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Preface

“Ik keerde mij, en zag onder de zon, dat de loop niet is der snellen, noch de strijd der

helden, noch ook de spijs der w ijzen, noch ook de rijkdom der verstandigen, noch ook de

gu nst der w elw etenden, maar dat tijd en toeval aan alle dezen w edervaart;”

Ecclesiastes 9:11, Translation: Dutch Staten-Generaal

This thesis is w ritten b y Ton van B ox tel in ord er to ob tain an M .Sc. d eg ree in ap p lied
m athem atics from L eid en U niv ersity . M y w ork has b een sup erv ised b y O nno v an Gaans
and concerns stochastic d iff erential eq uations. To sp eak in lay m an’s term s as m uch as
p ossib le, stochastic d iff erential eq uations d escrib e the chang e in tim e of a sy stem in term s
of the state of the sy stem , und er the infl uence of rand om fl uctuations. O ne can of course
im ag ine the im p ortance of this ty p e of m od els w hen d ealing w ith sy stem s infl uenced b y
m any factors that can not b e controlled or d eterm inistically calculated . E x am p les of
this are in am p le sup p ly : b ehav iour of w eather and clim ate, m ov em ent of p articles or
larg e b od ies throug h an irreg ular m ed ium , b ehav iour of fi nancial instrum ents in a v olatile
m ark et, et cetera, et cetera. B y rig ourous stud y of the und erly ing m od els, one can hop e
to d raw useful conclusions ab out the b ehav iour of these sy stem s. To illustrate the use of
the theory , I w ill m ention a concrete ex am p le of a sy stem in the fi nancial m ark ets that can
b e d escrib ed b y a stochastic d iff erential eq uation, in casu the b ehav iour of the so-called
forw ard rate p rocess of a zero coup on b ond .

A s the rest of this thesis is of a rather theoretic nature, it is rather d iffi cult to p recisely
ex p lain its contents to the non-m athem atician. I hav e tried to w rite in such a w ay that the
tex t can b e und erstood b y a M aster’s stud ent in m athem atical analy sis, d ev elop ing the
relev ant theory from q uite an ad v anced lev el. I w ill assum e the read er to b e fam iliar w ith
b asic notions and results from functional analy sis, m easure theory and m easure theoretic
p rob ab ility . A s for functional analy sis, the fi rst few chap ters of [1 8 ] w ill m ost p rob ab ly
suffi ce, and an ex cellent treatm ent of real-v alued m easure theory and p rob ab ility theory can
b e found in the v ery concise, y et v ery com p lete b ook b y W illiam s [22]. Som e sem ig roup s
m ig ht b e m entioned and a m ore than suffi cient treatm ent of the relev ant theory can b e
found in [1 5 ]. A lso, for the read er interested in the ap p lications of this theory , a v ery
com p lete w ork of reference on the fi nancial ap p lications of stochastic calculus (as w ell
as of other elem ents of p rob ab ility theory ) is the q uite elab orate b ook b y Shiry aev [20 ].
A v ery com p rehensiv e, y et hard -to-read , b ook on the infi nite d im ensional theory can b e
found in [1 3].
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Introduction

In recent years, stochastic calculus, with its wide range of applications, has become quite
an intensively studied area of mathematics. Especially due to the increased popularity
of complicated financial instruments, such as options or more exotic contingent claims,
research and education in stochastic analysis have become an integral and indispensable
part of financial mathematics. Also, many other applications throughout science in areas
such as biology, physics and meteorology can be found.

From a purely mathematical point of view, the study of stochastic dynamical systems is a
highly interesting and involved branch of mathematics combining methods from functional
analysis, probability theory, semigroup theory, differential calculus, measure theory and
many more areas of mathematics to form an interesting and challenging research area.
Starting with the rigourous treatments of Brownian motion by the likes of Bachelier [1]
and Einstein [2], through the stochastic integration defined by Itô [3] and Stratonovich,
and by the N obel prize-winning analysis leading to the famous Black-Scholes formula [4],
stochastic analysis has blossomed into the active and diverse research area it is today.

This thesis will be concerned mostly with an abstract Banach space setting for stochastic
analysis, and will be centered primarily around the (inhomogeneous) stochastic abstract
Cauchy problem

dU(t) = [A U(t) + f(t,U(t))] dt + B(t,U(t))dM(t) (1)

Where U is a process dependent on a time variable t, taking values in a separable Banach
space E. Generally, M will be a Lévy process. For solving this equation, one can define
a mild solution using a stochastic integral with respect to the process M(t). By the work
of Van N eerven and Weis in [7], and in [10], this integral can be defined when M(t) is a
Brownian motion.

In this thesis, I will adress the question as to when a stochastic integral can be defined
for a process which is allowed to have discontinuities. After developing some of the theory
on integration and stochastic variables in Banach spaces and very briely reviewing some
of the work that has already been done on stochastic integrals with respect to Brownian
motion, I will define a stochastic integral with respect to a process making finitely many
jumps in a finite time interval in section 2.3. This integral turns out to be very simple
and easy to work with and existence of mild solutions for equations with jump process
noise will be proven in chapter 3. In chapter 4 I will present several extensions to the
theory developed up to that point in the thesis. The pièce de résistance will be presented
in section 4.3, were an extension of the existence result will be made towards processes
with countably many jumps.

7



8



Chapter 1

R andom V ariab les and Processes

This chapter is devoted to developing a theory on random variables and processes in a
more general, Banach-space valued setting. Notions such as integrability, measurability,
expectation and conditionality are introduced in a Banach-space context. Then I will
be concerned with Gaussian variables and processes, Brownian motion, Lévy processes
and (super- sub- or semi-) martingales in as general a setting as possible and/ or relevant.
A more elaborate exposition on most of the theory can be found in the booklet for the
internet seminar on stochastic evolution equations [11].

1.1 M easurab ility and Integ rab ility

I start by introducing a Banach space E and a measurable space (A, A ). The Banach
space E will be a separable Banach space defined over a scalar field K, which will in general
be R and sometimes C. The separability is needed mostly for defining integrals, where
limiting procedures play an important role. I will be using some of the notions developed
in this chapter later on for nonseparable metric spaces as well. The reader should take
care to verify that the proper conditions are met in each case. The fact that the real case
is indeed more general follows from the observation that any complex Banach space can
be viewed as a real Banach space by limiting scalar multiplication to scalars in R. Unless
otherwise stated, we will endow E with the Borel sigma algebra B(E), and the underlying
field with the Borel sigma algebra B(K). Furthermore, I will denote by E∗ the dual space
of E and for x ∈ E, x∗ ∈ E∗, either 〈x∗, x〉 or x∗(x) will denote the corresponding duality
pairing. Also, one has to note that the norm of a vector x ∈ E can be written as

‖x‖ = sup
x
∗ ∈ E

∗

‖x∗‖ = 1

| 〈x∗, x〉| (1.1)

1.1.1 M easurab ility w ith respect to a σ-alg eb ra

[Measurability with respect to] First we introduce the notion of A -measurability, which is
just the notion of Borel measurability for functions from a measure space to a topological
space:

Definition 1.1. Let T be a topological space and (A, A ) a measurable space. A function
f : A → E is called A -measurable if for all B ∈ B(T ), one has f−1(B) ∈ A .

9



CHAPTER 1. RANDOM VARIABLES AND PROCESSES

Next we introduce a notion more specific to our context, the notion of strong measurability,
for this we need the notion of a simple function:

Definition 1.2. A function f : A → E is called A -simple if it can be written as the finite
sum

∑N
n=1 1An

xn, where every An is an element of A and every xn ∈ E

Now we can say that a function is strongly A -measurable if it is the pointwise limit of
A -simple functions. Now we have a version of the so called P ettis measurability theorem

Theorem 1.3. L et (A, A ) be a measurable space, E a separable B anach space. T hen a
function f : A → E is strongly A -measurable if and only if for all x∗ ∈ E∗ the function
〈f, x∗〉 : A → K is A -measurable.

For the proof of this theorem we will need the following lemma

L emma 1.4. L et E be a separable B anach space. T hen there ex ists a sequence of unit
vectors (x∗

n)∞n=1 in E∗ with the property that for each x ∈ E:

‖x‖ = sup
n

|〈x∗
n, x〉| (1.2)

A sequence satisfying (1.2) for every x ∈ E is called norming.

P roof. Let (xn)∞n=1 be a dense sequence in E and let (εn)∞n=1 be a sequence of strictly
positive real numbers smaller than one such that limn → ∞ εn = 0. Then for each n, by the
norm definition in 1.1, one can choose an x∗

n ∈ E∗ of unit length, such that |〈xn, x∗
n〉| ≥

(1− εn)‖xn‖. Now take an arbitrary δ > 0, and by the way we chose our sequences we can
find n0 such that ‖x − xn0

‖ < δ and εn0
< δ. Then one has, using the triangle inequality

and the fact that the x∗
n were defined to be of unit length:

(1 − δ)‖x‖ ≤ (1 − εn0
)‖x‖ ≤ (1 − εn0

) (‖xn0
‖ + δ)

≤
∣

∣

〈

x∗
n0

, xn0

〉∣

∣ + δ ≤
∣

∣

〈

x∗
n0

, x
〉∣

∣ + 2δ

Since δ was chosen arbitrarily, one has ‖x‖ ≤
∣

∣

〈

x∗
n0

, x
〉∣

∣, from which equality follows
trivially with equation 1.1 Q ED

P roof of theorem 1 .3 . (if) Let (x∗
n)∞n=1 be a norming sequence of unit vectors in E∗ and

let f be such that 〈f, x∗〉 : A → (K) is measurable. Then by elementary measure theory
the function

ξ 7→ ‖f(ξ) − x‖ = sup
n

|f(ξ) − x, x∗
n|

is measurable for any x ∈ E. Now let (xn)∞n=1 be a dense sequence in E. Then define the
function sn : E → E, taking values only in x1 . . .xn, as follows: let k(n, y) be the index
of the xi closest to y ∈ E for 1 ≤ i ≤ n. If there are several xi with the same distance,
one takes the smallest index. In other words: for y ∈ E the number k(n, y) is the smallest
integer k with 1 ≤ k ≤ n satisfying:

‖y − xk‖ = min
1≤j≤n

‖y − xj‖

Now we define sn to be the corresponding element: sn(y) := xk(n,y ). By density of the
sequence (xn)∞n=1one has that

lim
n → ∞

‖sn(y) − y‖ = 0

10 A B anach space-valued stochastic integral. . .



1.1. MEASURABILITY AND INTEGRABILITY

for y ∈ E. Now we define for each n the function fn : A → E by fn(·) = sn(f(·)). We
see that the fn all take on only finitely many values and that the inverse images (for
1 ≤ k ≤ n)

{ξ ∈ A : fn(ξ) = xk} =

{

ξ ∈ A : ‖f(ξ) − xk‖ = min
1≤j≤n

‖f(ξ) − xj‖

}

∩

{

ξ ∈ A : ‖f(ξ) − xl‖ > min
1≤j≤n

for l = 1, . . . , k − 1

}

are in A because of the A -measurability of ‖f(·)− x‖. So we can conclude that all of the
fn are A -simple functions. And pointwise we have for each ξ ∈ A that

lim
n→∞

‖fn(ξ) − f(ξ)‖ = lim
n→∞

‖sn(f(ξ)) − f(ξ)‖ = 0

This explicitely proofs that f is strongly measurable.

(only if) Let (fn)∞n=1be a sequence of A -simple functions converging to f . Then because
of continuity for each n the function 〈fn, x∗〉 : A → E is A -measurable and then so is the
pointwise limit 〈f, x∗〉 : A → E QED

1.1.2 Measurability with respect to a measure

Now we introduce a measure space (A, A , µ), which we will assume to be σ-finite and still
work with a separable Banach space E. First we define a µ-simple function f : A → E to
be a finite sum

f =
N

∑

n=1

1An
xn (1.3)

where all the xn ∈ E and all the An ∈ A with µ(An) < ∞ We say furthermore that two
functions are µ-versions of each other if they agree µ-almost everywhere on A. Anologously
to the previous subsection, we arrive at the following definition:

Definition 1.5. A function f : A → E is called µ-strongly measurable if it is the µ-almost
everywhere limit of a sequence of µ-simple functions.

The bridge between the two forms of strong measurability is made by the following
proposition, which I state here without proof.

Proposition 1.6 . A function f : A → E is strongly µ-measurable if and only if f has a
µ-version which is strongly A -measurable.

The proof is rather straightforward and can be found in [11]. Now a combination of propo-
sition 1.6 and theorem 1.3 now implies the following version of the Pettis measurability
theorem.

Theorem 1.7. A function f : A → E is strongly µ-measurable if and only if for each
x∗ ∈ E∗, the function 〈f, x∗〉 : E → K is µ-measurable.

A.A. van Boxtel - M aster’s Thesis, Leiden U niversity 11



CHAPTER 1. RANDOM VARIABLES AND PROCESSES

1.1.3 The Bochner Integral

We are now ready to translate the notion of the Lebesgue integral to the Banach space-
valued setting. Again we have the σ-finite measure space (A, A , µ) and the separable
Banach space E. I will be omitting the prefix µ if no confusion arises.

Definition 1.8. A function f : A → E is called µ-Bochner integrable if there exists a
sequence (fn)∞n=1of µ-simple functions from A tot E such that:

1. limn→∞ fn = f almost everywhere

2. limn→∞

∫

A
‖fn − f‖dµ = 0

Of course, f is strongly µ-measurable if definition 1.8 holds. Trivially every µ-simple
function is µ-Bochner integrable. If we have a µ-simple function f =

∑N
n=1 1An

xn we will
take the natural definition:

∫

A

fdµ :=
N

∑

n=1

µ(An)xn (1.4)

Now if f is a Bochner integrable function and (fn)∞n=1is a sequence as in definition 1.8 we
have the very intuitive analogon to the Lebesgue integral:

∫

A

fdµ := lim
n→∞

fndµ (1.5)

As in the real-valued case of the Lebesgue-integral, it is routine to check that equations 1.4
and 1.5 lead to proper and unambiguous definitions. Also one sees that the Bochner
integrals of functions that are versions of each other agree. By a limiting argument, one
also sees that for x∗ ∈ E∗ the identity

〈
∫

A

fdµ, x∗

〉

=

∫

A

〈f, x∗〉 dµ

A practical necessary and sufficient condition for Bochner integrability is given by the
following proposition:

Proposition 1.9. A strongly µ-measurable function f : A → E is µ-Bochner integrable if
and only if

∫

A

‖f‖dµ < ∞,

in which case we have the inequality
∥

∥

∥

∥

∫

A

fdµ

∥

∥

∥

∥

≤

∫

A

‖f‖dµ

I will omit the proof.

1.2 Random Variables

1.2.1 Random variables and ex pectations

From now on, the measure space (A, A , µ) will be replaced by the probability space
(Ω , F , P), which is a measure space with the added property that P(Ω ) = 1.

12 A Banach space-valued stochastic integral. . .



1.2. RANDOM VARIABLES

Definition 1.10. An E-valued random variable over a propability space (Ω, F , P) is a
P-strongly measurable function X : (Ω, F , P) → E.

Unless stated otherwise, the probability space (Ω, F , P) will be considered fixed and, in
most cases, not explicitely mentioned. Also, the prefix “ P-” will be omitted from notation.
Using our notion of integrals as in the previous section we can define:

Definition 1.11. Let X be a Bochner integrable random variable. The mean value or
expectation of a random variable is its (Bochner) integral over all of Ω and is denoted by:

EX :=

∫

Ω
XdP

By proposition 1.6, we have that every random variable X has a strongly F -measurable
version X̃, and the probabilities P{X̃ ∈ B}, for B ∈ B(E) are independent of the version
of X̃ chosen. This justifies the assumption that X is strongly F -measurable, choosing X̃

for X when necessary.

Definition 1.12. The distribution of a random variable X is the Borel measure µX defined
on (E, B(E)) by

µX(B) := P{X ∈ B}

Two random variables, not necessararily defined on the same probability space, are said
to be identically distributed if they have the same distribution.

The notion of distribution allows us to formulate the definition

Definition 1.13. Let (X(i))i∈I be a family of random variables each taking values in a
Banach space Ei. We call this family independent if for each finite set of indices i1, . . . , iN ∈
I and all corresponding Borel sets B1, . . . , BN in Ei1 , . . . , EiN one has:

P {Xi1 ∈ B1, . . . , XiN ∈ BN} =

N
∏

n=1

P {Xin ∈ Bn} (1.6)

With the random variables and Banach spaces as in definition 1.13, one can define the
joint distribution on the product of the measurable spaces (En, B(En)): µ(X1,...,Xn). Com-
pletely analogous to the finite dimensional case we have the alternative definition of inde-
pendence in terms of joint distributions:

µ(X1,...,Xn) = µX1
× . . . × µXn

(1.7)

The following definition will also be important in the coming sections

Definition 1.14. The F ourier transform of a Borel probability measure µ on E is the
function

µ̂ : E∗ → C

x∗ 7→

∫

E

exp (−i < x, x∗ >) dµ(x)

By the Fourier transform of a random variable X we mean the Fourier transform of its
distribution µX

A result I will not prove here gives that if two random variables have the same Fourier
transform, they are identically distributed.

A.A. van Boxtel - Master’s Thesis, Leiden University 13



CHAPTER 1. RANDOM VARIABLES AND PROCESSES

1.2.2 Gaussian random variables

We begin with the definition of Gaussianity in the real-valued case. In this case we call γ

a Gaussian random variable if its Fourier transform is:

E(e−iξγ) = e−
1

2
q ξ2

, ξ ∈ R (1.8)

For some q ≥ 0. If q = 0 one has almost surely γ = 0 and otherwise, γ has the density
function:

fγ(t) =
1√
2π q

e
− t2

2q (1.9)

Quite naturally, one would like to extend this definition to the Banach space-valued setting,
from now on, we will mostly assume that E is a real Banach space.

Definition 1.15. An E-valued random variable is Gaussian if for every x∗ ∈ E∗ the
random variable 〈X, x∗〉 is Gaussian.

A celebrated theorem by Fernique asserts that every Gaussian variable is exponentially
bounded and therefore has moments of all order.

Theorem 1.16 (Fernique). Let X be an E-valued Gaussian random variable. Then there
exists a constant β > 0 such that

Eeβ‖X‖2

< ∞ (1.10)

As one can imagine, bounds like these play an essential role in integration with respect
to processes with gaussian variations. This thesis will consider integrals with respect to
processes with less well-behaved variations, but let’s stick to the subject at hand.

1.2.3 Conditionality

We will again be working with a probability space (Ω, F , P) and we define G to be a sub-
σ-algebra of F . For notational convenience, we define for 1 ≤ p ≤ ∞ the spaces Lp(Ω, G )
as being the spaces of real-valued random variables in Lp(Ω) having a P-version which is
strongly G -measurable. A simple limiting argument may show that Lp(Ω, G ) is a closed
linear subspace of Lp(Ω). If we take p to be 2, we know that L2(Ω) is a Hilbert space and
one has the orthogonal decomposition:

L2(Ω) = L2(Ω, G ) ⊕ L2(Ω, G )⊥

In this case we define the conditional expectation of some random variable X ∈ L2(Ω)
given G to be the random variable in L2(Ω, G ) obtained by orthogonally projecting X

onto L2(Ω, G ). Letting PK(·) denote orthogonal projection onto a subspace K, we can
write for X:

E(X|G ) = PL2(Ω,G )(X) (1.11)

The objective is of course to extend this definition to the setting of variables in Lp(Ω) for
p 6= 2, and ultimately to variables in Lp(Ω, E) for a Banach space E. But first, we have
some properties of conditional expectations in the L2-setting.

Lemma 1.17. Let X be a random variable in L2(Ω) and G ∈ G , then
∫

G

E(X|G )dP =

∫

G

XdP

14 A Banach space-valued stochastic integral. . .



1.2. RANDOM VARIABLES

Proof. One has that X −E(X|G )⊥L2(Ω, G ), now because G ∈ G , 1G ∈ L2(Ω, G ), so that
∫

G

[X − E(X|G )] dP =

∫

Ω
1G [X − E(X|G )] dP = 0

QED

A simple corollary to this lemma is that if X is almost surely positive (or nonnegative,
negative, etc.), then so is E(X|G ).

By density of L2 in L1, and by inclusion of all Lp-spaces in L2 for p > 2 (since (Ω, F , P) is
finite, cf. [14], section 5.5) one can uniquely extend or restrict the definition of conditional
expectation to all Lp-spaces for 1 ≤ p < ∞. For any Lp-space we will call this extension
or restriction the conditional expectation operator.

The purpose is now to extend this analysis to the spaces of random variables in E,
Lp(Ω, E), i.e. the spaces of E-valued random variables X for which the integral

∫

Ω
‖X‖pdP

exists and is finite. Endowed with the norm

‖X‖p =

(
∫

Ω
‖X|pdP

)
1

p

these spaces, called the Lebesgue-Bochner spaces, fo rm B an ach spaces.

F irst w e lo o k at fu n ctio n s o f the fo rm f ⊗ x, fo r f ∈ Lp(Ω ) an d x ∈ E. C learly , these
fu n ctio n s are in Lp(Ω ,E). W e den o te the lin ear span o f all these fu n ctio n s b y Lp(Ω )⊗E.
I state w itho u t pro o f that Lp(Ω )⊗E is den se in Lp(Ω ,E). T he idea is o f co u rse to lin early
ex ten d an y b o u n ded o perato r T (in this case, the co n ditio n al ex pectatio n o perato r) o n
Lp(Ω ) to an o perato r T ⊗ I o n Lp(Ω ) ⊗ E b y settin g :

T ⊗ I : f ⊗ x 7→ Tf ⊗ x

U n fo rtu n ately this ex ten sio n do esn ’t w o rk fo r an y b o u n ded lin ear o perato r, b u t it do es fo r
po sitiv e o perato rs:

Proposition 1.18. Let T be a positive operator on Lp(Ω ), then T ⊗ I extend s uniquely

to a bound ed operator on Lp(Ω ,E)

P roof. T he pro o f w ill b e o m itted Q E D

N o w b y pro po sitio n 1 .1 7 , this ex ten sio n can b e m ade. T he an alo g o n fo r pro po sitio n 1 .1 7
can also b e g iv en b y the fo llo w in g pro po sitio n :

Proposition 1.19 . Let X ∈ Lp(Ω ,E) be a rand om variable and G ⊂ F . T hen the rand om

variable

E(X|G ) := (E( · |G ) ⊗ I) X

is the unique rand om variable in Lp(Ω ,E,G ) such that∫
G

(X|G )dP =

∫
G

XdP

for every G ∈ G

P roof. A g ain , the pro o f w ill b e o m itted. Q E D

A .A . van Boxtel - M aster’s T hesis, Leid en U niversity 1 5



CHAPTER 1. RANDOM VARIABLES AND PROCESSES

1.3 Random Processes

Next we turn our attention to stochastic processes in Banach space.

Definition 1.20. Let I be some set of indices, then an E-valued stochastic process, random

process or, for short, process indexed by I is a family (X(i))i∈I of stochastic variables in
E, all defi nied on some probability space (Ω, F , P).

J ust like we did for random variables, we will generally not explicitly mention the under-
lying probability space for a process. In most cases I will be either the nonnegative real
numbers or the interval [0 , T ] for some positive T , justifying the notion of a continuous

path for a certain ω ∈ Ω, being the intuitive notion that the function i 7→ X(i)(ω) is a
continuous function. These choices also justify the following much used concept:

Definition 1.21. Let U be a (closed connected subset of) the real numbers. An E-valued
process indexed by U , (X(t))t∈U is called càdlàg (short for the french words continue à

droite, limites à gauche) for a certain ω ∈ Ω if for every t ∈ U :

1. lims↗t X(s)(ω) exists, and

2 . lims↘t X(s)(ω) = X(t)(ω)

In honour of some of the main early contributors to this area of mathematics, we will use
the common French acronym.

The measure theoretic foundation of a stochastic processes (X(i))i∈I over a partially
ordered index set I starts with the notion of a fi ltration, indexed by the same set:

Definition 1.22. A fi ltration on a probability space (Ω, F , P) is a family of σ-algebra’s
on Ω, (Ft)t, such that whenever s ≤ t, Fs ⊂ Ft ⊂ F . A probability space endowed with
a fi ltration (Ω, F , (Ft)t , P) will be called a fi ltered space.

Definition 1.23 . A process X(i)i∈I defi ned on a fi ltered space (Ω, F , (Ft)t , P) is called
adapted if for every i ∈ I, one has X(i) ∈ Fi

1.3.1 G au ssian p rocesses and B row nian motion

Definition 1.24 . A G aussian process is an E-valued process if for any fi nite set of indices
{i1, . . . , iN} the EN -valued random variable (X(i1), . . . , X(iN )) is a G aussian variable.

First, we can defi ne Brownian motion in the real valued case.

Definition 1.25 . A Brow nian motion, or W iener Process, is a real valued process (W (t))t∈[0 ,T ]

satisfying:

1. W (0 ) = 0 almost surely,

2 . W (t)−W (s) is a G aussian variable with variance t− s whenever 0 ≤ s ≤ t ≤ T and

3 . Whenever 0 ≤ s ≤ t ≤ T , the variable W (t) − W (s) is independent of {W (r) : 0 ≤
r ≤ s}

16 A Banach space-valued stochastic integral. . .



1.3. RANDOM PROCESSES

A process satisfying the third property in definition 1.25 is said to have independent

increments. There are various proofs for the existence of Brownian motion. I will follow
the q uite elegant line found among others in [11]. But first, a q uick look at the definition
and the fact that the distribution of a Gaussian variable is determined by its variance give
us that Brownian motion, if it exists, is uniq ue in the sense that if there are two Brownian
motions (W (t))t∈[0,T ] and (W̃ (t))t∈[0,T ], then for any t ∈ [0, T ], the random variables W (t)

and W̃ (t) are identically distributed.

A well known result in probability theory ( [11], [21] for example) asserts that every Brow-
nian motion (if it exists) is a Gaussian process, moreover there exists a sort of “ converse”
to this statement.

Proposition 1.26. A real valued process (W (t))t∈[0,T ] is a Brownian motion if and only

if it is a Gaussian process with

E(W (s)W (t)) = min{s, t} (1.12)

whenever 0 ≤ s, t ≤ T

Proof. I will proof the ‘if’ part, which is the least trivial, as well as the most important
for our proof for existence of Brownian motions.

First we have that E(W (0)2) = 0, giving the first property of definition 1.25.

Now let 0 ≤ s ≤ t ≤ T , then E(W (t) − W (s))2 = E[W (t)2 − 2W (s)W (t) + W (s)2] =
t − 2m in {s, t} + s = t − s, and by the fact that (W (t))t∈[0,T ] is a Gaussian process, the
second property holds too.

QED

Now we know that we only have to prove the existence of a Gaussian process satisfy-
ing 1.12 in order to prove the existence of Brownian motion. To this end, we first define
a Hilbert space H with inner product [·, ·] and let (Ω, F , P) be a measure space.

Definition 1.27 . An H-isonormal process on Ω is a mapping W : H → L2(Ω) satisfying:

1. For any h ∈ H, the variable Wh is Gaussian and

2. Whenever h1, h2 ∈ H, one has E (Wh1 · Wh2) = [h1, h2].

It is routine to check that H-isonormal processes are linear mappings. This linearity
implies that

∑N
n= 1 cnWhn = W (

∑N
n= 1 cnhn) (with all the hn ∈ H), such that the R

N -
valued vector (Wh1, . . . , WhN ) is Gaussian, making (Wh)h∈H a Gaussian process.

An explicit isonormal process is given for example by taking a seq uence of independent
standard Gaussian variables (γn)∞n= 1 and a separable Hilbert space H with an orthonormal
basis (hn)∞n= 1 and defining:

W : H → L2(Ω)
h 7→

∑∞
n= 1 γn[h, hn]

(1.13)

Having established the existence of H-isonormal processes, the next theorem asserts the
existence of Brownian motions.

A.A. van Boxtel - Master’s Thesis, Leiden University 17



CHAPTER 1. RANDOM VARIABLES AND PROCESSES

Theorem 1.28. Let W : H → L2(0, T ) be an isonormal process. The process (W (t))t∈[0,T ],

defined by W (t) := W1[0,t] is a Brownian motion.

Proof. We already observed that (W (t))t∈[0,T ] is a Gaussian process, so the observation
that

E(W (s)W (t)) = [1[0,s], 1[0,t]]

=

∫ T

0
1m in {s,t}

= min{s, t}

concludes our proof. QED

Although this proof for existence of Brownian motion may seem very nonconstructive,
applying theorem 1.28 to the process defined in equation 1.13, one explicitely gets

W (t) =
∞∑

n=0

γn

∫ t

0
hn(s)ds (1.14 )

As a Brownian motion, where (hn)n is an orthonormal basis in L2(0, T ), where one can take
for example a trigonometric basis, a wavelet basis or a polynomial basis. For simulating
Brownian motion one could choose some orthonormal basis and explicitely substitute this
into equation (1.14 ).

C y lind ric a l B row nia n M otion

Having established the existence of Brownian motion in the real-valued case, I will now
try and extend this definition to a more general setting. When working in R

N for some N ,
one usually defines Brownian motion as the product of N independent Brownian motions
on R. For a Hilbert space H, the concept of a cylindrical Brownian motion is often used.

Definition 1.29. Let H be a Hilbert space and let (WH(t))t∈[0,T ] be a family of mappings
from H to L2(Ω), then (WH(t))t∈[0,T ] is called a H-cylindrical Brownian motion if

1. (WH(t)h)t∈[0,T ] is a Brownian motion for all h ∈ H

2. Let 0 ≤ s ≤ t ≤ T and h, j ∈ H, then

E(WH(s)h · WH(t)j)) = s < h, j >

There are several explicit constructions of cylindrical Brownian motions, but perhaps the
most intuitive one is given by taking an orthonormal basis for H: (hn)∞n=1 and a sequence
of independent Brownian motions (W (n))n and defining

WH(t) :=

∞∑
n=1

W (n)(t) < ·, hn >

18 A Banach space-valued stochastic integral. . .



1.3. RANDOM PROCESSES

1.3.2 Martingales

As the character two-face in the 2008 Christopher Nolan movie “The Dark K night” says
at the moment he decides by a coin fl ip whether or not to kill his next victim:

“You thought we could be decent men in an indecent world. But you were wrong; the world

is cruel, and the only morality in a cruel world is chance. Unbiased... Unprejudiced...

F air...,”

we can see that the notion of fair games is ubiquitous. Although I do not share his
pessimism, nor condone his ways of playing with chance, this gives us an illustration of
the concept of a fair game. The mathematical framework for this concept is given by the
notion of a martingale.

For the rest of this section (Mt)t will be an adapted process on the filtered space
(Ω, F , (Ft)t , P).

Definition 1.30. (Mt)t is called a martingale if for j ≥ i

E(Mj |Fi) = Mi

As in the real case, a quite canonical example is given by:

E xample 1.31: Let I be 0, 1, 2, . . . and let (Xi)i∈I be a sequence of independent random
variables, such that EXi = 0 for all i and let

Mn =
n∑

i=1

Xi,

then Mn is a martingale with respect to the natural filtration generated by (Xi)i.

A very important concept in the theory of Martingales is that of a stopping time:

Definition 1.32. Let (Ω, F , (Ft)t , P) be a filtered space. The positive random variable
τ is called a stopping time if the event {τ ≤ t} ∈ Ft for all t and P(τ ≤ ∞ ) = 1.

For a process (M(t)) and a stopping time τ we define the stopped process M τ (t) :=
M (min(t, τ)). I state without proof that stopped martingales are martingales.

Definition 1.33. Let M := (M(t))t be a càdlàg process and let (τn)n be a sequence
of stopping times increasing to infinity. M is called a local martingale if 1{τn>0}M

τn is
a martingale for each n. A process L := (L(t))t is called a semimartingale if it can be
written as L(t) = M(t) + A(t), where M(t) is a local martingale and A(t) is of bounded
variation, i.e. for each T > 0 the supremum of the sums

∑m
j=1 |A(tj) − A(tj−1)| over all

partitions 0 =: t0 < t1 < t2 < . . . < tm := T is finite, almost surely.

Now we assume that the diff erential dM(t) makes sense in one way or another and restate
the martingale property for a continuous process (M(t))t with independent increments as
follows

EdM(t) = 0

A.A. van Boxtel - Master’s Thesis, Leiden University 19



CHAPTER 1. RANDOM VARIABLES AND PROCESSES

The fact that this is equivalent to the martingale property is given by stating first that
for b > a

E (M(b)|Fa) = E

(

M(a) +

∫ b

a

dM(t)|Fa

)

= M(a) +

∫ b

a

EdM(t) = M(a)

And, of course that E

(

∫ b

a
dM(t)

)

= E(M(b)−M(a)) = 0, so by Fubini and the fact that

a and b were arbitrary, we see that EdM(t) = 0

Now the notion of arbitrage is a very important one in financial mathematics and this
notion is very closely related to the theory of martingales. A process is said to admit

arbitrage if staking an amount on its behaviour garantees a sure profit. In an ideal economy
in equilibrium, arbitrage is supposed to be impossible, so the pricing of derivatives and the
study of the behaviour of financial instruments is based heavily on no-arbitrage arguments.
This theorem for processes based on Brownian motion was stated and proved in 1981 by
Harrison and Pliska in [5].

A process M on a filtered space (Ω, F , (Ft)t , P) is said to allow a martingale measure

if there exists a measure P̃, absolutely continuous with respect to P such that M is a
martingale on the filtered space (Ω, F , (Ft)t , P̃). A theorem in economic theory is that
M admits no arbitrage if and only if M allows a martingale measure. We will not go into
the depth of this theorem, but we will give a very simple example1.

Example 1.34: We will consider a one-time balanced coin flip. Our index set will be {0, 1},
where 0 corresponds to the situation before the coin flip and 1 to the situation after the
coin flip. We consider three payout schemes, all starting with having no money at time
zero:

1. The player gets a payout of one unit stake when heads is thrown and has to pay one
unit stake when tails comes up.

2. The player gets a payout of two units for heads and has to pay one unit for tails.

3. The player gets one unit stake, whichever side comes up.

We can model the probability space as Ω := {H, T}, with its power set as the σ-algebra
and P({H}) = P({T}) = 1

2 . One can model each of these games as a stochastic process

(M
(1)
t )t=0,1, (M

(2)
t )t=0,1, (M

(3)
t )t=0,1 where M

(i)
t represents the number of units stake won

at time t in game i. One sees that M (1) is already a martingale. The second game,
although it is preferential for the player, admits no strategy that ensures a riskless profit.
And indeed “remeasuring” the probabilty space by P̃({T}) = 2P̃({H}) = 2

3 makes M (2)

into a martingale. For the third game, it is easy to see that there exists no measure that

ensures EM
(3)
1 = M

(3)
0 = 0 and indeed, staking any positive amount will result in a riskless

positive payout.

1Although I devised this example myself, I can imagine by its rather obvious nature that it features in

some w ay in any textbook on this matter. If this is the case, I apologise beforehand for the unintended

infringement.
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1.3.3 Lévy processes

Lévy processes form a large and important class of stochastic processes that can be defined
on (a subinterval of) the real numbers. They appear throughout applied mathematics to
model all kinds of stochastic phenomena.

Definition 1.35. Let L := (L(t))t be a stochastic process. L(t) is said to have stationary

increments if for arbitrary s ≤ t ≤ σ ≤ τ the random variables L(τ)−L(σ) and L(t)−L(s)
are identically distributed.

Definition 1.36. Let L := (L(t))t be a stochastic process. L(t) is said to have independent

increments if for arbitrary s ≤ t ≤ σ ≤ τ the random variables L(τ)−L(σ) and L(t)−L(s)
are independent.

Now we can define Lévy processes as follows:

Definition 1.37. A stochastic process L is called a Lévy process if

1. L admits a càdlàg version

2. L has stationary increments

3. L has independent increments

Probably the most evident example of a Lévy process is Brownian Motion.
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Chapter 2

S tochastic integration (I)

2.1 Real Brownian Motion

Integration with respect to Brownian motion was developed in two different ways by Itô [3]
and Stratonovich. However, in applied mathematics the Itô-definition is the most common.
Excellent surveys of the Itô integral and its application in stochastic differential equations,
filtering and financial mathematics can be found in [16] and [21]. I will only be concerned
with the Itô definition and try and give some of the main results.

First we define the space H2 := H2[0, T ] as the class of adapted random functions from
[0, T ] to R such that

E

[
∫ T

0
f2(ω, t)dt

]

< ∞. (2.1)

Now first of all this integral is defined for all functions in H2, that can be written in the
form

f(ω, ·) =
n−1
∑

i=0

ai(ω)1(ti,ti+1] (2.2)

For which, of course, the integral is defined as:

∫ T

0
f(ω, T )dWt :=

n−1
∑

i=0

ai(ω)
(

Wti+1
− Wti

)

(2.3)

Now by limiting procedures this leads ultimately to a definition of the so-called Itô integral,
satisfying (for f in H2):

E

[

(
∫ T

0
f(ω, t)dWt

)2
]

= E

[
∫ T

0
f2(ω, t)dt

]

(2.4)

Equation (2.4) is called the Itô isometry.

Using a limiting procedure to calculate the Itô integral for each separate case is very
tedious and complicated. Luckily, we have Itô’s lemma. For this we first define a so-called
Itô process to be a process of the form:

Xt = X0 +

∫ t

0
u(s, ω)ds +

∫ t

0
v(s, ω)dWs (2.5)
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CHAPTER 2. STOCHASTIC INTEGRATION (I)

In most cases we will write Itô processes in differential form:

dXt = udt + vdWt (2.6)

Now let g be a suffi ciently smooth function from [0,∞)×R to R, then Itô’s lemma asserts
that:

d (g(t, Xt)) =
∂g

∂t
(t, Xt)dt +

∂g

∂x
(t, Xt)dXt +

1

2

∂2g

∂x2
(t, Xt)(dXt)

2, (2.7)

where (dt)2 = dtdWt = dB tdt = 0 and (dWt)
2 = dt. Itô’s lemma has proven to be a very

powerful tool for solving stochastic differential equations or solving other types of problems
concerning Brownian motions. For example, the value of many financial instruments is
given by non-affi ne functions of Brownian motion, so integrals with respect to their values
can be evaluated.

2.2 Cylindrical Brownian Motion

Even more than in the previous section, the technical details of the theory in this section
go well beyond the scope of this thesis, yet, to understand the framework and to appreciate
the simplicity of the analysis in the forthcoming sections, it will be useful to mention some
of the results. All of the results were obtained quite recently mostly by Van Neerven and
Weis and published in [7] and [10]. A full development of the theory from a relatively
basic level can be found in [11].

First, we let WH := (WH(t))t∈[0,T ] be a cylindrical Brownian motion and we regard a
function Φ : (0, T ) → L (H, E), where E is a separable Banach space.

Definition 2.1. The function Φ is called stochastically integrable with respect to WH if
there exists a sequence of finite rank step functions Φn such that

1. for all h ∈ H the limit in measure limn → ∞ Φnh = Φh

2. there exists an E-valued random variable X such that limn → ∞

∫ T

0 ΦndWH = X in
probability.

Of course the stochastic integral of Φ is then defined to be the limit in probability
∫ T

0
ΦdWH = lim

n → ∞

∫ T

0
ΦndWH ,

where the integral of the step function 1(s,t) ⊗ (h ⊗ x) is of course defined as

∫ T

0

[

1(s,t) ⊗ (h ⊗ x)
]

dWH = (WH(t)h − WH(s)h) ⊗ x.

Several quite technical conditions for integrability exist that will not be mentioned here,
yet these conditions do not require any specific properties of the Banach space other than
perhaps separability. Of course one can look at the integral over a specific subinterval of
[0, T ] by multipliying Φ with an indicator function.

Next we allow Φ to be a process, i.e. a function Φ : [0, T ] × Ω → L (H, E), which we
assume to be adapted. This strongly complicates the analysis of stochastic integrals. To
this end we will first need a couple of really technical definitions. First of all, if one has a
martingale Mn, we define dn := Mn − Mn−1 to be its diff erence sequence. We assume for
the rest of this section that 1 < p < ∞.
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2.3. FIRST JUMP PROCESSES

Definition 2.2. Let Mn be an E-valued martingale with Mn ∈ Lp(Ω, E) and let dn be
its difference sequence. If there exists a constant β such that for any such dn and any
sequence of signs εn ∈ {± 1} one has:

E

∥

∥

∥

∥

∥

∞
∑

n=1

εndn

∥

∥

∥

∥

∥

p

≤ βp
E

∥

∥

∥

∥

∥

∞
∑

n=1

dn

∥

∥

∥

∥

∥

p

, (2.8)

the space E is called a UMD p-space.

The abbreviation UMD stands for uniform martingale differences. A typical example of
a UMD p-space is the Lp-space over some measure space. Next, a very nontrivial result
on these spaces is that the UMD p-property is independent of the parameter p, so we can
just talk about UMD -spaces.

The most recent ground-breaking result in this context is the fact that if E is a UMD
Banach space and Φ : (0, T ) × Ω → L (H, E) is an adapted process satisfying certain

measurability and integrability conditions, then the integral
∫ T

0 ΦdWH exists in some way.
This result was obtained in [10]

2.3 First Jump Processes

Let (ti)i be a sequence of Poisson times with a parameter λ in [0, T ], i.e. the lengths
ti − ti−1 are independent and exponentially distributed with the same parameter λ and
let (Xi)i be a sequence of E-valued random variables. Now we define the jump process
(

Jλ
t

)

t∈[0,T ]
by

Jλ
t :=

∑

i : ti≤t

Xi (2.9)

We can make the following observations

1. The process is by definition càdlàg

2. By the memoryless property of the Poisson times, we know that if the Xi are inde-
pendent, Jλ

t is a Markov process

3. If the Xi are independent and have expectation zero, Jλ
t is a martingale.

When the parameter λ doesn’t play an essential role, we either assume it to be 1 and drop
the superscript, or, even worse, drop the superscript all together. So Jt is the process that
waits an exponentially distributed time before making a jump and then makes a jump
according to a certain distribution. We define the so-called H eaviside unit step function

by:

H(t) :=

{

0 if t < 0
1 if t ≥ 0

(2.10)

Although this function isn’t differentiable it can be regarded as an antiderivative to the
so-called D irac δ-distribution, the generalised function δ(·) with δ(t) = 0 for t 6= 0 and by
definition

∫

R
f(t)δ(t)dt = f(0) for all suficiently smooth functions f(·)1. So one can write

symbolically dH(t) = δ(t)dt.

1for more information on this distribution one can see for example [19]
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Using the function defined in (2.10), we can rewrite (2.9) as:

Jλ
t :=

∑

i

XiH(t − ti) (2.11)

Since Banach space elements merely feature as (multiplicative or additive) constants, one
can write:

dJt =
∑

i

Xiδ(t − ti)dt

Now let f(·, ω) be a function from [0, T ] × Ω to the space of linear operators from E to
another Banach space E′, L (E, E′), then one can write down the integral

∫ T

0
f(t, ω)dJt =

∫ T

0

∑

i

δ(t − ti)f(t, ω)Xidt =
∑

i

f(ti, ω)Xi (2.12)

Using the fact that there are only finitely many ti in [0, T ], almost surely.

If f(t, ω) only makes finitely many jumps and is independent of Jt, the probability of the
jumps of f and J coinciding is zero and we won’t have to worry about what value of f(ti)
to take. Y et, one can easily imagine having to evaluate an integral like

∫ T

0
JtdJt.

Following the conventions for the Stieltjes integral in this cas we will take a “càglàd”
version of the integrand for a càdlàg integrator. So we refine the expression in (2.12) as
follows:

∫ T

0
f(t, ω)dJt =

∑

i

f(ti−, ω)Xi, (2.13)

with the notation f(ti−, ω) := limt↗tif(t, ω ).
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Chapter 3

T he S to chastic A b stract Cau chy

P ro b lem

3.1 T he S A CP w ith ad d itiv e n o ise

First, we can present the simplest form of a stochastic abstract Cauchy problem. T his is the
stochastic analog on of the classical C au chy prob lem. W e d efi ne the S A C P with ad d itiv e
noise to b e an eq u ation for the E-v alu ed process (X(t))t∈[0,T ]

{

d X(t) = AX(t)d t + Bd L(t) t ∈ [0 , T ]
X(0 ) = x for some x ∈ E

(3 .1 )

In this eq u ation, we assu me that A is an operator from D(A) ⊂ E to itself that g enerates
a C0-semig rou p, L(t) is an E′-v alu ed L év y process (we will b e mak ing sev eral assu mptions
on the form L(t) later on) and B is a b ou nd ed linear operator from E′ to E. W e will
assu me that the ex pression d L(t) is in some way well-d efi ned . N ote that, a priori, the
eq u ation (3 .1 ) d oesn’t necessarily mak e sense as X(t) d oesn’t need to b e in the d omain of
A.

W e will d efi ne a mild solution of (3 .1 ) to b e an ad apted E-v alu ed process X(t) satisfy ing

X(t) = S(t)x +

∫ t

0
S(t − s)Bd L(s), (3 .2)

where (S(t))t is the semig rou p g enerated b y A. N ote that this process is alway s well-
d efi ned (b y the properties of A) and its d efi nition is fu lly u namb ig u ou s, as long as we hav e
the rig ht d efi nition for the integ ral. First of all we wou ld lik e to see the relation b etween
the mild solu tion and the solu tion of (3 .1 ). T o this end , we fi rst estab lish a u niq u eness
resu lt:

Lemma 3.1. T he problem (3 .1 ) has at most one solution in the sense that any tw o solu-
tions are (almost surely) equal for all t

P roof. L et X1 := X1(·) and X2 := X2(·) b e two solu tions of (3 .1 ). T hen one has for
X = X1 − X2 the (d eterministic) eq u ation

{

d X(t) = AX1(t)d t + Bd L(t) − (AX2(t)d t + Bd L(t)) = AX(t)d t t ∈ [0 , T ]
X(0 ) = 0

(3 .3 )
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CHAPTER 3. THE SACP

This is a linear evolution equation with only the trivial solution that X = X1 − X2 ≡ 0,
or that, for all t one has X1(t) = X2(t). Q ED

Theorem 3.2. Let X(t) be such that X(t) ∈ D(A) for all t ∈ [0, T ] and satisfy (3.1) where
the process L(t) satisfi es a proper stochastic F ubini criterion, then X(t) satisfi es (3.2)

Proof. We proof this theorem by first stating that if the process defined by (3.2) satisfies
X(t) ∈ D(A), that it is a solution to (3.1). Then invoking lemma 3.1 we see that this is
the only solution to (3.1), thus proving our theorem.

Let X(t) be the process defined by (3.2) and such that X(t) ∈ D(A) for all t. The initial
condition holds trivially, for the diff erential equation we can write

AX(t) = AS(t)x + A

∫ t

0
S(t − s)BdL(s)

= AS(t)x +

∫ t

0
AS(t − s)BdL(s)

Now we calculate
∫ τ

0 AX(t)dt, for any given τ ∈ [0, T ].

∫ τ

0
AX(t)dt =

∫ τ

0
AS(t)xdt +

∫ τ

0

∫ t

0
AS(t − s)BdL(s)dt

= (S(τ)x − S(0)x) +

∫ τ

0

∫ t

0
AS(t − s)BdL(s)dt

= (S(τ)x − x) +

∫ τ

0

∫ τ

s

AS(t − s)dtBdL(s)

= (S(τ)x − x) +

∫ τ

0
(S(τ − s) − I) BdL(s)

= (S(τ)x − x) +

∫ τ

0
(S(τ − s)) BdL(s) −

∫ τ

0
BdL(s)

O n the other hand we can calculate
∫ τ

0 (dX(t) − BdL(t)):

∫ τ

0
(dX(t) − BdL(t)) = X(τ) − X(0) −

∫ τ

0
BdL(t)

= X(τ) − x −

∫ τ

0
BdL(t)

= S(τ)x +

∫ τ

0
(S(τ − s)) BdL(s) − x −

∫ τ

0
BdL(s)

=

∫ τ

0
AX(t)dt

So we have that AX(t)dt = dX(t) − BdL(t), so X(t) satisfies (3.1). Q ED

We will try and see how a solution of a specific SACP might work out in a simple example

E xample 3.3 (A stochastic wave equation): We take L(t) to be a real valued form of the
jump process defined in section 2.3, i.e. where all the Xi are just real valued variables.
Furthermore, we start out with u0(·), f(·) ∈ Lp(R) for some p. Then we write down the
equation:

{

du(x, t) = ∂
∂x

u(x, t)dt + f(x)dL(t) t ∈ [0, T ]
u(x, 0) = u0(x)

(3.4 )
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3.1. THE SACP WITH ADDITIVE NOISE

We can now rewrite this equation into a more functional analytic form by writing for each
t: X(t) = u(·, t), writing the operator A to be the differentiation operator on a suitable
function space E(R), in the case where we are working in Lp(R), this will typically be
the Sobolev space W 1,p(R), defining the operator B : R → E by Bλ = λ f(·) and writing
X0 = u0(·) as

{

dX(t) = AX(t)dt + BdL(t) t ∈ [0, T ]
X(0) = X0

(3.5 )

Looking, of course, awfully familiar. Now A generates the semigroup (T (t))t≥0 given by
(T (t)f) (x) = f(x + t). So we can rewrite the mild solution given by (3.2) as:

u(x, t) = u0(x + t) +

∫ t

0
f(x + t − s)dL(s)

= u0(x + t) +
∑

i:ti≤t

f(x + t − ti)Xi

So we obtain a superposition of the classical solution that merely propagates the initial
condition, and a solution propagating more and more random shocks over time.

The next logical equation to consider is an analogon to the heat equation

Example 3.4 (A stochastic heat equation): With everything as in the previous example,
we can write

{

du(x, t) = ∂2

∂x2 u(x, t)dt + f(x)dL(t) t ∈ [0, T ]
u(x, 0) = u0(x)

(3.6)

This can now be rewritten as
{

dX(t) = ∆ X(t)dt + BdL(t) t ∈ [0, T ]
X(0) = X0

(3.7)

Now we know that the Laplace operator ∆ generates the semigroup (S(t))t given by
(S(t)f)(x) =

∫

R
h(x − y, t)f(y)dy, where h(·, t) is the G aussian density function with

standard deviation h(x, t).

u(x, t) =

∫

R

h(x − y, t)u0(y)dy +

∫ t

0

∫

R

f(y)h(x − y, t − s)dydL(s)

=

∫

R

dy

[

h(x − y, t)u0(y) + f(y)

∫ t

0
h(x − y, t − s)dL(s)

]

=

∫

R

dy



h(x − y, t)u0(y) + f(y)
∑

i:ti≤t

h(x − y, t − ti)Xi





As one can see, this looks like a superposition of solutions to heat equations starting at
times 0, t1, t2, . . .. So we start with an initial “ heat profile” which is spread out, and at
every Poisson time ti a profile f(·)Xi is superposed upon the existing profile and will start
to spread out according to the heat equation from time ti on.

Note that the way the process is chosen in the above two examples and the way B maps
this into the function space is chosen in a very specific way. Of course a B anach space-
valued process and a far more general way of mapping this into the proper function space
wouldn’t significantly infl uence the above analysis. As one might expect, both solutions
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look like superpositions of solutions of wave cq. heat equations starting at different times.
This motivates us to solve these equations in an even more general setting. So, let J(t)
be the jump process from section 2.3 in its most general E-valued form and let B be a
bounded operator in L (E, E′). Now the mild solution to the equation for the E′-valued
process X(t):

{

dX(t) = AX(t)dt + BdJ(t) t ∈ [0, T ]
X(0) = X0

(3.8)

can be given by1:

X(t) = S(t)X0 +

∫ t

0
S(t − s)BdJ(s)

= S(t)X0 +
∑

i:ti≤t

S(t − ti)BXi

Which is completely in line with our expectations.

3.2 More general SACP’s

Equations like (3.1) are quite interesting to study in their own right, yet, in most cases,
they are far too simplistic to be useful in practical situations. Therefore, we allow the
equations to become more complicated and inhomogeneous. The most general of these is
the inhomogeneous SACP with multiplicative noise for an E-valued process U(t) on [0, T ]:

{

dU(t) = [AU(t) + F (t, U(t))] dt + B(t, U(t))dL(t) for t ∈ [0, T ]
U(0) = U0

(3.9)

Where A is a linear operator from E to itself, F (·, ·) a not necessarily linear function from
[0, T ] × E to E and B(·, ·) is a function from [0, T ] × E to the space of bouded operators
L (E′, E) and L(t) is an E′-valued (Lévy) process. Again our specific approach will be to
take the jump process as our leading process and I will try to establish existence and/ or
uniqueness of mild solutions.

Definition 3.5. An E-valued process U(t) is called a mild solution of (3.9) if and only if
it satisfies the following integral equation:

U(t) = S(t)U0 +

∫ t

0
S(t − s)F (s, U(s))ds +

∫ t

0
S(t − s)B(s, U(s))dL(s) (3.10)

Where S(t) is the semigroup generated by A

Note now that the mild solution isn’t clearly and unambiguously defined as it was in the
homogeneous, additive case. It’s not even a priori certain if a process satisfying (3.10)
exists. Also the connection between the mild solution and the SACP itsel is harder to
make, because the nonlinearity of (3.9) doesn’t allow a proof for uniqueness as we used to
prove lemma 3.1.

We need to go about proving uniqueness in a very different way, first we look at a specific
realisation of the process, i.e. we fix a certain point in our probability space and the
corresponding path of our jump process (i.e., a specific sequence of ti’s and Xi’s). This gives

1where for A ∈ L (E′) a n d B ∈ L (E,E′) we write AB := (A ◦ B) ∈ L (E,E′)
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3.3. MUSIELA’S SPDE AS A SACP

(with probability one) a finite number of subintervals [0, t1], [t1, t2], . . . , [tn−1, tn], [tn, T ].
First we restrict equation (3.10) to [0, t1], giving the deterministic equation:

U(t) = S(t)U0 +

∫ t

0
S(t − s)F (s, U(s))ds for t ∈ [0, t1] (3.11)

From the theory of evolution equations2, we know by an application of the Banach con-
traction theorem that this equation has a unique solution U : [0, T ] → E,3 as long as F is
continuous with respect to the first variable and locally Lipschitz continuous with respect
to the second variable with at most linear growth, i.e. there exists constants c1 and c2,
such that for all tand x: ‖F (t, x)‖ ≤ c1 + c2|x|. Now one can look at the equation in
[t1, t2], knowing that U(t1−) is uniquely defined. Now we get the equation

U(t) = S(t− t1)U(t1−) + B(t1−, U(t1−))X1 +

∫ t

t1

S(t− s)F (s, U(s))ds for t ∈ [t1, t2]

(3.12)
Again this equation has a unique solution from [t1, t2] to E. Continuing inductively we
see that on every interval [ti, ti+ 1] the equation

U(t) = S(t−ti)U(ti−)+
i

∑

k= 1

B(tk−, U(tk−))Xk+

∫ t

ti

S(t−s)F (s, U(s))ds for t ∈ [ti, ti+ 1]

(3.13)
has a unique solution, so we have the following result (probably the most important one
in this thesis), stated here as a theorem:

Theorem 3.6. Let J(t) be a jump process as defined in section 2 .3 , then the stochastic
abstract Cauchy problem

{

dU(t) = [AU(t) + F (t, U(t))] dt + B(t, U(t))dJ(t) for t ∈ [0, T ]
U(0) = U0

(3.14)

in E admits a unique mild solution from [0, T ] to E.

Perhaps the most surprising part of theorem 3.6 is that there is no condition what so ever
upon the form of B. Y et again, in retrospect the result itself could have been expected.
J ust like in the additive, homogeneous, linear case, the mild solution is just a superposition
of mild solutions all starting at one of the times ti, etcetera. The ease of the derivation, as
well as the mildness of the relevant conditions is in shrill contrast with the theory where the
underlying process is a Brownian motion, where very nontrivial results only yield solutions
under very hard to verify conditions.

3.3 Musiela’s SPDE as a SACP

One of the main applications of stochastic differential equations can be found in financial
mathematics. Methods for contingent claim valuation rely heavily on stochastic calculus.
The first contribution in this area was made by Black and Scholes in [4], who, by applying
Itô’s lemma twice, found a PDE that unambiguously fixed the arbitrage-free price for a

2see, for example sections 6.1 and 6.2 of [17]
3or, more specifi cally a u niq u e solu tion in a certain fu nction space from [0 , T ] to E
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european call option on a financial instrument whose value followed a geometric Brownian
motion. Although their model used a number of nonrealistic assumptions, the obtained
formula proved to be very applicable and powerful.

The Black-Scholes model is very useful to evaluate contingent claims on stocks and stock
portfolio’s, because the “state” of these instruments are determined solely by their value.
Studying bonds requires a far more complicated analysis, because bonds not only have a
value at each time, but also have their maturity, a time at which the price of the bond
is assumed to be fixed. One of the first rigourous mathematical studies of the behaviour
of bonds was done by Heath, Jarrow and Morton in [6]. They assumed the bond to
be interest-free (zero coupon) and built a model for the so-called forward rate process,
the logarithm of the derivative of the bond price. Their quite complicated analysis was
simplified later by a notational trick. In later literature the forward rate of the bond was
modeled as a random function on R

2: r(t, x) was defined to be the forward rate of a bond
at time t, with maturity at time t + x, instead of working with fixed maturities as the
original article did.

By notational preference I will be using u(t, x) instead of r(t, x). The forward rate,
according to the Musiela model, now satisfies Musiela’s S PD E:

du(t, x) =

[

∂

∂x
u(t, x) + f(t, x, u|[0,x](t, x))

]

dt + 〈σ(t, x, u(t, x)), dM (t)〉 (3.15)

In this model σ is the volatitility coeffi cient, taking values in a Hilbert space H and M(t)
is m o stly tak en to b e a lo cally sq u are inte g rab le se m im arting ale . A p rio ri, th e re is no
o b v io u s reaso n no t to tak e M(t) ∈ E and σ tak ing v alu e s in E′ fo r so m e B anach sp ac e E,
b u t as th e m o st c o nside red p ro c e ss fo r M(t) is (c y lindrical) B ro w nian m o tio n, th e H ilb e rt
sp ac e case is th e m o st g ene ral o ne c o nside red. In case th is is a B ro w nian m o tio n and f

is indep endent o f t and u, th e M u sie la S P D E can b e w ritten as th e ty p e o f linear S A C P
c o nside red in ch ap te r 1 4 o f [1 1 ]. A n analy sis o n th is e q u atio n fo r a m o re g ene ral fo rm o f
M(t) can b e fo u nd in [8 ].

T h e case w h e re M(t) is a B ro w nian m o tio n w as, as already m entio ned, fi rst c o nside red
b y H eath , J arro w and M o rtio n in [6 ], w h o p ro v ed th at fo r a no -arb itrag e c o nditio n to h o ld,
th e re h ad to b e a v e ry sp e c ifi c re latio n b e tw e en th e drift c o e ffi c ient f and th e vo la tility σ.
T h e asto nish ing ly easy re latio n th e y fo u nd w as th at f = 1

2
|σ|2. F o r o th e r fo rm s fo r M(t)

su ch a re latio n can no t in g ene ral b e e stab lish ed.

F irst o f all, w e tak e th e b o nd to b e issu ed at tim e 0 and h av e m atu rity T . In th is case ,
w e k no w th at w e can re stric t o u r analy sis to x ∈ [0 ,T ] and m o de l U(t) := u(t,x) ∈ E,
w h e re E is so m e fu nc tio n sp ac e o n [0 ,T ] (e .g an Lp-sp ac e). N o w w e can re w rite (3 .1 5 ) as
an inh o m o g ene o u s S A C P :

d U(t) = [AU(t) + F (t,U(t))] d t + B(t,U(t))d M(t) fo r t ∈ [0 ,T ] (3 .1 6 )

W h e re A deno te s th e diff e rentiatio n o p e rato r, and so o n. A s th e diff e rentiatio n o p e rato r
g ene rate s th e stro ng ly c o ntinu o u s translatio n se m ig ro u p o n alm o st e v e ry re le v ant fu nc tio n
sp ac e , w e k no w th at u nder a L ip sch itz c o nditio n fo r F (and w h enc e fo r f), e q u atio n (3 .1 6 )
adm its a m ild so lu tio n fo r any initial fo rw ard rate c u rv e .

3 2 A B a n a ch spa ce-va lu ed stoch a stic in tegra l...



Chapter 4

S to chastic In teg ratio n (II)

The results from previous chapters on the jump process defined might look astonishingly
easy for a process that is not even continuous and that might also be quite realistic. From
both theoretical and practical considerations it might be useful to ex tend the process
defined in section 2.3 and the corresponding integral to more general and/ or realistic
processes.

4.1 G eo m etrical an d m u ltiplicativ e n o ise

When using a process like the one defined in section 2.3, one has the problem that the
changes in the process are purely additive. When J(t) models something that infl uences
the price of a financial instrument, for ex ample, one has to impose some rather strict
conditions on the boundedness of the Xi and the way they are injected into the state
space to assure positivity of solutions (note that, in the Musiela model, the forward rate
is allowed to become negative). In a way, taking a Banach space as the space for J(t)
limits the generality of our analyis, because multiplication is generally not allowed for our
process. So, so far, a model for e.g. a stock price as a jump process is not possible. Since
we do not really have an Itô’s lemma for J(t), it is not possible to define df(J(t)) if f is a
non-affine function, like the ex ponential. We can conclude that the way Brownian motion
is transformed into geometrical Brownian motion doesn’t work as well for jump processes.

O ne might have a “ geometrical” real-valued jump process, for (Yi)i a sequence of real-
valued random variables:

I(t) =
∏

i:ti≤t

(1 + Yi),

for which the differential will be

dI(t) =





∑

i:ti≤t

Yiδ(t − ti)
i−1
∏

k= 1

(1 + Yk)



 dt

As can be shown by complete induction and application of the product rule. This ex pres-
sion shows the problem one might have with jump processes: a slight variation in the form
of the process leads to a very complicated analysis that has to be done for each variation
and yields a very complicated and hard to use result.
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4.2 Brownian motion

We consider the real-valued jump process (J ε(t))t≥0
that jumps at fixed deterministic

times nε, n = 1, 2, . . . and makes a normally distributed jump with fixed variance ε that
is independent of all previous jumps1. This process is both a martingale and a Markov
process. The idea is of course to let the ε tend to zero in some way and then apply
the central limit theorem to look at the limit in distribution of the random variables
corresponding to the resulting process at some time. This limiting procedure gives a very
intuitive way to think about Brownian motion as being the limit of a random walk making
infinitely small steps at infinitely small time intervals.

The theoretic backup for this limiting procedure is given by Donsker’s Theorem, that
can be found in among others [12]. First we consider the vector spaces C := C[0, 1] and
D := D[0, 1] of all continuous and all càdlàg functions on [0, 1], respectively. Of course
C ⊂ D and C is a separable Banach space with the supremumnorm (giving rise to the
uniform topology). The space D is given the so-called relative S korohod topology, which
is defined as follows: first we define the class Λ of strictly increasing continuous onto
functions from [0, 1] to itself. Then we define convergence:

Definition 4.1. A sequence of functions (xn)n in D is said to converge to x ∈ D with
respect to the relative Skorohod topology if there exists a sequence (λn)n in Λ such that
λn(·) tends to the identity and xn(λn(·)) → x(·), both uniformly, as n tends to infinity.

By taking λn(t) := t, we see that by definition the relative Skorohod topology coincides
with the uniform topology when restricted to C. The relative Skorohod topology is induced
by the metric

d(x, y) := inf







ε > 0
there exists λ ∈ Λ such that
sup0≤t≤1 |λ(t) − t| ≤ ε and

sup0≤t≤1 |y(λ(t)) − x(t)| ≤ ε







for x, y ∈ D (4.1)

If we replace the first condition on ε and λ in the above expression by

sup
s 6=t

∣

∣

∣

∣

log
λ(t) − λ(s)

t − s

∣

∣

∣

∣

≤ ε,

one obtains a metric d0 that is equivalent to d, but that makes D into a complete metric
space. The problem with D is that it is not a separable Banach space with respect to
any norm or metric, so, although we can define random elements in D as F -measurable
functions from a probability space (Ω , F , P) to D, we can not define their expectation.

Brownian motion can be viewed as a random element of the vector spaces C and D. On
(C, B(C)) one can define its distribution as the so-called W iener measure W . Now having
a topology we can define the relevant process and its convergence to “Brownian Motion”.
Now for every element of our probability space we can define the jump process Xn(t, ω)
as follows: we define a sequence of independent identically distributed variables (ξn(ω))n

with expectation zero and fixed and existent variance σ, then we define the Xn(·, ω) in D

as follows:

Xn(t, ω) =
1

σ
√

n

bntc
∑

i=1

ξi(ω)

1several extensions can be made that will probably still work. For example, making Gaussian jumps in
a H ilbert space with a fi xed covariance operator or making independent identically distributed real-valued
jumps with fi xed (and existent) variance
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4.3. PROCESSES WITH COUNTABLY MANY JUMPS

Now we are ready to state Donsker’s theorem without proof2.

Theorem 4.2. Let the sequence Xn of random variab les in D be defi ned as above, then

the random variab les Xn in D converge in distribution to the Wiener process.

Of course, we are able to define for any random function f(·, ω) in D, and for every n

the integral (leaving aside the notational dependence on ω:

∫

1

0

f(t)dXn(t) :=
1

σ
√

n

n
∑

i=1

f(
i

n
−)ξi

Now the question is if, in which way and towards which stochastic variable this integral
converges.

A first attempt may be to consider the ξi to be standard Gaussian random variables, and
the function f to be deterministic and continuous on [0, 1]

∫

1

0

f(t)dXn(t) :=
n

∑

i=1

f(
i

n
−)

ξi√
n

is identically distributed as
n

∑

i=1

f(
i

n
−)

(

B i+1

n

− B i

n

)

Which is a step function approximation to the Itô integral (cf. for example [16]). So in
this case there will be convergence in distrbution towards the Itô integral. This is quite a
simple argument, motivating extension of this analysis towards more general integrands,
jump processes or trying to assert stronger modes of convergence.

The first extension to this analysis might be to consider, instead of deterministic jumps
after a time ε, jumps that occur according to a Poisson process with intensity ε, which will
hopefully yield a same result.

4.3 Processes with countably many jumps

A more general question when it comes to stochastic integration is how to define a suit-
able stochastic integral for more general càdlàg Lévy processes, that are allowed to make
infinitely many jumps. This question is addressed among others in [9 ]. I will try and
address this question from a new angle. I will consider a Lévy process L(t) on a Banach
space E′ making countably many jumps Xi on [0, T ] such that (almost) surely the sum of
all discontinuities is finite:

∑

i

‖Xi‖ < ∞. (4.2)

Now I define for ε > 0 the process Lε(t) to be the sum of all discontinuities up to time t

for which the difference between left and right limits is more than ε. Now for ε we define
Xε to be the mild solution of the following SACP:

{

dX(t) = AX(t)dt + B(t)dLε(t) t ∈ [0, T ]
X(0) = x for some x ∈ E

(4.3)

2also, many subtleties are involved when dealing with the modes of convergence of random variable in
abstract spaces.
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Where we assume B(·) to be a continuous function from [0, T ] to L (E′, E). We know
that a solution Xε exists for each ε > 0.

Lemma 4.3. The mild solutions (Xε)ε> 0
form a C auchy family in the space of càdlàg

functions from [0, T ] → E endow ed w ith the topology of uniform convergence.

P roof. We start by working with 0 < δ < ε, such that δ tends to zero as ε does. Our
lemma is proven if we can show that

sup
0≤t≤T

‖U ε(t) − U δ(t)‖

tends to zero as ε tends to zero.

Because the first propagation term in the expression for the mild solution cancels out, we
can write down:

sup
0≤t≤T

‖U ε(t) − U δ(t)‖ = sup
0≤t≤T

∥

∥

∥

∥

∫ t

0

S(t − s)B(s)
[

dLε(s) − dLδ(s)
]

∥

∥

∥

∥

Now all jumps smaller than δ do not feature in this integral and all jumps larger than ε

cancel out, so what remains is.

sup
0≤t≤T

‖U ε(t) − U δ(t)‖ = sup
0≤t≤T

∥

∥

∥

∥

∥

∥

∑

i:ti≤t and δ≤‖Xi‖< ε

S(t − ti)B(ti)Xi

∥

∥

∥

∥

∥

∥

First we take the norm within the sum and then see that the supremum of resulting
expression is attained when all of the jumps are taken into account:

sup
0≤t≤T

‖U ε(t) − U δ(t)‖ ≤
∑

δ≤‖Xi‖< ε

‖S(t − ti)‖‖B(ti)‖‖Xi‖

≤
∑

δ≤‖Xi‖< ε

K‖Xi‖

for some constant K, now we can drop the Xi ≥ δ-condition in the sum at the cost of an
inequality.

sup
0≤t≤T

‖U ε(t) − U δ(t)‖ ≤
∑

‖Xi‖< ε

K‖Xi‖

Because all the elements of this series are positive, we can renumber them in decreas-
ing order. Then letting ε tend to zero is essentially taking the tail of the sequence for
increasingly higher indices, so this expression tends to zero as ε tends to zero. Q ED

Next we want to consider a nonadditive SACP and try and do the same analysis for this
version of the problem, so we define U ε as the unique mild solution to the equation.

{

dU(t) = AU(t)dt + B(t, U(t))dLε(t) t ∈ [0, T ]
U(0) = u for some u ∈ E

(4.4)

Again we want to prove the same result as we did for additive noise, which I will formulate
here as a proposition:
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Proposition 4.4. There exist conditions on A and B, and the space E, such that for

almost surely any path of the process L(t) the family of mild solutions (U ε)ε>0 to equa-

tion (4.4) forms a Cauchy family in the space of càdlàg functions from [0, T ] to E, with

respect to some topology.

To give an idea of the bounds that might play a role we assume that B is Lipschitz in the
second variable with a Lipschitz constant that is bounded for t ∈ [0, T ] by some constant
K. The problem with proving this proposition is that differences between the two solutions
not only come from the differences in the jumps contributing to the respective integrals,
but also from jumps that feature in both integrals that are mapped into the state space in
a different way. We call t1, t2, . . . with ti < ti+ 1 the jump times of the process L(t), with
the respective jumps Yt1 , Yt2 , . . . ∈ E′.

Again we have 0 < δ < ε and the difference between the two corresponding processes will
now be

U ε(t) − U δ(t) =

∫ t

0

S(t − s)
[

B(s, U ε(s))dLε(s) − B(s, U δ(s))dLδ(s)
]

.

We want to mark the jumps that contribute to the difference between U ε and U δ. The
times of these jumps will be denoted t̃1, t̃2, . . .. Up to the first jump that features in Lδ but
not in Lε the processes will be equal, so t̃1 = min {ti : δ ≤ Yti < ε}, from then on, every
jump will matter, so for i ≥ 2 we have

t̃i = min
{

tj , j = 1, 2, . . . | tj > t̃i−1 and Ytj ≥ δ
}

Now we define Vi to be the size of the difference between the two processes at (or right
after) t̃i:

Vi =
∥

∥

∥
U ε

(

t̃i
)

− U δ
(

t̃i
)

∥

∥

∥
(4.5)

Now we see that V1 is smaller than some constant (dependent on B) times ε, and for each
i ≥ 2 the jump can be either caused by a jump bigger than epsilon, in which case the
difference between the two solutions just before t̃i is just a propagation of the previous
jump, in which case:

Vi ≤ (1 + K‖Xi‖) exp
[

µ
(

t̃i − t̃i−1

)]

Vi−1 (4.6)

On the other hand, it could be a jump smaller than ε, in which case we only know that

Vi ≤
∥

∥

∥
B

(

t̃i, U
δ(t̃i)

)∥

∥

∥
‖Xi‖ + exp

[

µ
(

t̃i − t̃i−1

)]

Vi−1 (4.7 )

This leads to a recursive inequality that motivates us to reformulate proposition 4.4 as
follows:

Proposition 4.5 . Consider equation (4.4) and assume the following conditions are met:

1 . The operator A generates a strongly continuous contractive semigroup

2 . B(t, ·) is Lipschitz continuous with constant C(t) and K := sup0≤t≤T C(t) < ∞

3 . There exists a constant b such that for all t in [0, T ] and x in E: ‖B(t, x)‖ < b

Then for almost each path of the process L(t) the family of mild solutions (U ε)ε>0 to

equation (4.4) forms a Cauchy family in the space of càdlàg functions from [0, T ] to E,

with respect to the topology of uniform convergence.
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Proof. Let U ε, U δ and Vi be as before. We begin by combining the inequalities (4.6)
and (4.7) into

Vi ≤ (1 + αi) Vi−1 + βi (4.8)

With V0 = 0, and αi and βi defined by:

αi :=

{

K‖Xi‖ for ‖Xi‖ ≥ ε

0 for ‖Xi‖ < ε

and

βi :=

{

0 for ‖Xi‖ ≥ ε

b‖Xi‖ for ‖Xi‖ < ε

So
∑

i αi ≤
∑

i K‖Xi‖ < ∞ and for
∑

i βi an even better bound exists:

∑

i

βi ≤ b
∑

‖Xi‖<ε

‖Xi‖.

Furthermore α1 = 0.

Now we define (zi)i to be the unique solution of the equation

{

zi = (1 + αi) zi−1 + βi

z0 = 0
(4.9)

So Vi ≤ zi. Now one can prove by induction that

zi =
i

∑

j=1

βj

i
∏

l=j

(1 + αl)

Introducing the variable γl := ln(1 + αl) ≤ αl, we can write:

i
∏

l=j

(1 + αl) = exp





i
∑

l=j

γl





which can be estimated by

exp





i
∑

l=j

γl



 ≤ exp





i
∑

l=j

αl





≤ exp



K

i
∑

l=j

‖Xl‖





=: R

So we have established that

Vi ≤
i

∑

j=1

Rβj
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So the supremum of the difference between U ε and U δ is bounded as follows:

sup
0≤t≤T

‖U ε(t) − U δ(t)‖ ≤ sup
i

Vi

≤ R

i
∑

j=1

βj

≤ R

∞
∑

j=1

βj

≤ bR
∑

j:‖Xj‖<ε

‖Xj‖

As we saw before, this last expression tends to zero, so (U ε)ε>0 forms a Cauchy family in
D([0, T ], E) with the topology of uniform convergence. QED
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Chapter 5

Conclusive remark s

As I went about the analysis from a very new angle, leaving Brownian motion aside
and purely considering jump processes, I obtained some results that might not be that
astounding or shocking, yet some of the obtained expressions might turn out to be useful
in future analysis. The last result, which I obtained in co-operation with my thesis advisor,
Onno van Gaans, gives something of a new step in the theory of stochastic equations with
Lévy noise. By using more sophisticated methods, maybe even stronger results can be
obtained. As the nature of this thesis was very analytic, using more of the stochastic
properties might yield some very interesting results.

Other option for future research are being held possible by the highly nonconstructive
nature of our analysis. Although one can conclude existence results for solution to certain
quite general classes of processes from the results in this thesis, uniqueness does not follow
and very few properties of the solutions are known. Deeper analysis, use of the stochastic
properties of the processes and good numerical simulations might yield a better insight
towards problems concerning Lévy noise. Also the Cauchy property derived in section 4.3
gives us a motivation that (finite) numerical simulations can be used for modeling the
behaviour of solutions.

As to the jump process itself, specific forms of the Xi might yield some interesting results.
Also, statistic analysis can be used to model real-life processes (e.g. stock prices, day-to-
day interest rates, etc.) as jump processes and determine realistic distributions for the Xi

in order to make the results more applicable. An interesting analysis might be to consider
the Musiela PDE with jump process noise and trying to determine a relation between drift
and volatility so as to make the forward rate process satisfy a no arbitrage condition.
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