
Generic extensibility for the scheduler of an advanced planning system
Hutter, P.C.

Citation
Hutter, P. C. (2008). Generic extensibility for the scheduler of an advanced planning system.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in the
Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3597478

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3597478

Generic extensibility for the scheduler of an
advanced planning system

Christian Hutter
Master thesis, April 2008

Thesis advisors:
prof.dr. L.C.M. Kallenberg (Universiteit Leiden)

dr. S.F. van Dijk (ORTEC BV)

Mathematisch Instituut, Universiteit Leiden
ORTEC BV

2

Contents

1 Introduction 7
1.1 ORTEC . 7
1.2 Scheduling . 8
1.3 The scheduler . 9

1.3.1 The core . 9
1.4 Thesis goals . 10
1.5 Thesis outline . 11

2 The scheduler 13
2.1 Features of the scheduler . 13
2.2 Design patterns . 14

2.2.1 Factory . 14
2.2.2 Flyweight . 14
2.2.3 Observer . 14
2.2.4 Propagator . 14

2.3 Data elements . 15
2.4 Actions . 15

2.4.1 Dimensions . 16
2.5 Propagation . 16

2.5.1 Observers . 17
3 Extensibility for data elements 21

3.1 What is a data element . 21
3.2 Adding a data element . 22
3.3 Data element interface . 22
3.4 Dependencies between data elements 24
3.5 Detecting dependent data elements 25
3.6 Example . 28
3.7 Results . 28

4 Extensibility for actions 31
4.1 Action-types . 32

4.1.1 Performance . 34
4.2 Adding an action . 35

3

4 CONTENTS

4.2.1 Adding an action from a product-speci�c module 36
4.2.1.1 Proof of concept 37

4.2.2 Adding an action from the settings 37
4.2.2.1 Network parser 38
4.2.2.2 Observers factory 38
4.2.2.3 Registering the predecessors 40
4.2.2.4 Proof of concept 46

4.3 Adjusting an action . 47
4.3.1 Proof of concept . 50

4.4 Example . 51
4.5 Results . 51

5 Extensibility for dimensions 55
5.1 What is a dimension . 55
5.2 Dimensions Keeper . 56

5.2.1 Logical predecessor . 56
5.2.2 The value of a dimension 57
5.2.3 Engine Finder . 57
5.2.4 Delay . 57
5.2.5 Register a dimension . 57

5.3 Proof of concept . 58
5.3.1 Compare old and new situation 58

5.4 Example . 59
5.5 Results . 61

6 Conclusions 63
6.1 Results . 63
6.2 Future work . 64

6.2.1 Data elements . 64
6.2.2 Networks . 64

Preface

This master thesis is written to conclude my study Mathematics at the Univer-
sity of Leiden. The research is done at ORTEC, a software company that is one
of the largest providers of advanced planning and optimization solutions.

At this place I would like to thank some people. First of all I would like to
thank my supervisors dr. Steven van Dijk from ORTEC and prof.dr. L.C.M.
Kallenberg from the University of Leiden for their support and discussions. I
would like to thank ORTEC in general and the Scheduler Team at the ORTEC
Software Development department especially for the opportunity to write this
thesis. The latter is also thanked for their critical notes and attention paid to
my research.

Last but not least a word of thanks to my family and girlfriend for their
motivation and support.

Christian Hutter

5

6 CONTENTS

Chapter 1

Introduction

This chapter will give a general introduction to this thesis. We will discuss some
of the activities and products of ORTEC, focusing on the subject of this thesis.
At the end of this chapter we will explain the goals and the outline of this thesis.

1.1 ORTEC

The activities of ORTEC are split into two companies: ORTEC Finance, dealing
with �nancial problems, and ORTEC Logistics, dealing with logistic problems.
This thesis is written at the latter. ORTEC Logistics can be described as a
software company that is specialized in developing planning systems that help
human planners to be more productive and to keep a better overview of all
resources and tasks involved.

The logistic part of ORTEC has developed several planning systems:
• COMTEC: a system for all kinds of planning, some of the important
products of this system are
� ORTEC Transport & Distribution (OTD)
� ORTEC Service Planning (OSP)
� ORTEC Passenger Transport (OPT)

• SHORTREC: a system for transport and distribution, this is the prede-
cessor of OTD

• HARMONY: a system for employee scheduling
• LOADDESIGNER: a system for load optimization

All these systems can be seen as decision supporting systems. The COMTEC
framework is divided in several subsystems, like the GUI (Graphic User Inter-
face), data management and the scheduler. This thesis will deal with the latter.
Figure 1.1 shows an overview of what is discussed in this section.

7

8 1.2. SCHEDULING

GUI...

OTD OSP ... OPT

Scheduler

ORTEC

ORTEC Finance ORTEC Logistics

COMTEC HARMONY LOADDESIGNER

Figure 1.1: Overview of section 1.1. This thesis deals with the scheduler subsys-
tem of the COMTEC framework.

1.2 Scheduling

As stated, the COMTEC system deals with all kinds of planning. This is typi-
cally an Operations Research (OR) related issue. An example of a classic prob-
lem in Operations Research is the traveling salesman problem (TSP). Suppose
we are given a number of cities and the costs of traveling from any city to any
other city. The problem can be de�ned as determining the round-trip with the
lowest costs that visits each city exactly once and returns to the starting city.

An example of a problem in Operations Research related to the problems
ORTEC Logistics deals with, is the Vehicle Routing Problem (VRP). This is a
combinatorial optimization problem seeking to service a number of customers
with a �eet of vehicles. One of the problems modeled in COMTEC is similar to
the Vehicle Routing Problem with Pickup and Delivery (VRPPD): a number of
goods need to be moved from certain pickup locations to other delivery locations.
The goal is to �nd optimal routes for a �eet of vehicles to visit the pickup and
drop-o� locations. In the COMTEC framework a lot of extra restrictions are
introduced like time-windows and capacity of the resources.

In Operations Research, scheduling can be described as
• decision making in manufacturing and service industries, and

CHAPTER 1. INTRODUCTION 9

• allocation of scare resources to tasks in time.
In general, scheduling concerns (optimal) assignment of resources (often called
machines in scheduling problems), over time, to a set of tasks (often called
jobs). The problems ORTEC handles, deal with all kinds of planning, among
with transport, distribution and service planning.

1.3 The scheduler

A planning in an OR model consists of n tasks (like deliver a cargo or visit a
client) with processing times, release dates, due dates and other properties, and
m resources (like a truck or a plumber) with time dependent availability and
properties which allow only certain subsets of tasks to be processed by certain
resources. The tasks have to be executed by the resources. The basic concept
of planning is assigning actions to resources to execute the tasks. A schedule is
necessary to maintain a logically consistent course of actions for each resource
while satisfying many constraints. An action has variables such as the time, the
free capacity of the resource and the current address.

The scheduler is responsible for inserting and removing actions in the sched-
ule, and for calculating the values for the variables of an action. The scheduler
ensures the schedule is always in a consistent state. Consistent means that there
is no contradiction. To hold this consistency, the scheduler ensures a number
of restrictions is satis�ed. These restrictions can either be necessary, e.g. if the
deliver of a cargo is planned after its pickup, or optional, e.g. if a task is not
planned too late. Optional restrictions can be turned o� by the user.

1.3.1 The core

The scheduler is layered into several modules, of which some are considered
core and others are non-core. The core is product-independent. The non-core
modules provide functionality for speci�c products and work together with the
core. For instance, ORTEC Transport & Distribution (OTD, see also section 1.1)
is built using dedicated modules that use the core to provide functionality that
is only relevant for this product. Figure 1.2 visualizes the several modules inside
the scheduler. Structures to store data are typically de�ned in the core, as well
as the representation of the schedule. There are several other core modules, like
one where the restrictions are de�ned (there are also product-speci�c restrictions
de�ned in the product-speci�c modules). On top of this core the products, like
OTD, are built.

Ideally, all functionality in the core is as generic as possible and is specialized
for a certain purpose by a product-speci�c module. For a lot of functionality this
holds true, but certain aspects of the core are not extensible in other modules.

An example of a concept that is extensible nicely is providers. The sched-
uler has to communicate with other subsystems in the COMTEC framework.
Therefore the scheduler provides the information of the schedule it is working

10 1.4. THESIS GOALS

Figure 1.2: Visualization of the core and non-core modules in the scheduler

with. This information is stored in tables called providers. Most of them are
de�ned in the core, like a provider for trip information which tells the cost of
the trip among other information. It is however possible to add a provider from
a non-core module. It is also possible to adjust a provider de�ned in the core.
For instance, a product that retrieves the cost of a trip by another method can
replace that part of the provider for trip information.

An example of an issue that is not extensible nicely is actions. Actions, which
are treated more extensively later on, are the activities for one or more resources
to execute the tasks. All actions have to be de�ned in the core. Moreover, it
is not possible to adjust an action. One could think of the wish to alter the
calculation behavior of an action. For instance, in service planning (OSP) the
calculation of the �nish time of some action di�ers from the other products like
transport planning (OTD). For now this exception has to be made in the core.
If it would be possible to make this exception in a non-core module one has to
be careful; changing the calculation behavior could lead to endless loops.

1.4 Thesis goals

As mentioned in the previous section, the core of the scheduler of the COMTEC
framework is not as generic and �exible as we want it to be. Several concepts
in the core should be modeled otherwise, with as undesirable result we have to
modify the core to add product-speci�c functionality. A scheduler of a planning

CHAPTER 1. INTRODUCTION 11

system should be generic, in such a way that it is possible to build several
products with this scheduler. Goal of this thesis is to make it possible to set
up an OR model for all kinds of planning sharing the same basis. Each kind
should extend functionality in the basis to its own wishes and needs. Starting-
point of this OR model in this thesis will be the scheduler of the COMTEC
framework. We will focus on concepts for which extensibility is not trivial to
model. Therefore, the main goal of this thesis is:

Generic extensibility for the scheduler of an advanced planning system.
Relating this main goal to the scheduler of the COMTEC framework leads

to the following requirements:
• It should be possible to extend functionality in the core without modifying
the core

• It should be possible to alter functionality/behavior in the core without
modifying the core

1.5 Thesis outline

Before we are able to state our �ndings and improvements, there are some
concepts that should be treated more extensively. This will be done in chapter
2. After this introduction of basic knowledge one can �nd our research and
modeling to make the scheduler more extensible and more �exible.

In the chapters 3, 4 and 5 where we will present our �ndings, we will follow
this structure:

• Introduction: we will introduce the subject of the chapter.
• Our �ndings: we will discuss our �ndings and improvements. We will also
give a proof of concept.

• Example: we will give an example of how the presented �ndings and im-
provements can be used in general OR modeling. That is, we will try to
extract it from the ORTEC context.

• Results: we will conclude and summarize the results.

12 1.5. THESIS OUTLINE

Chapter 2

The scheduler

In section 1.3 we introduced the scheduler of the COMTEC framework. In this
chapter we will treat some of the aspects of the scheduler more extensively.
After explaining some features of the scheduler, we will discuss design patterns
in section 2.2. After that we will treat some concepts which will be the subjects
of the following chapters, namely data elements in section 2.3 and actions and
the propagation mechanism in sections 2.4 and 2.5.

2.1 Features of the scheduler

Languages The COMTEC system is written in the programming languages
Delphi and C++. The scheduler is programmed in C++.

Communication with the scheduler as well as storing the schedule takes
place in the form of XML. XML is a way to represent structured data. This
representation is readable for humans as well as computers. The use of XML
implies a kind of tree structure of the schedule. This way, it leads to a topological
sorting of the actions in the schedule.
Settings Inside the scheduler we have a lot of variables which are not speci�ed
in the source code (or �lled with a default value) and other preferences which
depend on the instance of the program. So, many aspects can be con�gured.
These can either be user-speci�c or product-speci�c. For instance, an user would
like to turn o� some optional restrictions or to specify the default duration of
loading a cargo. On the other hand, the instance of the product speci�es which
modules have to be used. All these values and preferences are stored in the
settings system. A setting has a name and a value. This value is mostly a string
or a Boolean (i.e. true or false). The settings system is a collection of key-value
pairs stored in the database.
Tokens Inside the scheduler there is a mechanism to tokenize. That means
a name, which is represented by a string, is identi�ed with a unique number,

13

14 2.2. DESIGN PATTERNS

a so-called token. With these tokens one can easily use fast integer compares
instead of string compares.

2.2 Design patterns

A lot of concepts modeled in the scheduler are based on design patterns. These
provide solutions to recurring problems in software design. Elsewhere [Gamma et. al.]
one can �nd an introduction to design patterns and an overview of a lot of them.
Here we will describe shortly some of the patterns used in the scheduler.

2.2.1 Factory

The factory method pattern deals with the problem of creating objects without
specifying the exact class of object that will be created. The factory encapsulates
the creation of the object. The term factory is often used as a collective noun
for methods to create objects.

We will give a C++ example. Suppose we have the class Shape with derived
classes Triangle and Circle. The ShapeFactory will typically have a method
Shape∗ CreateShape(string);

After the classes Triangle and Circle have registered their methods to construct
and their associated string (e.g. "triangle" and "circle") with the factory, we
can create for instance a Triangle with CreateShape("triangle").

2.2.2 Flyweight

The �yweight pattern helps to minimize memory occupation by sharing as much
data as possible with other similar objects and storing shared data only once.

2.2.3 Observer

The observer pattern de�nes a one-to-many dependency between objects such
that when one object changes, all its dependents are noti�ed. An observer
has exactly one subject, i.e. the object the observer watches. A subject may
have several observers watching it. In the implementation of this pattern in the
scheduler, an observer can also be noti�ed by other observers.

2.2.4 Propagator

An extended description of the propagator pattern can be found elsewhere
[Feiler,Tichy], where it is described as a family of patterns for consistently up-
dating objects in a dependency network. The scheduler is based on the pattern
where the network is updated immediately after the change. So, all parts of the
network remain up-to-date. As a result, the scheduler guarantees consistency.

CHAPTER 2. THE SCHEDULER 15

2.3 Data elements

In a planning there are entities like trips (to group actions), resources (to model
drivers, trucks, et cetera), calendars (to model availability), et cetera. These
entities can refer to each other, for instance: a driver has a calendar storing
its availability. Inside the scheduler we want to argue about these entities, e.g.
we want to check if a driver doesn't work outside its calendar. For that reason
the scheduler makes a cache of this information from the database. That is, we
abstract the data from a table in the database to an object-oriented model in
the scheduler. The entities we ask the database for are called data elements.
Examples are resource, trip, order and calendar.

When a planner changes the information of a data element, e.g. he changes
the calendar of a resource, the scheduler is informed and requests this data
element from the database. The scheduler then processes the change and its
consequences in the planning.

2.4 Actions

In general, a planning in an Operations Research model consists of tasks, which
have to be executed by resources. To be able to do that we assign actions to
the resources. In other words, a planning is basically a course of actions for the
resources. Examples of actions in the scheduler are:

• couple: adding resources to a trip
• decouple: removing resources from a trip
• stop: stopping at an address
• pickup: loading of an order in a resource
• deliver : unloading of an order in a resource
• travel : driving from one address to another
• wait : waiting at an address, for instance till the order is available
• drive through: generic action to execute a 'non-transport' task on an ad-
dress, for instance a task carried out by a service engineer.

Consider for example an order which has to be picked up and delivered. The
trailer stands on another address than the driver and the truck. Planning this
order could result in the following course of actions:

• couple the driver and the truck,
• travel to the trailer,
• couple the trailer,

16 2.5. PROPAGATION

Figure 2.1: Sequence of actions the way a trip is represented inside the scheduler.
The time goes from left to right. An action above another action is the parent
of the latter.

• travel to the pickup-address,
• pickup the order,
• travel to the deliver-address,
• deliver the order.

The resources can either be planned for another order or can be decoupled
on one or more addresses. Figure 2.1 shows the representation of this action
sequence in the scheduler.
2.4.1 Dimensions

Actions can have properties or variables, which we call dimensions. Dimensions
store calculated planning information of an action such as the start time, the
�nish time and the used resources. The value of a dimension can be calculated
by the action or it can be retrieved from one of the preceding actions. For
instance, the dimension storing the used resources is calculated by the couple
and decouple. Other actions will retrieve this dimension from the last couple or
decouple.

2.5 Propagation

As we explained, the schedule is a consistent course of actions. Actions are
related to other actions, for instance when they use the same resources. So, the
schedule can be seen as an implicit graph connecting related actions. Changes to
one action can a�ect other actions. If in the above example the pickup happens
later because the opening time of the pickup address changes, the deliver will
also take place at a later time. The scheduler is responsible for calculating
and propagating such changes, i.e. the scheduler is responsible to maintain the
consistency of the course of actions. The propagation mechanism of the schedule
is based on the propagator design pattern (see section 2.2.4).

This propagation mechanism makes use of observers, based on the observer
pattern. In short, an observer observes other parameters (i.e. objects in the

CHAPTER 2. THE SCHEDULER 17

schedule) that are related to the action. These parameters are mainly an action
or a dimension. When these parameters change, the observer is noti�ed and
will recalculate the dimensions he is responsible for.
2.5.1 Observers

Each action has a number of observers. In other words, each action owns a
number of observers. These observers are related to each other in a network.
There are mainly three reasons for an observer to be present in such a network:

• Structural: these observers are related to the place in the structure of the
plan. The subject is the parameter, i.e. action, in the plan. Examples are
observers who watch the parent or the previous brother of the owner.

• Logical: these observers are a logical product of its predecessors. The
subject is again the parameter in the plan. For instance, an observer that
is equal to that predecessor which has the earliest start instant.

• Calculating dimensions: these observers are responsible for calculating
and updating the value of one or more dimensions. The subject is the
value of the dimension. For instance, an observer that computes the �nish
instant of an action.

Not all dimensions of an action are calculated by one of its observers. The value
of some dimensions is obtained by querying the subject of a structural observer.
This subject, i.e. another action, will retrieve the value from its observer which is
responsible for this dimension or get redirected to another action. For instance,
a travel action obtains the value of the dimension with the current resources
from the preceding couple or decouple action.

The edges in the network de�ne successor and predecessor relations de�ned
as follows:

• Successor: an observer A is a successor of observer B if and only if there
exists a path from B to A and so, A is noti�ed when B is noti�ed

• Predecessor: an observer A is a predecessor of observer B if and only if
B is a successor of A

Observers cannot be both successors and predecessors of each other, that is,
the network is acyclic. An edge in the network from observer A to observer B
indicates B is a successor of A. All observers in a network are sorted topologically
to ensure all dimensions are computed in the right order.

To make these concepts more clear, we show a part of the network of a
deliver in �gure 2.2. Each box represents an observer. In the �gure there is
one root-observer, called CWatch, with the owner (the action) as subject. In
�gure 2.1 we saw the relations between the actions stop, travel and deliver.
So, the subject of the observer watching the parent, named CSearchParent, is
the associated stop. The value of the address dimension is asked to this stop.

18 2.5. PROPAGATION

CWatch (index = 0)
Subject deliver[1530631]

FD
FOAF

CSearchParent (index = 1)
Subject stop[1530632]

FD
FOAF DA

CSearchPreviousSiblingAction (index = 3)
Subject travel[1530633]

FD
FOAF

Instant::CSearchWaitForStart (index = 5)
Subject travel[1530633]

FD
FOAF

Instant::CComputePickupOrDeliver (index = 6)
Subject DI=’tu 2005-08-09T05:35:01’

FD DI
FOAF

CSearchOwnerForStart (index = 2)
Subject travel[1530633]

FD
FOAF

CFirstOf (index = 4)
Subject travel[1530633]

FD
FOAF

Figure 2.2: Network of observers of a deliver for two dimensions: address (DA)
and time (DI). Each node is an observer, showing its name, its subject, �nish
dimensions (FD, dimensions calculated by this observer) and �nish owner ask
�nish (FOAF, for these dimensions the subject of the observer is asked for).

The subject of CSearchPreviousSiblingAction, the observer watching the previ-
ous sibling action, i.e. the brother- or cousin-action, is the associated travel.
The observer CSearchOwnerForStart searches the action with the start value
of the dimension to calculate. In our case, the start value of the instant is
obtained from the travel. The subject of the logical observer CFirstOf takes
over the subject of the predecessor with the earliest start time. The observer
Instant::CSearchWaitForStart determines if there is a wait action needed before
the deliver, for instance if the deliver address is not open yet. Finally, the ob-
server Instant::CComputePickupOrDeliver has enough information to compute
the time of delivering.

As said, for every action there is a network of observers. Di�erent instances
of an action, e.g. two couples, have nearly the same network, namely the same
observers and the same edges between them. Only the parameters the observers
watch are di�erent. This is e�ciently modeled by the �yweight pattern. The

CHAPTER 2. THE SCHEDULER 19

�rst instance of an action will create a prototype for the observers network of
that action. This instance and all other instances that will follow only have to
store the right parameters of the observers.

Every observer has to implement some methods, including the DoSearch
method. This one will search for the subject of the observer. That is, for struc-
tural and logical observers this method will search for the associated parameter,
i.e. action, in the plan or it will create an automatic action when this is needed,
like a travel or a wait action. For observers who are responsible for some di-
mension this method will �search� for the correct value of the dimension, i.e. it
will calculate this value.

20 2.5. PROPAGATION

Chapter 3

Extensibility for data

elements

In this chapter we will describe the �rst project of this thesis, namely improving
the extensibility for data elements. First, we will explain what a data element
is. After that we will discuss our modeling of data elements.

3.1 What is a data element

In section 2.3 we shortly introduced data elements. Data elements contain all
information the scheduler needs to know to generate a proper planning. In
an OR plannings model one needs to store and argue about information. For
instance, an user of the model speci�ed for transport planning has resources
(like trucks, trailers and drivers), tasks (like picking-up and delivering orders),
addresses (like addresses of depots) et cetera which have all kinds of information.
Both a resource and an address are not always available, they need a calendar to
store their availability. These objects with information and references to other
objects are called data elements. As we mentioned earlier, a data element is an
object-oriented mapping of a relational table in the database.

Data elements are also known outside the scheduler. A data element and
its information is stored in the database. When such an element is used in the
planning, the scheduler asks it from the database. When the information of the
data element changes or when it is no longer used in the planning, the scheduler
is informed and updates or deletes it.

When we model a new OR problem, we may �nd it necessary to introduce
new data entries (i.e. tables) in the database. We then also have to add a
new data element to the scheduler. In the old situation, the core contained all
data elements necessary for all products. In what follows we will discuss our
proposals to improve the extensibility and �exibility for data elements.

21

22 3.2. ADDING A DATA ELEMENT

3.2 Adding a data element

There are several places in the core of the scheduler where we use the information
of a data element. For example, to unplan a data element (i.e. to remove the
data element from the planning when it is not used anymore), which is typically
done in the core, the scheduler needs to know information that di�ers per data
element.

In the old situation, a lot of work had to be done to add a new data element.
To all places the information of a data element is used, we had to add the
new data element. Thus, the core of the scheduler had to be adapted. As a
result, when we added a data element that was needed for one product, all other
products also got this data element, since it was not possible to add it from a
product-speci�c module.

Data elements should not per de�nition be part of the core. Most data el-
ements will belong to general planning information (e.g. resources, calendars),
but some are product-speci�c (e.g. regulations to model regulations1 for trans-
porting dangerous goods). We have modeled the framework around the data
elements with the following requirements:

1. Consolidation: all information related to a certain data element should be
kept together

2. Registration: it should be easy to add a new data element; a single regis-
tration should su�ce

3. Extension: it should be possible to add a new data element from a product-
speci�c (and thus non-core) module

4. Encapsulation: the core should not have knowledge about the data ele-
ments

These requirements are met with the introduction of the object Data Elements
Keeper. All information of a data element, say for instance resource, is moved
from all over the core to one new place. This information is only accessible
by the Data Elements Keeper after the data element is registered with him.
Anywhere we want information about some or all data elements we ask the
Data Elements Keeper for it.

The Data Elements Keeper introduces an extra level of indirection. That
is, there is an extra level between de�ning and using the information of a data
element.

3.3 Data element interface

To concentrate all information about a data element we introduced an interface
that all data elements have to satisfy. This interface has a number of methods

1An example of such a regulation is ADR, an European treaty that regulates the trans-
portation of hazardous materials by road following the guide of the UN Model Regulation

CHAPTER 3. EXTENSIBILITY FOR DATA ELEMENTS 23

Figure 3.1: XML representation of resource with id 1. The �elds tag contains
attributes that refer to other data elements (like an address and a calendar). The
tags under the capabilities and rulesets tags also refer to other data elements.
So, in this example, resource 1 refers to address 553, calendar 5, resourcekind
2, workarea 1, capabilities 6 and 7 and ruleset 9926.

and we required all elements that use the interface to implement every method.
This implementation of a data element implicitly de�nes dependencies to other
data elements. That is, the data element registers methods to access the at-
tributes of the data element, which may refer to other data elements. In �gure
3.1 we show the XML representation of a resource in the scheduler. To obtain
the availability of a resource we need a method to access the attribute calendarId
of a resource. As we will see in the next section, the existence of a method to
access an attribute of a data element will de�ne a dependency from that data
element to the data element the attribute refers to. So, there is a dependency
from resource to calendar.

Figure 3.2 shows a visualization of the communication from and to the Data
Elements Keeper. The Data Elements Keeper stores all data related to data
elements, including a graph with dependencies between data elements which
will be the subject of the next section. The keeper o�ers a number of methods
to provide information about data elements, among which a method to get all
registered data elements, a method to get dependent elements given a set of data
elements (will be discussed later on) and a method to check if an object is a data
element. The Data Elements Keeper contains the interface (ABCDataElement)
all data elements have to satisfy. Data elements are inherited from this abstract
base class and have to implement the methods of the interface. These methods
include a method to get the name and methods to register how to access the
attributes of the data element. The latter is done with the methods RegisterSin-
gleDependency (to register methods to access the attributes referring to a single
data element like a calendar of a resource) and RegisterMultipleDependency (for
attributes referring to multiple data elements like the rulesets of a resource).
Every data element has to register itself to the Data Elements Keeper. For
product-speci�c elements this registration as well as the de�nition of the data
element (i.e. the implementation of the methods of the interface) will be done

24 3.4. DEPENDENCIES BETWEEN DATA ELEMENTS

Figure 3.2: Visualization of the objects DataElementsKeeper, ABCDataEle-
ment and DataElementResource and their data and methods. The object ABC-
DataElement (the pre�x ABC states Abstract Base Class) is the interface every
data element has to satisfy. The object DataElementResource speci�es all meth-
ods inherited from the interface and registers itself to the DataElementsKeeper.
From all over the scheduler one can request the DataElementsKeeper for infor-
mation.

in a product-speci�c module.

3.4 Dependencies between data elements

As mentioned, data elements can refer to each other. The Data Elements Keeper
keeps track of the dependencies between data elements. The keeper manages
these dependencies in a graph G = (V,E) where V is the set of all data elements
registered by the keeper and

(v1, v2) ∈ E =⇒ an attribute of v1 refers to v2 (3.1)
where v1, v2 ∈ V . Note that in (3.1) the arrow goes only from left to right.
That is, an edge in the graph implies that a data element refers to another data
element, but the reverse does not necessarily hold. As mentioned in section
2.3, the scheduler contains an object model derived from the relational model
stored in the database. This model is not exactly equal to how the scheduler
will use this data, i.e. the relations between data elements used in the scheduler
is a subset of the relations de�ned in the model. Therefore, dependencies in
the graph are also based upon the way we search for information inside the
scheduler. For example, when we want to detect the situation that a driver
works outside its calendar, we need a way to obtain the calendar of a resource.
For that purpose there is a method with as input a resource and as output the id
of the calendar of the resource. The existence of such a method (which we call
a �nd method since it �nds information for the input) indicates a dependency
from resource to calendar. The Data Elements Keeper detects dependencies
between data elements by means of such �nd methods, that is, only relevant

CHAPTER 3. EXTENSIBILITY FOR DATA ELEMENTS 25

Algorithm 1 Get dependent data elements.
1. For every element of the incoming set of data elements execute step 2 and

3
2. Expand the set of dependent elements with the current element
3. Get the set of adjacent vertices. For each vertex in this set, execute the

following:
(a) Get the id's of the already checked elements for this data element
(b) Get the id's of the dependent elements using the �nd method asso-

ciated with this edge.
(c) For each id found in the previous step execute step 2 and 3 if the id

is not empty and it is not in the already checked elements.

dependencies are taken in the graph. Thus, we can re�ne (3.1) as follows
(v1, v2) ∈ E ⇐⇒ an attribute of v1 refers to v2 and we can access this attribute
where v1, v2 ∈ V . Note that we can access an attribute of a data element
if and only if there exists an associated �nd method. This modeling of the
dependencies is extensible easily for new data elements. The Data Elements
Keeper inserts a node and some edges based on the registered �nd methods.
Figure 3.3 shows the graph of the data elements and its dependencies for an
instance of the scheduler modeling transports with dangerous goods. Note that
the data elements dgregulation and dgunnumber are product-speci�c (the pre�x
dg states dangerous goods).

3.5 Detecting dependent data elements

In the scheduler we have to ensure the data elements are up to date. Therefore
we are informed whenever a data element is changed. But, since data elements
are dependent, other data elements could also have been changed, new data
elements may need to be inserted or unused data elements could be removed.
For instance, a changed address of a resource can refer to an addresskind that is
not known in the scheduler; this addresskind has to be asked from the database.
Thus, we need a method to detect all dependent data elements given a set of data
elements. This method is implemented using a depth-�rst search algorithm, see
algorithm 1.

We will give an example: let e be the current element in the algorithm, V
the set of dependent elements and suppose we get an update of resource 1. The
algorithm will act as follows:

• V = ∅

26 3.5. DETECTING DEPENDENT DATA ELEMENTS

order

resource

address

task

transport

product

parameterset

project

calendar

costset

resourcekind

configuration

subcontractor

workarea

ruleset

addresskind

station

stationkind

action_kind

taskcluster

productkind

dgunnumber

depot

dgregulation

trip

shiftkind

schedule

rulegroup

Figure 3.3: Dependencies between the data elements inside the scheduler. The
vertices in the graph are the data elements. The edges denote a dependency. For
instance: a trip has one or more resources and a resource can have an address.

CHAPTER 3. EXTENSIBILITY FOR DATA ELEMENTS 27

• e = resource 1, V = {resource 1}. The adjacent vertices are resource(),
calendar(51), workarea(), address(3), resourcekind(2), con�guration(), pa-
rameterset(), subcontractor(), costset(12), ruleset() with the id's found in
step 3b between brackets.

• e = calendar 51, V = {resource 1; calendar 51}.
• e = address 3, V = {resource 1; calendar 51; address 3}. The adjacent
vertices are calendar(52), addresskind(3), costset(12), ruleset().

• e = calendar 52, V = {resource 1; calendar 51, 52; address 3}.
• e = addresskind 3, V = {resource 1; calendar 51, 52; address 3;

addresskind 3}. The adjacent vertices are calendar(52), costset(), rule-
set().

• e = costset 12, V = {resource 1; calendar 51, 52; address 3;
addresskind 3; costset 12}.

• e = resourcekind 2, V = {resource 1; calendar 51, 52; address 3;
addresskind 3; costset 12; resourcekind 2}. The adjacent vertices are
address(), calendar(), dgregulation(1), con�guration().

• e = dgregulation 2, V = {resource 1; calendar 51, 52; address 3;
addresskind 3; costset 12; resourcekind 2; dgregulation 2}

So, the dependent elements of resource 1 are calendar 51 and 52, address 3,
addresskind 3, costset 12, resourcekind 2 and dgregulation 2.

As one can see from �gure 3.3 the graph contains cycles. This suggests
that algorithm 1 can lead to endless loops. However, we can argue that this
algorithm terminates. First we remark that in step 3c we test if the element is
already checked. So, an endless loop can only arise when every time we come
in a certain vertex a data element with a not already checked id is found. Take
for instance the cycle

address → ruleset → rulegroup → address

For a certain address we will get at most one ruleset. For this ruleset we will get
a number of rulegroups. For each rulegroup we will get a number of addresses.
The rulesets of these addresses will contain (perhaps a subset of) the set of
rulegroups already found. In theory the number of rulegroups can become very
large, but in practice we will walk this cycle at most twice. Of course, one
could think of some strange start instances of the algorithm leading to a lot of
dependent elements. When this happens in practice, we will get at most all data
elements that are present in the database and apparently that was the desired
result.

28 3.6. EXAMPLE

3.6 Example

In this section, we will give an example of using the improved model for a
general OR problem. Suppose we have a model with a scheduler with a generic
core. Several products, like products for transport and service planning, are
based on this core. In the model we need structures to store the data we are
working with. These data structures contain information and can refer to other
data structures. In the COMTEC framework this concept is modeled with data
elements.

In the core of the model several data elements are de�ned. In the modules for
the several products other product-speci�c data elements are de�ned. Suppose
we have to model a new OR problem, for instance multi modal planning. Multi
modal planning will introduce transporting goods with ferries. Implementing
this new functionality could result in new standing data, i.e. a new data element.
One could think of the desire to have a contact of an order. This contact speci�es
some properties of the order like the prices, the allowed companies of the ferries
and the contamination with other orders. An order speci�es its contact. So, we
have to extend the data model with an insert of a new data element, namely
contact, and an adjustment to an already existing data element, namely order.

The new functionality for the modeling of the multi modal planning should
be placed in a new module based on the core. With the introduction of a
manager for standard data and improvements to the scheduler presented in
this chapter, it is possible to de�ne the new data element in this new module.
Moreover, from this module we can adjust the data element order with a new
dependency to contact. Note that the core and other products based on this
core are not adapted. From the new module we can manage all changes and
inserts to the data elements model. In �gure 3.4 we have made a visualization
of this process.

3.7 Results

The Data Elements Keeper can be seen as a link between supply and demand. It
is an extra level of indirection between de�nition and use of a data element. On
one hand, data elements register its data/information with the keeper. On the
other hand, anywhere in the code where we want to know something about data
elements we ask the keeper for it. This demand can be of di�erent kinds. One
can request information of a speci�c data element, for instance the information
how to unplan a resource. One also can request information of all data elements,
for instance all names of registered data elements. One can also ask the keeper
for all dependent elements, given a set of data elements.

The modeling of the Data Elements Keeper introduces a number of bene�ts:
• All information of a certain data element is stored at one place (i.e. re-
quirement 1 from section 3.2, consolidation, is met).

• One does not have to worry about ordering or dependencies.

CHAPTER 3. EXTENSIBILITY FOR DATA ELEMENTS 29

Figure 3.4: Visualization of the core with several products built on it, like trans-
port, service planning and multi modal planning. To ensure data elements
(needed to store standing data) are �exible and extensible nicely, a manager of
the data elements is modeled in the core (named Data Elements Keeper (DEK)).
Generic data elements like order are de�ned in the core. A product-speci�c data
element, like contact in the multi modal module, can be de�ned in the product-
speci�c module. It registers itself to the DEK. It can adjust already de�ned data
elements. In this case, contact adds a dependency from order to contact.

30 3.7. RESULTS

• One cannot forget to specify some information for a data element since
the interface requires the necessary information is given.

• One only has to register a data element with the Data Elements Keeper.
The latter will take care of the rest (i.e. requirement 2 from section 3.2,
registration, is met).

• Adding a data element, i.e. registering it, can be done from all over the
code, from core as well as from non-core modules (i.e. requirement 3 from
section 3.2, extension, is met).

• The core of the scheduler has no knowledge about data elements. When it
needs to know something about them, it asks the Data Elements Keeper
(i.e. requirement 4 from section 3.2, encapsulation, is met).

An OR plannings model needs to manage its data and information. In the
COMTEC framework this is modeled with data elements. The scheduler needs
to manage, order and use these data elements in an e�cient way, such that it
is extensible easily for new data elements. Since all requirements of section 3.2
are met, the Data Elements Keeper approaches this desire.

Chapter 4

Extensibility for actions

As stated in chapter 2 the basic idea of an OR plannings model is assigning tasks
to resources, resulting in actions which have to be executed by the resources. In
the same chapter we explained that one of the responsibilities of the scheduler
is to keep the schedule consistent. A change to one action has to be provided
to all its related actions. The propagation mechanism therefore makes use of
dependency networks as described in section 2.5. The thesis goals relating to
actions lead to the following requirements

• It should be possible to add a new action from a non-core module
• It should be possible to adjust the observers network of an action from a
non-core module

Moreover, to make an OR plannings model generic and �exible, a desired feature
is scriptable actions. That is, one should be able to con�gure the behavior of
actions easily to some wishes and needs. These wishes and needs will di�er per
product.

To be able to meet the requirements as described above, we need observers
to be �exible, leading to the following requirements for observers:

• It should be possible to de�ne observers in a non-core module
• It should be possible to override already existing observers in a non-core
module

We will start this chapter with the modeling of checking an action for some
type. This will help us to be more �exible, i.e. to adjust or to add actions from
non-core modules. In section 4.2 we will discuss adding actions. At last we will
talk about adjusting actions in section 4.3.

31

32 4.1. ACTION-TYPES

4.1 Action-types

Actions can be of di�erent types. This can be all sorts of type, like a wait
action, a transport action, a resource action or an action that is automatically
generated by the scheduler. On several places in the scheduler we want to, given
an action, check if it is of some type. For example, while calculating the costs
of an action we have to ignore the costs of wait actions. At this calculation we
check if the type of the action is the wait action type.

There are several ways to model the check if an action is of some type, like a
list of all actions per action-type or an m× n-table for m actions and n action-
types. We have chosen to model the check via a bipartite graph G = (V1∪V2, E),
where V1 is the set of actions, V2 is the set of action-types and

(v1, v2) ∈ E ⇐⇒ action v1 is of type v2

with v1 ∈ V1 and v2 ∈ V2. The implemented graph with all actions and its
action-types for an OTD instance of the model has the following data:

|V1| = 40, |V2| = 24 and |E| = 168 (4.1)
In �gure 4.1, one can see a sub graph of this graph showing only the actions
travel, couple, decouple, stop, drive through, pickup and deliver. It shows for ex-
ample that a travel is an action that is automatically generated by the scheduler
and that couple and decouple are resource actions.

One of the advantages of the choice for a bipartite graph is its extensibility.
One can easily add an action or action-type to the model by adding a node to
V1 or V2 respectively. After that, one can set the dependencies to the existing
nodes by adding the desired edges to the opposite set of nodes. This extensibility
holds in particular for actions in non-core modules. The check mechanism, i.e.
the graph, is modeled in the core, it is basic functionality. Nodes and edges can
be added to the graph from all over the scheduler, from core modules as well as
from non-core modules. A desired property is the following: when one adds an
action-type from a certain non-core module, existing actions, especially actions
from core modules, don't have to be touched. If we had modeled the mechanism
with an m× n-table, we should have explicitly told that there are no relations
with the existing actions and the new action-type.

In graph theory one distinguishes between dense graphs, where #E ∼ (#V)2,
and sparse graphs, where #E = α ×#V with α � #V . From (4.1) it follows
that #V = #(V1 ∪ V2) = 64, so in our case the following holds

α =
#E

#V
=

168
64

= 2, 625 � 64 = #V

This result shows that the graph is sparse. This con�rms our choice for a graph
since dense graphs are very related to tables, in our case a #V1 ×#V2-table.The actual check if an action is of some type now consists of looking up in
the graph if there is an edge from the given v1 ∈ V1 and v2 ∈ V2. Besides this

CHAPTER 4. EXTENSIBILITY FOR ACTIONS 33

travel

atHandled

atAutomaticallyGeneratedAtStart

atAutomatic

atPlanAction

drive_through

atCanMove

stop

atCanCoupleBeforeAction

atSequencecouple

atResource

decouple

pickup

atLoad

atTransport

deliver

atUnload

Figure 4.1: Bipartite graph showing the relations between an action and its types.
The left set of nodes represents the actions and the right set of nodes represents
the action-types (pre�xed with "at")

34 4.1. ACTION-TYPES

Method Input Output
Register action token of action, set of its action-types -
Check action for token of action, token of action-type Boolean

Get actions for type token of action-type set of actions
Table 4.1: Interface of the Action checker.

check mechanism, the graph o�ers other functionality: given an action-type one
can get all actions which are of this type. These are all incoming edges in the
node of the given action-type. Suppose we would like to have all actions that
model waiting time. By asking the bipartite graph given this type we get all
wait actions that are de�ned in the scheduler, in core as well as in non-core
modules.

The object containing this graph is called the Action checker. Its interface
consists mainly of three methods, as described in table 4.1.

4.1.1 Performance

Extensibility is one issue you have to deal with when modeling an OR system
and can be described as the way one can make changes to an already modeled
system. In other words, extensibility deals with reusing solutions from existing
OR models. Another important issue is performance, which deals with how fast
and e�cient the model of the system is or will be. The performance of the model
de�ned above should be good since you only have to check for one edge in the
graph given the two nodes. However, for one particular check the performance
is not good enough. This check is executed so many times that querying the
graph is too slow. For this check we use the following mechanism.

As mentioned, the scheduler has a mapping from a string to a token, i.e.
a unique integer. In the mapping we have created a possibility to reserve a
range of tokens. To do so, we call a method of the holder of this mapping with
the name and the length of the range. Names that should be placed in this
range have to specify the name of the range when registering. Ideally, the range
is de�ned before names are registered with this range. However, we support
if a name is registered with an unde�ned range by de�ning this range with a
default length. Note that adding names to a token range can be done from
outside the core. However, it could be possible that a name is added to a token
range from outside the core while this name is already tokenized in the core.
Then this token would already be tokenized outside the range. Since a name
can only be once in the mapping, it can not be present both outside as well as
inside the range. Therefore, we should remove the name from outside the range.
However, this is not desirable since the scheduler uses a lot of static references
to tokens. To prevent this from happening, we force the scheduler to fail if we
try to tokenize a name in a token range that is already tokenized outside this
range.

An action can be, via its name, represented by a token. For actions of

CHAPTER 4. EXTENSIBILITY FOR ACTIONS 35

the type mentioned above we made a range of tokens, which means that the
tokenized name is in this range. So, the check if an action is of this type
consists of checking if its token is in this range, i.e. if the integer is in the interval.
Checking if an integer is in some interval consists of two integer compares, which
is very fast. Note that adding actions to this token range can be done from all
over the scheduler, from core as well as non-core modules.

This alternative look up for the performance-critical check is faster than the
described look up in the bipartite graph. However, it can't replace the latter,
since that would require the sets of actions belonging to the action-types to
be disjoint: we should de�ne a token range for every action-type, but, since
an action has per de�nition one token, it can only be in one token range. In
our implementation of the token ranges it is not possible for two ranges to
overlap. One of the reasons for this is that in the scheduler we use a lot of static
references to a tokenized name, i.e. at some particular place we ask the token
of a name once and every time we return here we use this token to refer. This
is a performance critical implementation since we don't have to ask the token
to the tokenize mechanism every time. Because of these static references we
cannot change the token for a name once it is tokenized. That is, we cannot
raise a token for a particular name. Therefore we don't support overlapping
token ranges. Suppose we have two overlapping token ranges

R1 = [a, b] and R2 = [c, d]

where 0 < a < c < b < d. These ranges are de�ned and �lled (partly) in the
core. In a non-core module we want to add a token to R1 which should not in
R2. This is not possible except if we permit tokens to change: c and d (and all
other tokens in interval R2) should be raised with one.

4.2 Adding an action

The action is a fundamental element of a scheduler. Modeling actions is a crucial
part of �nding a �tting solution for an OR plannings problem. All actions used
in the scheduler of the COMTEC framework were de�ned and implemented
in the core. A number of actions really belong to the core of the scheduler.
However, a lot of actions, although basic, are speci�c for a product. Actions
like pickup and deliver typically belongs to transport. In service planning we
have other actions like executing tasks on an address.

An action plays various roles, i.e. it needs types to base logic on. Further-
more, an action calculates its own dimensions. The schedule is a consistent
course of actions. One of the responsibilities of the scheduler is maintaining
this course consistent. The main aid for this is observers, which observe other
actions. A large part of de�ning an action is describing its calculation-network.
This network will specify the calculation of the action's dimensions.

To add an action to the scheduler a number of steps should be executed,
among with:

36 4.2. ADDING AN ACTION

• de�ning the calculation-network of observers.
• making a new propagator, which contains the prototype (as described in
section 2.5.1) of the network among other things.

• adding the action to several lists the action belongs to (this is already
centralized by the Action Checker described in section 4.1)

4.2.1 Adding an action from a product-speci�c module

To add an action from a product-speci�c module we have to add all code about
an action to the module where it should be. This will mainly consist of the
dependency network of the observers. To be able to really add an action from
outside the core we have developed a number of concepts to register the action
and to have the desired behavior in the scheduler:

• Register Action method. With this method we register the action as pa-
rameter and we register the action kind. For this operation we only need
to know the tokenized name of the action.

• Propagator Keeper : this object manages all propagators (can be compared
with the Data Elements Keeper from the previous chapter). The Propaga-
tor Keeper mainly links the tokens of an action with the prototype of the
network. When creating an action we look up the prototype for the net-
work via this keeper. With this keeper we can register a propagator from
all over the source code. Di�erent actions can have the same propagator.

• Action Checker (described in section 4.1): one of the e�ects of having
all actions in the core is that exceptions for non-core actions in some
functionality are made in the core (since these actions are all known in
the core). With the introduction of the Action Checker we can solve this
as follows:
� introduce a new action-type
� mark all actions the exception is made for as of this type (note that
you can do this also from outside the core)

� at the place the exception is made we ask all actions of this type.
For instance, when calculating the costs of the wait actions we have to do
something special for service planning wait actions. At the place of this
calculation (in the core) we used to check if the current wait action is this
kind of wait action. Since this wait action belongs to the service planning
module, it is moved with as result it is no longer known in the core. So,
we introduced an action-type for special wait actions, we mark the service
planning wait action as of this type (from the service planning module)
and at the place of the calculation the adjustment for all actions of this
type is made.

CHAPTER 4. EXTENSIBILITY FOR ACTIONS 37

4.2.1.1 Proof of concept
To check if our modeling is correct, we made an existing action proof of concept.
This action handles up- and down-times and is only implemented for service
planning (OSP, see section 1.1 on page 7). In service planning, we model service-
related tasks, executed by one resource, e.g. a plumber. That is, we model the
day-planning of a resource. As proof of concept, the de�nition of this action
handling up- and down-times, named Part and unavailable, is moved to the OSP
module. First of all, we add in this module a method to register this action.
This method does the following:

• it makes a propagator and registers it to the Propagator Keeper.
• as long it was not possible to adjust actions we need a callback mechanism
from the core to the OSP module. Normally, functionality in a module
(e.g. a core module) can be called by a module that is built on it (e.g.
a non-core module), but not the other way around. We are moving Part
and unavailable to the OSP module, but there are some other actions
which use functionality belonging to this action. Since this functionality
is moved and we are not able to adjust the concerned actions from the
OSP module at this point (later on this will be possible as one can read in
the following sections), we need, temporarily, to call functionality de�ned
in the OSP module in the core.

• register sorting context to the Engine �nder. This sorting context is used
to retrieve the context of an action. This context will for instance be used
to make clear the action's placement in the schedule. Every action has to
specify how this context is searched, mostly the parent or grandparent is
used.

• register the action-types to the Action checker.
At several places in the core we made exceptions for this action, see the exam-
ple for the Action checker in section 4.2.1. We replaced this with the Action
checker mechanism. That is, we made a new action-type, we marked Part and
Unavailable as of this type (from the OSP module) and we make the exceptions
for actions of this new type.

In our test application we add actions not de�ned in the core with default
data.
4.2.2 Adding an action from the settings

In the previous section we described how to add an action from a non-core
module. To be able to be more �exible and maintainable, we should not have
the data of the actions in the source code, but outside of it. It is feasible to place
this in the settings-system as XML, so we can model scriptable actions. The
latter enables us to have di�erent networks for an action. Moreover, scriptable
actions are easy to adapt. If a product needs a network of an action, which di�ers

38 4.2. ADDING AN ACTION

from the network de�ned in the core, only the settings have to be updated. The
�rst step is to remove the de�nition of an action from the source code and add
it to the settings-system. This will be the subject of the following subsections.
To �nish this model we discuss adjusting an existing action from the settings-
system in section 4.3.

4.2.2.1 Network parser
The network of observers is no longer de�ned in the source code, but is read from
the settings. The format of the network is XML. As mentioned in section 2.1,
XML implies a kind of tree structure, which enables us to add the predecessors
of an observer as children of the observer in the XML structure. Figure 4.2
shows the XML of the network of observers of a deliver for the dimensions
address and instant, as it was drawn in �gure 2.2 on page 18.

When creating the prototype of an action, this XML is read from the settings.
It will be parsed to a dependency network by the Network parser. First of all,
the XML is parsed to a Document Object Model (DOM), which has the same
structure as the XML. The Network parser �rst handles the children of the
network -tag. That is, for every tag the associated observer is created. This
creation is deferred to theObservers factory, which will be the subject of the next
section. This factory has the knowledge to create the observer after the Network
parser has o�ered the names of the observer and its predecessors. The factory
returns the created observer to the Network parser. The latter hooks this one
up in the network of the action. After the network is built up, i.e. all observer-
tags are converted to created observers, the Network parser will handle the
table-tag. Under this tag, every dimension has to specify how its values should
be calculated in this action. That is, the dimension designates an observer
(called the StartOwner in �gure 4.2), which subject should be asked to retrieve
the start-value of the dimension. Similarly, if the dimension is not calculated
by this action, it should designates an observer (called the FinishOwner) to
retrieve the �nish-value. Otherwise, the dimension should specify the observer
(called the FinishProducer) who calculates its �nish-value.

4.2.2.2 Observers factory
To be able to read the network from the settings instead of de�ning it in the
code, we have to create the observers given a name. That is, the Network
parser reads the name of the observer. With just this name we have to create
the observer. We have modeled this with the Observers factory, based on the
factory pattern (see section 2.2.1).

As mentioned in section 2.5.1 observers are required to implement some
methods. One of these methods is the RegisterPredecessors method. When
hooking the created observer up in the network, this method is called to register
which observers are the predecessors of the just created one. The input of this
method di�ers for several observers since the number of predecessors di�ers.

The Network parser o�ers the name of the observer to create to the factory.

CHAPTER 4. EXTENSIBILITY FOR ACTIONS 39

Figure 4.2: Example of the XML of a network. Children of the network-tag are
the observers. The argument-tags under an observer de�ne its predecessors. As
last, the table of dimensions is de�ned, that is, the information how to retrieve
the start- and �nish-value of the dimension is given.

40 4.2. ADDING AN ACTION

Figure 4.3: Flow from XML to dependency network. When the prototype of the
network of an action has to be created, the Network parser reads the XML of
the network from the settings and parses it to a Document Object Model. The
Observers factory is asked to create the observers.

The latter tries to match this name and the number of predecessors (also o�ered
by the parser) to one of the registered observers. The observers which are going
to be created in a network that is read from the settings-system should register
itself to the factory with its name and the following two methods, which are
required to create the observer:

• the constructor : to really create the object, the constructor of the class of
the observer should be called.

• the RegisterPredecessors method: to set the right dependencies in the
dependency network the predecessors of the observer should be registered.

With these methods the factory is enabled to create the observer asked from the
Network parser. In �gure 4.3 one can see the cooperation between the Network
parser and the Observers factory.
4.2.2.3 Registering the predecessors
As stated, every observer should be registered with the Observers factory. With
this registration, the observer gives methods to create itself, including the Reg-
isterPredecessors method. Every observer has this method with the preceding
observers as arguments, but since the number of predecessors di�ers per ob-
server, the number of arguments di�ers per observer. This is a problem if you
want a general mapping from an observer (represented by its name) to the
method to register the predecessors. This mapping is needed in the Observers

CHAPTER 4. EXTENSIBILITY FOR ACTIONS 41

factory for the requests of the Network parser to create an observer given its
name and the predecessors. So, the Observers factory has to deal with di�erent
interfaces of the RegisterPredecessors method.

We show the observer class CFirstOf as example. The interface of this classcontains its constructor and the RegisterPredecessors method:
class CFirstOf : public ABCSearchAndObserve

{

public:

CFirstOf();

RegisterPredecessors(CObserve& i rContext, CObserve& i rSecond);

(...)

};

When we are going to parse the XML from the settings representing the struc-
ture of the network of observers, we have to create an object by calling its con-
structor and the RegisterPredecessors method of the object with the correct ar-
guments. For instance, when we parse a tag named CFirstOf, we have to call the
constructor of the class above after which we call the method CFirstOf::RegisterPredecessors

with the observers described in the two children of the tag as arguments. To
implement this e�ciently and nicely we have to deal some problems. In what
follows, we will discuss these problems and we will show some C++ implemen-
tations of the solutions.

Member function adapters First we will discuss member function
adapters, see also page 520 of [Stroustrup]. A member function is, as the nameimplies, a member of an object. Therefore, the compiler has to know the objectthis method is called on. In this situation we have the RegisterPredecessorsmethod of an observer which has to be called on a speci�c observer. However,we would like to design a general framework to call this method. Therefore weneed delayed execution, i.e. we need to store the function call without theobject. At compile time we don't know on which object this method is called.While parsing the network, i.e. at run time, we know on which observer, i.e.on which object, the method should be called. [Stroustrup] treats thisproblem. A solution is to make a templated class that contains a pointer tothe method to call, i.e. the RegisterPredecessors method, as follows:
template<class TObject, typename TMethod>

class CRegisterPredecessors

{

public:

CRegisterPredecessors(TMethod i pfnMethod)

: m pfnMethod(i pfnMethod)

{

}

void operator()(TObject∗ i pBaseClass, i arguments)

{

42 4.2. ADDING AN ACTION

(i pBaseClass->∗m pfnMethod)(i arguments);

}

protected:

TMethod m pfnMethod;

};

where i_arguments is a vector of observers (the predecessors). With thefollowing function we can access this method:
template<class TObject, typename TMethod>

CRegisterPredecessors∗ Get(TMethod i pfnMethod)

{

return new CRegisterPredecessors<TObject,TMethod>(i pfnMethod);

}

To really call the RegisterPredecessors method (while parsing), we execute thefollowing, where pBaseClass is the cast to TObserver:
CRegisterPredecessors∗ pfnRegisterPredecessors

= Get<TObserver>(&TObserver::RegisterPredecessors);

(∗pfnRegisterPredecessors)(pBaseClass, arguments);

Partial template specialization Secondly we discuss partial template spe-
cialization, see also page 26 of [Alexanderscu]. Partial template specialization
enables to specialize a class template for subsets of that template's possible
instantiations set. In our CRegisterPredecessors class we extend the template
parameters with an integer, indicating the number of arguments of the Regis-
ter Predecessor method. For every number of arguments we support we have
implemented a specialization of this class, with the associated i arguments .

Next, we will show the C++ implementation of the modeling of the
CRegisterPredecessors classes. We would like to have one mapping from thename of the observer to its CRegisterPredecessors class. However, since thetemplate arguments will di�er per observer, this mapping has to consist of aname to a class without template arguments. Therefore we introduced thefollowing class:
class ABCRegisterPredecessors

{

public:

ABCRegisterPredecessors() {}

virtual size t GetNofArguments() = 0;

virtual void operator()(CObserve∗ i pBaseClass, i arguments) = 0;

};

The mapping now maps from the name of the observer to a pointer to thisabstract base class. All CRegisterPredecessors classes will be derived from this

CHAPTER 4. EXTENSIBILITY FOR ACTIONS 43

one. Since these will have some code in common (e.g. a member functionpointer) we introduced a helper class from which all CRegisterPredecessorsclasses will be derived:
template<class TObserve, typename TMethod, int TNofArguments>

class ABCHelper : public ABCRegisterPredecessors

{

public:

ABCHelper(TMethod i pfnMethod)

: m pfnMethod(i pfnMethod)

{

}

size t GetNofArguments()

{

return TNofArguments;

}

void operator()(CObserve∗ i pBaseClass, i arguments)

{

DoRegisterPredecessors(safe cast<TObserve>, i arguments);

}

virtual void DoRegisterPredecessors(TObserve∗ i pBaseClass,

i arguments) = 0;

protected:

TMethod m pfnMethod;

};

The CRegisterPredecessors class now only has to implement the
DoRegisterPredecessors method. The class without any templatespecialization looks as follows:
template<class TObserve, typename TMethod, int TNofArguments>

class CRegisterPredecessors

: public ABCHelper<TObserve,TMethod,TNofArguments>

{

public:

CRegisterPredecessors(TMethod i pfnMethod)

: ABCHelper<TObserve,TMethod,TNofArguments>(i pfnMethod)

{

}

void DoRegisterPredecessors(TObserve∗ i arguments);

};

For every number of arguments we support, we have implemented a specializa-
tion of this class. We show the specialization for two arguments:

44 4.2. ADDING AN ACTION

template<class TObserve, typename TMethod>

class CRegisterPredecessors<TObserve,TMethod,2>

: public ABCHelper<TObserve,TMethod,2>

{

public:

CRegisterPredecessors(TMethod i pfnMethod)

: ABCHelper<TObserve,TMethod,2>(i pfnMethod)

{

}

void DoRegisterPredecessors(TObserve∗ i arguments)

{

(i pBaseClass->∗m pfnMethod)(i arguments[0], i arguments[1]);

}

};

Note that the CRegisterPredecessors class without specialization has no imple-
mented body for the DoRegisterPredecessors method. This way, we ensure we
never use a number of arguments we do not support: if we use such a number,
we will fall back on this class, since there is no specialization for this number.
However, since there is no body for the DoRegisterPredecessors method, we will
get a linker error while compiling the code.

Meta programming At last meta programming is the subject of our discus-
sion. Meta programming is writing code that does (a part of) its job during
compile time that otherwise is done during run time. We used this in combina-
tion with templates (see [Alexanderscu] and [Abrahams,Gurtovoy]). At compile
time we have to know which of the implementations, i.e. specializations, of
the CRegisterPredecessors class we are going to use for a speci�c observer. So,
we should know the number of arguments the RegisterPredecessors method will
accept. However, computing a number is typically done at run time, which is
obviously too late.

The technique of template meta programming enables us to detect thenumber of arguments at compile time. For each number of arguments wesupport we de�ned a function f with a number of input parameterscorresponding to the number of arguments. Here we show these f functions for0, 1 and 2 arguments:
template < typename int TSize >

struct SSized

{

char padding[TSize];

};

template< class C >

SSized<1> f(void (C::∗g)());

CHAPTER 4. EXTENSIBILITY FOR ACTIONS 45

template< class C >

SSized<2> f(void (C::∗g)(Engine::CObserve&));

template< class C >

SSized<3> f(void (C::∗g)(Engine::CObserve&, Engine::CObserve&));

Every f function returns an object (i.e. a struct) containing an array of char's.
For each function this array will be of a di�erent size, corresponding to the
number of input parameters. To compute the desired integer, we de�ned the
macro GETNOFARGUMENTS(TObserver) as follows:
(sizeof(f(&TObserver::RegisterPredecessors)) - 1)

where the argument TObserver is the observer class. We call f() with the Reg-
isterPredecessors function of the observer as input. This will �t in exactly one
of the f functions we have de�ned. With the sizeof operator we can compute
the size of the array that would be returned. Note that we couldn't simply
return an integer, because that would happen at run time. The sizeof operator
is computed at compile time and returns the size of the argument passed to it
(in C++, the size of a char is 1 byte). One of the advantages of this technique
is that the f functions don't need a body because they are not really called.
The compiler looks only what would be returned if they are called. The output
of the sizeof operator is given as template argument to the classes described
above.
Result With the implementation described above, it is very easy to registeran observer to the Observers factory : one only has to specify the class. Thatis, one only has to add the following line:
ObserversFactory::RegisterObserver<CFirstOf>();

The implementation of the ObserversFactory::RegisterObserver method is asfollows:
template< class TObserver >

void

ObserversFactory::RegisterObserver()

{

// get the name of the observer as string, e.g. "CFirstOf"

string sName = ExtractName(typeid(TObserver));

// get a pointer to the CRegisterPredecessors class

ABCRegisterPredecessors∗ pRegPred = Get< GETNOFARGUMENTS(TObserver),

TObserver>(&TObserver::RegisterPredecessors);

// add to the mappings

CObserversFactory::RegisterDataForObserver(sName,

CallConstructor<TObserver>, pRegPred);

46 4.2. ADDING AN ACTION

}

The Get method is a method like the Get method described in the paragraph
about Member function adapters. CallConstructor is a function pointer to the
constructor of the observer.
4.2.2.4 Proof of concept
In section 4.2.1.1 we explained the case we used to test and proof the concepts of
our model. Here we will discuss some issues we had to handle when moving the
de�nition of Part and unavailable (P&U) to the settings-system. We removed
the method which registered this action from the OSP module. We still need
the registration to the callback mechanism as described in section 4.2.1.1, in the
next section we will eliminate this �reversed dependency�.

The method that takes care of registering the actions from the settings looks
for active actions in the settings. Therefore we add P&U as active in the settings.
Note that this is only done in the OSP-speci�c settings. In the default settings
this action is inactive and therefore it is not present in the model by default.
In our model we decoupled the connection between an action and its network.
That is, an action has a reference to a network, it does not contain or own a
network. This was needed since part and unavailable slightly di�er from each
other, but are the �same� action. That is, they have the same network, but
for instance the action-types for part don't exactly match the action-types for
unavailable. Beside the Boolean activity-setting we added the following settings
for P&U:

• Action-types: a comma separated list of the types of the action. For
instance, for unavailable the value of this setting is atHandled, atAu-
tomaticallyGeneratedAtStart, atAutomatic, atSkipWhenSaving, atPlanAc-
tion, atProvidesEmptyActionKindSpec, atNoCosts.

• Network: a reference to the network of observers. For both part and
unavailable the value of this setting is NetworkPartAndUnavailable.

• Sorting-context: the sorting-context of the action. For unavailable the
value of this settings is UseParent.

• Token: the name of the action as used in the source code. For instance
unavailable.

Beside these settings, the XML of the network, i.e. NetworkPartAndUnavailable,
is added to the settings. This XML has the same structure as the XML in �gure
4.2, but deals with more observers and more dimensions.

The scheduler does the following with the active actions: it registers the
sorting-context to the Engine Finder and the action-types to theAction Checker.
Also, a propagator is created (if not already present) and registered to the Prop-
agator Keeper. This propagator cannot refer anymore to the de�nition of the
network since this is no longer in the source code. Therefore we store the name

CHAPTER 4. EXTENSIBILITY FOR ACTIONS 47

of the network at the propagator. When the propagator is going to create its
prototype, the network is parsed from the settings as described earlier.

When de�ning the settings in the settings-system we cannot control if all
values are �lled in correctly. Moreover, we cannot control if the network in
XML has valid data. In the situation of de�ning this in the source code, this
risk is not present since the compiler complains if something is not correct. For
that reason, we check the settings while parsing them (so, at run-time, not at
compile-time). For instance, we check if all observers that should be created
are real observers, i.e. registered with the Observers factory. If we detect an
inconsistency in the XML or in another setting, we log an error and we throw
an exception, i.e. we force the program to fail.

4.3 Adjusting an action

The functionality to add an action from outside the core can be used to make
it possible to adjust observers in an already existing dependency network of
an action. That is, with this functionality one can add, remove and replace
observers. Note that replacing an observer consists of adding the new observer
after removing the observer to be replaced. Adding an observer can be done as
described in section 4.2.2.

With replacing and adding observers to a network, we are able to alter the
behavior of an action. This possibility is needed to solve our problem with the
callback mechanism as introduced in section 4.2.1.1.

Replacing an observer will mostly be overriding the observer, i.e. the be-
havior of an observer as de�ned in the core should be slightly adjusted for the
speci�c product. However, most of the behavior will be the same. In other
words, we override an observer with a shim around that observer. A shim is de-
rived from the original observer and extends one of its methods. This extension
will consist of:

• calling the method of the original observer (this will produce some data,
i.e. an object or a value)

• apply some speci�c functionality to this retrieved data
• return the data

We will give a C++ example: the class COriginalObserver contains a method
called DoSearch. This method returns a pointer to some class named CParameter.
A shim around this observer will be a class derived from COriginalObserver (so
the shim contains all functionality of the original observer).
class COriginalObserver class CShim : public COriginalObserver

{ {

CParameter∗ DoSearch(); CParameter∗ DoSearch();

... ...

48 4.3. ADJUSTING AN ACTION

Figure 4.4: Example of the XML to adjust a dependency network: the
observer responsible for the �nish instant of the travel action is over-
ridden by an OSP-speci�c observer, named COSPFinishInstant. The
original observer is either Core::Instant::CAddDurationToFinishInstant or
Core::CCloneInstantAndHanlderFixation (depending on an setting). The lat-
ter should not be overridden (made clearly by override=�False�).

}; };

The DoSearch method of the shim will have the following implementation:
CParameter∗
CShim::DoSearch()

{

CParameter∗ pResult = COriginalObserver::DoSearch();

// adjust pResult

return pResult;

}

To make it possible to adjust an action we have adapted the Network parser.
The XML o�ered to this parser will slightly di�er from the XML discussed in the
previous sections. We should specify if we want to replace or add an observer.
If we want to replace an observer by shimming it, we have to tell the original
observer. It is possible that this original one is dependent on some setting, e.g.
if some setting is true the original one di�ers from the observer that would be
used when the setting was false. The scheduler detects which observer is used
originally. It could even be possible that only one of the alternatives of the
original observer should be overridden. If one of the original observers should
not be overridden, we mark this in the XML. Figure 4.4 shows an example.

As said, a propagator contains a reference to the prototype of the network,
in other words, the propagator manages the prototype. Therefore, we added a
possibility for propagators to remove an observer from a network. For now we
only support removing of an observer if it is replaced by a new one. All observers
are present in the network because of some reason, for instance to calculate a

CHAPTER 4. EXTENSIBILITY FOR ACTIONS 49

dimension. It is not trivial what should happen to this dimension when the
observer is removed. Maybe it can be moved to another observer, but it is not
guaranteed that this is possible. However, if we do so, the adjusted network will
di�er a lot from the original one. Purpose to make it possible to adjust actions
is to add or change some functionality of an observer, not to change the whole
calculation behavior. Therefore, only supporting to remove an observer if it is
going to be replaced su�ces and is not a real obstruction.

When an observer is removed from the network, references to this observer
have to be adapted. The replacing observer will be added to the network as a
new observer and will therefore get another index than the old one.

In section 2.5.1 we mentioned that observers in a network are sorted topo-
logically. After adding or replacing an observer this topology still has to hold.
Therefore, we ensure the changes to a network are registered before the proto-
type is created. This registration will inform the propagator of the changes to
make. The propagator keeps this information and processes it when creating
the prototype.

When the engine is calculating and a dimension of an action changes, other
actions will be noti�ed as a result of the observer mechanism. For instance,
when the �nish instant of a travel changes, its parent, e.g. a stop, will be
noti�ed as well as the next brother action, e.g. a couple. One of the problems
encountered in our modeling was that overriding an observer led to endless
loops. In these cases we had overridden the DoSearch method. As mentioned
in section 2.5.1, the DoSearch method is responsible for setting the value of the
calculated dimension. So, both the original observer as well as the shim set the
dimension. When the calculated value of the shim di�ers from the original one,
other actions, e.g. the parent, are noti�ed. Most actions, like the travel, own
an observer with the parent as subject. So, the travel will again calculate its
dimensions when the shim calculated another value than the original observer.
Normally nothing will be changed, but the shim will �rst call the DoSearch
method of the original observer. The latter will calculate a di�erent value than
the last value calculated by the shim. Therefore, the other actions are noti�ed.
So, the �nish-value of the travel will constantly be modi�ed from the value
calculated by the shim to the value calculated by the original one and vice
versa.

To prevent this from happening, we never should set a dimension in a shim.
We should only adjust the calculation. The original observer should be the
only one who is responsible for setting the value of the dimension. With this
restriction we ensure the scheduler will not loop in�nitely. That is, adjusting the
networks on this way will not lead to endless loops in the scheduler. Note that
it is guaranteed this way that if the scheduler didn't loop in�nitely without the
possibility to adjust actions, then it will not loop in�nitely with this possibility
as presented above.

50 4.3. ADJUSTING AN ACTION

4.3.1 Proof of concept

In sections 4.2.1.1 and 4.2.2.4 we discussed our proof of concept. Here we will �n-
ish this. We moved all observer-functionality for Part and unavailable (P&U)
to the OSP module. That is, we removed the observer CDivideIntoPartsAn-
dAddDuration from the networks for travel and drive through. In the core these
are replaced by CAddDurationToFinishInstant (for travel) and CAddFlexible-
DurationToFinishInstant (for drive through). The �rst one has the following
interface:
class CAddDurationToFinishInstant

{

void RegisterPredecessors(...);

CParameter∗ DoSearch();

virtual CInstant CalculateFinishInstant(...);

...

};

The DoSearch method is implemented as follows:
CParameter∗
CAddDurationToFinishInstant::DoSearch()

{

...

CInstant tFinish = CalculateFinishInstant(...);

SetDimension(tFinish);

...

}

From the OSP module we override the observers CAddDurationToFinishInstant
and CAddFlexibleDurationToFinishInstant (which is a derived class of CAddDu-
rationToFinishInstant) with a P&U speci�c shim. The �rst one, we override
with COSPFinishInstant<CAddDurationToFinishInstant>. This shim looks like:
template < class T >

class COSPFinishInstant : public T

{

CInstant CalculateFinishInstant(...);

};

The implementation of the overridden CalculateFinishInstant �rst calls the orig-
inal CalculateFinishInstant method to obtain the original value. This value is
handled with some P&U speci�c functionality.
template < class T >

CInstant

COSPFinishInstant::CalculateFinishInstant(...)

{

CHAPTER 4. EXTENSIBILITY FOR ACTIONS 51

CInstant tFinish = T::CalculateFinishInstant(...);

// adjust tFinish

return tFinish;

};

With this modeling, the observer is replaced with a shim that adjusts the calcula-
tion of the dimension the observer calculates the �nish-value for. When the new
observer is going to calculate, the DoSearch method of CAddDurationToFin-
ishInstant is called which will call the CalculateFinishInstant method. Since
the latter is a virtual method, the OSP variant of this method will be called.
After the adjustment of the �nish-value, the observer does the same as the orig-
inal one. Note that the dimension is only set in the original observer. This
ensures us we will not loop in�nitely.

Beside this, we override all wait observers from the OSP module with a P&U
speci�c shim. This one acts analogous to the just discussed shim.

At this point we are able to remove the call back mechanism, since all ac-
tions and other objects in the core don't need to use P&U-speci�c functionality
anymore.

4.4 Example

In this section, we will give an example of using the improved model for a general
OR problem, just like we did in section 3.6 for data elements. Suppose again we
have a model with a scheduler with a generic core. Several products are based
on this core. In the scheduler the activities to execute the tasks are de�ned.
That is, in the core as well as in non-core modules the (calculation-)behavior
of the activities is de�ned. Suppose we have to model a new OR problem, for
instance planning transport of concrete. Implementing this new functionality
could result in new kinds of activities. One could think of the activity mix
(since concrete is composed of cement, water and other materials, mixing is
essential for the production of concrete). Mixing concrete could also be done
while traveling, so the generic activity travel should be adjusted.

The new functionality for the modeling of the transport of concrete should
be placed in a new module based on the core. With the extensions and im-
provements to the scheduler presented in this chapter, it is possible to add the
activity mix and adjust the activity travel in this new module. This has become
possible since we introduced scriptable actions to the scheduler. In �gure 4.5
we have made a visualization of this process.

4.5 Results

In this chapter we dealt with the modeling of a fundamental element of an OR
plannings model. This model needs to manage the activities of the resources to
complete the asked tasks. We focused on the possibility to model these activities
generic and �exible. That means

52 4.5. RESULTS

Figure 4.5: Visualization of the core with several products built on it, like trans-
port, service planning and transporting of concrete. The latter needs a new
activity, namely mix. Therefore, this activity is de�ned in the product-speci�c
module. The biggest part of the de�nition of an activity is its calculation be-
havior, as described in its network. To make sure activities are �exible and
extensible nicely, these networks should be scriptable. One way to do so, is
de�ning them in a settings system outside the source code. For the new func-
tionality, the activity travel should be adjusted. But since the network of travel
is scriptable we can make this adjustment in the settings system and there is no
need to adjust the core.

CHAPTER 4. EXTENSIBILITY FOR ACTIONS 53

1. some activities are speci�c for some products. These are not de�ned in
the core, but can be added to the scheduler from non-core modules.

2. some activities are generic, but di�erent products could have to model
these activities di�erently. These are de�ned in the core since they are
generic. The implementation of them can be adjusted from non-core mod-
ules.

Translating this to the OR plannings model we work with, i.e. the scheduler of
the COMTEC framework, it means that

1. actions can be added to the scheduler from non-core, i.e. product-speci�c,
modules.

2. observers in an already existing network (i.e. de�ned in the core) can
be replaced by shims, so we can adjust the calculation behavior of an
observer. Moreover, new observers can be added to a network.

As already mentioned, one of the important responsibilities of an action is to
calculate dimensions. Although the modeling of networks and observers is �ex-
ible and extensible at this moment, it is not possible to de�ne dimensions from
outside the core. Improving this will be the subject of the next chapter.

54 4.5. RESULTS

Chapter 5

Extensibility for dimensions

In the previous chapter we discussed the extensibility for a fundamental element
of an OR plannings model, namely actions. One of the important responsibilities
of an action is calculating dimensions. We handled how to adjust a dependency
network (a large component of de�ning an action). However, to really be �exible
it should be possible to de�ne a dimension in a non-core module. This will be
the subject of this chapter.

5.1 What is a dimension

In an OR plannings model there are time-dependent variables, i.e. variables
that will change when the model is running. For instance, the loaded cargo of
a trailer will change throughout the time. These variables belong to activities
that are needed to model the tasks executed by resources. In the COMTEC
framework these activities are modeled as actions. In section 2.4.1 we introduced
dimensions as variables of actions. A dimension is a fundamental element of
the scheduler.

Actions and dimensions are much related to each other. Dimensions are
the variables of an action and one of the main responsibilities of an action is
calculating its dimensions. To be more �exible and to obtain the extensibility
for dimensions, we have to loosen this strong connection between actions and
dimensions.

Every action has to specify how it deals with every dimension. This is needed
since we want to trace the value of a dimension throughout the scheduler. For
instance, during a trip we want to know at every action which resources are
involved.

In the old situation, every action de�ned how it deals with every dimension.
Moreover, to retrieve the value of a dimension, �nd methods have to be added
to the Engine Finder. To improve the extensibility for dimensions we state the
following requirements:

55

56 5.2. DIMENSIONS KEEPER

• it should be possible to add a dimension from outside the core, i.e. to
de�ne a dimension in a non-core module

• adding a non-core dimension to all networks should be generic

5.2 Dimensions Keeper

At several places in (the core of) the scheduler we want to know the values of
dimensions of an action. To approach this demand and other analogous demands
we developed a Dimensions Keeper. This keeper manages all dimensions. The
interface of the keeper contains methods like:

• RegisterDimension with a new dimension as input. Dimensions are reg-
istered to the keeper with this method which is called in the module the
dimension is de�ned in. This method also adds the dimension to all ac-
tions, that is, to all networks.

• GetDimensionForDescription with a description as input. A dimension
has a describing name, e.g. OrdersOnBoard, and a code, e.g. DOOB.

• GetStartValueOfDimension with an action and a dimension as input. This
method will return the start value of the dimension as used in the incoming
action.

As we stated earlier, a dimension has to specify how to retrieve its start value,
i.e. it has to designate an observer who is the Start Owner of the dimension.
The subject of this observer is the action that is queried for the desired value.
Analogous, a dimension has to specify how to retrieve its �nish value. That
is, it either has to designate an observer whose subject should be asked for the
�nish value, or it has to designate an observer who calculates this value. To
decouple the strong relation between actions and dimensions we need a default
assignment of a dimension to observers of an action. This default has to be
de�ned by every action.

5.2.1 Logical predecessor

By default, for a new dimension we designate the observer watching the logical
predecessor as Start- and Finish Owner of the dimension. That is, the start- as
well as the �nish-value of the dimension is by default retrieved from the action
that is, in structure, the predecessor of the action we are adding the dimension
to. To process this generically, we require every action to de�ne its logical
predecessor. If for a network one of the values of the dimension is retrieved
otherwise, for instance because one of the observers calculates the �nish-value,
one has to specify this. Later on, we will show an example.

CHAPTER 5. EXTENSIBILITY FOR DIMENSIONS 57

5.2.2 The value of a dimension

Retrieving a value of a dimension in general is not trivial since the data-structure
is di�erent for several dimensions. For instance, some dimensions store a string,
others a map or an instant. The methods to retrieve these values, i.e. the
�getters� of these dimensions, should be placed on one mapping. Moreover, the
GetStartValueOfDimension method of the Dimensions keeper should be able
to return all these kinds of data-structures. Since all data-structures can be
converted to a string, we return all values as a string. A converted instant for
example will look like �2007-12-02T17:45:00�, i.e. a quarter to six at December
the second in 2007.

5.2.3 Engine Finder

In section 4.2.1.1 we described the Engine �nder. This mechanism will give
the value of a dimension for a given action. Two methods have to be added to
this mechanism for a new dimension. For a product-speci�c dimension, these
methods can be de�ned in a non-core module and will only be used outside the
core (otherwise the dimension should not be de�ned outside the core).

5.2.4 Delay

As well as the changes to action networks, adding a dimension to a network
is delayed. That is, when a new dimension is registered, the networks are not
yet created. Therefore, the new dimension is stored in the propagator of each
action. When, later on, the prototype of an action is created, the new dimension
is processed. After that, the network is sorted topologically to ensure the already
existing as well as the new dimensions are computed in an e�cient way.

5.2.5 Register a dimension

To meet the requirement that adding a dimension to all networks should be
generic, we introduced a method to register a dimension. This method will
add the dimension to all actions. To be more precisely, this method will add
the dimension to all the propagators known by the Propagator keeper. These
propagators will add the dimension to the networks as described above.

It is guaranteed that all propagators are known by the Propagator keeper
when a dimension is registered. The registration of the propagators is partly
programmed in the source code of the core and partly read from the settings.
Reading the settings to register propagators goes as follows: in the core we
detect and register all active actions in the settings. So, the registration of the
propagators is done while loading the core. The registration of a new dimension
is also read from the settings. However, these settings are read when the module
with this dimension is loaded. Since product-speci�c modules are loaded after
the core is loaded, it is guaranteed that all propagators are known whenever the
�rst dimension is registered.

58 5.3. PROOF OF CONCEPT

The method to register a new dimension also takes care of the exceptions on
the default addition to a network. That is, the method reads some XML from
the settings system. This XML de�nes the observers to obtain the start- and
�nish-values di�erent from the default observers. An example of this XML will
be given in the next section where we will discuss a proof of concept.

Beside this, the register method also registers the dimension to the Dimen-
sions keeper.

5.3 Proof of concept

Analogous to the extensibility for actions, we will discuss one case we worked
out in our modeling for adding dimensions from outside the core. One of the
products built on the core of the scheduler models the transport of containers.
For this instance of the scheduler, we need the dimension Load state, which is
not used in the other products. Load state stores the quantity the container is
�lled with. Values of this dimension can be empty, loaded, full and unchanged.
To prove the concept we described above, we moved the dimension Load state
to the Container module.

In the core, this dimension was de�ned and it was added to all actions. First,
we removed this dimension from all actions, since it will be added to all actions
from the Container module. Moreover, we removed two observers calculating
the �nish-value of Load state (this was the only dimension these observers con-
cerned). The de�nition of these observers is moved to the Container module.
From this module we add these observers to the associated networks with the
functionality described in section 4.2.2.

From the Container module we also added Load state to all actions. Figure
5.1 shows how the exceptions are made for actions not handling the default
addition.

We also had to add the dimension and the methods to get the start- and
�nish-value to our test-application.

5.3.1 Compare old and new situation

Proving the concept also consists of comparing the old and the new situation.
That is, we have to ensure the observer networks with our improvements are
similar to the networks in the old situation when the Container module is
loaded. If this module is not loaded the networks will de�nitely be changed
since the dimension Load state and the two associated observers are not present
in the new situation. If the module is loaded, the observer networks should be
similar. To test this, we compared the visualization of these networks like the one
in �gure 2.2 on page 18. Remark that these networks are sorted topologically.
Since a directed acyclic graph has one or more topological sorts, the topological
sorting of an observer network is not unique. Therefore, the networks in the old
and new situation could slightly di�er from each other. However, we have to

CHAPTER 5. EXTENSIBILITY FOR DIMENSIONS 59

Figure 5.1: XML used to specify the observers for the start- and �nish-value
of Load state for the networks that will di�er from the default extension for
this dimension. For instance, the network of the stop action will retrieve the
start-value of this dimension by the default way, namely the observer named
pLogicPredecessor. The �nish-value will be retrieved by the observer named
pLastChildOrLogicPredecessor.

ensure these networks are isomorphic1.
Ensuring this isomorphism is enough: the visualization shows the observers,

the predecessors of each observer and the dimensions of each observer. In other
words, this visualization tells all information we considered with the creating of
networks. For all actions, an isomorphism from the network in the old situation
to the network in the new situation is found.

5.4 Example

In this section, we will give an example of using the improved model for a gen-
eral OR problem, just like we did in section 3.6 for data elements and in section
4.4 for actions. Suppose again we have a model with a scheduler with a generic
core. Several products are based on this core. In the scheduler the variables
of an action are de�ned. That is, in the core as well as in non-core modules
the dimensions, i.e. variables that are time-dependent, are de�ned. Suppose
we have to model a new OR problem, for instance transporting liquids. Imple-
menting this new functionality could result in new dimensions. A reasonable
new dimension could be the temperature of the liquid.

The new functionality for the modeling of transporting liquids should be
done in a new module based on the core. With the introduction of scriptable
dimensions and improvements to the scheduler presented in this chapter, it is
possible to add this dimension in this new module. That is, other programs
based on the core are not adapted with this new dimension. In �gure 5.2 we
have made a visualization of this process.

1Two graphs G1 = (V1, E1) and G2 = (V2, E2) are called isomorphic if there is a bijection
f between V1 and V2 with the property that x ∈ V1 and y ∈ V1 are adjacent if and only if
f(x) and f(y) are adjacent in G2.

60 5.4. EXAMPLE

Figure 5.2: Visualization of the core with several products built on it, like trans-
port, liquid and service planning. The new dimension temperature is added
from the new module. This new dimension should be added to all activities de-
�ned in the scheduler. Each activity has to provide the default way to add a
dimension. So, temperature has only to specify the non-default additions. The
latter is done using the settings system.

CHAPTER 5. EXTENSIBILITY FOR DIMENSIONS 61

5.5 Results

As stated in section 5.1 one way to improve the extensibility of a dimension is
to decouple actions and dimensions. To achieve this, an action has to de�ne a
default behavior of a dimension. This way, actions and dimensions don't have to
be aware of each other: the behavior of a dimension doesn't have to be de�ned
in the action. When a dimension is added to the constructed framework of
actions, it will act as the default behavior de�ned by every action. When the
dimension needs a special behavior for some action, the dimension has to make
this exception. Mostly such an exception will be coupled with a new observer
containing the calculation of the �nish value of the dimension.

Combining the results of the previous chapter (as stated in section 4.5)
and the results of this chapter, leads to a �exible modeling of actions, which
is extensible nicely. That is, de�ned actions can be adapted to obtain the
functionality as desired in a speci�c product.

62 5.5. RESULTS

Chapter 6

Conclusions

In this chapter we will conclude this thesis by discussing our �ndings and further
developments.

6.1 Results

In this thesis we discussed setting up an OR plannings model. We focused on
the desire to get a �exible and generic model that is extensible easily. That
is, the model should consist of a generic core. This core contains plannings
functionality and modeling of plannings issues. It should be possible to use the
model to build products for all kinds of planning. Such a product should be
built with several modules on top of the core.

In this thesis we handled some fundamental issues one encounters setting
up a plannings model. First of all, in chapter 3, we discussed the modeling of
managing the data inside the model. For instance, a resource contains data as
an address and its availability. The latter is stored in a calendar, which can
also be used for opening times of a depot. So, data can refer to other data.
We introduced an extra level between de�ning these kinds of data and using it,
leading to �exibility.

Another issue we handled models the basic idea of planning, namely the
activities, i.e. actions, of the resources to complete the planning-tasks. In chap-
ters 4 and 5 we discussed that an OR plannings model needs the possibility to
adjust the behavior of these actions. Moreover, product-speci�c actions should
not be part of the core. To really be �exible, it should be possible to adapt all
properties of an action. Therefore we decoupled the de�nition of the variables
of an action, i.e. dimensions, from the de�nition of the action.

With the improvements presented in this thesis, modeling new OR prob-
lems with the COMTEC framework has become easier. That is, building new
products on the core of the scheduler has been improved: we are able to specify
most of the functionality in a new, product-speci�c, module. Moreover, already
existing products in COMTEC could be decoupled, leading to a smaller, more

63

64 6.2. FUTURE WORK

generic core.
Our improvements greatly enhance the generality and �exibility of ORTEC's

advanced planning systems:
• new products can freely add data
• new activities and associated attributes can be de�ned when convenient

6.2 Future work

Here we will describe some further developments.
6.2.1 Data elements

In section 3.5 we discussed an algorithm to detect all dependent data elements
given a set of data elements. The order this graph is passed is random. That
is, we start in the graph with the �rst element of the given set. One place we
use this detection of dependent elements is at the removal of an element. When
a data element is not used anymore in the planning it can be erased. Since
this element can refer to other data elements, it could be possible to erase more
elements. However, a data element cannot be erased if another element refers
to it. To break through this �loop�, we keep passing the graph as long there are
candidates to erase. If in a round no elements are erased, we stop the algorithm.

This is not the most e�cient way. It would be better to repeat the following:
• handle a node without incoming vertices in the graph
• remove the node and the associated vertices from the graph

However, since the graph contains cycles (as one can see in �gure 3.3 on page 26),
it is not trivial to develop a generic algorithm.
6.2.2 Networks

We introduced possibilities to adjust networks by adding or replacing observers
and by adding dimensions. However, it is still not possible to add dependencies
to an existing network (i.e. to add edges to a network of observers like the
one in �gure 2.2 on page 18), to ensure an observer gets noti�ed when another
recalculates its subject. The desire to do this can proceed from replacing an
observer. However, adding an extra dependency could be unsafe: it is not
trivial to ensure the scheduler will not loop in�nitely. Moreover, the number
of predecessors is speci�ed for each observer and used in the modeling of the
Network parser and the Observers factory.

Bibliography

[Eckel] Bruce Eckel, Thinking in C++, Volume 1: Introduction
to Standard C++, Pearson Professional Education, 2000

[Gamma et. al.] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design
patterns: Elements of Reusable Object-Oriented Soft-
ware, Addison Wesley Longman Inc., Boston, 1995

[Feiler,Tichy] P.H. Feiler, W.F. Tichy, Propagator: A Family of Pat-
terns, Proc. Technology of Object-Oriented Languages
and System (TOOLS 23), IEEE CS Press, July 1997

[Stroustrup] B. Stroustrup, The C++ programming language, Addison
Wesley Longman Inc., Boston, 1997

[Alexanderscu] A. Alexanderscu, Modern C++ Design: Generic Pro-
gramming and Design Patterns Applied, Addison-Wesley,
Boston, 2001

[Abrahams,Gurtovoy] D. Abrahams, S. Gurtovoy, C++ Template Metapro-
gramming, Addison Welsy, Boston, 2005

65

