Theorem 2.28 it follows that

P(S) ⊂M+(S) = M+
s (S) ⊂ S+

BL ⊂ SBL.

It is worth noticing that there exists a metric on P(S), called the Prokhorov metric
[14]. However, we will work with the metric induced by the norm on SBL. These two
metric are equivalent, provided that S is separable (see [7, Theorem 11.3.3, p395])
The following theorem gives a relation between the spaces S∗BL and BL(S). The
proof can be found in [13, Theorem 3.7, p10].

Theorem 2.30 S∗BL is isometrically isomorphic to BL(S) under the map ψ 7→ Tψ,
where Tψ(x) = ψ(δx).
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2.2 Measures on products of probability spaces

2.2.1 A finite product of probability spaces

In this section we will show that a finite product of measurable spaces is again
measurable, and we will state some features. We will also show how to construct
a certain kind of probability measure defined on a product of two probability spaces.

Suppose (Xi,Mi, µi) are measurable spaces for i = 1, 2, . . . , n, and consider X =∏n
i=1Xi. The product-σ-algebra is the σ-algebra M on X generated by

E =

{
n∏

i=1

Ei : Ei ∈Mi

}
.

Lemma 2.31 The set E defined above is a semiring.

Proof: It is obvious that ∅ ∈ E . Let n = 2. It is clear that for two elements
E = E1×E2 and F = F1×F2 we have E∩F = E1∩F1×E2∩F2 ∈ E . Furthermore,

E \ F = (E1 × E2) \ (F1 × F2) = ((E1 \ F1)× E2) ∪ ((E1 ∩ F1)× (E2 \ F2)),

so the difference is a union of elements in E . Using induction, it should be clear that
the equality also holds for larger n. So E is a semiring.

Lemma 2.32 Let (X,MX) and (Y,MY ) be two measurable spaces. Suppose that
MX is generated by a set EX and that MY is generated by a set EY . If X ∈ E(X)
and Y ∈ E(Y ), then the product σ-algebra MX×Y of subsets of X × Y is generated
by

EX×Y = {E × F | E ∈ EX , F ∈ EY }.

Proof: The product σ-algebra in X × Y is by definition

MX×Y := M({E × F | E ∈MX , F ∈MY }).
So we need to show that M(EX×Y ) = MX×Y . First of all, since EX×Y ⊂MX×Y , it
follows from Lemma A.3 that M(EX×Y ) ⊂MX×Y . So we need to show that

{E × F | E ∈MX , F ∈MY } ⊂ M(EX×Y ).

Now note that it suffices to show that

{E × Y | E ∈MX} ⊂ M(EX×Y ),

{X × F | F ∈MY } ⊂ M(EX×Y ).

We will prove the inclusion {E × Y | E ∈ MX} ⊂ M(EX×Y ), the other inclusion
can be shown similarly.

First note that {E × Y | E ∈ EX} ⊂ EX×Y , since we assumed that Y ∈ EY . So
we have

M({E × Y | E ∈ EX}) ⊂M(EX×Y ).
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Then note that, by assumption, {E × Y | E ∈MX} = M(EX)× {Y }. To prove the
inclusion, we will prove the equality

M({E × Y | E ∈ EX}) = M(EX)× {Y }.

Set M′ = M({E × Y | E ∈ EX}) and Σ = {G ⊂ X| G× Y ∈M′}.
We will show that Σ is a σ-algebra. Suppose E ∈ Σ. Then E is of the form E = G×Y ,
and so Ec = Gc × Y . Since Gc ∈ M′, it follows that Ec ∈ Σ. Next, suppose
E1, E2, . . . ∈ Σ. Then Ei is of the form Ei = Gi × Y and ∪∞i=1Gi = (∪∞i=1Gi) × Y ,
so ∪∞i=1Ei ∈ Σ. So indeed, Σ is a σ-algebra. We claim that M(EX) ⊂ Σ. Indeed, for
E ∈ EX , we have that E × Y ∈ M′ and hence E ∈ Σ. From Lemma A.3, it follows
that M(EX) ⊂ Σ. We find that

M(EX)× {Y } ⊂ Σ× {Y } ⊂ M′.

So we have proved one inclusion. For the other inclusion, note that M(EX)×{Y } is
a σ-algebra. The prove of this statement is the same as how we proved that Σ is a
σ-algebra. Furthermore, we have {E × Y | E ∈ EX} ⊂ M(EX)×{Y }. So by Lemma
A.3, we get the other inclusion

M({E × Y | E ∈ EX} ⊂ M(EX)× {Y }.

We conclude that we indeed have an equality

M({E × Y | E ∈ EX} = M(EX)× {Y }.

So, since we have this equality, we have

{E × Y | E ∈MX} ⊂ M(EX×Y ).

Note that in the proof of the other inclusion, {X × F | F ∈ MY } ⊂ M(EX×Y ), we
use that X ∈ EX . Now these two inclusions give us that MX×Y ⊂ M(EX×Y ), and
we conclude that MX×Y = M(EX×Y ).

Since we have MX1×X2×X3 = M(X1×X2)×X3 , it is now obvious that Lemma 2.32
can be extended to any finite product.

Corollary 2.33 Let (Xi,Mi), i = 1, . . . , n be n measurable spaces, such that Mi

is generated by a set Ei. Set X =
∏n

i=1Xi. If Xi ∈ Ei for all i, then the product
σ-algebra MX in X is generated by

EX =

{
n∏

i=1

Ei| Ei ∈ Ei

}
.

Given the product-σ-algebra, the coordinate map πi : X → Xi defined by πi((xn)) =
xi, is a measurable function. This is so, since for Ei ∈ Mi we have π−1

i (Ei) =
X1×X2× . . .×Xi−1×Ei×Xi+1× . . .×Xn, and the right hand side is an element
of EX , hence π−1

i (Ei) ∈M(EX).
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Proposition 2.34 Let (X1, d1), . . . , (Xn, dn) be metric spaces, and consider (X, d)
where X =

∏n
i=1Xi, and d the product metric as in Lemma 2.9. If X1, . . . , Xn are

separable, then the Borel-σ-algebra of X equals the product σ-algebra of the Borel-
σ-algebras of the Xi, i = 1, . . . , n.

Proof: Let E be the collection of open sets in X, and Ej the collection of open sets
in Xj. Suppose that Cj is a countable dense subset in Xj. Let Fj be the collection
of all open balls in Xj with center xj ∈ Cj and radius r ∈ Q. Then observe that Fj

is countable. Set

F =

{
n∏

j=1

Fj : Fj ∈ Fj

}
.

We will show that MXj
is generated by Fj. First note that Fj ⊂ Ej. So M(Fj) ⊂

M(Ej). Note that every open set in Xj is a countable union of elements in Fj. From
this it follows that Ej ⊂ M(Fj). Since by definition we have that M(Ej) is the
smallest σ-algebra containing Ej, we have that M(Ej) = M(Fj). So indeed MXj

is
generated by Fj. It follows from the previous Corollary 2.33 that MX is generated
by F .

To finish the proof, we will show that B(X) is also generated by F . This is similar
as the first part of the proof, and we will first show that F ⊂ E . Suppose E ⊂ X
is of the form E =

∏n
j=1Ej with Ej ∈ Ej. Let x = (x1, . . . , xn) ∈ E. Then, for

every j = 1, . . . , n, there is a positive number rj > 0 such that B(rj, xj) ⊂ Ej. Set
r = min1≤j≤n rj. It follows that B(r, x) ⊂ E, so we have that E ∈ E . The inclusion
now follows since

F ⊂
{

n∏
j=1

Ej : Ej ∈ Ej

}
⊂ E .

So we have M(F) ⊂ M(E). Let C be the collection of elements in X of the form
x = (x1, . . . , xn) where xj ∈ Cj for all j. Note that C is a countable dense subset of
X. It follows that every open set E ∈ E is a union of open balls with radius r ∈ Q
and center x ∈ C. This is again a countable union. Furthermore, note that every
such open ball is an element in F . It follows that E ⊂M(F), and we conclude that
M(F) = M(E). Hence

MX = M(F) = M(E) = B(X).

For a subset E of a product X1 ×X2 of measurable spaces, and x1 ∈ X1, we define
the x-section Ex1 of E by

Ex1 := {x2 ∈ X2 | (x1, x2) ∈ E}.

Now we will show that there exists a certain measure µ on a product of two proba-
bility spaces, which will be important later. First a lemma. For any two measurable
spaces (X1,M1) and (X2,M2) we will denote the product-σ-algebra on X1×X2 by
M1 ⊗M2.
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Lemma 2.35 Let (X1,M1) and (X2,M2) be two measurable spaces. Suppose that
for every x ∈ X1 there is a probability measure µx on X2 such that for every E ∈M2

we have that the function f : X1 → [0,∞] given by f(x) = µx(E) is measurable.
Then for every B ∈M1⊗M2 the function g : X1 → [0,∞] given by g(x) = µx(Bx)
is measurable.

Proof: Set

Σ = {B ∈M1 ⊗M2 : x 7→ µx(Bx) is measurable} .

Then observe that if B = E1 × E2 with E1 ∈ M1, E2 ∈ M2, then B ∈ Σ, by
assumption. We will show that Σ is a σ-algebra.
It is clear that ∅ ∈ Σ, since µx(∅) = 0 for all x ∈ X, hence the map x 7→ µx(∅) is
a constant function, and thus measurable. Now suppose Bn ∈ Σ, for n = 1, 2, . . .,
where the Bn are disjoint. It is obvious that (

⋃∞
n=1Bn)x =

⋃∞
n=1(Bn)x, where the

latter is also a disjoint union. It follows that

µx

(( ∞⋃
n=1

Bn

)

x

)
= µx

( ∞⋃
n=1

(Bn)x

)
=

∞∑
n=1

µx((Bn)x).

Since the map x 7→ ∑∞
n=1 µx((Bn)x) is measurable, we see that

⋃∞
n=1Bn ∈ Σ.

If B ∈ Σ, then (Bx)
c = (Bc)x. Since no confusion can arise, we will write Bc

x

for either set. Because µx(B
c
x) + µx(Bx) = µx(X2) = 1 we see that the function

x 7→ µx(B
c
x) = 1−µx(Bx) is measurable. Note that we really need that µx(X2) <∞,

otherwise we could get problems when µx(Bx) = ∞. Anyhow, Σ is a σ-algebra. But
since M1⊗M2 is by definition the smallest σ-algebra which includes rectangles, we
conclude that Σ = M1 ⊗M2. This means that the map x 7→ µx(Bx) is measurable
for every B ∈M1 ⊗M2.

The following proposition, as mentioned before, proves the existence of a certain
measure defined on a product of probability space.

Proposition 2.36 Let (X1,M1, P ) be a probability space and (X2,M2) a measur-
able space. Suppose that for each x ∈ X1, µx is a probability measure on (X2,M2)
and that the function x 7→ µx(E) is measurable for each E ∈ M2. Then for any
B ∈M1 ⊗M2 the repeated integral

IB =

∫

X1

∫

X2

1B(x1, x2) dµx1(x2) dP (x1)

is well-defined and there exists a measure µ on (X1 × X2,M1 ⊗M2) that extends
B 7→ IB.

Proof: First note that if x1 ∈ X1 is fixed, then

1B(x1, x2) =

{
1 if x2 ∈ Bx1

0 if x2 6∈ Bx1
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It follows that ∫
1B(x1, x2)dµx1(x2) = µx1(Bx1).

By the previous Lemma 2.35, we have that x 7→ µx1(Bx) is measurable, thus the
integral ∫

µx1(Bx)dP (x)

is well-defined. This means that IB is well-defined. We will show that µ defined as
µ(B) = IB, B ∈ M1 ⊗M2, is a measure. It is obvious that µ(∅) = 0. Let Bn,
n = 1, 2, . . . be disjoint measurable sets, and set B =

⋃∞
n=1Bn. By the Monotone

Convergence Theorem, we have

µ(B) =
∞∑

n=1

µ(Bn).

We conclude that µ is a measure.

There is also another way to show the existence of the measure µ using Proposition
A.9. Let E be the collection of all sets of the form E1 × E2, where E1 ∈ M1 and
E2 ∈M2. By Lemma 2.31, it follows that E is a semiring. Define α : E → [0,∞] as

α(E) =

∫∫
1E(x1, x2) dµx1(x2) dP (x1).

Suppose E = ∪n
j=1Ej, with Ej ∈ E disjoint. Then we have 1E(x1, x2) =

∑n
j=1 1Ej

(x1, x2),
and by linearity of the integral, we get

α(E) =

∫∫
1E(x1, x2) dµx1(x2) dP (x1)

=
n∑

j=1

∫∫
1Ej

(x1, x2) dµx1(x2) dP (x1) =
n∑

j=1

α(Ej).

Thus α is additive. By the Monotone Convergence Theorem, α is also countably
additive. Now using Proposition A.9, we conclude that there exists a measure µ1

defined on the σ-algebra generated by E that extends α on E.
So far we have shown that there exists a measure µ1 which has the desired form for
elements of the form E1 × E2. However, it is not clear that it has the same desired
form for arbitrary sets B ∈M1 ⊗M2., i.e., it is not clear that we have

µ1(B) =

∫

X1

∫

X2

1B(x1, x2) dµx1(x2) dP (x1).

Fortunately, we can use Lemma A.13, since both measures coincide on the π-system
of sets of the form E1×E2, E1 ∈M1 and E2 ∈M2, to conclude that µ = µ1. So the
measure µ1 constructed using Proposition A.9 is the same measure as constructed
in the above proof.
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2.2.2 An infinite product of probability spaces

In this section we will show how to construct a certain kind of probability measure de-
fined on an infinite product of probability spaces. For n = 1, 2, . . ., let (Xn,Mn, µn)
be probability spaces. Let X be the Cartesian product X =

∏∞
n=1Xn. We will call

a subset
∏∞

j=1Aj ⊂ X a rectangle when An = Xn for all but finitely many n. Let
D be the set of all rectangles.

Lemma 2.37 The set of all rectangles D together with ∅ is a semiring. The algebra
A generated by D equals the collection of finite disjoint unions of elements of D.

Proof: First, consider the collection E of all rectangles such that
∏∞

j=1Aj such
that Aj = Xj for j = 3, 4, . . .. The conditions of a semiring are then fulfilled, as is
proved in Lemma 2.31. With induction, one can prove that this holds for arbitrary
rectangles.

The ring R generated by D is the set of all finite disjoint unions of rectangles.
We will define the product σ-algebra on X as the σ-algebra generated by D. This
σ-algebra is the same as the σ-algebra generated by

E =

{ ∞∏
i=1

Ei : Ei ∈Mi

}
.

To see this, first note that we have D ⊂ E , so M(D) ⊂ M(E). For the other in-
clusion, let E ∈ E . Then E is of the form E =

∏∞
i=1Ei. Then E = ∩∞i=1Fi where

Fi = E1 × E2 × . . .× Ei ×Xi+1 ×Xi+2 × . . .. By construction, Fi ∈ D. So we have
E ∈M(D). It follows that E ⊂M(D), and hence, by Lemma A.3, M(E) ⊂M(D).
We conclude that M(E) = M(D). We will write MX for the σ-algebra generated
by rectangles on X.

Also on an infinite product of probability spaces, the coordinate map πi : X → Xi is
measurable. For Ei ∈Mi we have π−1

i (Ei) = X1×X2× . . .×Xi−1×Ei×Xi+1× . . .,
and the right hand side is a rectangle, hence π−1

i (Ei) ∈M(EX).

The main Theorem is now given, to assure us the existence of a measure P de-
fined on an infinite product of probability spaces.

Theorem 2.38 Let (Xj,Sj) be measurable spaces for j = 1, 2, . . ., and P (1) be a
probability measure on (X1,S1). Suppose that for each n = 1, 2, . . . we have that
p(xn, ·) is a probability measure on (Xn+1,Sn+1), such that for each E ⊂ Sn+1, the
function x 7→ p(x,E) is measurable. Then the map P (2) defined on S1 ⊗ S2 as

P (2)(B) =

∫∫
1B(x1, x2)p(x1, dx2)dP

(1)(x1)

is a probability measure. Furthermore, for larger n, the function P (n+1) on S1⊗ . . .⊗
Sn+1 defined recursively as

P (n+1)(B) =

∫∫
1B(x1, . . . , xn)p(xn, dxn+1)dP

(n)(x1, . . . xn)
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are probability measures for all n. Also, there exists a unique probability measure P
on the product space X =

∏∞
j=1Xn such that for each n and each B ∈ S1⊗ . . .⊗Sn

we have

P (B ×Xn+1 ×Xn+2 × . . .) = P (n)(B).

Proof: For every n, we already know that P (n) is a probability measure by Proposi-
tion 2.36. We only need to show that P is a well-defined measure. Therefore, consider
the algebra A generated by the collection of rectangles D. By Lemma 2.37, an el-
ement A ∈ A is a finite disjoint union of rectangles. So A =

⋃p
k=1Bk, with Bk a

rectangle. So for every k, Bk is a product of sets Bkr ∈ Sr such that Bkr = Xr for
all r ≥ n(k) with n(k) < ∞. Set m = max(n(1), . . . , n(p)). Then A can be written
as

A = A(m) ×Xm+1 ×Xm+2 × . . . ,

where A(m) ∈ S1 ⊗ . . .⊗ Sm. For this A, define

P0(A) = P (m)(A(m)).

This definition is not ambiguous, since we have

P (m+1)(A(m) ×Xm+1) =

∫∫
1A(m)×Xm+1

p(xm, dxm+1)dP
(m)(x1, . . . , xm)

=

∫

A(m)

p(xm, Xm+1)dP
(m)(x1, . . . , xm)

= P (m)(A(m)),

and so, more general, we have

P (m+k)(A(m) ×Xn+1 × . . .×Xm+k) = P (m+k−1)(A(m) ×Xn+1 × . . .×Xm+k−1)

= . . .

= P (m)(A(m)).

It is obvious that P0(∅) = 0. Suppose (Aj)
∞
j=1 is a sequence of finite disjoint sets, such

that A = ∪∞j=1Aj ∈ A. Then A is again a union of rectangles, and there is again an

m ∈ N such that A = A(m)×Xm+1×Xm+2×. . ., with A(m) ∈ S1⊗. . .⊗Sm. Also, each

Aj has a similar expression, with the same m, say Aj = A
(m)
j ×Xm+1×Xm+2× . . ..

Since P (m) is a measure, it follows that

P0(A) = P (m)(A(m)) = P (m)

( ∞⋃
j=1

A
(m)
j

)
=

∞∑
j=1

P (m)(A
(m)
j ) =

∞∑
j=1

P0(Aj).

So we see that P0 is a premeasure on A. Now, by Theorem A.16 there is a measure
P on the σ-algebra generated by A, such that P = P0 on A. We claim that P is the
desired measure. So we need to show that, given B ∈ S1 ⊗ . . .⊗ Sn, we have

P (B ×Xn+1 × . . .) = P (n)(B).
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Fix n, and consider the collection Σ of sets of the form B × ∏
k>nXk, with B ∈

S1 ⊗ . . . ⊗ Sn. Since S1 ⊗ . . . ⊗ Sn is a σ-algebra, it follows directly that Σ is a
σ-algebra. It is a sub-σ-algebra of the σ-algebra on

∏∞
n=1Xn, and PΣ, P restricted

to Σ, is still a probability measure. Furthermore, we have PΣ = P (n) on the set of
n-dimensional rectangles, which is a π-system, hence by Lemma A.13, PΣ = P (n) on
S1 ⊗ . . .⊗ Sn. Since we have taken n arbitrarily, we conclude that

P (B ×Xn+1 × . . .) = P (n)(B)

for B ∈ S1 ⊗ . . . ⊗ Sn. If there is another probability measure P̃ with the above
property, then P = P̃ by Lemma A.13, since they coincide on the π-system of
rectangles.

2.3 A lemma concerning joint measurability

Let (X,M) be a measurable space, (S1, d1) and (S2, d2) be two metric spaces such
that S1 is separable. For a function f : X × S1 → S2 to be measurable, it is in
general not sufficient that s 7→ f(x, s) for fixed x ∈ X and x 7→ f(x, s) for fixed
s ∈ S1 are measurable. A counterexample can e.g. be found in [1, exercise 3.10.49].
The following lemma states that, for S1 = I, where I ⊂ R is a left-open interval, it is
sufficient to assume that the function s 7→ f(x, s) is left-continuous, instead of only
measurable. The same holds for a right-continuous function when I is a right-open
interval.

Lemma 2.39 Let (X,M) be a measurable space, and let (S, d) be a metric space.
Let I be a left-open interval, i.e., I = (a, b), (a, b] or (a,∞), b ∈ R. Suppose a
function f : X × I → S satisfies the following conditions.

i) For every t ∈ I, the function x 7→ f(x, t) is measurable;

ii) For every x ∈ X, the function t 7→ f(x, t) is left-continuous.

Then the function f is measurable in the product σ-algebra of M⊗B(I) in X × I.

Proof: Suppose that t 7→ f(x, t) is left-continuous for all x ∈ X. For every n ∈ N,
we can make a partition of the interval (0, 1] into 2n disjoint intervals: (0, 1] =⋃2n

k=1((k − 1)2−n, k2−n]. Set

fn(x, t) = f(x,m+ k2−n), if t ∈ (
m+ k2−n,m+ (k + 1)2−n

] ∩ I,
where m ∈ Z, k = 0, . . . , 2n−1. We claim that limn→∞ fn(x, t) = f(x, t) for all (x, t).
To see this, fix (x, t) and let ε > 0. Since t 7→ f(x, t) is left-continuous, there must
exist a δ > 0, such that for all s ∈ (t−δ, t] we have d(f(x, t), f(x, s)) < ε. Fix N such
that 2−N < δ. Then for each n ≥ N , there exist mn ∈ Z and kn ∈ {0, . . . , 2n − 1}
such that

t− δ < mn + kn2−n < t ≤ m+ (k + 1)2−n.

From this observation, it follows that d(f(x, t), fn(x, t)) < ε for all n ≥ N . Thus
indeed limn→∞ fn(x, t) = f(x, t).
Now we will show that fn is measurable in the product space X × I for every n.
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Therefore, let E be open in S. By proposition A.11, it suffices to show that f−1
n (E) is

measurable in X×I. For m ∈ Z and k ∈ {0, . . . , 2n−1} we have by the measurability
of x 7→ f(x, t) that

Emk = {x ∈ X : f(x,m+ k2−n) ∈ E}

is measurable. it follows that

f−1
n (E) =

⋃
m∈Z

2n−1⋃

k=0

(
Emk × [m+ k2−n,m+ (k + 1)2−n)

)
,

hence f−1
n (E) is measurable in X × I. So fn is measurable, and since the limit of a

sequence of measurable functions with values in a metric space is again measurable
(see [2, Cor. 6.2.6, p11]), we conclude that f is measurable.

As mentioned above, a similar result holds for a right-continuous function x 7→
f(x, t), whenever I is right-open. The proof is similar.
When one replaces the left-open (or right-open) interval I by a general separable
metric space (S, d1), the statement remains valid once the right-continuity or left-
continuity is replaced by continuity. The proof goes analogously, only one has to
replace the intervals (m+ k2−n,m+ (k + 1)2−n] by a countable number of disjoint
sets that cover S. It is possible to find such a cover, since S is assumed to be
separable.
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3 The stochastic process of an individual’s fate

A brief outline of what is to be discussed in this section is now given. In section
3.1, we will give the data for the process and give conditions on them. The data
are in the form of one stochastic process and two probability distributions. The
two distributions have hidden stochastic processes behind them. Using the data, we
expect the sample trajectories of the total process to be càdlàg trajectories. The
stochastic process that describes the fate of an individual is a map

X : R+ ×DS → S,

such that for every t ∈ R+, the function

X(t, •) : DS → S,

is measurable, together with a probability measure P̃ on (DS,B(DS). The measur-
ability of the map X(t, •)(f) := evt(f) follows from Theorem 2.22. The process
satisfies the conditions of the data by construction of P̃ . This is to be seen as fol-
lows. The process X induces a function ΦX : DS → SR+ , where SR+ is the set of all
functions from R+ to S, such that

(ΦX(f)) (t) := Xt(f).

The law LX of the process, which is in fact the probability distribution of the sample
trajectories, is by definition the measure defined on SR+ (which is a measurable
space), such that for E ⊂ SR+ measurable,

LX(E) := P̃ (Φ−1
X (E)).

In our case, since Xt(f) = f(t), it follows that ΦX is the identity map, hence
L(E) = P̃ (E).

This means that the existence of the stochastic process X which satisfies the
conditions in Section 3.1, relies on the existence of the probability measure P̃ which
satisfies the same conditions. The existence of this measure will be proved by con-
structing it explicitly. In fact, the existence of another measure P will be proved
using Theorem 2.38, and the existence of P̃ will follow from the existence of P .

In Section 3.2 we will code the càdlàg trajectories between the jumps as elements
(f, τ, t) ∈ X = DS × (0,∞]×R+, where

• f is the sample trajectory between jumps, as element in DS;

• τ the duration of the trajectory, that is, the time difference between the two
jumps;

• t the absolute starting time of the trajecory.

In this way, we get a discrete time Markov process of sample trajectories, since the
n-th trajectory only depends on the (n− 1)-th trajectory.
The total trajectory will be viewed as an element in the measurable space XN

∂ ,
defined in Section 3.2, and it will be discussed that this trajectory actually belongs
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to a subset R ⊂ XN
∂ , R standing for the set of realistic trajectories, and it will

be proved in Section 3.2.3 that this subset is measurable. Then in Section 3.2.4 the
concatenation map will be defined and it will be proved that this map is measurable.
In Section 3.3 the discrete time Markov process of sample trajectories will be made
rigorous by constructing its law P , as mentioned before, using Theorem 2.38. It will
be proved that P is concentrated on the set R of realistic trajectories, by which we
mean that P (R) = 1.
In Section 3.4 we will give a summary of the two processes thus far, and we will give
a description for the distribution µt. In words, given an initial distribution µ0 on S
and a measurable E ⊂ S, µt(E) is the probability that a trajectory will go through
E at time t.

3.1 Fundamental data for the process and its technical con-
ditions

As explained in the introduction, the individual is subject to three stochastic pro-
cesses:

(1) Process 1 is called the partial trajectory. For any initial distribution µ0 of the
state, (i.e. µ0 ∈ P(S)), there is a stochastic process in R+ on S, with càdlàg
sample trajectories. The law of this process is defined on the càdlàg functions
DS and will be denoted as Pµ0 .

(2) Process 2 is called the jump time. Given a sample trajectory f ∈ DS, there
is a distribution pε

f ∈ P((0,∞]) of the jump time. This is actually a random
variable on (0,∞], but can be considered as the stopping time of some hidden
stochastic process. For this reason we stick to call it a stochastic process,
although this may be somewhat misleading.
Furthermore, pε

f does not only depend on f , but also on its ’environment’
ε. This environment itself is another state space, but we will not use this
space in any way, since we only consider the evolution of the individual. The
environment will be important when ’summing’ the models of the individuals
in an appropriate way.

(3) Process 3 is called the jump in state space. Given a jump-time t ∈ R (note
that we take t < ∞), and the state s ∈ S right before the jump, there is a
distribution ν = ν(t, s) on the state space S in such a way that ν(E), E ⊂ S
measurable, is the probability that the new sample trajectory starts in E.
Since this new initial distribution depends on the jump time and on the state
before the jump, there exists a function Ψ : R+×S → P(S) such that Ψ(t, s) =
ν as above.
This random variable may be viewed as a stochastic process, with càdlàg
sample trajectories, which is stopped almost immediately after it started .
The random variable is obtained as the duration of the process tends to 0.

Note that the distribution of the jump time pε
f ∈ P((0,∞]), is dependent of the

sample trajectory f ∈ DS, while the future of the evolution of the cell should not
be of any influence regarding the cell division. Therefore, we could introduce the
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process 1

process 1

process 3

Figure 2: Process 3 as a ’slow’ process

process 1

process 1

Figure 3: Process 3 as a ’fast’ process

’no anticipation of the future’ rule. That is, if f(t) = g(t) for all t ∈ (0, T ), then
for all measurable E ⊂ (0, T ) we have pε

f (E) = pg(E). However, in the sequel, this
extra assumption does not simplify any of our computations. We did feel obliged to
mention it, since this may be useful in any further research.

So, summarizing, there is a random sample trajectory, a random jump time, and a
random state at which the individual starts over, after jumping. The second process
stops the first process and initiates the third process. The third process restarts
process one. We refer to a sample trajectory of process one, stopped by process two,
as a partial trajectory.

Next, we will give some technical conditions on the given processes.

• We assume that for every measurable E ⊂ DS, the function ν 7→ Pν(E)
from P(S) → R+ is measurable. This assumption can be achieved by, for
instance, assuming that the function ν 7→ Pν from P(S) to (DS)BL is strongly
measurable. (See Section 5.1)

• The first condition on pε
f is the following. For any environment ε and any

function f ∈ DS, the distribution pε
f will be such that almost surely finitely

many jumps will be made within a finite amount of time. To realize this, we
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assume that there exist numbers T > 0 and 0 ≤ δ < 1 such that for all
environments ε and all f ∈ DS we have

pε
f ((0, T ]) ≤ δ. (2)

• The second condition on pε
f is that for every measurable E ⊂ (0,∞], the

function f 7→ pε
f (E) from DS to [0, 1] is measurable. This assumption can

achieved by, for instance, assuming that the map f 7→ pε
f , from DS to P((0,∞])

is strongly measurable. Here, the space P((0,∞]) is a measurable space when
equipped with the Borel-σ-algebra of the Banach space ((0,∞])+

BL. See Section
2.1.3 and in particular Corollary 2.29 for details.

• On Ψ : R+ × S → P(S) ⊂ SBL we assume that the function is jointly mea-
surable. A sufficient condition is that

i) Ψ(t, ·) : S → P(S) is measurable,

ii) Ψ(·, x) : R+ → P(S) is right-continuous.

One can then apply Lemma 2.39 to show that Ψ is measurable. Although the
proof of this Lemma is for left-open intervals, with left-continuous functions,
the result holds also for right-open intervals and right-continuous functions.

3.2 Coding of sample trajectories

In the sequel, when we mention ’jump’, we will mean a jump caused by process 2 and
1, and not the discontinuities in the partial càdlàg sample trajectories of process 1.
When several jumps occur, the orbit, as a function f : R+ → S is an element of DS.
The part between two jumps will play an important role. We could assume that the
part between two jumps is continuous, but since the metric on DS is complicated,
we do not want to make things ’worse’ by considering the subset CS of continuous
functions instead of the full space DS. Furthermore, it is more natural to allow these
discontinuities at a smaller scale.

3.2.1 The spaces X∂ and XN
∂

We define the spaceX := DS×(0,∞]×R+ of partial trajectories, so that x = (f, τ, t)
codes for an orbit f with duration τ and absolute starting time t. A full trajectory is
then considered as a sequence of elements in X. So, for instance, the second partial
trajectory in Figure 3 will be coded as x2 = (g, 3.7, 2.6). Some conditions need to
be met. Because we do not want to exclude a priori that there may be a partial
trajectory with τ = ∞, while keeping the convention of coding a full trajectory by a
sequence, we add a point ∂ to X which codes for a terminal state after a trajectory
of infinite length. The space X ∪ {∂} will be denoted by X∂.

So every trajectory, that is, every càdlàg function, can be viewed as a sequence
in X∂; every trajectory is an element of XN

∂ .

We will first show that X∂ is a measurable space, in fact a metric space, and that
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XN
∂ is a measurable space. Then we will give a useful lemma which can be used to

prove measurability of certain subsets of XN
∂ .

In Section 2.1.2 it is described that DS is a metric space, with metric d1. The space
(0,∞] is also a metric space with metric d2, where d2 is defined as

d2(x, y) =





|x−y|
1+|x−y| if x, y <∞

1 if either y = ∞ or x = ∞
0 if x, y = ∞

Let d3 be the standard metric on R+. Then consider the product metric d, as in
Lemma 2.9. In section 2.1 we gave two ways to extend the metric d to the space X∂.
One of them uses Corollary 2.7, and note that this involves changing the metric d
on X. But changing d on X means changing the metric on DS. Since we prefer not
changing this metric, we use the other method. Therefore, let c ∈ X be arbitrary,
and define

d′(x, y) =





d(x, y) if x, y ∈ X,
d(x, c) + 1 if x ∈ X, y = ∂,
d(y, c) + 1 if y ∈ X, x = ∂,

0 if x = y = ∂.

So X∂ is a metric space, and hence a measurable space when equipped with the
Borel-σ-algebra. In Section 2.2 it is described that XN

∂ is again a measurable space.
The σ-algebra on XN

∂ is the σ-algebra generated by

E =

{ ∞∏
i=1

Ei : Ei ∈ B(X∂)

}
.

Lemma 3.1 Let E ⊂ Xm
∂ and F ⊂ XN

∂ be measurable. Then E × F ⊂ XN
∂ is

measurable.

To prove this proposition, we will use Lemma 2.32.

Proof: Consider the map

ϕm : XN
∂ → Xm

∂ ×XN
∂ ,

(xn) 7→ ((x1, x2 . . . , xm), (xm+1, xm+2, . . .)).

We will prove that ϕm is a measurable function. The σ-algebra on Xm
∂ × XN

∂ is
the product-σ-algebra generated by sets of the form E × F , where E ⊂ Xm

∂ is
measurable, and F ⊂ XN

∂ is measurable. The result follows if we can prove that this
σ-algebra is generated by

E =

{(
m∏

n=1

En

)
×

( ∞∏
n=1

Fn

)∣∣∣∣∣ Ei, Fi ⊂ X∂ measurable

}
,

since then by Proposition A.11 we have that ϕm is measurable if ϕ−1
m (E) is measur-

able in XN
∂ for every E ∈ E . And the latter is indeed the case.
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By definition, the σ-algebra in Xm
∂ is generated by sets of the form

∏m
n=1En, which

is a π-system containing Xm
∂ . Also, the σ-algebra in XN

∂ is generated by sets of the
form

∏∞
n=1En, which is also a π-system containing XN

∂ . Now we can use Lemma
2.32 to conclude that the σ-algebra in Xm

∂ ×XN
∂ is generated by E . So we find that

ϕm is measurable, and the result follows.

Define the set ∆(Γ, s) for fixed Γ ⊂ S and s ∈ R+ by

∆(Γ, s) := {(f, τ, t) ∈ X : t ≤ s < t+ τ, f(s− t) ∈ Γ} .

In words, ∆(Γ, s) is the set of all partial trajectories which start at time t ≤ s and
run through Γ at time s. the next lemma shows that ∆(Γ, s) is measurable whenever
Γ ⊂ S is measurable.

Lemma 3.2 Let s ∈ R+. If Γ ⊂ S is measurable, then ∆(Γ, s) is measurable in X.

Proof: Fix s ∈ R+ and let Γ ⊂ S be measurable. Consider the function

ϕs : DS × (0,∞]× (0,∞] → S × (0,∞]×R+

(f, τ, t) 7→
{

(f(s− t), τ, t) if s− t ≥ 0,
(x0, τ, t) if s− t < 0.

where x0 is some fixed element in S. We claim that ϕs is a measurable function. To
prove this, we use Lemma 2.39. Therefore we will prove the following claims:

i) For fixed t ∈ (0,∞], the function (f, τ) 7→ ϕs(f, τ, t) is measurable,

ii) For fixed (f, τ) ∈ DS × (0,∞], the function t 7→ ϕs(f, τ, t) is left-continuous.

To prove the second claim, note that, for fixed f ∈ DS, the function

t 7→
{
f(s− t) if s− t ≥ 0,
x0 if s− t < 0,

is left-continuous. The same holds for the mapping into the second and the third
coordinate, these are in fact continuous. By the definition of the product metric, it
follows that the function t 7→ ϕs(f, τ, t), for fixed (f, τ), is left-continuous.
Consider next the first claim. Fix t ∈ (0,∞]. To prove measurability of φt : (f, τ) 7→
ϕs(f, τ, t), it is sufficient to prove that φ−1

t (E1 × E2 × E3) is measurable in DS ×
(0,∞] × (0,∞] for any rectangle E1 × E2 × E3. First assume that s − t ≥ 0. Let
E1 × E2 × E3 be any rectangle. Observe that φ−1

t (E1 × E2 × E3) = ev−1
s−t(E1)× E2

whenever t ∈ E3, and φ−1
t (E1×E2×E3) = ∅ otherwise. In either case, the set belongs

to the σ-algebra for DS × (0,∞] × (0,∞], because by Theorem 2.22, ev−1
s−t(E1) is

measurable in DS. On the other hand, assume that s− t < 0. Then φ−1
t (E1 × E2 ×

E3) = DS × E2 when x0 ∈ E1, and φ−1
t (E1 × E2 × E3) = ∅ when x0 6∈ E1. Again,

φ−1
t (E1 × E2 × E3) is measurable. So it follows that φt is measurable. Now we can

apply Lemma 2.39 in order to obtain that ϕs is measurable.
Consider the set

As = {(τ, t) ∈ (0,∞]× (0,∞] : t ≤ s < τ + t}.
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It is not hard to see that As is measurable, for instance, by considering that

Ac
s = (0,∞]× (s,∞) ∪ {(τ, t) : t+ τ ≤ s}.

Consider ϕ̃s : DS × (0,∞] × R+ → S × (0,∞] × R+ such that ϕ̃s = ϕs on
DS × (0,∞]× (0,∞], and ϕ̃s = (x0, 0, 0), for some x0 ∈ DS, on DS × (0,∞]× {0}.
Since DS × (0,∞] × {0} is of measure zero in the product measure, it follows that
ϕ̃s is measurable.
We can now conclude that ∆(Γ, s) is measurable, since we proved that ϕ̃s is mea-
surable, and ∆(Γ, s) = ϕ̃−1

s (Γ× As).

We will conclude this section with showing that a certain function, which will be im-
portant when constructing the probability measure P , is measurable. For a measure
ν ∈ P(DS), define the distribution Qν ∈ P(DS × (0,∞]) on rectangles by

Qν(E × F ) =

∫

E

pε
f (F )dPν(f).

This definition extends to a measure, since we assumed in Section 3.1 that for every
measurable E ⊂ (0,∞], the map f 7→ pε

f (E) is measurable from DS to [0, 1], so one
can apply Proposition 2.36.
Here, we will write ν = ν(f, τ, t) = Ψ(τ + t, limσ↑(τ+t) f(σ)).

Lemma 3.3 Under the conditions given in Section 3.1, we have that for every mea-
surable E ⊂ DS × (0,∞], the function fE : Xn−1 → [0, 1] defined by

fE(x1, x2 . . . , xn−1) = Qν(fn−1,τn−1,τ1+...+τn−2)(E),

where xi = (fi, τ1, ti), is measurable.

Proof: We will proceed in steps.

step 1: The map (x1, . . . , xn−1) 7→ (fn−1, τn−1, τ1 + . . . + τn−2) from Xn−1 to X is
measurable,

step 2: the map (f, τ, t) 7→ Ψ
(
t+ τ, limσ↑(t+τ) f(σ)

)
= ν(f, τ, t) from X to P(S) ⊂

SBL is measurable,

step 3: for every measurable E ⊂ DS × (0,∞] the map µ 7→ Qµ(E) from P(S) →
[0, 1] is measurable.

Once we proved this, the function fE is indeed measurable, since then it can be
written as a composition of three measurable functions.
Step one is rather easy. The function (x1, . . . , xn−1) 7→ (fn−1, τn−1, τ1 + . . . + τn−2)
is a composition of projections and additions, which are all measurable (in fact
continuous).
We proceed with step two. Consider the function (f, τ, t) 7→ (f, τ + t) from X to
DS × (0,∞]. This function is measurable. Then fix τ and consider the function
f 7→ limσ↑τ f(σ) as a function from DS to S. Let (σn) be a sequence in (0, τ) such
that σn ↑ τ . Then for every n, the function f 7→ f(σn) is measurable, by Theorem
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2.22. Hence the function f 7→ limσ↑τ f(σ) is measurable, since it can be written as a
limit of a sequence of measurable functions. Note that in Section 3.1 we have assumed
that Ψ is measurable. Then (f, τ, t) 7→ Ψ(τ + t, limσ↑(τ+t) f(σ)) is measurable, since
this is a composition of the measurable functions just considered.
Finally, we will show that the map µ 7→ Qµ(E) is measurable for every measurable
E ⊂ DS × (0,∞]. Since Qµ(E) =

∫
DS
pε

f (Ef )dPµ(f), where Ef is the f -section of E,
it is equivalent to show that

µ 7→
∫

DS

pε
f (Ef )Pµ(df)

is measurable. Since we have assumed that f 7→ pε
f (F ) is measurable when F ⊂

(0,∞] is measurable, it follows that f 7→ pε
f (Ef ) is measurable, where Ef is as

above. Now consider

H =

{
ψ : DS → R| µ 7→

∫

DS

ψ(f) dPµ(f) is measurable

}
.

It is not hard to see that H satisfies the three conditions in Theorem A.14. It
also contains every indicator function ψ = 1A, where A ∈ B(DS), and B(DS) is
certainly a π-system. So H contains every measurable function, in particular the
map f 7→ pε

f (Ef ). Hence µ 7→ Qµ(E) is measurable.

3.2.2 Realistic trajectories

Since the space XN
∂ is larger than the space DS we need to make some conditions on

the sequence space, so that the trajectory does not become unrealistic. For instance,
when the n-th partial trajectory has absolute starting time t0 and duration τ0 <
∞, then we want the (n + 1)-th partial trajectory to have absolute starting time
t0 + τ0. This particular condition is described in condition 3 below. Four conditions
on (xn) ∈ XN

∂ are:

1. If xn,2 = ∞, then xn+1 = ∂;

2. if xn = ∂ then xn+1 = ∂;

3. if xn+1 6= ∂ then xn+1,3 = xn,2 + xn,3;

4.
∑

xn 6=∂ xn,2 = ∞.

The fourth condition is to exclude the possibility of getting infinitely many jumps
within a finite amount of time. In that case we would get a function f : [0, T ] → S
instead of f : R+ → S.
Since we will always want these four conditions to hold, we define the set

R = {(xn) ∈ XN
∂ | every xn satisfies the above four conditions}.

The set R will be called the set of realistic trajectories.
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3.2.3 Measurability of the set of realistic trajectories

In this section we will, as the title suggests, prove that the set R of realistic tra-
jectories is measurable. Let Rm, m ∈ N, be the collection of realistic trajectories
consisting of exactly m partial trajectories, without the terminal state ∂. So the
first, second and fourth condition given in Section 3.2.2 are not considered; Rm is
the set of trajectories satisfying condition 3.

Proposition 3.4 For each m, the set Rm is measurable.

Proof: Consider the map ψm : Xm → [0,∞] defined by

ψm((xn)) =
m−1∑
j=1

| xm,2 + xm,3 − xm+1,3|, (xn) ∈ Xm.

So ψm measures the total time between the end time of one trajectory and the
starting time of its successor. As explained in section 2.2.1, we have that the coor-
dinate map is measurable. So the map π2 : X → (0,∞] defined by π2(x) = x2 is
measurable. Similar to Lemma B.1 and Lemma B.2, we have that f : X → (0,∞] is
measurable if and only if f−1((a,∞]) ∈ M for all 0 < a <∞. From this, it follows
that if f : X → (0,∞] is measurable, then also the same function considered as
f : X → [−∞,∞]. The other inclusion is also true: if f : X → [−∞,∞] is measur-
able with range in (0,∞], then f is measurable as function from X to (0,∞].
Now, using Proposition B.3 several times, we see that ψm is measurable. Further-
more, since {0} is closed in [0,∞], it is measurable, and hence ψ−1

m ({0}) is measur-
able. The result now follows, since Rm = ψ−1

m ({0}).
Let R∞ be the set of realistic trajectories consisting of infinitely many trajecto-
ries, without considering the terminal state ∂ and without considering the fourth
condition. So if (xn) ∈ R∞, then xn,2 <∞ for all n.

Corollary 3.5 The set R∞ is measurable.

Proof: Observe that

R∞ =
∞⋂

m=1

(Rm ×XN).

Also note that X is open in X∂, so X is measurable. So we have that XN is mea-
surable in XN

∂ , by definition of the σ-algebra in XN
∂ . Then by Lemma 3.1, it follows

that Rm ×XN is measurable for every m, and hence R∞ is measurable.

Next, define

Fm := [DS × (0,∞)×R+]m−1 × [DS × {∞} ×R+]× {∂}N.
In words, Fm is the set of trajectories where the first m− 1 are partial trajectories
with finite length and the m-th an infinite one. Note that we do not exclude the
possibility of two or more trajectories not connecting in the sense of condition 3.
What we need, and what turns out to be the case, is that Fm is measurable for every
m.
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Lemma 3.6 For each m, the set Fm is measurable.

Proof: The setDS×(0,∞)×R+ is open inX with the product metric d. This follows
from the definition of the product metric. In fact, when E1 ⊂ DS, E2 ⊂ (0,∞], and
E3 ⊂ R+ are all open, then its product E1 ×E2 ×E3 is open in X. It is easily seen
that DS × (0,∞)×R+ is open in X∂ with respect to the metric d′ given above.
Also, we have that {∂} is closed in X∂. It follows that both (DS × (0,∞)×R+) and
{∂} are measurable, and hence also

DS × {∞} ×R+ = X∂ \ ([DS × (0,∞)×R+] ∪ {∂}).
Applying Lemma 3.1 several times, it follows that Fm is measurable.

Now consider the set R′ of trajectories satisfying condition 1, 2 and 3. This set is
measurable

Corollary 3.7 The set R′ is measurable

Proof: Just note that

R′ = R∞ ∪
∞⋃

m=1

((Rm ×XN
∂ ) ∩ Fm).

We are now ready to state the fundamental result of this section.

Theorem 3.8 The set R of realistic trajectories is measurable.

Proof: Consider the function

ψ : X∂ → [−∞,∞]

x 7→
{
x2 if x 6= ∂,
0 if x = ∂.

We will first show that this function is measurable. In section 2.2 it is explained
that the coordinate map π2 : X → [−∞,∞] given by π2(x) = x2 is measurable. By
Lemma B.2, we have that π−1

2 ((a,∞]) is measurable in X for all 0 ≤ a < ∞. It is
also open in X, since π−1

2 ((a,∞]) = DS × (a,∞] ×R+. It follows that π−1
2 ((a,∞])

is also open in X∂, and hence measurable in X∂. It follows that ψ−1((a,∞]) for
0 ≤ a < ∞. But for a < 0 we have that ψ−1((a,∞]) = X∂. Again by Lemma B.2,
it follows that ψ is measurable. Also, by similar reasoning, we see that the function
πm : XN

∂ → X∂ given by πm((xn)) = xm is measurable for every m.
Consider the function ϕ : XN

∂ → [−∞,∞] given by

ϕ((xn)) =
∑

n: xn 6=∂

xn,2.

Observe that

ϕ =
∞∑

n=1

ψ ◦ πn,

so ϕ is a limit of measurable functions, and hence measurable. This gives us that
ϕ−1({∞}) ⊂ XN

∂ is measurable, and the result follows since

R = ϕ−1({∞}) ∩R′.
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3.2.4 The concatenation map

The total trajectory can now be viewed as the image of a concatenation map defined
as

γ : R→ DS,

(fn, τn, tn)∞n=1 7→ fn(t), if tn ≤ t < τn + tn.

that pieces together the subsequent partial trajectories. For the process X̃ and in
particular the distribution P̃ to make sense, we need that γ : R→ DS is measurable.

For a given subset Γ of S, we will write E(Γ, t) for ev−1
t (Γ).

Proposition 3.9 The concatenation map γ : R→ DS is measurable.

Proof: Fix s ∈ R+ and define

X(1)
s := {(f, τ, 0) ∈ X : τ < s},

the set of first partial trajectories which end before time s. And, inductively,

X(n+1)
s := {(fi, τi, ti)

n+1
i=1 ∈ Xn+1 : (fi, τi, ti)

n
i=1 ∈ X(n)

s , tn+1 = tn+τn, tn+1+τn ≤ s}.

We have

γ−1(E(Γ, s)) =

(
∆(Γ, s)×XN

∂ ∪
∞⋃

m=2

X(m−1)
s ×∆(Γ, s)×XN

∂

)
∩R. (3)

This equation should be read as follows. Suppose (xn) ∈ γ−1(E(Γ, s)), then there
is precisely one m such that xm ∈ ∆(Γ, s). If m = 1, then (xn) ∈ ∆(Γ, s) × XN

∂ .

If m > 1, then (xn) ∈ X
(m−1)
s × ∆(Γ, s) × XN

∂ . It follows that the union in (3) is
pairwise disjoint.
We can rewrite equation (3) to

γ−1(E(Γ, s)) =
((

∆(Γ, s)×XN
∂

) ∩R) ∪
∞⋃

m=2

((
X(m−1)

s ×∆(Γ, s)×XN
∂

) ∩R)

=
((

∆(Γ, s)×XN
∂

) ∩R) ∪
∞⋃

m=2

((
Xm−1 ×∆(Γ, s)×XN

∂

) ∩R)

Note that in the last equation we replaced X
(m−1)
s by Xm−1. By lemma 3.2, it follows

that for measurable Γ ⊂ S, we have that γ−1(E(Γ, s)) is measurable in XN
∂ . Also,

by Proposition A.11, γ is measurable if γ−1(A) is measurable for every A in a set
that generates the σ-algebra on DS. By Theorem 2.22, such a set is

{E(Γ, t) | t ∈ R+,Γ ⊂ S measurable}.

We conclude that γ is indeed measurable.
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3.3 Construction and properties of the law

We want to make a probability measure P on the product space XN
∂ which, given a

measurable E ⊂ XN
∂ , calculates the probability that a random outcome is an element

of E. As we have seen in Section 3.2, a partial trajectory is coded as an element
of X∂, and it follows that the process on XN

∂ is actually a discrete time Markov
process. Given a fixed x ∈ X∂, there is a transition function pε(x, •) ∈ P(X∂). The
ε-subscript is to note that this transition function is dependent on the environment
ε. More on the environment can be found at Section 3.1. Conditions one to three at
Section 3.2.2 have some influence on this transition function, namely

1. pε(∂,E) = δ∂(E),

2. pε(∂, {∂}) = 1,

3. pε((f,∞, t), E) = δ∂(E),

4. pε((f, τ, t), ·), (given that τ <∞) is concentrated on trajectories with starting
time t+ τ .

To be able to construct the law, we need to make an assumption concerning pε. For
any measurable set E ⊂ X∂, we assume that x 7→ pε(x,E) is measurable. It then
satisfies the condition stated in Theorem 2.38. One way to achieve this assumption, is
by assuming that the map x 7→ pε(x, •), from X∂ → P(X∂), is strongly measurable,
see Definition 5.4. This claim is proved in Proposition 5.8.

3.3.1 Construction of P

Suppose x = (f, τ, t) ∈ X with τ <∞, and suppose E × F ×G ⊂ X is a rectangle.
Let ν be the distribution such that

ν = ν(f, τ, t) = Ψ(t+ τ, lim
s↑(t+τ)

f(s)).

Then we have an expression for pε, namely

pε((f, τ, t), E × F ×G) = δt+τ (G)

∫

E

pε
g(F ) dPν(f,τ,t)(g) (4)

We will show that pε satisfies the given condition of Theorem 2.38, that is, we will
show that for a given measurable A ⊂ X∂, x 7→ pε(x,A) is measurable. First notice
that X∂ is generated by rectangles E×F ×G where E ∈ B(DS), F ∈ B((0,∞]) and
G ∈ B(R+), together with the terminal state ∂. First suppose that A is a rectangle,
A = E × F ×G. Then the function x 7→ pε(x,A) can be written as

x 7→ 1X(x)1G(x2 + x3)fF×G(x),

where f is as in Lemma 3.3. By the same lemma, we see that x 7→ pε(x,A) is
measurable. Next suppose that A = {∂}. Then the function x 7→ pe(x,A) can be
written as

x 7→ 1{∂}(x) + 1X(x)1{∞}(x2).
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This function is again measurable. Since pε(x, ·) is a measure, it follows that x 7→
pε(x,A) is measurable for any measurable A ⊂ X∂.
Let µ0 and ε be given. Let P (1) = P ε

µ0
∈ P(X) be the distribution of the first

trajectory, defined, in a similar way as pε, by

P (1)(E × F ×G) = δ0(G)

∫

E

pε
g(F ) dPµ0(g).

Next, we will define the probability measure P (2) as the joint distribution of the first
two trajectories. So, given B ∈ B(X2

∂), we have

P (2)(B) =

∫∫
1Bpε(x1, dx2)dP

(1)(x1)

For higher n we define the joint distribution recursively as a probability measure
P (n+1), so that given B ∈ B(Xn

∂ ) we have

P (n+1)(B) =

∫∫
1Bpε(xn, dxn+1)dP

(n)(x1, x2, . . . , xn)

All these probability measures are well-defined by Theorem 2.38. Note that P (n) is
defined in such a way that for a rectangle E1 × . . .× En+1, we have

P (n+1)(E1 × . . .× En+1) =

∫

E1×...×En

pε(xn, En+1)dP
(n)(x1, . . . , xn).

Also, by Theorem 2.38, there is a probability measure P defined on the product
space XN

∂ , such that for B ⊂ Xn
∂ measurable, P satisfies

P (B ×XN
∂ ) = P (n)(B).

3.3.2 P is concentrated on R

Our goal in the rest of this section is to prove the following theorem.

Theorem 3.10 P is concentrated on the set R of realistic trajectories; P (R) = 1.

We proceed in steps. First, define F∞ = (DS × (0,∞]×R+)N and set

F := F∞ ∪
∞⋃

n=1

Fn.

F is measurable since F∞ is measurable, and by Lemma 3.6, Fm is measurable for
every m. Step one is to prove that P is concentrated on F , and for this we will use
a small lemma.

Lemma 3.11 Let X be a set, and A ⊂ X. For every n ∈ N we have that (An)c

equals the union of all rectangles of the form
∏n

i=1 Zi, where Zi ∈ {A,Ac} except the
rectangle An.
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Proof: Suppose (xn) ∈ Xn. Then either xi ∈ A or xi ∈ Ac. It follows that x ∈∏n
i=1 Zi where Zi ∈ {A,Ac}. The result now follows.

Proposition 3.12 P is concentrated on F , that is, P (F ) = 1.

Proof: We will prove that P (F c) = 0. Note that F c = F c
∞ ∩

⋂∞
m=1 F

c
m. Set

E1 = DS × (0,∞)×R+

E2 = DS × {∞} ×R+

E3 = {∂}

We now have Fm = Em−1
1 × E2 × EN

3 . Observe that E1 ∪ E2 ∪ E3 = X∂, and that
this is a disjoint union. We claim that

( ∞⋃
j=1

Fj

)c

=
∞⋃

j=1

(
Ej−1

1 × E3 ×XN
∂

) ∪
∞⋃

j=1

(
Ej−1

1 × E2 × (EN
3 )c

) ∪ F∞. (5)

First we will prove the easy part, namely the inclusion ⊃.
Suppose x ∈ ⋃∞

j=1

(
Ej−1

1 × E3 ×XN
∂

)
. By definition of Fj it should be clear that

x 6∈ Fj for every j. The same for x ∈ ⋃∞
j=1

(
Ej−1

1 × E2 × (EN
3 )c

)
. Also, if x ∈ F∞,

then we immediately have x 6∈ Fj for all j. So it should be clear that the inclusion
⊃ holds.

Now suppose x ∈
(⋃∞

j=1 Fj

)c

=
⋂∞

j=1 F
c
j . Consider Fm for a fixed m. Observe that

F c
m = ((Em−1

1 )c ×X∂ ×XN
∂ ) ∪ (Em−1

1 × Ec
2 ×XN

∂ ) ∪ (Em−1
1 × E2 × (EN

3 )c).

Suppose that x ∈ ((Em−1
1 )c×X∂×XN

∂ ). By Lemma 3.11 we have that (Em−1
1 )c equals

the union of all rectangles
∏m−1

i=1 Zi where Zi ∈ {E1, E2, E3}, with the exception of
the rectangle Em−1

1 . So x is an element of one of these rectangles
∏m−1

i=1 Zi. This
means that there is at least one i such that Zi 6= E1. Consider j = min{i : Zi 6= Ei}.
Then either Zj = E2 or Zj = E3.
First suppose that Zj = E2. Then we have either x ∈ Ej−1

1 × E2 × EN
3 or x ∈

Ej−1
1 × E2 × (EN

3 )c. Obviously, in the first case we have x ∈ Fj, which gives a
contradiction. In the second case we have in particular that

x ∈
∞⋃

j=1

(Ej−1
1 × E2 × (EN

3 )c),

so then we have that x is an element of the right-hand side of (5).
Next, suppose that Zj = E3. Then we have x ∈ Ej−1

1 ×E3×XN
∂ , so then x is again

an element of the right-hand side of (5).

Suppose that x ∈ (Em−1
1 ×Ec

2×XN
∂ ). Then we have either x ∈ Em−1

1 ×E1×XN
∂ or

x ∈ Em−1
1 × E3 ×XN

∂ . For the first case, observe that

Em−1
1 × E1 ×XN

∂ = EN
1 ∪ (Em

1 × (EN
1 )c) = F∞ ∪ (Em

1 × (EN
1 )c).
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This means that either x ∈ F∞ or x ∈ (Em
1 × (EN

1 )c). For the last case, note that

Em
1 × (EN

1 )c ⊂
∞⋃

j=m

(Ej
1 × E3 ×XN

∂ ) ∪
∞⋃

j=m

(Ej
1 × E2 ×XN

∂ )

=
∞⋃

j=m

(Ej
1 × E3 ×XN

∂ ) ∪
∞⋃

j=m

(Ej
1 × E2 × (EN

3 )c) ∪
∞⋃

j=m

Fj.

But since we assumed that x 6∈ Fj for all j, it follows that if x ∈ Em
1 × (EN

1 )c, then
we have again that x is an element of the right-hand side of (5).

Suppose that x ∈ (Em−1
1 × E2 × (EN

3 )c), we have immediately that x is an ele-
ment of the right-hand side of (5).

Since we now have considered all possible cases, we can conclude that if x ∈
(
⋃∞

j=1 Fj)
c then x is in the right-hand side of (5), hence we have the inclusion ⊂.

Since F c = F c
∞ ∩

⋂∞
m=1 F

c
m we now have

F c =
∞⋃

j=1

(Ej−1
1 × E3 ×XN

∂ ) ∪
∞⋃

j=1

(Ej−1
1 × E2 × (EN

3 )c). (6)

Also, the union in the right-hand side of (6) is a disjoint union, so we particularly
have

P (F c) =
∞∑

j=1

P (Ej−1
1 × E3 ×XN

∂ ) +
∞∑

j=1

P (Ej−1
1 × E2 × (XN

3 )c).

We want to prove that P (F c) = 0, so we will prove that the right-hand side of
the above equation equals 0. By definition of P we have P (Ej−1

1 × E3 × XN
∂ ) =

P (j)(Ej−1
1 × E3). The set Ej−1

1 × E3 is a rectangle, so

P (j)(Ej−1
1 × E3) =

∫

Ej−1
1

pε(xj−1, E3)dP
(j−1)(x1, . . . , xj−1).

But by condition 4 in the list of conditions on pε, we see that pε(xj−1, {∂}) = 0 for
all xj−1 ∈ E1 = (DS × (0,∞) ×R+). So it follows that P (j)(Ej−1

1 × E3) = 0. Thus
P (Ej−1

1 × E3 ×XN
∂ ) = 0.

On the other hand, observe that

(Ej−1
1 × E2 × (EN

3 )c) =
∞⋂

n=1

(Ej−1
1 × E2 × (Xn

∂ \ En
3 )×XN

∂ ).

Note that we have (Ej−1
1 ×E2× (Xn

∂ \En
3 )×XN

∂ ) ⊃ (Ej−1
1 ×E2× (Xm

∂ \Em
3 )×XN

∂ )
if m > n. For every n we have

P (Ej−1
1 × E2 × (Xn

∂ \ En
3 )×XN

∂ ) ≤ P (Ej−1
1 × E2 × Ec

3 ×Xn−1
∂ ×XN

∂ )

= P (j+2)(Ej−1
1 × E2 × Ec

3)

=

∫

Ej−1
1 ×E2

pε(xj, E
c
3)dP

(j+1)(x1, . . . , xj).
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But by condition 3 on pε it follows that pε(xj, E
c
3) for all xj ∈ E2. So, for every n

we have P (Ej−1
1 × E2 × (Xn

∂ \ En
3 )) = 0. By Theorem A.5, we now get

P (Ej−1
1 × E2 × (EN

3 )c) = P

( ∞⋂
n=1

(Ej−1
1 × E2 × (Xn

∂ \ En
3 )×XN

∂ )

)

= lim
n→∞

P
(
Ej−1

1 × E2 × (Xn
∂ \ En

3 )×XN
∂

)

= 0.

We conclude that

P (F c) =
∞∑

j=1

P (Ej−1
1 × E3 ×XN

∂ ) +
∞∑

j=1

P (Ej−1
1 × E2 × (XN

3 )c) = 0.

Next, consider the collection G of all sequences in F which do not connect well, that
is,

G = {xn ∈ F : there is an n ∈ N such that xn+1 6= ∂, xn+1,3 6= xn,2 + xn,3}

Step two is to prove that P is concentrated on Gc.

Proposition 3.13 P is concentrated Gc, that is, P (G) = 0.

Proof: For every x ∈ G, there is a smallest n for which the first connection fails.
Let Gn be the subset of G consisting of all sequences for which n is that smallest
integer. It is obvious that G = ∪∞m=1Gm. Then observe that Gm = (Rm×X)\Rm+1.
We have

P (m+1)((Rm ×X) \Rm+1) = P (m+1)(Rm ×X)− P (m+1)(Rm+1)

Also, by condition 4 on Pε, we get

P (m+1)(Rm ×X) =

∫

Rm

pε(xm, X)dP (m)(x1, . . . , xm)

=

∫

Rm

pε(xm, (DS × (0,∞]× {xm,2 + xm,3}))dP (m)(x1, . . . , xm)

= P (m+1)(Rm+1).

This gives us P (m+1)((Rm×X)\Rm+1) = 0, so P (Gm) = 0 for every m. We conclude

P (G) =
∞∑

m=1

P (Gm) = 0.

Proposition 3.14 P is concentrated on R′, that is, P (R′) = 1.

Proof: Recall that

R′ = R∞ ∪
∞⋃

m=1

((Rm ×XN
∂ ) ∩ Fm).
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We set

E(0) = DS × (0,∞)× {0};
E∞ = DS × {∞} ×R+;

E(0)
∞ = DS × {∞} × {0}.

First we will prove that

P ((R1 ×XN
∂ ) ∩ F1) = P (1)(E(0)

∞ ),

P ((Rn ×XN
∂ ) ∩ Fn) = P (n)(E(0) × (X \ E∞)n−2 × E∞).

Since (R1 ×XN
∂ ) ∩ F1 = E

(0)
∞ × {∂}N it makes sense to define A1 = E

(0)
∞ ×XN

∂ and

An = E
(0)
∞ × {∂}n−1 × XN

∂ for n = 2, 3, . . .. Namely, we then have A1 ⊃ A2 ⊃ . . .,

and (R1 ×XN
∂ ) ∩ F1 = ∩∞j=1Aj. Observe that P (A1) = P (1)(E

(0)
∞ ). Next,

P (A2) = P (2)(E(0)
∞ × {∂}) =

∫

E
(0)
∞
pε(x1, {∂})dP (1)(x1)

=

∫

E
(0)
∞
δ∂({∂})dP (1)(x1)

= P (1)(E(0)
∞ ).

Now suppose that P (An) = P (1)(E
(0)
∞ ). It then follows that

P (An+1) = P (n+1)(E(0)
∞ × {∂}n × {∂})

=

∫

E
(0)
∞ ×{∂}n

pε(xn, {∂})dP (n)(x1, . . . , xn)

=

∫

E
(0)
∞ ×{∂}n

δ∂({∂})dP (n)(x1, . . . , xn)

= P (n)(E(0)
∞ × {∂}n) = P (An) = P (1)(E(0)

∞ ).

So we have P (An) = P (1)(E
(0)
∞ ) for all n. Due to Theorem A.5 we have

P ((R1 ×XN
∂ ) ∩ F1) = lim

n→∞
P (An) = P (1)(E(0)

∞ ).

For n ≥ 2, we have

(Rn ×XN
∂ ) ∩ Fn = E(0) × (X \ E∞)n−2 × E∞ × {∂}N.

Similar to the case n = 1, we now define B1 = E(0) × (X \E∞)n−2 ×E∞ ×XN
∂ and

Bj = E(0) × (X \E∞)n−2 ×E∞ × {∂}j ×XN
∂ . Using the same arguments as above,

we can conclude that

P ((Rn ×XN
∂ ) ∩ Fn) = P (n)(E(0) × (X \ E∞)n−2 × E∞).

Note that we have Ec
∞ = X \ E∞ ∪ {∂}. For n ∈ N, we write

(Ec
∞)n = ((X \ E∞) ∪ {∂})n = (X \ E∞)n ∪ A(n),
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where A(n) is the collection of all sets of the form A(n) = A1 × . . . × An where
Ai = {∂} for at least one i. By the previous Proposition 3.12 we have

P (n)(E1 × (Ec
∞)n−2 × E∞) = P (E1 × (Ec

∞)n−2 × E∞ × {∂}N)

= P (E1 × (X \ E∞)n−2 × E∞ × {∂}N)

+ P (E1 × A(n−2) × E∞ × {∂}N)

= P (E1 × (X \ E∞)n−2 × E∞ × {∂}N) + 0

= P (n)(E1 × (X \ E∞)n−2 × E∞).

Now we will prove the equality

n∑
j=1

P ((Rj ×XN
∂ ) ∩ Fj) = 1− P (n)(E(0) × (Ec

∞)n−1).

We will prove this with induction, so first let n = 1. We have

P ((R1 ×XN
∂ ) ∩ F1) = P (1)(E(0)

∞ ) = P (1)(DS × (0,∞]× {0})− P (1)(E(0)).

Furthermore, the first partial trajectory always starts at time t = 0, so P (1)(DS ×
(0,∞]× {0}) = 1. So the equality is justified; we indeed have

P ((R1 ×XN
∂ ) ∩ F1) = 1− P (1)(E(0)).

For n = 2, observe that

P ((R2 ×XN
∂ ) ∩ F2) = P (2)(E(0) × E∞)

= P (2)(E(0) ×X∂)− P (2)(E(0) × Ec
∞)

= P (1)(E(0))− P (2)(E(0) × Ec
∞).

It follows that

2∑
i=1

P ((Ri ×XN
∂ ) ∩ Fi) = 1− P (1)(E(0)) + P (1)(E(0))− P (2)(E(0) × Ec

∞)

= 1− P (2)(E(0) × Ec
∞).

Now suppose that the equality holds for n, and consider the case n + 1. We have
already seen that

P ((Rn+1 ×XN
∂ ) ∩ Fn+1) = P (n+1)(E(0) × (X \ E∞)n−1 × E∞)

= P (n+1)(E(0) × (Ec
∞)n−1 × E∞).

And again we have

P (n+1)(E(0) × (Ec
∞)n−1 × E∞) = P (n+1)(E(0) × (Ec

∞)n−1 ×X∂)

− P (n+1)(E(0) × (Ec
∞)n−1 × Ec

∞),
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so we conclude that

n+1∑
i=1

P ((Ri ×XN
∂ ) ∩ Fi) = 1− P (n+1)(E(0) × (Ec

∞)n−1 ×X∂)

+ P (n+1)(E(0) × (Ec
∞)n−1 ×X∂)− P (n+1)(E(0) × (Ec

∞)n)

= 1− P (n+1)(E(0) × (Ec
∞)n).

Now, by Theorem 3.12 again, we have for every n that

P (n+1)(E(0) × (Ec
∞)n) = P (n+1)(E(0) × (X \ E∞)n).

Set C1 = E(0)× (X \E∞)×XN
∂ , for higher n set Cn = E(0)× (X \E∞)n×XN

∂ , and
set C = E(0) × (X \ E∞)N. Then C1 ⊃ C2 ⊃ . . ., and C = ∩∞j=1Cj. From Theorem
A.5 we have

P (C) = lim
n→∞

P (Cj) = lim
n→∞

P (n)(E(0) × (X \ E∞)n)

= lim
n→∞

P (n)(E(0) × (Ec
∞)n).

So we get

∞∑
i=1

P ((Ri ×XN
∂ ) ∩ Fi) = 1− P (C).

By the previous Proposition 3.13 we have that

P (C) = P ((E(0) × (X \ E∞)N) ∩ (F \G)) = P (R∞).

So we can conclude that

P (R′) = P

(
R∞ ∪

∞⋃
i=1

((Ri ×XN
∂ ) ∩ Fi)

)

= P (R∞) +
∞∑
i=1

P ((Ri ×XN
∂ ) ∩ Fi)

= P (C) + 1− P (C)

= 1

Now consider the collection

R′∞ =

{
(xn) ∈ R∞ :

∞∑
n=1

xn,2 <∞
}
,

that is, the collection of trajectories that make infinitely many jumps within a finite
amount of time. Step three is to prove that P is concentrated on (R′∞)c.

Proposition 3.15 The set R′∞ is measurable and P (R′∞) = 0.
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Proof: To prove that R′∞ is measurable, consider the function ϕ : XN
∂ → [−∞,∞]

given by

ϕ((xn)) =
∑

n: xn 6=∂

xn,2.

That ϕ is a measurable function is explained in the proof of Theorem 3.8. Then
ϕ−1((0,∞)) is a measurable set, and note that

R′∞ = ϕ−1((0,∞)) ∩R∞.

Remember that there exist a T > 0 and a 0 ≤ δ < 1 such that for all environments
ε and f ∈ DS we have pε

f ((0, T ]) ≤ δ. Define the set

GT := (DS × (0, T ]×R+) .

Then GN
T is measurable in XN

∂ since GN
T =

⋂∞
m=1G

m
T ×XN

∂ . Next, define

G′T :=
∞⋃

m=1

Xm
∂ ×GN

T .

By similar reasoning it should be clear that G′T is also measurable. We claim that
P (G′T ) = 0. We will prove this by showing that P (Xm

∂ × GN
T ) = 0 for every m. By

Theorem A.5, part ii), it follows that

P (Xm
∂ ×GN

T ) = lim
n→∞

P (Xm
∂ ×Gn

T ×XN
∂ ) = lim

n→∞
P (m+n)(Xm

∂ ×Gn
T ).

Observe that if x = (f, τ, t) ∈ X with τ <∞, then, using equation (4),

pε(x,GT ) = δτ+t(R+)

∫

DS

pg((0, T ])dPν(g),

where ν is the distribution right after the jump. Since, by assumption (2), we have
pg((0, T ]) ≤ δ, we have that pε(x,GT ) ≤ δ. By condition 2. and 3. on pε we see that
pε(x,GT ) ≤ δ for all x ∈ X∂.
Let n = 1. We then have

P (m+1)(Xm
∂ ×GT ) =

∫∫
1Xm

∂ ×GT
pε(xm, dxm+1)dP (x1, . . . , xm)

=

∫

Xm
∂

pε(xm, GT )dP (x1, . . . , xm)

≤
∫

Xm
∂

δ dP (x1, . . . , xm)

= δ.
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Using induction, suppose that P (m+n)(Xm
∂ ×Gn

T ) ≤ δn. It follows that

P (m+n+1)(Xm
∂ ×Gn+1

T ) =

∫∫
1(Xm

∂ ×Gn+1
T )pε(xm+n, dxm+n+1)dP (x1, . . . , xm+n)

=

∫

Xm
∂ ×Gn

T

pε(xm+n, GT )dP (x1, . . . , xm+n)

≤
∫

Xm
∂ ×Gn

T

δ dP (x1, . . . , xm+n)

= δP (m+n)(Xm
∂ ×Gn

T )

≤ δn+1.

So given m we have for every n ∈ N that P (m+n)(Xm
∂ ×Gn

T ) ≤ δn. Hence, given m,
we have

P (Xm
∂ ×GN

T ) = lim
n→∞

P (m+n)(Xm
∂ ×Gn

T )

≤ lim
n→∞

δn = 0.

It follows that P (G′T ) = 0.
Now for a sequence (xn) ∈ R′∞, it is clear that there must exist an m such that
(xn) ∈ Xm

∂ ×GN
T . So R′∞ ⊂ G′T and we conclude that P (R′∞) = 0.

We are now ready to prove the theorem.

Proof of Theorem 3.10: Observe that

R = R′ \R′∞.

By Propositions 3.14 and 3.15 it follows that

P (R) = P (R′ ∩ (R′∞)c) = P (((R′)c ∪R′∞)
c
) = 1− P ((R′)c ∪R′∞)

= 1− P ((R′)c)− P (R′∞) = 1− 0− 0 = 1.

3.4 The process on S and its one-dimensional distribution

Here we will give a short summary of the process we have constructed. We have a
probability space (XN

∂ ,Σ, P ), where Σ is the product-σ-algebra forXN
∂ . The stochas-

tic process is a family of X∂-valued random variables (Xn)∞n=1, where

Xn : XN
∂ → X∂

is defined as
Xn((xi)) = evn((xi)) = xn.

Note that each Xn is indeed a random variable, since the projection onto the n-th
coordinate is a measurable function.
We constructed X∂ in such a way that this process is actually a Markov process,
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with transition function pε. For every n ∈ N, the law L(Xn) is the measure on the
Borel-σ-algebra of X∂ given by

L(Xn) = P ◦X−1
n .

By construction, P (X−1
n (E)), where E ⊂ X∂ is measurable, is the probability that

the n-th partial trajectory belongs to the measurable set E.

Using this discrete-time process, we will construct a continuous-time stochastic pro-
cess on S which satisfies the criteria given at the beginning of Section 3. This process
is a collection of random variables X̃t, t ∈ R+, given by

X̃t : DS → S,

f 7→ evt(f) = f(t).

In fact, Theorem 2.22 yields that X̃t is measurable for every t ∈ R+. For the process
to satisfy the given criteria, we need a specific measure P̃ on (DS,B(DS)). This
measure P̃ will be such that for every t ∈ R+, the law µt = P̃ ◦ X̃−1

t describes the
actual flow, by this, we mean that given a measurable Γ ⊂ S the value µt(Γ) is
exactly the probability that the individual is in state Γ at time t.
Since P is concentrated on R, a trajectory (xn) is such that concatenation is possible.
Consider the concatenation map

γ : R→ DS,

(fn, τn, tn)∞n=1 7→ fn(t), if tn ≤ t < τn + tn.

Intuitively, we should have P̃ = P ◦γ−1. P̃ is indeed a measure, since for a measurable
E ∈ S we have, by Proposition 3.9 that γ−1(E) is measurable in XN

∂ . We have that
for every t ∈ R+ and measurable Γ ⊂ S, the law µt satisfies

µt(Γ) = P (γ−1(E(Γ, t))).

Using equation (3), we get

µs(Γ) = P

([
∆(Γ, s)×XN

∂ ∪
∞⋃

m=2

X(m−1)
s ×∆(Γ, s)×XN

∂

]
∩R

)
.

Since the union in (3) is pairwise disjoint, we get

µs(Γ) = P
(
∆(Γ, s)×XN

∂

)
+

∞∑
m=2

P
(
Xm−1 ×∆(Γ, s)×XN

∂

)
. (7)

The next objective is to find simplifying, convenient expressions for 7.
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4 Expressions for the one-dimensional distribu-

tion

Let an initial distribution µ0 ∈ P(S) be given. We will rewrite the equation (7), by
rewriting every m-term in the summation.

Proposition 4.1 Let µ0 ∈ P(S) be given. If φn : Xn → R is a bounded measurable
function, then the integral

∫

Xn

φn(x1, . . . , xn)dP (n)(x1, . . . , xn)

equals the repeated integral

∫

(DS×(0,∞])n

φn ((f1, τ1, 0), (f2, τ2, τ1), . . . , (fn, τn, τ1 + . . .+ τn−1))

dQν(fn−1,τn−1,τ1+...+τn−2)(fn, τn) . . . dQν(f1,τ1,0)(f2, τ2)dQµ0(f1, τ1)

Proof: We proceed by induction. Take n = 1. Suppose φ1(x1) = 1E1(x1) with
E1 = E1,1 × E1,2 × E1,3. Then

∫

X

φ1(x1)dP
(1)(x1) = P (1)(E1) = 1E1,3(0)

∫

E1,1

pε
f (E1,2)dPµ0(f)

= 1E1,3(0)Qµ0(E1,1 × E1,2)

=

∫

DS×(0,∞]

1E1,3(0)1E1,1×E1,2(f1, τ1)dQµ0(f1, τ1)

=

∫

DS×(0,∞]

φ1(f1, τ1, 0)dQµ0(f1, τ1).

Using linearity and the Dominated Convergence Theorem, it follows that the same
result holds for arbitrary bounded measurable functions φ1. So for n = 1, the propo-
sition holds.
Assume the equality holds for n−1. Suppose φn(x1, . . . , xn) = 1E1×...×En(x1, . . . , xn),
and En = En,1 × En,2 × En,3. We get

∫

Xn

φn(x1, . . . , xn)dP (n)(x1, . . . , xn) = dP (n)(E1 × . . .× En)

=

∫

E1×...×En−1

pε(xn−1, En)dP (n−1)(x1, . . . , xn−1).

Since P is concentrated on R, we will write xn−1 = (fn−1, τn−1, tn−1), where tn−1 =
τ1+. . .+τn−2. Since equations are going to be large, we will write νn−1 = ν(fn−1, τn−1, tn−1).
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Using (4) we get

∫

Xn

φn(x1, . . . , xn)dP (n)(x1, . . . , xn)

=

∫

E1×...×En−1

δtn−1(En,3)

[∫

En,1

pg(En,2)dPνn−1(g)

]
dP (n−1)(x1, . . . , xn−2, (fn−1, τn−1, tn−1))

=

∫

E1×...×En−1

1En,3(tn−1)
[
Qνn−1(En,1 × En,2)

]
dP (n−1)(x1, . . . , xn−2, (fn−1, τn−1, tn−1))

=

∫

Xn

1E1×...×En−1(x1, . . . , xn−1)1En,3(tn−1)

[∫

DS×(0,∞]

1En,1×En,2(fn, τn)dQνn−1

]
dP (n−1)

=

∫

Xn

∫

DS×(0,∞]

φn(x1, . . . , xn−1, (fn, τn, τ1 + . . .+ τn−1))dQνn−1(fn, τn)dP (n−1).

Again, by linearity and the Dominated Convergence Theorem, the above equalities
hold for arbitrary bounded measurable functions φn.

Also, the function ψ : Xn−1 → [0, 1] given by

ψ(x1, . . . , xn−1) =

∫

DS×(0,∞]

φn(x1, . . . , xn−1, (fn, τn, τ1 + . . .+ τn−1))dQνn−1(fn, τn)

is measurable. This can be seen as follows. In the previous Lemma 3.3, we have seen
that for every E in the σ-algebra of DS × (0,∞] the function fE : Xn−1 → [0,∞]
defined by

fE(x1, . . . , xn−1) = Qν(fn−1,τn−1,τ1+...+τn−2)(E)

is measurable. Then one can use Lemma 2.35 to prove that ψ is measurable whenever
φ(x1, . . . , xn) = 1E1×...×En(x1, . . . , xn). It follows that ψ is measurable when φ is a
simple function, because ψ is then a linear combination of measurable functions.
Also, by a limiting argument, ψ is measurable for any measurable function φ. Since
the inner integral is measurable, using the induction hypotheses we conclude the
proof.

Now we will use this result to rewrite equation (7). We will call P (∆(Γ, s)×XN
∂ ) the

first term and P (Xm−1 ×∆(Γ, s)×XN
∂ ) the m-th term, for m = 2, 3, . . .. Consider

the first term. For the first partial trajectory x1 we have x1 ∈ ∆(Γ, s) if and only if
x1 ∈ E(Γ, s) × (s,∞] × {0}, where E(Γ, s) = ev−1

t (Γ), as usual. The first term can
be rewritten as

P (∆(Γ, s)×XN
∂ ) = P (1) (∆(Γ, s)) = P (1) (E(Γ, s)× (s,∞]× {0})

=

∫

E(Γ,s)

pε
f ((s,∞])dPµ0(f) = Qµ0(E(Γ, s)× (s,∞])

=

∫

DS×(0,∞]

1E(Γ,s)×(s,∞](f1, τ1)dQµ0(f1, τ1).
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Next, consider the (m+ 1)-th term. We have

P (Xm ×∆(Γ, s)×XN
∂ ) = P (m+1)(Xm ×∆(Γ, s))

=

∫

Xm

pε(xm,∆(Γ, s))dP (m)(x1, . . . , xm)

=

∫

(DS×(0,∞])m

pε((fm, τm, τ1 + . . .+ τm−1),∆(Γ, s))dQνm−1(fm, τm) . . . dQµ0(f1, τ1).

Now note that we can always add an inner integral
∫
DS×(0,∞]

dQνm(fm+1, τm+1). The

result is then, that we integrate the (m + 1)-th term over the same area as the
(m+ 2)-nd term.
Or, more general, the sum of the first m terms can be written as an integral over
(DS × (0,∞])m. Before we make this statement clear, we will write

φn(x1, . . . , xn, s)(Γ) = 1E(Γ,s)×(s,∞](f1, τ1) +
n∑

m=2

pε((fm, τm, τ1 + . . .+ τm−1),∆(Γ, s)),

to avoid enormous equations. The last statement means that, for n = 2, 3, . . .,

P (∆(Γ, s)×XN
∂ ) +

n∑
m=2

P (Xm−1 ×∆(Γ, s)×XN
∂ )

=

∫

DS×(0,∞])n

φn(x1, . . . , xn)(Γ)dQνn−1(fn, τn) . . . dQν1(f2, τ2)dQµ0(f1, τ1).

It follows that

µs(Γ) = lim
n→∞

∫

DS×(0,∞])n

φn(x1, . . . , xn)(Γ)dQνn−1(fn, τn) . . . dQν1(f2, τ2)dQµ0(f1, τ1),

(8)

where

φn(x1, . . . , xn)(Γ) = 1E(Γ,s)×(s,∞](f1, τ1) +
n∑

m=2

pε ((fm, τm, τ1 + . . .+ τm−1),∆(Γ, s)) .
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5 Conclusion and further progression of the model

As we have seen in the previous section, the existence of a stochastic process which
satisfies the given conditions is guaranteed since we have constructed the measure
P̃ . The model we created is more general than the one given in A cell cycle model
[11], [4]. We concluded the previous section with an integral representation 8 of the
distribution µt. This representation can possibly be viewed as a converging series
in a Banach space, as will be explained in the next section. We will conclude that
section with a sufficient condition, so that the representation can indeed be viewed
as a converging series.

5.1 Bochner integration

This section covers only basic theory of Bochner integration. A more detailed cover
can for instance be found at [12], [6]. First we will define the notion of a vector-
valued simple function, then we will define what we mean by a Bochner integrable
function.

Definition 5.1 Let (Ω,Σ, µ) be a measure space and X be a Banach space. A func-
tion f : Ω → X is called a vector-valued simple function if f is of the form

f =
n∑

k=1

ak1Ak
,

where ak ∈ X and Ak measurable sets in R. In this case, the Bochner Integral is
defined by

∫

Ω

f dµ =
n∑

k=1

akµ(Ak) ∈ X.

Definition 5.2 Let (Ω,Σ, µ) be a measure space and X a Banach space. A function
f : Ω → X is called Bochner integrable if there exists a sequence of simple
functions fn such that

lim
n→∞

∫

Ω

‖f(x)− fn(x)‖dµ(x) = 0.

In this case, the integral is defined as
∫

Ω

f(x)dµ(x) = lim
n→∞

∫

Ω

fn(x)dµ(x).

The following lemma states that a bounded linear operator and the Bochner integral
can be interchanged. The proof is straightforward, and will be omitted.

Lemma 5.3 Let (Ω,Σ, µ) be a measure space and X, Y be Banach spaces. Let
T : X → Y be a bounded operator. If f : Ω → X is Bochner integrable, then
Tf : Ω → Y is Bochner integrable and

∫

Ω

(Tf)(x)dµ(x) = T

(∫

Ω

f(x)dµ(x)

)
.
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Definition 5.4 A function f : Ω → X is called strongly measurable if there
exists a sequence of simple functions (ϕn) such that ϕn(ω) → f(ω) for almost all
ω ∈ Ω.

Definition 5.5 A function f : Ω → X is called weakly measurable if for every
x∗ ∈ X∗ the function 〈f(ω), x∗〉 : Ω → R is measurable.

Definition 5.6 A function f : Ω → X is called almost separable valued if there
exists a measurable set A such that f(A) is a separable set in X and µ(Ac) = 0.

Strongly measurability is ’stronger’ than weakly measurability, as stated in the next
theorem. A proof can be found at [12].

Theorem 5.7 (Pettis Theorem) A function f : Ω → X is strongly measurable if
and only if it is weakly measurable and almost separable valued.

The following proposition relates strongly measurable functions and functions that
satisfy the hypotheses in Lemma 2.35, Proposition 2.36 and Theorem 2.38.

Proposition 5.8 Let (X, d1), (Y, d2) be two metric spaces, where Y is separable,
and f : X → P(Y ). Then the following are equivalent.

i) When viewing f as a function f : X → YBL, then f is strongly measurable, in
the Bochner sense;

ii) For all A ∈ ΣY , the σ-algebra generated by Y , the map ϕC : X → R, given by
x 7→ f(x)(A) is measurable.

Proof: First, we prove i) ⇒ ii). Suppose f is strongly measurable, and let C ⊂ Y
be closed. We will first prove that ϕC is measurable when C is closed. Consider the
sequence of functions qn(x) = (1 − nd(x,C)). By the previous Lemmas 2.19, 2.14
and 2.15 we see that the function qn is Lipschitz continuous. By Lemma 2.17 the
function pn = max(qn, 0) is Lipschitz continuous, and is also bounded. Now note
that pn ↓ 1C pointwise. Since f is strongly measurable, it is also weakly measurable,
by Pettis Theorem 5.7. This means that for every x∗ ∈ Y ∗

BL the map x 7→ 〈x∗, f(x)〉
is measurable. Now, since Y ∗

BL is isometrically isomorphic to BL(Y ), by Theorem
2.30, for every x∗ ∈ Y ∗

BL there is exactly one ϕ ∈ BL(Y ) such that

〈x∗, f(x)〉 =

∫

Y

ϕ d(f(x))(y).

So we now know that for every ϕ ∈ BL(Y ), the map

x 7→
∫

Y

ϕ d(f(x))(y)

is measurable.
Since pn ∈ BL(Y ) we see that in particular the map Φn : X → R given by x 7→
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∫
Y
pn d(f(x))(y) is measurable. By the Lebesgue Dominated Convergence Theorem,

we have for every x that
∫

Y

pn d(f(x))(y) →
∫

Y

1C d(f(x))(y)

as n → ∞. Since a limit of measurable functions is measurable, we conclude that
the map

x 7→
∫

Y

1C d(f(x))(y) = f(x)(C)

is measurable. So we have the implication i) ⇒ ii) for closed sets C. Now consider
the class of functions

H = {ϕ : X → R | ϕ is measurable and x 7→ ∫
Y
ϕ d(f(x))(y) is measurable.}

Then H is obviously a vector space over R. Also, the constant function 1 is an
element of H since 1 is measurable, and 1 = 1Y . Note that Y is closed. We already
proved that x 7→ ∫

Y
1C d(f(x))(y) is measurable for a closed set C. And, if (ϕn)

is a sequence such that ϕn ↑ ϕ, then obviously ϕ is measurable and the map x 7→∫
Y
ϕ d(f(x))(y) is measurable. Hence ϕ ∈ H. So H satisfies the conditions stated in

the Monotone Class Theorem A.14. Now let

I = {C ⊂ Y | C closed}.
Then I is a π-system, and H contains the indicator function of every set in I.
From the Monotone Class Theorem A.14 we can conclude that H contains every
measurable σ(I) function on X. All open sets are elements of σ(I), so we see that
σ(I) = B. We conclude that H contains every indicator function 1B where B ∈ B,
and hence the map x 7→ f(x)(B) is measurable.

Now we prove the other implication ii) ⇒ i). We will use Pettis Theorem 5.7 again.
We assumed that the map x 7→ f(x)(A) is measurable for every measurable A, so
it follows that

x 7→
∫

Y

1A d(f(x))(y)

is measurable for every A. It then follows that

x 7→
∫

Y

ϕ d(f(x))(y)

is measurable for every measurable function ϕ. In particular for ϕ ∈ BL(Y ) = Y ∗
BL.

It follows that the function f is weakly measurable. By Proposition 2.27, we have
that YBL is separable. Now we can use Pettis Theorem 5.7 to conclude that f is
strongly measurable. This concludes the proof.

Proposition 5.9 Let (X, d1) and (Y, d2) be two metric spaces. If f : X → P(Y ),
viewed as a function f : X → YBL is strongly measurable and Bochner integrable,
then for every measurable set E ∈ B(Y ) we have the equality

(∫

X

f(x)dµ(x)

)
(E) =

∫

X

f(x)(E)dµ(x).
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Proof: First note that the right-hand side of the above equation is well-defined,
by the previous Proposition 5.8; the function x 7→ f(x)(E) is measurable for every
E ∈ B(Y ).
Let C be closed in Y , and consider the sequence φn = max(1 − nd2(x,C), 0). As
described in the proof of Proposition 5.8, it follows that φn is Lipschitz continuous.
Remember that BL(Y ) is isometrically isomorphic to Y ∗

BL. Set ν =
∫

X
f(x)dµ(x)

and observe that
〈∫

X

f(x)dµ(x), φn

〉
= 〈ν, φn〉 =

∫

Y

φn(y)dν(y) →
∫

Y

1Cdν(y) = ν(C),

as n→∞. The convergence follows from the Dominated Convergence Theorem.
Also, by Lemma 5.3, we see that

〈∫

X

f(x)dµ(x), φn

〉
=

∫

X

〈f(x), φn〉dµ(x).

Also by the Dominated Convergence Theorem, we have
∫

X

〈f(x), φn〉dµ(x) =

∫

X

[∫

Y

φn(y)d(f(x))(y)

]
dµ(x) →

∫

X

f(x)(C)dµ(x).

So for closed C ⊂ Y we have the desired equality
(∫

X

f(x)dµ(x)

)
(C) =

∫

X

f(x)(C)dµ(x).

Consider the collection H of measurable functions ϕ : Y → R such that the equality
∫

Y

ϕ(y)dν(y) =

∫

X

[∫

Y

ϕ(y)d(f(x))(y)

]
dµ(x)

holds. We will show that H satisfies the conditions stated in Theorem A.14. By
linearity of the integral and the fact that the set of measurable functions is a vector
space, it follows that H is a vector space. Also the constant function 1 is an element
of H, since this is the function 1Y , and Y is closed. Now let ϕn a sequence of non-
negative functions in H such that ϕn ↑ ϕ, with ϕ bounded. Then ϕ is measurable,
and applying the Monotone Convergence Theorem several times we get

∫

Y

ϕ(y)dν(y) =

∫

Y

lim
n→∞

ϕn(y)dν(y)

= lim
n→∞

∫

Y

ϕn(y)dν(y)

= lim
n→∞

∫

X

[∫

Y

ϕn(y)d(f(x))(y)

]
dµ(x)

=

∫

X

[∫

Y

ϕ(y)d(f(x))(y)

]
dµ(x).

It follows that ϕ ∈ H. So H satisfies the three conditions in Theorem A.14. Also,
H contains the indicator function of every set in some π-system I, namely the π-
system I of closed sets in Y . By the Monotone Class Theorem A.14, H contains

51



every bounded M(I)-measurable function from Y into R, so in particular indicator
function 1E with E ∈ B(Y ), since M(I) = B(Y ). We conclude that for every
E ∈ B(Y ) we have the desired equality

(∫

X

f(x)dµ(x)

)
(E) =

∫

X

f(x)(E)dµ(x).

Due to the previous two propositions, the integral representation (8) can be
rewritten once we are able to show that φn : Xn → SBL defined as

φn(x1, . . . , xn) = 1E(•,s)×(s,∞](f1, τ1) +
n∑

m=2

pε ((fm, τm, τ1 + . . .+ τm−1),∆(•, s)) ,

is strongly measurable and Bochner integrable. This assumption can be reduced by
the assumption that the following functions are strongly measurable and Bochner
integrable:

x1 = (f1, τ1, 0) 7→ 1E(•,s)×(s,∞](f1, τ1),

(x1, . . . , xm) 7→ pε((fm, τm, τ1 + . . .+ τm−1),∆(•, s)).

5.2 Concluding remarks

Although we did not fully reach the ultimate goal of establishing the variation of
constants formula 1 in a Banach space generated by measures from the consideration
of the underlying stochastic process, we strongly believe that µs given by equation
7, under suitable conditions, can be approximated well by the solution of such a
variation of constants formula. We express the hope that this line of research will
be followed through and will establish this assertion.
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A Fundamental Measure Theory

Definition A.1 Let X be any set. A ring is a subset A of the power set P(X),
such that A satisfies the following conditions

1. ∅ ∈ A;

2. for all A,B ∈ A we have A ∪B ∈ A and B \ A ∈ A.

An algebra is a ring A of the power set P(X) such that X ∈ A.
There is also another definition of an algebra: a subset A of the power set P(X) is
called an algebra if ∅, X ∈ A, and if

1. if Aj ∈ A, j = 1, . . . , n, then
⋃n

j=1Aj ∈ A;

2. if A ∈ A then Ac ∈ A.

These two definitions are equivalent. This is easy to see. Suppose the first definition
holds. Then ∅ ∈ A since X \ X = ∅. The condition Aj ∈ A, j = 1, . . . , n ⇒
∪n

j=1Aj ∈ A is just applying the condition of a ring simultaneously. The other
condition A ∈ A ⇒ Ac ∈ A follows since Ac = X \ A.
Otherwise, if the second definition holds, then in particular the statement A,B ∈
A ⇒ A ∪B ∈ A. Furthermore, note that B \ A = B ∩ Ac = (Bc ∪ A)c.

Definition A.2 Let X be any set. An algebra A is called a σ-algebra if whenever
Aj ∈ A, j ∈ N, then ∪∞j=1Aj ∈ A.

A pair (X,M), where X is a set and M a σ-algebra, is called a measurable space.
For any subset E of the power set P(X), there exists a unique smallest σ-algebra
M(E) such that E ⊂M(E). This σ-algebraM(E) is called the σ-algebra generated
by E .
If X is a topological space, then we denote by B(X) the σ-algebra generated by
open sets.

Lemma A.3 If E and F are subsets of the power set P(X) with E ⊂ M(F), then
we have M(E) ⊆M(F).

Proof: By definition, M(E) is the smallest σ-algebra containing E . Since M(F) is
one of such σ-algebra’s, we have either M(E) = M(F) or M(E) ⊂M(F).

Definition A.4 Let M be a σ-algebra. A measure is a function µ : M→ [0,∞]
that satisfies the following conditions

1. µ(∅) = 0;

2. if Aj ∈M, j ∈ N, and Aj are pairwise disjoint, then

µ(
∞⋃

j=1

Aj) =
∞∑

j=1

µ(Aj).
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A triple (X,M, µ), where X is a set, M a σ-algebra and µ a measure, is called a
measure space. A measure is called finite when µ(X) <∞, and is called a prob-
ability measure when µ(X) = 1. If there exists a countable cover X = ∪∞j=1Aj,
such that µ(Aj) <∞ for all j, then µ is called σ-finite. A measure space (X,M, µ)
with µ a probability measure is called a probability space.

One of the probability measures we will be using is the Dirac measure δx at a
point x ∈ X. This measure is defined as

δx(A) =

{
1 x ∈ A;
0 x 6∈ A.

It is easy to verify that this is indeed a measure.

Theorem A.5 Let (X,M, µ) be a measure space, and Aj ∈ M, j = 1, 2, . . .. The
following two conditions hold

i) if A1 ⊂ A2 ⊂ . . ., then µ(∪∞j=1Aj) = limj→∞ µ(Aj);

ii) if A1 ⊃ A2 ⊃ . . . and µ(A1) <∞, then µ(∩∞j=1Aj) = limj→∞ µ(Aj).

Proof: First we prove i). Let A0 = ∅ and notice that Bj := Aj \Aj−1, j = 1, 2, . . .,
is a sequence of disjoint sets. Since Aj ⊂ Aj+1, we get Ak = ∪k

j=1Bj. Also, Ak =
∪k

j=1Ak. It follows that ∪k
j=1Aj = ∪k

j=1Bj, and so

∪∞j=1Aj = ∪∞j=1Bj.

Because the Bj’s form a sequence of disjoint sets, we get

lim
k→∞

µ(Ak) = lim
k→∞

µ(∪k
j=1Bj) = lim

k→∞

k∑
j=1

µ(Bj) =
∞∑

j=1

µ(Bj)

= µ(∪∞j=1Bj) = µ(∪∞j=1Aj).

This proves i). To prove ii), Set Bj = A1 \ Aj. Then we have B1 ⊂ B2 ⊂ . . .. Also,
since Bj and Aj are disjoint sets, and since A1 ⊃ A2 ⊃ . . ., we get

µ(Bj) + µ(Aj) = µ(Bj ∪ Aj) = µ((A1 ∩ Ac
j) ∪ Aj) = µ(A1).

By elementary set theory, we get ∪∞j=1Bj = A1 \ (∩∞j=1Aj). Since Bj and Aj are
disjoint, also Bj and ∩∞j=1Aj are disjoint, and so we have that ∪∞j=1Bj and ∩∞j=1Aj

are disjoint. Using this and the fact that ∩∞j=1Aj ⊂ A1, we get

µ

( ∞⋃
j=1

Bj

)
+ µ

( ∞⋂
j=1

Aj

)
= µ

( ∞⋃
j=1

Bj ∪
∞⋂

j=1

Aj

)

= µ

((
A1 ∩

( ∞⋃
j=1

Aj

)c)
∪

∞⋂
j=1

Aj

)

= µ(A1).
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By part i) we see that µ(∪∞j=1Bj = limj→∞ µ(Bj), and hence

µ(A1) = lim
j→∞

µ(Bj) + µ

( ∞⋂
j=1

Aj

)
= lim

j→∞
(µ(A1)− µ(Aj) + µ

( ∞⋂
j=1

Aj

)
.

Since we assumed that µ(A1) <∞, we get

lim
j→∞

µ

( ∞⋂
j=1

Aj

)
− µ(Aj) = 0,

and the result follows.

Definition A.6 Let X be any set. A semiring is a subset D ⊂ P(X) that satisfies
the following conditions

1. ∅ ∈ D;

2. if A,B ∈ D then A ∩B ∈ D;

3. if A,B ∈ D, then we can write A\B =
⋃

a≤j≤nCj, where Cj ∈ D are disjoint.

Note the following. If we have a semiring D, and we add the condition A,B ∈ D ⇒
A ∪B ∈ D, then our semiring becomes a ring.

Definition A.7 For any subset A of the power set P(X), the ring generated by
A is the intersection of all rings including A.

Given a semiring A, let R be the set of all finite disjoint unions of A. Then R is a
ring. For a proof, see [8, §3.2, p.96]. This is obviously the ring generated by A, since
there is no smaller ring including A.

Definition A.8 Let D be a semiring. A function α : D → [0,∞) is called additive
when for D ∈ D with D = ∪n

j=1Dj, where the Dj are pairwise disjoint, we have
that α(D) =

∑n
j=1 α(Dj). It is called countably additive when for D ∈ D with

D = ∪∞j=1, where the Dj are pairwise disjoint, we have that α(D) =
∑∞

j=1 α(Dj).

Proposition A.9 Let D be a semiring and α : D → [0,∞] an additive function.
For disjoint Dj ∈ D, let

µ

(
m⋃

j=1

Dj

)
:=

m∑
j=1

α(Dj).

Then µ is well-defined and additive on the ring R generated by D. If α is countably
additive on D, so is µ on R, and then µ extends to a measure on the σ-algebra
generated by D of R.

For a proof, see [8, §3.2, Prop. 3.2.4].

Definition A.10 Let (X,M) and (Y,N ) be two measurable spaces. A function f :
X → Y is called measurable if f−1(E) ∈M when E ∈ N .
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Proposition A.11 Let (X,M) and (Y,N ) be two measurable spaces and f : X →
Y . If N is generated by a set E then f is measurable if and only if f−1(E) ∈M for
all E ∈ E
Proof: If f is measurable, then f−1(E) ∈ M for all E ∈ N so in particular for
E ∈ E . On the other hand, suppose that f−1(E) ∈ M for all E ∈ E . Consider
the set Σ = {E ⊂ Y | f−1(E) ∈ M}. We will prove that Σ is a σ-algebra. Let
E ∈ Σ. Then f−1(E) ∈ M, and f−1(Ec) = (f−1(E))c ∈ Σ. Let E1, E2 . . . ∈ Σ,
then f−1(∪∞i=1Ei) = ∪∞i=1f

−1(Ei), so it follows that ∪∞i=1Ei ∈ Σ. So Σ is indeed a
σ-algebra, and by assumption we have E ⊂ Σ. By Lemma A.3 we have that N ⊂ Σ.
The result now follows.

Definition A.12 Let X be any set. A π-system is a subset I of P(X) such that
whenever I1, I2 ∈ I then I1 ∩ I2 ∈ I.

The following lemma states that if two probability measures agree on a π-system,
then they agree on the σ-algebra generated by that π-system. A proof can be found
in [16, A1.4, p.194]

Lemma A.13 Let I a π-system, and M = M(I). If µ1, µ2 are two probability
measures such that µ1(B) = µ2(B) for all B ∈ I, then µ1(B) = µ2(B) for all
B ∈M.

The following theorem, called the Monotone Class Theorem, which can be used
when creating certain measures on product spaces. The proof can be found at [16,
A3.1, p205].

Theorem A.14 (Monotone Class Theorem) Let H be a class of bounded func-
tions from a set S into R satisfying the following conditions:

i) H is a vector space over R;

ii) the constant function 1 is an element of H;

iii) if (fn) is sequence of non-negative functions in H such that fn ↑ f pointwise,
where f is a bounded function on S, then f ∈ H.

Then if H contains the indicator function of every set in some π-system I, then H
contains every bounded σ(I)-measurable function on S.

We will conclude this section with a technique how to extend a measure from an
algebra to a σ-algebra.

Definition A.15 Let A be an algebra. A function µ0 : A → [0,∞] is called a
premeasure if

i) µ0(∅) = 0;

ii) if Aj ∈ A for j = 1, 2, . . . are pairwise disjoint such that ∪∞j=1Aj ∈ A, then

µ0

( ∞⋃
j=1

Aj

)
=

∞∑
j=1

µ0(Aj).
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The following theorem states that it is possible to make an extension. The proof can
be found in [10, §1.4, p.31]

Theorem A.16 Let µ0 be a premeasure on an algebra A, and letM be the σ-algebra
generated by A. Then there exists a measure µ on M such that the restriction of µ
to A is precisely µ0.

B Measurable functions with range in [−∞,∞]

Let d be a metric on [−∞,∞] defined as follows.

d(x, y) =





|x−y|
1+|x−y| if −∞ < x, y <∞,

1 if either y = ±∞ and x 6= ±∞,
x = ±∞ and y 6= ±∞,
or y = −x = ±∞

0 if y = x = ±∞.

Lemma B.1 The σ-algebra B([−∞,∞]) is generated by E = {(a, b] : −∞ ≤ a <
b ≤ ∞}

Proof: First note that if E ⊂ [−∞,∞] with ±∞ 6∈ E then E is open if and only if
E is open in R with its standard metric. Also, every open set in R can be written
as a countable union of disjoint open intervals (for a proof of this fact, see [15, §1.1,
p.6].
Suppose a < b <∞ and consider (a, b]. Note that (a, b] = ∩∞n=1(a, b+ 1

n
). If b = ∞,

then (a, b] is open in [−∞,∞]. So in either case, (a, b] ∈ B([−∞,∞]). It follows that
E ⊂ B([−∞,∞]) and by Lemma A.3 we have M(E) ⊂ B([−∞,∞]). On the other
hand, suppose E ⊂ [−∞,∞] is open with ±∞ 6∈ E. Then E can be written as a
countable union of disjoint open intervals. Every such open interval is an element
in M(E). Note that {∞} = ∩∞n=1(n,∞] ∈ M(E). A similar reasoning gives us
{−∞} ∈M(E). So, for an arbitrary open E we have that

E = E \ ({−∞} ∪ {∞}) ∪ {−∞} ∪ {∞} ∈M(E).

Again by Lemma A.3 it follows that B([−∞,∞]) ⊂ M(E). We conclude that
B([−∞,∞]) = M(E).

Lemma B.2 B([−∞,∞]) is generated by E2 = {(a,∞] : −∞ ≤ a <∞}

Proof: We will show that M(E) = M(E2), where E = {(a, b] : −∞ ≤ a < b ≤ ∞}.
It is immediately clear that M(E2) ⊂ M(E). To prove the other inclusion, note
that if b < ∞, then (a, b] = (a,∞] ∩ ((b,∞])c. It follows that E ⊂ M(E2), hence
by Lemma A.3, M(E) ⊂M(E2). The result now follows from the previous Lemma
B.1.
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The following proposition shows how to make new measurable functions from exist-
ing ones.

Proposition B.3 Let (X,M) be a measurable space. If f, g : X → [−∞,∞] mea-
surable and λ ∈ R, then

i) λf is measurable;

ii) f + g is measurable, with (f + g)(x) = 0 when f(x) = −g(x) = ±∞ ;

iii) |f | is measurable.

Proof: By Lemma B.2 and Proposition A.11 it follows that f is measurable if and
only if f−1((a,∞]) ∈ M for all −∞ ≤ a < ∞. For i), note that if λ 6= 0 then
f−1((λ−1a,∞]) = (λf)−1((a,∞]) ∈ M for all a. So λf is measurable, when λ 6= 0.
But this is also the case if λ = 0, since the constant function 0 is measurable. This
proves i)
For ii), note that

(f + g)−1((a,∞]) = {x ∈ X : (f + g)(x) > a}
= ∪r∈Q({x ∈ X : f(x) > f} ∩ {x ∈ X : g(x) > a− r}) ∈M.

This proves ii). For iii), note that

{x ∈ X : |f(x)| > a} = {x ∈ X : f(x) > a} ∪ {x ∈ X : −f(x) > a}.

This proves iii).
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