
An heuristic approach to Markov decision processes based on the
Interior point method
Wang, J.

Citation
Wang, J. (2008). An heuristic approach to Markov decision processes based on the Interior
point method.

Version: Not Applicable (or Unknown)

License: License to inclusion and publication of a Bachelor or Master thesis in
the Leiden University Student Repository

Downloaded from: https://hdl.handle.net/1887/3597480

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/license:1
https://hdl.handle.net/1887/3597480

Jianfu Wang

An heuristic approach to Markov decision processes
based on the Interior point method

Master thesis, defended on August 26, 2008

Thesis advisor: Prof. dr. Lodewijk Kallenberg

Mathematisch Instituut, Universiteit Leiden

 1

Contents

Chapter 0 Introduction ..3

0.1 Standard method of MDPs ..3
0.2 Heuristic approach to MDPs based on the IPM ..3

Chapter 1 Introduction to Markov decision processes ..5

1.1 The MDP model ..5
1.2 Policies and Optimality criteria...6

1.2.1 Policies ...6
1.2.2 Optimality criteria ..8

1.3 Discounted Rewards ...10
1.3.1 Introduction..10
1.3.2 Monotone contraction mappings..10
1.3.3 The optimality equation ...12
1.3.4 Linear programming...18

1.4 Average Rewards...23
1.4.1 Introduction..23
1.4.2 The stationary, fundamental and deviation matrices ..23
1.4.3 Blackwell optimality ..28
1.4.4 The Laurent series expansion...30
1.4.5 The optimality equation ...32
1.4.6 Linear programming...35

Chapter 2 Interior point method..40

2.1 Self-concordant functions ...40
2.1.1 Introduction..40
2.1.2 Epigraphs and closed convex function...40
2.1.3 Definition of the self-concordance property ..41
2.1.4 Equivalent formulations of the self-concordance property43
2.1.5 Positive definiteness of the Hessian matrix..45
2.1.6 Some basic inequalities ..47
2.1.7 Quadratic convergence of Newton’s method ...49
2.1.8 Algorithm with full Newton steps ..51
2.1.9 Linear convergence of the damped Newton method..53
2.1.10 Further estimates ..56

2.2 Minimization of a linear function over a closed convex domain60
2.2.1 Introduction..60
2.2.2 Effect of μ -update ...61

2.2.3 Estimate of *xcxc TT − ..65

 2

2.2.4 Algorithm with full Newton steps ..67
2.2.5 Algorithm with damped Newton steps ...70
2.2.6 Adding equality constraints..75

Chpater 3 Heuristic approach to MDPs based on the IPM..76

3.1 Introduction...76
3.2 Discounted rewards...76

3.2.1 Initial point ...77
3.2.2 Computational performance...78
3.2.3 Suboptimality test...81
3.2.4 Optimality equation test ...83

3.3 Average rewards ..85
3.3.1 Initial point ...85
3.3.2 Computational performance...90
3.3.3 Optimality equation test ...92
3.3.4 Blackwell optimal policy ...95

Conclusion ..96

Appendix A ...97

Appendix B ...100

Code I..100
Code II ..105

Appendix C ...110

Bibliography ...112

 3

Chapter 0 Introduction

0.1 Standard method of MDPs

There are three main methods for MDPs: Policy iteration, Linear programming and Value iteration.
We will give a short introduction for these three methods first.
Policy iteration
In the method of policy iteration, we constructed a sequence of deterministic policies, which have
increasing value vectors. As the space of deterministic policies is finite, this method will terminate
with an optimal policy within a finite number of iterations. The optimal value vector will be
generated as by-product.
Linear programming
This method transforms the MDP models into a linear programming problem. Furthermore, there
is a correspondence between extreme feasible points of the linear programming problem and
deterministic policies of the MDP model. Hence once we get the optimal solution of the linear
programming problem, we get the optimal deterministic policy for the MDP model. In this thesis,
we will only consider linear programming method for MDPs.
Value iteration
Converse to the policy iteration, the value iteration focuses on value vectors. In this method, the

value vector is successively approximated, starting with some guess 1v , by a sequence ∞
=1}{ n

nv ,

which converges to the optimal value vector. This method is also called successive approximation.
Finally, we will get a value vector, whose distance to the optimal value vector is smaller than a
given accuracy parameter ε . A so-called ε -optimal policy is constructed as a by-product.

0.2 Heuristic approach to MDPs based on the IPM

IPM is an efficient method to solve linear programming problem. The general idea about using
IPM to solve MDPs is: get an ε -optimal solution of the linear programming problem from IPM,
and get a corresponding ε -optimal policy. However, in MDPs, nearly always we can get a better
result: an optimal deterministic policy, and also quicker.

The idea is: once we get a feasible solution in the linear programming problem with IPM, we
transform it into a stationary policy. Based on this policy, we make a new heuristic policy. Then,
we can do several tests to check whether this heuristic policy is an optimal policy. If it is not, we
just go some more steps in IPM, until the heuristic policy changes, and check again.

Because of some unique properties of MDPs, this heuristic method works very fast.

 4

In this thesis, we start with the MDPs models and two important criteria: total expected discounted
rewards and average expected rewards. In Chapter 2, we will introduce the Interior point method
based on Self-concordant functions, which can be used for solving the Linear programming
problem in Chapter 1. Chapter 3 will deal with how to make an heuristic approach in the IPM to
solve the LP problem in Chapter 1. Appendix A contains some technical lemmas, and in Appendix
B the codes are given. Some numerical results are reported in Appendix C.

 5

Chapter 1 Introduction to Markov decision processes

In this chapter, we introduce the model of a Markov decision process (MDP) and we present several
optimality criteria.

1.1 The MDP model

1. State space
At any time point at which a decision has to be made, the state of the system is observed by the
decision maker. The set of possible states is called the state space. Although the state space could be
finite, denumerable, compact or even more general, in this study we only consider the MDP model

with finite state space. The state space will be denoted by },...,2,1{ NS = .

2. Action sets
When the decision maker observes that the state of the system is state i , he chooses an action from
a certain action set, which may depend on the observed state: the action set in state i is denoted by

)(iA . Similarly to the state space, we assume that the action sets are finite.

3. Decision time points
The time intervals between the decision points may be constant or random. In the first case the
model is said to be a Markov decision process; when the times between consecutive decision points
are random the problem is called a semi-Markov decision problem. In this thesis, we restrict
ourselves to Markov decision processes.
4. Rewards
Given the state of the system and the chosen action, an immediate reward is earned. Such reward
only depends on the decision time point, the observed state and the chosen action and not on the
history of the process. The immediate reward at decision time point t for an action a in state i

will be denoted by)(art
i ; if the reward is independent of the time t , we denote)(ari instead of

)(art
i . In this study we consider only stationary rewards.

5. Transition probabilities
Given the state of the system and the chosen action, the state at the next decision time point is
determined by a transition law. These transitions only depend on the decision time point, the
observed state and the chosen action and not on the history of the process. This property is called the
Markov property. If the transitions depend on the decision time point, the problem is said to be

non-stationary, and by)(apt
ij the probability denotes that the next state is state j , given that the

state at time t is state i and that action a is chosen. If the transitions are independent of the

time points, the problem is called stationary, and the transition probabilities are denoted by)(apij .

 6

In this thesis we restrict ourselves to stationary transitions.
6. Planning horizon
This process has a planning horizon. This horizon may be finite, infinite or with random length. In
this study the planning horizon will be infinite.
7. Optimality criterion
The objective is to determine a policy, i.e. a decision rule for each decision time point and each
history of the process, which optimizes the performance of the system. The performance is
measured by a utility function. This function assigns to each policy, given the starting state of the
process, a value. In this thesis, we consider criteria based on discounted and average rewards.

1.2 Policies and Optimality criteria

1.2.1 Policies

A policy R is a sequence of decision rules: ,...),...,,(21 tR πππ= , where tπ is the decision

rule at time point ,....2,1, =tt the decision rule tπ may depend on all information of the system

until time t , i.e. on the states at the time points t,...,2,1 and the actions at the time points

1,...,2,1 −t . The formal definition of a policy is as follows.

Let)}(,|),{(iAaSiaiAS ∈∈=× and let tH denote the set of the possible histories of the

system up to time point t , i.e.

);11,),(|),,,...,,{(1111 SitkASaiiaiaiH tkktttt ∈−≤≤×∈= −− . (1.1)

A decision rule tπ at time point t gives the probability, as a function of the history tH to the

action space, of choosing action a , i.e.

 0≥t
ah tt

π for every)(tt iAa ∈ and 1=∑
t

tt
a

t
ahπ for every tt Hh ∈ . (1.2)

Let C denote the set of all policies. A policy is said to be Markov if the decision rule tπ is

independent of),,...,,(1111 −− tt aiai for every Nt∈ . Hence, in a Markov policy the decision rule

at time t only depends on the state ti ; therefore the notation t
ai tt

π is used. Let)(MC be the

set of Markov policies. If a policy is a Markov policy and the decision rules are independent of the

time point t , i.e. ...21 == ππ , then the policy is called stationary. Hence, a stationary policy is

determined by a nonnegative function π on AS × such that 1=∑
a

iaπ for every Si∈ . The

 7

stationary policy ,...),(ππ=R is denoted by ∞π , and the set of stationary policies by)(SC . If

the decision rule π of a stationary policy ∞π is nonrandomized, i.e. for every Si∈ , we have

1=iaπ for exactly one action ia (consequently 0=iaπ for every iaa ≠), then the policy is

called deterministic. Therefore, a deterministic policy can be described by a function f on S ,

where)(if is the chosen action ia , Si∈ . A deterministic policy is denoted by ∞f and the

set of deterministic policies by)(DC .

A matrix)(ijpP = is a transition matrix if 0≥ijp for all),(ji and 1=∑ j ijp for all i .

Markov policies, and consequently also stationary and deterministic policies, induce transition
matrices.

Assumption 1.1
In the following chapters, we only consider stationary policies, that means the immediate rewards

and the transition probabilities are stationary, and denoted by)(ari and)(apij , respectively, for

all ji, and a .

For the stationary policy ,...),(ππ=R the transition matrix)(πP and the reward vector)(πr

are defined by

 ∑=
a

iaijij apP ππ)()(for every SSji ×∈),(; (1.3)

 ∑=
a

iaii arr ππ)()(for every Si∈ . (1.4)

Let the random variables tX and tY denote the state and action at time t , ,...2,1=t . For any

policy R and any initial distribution β , i.e. iβ is the probability that the system starts in state

i , let },{, aYjXP ttR ==β be the notation for the probability that at time t the state is j and

the action is a . If 1=iβ for some Si∈ , then we write RiP, instead of RP ,β . The expectation

operator with respect to the probability measure RP ,β or RiP, is denoted by RE ,β or RiE ,

repectively.

 8

1.2.2 Optimality criteria

Total expected discounted rewards over an infinite horizon

An amount r earned at time point 1 can be deposited in a bank with interest rate ρ . Then this

amount grows and becomes r⋅+)1(ρ at time point 2 , r⋅+ 2)1(ρ at time point 3, etc. Hence,

an amount r at time point 1 is comparable with rt ⋅+ −1)1(ρ at time point t , ,...2,1=t .

Let 1)1(−+= ρα , called the discount factor. Note that)1,0(∈α . Then, conversely, an amount

r received at time point t can be considered as equivalent to an amount rt ⋅−1α at time point 1.

The total expected α -discounted rewards, given initial state i and a policy R , is denoted by

)(Rvi
α and defined by

 ∑∑∑ ⋅===⋅=
∞

=

−
∞

=

−

aj
jttRi

t

t

t
tX

t
Rii araYjXPYrERv

t
,

,
1

1

1

1
,)(},{)}({)(ααα .

For a stationary policy ∞π , we have:

 ∑
∞

=

−−∞ =
1

11)()()(
t

tt rPv ππαπα .

The value-vector αv and the optimality of a policy *R are defined by

)(sup: Rvv
R

αα = and αα vRv =:)(* .

In the following section, it will be shown that there exists an optimal deterministic policy ∞
*f for

this criterion and that the value vector αv is the unique solution of the so-called optimality

equation

 Sixaparx
j

jijiiAai ∈+= ∑
∈

 },)()({max
)(

α .

Furthermore, it will be shown that ∞
*f is an optimal policy if

 SiiAavaparvfpfr
j

jiji
j

jiji ∈∈+≥+ ∑∑),(,)()()()(**
αα αα .

 9

Average expected reward over an infinite horizon

In the criterion of average rewards the limiting behavior of ∑
=

T

t
tX Yr

T t
1

)(1
 is considered for

∞→T . Since ∑
=

∞→

T

t
tXT

Yr
T t

1

)(1lim may not exist and interchanging limit and expectation is not

allowed, in general, there are four different evaluation measures which can be considered:
1. Lower limit of the average expected rewards:

SiYrE
T

R
T

t
tXRiTi t

∈= ∑
=

→∞
 ,)}({1inflim)(

1
,φ , with value vector)(sup R

R
φφ = .

2. Upper limit of the average expected rewards:

SiYrE
T

R
T

t
tXRi

T
i t

∈= ∑
=∞→

 ,)}({1suplim)(
1

,φ , with value vector)(sup R
R
φφ = .

3. Expectation of the lower limit of the average rewards:

SiYr
T

ER
T

t
tXTRii t

∈= ∑
=

∞→
 ,)}(1inflim{)(

1
,ψ , with value vector)(sup R

R
ψψ = .

4 Expectation of the upper limit of the average rewards:

SiYr
T

ER
T

t
tXTRii t

∈= ∑
=

∞→
 ,)}(1inflim{)(

1
,ψ , with value vector)(sup R

R
ψψ = .

Lemma 1.1

)()()()(RRRR ψφφψ ≤≤≤ for every policy R .

Proof
The second inequality is obvious. The first and the last inequality follow from Fatou’s lemma (e.g.
Bauer [1], p.126):

)()}({1inflim)}(1inflim{)(
1

,
1

, RYrE
T

Yr
T

ER i

T

t
tXRiT

T

t
tXTRii tt

φψ =≤= ∑∑
=

→∞
=

→∞

and

)()}(1inflim{)}({1suplim)(
1

,
1

, RYr
T

EYrE
T

R i

T

t
tXTRi

T

t
tXRi

T
i tt

ψφ =≤= ∑∑
=

∞→
=∞→

.

For these 4 criteria the value vector and the concept of an optimal policy can be defined in the usual
way. In Bierth [2] is shown that

)()()()(∞∞∞∞ === πψπφπφπψ for every deterministic policy ∞π ,

and that for all 4 criteria there exists a deterministic optimal policy. Hence, the 4 criteria are
equivalent in the sense that an optimal deterministic policy for one criterion is also optimal for the

 10

others.

1.3 Discounted Rewards

1.3.1 Introduction

This section deals with the total expected discounted reward over an infinite planning horizon. This
criterion is quite natural when the planning horizon is rather large and returns at the present time are
of more value than returns of the same value which are earned later in time. We recall that the total

expected −α discounted rewards, given initial state i and a stationary policy ∞π , is denoted by

)(∞πα
iv and satisfies

)()}({)()()(1

1

11 ππαππαπα rPIrPv
t

tt −
∞

=

−−∞ −==∑ .

The second equation follows from

 tt PIPPIPI)}({})}({)({)}({ 1 παπαπαπα −=+++⋅− −L

and

0)}({ →tP πα for ∞→t .

In the next section, we first show some theorems of monotone contraction mappings in the context
of MDPs without proof. For the proof we refer to Kallenberg [9]. Then, the optimality equation,
bounds for the value vector and suboptimal actions are considered. Finally, the linear programming
method is introduced.

1.3.2 Monotone contraction mappings

Let X be a Banach space with norm |||| ⋅ , and let XXB →: . The operator B is called a

contraction mapping if for some)1,0(∈β

 |||||||| yxByBx −≤− β for all Xyx ∈, . (1.5)

The number β is called the contraction factor of B . An element Xx∈ is said to be a

fixed-point of B if ** xBx = . The next theorem shows the existence of a unique fixed-point for
a contraction mapping in a Banach space.

 11

Theorem 1.1 (Fixed-point Theorem)
Let X be a Banach space and suppose XXB →: is a contraction mapping. Then,

(1) xBx n
n ∞→= lim* exists for every Xx∈ , and *x is a fixed-point of B .

(2) *x is the unique fixed-point of B .

The next theorem gives bounds on the distance between the fixed-point *x and iterations xBn

for ,...2,1,0=n .

Theorem 1.2
Let X be a Banach space and suppose XXB →: is a contraction mapping with contraction

factor β and fixed-point *x . Then,

(1) NnXxxBxxBxBxBx nnnn ∈∈∀−−≤−−≤− −−− , ||,||)1(||||)1(||*|| 111 ββββ ;

(2) XxxBxxx ∈∀−−≤− − ||,||)1(||*|| 1β .

Remark:

The above theorem implies that the convergence rate of xBn to the fixed-point is at least linear.

(cf. Stoer and Bulirsch [13], p.251). This kind of convergence is called geometric convergence.

Let X be a partially ordered set and XXB →: . The mapping B is called monotone if

yx ≤ implies ByBx ≤ .

Theorem 1.3
Let X be a partially ordered Banach space. Suppose that XXB →: is a monotone
contraction mapping with fixed-point *x . Then
(1) xBx ≤ implies xBxx ≤≤* ;
(2) xBx ≥ implies xBxx ≥≥* .

Lemma 1.2

(1) Let NN RRB →: be a monotone contraction mapping with contraction factor β , and let

d be a scalar. Then edyx ⋅+≤ implies edByBx ⋅⋅+≤ ||β .

(2) Let NN RRB →: be a mapping with the property that edyx ⋅+≤ implies

edByBx ⋅⋅+≤ ||β for some 10 <≤ β and for all scalars d . Then B is a monotone

 12

contraction, with respect to the supremum norm, with contraction factor β .

Lemma 1.3

Let NN RRB →: be a monotone contraction mapping, with respect to the supremum norm, with

contraction factor β and fixed-point *x . Suppose that there exist scalars a and b such that

ebxBxea ⋅≤−≤⋅ for some NRx∈ . Then,

.||)1(||)1(*||)1(||)1(1111 ebxebBxxeaBxeax ⋅−+≤⋅−+≤≤⋅−−≤⋅−− −−−− ββββββ

Corollary 1.1

Let B be a monotone contraction in NR , with respect to the supermum norm ∞⋅ |||| , with

contraction factor β and fixed-point *x . Then

.||||)1(||||)1(

*||||)1(||||)1(
11

11

exBxxexBxBx

xexBxBxexBxx

⋅−⋅−+≤⋅−⋅−+≤

≤⋅−⋅−−≤⋅−⋅−−

∞
−

∞
−

∞
−

∞
−

βββ

βββ

Lemma 1.4

Let NN RRB →: be a monotone contraction in NR , with respect to the supremum norm, with

contraction factor β , fixed-point *x and with the property that ecBxecxB ⋅+=⋅+ β)(for

every NRx∈ and scalar c .

Suppose that there exist scalars a and b such that ebxBxea ⋅≤−≤⋅ for some NRx∈ .

Then,

ebxebBxxeaBxeax ⋅−−≤⋅−+≤≤⋅−+≤⋅−+ −−−− 1111)1()1(*)1()1(ββββββ .

1.3.3 The optimality equation

Suppose that at time point 1=t , when the system is in state i , action)(iAa∈ is chosen, and

that from 2=t on an optimal policy is followed. Then, the total expected α -discounted reward

is equal to ∑+
j

jiji vapar αα)()(. Since any optimal policy obtains at least this amount, we have

 Sivaparv
j

jijiiAai ∈+≥ ∑∈ },)()({max)(
αα α .

On the other hand, let ia be the action chosen by an optimal policy in state i . Then,

 13

 Sivaparvaparv
j

jijiiAa
j

jiijiii ∈+≤+= ∑∑ ∈ },)()({max)()()(
ααα αα .

Hence, αv is a solution of

Sixaparx
j

jijiiAai ∈+= ∑∈ },)()({max)(
αα α . (1.6)

According to the contraction mapping theory in section 1.3.2, αv is a fixed-point of the mapping

NN RRU →: , defined by

 SixaparUx
j

jijiiAai ∈+= ∑∈ },)()({max)()(α . (1.7)

Besides the mapping U , defined above, we introduce for any randomized decision rule π a

mapping NN RRL →:π , defined by

 xPrxL)()(παππ += . (1.8)

Let)(ifx be such that

 Sixaparxifpifr
j

jijiiAa
j

jxijxi ∈+=+ ∑∑ ∈ },)()({max))(())(()(αα .

Then,

 xLUxxL fff x
max== ,

where the maximization is taken over all deterministic decision rules f .

Let ∞||)(|| πP be the subordinate matrix norm (cf. Stoer and Bulirsch [13], p.178), then

∞||)(|| πP satisfies

 1)(max||)(|| == ∑∞
j

iji pP ππ .

Theorem 1.4

The mapping πL and U are monotone contraction mappings with contraction factor α .

Proof

Suppose that yx ≥ . Let π be any stationary decision rule. Because 0)(≥πP ,

 yLyPrxPrxL ππ παππαπ =+≥+=)()()()(, (1.9)

i.e. πL is monotone. U is also monotone, since

 UyyLxLxLUx
yy ffff =≥≥= max .

 14

Furthermore, we obtain

 ∞∞∞∞∞ −⋅=−≤−=− ||)(||||)(||||)(||||))((|||||| yxyxPyxPyLxL απαπαππ ,

i.e. πL is a contraction mapping with contraction factor α . The derivation for operatior U is

 eyxyxfPyLxLyLxLUyUx xffff xxyx
⋅−⋅≤−⋅=−≤−=− ∞||||))((αα . (1.10)

Interchanging x and y yields

 exyUxUy ⋅−⋅≤− ∞||||α . (1.11)

From (1.10) and (1.11) in follows that ∞∞ −⋅≤− |||||||| yxUyUx α , i.e. U is a contraction

mapping with contraction factor α .

The next theorem shows that for any randomized decision rule π , the total expected

−α discounted reward of the policy ∞π is the fixed-point of the mapping πL .

Theorem 1.5

)(∞παv is the unique solution of the functional equation xxL =π .

Proof

Theorem 1.1 and Theorem 1.4 imply that it is sufficient to show that)()(∞∞ = ππ αα
π vvL .

We have

.0)()}()}{({)(

)()}({)()()(
1 =−−−=

−−=−
−

∞∞∞

ππαπαπ

ππαπππ ααα
π

rPIPIr

vPIrvvL

Corollary 1.2

xLv n
n π

α π ∞→
∞ = lim)(for any NRx∈ .

The next theorem shows that the value vector αv is the fixed-point of the mapping U .

Theorem 1.6

αv is the unique solution of the functional equation xUx = .

Proof

It is sufficient to show that αα vUv = . Let ,...),(21 ππ=R be an arbitrary Markov policy. Then,

 15

),()()()(

)()()()()()(

)()()()()()(

22
11

132
1

111

12
2

111

1 RvLRvPr

rPPPPr

rPPPrRv
ss

s
s

tt
t

t

α
π

α

α

παπ

ππππαπαπ

ππππαπ

=+=

+=

+=

+∞

=
−

−∞

=
−

∑
∑

L

L

where ,...),(32
2 ππ=R . From the monotonicity of 1π

L and the definition of U , we obtain

)(,)()(11 2 MCRUvvLRvLRv ∈≤≤= αα
π

α
π

α .

Hence, ααα UvRvv MCR ≤= ∈)(sup)(. Take any 0>ε . Since)(sup)(Rvv MCR
αα

∈= , for any

Sj∈ there exists a Markov policy),...)(),((21 jjRj ππε = such that εαεα −≥ jjj vRv)(.

Let)(iAai ∈ be such that Sivaparvapar
j jijiaj jiijii ∈+=+ ∑∑ },)()({max)()(αα αα .

Consider the policy ,...),(21* ππ=R defined by

 2),(),(and
otherwise 0

aa if 1
2

1-tt
...i

i1
11

≥∈=
⎩
⎨
⎧ =

= tiAai taiaiaia tt
πππ ,

i.e. *R is the policy that chooses ia in state i at time point 1=t , and if the state at time

2=t is 2i , then the policy follows ε
2i

R where the process is considered as originating in state

2i .

Therefore,

. ,)(})()({max

))(()()()()()(*

SiUvvapar

vaparRvaparRvv

ij jijia

j jiijiij jjiijiiii

∈−=−+=

−+≥+=≥

∑
∑∑

αεαεα

εαα

αα

αεααα

 Since 0>ε is arbitrarily chosen, αα Uvv ≥ .

Because ααα
α
vLUvv

v
f== , it follows from Theorem 1.5 that)(∞= α

αα
vfvv , i.e. ∞

αvf is an

optimal policy. If)(DCf ∈∞ satisfies

 Sivaparvfpar
j

jijia
j

jiji ∈+=+ ∑∑ },)()({max)()(αα αα ,

then ∞f is called a conserving policy. Conserving polices are optimal. Therefore, the equation

xUx = is called the optimality equation.

 16

Corollary 1.3
(1) There exists a deterministic α -discounted optimal policy.

(2) xUv n
n→∞= limα for any NRx∈ .

(3) Any conserving policy is α -discounted optimal.

As already mentioned, we derive some bounds for the value vector αv . These bounds can be

obtained from Lemma 1.4. Therefore, we note that the mappings πL and U satisfy, for any

NRx∈ and scalar c , ecxLecxL ff ⋅+=⋅+ α)(and ecUxecxU ⋅+=⋅+ α)(.

Theorem 1.7

For any NRx∈ , we have

(1) ≤≤≤⋅−−−≤⋅−−− ∞
∞

−
∞

− ααααα vfvexUxUxexUxx x)(||||)1(||||)1(11

 exUxxexUxUx ⋅−−+≤⋅−−+ ∞
−

∞
− ||||)1(||||)1(11 ααα .

(2) ∞
−

∞ −−≤− ||||)1(|||| 1 xUxxv αα .

(3) ∞
−

∞
∞ −−≤− ||||)1(2||)(|| 1 xUxfvv x αααα .

Proof

Take any NRx∈ . By Lemma 1.4, for ∞−−= |||| xUxa , ∞−= |||| xUxb and
xfLB = , we

obtain (notice that UxxLBx
xf ==),

ααααα vfvexUxUxexUxx x ≤≤⋅−−−≤⋅−−− ∞
∞

−
∞

−)(||||)1(||||)1(11 .

Next, again applying Lemma 1.4, for UB = the remaining part of (1) implies,

 exUxxexUxUxv ⋅−−+≤⋅−−+≤ ∞
−

∞
− ||||)1(||||)1(11 αααα .

The part (2) and (3) follow directly from part (1).

Theorem 1.8

For any NRx∈ , we have

(1) ≤≤≤⋅−−−≤⋅−−− ∞−− ααααα vfvexUxUxexUxx xiiii)()(min)1()(min)1(11

 exUxxexUxUx iiii ⋅−−+≤⋅−−+ −−)(max)1()(max)1(11 ααα .

(2))()1(2||)(|| 1 xUxspanfvv x −−≤− −
∞

∞ αααα where iiii yyyspan minmax:)(−= .

 17

Proof

Notice that exUxxUxexUx iiii ⋅−≤−≤⋅−)(max)(min . It is easy to verify that for

ii xUxa)(min −= and ii xUxb)(max −= the proof is similar to the proof of Theorem 1.7.

Remark

Since ∞−≤−− ||||)(min xUxxUx ii and ∞−≤− ||||)(max xUxxUx ii , we have

∞−≤− ||||2)(xUxxUxspan . Consequently, the bounds of Theorem 1.8 are stronger than the

bounds of Theorem 1.7.

Next, we discuss the elimination of suboptimal actions. An action)(iAa∈ is called suboptimal if

there doesn’t exist an α -discounted optimal policy)(DCf ∈∞ with aif =)(. Because ∞f

is α -discounted optimal if and only if αα vfv =∞)(, and because αα Uvv = , an action

)(iAa∈ is suboptimal if and only if

 ∑+>
j

jijii vaparv αα α)()(, (1.12)

Suboptimal actions can be disregarded. Notice that formula (1.12) is unuseful, because αv is

unknown. However, by upper and lower bounds on αv as given in Theorem 1.7 and 1.8,

suboptimal tests can be derived, as illustrated in the following theorem.

Theorem 1.9

Suppose that yvx ≤≤ α . If i
j

jiji Uxyapar)()()(<+ ∑α , then action)(iAa∈ is

suboptimal.
Proof,

∑∑ +≥+>≥=
j

jiji
j

jijiiii vaparyaparUxUvv ααα αα)()()()()()(.

The first inequality follows from the monotonicity of U .

Corollary 1.4

Suppose that for some scalars b and c , we have ecxvebx ⋅+≤≤⋅+ α . If

)()()()(bcUxxapar i
j

jiji −−<+ ∑ αα , (1.13)

then action)(iAa∈ is suboptimal.

 18

Proof

ii
j

jiji
j

jiji ebxUbUxcxaparcxapar)}({)()()())(()(⋅+=+<++=++ ∑∑ αααα .

Applying corollary 1.4 on the bound of Theorem 1.8, gives the following test for the elimination of

a suboptimal action)(iAa∈ :

)()1()()()(1 xUxspanUxxapar i
j

jiji −−−<+ −∑ ααα . (1.14)

1.3.4 Linear programming

The value-vector αv is the unique solution of the optimality equation (1.6), i.e.

 Sivaparv
j

jijiiAai ∈+= ∑∈ },)()({max)(
αα α .

Hence αv satisfies

 ∑+≥
j

jijii vaparv αα α)()(for all ASai ×∈),(. (1.15)

Intuitively it is clear that αv is the smallest vector which satisfies (1.15). This property is the key

property for the linear programming approach to compute the value-vector. It turns out that an
optimal policy can be obtained from the dual linear program. We also show a one-to-one
correspondence between the stationary policies and the feasible solutions of the dual program, such
that the extreme points correspond to the deterministic policies. Furthermore, we show that the
exclusion of suboptimal actions can be included in the linear programming method.

A vector NRv∈ is said to be α -superharmonic if

 ∑+≥
j

jijii vaparv)()(α for all ASai ×∈),(. (1.16)

Theorem 1.10

αv is the smallest α -superharmonic vector.

Proof

Since ∑∑ +≥+= ∈
j

jiji
j

jijiiAai vaparvaparv ααα αα)()(})()({max)(for all ASai ×∈),(,

αv is α -superharmonic. Suppose that NRv∈ is also α -superharmonic. Then

 vfParv)()(α+≥ for every)(DCf ∈∞ ,

 19

which implies)()}({ frvfPI ≥−α . Since 0)()}({
0

1 ≥=− ∑
∞

=

−

t

tt fPfPI αα , we obtain

)(),()()}({ 1 DCffvfrfPIv ∈=−≥ ∞∞− αα .

Hence, vfvv fi ≤= ∞)(max αα , i.e. αv is the smallest α -superharmonic vector.

Corollary 1.5

αv is the unique optimal solution of the linear programming problem

 }),(),()}({|min{ ASaiarvapv i
j

jijij
j

jj ×∈≥−∑∑ αδβ , (1.17)

where jβ is any strictly positive number for every Sj∈ .

Proof

From theorem 1.10 it follows that αv is a feasible solution of (1.17) and that vv ≤α for every

feasible solution v of (1.17). Hence, αv is the unique solution of (1.17).

By corollary 1.5, the value vector αv can be found as optimal solution of the linear program (1.17).

This program does not give an optimal policy. However, an optimal policy can be obtained from the
solution of the dual program

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

×∈≥

∈=−∑
∑

ASaiax

Sjaxap
axar

i

j
ai

iijij

ai
ii

),(,0)(

 ,)()}({
)()(max),(

),(

βαδ
. (1.18)

Theorem 1.11

(1) Any feasible solution x of (1.18) satisfies Sjax
a j ∈>∑ ,0)(

(2) The dual program (1.18) has a finite optimal solution, say *x .

(3) Any)(* DCf ∈∞ with 0))((*
* >ifxi for every Si∈ is an α -discounted optimal

policy.
Proof
(1) Let x be a feasible solution of (1.18). From the constraints of (1.18) it follows that

 Sjaxapax j
ai

iijj
a

j ∈>≥+= ∑∑ ,0)()()(
),(

βαβ .

(2) Since the primal program (1.17) has a finite optimal solution, namely the value-vector αv , it

follows from the theory of linear programming that the dual program (1.18) also has a finite optimal

 20

solution.

(3) Take any)(* DCf ∈∞ with 0))((*
* >ifxi for every Si∈ (such policy exists by part (1)).

Because 0))((*
* >ifxi , Si∈ , the complementary slackness property of linear programming

implies

Sifrvfp i
j

jijij ∈=−∑),()}({ **
ααδ .

Hence, in vector notation,

)()}({ ** frvfPI =− αα which implies)()()}({ **
1

*
∞− =−= fvfrfPIv αα α ,

 i.e. ∞
*f is an α -discounted optimal policy.

If the simplex method is used, then the programs (1.17) and (1.18) are solved simultaneously. Hence

by the simplex method both the value vector αv and an optimal policy are computed.

Next, we show the one-to-one correspondence between the feasible solution of (1.18) and the set

)(SC of stationary policies. For)(SC∈∞π the vector)(πx with component

ASaiaxi ×∈),(),(π , is defined by

 ASaiPIax iai
T

i ×∈⋅−= −),(,})}({{)(1 ππαβπ . (1.19)

Define for any Nt∈ and ASai ×∈),(a random variable)(t
ian by

⎩
⎨
⎧ =

=
otherwise. 0

);,(),(X if 1 t)(aiY
n tt

ia

Then, the total discounted number of times that),(),(Xt aiYt = equals ∑∞

=
−

1t
)(1 t

ia
t nα .

Lemma 1.5

Given initial distribution β , i.e. jjXP β== }{ 1 for all Sj∈ , and a stationary policy ∞π ,

)(axi
π satisfies ASainEax t

ia
t

i ×∈= ∑∞

=
−),(},{)(

1t
)(1

, απβ
π .

Proof

Since ∑∞

=
−−− =−

1t
111)()}({ παπα tt PPI , we have

 21

}.{

}{}}|,{{

}}|{{})({)(

1t
)(1

,

)(
,1t

1
11

1

11
1

1
11

∑
∑∑∑
∑∑∑∑

∞

=
−

∞

=
−∞

=
−

∞

=
−∞

=
−−

=

⋅=====

⋅===⋅⋅=

t
ia

t

t
ia

t
ttj jt

t

iatj jt
t

iajit
tt

j ji

nE

nEjXaYiXP

jXiXPPax

α

αβα

πβαππαβ

πβ

πβπ

π
π

Conversely, for a feasible solution x of (1.18), define)(xπ with elements x
iaπ by

 ASai
ax

ax

a i

ix
ia ×∈=

∑
),(,

)(
)(π . (1.20)

Theorem 1.12
The mapping (1.19) is a one-to-one mapping of the set of stationary policies onto the set of feasible
solution of the dual program (1.18) with (1.20) as the inverse mapping; furthermore, the set of

extreme feasible solution of (1.18) corresponds to the set)(DC of deterministic policies.

Proof

First, we show that πx is a feasible solution of (1.18).

. ,)}}({)}({{

)}({})}({{

)}({})}({{

})}({{)}({)()}({

1

1

1

1
),(),(

SjPIPI

PIPI

apPI

PIapaxap

jj
T

iji i
T

iaa ijiji i
T

iai
T

ai ijijai iijij

∈=−⋅−=

−⋅−=

⋅−⋅−=

⋅−−=−

−

−

−

−

∑
∑∑

∑∑

βπαπαβ

παπαβ

παδπαβ

ππαβαδαδ π

Since 0)(,0)}({)}({
0

1 ≥≥=− ∑∞

=
− axPPI it

t ππαπα for every ASai ×∈),(.

Next, we prove the one-to-one correspondence. Let x be a feasible solution of (1.18).

Then, (1.20) yields i
x
iai xax ⋅= π)(, where Siaxx

a ii ∈=∑ ,)(. Therefore, we can write

. ,))}(({

)}({)()}({
),(),(

∑
∑∑

∈−=

⋅⋅−=−=

i iijij

ai i
x
iaijijai iijijj

Sjxxp

xapaxap

παδ

παδαδβ

Hence, in vector notation,

TTTTT xxxPIxeixPIx))}(({))}(({ ..))},(({ 1 ππαβπαβ =−=−= − .

Conversely,

 ASai
ax

ax x
ia

a i

ix
ia ×∈==

∑
),(,

)(
)()(π

ππ π

π
π . (1.21)

Therefore, we have shown the one-to-one correspondence and that (1.20) is the inverse of (1.19).

Finally, we show the correspondence between the extreme points of (1.18) and the set)(DC .

Let)(DCf ∈∞ . Then, for every Si∈ ,

 22

⎩
⎨
⎧

≠
=−

=
−

).(, 0
);(,})}({{

)(
1

ifa
ifaPI

ax i
T

f
i

παβ

Suppose fx is not an extreme feasible solution. Then, there exist feasible solutions 1x and 2x

of (1.18) and a real number)1,0(∈λ such that 21 xx ≠ and 21)1(xxx f λλ −+= .

Since Siifaax f
i ∈≠=),(,0)(, we have Siifaaxax ii ∈≠==),(,0)()(21 .

Hence, the N -vectors))((11 ifxx i= and))((22 ifxx i= are solutions of the linear system

TT fPIx βα =−)}({ . However, this linear system has a unique solution

1)}({ −−= fPIx TT αβ . This implies 121)}({ −−== fPIxx T αβ , which contradicts

21 xx ≠ . Hence, we have shown that fx is an extreme solution.

Conversely, let x be an extreme feasible solution of program (1.18). Since (1.18) has N
constraints, x has at most N positive components. On the other hand, Theorem 1.11, part (1),
implies that in each state there is at least one positive component. Consequently, x has in each
state i exactly one positive component, i.e. the sorresponding stationary policy is deterministic.

Algorithm 1.1 Linear programming algorithm

1. Take any vector β , where Sjj ∈> ,0β .

2. Use a linear programming algorithm to compute optimal solutions *v and *x of the dual
pair of linear programs:

 }),(),()}({|min{ ASaiarvapv i
j

jijij
j

jj ×∈≥−∑∑ αδβ

and

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

×∈≥

∈=−∑
∑

ASaiax

Sjaxap
axar

i

j
ai

iijij

ai
ii

),(,0)(

 ,)()}({
)()(max),(

),(

βαδ
.

3. Take)(* DCf ∈∞ such that 0))((*
* >ifxi for every Si∈ .

 *v is the value-vector av and ∞
*f is an α -discounted optimal policy (STOP).

Next, we discuss the elimination of suboptimal actions with test (1.14).

Let)(ay f
i be the dual slack variable. i.e.

)()()}({)(arfvapay i
j

jijij
f

i −−=∑ ααδ .

Since

 23

 SiayvvaparxUx f
iajj jijiai ∈−=−+=− ∑),(min})()({max)(ααα

and

)(minmax)(minmin)(ayayxUxspan f
iai

f
iai −=− ,

then the test (1.14) becomes

)}(minmax)(min{min)1()(min)(1 ayayayay f
iai

f
iai

f
iai

f
i −−−> −αα ,

which results in the following theorem.

Theorem 1.13

If)}(minmax)(min{min)1()(min)(1 ayayayay f
iai

f
iai

f
iai

f
i −−−> −αα , then action

)(iAai ∈ is suboptimal.

1.4 Average Rewards

1.4.1 Introduction

When decisions are made frequently, so that the discount rate is very close to 1, or when
performance criterion cannot easily be described in economic terms with discount factors, the
decision maker may prefer to compare policies on the basis of their average expected rewards
instead of their expected total discounted rewards. Consequently, the average rewards criterion
occupies a cornerstone of queueing control theory especially when applied to control computer
systems and communication networks. In such systems, the controller makes frequent decisions and
usually assesses system performance on the basis of throughput rate or the average time a job
remains in the system. This optimality criterion may also be appropriate for inventory systems with
frequent restocking decisions.

In this section we start with theorems about the stationary matrix, the fundamental matrix and the
deviation matrix of a Markov chain, without proof. For the proof we refer to Kallenberg [9]. These
matrices play an important role in the average reward criterion and also in more sensitive criteria.
The most sensitive criterion is Blackwell optimality. The existence of a deterministic Blackwell
optimal policy is shown in a separate section. Laurent series expansion relates the average reward to
the total discounted reward. This is the subject of section 1.4.4. The optimality equation for average
rewards is the subject of section 1.4.5 and section 1.4.6 deals with linear programming.

1.4.2 The stationary, fundamental and deviation matrices

The stationary matrix

 24

Consider a policy)(DCf ∈∞ . In average reward MDPs, the limiting behavior of nfP)}({ as

n tends to infinity plays an important role. In general, n
n fP)}({lim ∞→ does not exist. Therefore,

we consider other types of convergence.

Let ∞
=0}{ nnb be a sequence. This sequence is called Cesaro convergent with Cesaro limit b if

 ∑ −

=∞→
1

0

1lim n

k kn b
n

 exists and is equal to b .

We denote this convergence by bb cnn =∞→lim or bb cn → . The sequence is said to be Abel

convergent with Abel limit b if

 ∑∞

=↑ −
01)1(lim

n n
nbααα exists and is equal to b .

This convergence is denoted by bb ann =∞→lim or bb an → . Ordinary convergence implies

both Cesaro and Abel convergence, but the converse statement is not true. The next result is well
known in the theory of the summability of series (e.g. Powell and Shah [11], p.9).

Theorem 1.14

If the sequence ∞
=0}{ nnb is Cesaro convergent to b , then ∞

=0}{ nnb is also Abel convergent to b .

Remark
The converse statement of Theorem 1.14 is not true.

Theorem 1.15
Let P be any stochastic matrix, i.e. the matrix of a Markov chain. Then,

(1) ∑ −

=∞→=
1

0

1lim:* n

k
k

n P
n

P exists, i.e. *PP c
n → .

(2) ***** PPPPPPP === .

The matrix *P is called the stationary matrix of the stochastic matrix P .

Corollary 1.6

0*)(lim
01 =−∑∞

=↑ n
nn PPαα .

Let nP be any stochastic matrix with ergodic classes mEEE ,...,, 21 and transient states T . By

renumbering of the states the matrix can be written in the following so-called standard form:

 25

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅⋅⋅
⋅⋅⋅⋅

⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅⋅

=

QAAA
P

P
P

P

m

m

21

2

1

000
0
0
0
000
00

, (1.22)

where the matrix kP corresponds to the ergodic class mkEk ≤≤1, , and the matrix Q to the

transient states. It is well known (e.g. Doob[4] p. 180), that 0→nQ for ∞→n . Since

 nn QIQQIQI −=++− −))((1L , (1.23)

the right hand side of (1.23) tends to I , i.e. QI − is nonsingular and ∑∞

=
− =−

0
1)(

n
nQQI .

From the theory of Markov chain it is also well know (e.g. Chung[3] p.33) that the stationary matrix

of an ergodic class has strictly positive, identical rows, say kπ for kP , and that kπ is the

unique solution of the following system of linear equations

⎪⎩

⎪
⎨
⎧

=

∈=−

∑
∑

∈

∈

.1
; ,0)(

k

k

Ei i

kEi iijij

x
Ejxpδ

. (1.24)

Since (1.24) is a system of 1|| +kE equations and || kE variables, the first equation can be

deleted for the computation of kπ .

The following results are also well known (e.g. Feller[5]).

Lemma 1.7

Let k
ia be the probability that, starting from state Ti∈ , the Markov chain will be absorbed in

ergodic class mkEk ≤≤1 , . Then Tiak
i ∈ , , is the unique solution of the linear system

kbxQI =−)(, where eAb k
k = .

Theorem 1.16
Let P be any stochastic matrix written in the standard form (1.22). Then,

 26

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅⋅⋅
⋅⋅⋅⋅

⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅⋅

=

0
000
0
0
0
000
00

**
2

*
1

*

*
2

*
1

*

m

m

AAA
P

P
P

P , (1.25)

where *
kP has identical rows kπ , which are the unique solution of (1.24) and

mkeAQIA Tk
kk ≤≤−= − 1 ,}}{{}{ 1* π .

Algorithm 1.2 Determination of the stationary matrix *P

1. Determine the ergodic classes mEEE ,...,, 21 and the transient states T and write P in

standard form (1.22).

2. Determine for mk ,...,2,1= :

a. the unique solution k
k
j Ej∈ ,π , of the linear system

⎪⎩

⎪
⎨
⎧

=

==−

∑
∑

∈

∈

1
,...3,2 ,0)(

k

k

Ei i

Ei iijij

x
jxpδ

.

b. the unique solution Tiak
i ∈ , of the linear system Tipxp

kEl ilTj jijij ∈=− ∑∑ ∈∈
 ,)(δ .

3.
⎪
⎩

⎪
⎨

⎧

=∈∈
=∈∈

=
else 0

,...,2,1,EjT,i
,...,2,1,,Ei

k

k
* mkxa

mkEjx
p k

j
k
i

k
k
j

ij .

The fundamental matrix and the deviation matrix

Theorem 1.17

Let P be any stochastic matrix. Then *PPI +− is nonsingular and 1*)(: −+−= PPIZ

satisfies ∑ ∑=

−

=∞→ −=
n

i

i

k
k

n PP
n

Z
1

1

0
*)(1lim .

The matrix 1*)(: −+−= PPIZ is called the fundamental matrix of P .

The deviation matrix D is defined by *
1

1

0
**)(1lim: PPP

n
PZD n

i

i

k
k

n −−=−= ∑ ∑=

−

=∞→ .

 27

Theorem 1.18
The deviation matrix D satisfies

(1) ∑ ∑=

−

=∞→ −=
n

i

i

k
k

n PP
n

D
1

1

0
*)(1lim .

(2) 0)()(**** =−+−=−+−== IPPIDIPDPIDPDP .

The fundamental and the deviation matrix can be computed as follows. From (1.22) and (1.25) if
follows that

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−⋅⋅⋅⋅
⋅⋅⋅⋅

⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅⋅

=+−

QIDDD
C

C
C

PPI

m

m

21

2

1

*

000
0
0
0
000
00

,

where *
kkk PPIC +−= and mkAAD kkk ≤≤+−= 1,* . Hence,

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−⋅⋅⋅⋅
⋅⋅⋅⋅

⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅
⋅⋅⋅⋅
⋅⋅⋅⋅⋅

=+−=

−

−

−

−

−

1
21

1

1
2

1
1

1*

)(
000
0
0
0
000
00

)(

QISSS
C

C
C

PPIZ

m

m

,

Where mkCDQIS kkk ≤≤−−= −− 1 ,)(11 . Then, the deviation matrix is simply *PZ − .

Theorem 1.19

(1) ∑∞

=↑ −=
0

*
1)(lim

n
nn PPZ αα .

(2) ∑∞

=↑ −=
0

*
1)(lim

n
nn PPD αα .

The following theorem gives the relation between average rewards, discounted rewards over an
infinite horizon and total rewards over a finite horizon.

Theorem 1.20

Let ∞f be a deterministic policy. Then,

 28

(1))()()(* frfPf =∞φ .

(2))()1(lim)(1
∞

↑
∞ −= fvf α

α αφ .

(3))()()()()()()(frfDfPfrfDfTfv TT −+= ∞∞ φ .

The regular case
A Markov chain P is called a regular Markov chain if the chain is irreducible and aperodic. In that

case it can be shown that n
n PP ∞→= lim* . Since **)(PPPP nn −=− for ,...2,1=n we

have 0)(* →− nPP if ∞→n . Therefore,

 ∑
∞

=

− −=+−=
0

1)()(:
n

nPPPPIZ .

Because *PZD −= and ∑∑ ∞

=

∞

=
−+=−+=

1
*

1
*)()(

n
n

n
n PPIPPIZ , we obtain

 ∑
∞

=

−=
0

*)(
n

n PPD ,

i.e. D represents the total deviation with respect to the stationary matrix. This explains the name
deviation matrix.

1.4.3 Blackwell optimality

In this section we prove the existence of a deterministic policy ∞
0f such that αα vfv =∞)(0 for

all)1,[0αα ∈ for some 10 0 <≤α . Such a policy is called a Blackwell optimal policy. The next

theorem shows that the interval)1,0[can be partitioned in a finite number of subintervals such

that in each subinterval there exists a deterministic policy which is optimal over the whole
subinterval.

Theorem 1.21

There are numbers 101 ,,...,, −− αααα mm and deterministic policies ∞∞
−

∞
01,...,, fff mm such that

(1) 1...0 101 =<<<<= −− αααα mm ;

(2) αα vfv j =∞)(for all 0,...,1,),,[1 −=∈ − mmjjj ααα

Proof

 29

For any deterministic policy)(, ∞∞ fvf α is the unique solution of the linear system

)()}({ frxfPI =−α .

By Cramer’s rule*)(∞fvi
α is a rational function in α for each component i .

Suppose that a deterministic Blackwell optimal policy does not exist. For any fixed α a

deterministic α -discounted optimal policy exists. This implies a series ,...}2,1 ,{ =kkα and a

series ,...}2,1 ,{ =kfk such that

...21 ≤≤αα with 1lim =∞→ kk α and)()(1
∞
−

∞ >= kk fvfvv ααα for ,...3,2 , == kkαα

Since there are only a finite number of deterministic policies, there must be a couple of policies, say

∞f and ∞g , such that for some nondecreasing subsequence ,...2,1 , =n
nkα with

1lim =→∞ nkn α

⎪⎩

⎪
⎨
⎧

=<
=>

∞∞

∞∞

,...,for)()(
,...,for)()(

42

31

kk

kk

gvfv
gvfv

ααα
ααα

αα

αα

 (1.26)

Let)()()(∞∞ −= gvfvh ααα , then)(αih is a continuous rational function in α on)1,0[

for each Si∈ . From (1.26) it follows that)(αih has an infinite number of zeros, which is in

contradiction with the rationality of)(αih . Hence, there exists a deterministic Blackwell optimal

policy, i.e. a policy ∞
0f such that αα vfv =∞)(0 for all)1,[0αα ∈ for some 10 0 <≤α .

With similar arguments it can be shown that for each fixed)1,0[∈α there is a lower bound

αα <)(L and a deterministic policy ∞
)(αLf such that α

α
α vfv L =∞)()(for all)),((ααα L∈ .

Similarly, for each fixed)1,0[∈α there is an upper bound αα >)(U and a deterministic policy

∞
)(αUf such that α

α
α vfv U =∞)()(for all))(,(ααα U∈ .

The open intervals)}1,0(|))(),({()),0(,1(∈− ααα ULU and)2),1((L are a covering of the

compact set]1,0[. By the Heine-Borel-Lebesque covering theorem, the interval]1,0[is covered

by a finite number of intervals, say }1,...,2,1)),(),({()),0(,1(−−=− mmjULU jj αα and

* see e.g. J.B. Fraleigh and R.A. Beauregard: Linear Algebra, Addison Wesley, 1987, p. 214.

 30

)2),1((L . We may assume that

)()1(),0()L(,1...0: 11-m101 αααααα ULUmm <<=<<<<= −−

and

 2,...,2,1),()()()(11 −−=<<< −− mmjUULL jjjj αααα .

Since the rational function α
α

α
α

α vfvfv
jj UL == ∞∞

−
)()()()(1

 for all))(),((1 jj UL ααα −∈ we

have

 mjfvfv
jj UL ,...,1,0),()()()(1

== ∞∞
− α

α
α

α .

Let mjff
jUj ,...,1,0 ,)(== α . Then,

αα vfv j =∞)(for all mjjj ,...,1,0),,(1 =∈ −ααα .

Since)(∞fvα is continuous in α , also

αα vfv j =∞)(for mjj ,...,1,0 , ==αα .

1.4.4 The Laurent series expansion

Theorem 1.20 part (2) shows a relation between discounted and average rewards when the discount

factor tends to 1. This relation is based on the Laurent expansion of)(∞fvα close to 1=α as

expressed in the next theorem.

Theorem 1.22

Let ,...0,1),(−=kfuk be defined by)()()(*1 frfPfu =− ,)()()(0 frfDfu = and

0),()()(1 ≥−=+ kfufDfu kk . Then, ∑∞

−=
∞ =

1
)()(

k
kk fufv ρα α for 1)(0 <<αα f ,

where
α
αρ −

=
1

 and
||)(||1

||)(||)(0 fD
fDf

+
=α .

Proof

Let ∑∑ ∞

=

∞
∞

−=
+

−
==

01
)(1

1
)()(1)(

k
kk

k
kk fuffufx ρ

αα
φρ

α
 .

Since)()}(){()(frfDfDfu kk −= for 0≥k , the series ∑∞

=0
)(

k
kk fuρ is well defined if

 31

1||)(|| <fDρ , i.e.
||)(||1

||)(||
fD

fD
+

≥α .

Since)(∞fvα is the unique solution of the linear system)()}({ frxfPI =−α , it is sufficient

to show that)()()}({ frfxfPI =−α , i.e. 0)()}({)(:)(=−−= fxfPIfrfy α .

∑∞

=
−−−

−
−−=

0

*

)()}({)()}({
1

)()()}({)()(
k

k frfDfDfPIfrfPfPIfrfy ρ
α

α
α

α

.0

)()}({)()()()}({)()()}({

)()}({)()()()}({)()}({

)()}({)()}({)}({)()}({

)()}({)(-1-

)()}({)()}({)()}({

)()}({)(})1())(({)()()(

1
*

1
*

1
*

0
*

0
1

0
**

0

0
*

0
*

=

−++−−−−=

−++−−−=

−+−−−−=

−

−−−−=

−−+−−−=

∑∑
∑∑
∑∑

∑

∑

∑

∞

=

∞

=

∞

=

∞

=

∞

=
+∞

=

∞

=

∞

=

∞

=

k
k

k
k

k
k

k
k

k
k

k
k

k
k

k
k

k
k

frfDfrfPfrfDfrfrfPI

frfDfrfPfrfDfrfPI

frfDfrfDfPIfrfPI

frfDfD

frfDfDfPIfrfPI

frfDfDIfPIfrfPfr

ρρ

ρρ

ρρ

ρ
α
α

ρ

ρ
α

αα

Corollary 1.7

)()(
1

)()(0 αε
α

φα ++
−

=
∞

∞ fuffv , where)(αε satisfies 0)(lim 1 =↑ αεα .

Proof

From Theorem 1.22 if follows that ∑∞

= +
∞ −

++
−

=
1 1

0

)()1()(
1

)()(
k

k
k

k

fu
fuffv

α
α

αα
φα .

Since L+−+−+=
−−

= 2)1()1(1
)1(1

11 αα
αα

, we may write

)()(
1

)()(0 αε
α

φα ++
−

=
∞

∞ fuffv ,

where 0)(lim 1 =↑ αεα .

 32

1.4.5 The optimality equation

In the discounted case, the value vector is the unique solution of an optimality equation. For the
average reward criterion a similar result holds, but the equation is more complicated.

Theorem 1.23
Consider the system

⎪⎩

⎪
⎨
⎧

∈+=+

∈=

∑
∑

∈

∈

Siyaparyx
Sixapx

j jijixiAaii

j jijiAai

},)()({max
,)(max

),(

)(
 (1.27)

where SixapxiAaxiA
j jiji ∈=∈= ∑ },)(|)({),(.

This system has the following properties:

(1))(),(0
0

0
1 fuyfux == − , where ∞

0f is a Blackwell optimal policy, satisfies (1.27).

(2) If),(yx is a solution of (1.27), then φ=x , the value vector.

Proof

Since ∞
0f is a Blackwell optimal policy, for α sufficiently close to 1, say)1,[0αα ∈ , one can

write

ASaivaparvaparvfv
j jijij jijiiAaii ×∈+≥+== ∑∑∈

∞),(,)()(})()({max)()(0
αααα αα .

Combining this result with Corollary 1.7 gives for all)1,[0αα ∈ :

,),()},()(
1

)(
{)()1(

)}()(
1

)(
{)()(

),()},()(
1

)(
{)()}1(1{)()()(

1
)(

0
00

0
00

0
00

0
00

ASaifu
f

ap

fu
f

apar

ASaifu
f

aparfuf

jj
j

j ij

jj
j

j iji

jj
j

j ijiii
i

×∈++
−

−

+++
−

+=

×∈++
−

−−+≥++
−

∞

∞

∞∞

∑

∑

∑

αε
α

φ
α

αε
α

φ

αε
α

φ
ααε

α
φ

i.e.

.0)()}()()()()()({)}()()({
1

1
00

0
0

0
00 ≥+−−−+−

−
∞∞∞ ∑∑∑ αεφφφ

α
fapfuaparfufapf jj ijjj ijiijj iji

Since this result holds for all)1,[0αα ∈ , the term multiplied by
α−1

1
 has to be nonnegative, i.e.

)()()(00
∞∞ ∑≥ fapf jj iji φφ for all Si∈ and)(iAa∈ . (1.28)

Furthermore, when)()()(00
∞∞ ∑= fapf jj iji φφ , the next term has to be nonnegative, i.e.

)()()()()()()()()()(00
0

00
0

0
0 ∞∞ −−=−−≥ ∑∑∑ ffuaparfapfuaparfu ijj ijijj ijjj ijii φφ .

(1.29)

 33

For Siifa ∈=),(0 , the inequalities in (1.28) and (1.29) are equalities, because:

)()()()()()()()(0000
*

000
*

0
∞∞ === ffPfrfPfPfrfPfi φφ

and

).()()()()()}()()({)()()(0
0

0000000
*

000
0 fufPffrfrfDfPfPIfrfDfu +−=+−== ∞φ

By these results, part (1) is shown. For part (2), let),(yx be a solution of (1.27). Then, for any

xfPxDCf)(),(≥∈∞ , implying that xfPx n)(≥ for all Nn∈ , and consequently,

xfPx)(*≥ .

Furthermore, since)}(){(0 * fPxfP −= and all elements of)(* fP and)(fPx − and

nonnegative, 0)}(){(* =− jij fPxfp for all Sji ∈, , implying that 0)}(){(* =− iii fPxfp

for all Si∈ .

For an ergodic state 0)(, * >fpi ii , and consequently 0)(=−∑ jj iji xapx , i.e.),()(xiAif ∈ ,

and therefore, by (1.27) ∑+≥+
j jijiii yfpfryx)()(.

The columns of)(* fP corresponding to the transient states are zero, implying that

 yfPfyfPfrfPyxfP)()(})()(){())((*** +=+≥+ ∞φ ,

i.e.

 xxfPf ≤≤∞)()(*φ . (1.30)

On the other hand, any solution of system (1.27) gives a policy ∞g which satisfies xgPx)(=

and ygPgryx)()(+=+ . Hence, xgPx)(*= and therefore,

 xygPygPxygPyxgPgfgPg =−+=−+==∞ })(){(})(){()()()(***φ . (1.31)

From (1.30) and (1.31) if follows that Sixapx ij jijiAai ∈== ∑∈ ,)(max)(φ .

Remarks

1. Since the x -vector in (1.27) is unique, namely φ=x , the set),(xiA is also unique for all

Si∈ .

2. If policy ∞f satisfies φφ)(fP= and yfPfry)()(+=+φ for some vector y , then

 34

the policy is average optimal, namely

)(})()(){()(** ∞=−+== fyyfPfrfPfP φφφ .

3. The proof suggests that a Blackwell optimal policy ∞
0f is also average optimal, i.e.

)()(0 Rf φφ ≥∞ for every policy R . This result is shown below (Corollary 1.8).

4. If φ has identical components (e.g. if there is a unichain average optimal policy), then the first

equation of (1.27) is superfluous and (1.27) can be replaced by the single optimality equation

Siyaparyx
j jijiiAai ∈+=+ ∑∈ },)()({max)(. (1.32)

Theorem 1.24

)()()1(lim 1 RRv φα α
α ≥−↑ for all policies R .

Proof

For)(DCf ∈∞ we have shown in Theorem 1.20 part (2) that

)()1(lim)(1
∞

↑
∞ −= fvf α

α αφ .

For an arbitrary policy R the deviation is as follows.

Let Si∈ be any starting state and let ,...2,1),(},{
),(, =⋅===∑ taraYjXPx jaj ttRit

Since the sequence ,..}.2,1|{ =txt is bounded, we may write

 ∑ ∑∑∑ ∞

=
−

=

∞

=
−∞

=
−− ⋅=⋅=−

1
1

11
1

1
11 }{}{}{)()1(

t
tt

s stt
t

t
t

i xxRv αααα α ,

∑∞

=
−− =−

1
12)1(

t
ttαα for)1,0(∈α , and therefore,)()1(}{)(2

1
1 RtR it

t
i φααφ ⋅−⋅= ∑∞

=
−

Hence, ∑ ∑∞

=
−

=
⋅−⋅−=−−

1
1

1
2)}(1{)1()()()1(

t
t

i
t

s sii tRx
t

RRv αφαφα α .

Choose any arbitrary 0>ε . Since ∑=∞→=
T

t tTi x
T

R
1

1inflim)(φ , there exists a εT such that

εφ +< ∑ =

T

t ti x
T

R
1

1)(for all εTT > . This gives

.)1()1()}(1{)1(
1

12121
1

2 εααεααεαφα
εε

−=−−≥−−>−− ∑∑∑ ∑ ∞

=
−

>
−

>
−

= t
t

Tt
t

Tt
t

i
t

s s tttRx
t

We also have

εαφααφα
εεε

−>−−≥−− ∑∑∑ ∑ ≤
−

=≤≤≤
−

= Tt
t

i
t

s xTtTt
t

i
t

s s tRx
t

tRx
t

1
11

21
1

2)}(1{min)1()}(1{)1(

for α sufficiently close to 1. Hence, εφα α 2)()()1(−≥−− RRv ii for α sufficiently close to

1, i.e.)()()1(lim 1 RRv φα α
α ≥−↑ .

 35

Corollary 1.8

A Blackwell optimal policy ∞
0f is also average optimal and consequently there exists a

deterministic optimal policy.
Proof

Let ∞
0f be a Blackwell optimal policy and R an arbitrary policy. Then,

)()()1(lim)1(lim)()1(lim)(11010 RRvvfvf φαααφ α
α

α
α

α
α ≥−≥−=−= ↑↑

∞
↑

∞ .

1.4.6 Linear programming

To apply linear programming in order to obtain the value vector and an average optimal policy we
need a property for which the value vector is an extreme element. Such property, called

superharmonicity, can be derived from the optimality equation. A vector NRv∈ is

average-superharmonic if there exists a vector NRu∈ such that the pair),(vu satisfies the

following sustem of inequalities

⎪⎩

⎪
⎨
⎧

×∈+≥+

×∈≥

∑
∑

ASaiuaparuv
ASaivapv

j jijiii

j jiji

),(every for)()(
),(every for)(

. (1.33)

Theorem 1.25

The value vector φ is the smallest average-superharmonic vector.

Proof

Let ∞
0f be a Blackwell optimal policy. From Theorem 1.23 it follows that

⎪⎩

⎪
⎨
⎧

∈∈+≥+

∈∈≥

∑
∑

),(,every for)()()()(
)(,every for)(

0
0

0
0 φφ

φφ
iAaSifuaparfu

iAaSiap

j jijiii

j jiji
. (1.34)

where SiapiAaiA
j jiji ∈=∈= ∑ },)(|)((),(φφφ .

Let SifuaparfuiAaiA
j jijiii ∈+<+∈= ∑ },)()()()(|)(()(0

0
0

0* φ .

Define

∑−=
j jijii apas φφ)()(, ASaifuaparfuat

j jijiiii ×∈−−+= ∑),(,)()()()()(0
0

0
0φ ,

 36

⎪
⎩

⎪
⎨

⎧

=

≠∈∈
=

∈

∈

U

U

Si

Si
i

i

iA

iASiiAa
at
as

M
φ

φ

)(if 0

)(if }),(|
)(
)(min{

*

**

 and φ⋅−= Mfuu)(0
0 .

For),(φiAa∈ , we have

 ∑= j jiji ap φφ)(

and

.)()(})(){()()(0
0

0
0 ∑∑ +=⋅−+≥⋅−+=+

j jijij jjijiiiiii uaparMfuaparMfuu φφφφ

For)(* iAa∈ , we have

 ∑> j jiji ap φφ)(

and

.)()()()()()()(t

})()({)(

0
0

i

0
0

∑∑
∑

+≥⋅−++=

+⋅−+=+

j jijiij jiji

j jijiiiii

uaparasMfuapara

apasMfuu φφφ

For)}(),({ * iAiAaa ∪∈∉ φ , we have

∑> j jiji ap φφ)(

and

.)()()()()(

})(){()()(t)(0
0

i0
0

∑∑
∑

+≥++=

⋅−++≥⋅−+=+

j jijij jijii

jj jijiiiiii

uaparuaparat

MfuaparaMfuu φφφφ

Hence, the value vector φ is average-superharmonic.

Suppose that y is also average-superharmonic with corresponding vector x . Then,

yfPy)(0≥ , implying that

 φφ ===−+≥≥ ∞)()()(}))(()(){()(000
*

000
*

0
* ffrfPxIfPfrfPyfPy ,

i.e. φ is the smallest average-superharmonic vector.

Corollary 1.9
From the proof of Theorem 1.25 it follows that there exists a solution of the modified optimality
equation

 37

⎪⎩

⎪
⎨
⎧

∈+=+

∈=

∑
∑

∈

∈

Siyaparyx
Sixapx

j jijiiAaii

j jijiAai

 },)()({max
 ,)(max

)(

)(
 (1.35)

with φ=x as unique x -vector in this solution.

Corollary 1.10

The value vector φ is the unique v -part of an optimal solution),(vu of the linear program

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

×∈≥−+

×∈≥−

∑
∑∑ ASaiuapv

ASaivap
v

j jijiji

j jijij

j
jj),(every for (a)r)}({

),(every for 0)}({
min

iδ
δ

β , (1.36)

where Sjj ∈> ,0β , is arbitrarily chosen.

The dual linear program of (1.36) is

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

×∈≥

∈=−+

∈=−

∑∑
∑

∑
ASa)(i, 0)(),(
S)()}({)(
S 0)()}({

)()(max j),(

),(

),(ayax
jayapax
jaxap

axar

ii

ai jijija j

ai iijij

ai
ii βδ

δ
. (1.37)

Theorem 1.26

Let),(yx be an extreme optimal solution of (1.37). Then, any)(0 DCf ∈∞ , where

0))((>ifxi if 0)(>∑a i ax and 0))((>ifyi if 0)(=∑a i ax is an average optimal

policy.
Proof

First, notice that ∞f is well defined, because for every Sj∈ ,

 Sjayapayax jai iija ja j ∈>+=+ ∑∑∑ ,0)()()()(
),(

β ,

Let }0)(|{ >∈= ∑a ix axSiS . Since xi Siifx ∈> ,0))((and Siifyi ∉> ,0))((, it

follows from the complementary slackness property of linear programming that

 xij jijiji Siifruifp ∈=−+∑)),(())}(({δφ (1.38)

and

 xj jijij Siifp ∉=−∑ ,0))}(({ φδ . (1.39)

The primal program (1.36) implies ASaiap
j jijij ×∈≥−∑),(,0)}({ φδ . Suppose that

0))}(({ >−∑ j jkjkj kfp φδ for some xSk∈ . Since 0))((>kfxk , this implies that

0))(())}(({ >⋅−∑ kfxkfp kj jkjkj φδ .

 38

Furthermore, ASaiaxap ij jijij ×∈≥⋅−∑),(,0)()}({ φδ .

Hence, 0)()}({
),(

>⋅−∑ ∑ axap iai j jijij φδ .

On the other hand, this result is contradictory to the constraints of the dual program (1.37) from
which follows that

 0})())(({)()}({
),(),(

=⋅−=⋅− ∑ ∑∑ ∑ jai j iijijiai j jijij axapaxap φδφδ .

This contradiction implies that

 xj jijij Siifp ∈=−∑ ,0))}(({ φδ . (1.40)

From (1.39) and (1.40) it follows that

 0))}(({ =−∑ j jijij ifp φδ . (1.41)

We now show that xS is closed under)(fP , i.e. xxij SjSiifp ∉∈= , ,0))((Suppose that

0))((>kfpkl for some xx SlSk ∉∈ , . From the constraints of dual program (1.37) it follows

that

 0))(())(()()()(0
),(

>≥== ∑∑ kfxkfpaxapax kklai iila l , (1.42)

implying a contradiction.

Next, we show that the states of xSS \ are transient in the Markov chain induced by)(fP .

Suppose that xSS \ has an ergodic state. Since xS is closed, the set xSS \ contains an ergodic

class, say },...,,{ 21 mjjjJ = . Since),(yx is an extreme solution and Jjjfy j ∈> ,0))((,

the corresponding columns in (1.37) are linearly independent. Because these columns have zeroes in
the first N rows, the second parts of these vectors are also independent vectors. Since for

components Jkjfp ikjkj ii
∈−)),((δ , are also linear independent.

However,

 mijfpb ijj

m

k jj

m

k
i
k

kiki
,...,2,1 ,011))}(({

11
==−=−=∑∑ ==

δ

which contradicts the independency of mbbb ,...,, 21 .

We finish the proof as follows. From (1.40) it follows that φφ)(fP= , and consequently we have

φφ)(* fP= . Since that states of xSS \ are transient in the Markov chain induced by),(fP

the columns of)(* fP corresponding to xSS \ are zero-vectors. Hence, by (1.38),

 φφφφ ==−+==∞)(})}({){()()()(*** fPufPIfPfrfPf ,

 39

i.e. ∞f is an average optimal policy.

Algorithm 1.3 Linear programming algorithm

1. Take any vector β , where Sjj ∈> ,0β .

2. Use linear programming algorithm to compute solution),(vu and),(yx of the dual pair of

linear programs:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

×∈≥−+

×∈≥−

∑
∑∑ ASaiuapv

ASaivap
v

j jijiji

j jijij

j
jj),(every for (a)r)}({

),(every for 0)}({
min

iδ
δ

β

 and

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

×∈≥

∈=−+

∈=−

∑∑
∑

∑
ASa)(i, 0),(
S)()}({)(

S 0)()}({
)()(max j),(

),(

),(
iji

ai jijija j

ai iijij

ai
ii

yax
jayapax

jaxap
axar βδ

δ
.

4. Take)(DCf ∈∞ such that 0))((>ifxi if 0)(>∑a i ax and 0))((>ifyi if

0)(=∑a i ax . Then, ∞f is an average optimal policy and φ is the value vector.

In the average reward case there is in general no one-to-one correspondence between the feasible
solution of the dual program (1.37) and the set of stationary policies. The natural formula for

mapping feasible solution),(yx to the set of stationary policies is:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∈∈

∈∈
=

∑

∑
x

a i

i

x
a i

i

yx
ia

SSiiAa
ay

ay

SiiAa
ax

ax

\),(,
)(

)(

),(,
)(

)(

,π . (1.43)

Conversely, for a stationary policy ∞π , we define a feasible solution),(ππ yx of the dual

program by

⎪⎩

⎪
⎨
⎧

⋅+=

⋅=

∑∑
∑

iaj jijj jiji

iaj jiji

PDay
Pax

ππγπβ
ππβ

π

π

})}({)}({{)(
})}({{)(

*

*

, (1.44)

where jγ is 0 on a transient class and constant on a recurrent class.

If)(DCf ∈∞ , then the corresponding solution))(),((fyfx is an extreme solution; the

reverse statement is not true.

 40

Chapter 2 Interior point method

2.1 Self-concordant functions

2.1.1 Introduction

In this section, we introduce the notation of a self-concordant function and we derive some

properties of such functions. We consider a strictly convex function RD →:φ , where the

domain D is an open convex subset of nR . Our first aim is to find the minimal value φ on its

domain D (if it exists).

The classical convergence analysis of Newton’s method for minimizing φ has some major

shortcomings. The first shortcoming is that the analysis uses quantities that are not a priori known,

for example uniform lower and upper bounds for the eigenvalues of the Hessian matrix of φ on

D . The second shortcoming is that while Newton’s method is affine invariant, these quantities are
not affine invariant. As a result, if we change coordinates by an affine transformation (i.e. replace

x by 0, ≠+ abax) this has in essence no effect on the behavior of Newton’s method but these

quantities all change, and as a result also the iteration bound changes.
A simple and elegant way to avoid these shortcomings was proposed by Nesterov and Nemirovski

[10]. They posed an affine invariant condition on the function φ , named self-concordance. The

well known logarithmic barrier functions, that play an important role in interior-point methods for
linear and convex optimization, are self-concordant (abbreviated below as SC). The analysis of
Newton’s method for SC functions does not depend on any unknown constants. As a consequence,
the iteration bound resulting from the analysis is invariant under (affine) changes of coordinates.
The aim of this section to provide a brief introduction to the notion of self-concordance, and to
recall some results on the behavior of Newton’s method when minimizing a SC function.
Having dealt with this we will consider the problem of minimizing a linear function over the
closure of D , while assuming that a self-concordant function on D is given.

2.1.2 Epigraphs and closed convex function

In this section and further on, φ always denotes a function whose domain D is an open subset

 41

of nR .

Definition 2.1

The epigraph of φ is the set })(,:),{(: txDxtxapi ≤∈= φφ .

Definition 2.2

A function is called closed if its epigraph is closed. If, moreover, φ is convex then φ is called a

closed convex function.

Lemma 2.1

Let RD →:φ be closed convex function and let x belong to the boundary of D . If a

sequence ∞
=0}{ kkx in the domain converges to x then ∞→)(kxφ .

Proof

Consider the sequence ∞
=0)}({ kkxφ . Assume that it is bounded above. Then it has a limit point φ .

Of course, we can think that this is the unique limit point of the sequence. Therefore,

),())(,(: φφ xxxz kkk →= .

Note that kz belongs to the epigraph of φ . Since φ is a closed function, then also),(φx

belongs to the epigraph. But this is a contradiction since x does not belong to the domain of φ .

We conclude that if the function φ is closed convex, then it has the property that)(xφ

approaches infinity when x approaches the boundary of the domain D . This is also expressed

by saying that φ is a barrier function on D .

2.1.3 Definition of the self-concordance property

We want to minimize RD →:φ by using Newton’s method. Recall that Newton’s method is

exact if φ is a quadratic function. As we will see the self-concordance property guarantees good

behavior of Newton’s method.

To start with, we consider the case where φ is a univariate function. So we assume for the

moment that 1=n , and that the domain D of the function RD →:φ is just an open interval

 42

in R . The third order Taylor polynomial of φ around Dx∈ is given by

)(
6
1)(

2
1)()()(32

3 xxxxP φαφαφαφα ′′′+′′+′+= .

The self-concordance property bounds the third order term in terms of the second order term, by
requiring that

 Dx
x
x

x
x

∈
′′
′′′

=
′′
′′′

,
))((
))((

))((
))((

3

2

32

23

φ
φ

αφ
αφ

,

is bounded above by some uniform constant.

Definition 2.3

Let 0≥κ . The univariate function φ is called concordant-self-κ if

 Dxxx ∈∀′′≤′′′ ,))((2|)(| 2
3

φκφ . (2.1)

Note that this definition assume that)(xφ ′′ is nonnegative, whence φ is convex, and moreover

that φ is three times differentiable.

It is easy to verify that the property (2.1) is affine invariant. Because, let φ be

concordant-self-κ and let φ be defined by)()(bayy +=φφ , where 0≠a . Then one

has

)()(xay φφ ′=′ ,)()(2 xay φφ ′′=′′ ,)()(3 xay φφ ′′′=′′′ ,

where bayx += , hence if follows, due to the exponent
2
3

 in the definition, that φ is

concordant-self-κ as well.

Now suppose that 1>n , so φ is a multivariate function. Then φ is called a

concordant-self-κ function if its restriction to an arbitrary line in its domain is
concordant-self-κ . In other words, we have the following definition.

Definition 2.4

Let 0≥κ . The function φ is called concordant-self-κ if and only if

)(:)(hx αφαϕ += is concordant-self-κ at 0=α for all Dx∈ and for all nRh∈ ,

i.e. nRhDx ∈∀∈∀′′≤′′′ ,,)0(2|)0(| 2
3

ϕκϕ . (2.2)

 43

Here the domain of)(αϕ is defined in the natural way: given x and h it consists of all α

such that Dhx ∈+α . Note that since D is an open convex subset of nR , the domain of

)(αϕ is an open interval in R .

2.1.4 Equivalent formulations of the self-concordance

property

We assume that RD →:φ , where D is an open convex subset of nR . To verify if φ is SC

we need to compute the derivatives of)()(hx αφαϕ += at 0=α . We have

.
)(

)0(

)(
)0(

)()0(

1 1 1

3

1 1

2

1

∑∑∑

∑∑

∑

= = =

= =

=

∂∂∂

∂
=′′′

∂∂

∂
=′′

∂
∂

=′

n

i

n

j

n

k kji
kji

n

i

n

j ji
ji

n

i i
i

xxx
x

hhh

xx
x

hh

x
xh

φ
ϕ

φ
ϕ

φϕ

It will be convenient to use sort-hand notations for the above right-hand side expressions. We

denote these expressions respectively as],)[(],)[(2 hhxhx φφ ∇∇ and],,)[(3 hhhxφ∇

respectively. Thus we may write

.])[(],,)[()0(

)(],)[()0(
)(])[()0(

33

22

hhxhhhhx

hxhhhx
xhhx

T

T

T

φφϕ

φφϕ

φφϕ

∇=∇=′′′

∇=∇=′′

∇=∇=′

As consequence, we have the following lemma, which is immediate from Definition 2.4.

Lemma 2.2

Let φ be three times continuously differentiable and 0≥κ . Then φ is

concordant-self-κ if and only if

 Dxhhxhhhx ∈∀∇≤∇ ,]),)[((2|],,)[(| 2
323 φκφ . (2.3)

Let φ be any three times differentiable convex function with open domain. We will say that φ

 44

is self-concordant, without specifying κ , if φ is concordant-self-κ for some 0≥κ .

Obviously, this will be the case if and only if the quotient

 32

23

]),)[((
]),,)[((

hhx
hhhx

φ
φ

∇
∇

 (2.4)

is bounded above by 24κ when x runs through the domain of φ and h through all vectors

in nR . Note that the condition for econcordanc-self-κ is homogeneous in h : if it holds

for some h then it holds for any hλ , with R∈λ .
The econcordanc-self-κ condition bounds the third order term in terms of the second order
term in the Taylor expansion. Hence, if it is satisfied, it makes that the second order Taylor

expansion locally provides a good quadratic approximation of)(xφ . The latter property makes

that Newton’s method behaves well on self-concordant functions. This will be shown later on.

In the sequel we use the following notations:

 Dxxxg ∈∀∇=),(:)(φ

and

 DxxxH ∈∀∇=),(:)(2φ .

As we will see in the next section, under a very weak assumption the matrix)(xH is always

positive definite. As a consequence it defines a norm, according to

 nT RvvxHvv ∈= ,)(||:|| .

Of course, this norm depends on Dx∈ . We call it the local Hessian norm of v at Dx∈ , and

it will be denoted as)(|||| xHv , or simply as xv |||| . Using this notation, the inequality (2.3) can

be written as

 33 ||||2|],,)[(| xhhhhx κφ ≤∇ .

We conclude this section with the following characterization of the self-concordance property.

Lemma 2.3

A three time differentiable closed convex function φ with open domain D is

econcordanc-self-κ if and only if

 xxx hhhhhhx ||||||||||||2|],,)[(| 321321
3 κφ ≤∇

holds for any Dx∈ and all nRhhh ∈321 ,, .

 45

Proof
This statement is nothing but a general property of three-linear forms. For the proof we refer to
Lemma A.2 in the appendix.

2.1.5 Positive definiteness of the Hessian matrix

In this section we deal with an interesting, and important, consequence of Lemma 2.1. Before

dealing with it, we introduce a useful function. Let Dx∈ and nRd ∈≠0 be such that

Ddx ∈+ . Fixing v , we define for 10 ≤≤α ,

 2||||)(:)(dx
T vvdxHvq ααα +=+= . (2.5)

The)(αq is nonnegative and continuous differentiable. The derivative to α is given by

],,)[(]))[((:)(33 vvddxvddxvq T αφαφα +∇=+∇=′ .

Using Lemma 2.3 we obtain

)(||||2||||||||2|],,)[(||)(| 23 ακκαφα ααα qdvdvvddxq dxdxdx +++ =≤+∇=′ .

If 0)(>αq this implies

 dxd
q
q

q
q

d
qd

ακ
α
α

α
α

α
α

+≤
′

=
′

= ||||2
)(
)(

)(
)()(log

. (2.6)

In the special case where dv = we have 2
1

)(|||| αα qd dx =+ , and hence we then have

 2
3

)(2)(ααα qq ≤′ . (2.7)

If 0)(>αq this implies

 κ
α
α

αα
≤

′
=

2
3

)(2
)(

)(
1

q
q

qd
d

. (2.8)

Theorem 2.1

Let the closed convex function φ with open domain D be concordant-self-κ . If D

does not contain a straight line then the Henssian)(2 xφ∇ is positive definite at any Dx∈ .

Proof

Suppose that)(xH is not positive definite for some Dx∈ . Then there exists a nonzero vector

 46

nRd ∈ such that 0)(=dxHd T or, equivalent, 0|||| =xd . Let 2||||:)(dxdq αα += , just as in

(2.5) with dv = . Then 0)0(=q and)(αq is nonnegative and continuously differentiable.

Now (2.7) gives 2
3

)(2)(ακα qq ≤′ . We claim that this implies 0)(=αq for every 0≥α

such that Ddx ∈+α . This is a consequence of the following claim.

Claim

Let),0[aI = for some 0>a and +→ RIq : . If 0)0(=q and 2
3

)(2)(ακα qq ≤′ for

every I∈α then 0)(=αq for every I∈α .

Proof

Assume 0)(1 >αq for some I∈1α , Let

]},(,0)(:min{: 10 αξααξα ∈>= q .

Since q is continuous and 0)0(=q , we have 100 αα <≤ and 0)(0 =αq . Now define

),0[,
)(

1:)(01
1

αα
α

−∈
−

= t
tq

th .

Then, since],(101 ααα ∈− t , the definition of 0α implies that)(th is well defined and

positive. Note that)(th goes to ∞ if t approaches 01 αα − . On the other hand we have

 κ
α

ακ

α
α

=
−

−
≤

−

−′
=′

2
3

2
3

2
3

)(

)(2
2
1

)(
)(

2
1)(

1

1

1

1

tq

tq

tq
tqth

and hence thth κ+≤)0()(for all),0[01 αα −∈t . Since th κ+)0(remains bounded when

t approaches 01 αα − we have a contradiction. Hence the claim is proved.

Thus we have shown that 0)(=αq for every 0≥α such that Ddx ∈+α . This implies that

)(dx αφ + is linear in α , because we have for some αββ ≤≤0, ,

)()()(
2
1)()()(2 xgdxqxgdxdx TT αφβααφαφ +=++=+ .

Since D does not contain a straight line there exists an α such that dx α+ belongs to the
boundary of D . We may assume that 0≥α (else replace d by d−). Since

)()()(lim xgdxdx Tαφαφαα +=+↑ , which is finite, this gives conflict with the barrier

 47

property of φ on D . Thus the proof is completed.

Corollary 2.1

If φ is closed and self-concordant, and D does not contain a line, the)(xφ has a unique

minimizer.

From now on it will be assumed that the hypothesis of Theorem 2.1 if satisfied. So the domain D
does not contain a straight line. As a consequence we have

 00||:||, =⇔=∈∀∈∀ hhRhDx x
n .

2.1.6 Some basic inequalities

From now on, we assume that φ is strictly convex. By Theorem 2.1 this is the case if φ is

closed and self-concordant, and D does not contain a line. The Newton step at x is given by

)()(1 xgxHx −−=Δ . (2.9)

Suppose that *x is a minimizer of)(xφ on D . A basic equation is how we can measure the

‘distance’ from x to *x ? One obvious measure for the distance in the Euclidean norm

||*|| xx − . But *x is unknown! So this measure cannot be computed without knowing the

minimizer. Therefore we might use the Euclidean norm of ||||.., xeix ΔΔ , which vanishes only if

*xx = . However, instead of the Euclidean norm we use the local Hessian norm and measure the
‘distance’ from x to *x by the quantity

)()()()(||||:)(1 xgxHxgxxHxxx TT
x

−=ΔΔ=Δ=λ . (2.10)

Lemma 2.4

Let Dx∈ and +∈Rα and nRd ∈ such that Ddx ∈+α . Then

x

x
dx

x

x

d
dd

d
d

||||1
||||||||

||||1
||||

ακακ α −
≤≤

+ + ;

The left inequality holds for all α such that 0||||1 >+ xdακ and the right for all α such

that 0||||1 >− xdακ .

Proof

 48

Let 2||||:)(dxdq αα += just as in (2.5) with dv = . Then, from (2.8).

κ
α
α

α
α

≤
′

=
−

2
3

2
1

)(2
)()(

q
q

d
dq

.

Consequently, if Ddx ∈+α then

 ακαακ +≤≤− −−− 2
1

2
1

2
1

)0()()0(qqq .

Since xdq ||||)0(2
1

= and dxdq αα += ||||)(2
1

, this gives

 ακακ
α

+≤≤−
+ xdxx ddd ||||

1
||||
1

||||
1

,

or equivalently,

x

x

dxx

x

d
d

dd
d

||||
||||1

||||
1

||||
||||1 ακακ

α

+
≤≤

−

+
.

Hence, if 0||||1 >+ xdακ we obtain

 dx
x

x d
d

d
αακ +≤

+
||||

||||1
||||

and if 0||||1 >− xdακ we obtain

x

x
dx d

dd
||||1

||||||||
ακα −

≤+ ,

proving the lemma.

Lemma 2.5

Let x and d be such that DdxDx ∈+∈ , and 1|||| <xdκ . Then we have, for any

nonzero nRv∈ ,

x

x
dxxx d

vvvd
||||1

||||||||||||)||||1(
κ

κ
−

≤≤− + . (2.11)

Proof

Let 2||||:)(dxdq αα += , just as in (2.5). Then 2||||)0(xvq = and 2||||)1(dxvq += . Hence we may

write

 α
α
α d

d
qdqq

q
q

v
v

x

dx))(log(
2
1))0(log)1((log

2
1

)0(
)1(log

2
1

||||
||||log

1

0 ∫=−==+ .

 49

By (2.6) we have dxd
d

qd
ακ

α
α

+≤ ||||2)(log
. Also using Lemma 2.4 this implies

)
||||1

1log(|)||||1log(
||||1

||||
||||

||||log 1
0

1

0
x

x
x

x

x

dx

d
dd

d
d

v
v

κ
ακα

ακ
κ

α −
=−−=

−
≤ =

+ ∫

and

)||||1log(
||||1

||||
||||

||||log
1

0 x
x

x

x

dx dd
d

d
v

v κα
ακ
κ

−=
−

−≥ ∫+ .

Since the log function is monotonically increasing, we obtain from the above inequalities that

xx

dx
x dv

vd
||||1

1
||||

||||||||1
κ

κ
−

≤≤− + .

This proves the lemma.

Lemma 2.6

Let Dx∈ and mRd ∈ . If
κ
1|||| <xd then Ddx ∈+ .

Proof

Since
κ
1|||| <xd , we have from Lemma 2.5 that)(dxH α+ is bounded for all 10 ≤≤α ,

and thus)(dx αφ + is bounded. On the other hand, φ takes infinite values on the boundary of

the feasible set, by Lemma 2.1. As a consequence we must have Ddx ∈+ .

2.1.7 Quadratic convergence of Newton’s method

Let xxx Δ+=+ : denote the iterate after the Newton step at x . Recall that the Newton step at

x is given by

)()(1 xgxHx −−=Δ

where)(xH and)(xg are the Hessian matrix and the gradient of)(xφ , respectively.

Recall from (2.10) that we measure the distance from x to the minimizer *x of)(xφ by the

quantity

)()()(||||)(1 xgxHxgxx T
x

−=Δ=λ .

Note that if *xx = then 0)(=xg and hence 0)(=xλ ; whereas in all other cases)(xλ

will be positive.

 50

After the Newton step we have

)()()(||)()(||||||)(11 +−+++−+++ ==Δ= ++ xgxHxgxgxHxx T
xxλ .

We are now ready to prove our first main result on Newton’s behavior on self-concordant
functions.

Theorem 2.2

If
κ

λ 1)(≤x then +x is feasible. Moreover, if
κ

λ 1)(<x then

2

)(1
)()(⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

≤+

x
xx

κλ
λκλ .

Proof

The feasibility of +x follows from Lemma 2.6, since
κ

λ 1)(|||| ≤=Δ xx x .

To prove the second statement in the theorem we denote the Newton step at +x shortly as v . So

)()(: 1 +−+= xgxHv .

For 10 ≤≤α we consider the function

)()1()(:)(xgvxxgvk TT ααα −−Δ+= .

Note that 0)0(=k and

 21)()()()(:)1(++−++ == xxgxHxgk T λ .

Taking the derivative of k to α we get, also using)()(xgxxH −=Δ ,

 xxHxxHvxgvxxxHvk TTT Δ−Δ+=+ΔΔ+=′))()(()()(:)(ααα .

By substituting xd Δ=α in (2.11) and the definition of local Hessian norm, we can derive

)(1
)||||1(

1)()(2 xH
x

xHxxH
x

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Δ−
−Δ+

ακ
α p .

Now applying the generalized Cauchy inequality in the Appendix (Lemma A.1) we get

 xx
x

T xv
x

xxHxxHv ||||||||1
)||||1(

1))()((2 Δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Δ−
≤Δ−Δ+

ακ
α .

Hence, combining the above results, and using)(|||| xx x λ=Δ , we may write

)(||||1
))(1(

1)(2 xv
x

k x λακλ
α ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
≤′ .

Therefore, since 0)0(=k

 51

)(1

)(||||1
))(1(

1||||)()1(
21

0 2 x
xvd

x
vxk xx κλ

κλα
ακλ

λ
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
≤ ∫ .

Since)()(1 +−+= xgxHv , we have, by Lemma 2.5,

)(1

)(
||||1

||||
||||

x
x

x
v

v
x

x
x κλ

λ
κ −

=
Δ−

≤
+

+
.

Since 2)()1(+= xk λ , it follows by substitution,

)(1

)(
)(1

)()1()(
2

2

x
x

x
xkx

κλ
κλ

κλ
λλ

−−
≤=

+
+ .

Dividing both sides by)(+xλ the lemma follows.

Corollary 2.2

If 3820.0)53(
2
1)(≈−≤xκλ then +x is feasible and)()(xx λλ ≤+ .

Corollary 2.3

If
κ

λ
3
1)(≤x then +x is feasible and 22))(

2
3())(

2
3()(κλλκλ xxx =≤+ .

2.1.8 Algorithm with full Newton steps

Assuming that we have a point Dx∈ with
κ

λ
3
1)(≤x we can easily obtain a point Dx∈

such that ελ ≤)(x , for prescribed 0>ε , with the algorithm 2.1. We assume that φ is not

linear or quadratic. Then 0>κ . Actually, from the Definition 2.3, we can easily prove if λ is

some positive constant then λφ is concordant-self-⎟
⎠

⎞
⎜
⎝

⎛
λ
κ

. So we may always assume that

9
4

≥κ . We will assume this from now on.

Algorithm 2.1 (Algorithm with full Newton steps)

Input

 An accuracy parameter)1,0(∈ε ;

 Dx∈ such that
κ

λ
3
1)(≤x .

 52

while ελ ≥)(x do

 xxx Δ+=:
endwhile

The following theorem gives an upper bound for the number of iterations required by the
algorithm,

Theorem 2.3

Let Dx∈ and
κ

λ
3
1)(≤x . Then the algorithm with full Newton steps requires at most

 ⎥
⎥

⎤
⎢
⎢

⎡
⎟
⎠
⎞

⎜
⎝
⎛

ε
1log4761.3(log2

iterations. The output is a point Dx∈ such that ελ ≤)(x .

Proof

Let Dx ∈0 be such that
κ

λ
3
1)(0 ≤x . Starting at 0x we repeatedly apply full Newton steps

until the k -iterate, denoted as kx , satisfies ελ ≤)(kx , where 0>ε is the prescribed

accuracy parameter. We can estimate the required number of Newton steps by using Corollary 2.3.

To simplify notation we define for the moment)(00 xλλ = and κγ
2
3

= . Note that 1≥γ .

It then follows that

kkkkk xxx 2024222221)()))((())(()(λγγλγγλλ LL ++−− ≤≤≤≤ .

This gives

kkkkkx 20220222022)()()()(

1

λγλγγλγλ ≤=≤ −−+

.

Using the definition of γ and
κ

λ
3
1)(0 ≤x we obtain

4
3

3
1

2
3 2

02 =⎟
⎠
⎞

⎜
⎝
⎛≤

κ
κλγ .

Hence, we certainly have ελ ≤)(kx if ε≤⎟
⎠
⎞

⎜
⎝
⎛

k2

4
3

. Taking logarithm at both sides this reduces

to εlog
4
3log2 ≤k .

Dividing by
4
3log , we get

4
3log

log2 ε
≥k , or, equivalently,

4
32 log

loglog ε
≥k . Thus we find that

after no more than

 53

 ⎟
⎠
⎞

⎜
⎝
⎛=−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ε

εε 1log4761.3log)log4761.3(log
log
loglog 22

4
32

iterations the process will stop and the output will be an Dx∈ such the ελ ≤)(x .

2.1.9 Linear convergence of the damped Newton method

In this section, we consider the case where Dx∈ lies outside the region where the Newton

process is quadratically convergent. More precisely, we assume that
κ

λ
3
1)(>x . In that case we

perform a damped Newton step, with damping factor α , and the new iterate is given by

 xxx Δ+=+ α .

In the Algorithm 6.2 below, we use
)(1

1
xκλ

α
+

= as a default step size.

Algorithm 2.2

Input:

 Dx∈ such that
κ

λ
3
1)(>x

while
κ

λ
3
1)(>x do

)(1

1
xκλ

α
+

=

 xxx Δ+=+ α

endwhile

In the next theorem we use the function

 1),1log(:)(−>+−= ttttω . (2.12)

Note that this is a strictly convex nonnegative function, which is minimal at 0=t , and

0)0(=ω . The next theorem shows that with an appropriate choice of α we can guarantee a

fixed decrease in φ after the step.

Theorem 2.4

Let Dx∈ and)(: xλλ = . If
κλ

α
+

=
1

1: then

 54

 2
)()()(

κ
κλωαφφ ≥Δ+− xxx .

Proof

Define)()(:)(xxx Δ+−=Δ αφφα .

Then xxxg T ΔΔ+−=Δ′)(:)(αα

],)[()(:)(2 xxxxxxxHxT ΔΔΔ+−∇=ΔΔ+Δ−=Δ ′′ αφαα

],,)[(:)(3 xxxxx ΔΔΔΔ+−∇=Δ ′′′ αφα .

Now using that φ is concordant-self-κ , we deduce from the last expression that

 3||||2)(xxx Δ+Δ−≥Δ ′′′ ακα .

Hence, also using Lemma 2.4

 3

3

3

3

)1(
2

)||||1(
||||2)(

ακλ
κλ

ακ
κα

−
−

=
Δ−

Δ
−≥Δ ′′′

x

x

x
x

.

This information on the third derivative of)(αΔ is used to prove the theorem, by integrating

three times. By integrating once we obtain

 2
2

2

02

2

0 3

3

)1()1()1(
2)0()(λ

ακλ
λ

βκλ
λβ

βκλ
κλα α

β

α
+

−
−

=
−
−

=
−
−

≥Δ ′′−Δ ′′ =∫ d .

Since 22],)[()0(λφ −=ΔΔ−∇=Δ ′′ xxx , we obtain

 2

2

)1(
)(

ακλ
λα

−
−

≥Δ ′′ .

By integrating once more we derive an estimate for)(αΔ′ :

κ
λ

ακλκ
λ

βκλκ
λβ

βκλ
λα α

β

α
+

−
−

=
−
−

=
−
−

≥Δ′−Δ =∫)1()1()1(
)0()(' 0

0 2

2

d .

Since 2)()()0(λ=ΔΔ=Δ−=Δ′ xxHxxxg TT , we obtain

 2

)1(
)(' λ

κ
λ

ακλκ
λα ++

−
−

≥Δ .

Finally, in the same way we derive an estimate for)(αΔ . Using that 0)0(=Δ we have

))1(log(1
)1(

)(22
2

0

2 λακακλακλ
κ

βλ
κ
λ

βκλκ
λα

α
++−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

−
−

≥Δ ∫ d .

 55

One may easily verify that the last expression is maximal for
κλ

α
+

=
1

1
. Substitution of this

value yields

)(1))1log((1
1

1log1)(222 κλω
κ

κλκλ
κ

κλ
κλ

κλ
κ

α =+−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛

+
−≥Δ ,

which is the desired inequality.

Since)(tω is monotonically increasing for positive t , and
κ

λ
3
1

> , the following result is an

immediate consequence of Theorem 2.4.

Corollary 2.4

If
κ

λ
3
1)(>x then +x is feasible and

 222 22
10457.0)

3
1(1)(

κκ
ω

κ
α >=≥Δ .

The next result is an obvious consequence of this corollary.

Theorem 2.5

Let Dx∈ such that
κ

λ
3
1)(>x . If *x denotes the minimizer of)(xφ , then the algorithm

with damped Newton steps requires at most

 *))()((22 02 xx φφκ −

iterations. The output is a point Dx∈ such that
κ

λ
3
1)(≤x .

In order to obtain a solution such that ελ ≤)(x , after the algorithm with damped Newton steps

we can proceed with full Newton steps. Due to Theorem 2.3 and Theorem 2.4 we can obtain such
a solution after a total of at most

 ⎡ ⎤ ⎥
⎥

⎤
⎢
⎢

⎡
⎟
⎠
⎞

⎜
⎝
⎛+−

ε
φφκ 1log4761.3(log*))()((22 202 xx (2.13)

iterations. Note the drawback of the above iteration bound: usually we have no prior knowledge of

*)(xφ and the bound cannot be calculated at the start of the algorithm. However, in many cases

we can derive a good estimate for *)()(0 xx φφ − and we obtain an upper bound for the number

of iterations before starting the optimization process.

 56

2.1.10 Further estimates

In the above analysis, we found an upper bound for the number of iterations that the algorithm

needs to yield a feasible point x such that ελ ≤)(x . But we can provide more information

about *)()(xx φφ − and *xx − .

We start with the following lemma.

Lemma 2.7

Let Dx∈ and nRd ∈ such that Ddx ∈+ . Then

x

xT

x

x

d

d
xgdxgd

d

d

κκ −
≤−+≤

+ 1
))()((

1

22

; (2.14)

 22

)(
)()()(

)(
κ
κω

φφ
κ
κω

xTx
d

xgdxdx
d −

≤−−+≤ . (2.15)

In the right-hand side inequalities it is assumed that 1<
x

dκ .

Proof
We have

 ∫∫ +
=+=−+

1

0

2

dx

1

0
 d)())()((ααα

α
ddddxHdxgdxgd TT .

Using Lemma 2.4 we may write

.
1)1(

 d
)1(1

2
1

0 2

2

1

0

2

dx

1

0 2

22

x

x

x

x

x

x

x

x

d

d
d

d

d

dd
d

d

d

d

κ
α

ακ

αα
ακκ α

−
=

−
≤

≤
+

=
+

∫

∫∫ +

From this the inequalities in (2.14) immediately follow. To obtain the inequalities in (2.15) we
write

ααφφ dxgdxgdxgdxdx TT))()(()()()(
1

0
−+=−−+ ∫ .

Now using the inequalities in (2.14) we obtain

2

2

1

0

2
1

0

)(

)1log(

1
))()((

κ
κω

κ
κκ

α
ακ

α
αα

x

xx

x

xT

d

dd
d

d

d
dxgdxgd

−
=

−−−
=

−
≤−+ ∫∫

and

 57

.
)(

)1log(

1
))()((

2

2

1

0

2
1

0

κ
κω

κ
κκ

α
ακ

α
αα

x

xx

x

xT

d

dd
d

d

d
dxgdxgd

=

+−
=

+
≥−+ ∫∫

This completes the proof.

As usual, for each Dx∈ ,
x

xx Δ=)(λ , with xΔ denoting the Newton step at x . We now

prove that if κλ 1)(<x for some Dx∈ then φ must have a minimizer. Note that this

surprising result expresses that some local condition on φ provides us with a global property,

namely the existence of a minimizer.

Theorem 2.6

Let κλ 1)(<x for some Dx∈ . Then φ has a unique minimizer *x in D .

Proof
The proof is based on the observation that the level set

 { })()(:: xyDyL φφ ≤∈= ,

with x as given in the theorem, is compact. This can be seen as follows. Let Dy∈ . Writing

dxy += , with nRd ∈ , Lemma 2.7 implies the inequality

 22

)(
)(

)(
)()()(

κ
κω

κ
κω

φφ xTxT d
xxHd

d
xgdxy +Δ−=+≥− ,

where we used that, by definition, the Newton step xΔ at x satisfies)()(xgxxH −=Δ .

Since

)()(xdxdxxHd
xxx

T λ=Δ≤Δ ,

we thus have

 2

)(
)()()(

κ
κω

λφφ x
x

d
xdxy +−≥− .

Now let Ldxy ∈+= . Then)()(xy φφ ≤ , whence we obtain

 0
)(

)(2 ≤+−
κ
κω

λ x
x

d
xd ,

 58

which implies

 1)(
)(

<≤ x
d

d

x

x κλ
κ

κω
. (2.16)

Putting
x

dκξ =: one may easily verify that ξ
ξω)(is monotonically increasing for 0>ξ

and goes to 1 if ∞→ξ . Therefore, since 1)(<xκλ , we may conclude from (2.16) that
x

dκ

cannot be arbitrary large. In other words,
x

dκ is bounded above. This means that the set of

vectors d such that Ldx ∈+ is bounded. This implies that the level set L itself is bounded.

Since this set is also closed, the set L is compact. Hence φ has a minimal value in L , and this

value is attained at some Lx ∈* . Since φ is convex, *x is a global minimizer of φ , and by

Corollary 2.1, this minimizer is unique.

Lemma 2.8
For 1<s one has

)},({sup)(
1

tsts
t

ωω −=−
−>

whence

 stts ≥+−)()(ωω , 1<s , 1−>t .

Proof

Let sttstsF −+−=)()(),(ωω . Hence

).1log(
)1log()1log(

)1log()1log(),(

sttsstts
stttss

stttsstsF

−+−−−+−=
−+−+−−−=

−+−+−−−=

Let sttsx −+−= , then

 1),(),(−>= xxtsF ω .

It is easy to see that 0)(≥xω , so 0),(≥tsF .

Hence we get

 stts ≥+−)()(ωω .

Theorem 2.7

Let Dx∈ be such that κλ 1)(<x and let *x denote the unique minimizer of φ . Then, with

)(: xλλ = ,

 59

 22
)(*)()()(

κ
κλωφφ

κ
κλω −

≤−≤ xx (2.17)

κ
κλω

κλ
λ

κλ
λ

κ
κλω)(

1
*

1
)(−′

−=
−

≤−≤
+

=
′

x
xx . (2.18)

Proof

The left inequality in (2.17) follows from Theorem 2.4, because φ is minimal at *x .

Furthermore from (2.15) in Lemma 2.7, with xxd −= * , we get the right inequality in (2.17):

()

,)(

)(1

)(

)(
)()(*)(

2

2

2

2

κ
κλω

κωκλκ
κ

κ
κω

λ

κ
κω

φφ

−
−≥

+−=

+−≥

+≥−

xx

x
x

xT

dd

d
d

d
xgdxx

where the second inequality holds since

 λλ
xxxx

TT dxdxdxxHdxgd ==Δ≤Δ−=)()()((2.19)

and the fourth inequality follows from Lemma 2.8.
For the proof of (2.18) we first derive from (2.19) and the (2.14) in Lemma 2.7 that

 λ
κ x

TT

x

x dxgdxgxgd
d

d
≤−=−≤

+
)())(*)((

1

2

,

where we used that 0*)(=xg . Dividing by
x

d we get

 λ
κ

≤
+

x

x

d

d

1
,

which gives rise to the right inequality in (2.18), since it follows now that

κ
κλω

κλ
λ)(

1
−′

−=
−

≤
x

d .

Note that the left inequality in (2.18) is trivial if 1≥
x

dκ , because then κ
1≥

x
d , whereas

κκλ
λ 1

1
<

+
. Thus we may assume that 01 >−

x
dκ . For 10 ≤≤α , consider

)()()*(:)(1 xgxHdxgk T −−= αα .

One has 0)0(=k and 22)()1(λλ == xk . From (2.11) and the Cauchy inequality we get

 2
1

)1(
)(

)*()()()*()(
x

xTT

d
xd

xdxHdxgxHdxHdk
κ
λ

ααα
−

≤Δ−=−−=′ − .

 60

Hence we have

x

x

x

x

d
d

d
d

d
k

κ
λ

α
κ

λ
λ

−
=

−
≤= ∫ 1)1(

)1(
1

0 2
2 .

After dividing both sides by λ this implies

κλ
λ
+

≥
1x

d .

Thus the proof is complete.

2.2 Minimization of a linear function over a closed

convex domain

2.2.1 Introduction

In this section, we consider the problem of minimizing a linear function over a closed convex

domain D :

 }:min{)(DxxcP T ∈ .

We assume that we have a self-concordant function RD →:φ , where DD int= , and also

that)()(2 xxH φ∇= is positive definite for every Dx∈ .

For each 0>μ we define

)(:)(xxcx
T

φ
μ

φμ += , Dx∈

and we consider the problem

 }:)({inf)(DxxP ∈μμ φ .

We denote the gradient and Hessian matrix of)(xμφ as)(xgμ and)(xH μ , respectively.

Then we may write

)()()(:)(xgcxcxxg +=∇+=∇=
μ

φ
μ

φμμ (2.20)

and

)()()(:)(22 xHxxxH =∇=∇= φφμμ . (2.21)

An immediate consequence of (2.21) is)()(33 xx φφμ ∇=∇ .

 61

So it becomes clear that the second and third derivative of)(xμφ coincide with the second and

third derivatives of)(xφ , and do not depend on μ . Assuming that)(xφ is

concordant-self-κ , if follows that)(xμφ is concordant-self-κ as well.

The minimizer of)(xμφ , if it exists, is denoted as)(μx . When μ runs through all positive

numbers then)(μx runs through the so-called central path of)(P . We expect that)(μx

converges to an optimal solution of)(P when μ approaches 0 , since then the linear term in

the objective function of)(μP dominates the remaining part. Therefore, our aim is to use the

central path as a guideline to the optimal solution of)(P . This approach is likely to be feasible,

because since)(xμφ is self-concordant its minimizer can be computed efficiently.

The Newton step at Dx∈ with respect to)(xμφ is given by)()(1 xgxHx μ
−−=Δ .

Just as in the previous section we measure the distance of Dx∈ to the μ -center)(μx by

the local norm of xΔ . So for this purpose we use the quantity)(xμλ defined by

 1||)(||)()()()(||||)(1
−==ΔΔ=Δ= −

H
TT

x xgxgxHxgxxHxxx μμμμλ .

Before presenting the algorithm we need to deal with two issues. First, when is μ small enough?
We want to have the guarantee that the algorithm generates a feasible point whose objective value
deviates no more than ε from the optimal value, where 0>ε is some prescribed accuracy
parameter. Second, we need to know what the effect is of an update of μ on our proximity

measure)(xμλ . We start with the second issue.

2.2.2 Effect of μ -update

Let)(: xμλλ = and μθμ)1(−=+ . Our aim is to estimate)(x+μ
λ . We have

().)()(
1

1)()(
1

1

)(
)1(

)(
)1(

)()(

xgxgxgxgc

xgcxcxcxg

θ
θ

θ
μθ

μθ
φ

μθ
φ

μ

μ

μ

−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−
=

+
−

=∇+
−

=∇+= ++

 62

Hence, denoting)(xH shortly as H , we may write

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

−
≤−

−
= −−−+

4342143421
)()(

111)()(
1

1)()(
1

1)(
x

H

x

HH
xgxgxgxgx
λλ

μμμ
θ

θ
θ

θ
λ

μ

))()((
1

1 xx θλλ
θ μ +

−
= . (2.22)

At present we have no means to obtain an upper bound for the quantity)(xλ . Therefore, we use

the following definition.

Definition 2.5

Let 0≥v . The self-concordant function φ is called a v -barrier if

 vxgx
H

≤= −

22
1)()(λ , Dx∈∀ . (2.23)

An immediate consequence of this definition and (2.22) is the following lemma, which requires no
further proof.

Lemma 2.9

If φ is a self-concordant v -barrier then

θ
θλ

λ μ
μ −

+
≤+ 1

)(
)(

vx
x .

In the sequel we shall say that φ is a v -barrier function if it satisfies (2.23). If φ is also

concordant-self-κ then we say that φ is a),(vκ -barrier function.

Here we present an obvious fact which is important for the MDP model:

Corollary 2.5

∑=
−=

n

i ixx
1
log)(φ is a 1-self-concordant n -barrier function for)0:{ ≥∈=+ xRxR nn .

Proof

With e denoting the all-one vector, for nRh∈∀ ,

x
exxg −

=∇=)()(φ ;

 63

)()()(2
2

x
ediagxxH =∇= φ ;

)2(])[()(3
3

x
hdiaghxxH −

=∇=∇ φ .

Hence, we have for any nRh∈∀

 ∑
=

−
=∇

n

i i

i

x
hhhhx

1
3

3
3 2],,)[(φ

and

 ∑
=

=⎟
⎠
⎞

⎜
⎝
⎛=∇

n

i i

iT

x
hh

x
ediaghhhx

1
2

2

2
2],)[(φ .

For any nR∈ξ one has

2
3

1

2

1

3

1

3 ⎟
⎠

⎞
⎜
⎝

⎛
≤≤ ∑∑∑

===

n

i
i

n

i
i

n

i
i ξξξ .

Hence, taking
i

i
i x

h
=ξ we get

 ()2
3

23],)[(2],,)[(hhxhhhx φφ ∇≤∇

proving that)(xφ is 1-self-concordant.

Since)()()(2
2

x
ediagxxH =∇= φ , we have

)()(21 xdiagxH =− .

Then

nxgxHxgxg T
H == −

−)()()(||)(|| 12
1 .

So, we can conclude)(xφ is a 1-self-concordant n-barrier for nR+ .

Before proceeding to the next section, we introduce the so-called Dikin-ellipsoid at x , and using

this we give a new characterization of our proximity measure)(xλ .

Definition 2.6
For any Dx∈ the Dikin-ellipsoid at x is defined by

 }1:{: ≤∈=
x

n
x dRdε .

 64

Lemma 2.10
For any Dx∈ one has

 { })(:)(max xdxgd x
T λε =∈ .

Proof
Due to Definition 2.6 the maximization problem in the lemma can be reformulated as

 { }1)(:)(max ≤dxHdxgd TT .

If 0)(=xg then the lemma is obviously true, because then 0)(=xλ . So we may assume that

0)(≠xg and 0)(≠xλ . In that case any optimal solution d will certainly satisfy

1)(=dxHd T . Hence, if d is optimal then

 RdxHxg ∈= αα ,)()(

where α is a Lagrange multiplier. This implies xxgxHd Δ−== −)()(1α , where xΔ

denotes the Newton step at x with respect to φ . Now 1)(=dxHd T implies

2)(α=ΔΔ xxHxT . Since we also have 2)()(xxxHxT λ=ΔΔ , it follows that)(xλα ±= . So

we get
)(x

xd
λ
Δ

±= ,

whence, using)()(xgxxH −=Δ ,

)(
)(
)(

)(
)(

)(
)(

)(
2

x
x
x

x
xxHx

x
xxg

xgd
TT

T λ
λ
λ

λλ
==

ΔΔ
=

Δ
=

proving the lemma.

For future use we also state the following result.

Lemma 2.11

If φ is a self-concordant v -barrier then we have

 () DxdxHvdxgd TT ∈∀∈∀≤ ,Rd ,)()(n2
.

Proof

The inequality in the lemma is homogeneous in d . Hence we may assume that 1)(=dxHd T .

Now Lemma 2.10 implies that)()(xxgd T λ≤ . Hence we obtain () 22)()(xxgd T λ≤ . By

 65

Definition 2.5 this implies the lemma.

Assuming that)(P has *x as optimal solution, we proceed with estimating the objective

value xcT in terms of μ and)(xμλ . This is the subject in the next section.

2.2.3 Estimate of *xcxc TT −

For the analysis of our algorithm we will need some more lemmas.

Lemma 2.12

Let φ be a self-concordant v -barrier function and Dx∈ and Ddx ∈+ . Then

 vxgd T ≤)(.

Proof
Consider the function

)1,0[),()(∈+= ααα dxgdq T .

Observe that)()0(xgdq T= . So we need to show that vq ≤)0(. If 0)0(≤q there is

nothing to prove. Therefore, assume that 0)0(>q . Since)(xφ is a v -barrier, we have by

Lemma 2.11, for any)1,0[∈α ,

 () ()22)(1)(1)()(αααα q
v

dxgd
v

ddxHdq TT =+≥+=′ .

Therefore,)(αq is increasing and hence positive for]1,0[∈α . Therefore, we may write

())0(

1
)1(

1
)0(

1
)(

1
)(
)(1

1

0

1

0 2 qqqq
d

q
q

v
<−=−=

′
≤ ∫ α

α
α
α

.

This imples vq <)0(, completing the proof of the lemma.

Before proceeding we recall the definition of a dual norm.

Definition 2.7

Given any norm ⋅ in nR , the corresponding dual norm
*⋅ is defined by

 { }1:max* ≤= xxss T .

 66

For any Dx∈ we denote the dual norm of the local norm
x

⋅ as
*

x
⋅ . Apparently,

*

x
⋅ is the

local norm determined by 1)(−xH . So,

 n1* Rd ,)(∈= − dxHdd T
x

.

Lemma 2.13

Let
κ

λλ 1)(: <= xu and let *x be an optimal solution of)(P . Then

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

++≤
κλ

λλμ
1

)(* vvxcxc TT .

Proof

First we consider the case there)(μxx = . Since then 0)(=xgμ , we derive from (2.20) that

)(xgc μ−= . Since Dx∈ and Dx ∈* , using Lemma 2.12 with xxd −= * , we get

 () vdxgxxcxcxc TTTT μμμμ ≤=−=−)(*)(*)(.

Now let us turn to the general case. Then, using (2.20) once more and also the inequality:

 n
xx

T Rbababa ∈≤ ,,*
,

we may write

() ()

.)()()(

))(()()()()(
*

xx

TTTT

xxxgxg

xxxgxgxxcxcxc

μμ

μμμμ

μ

μ

−−≤

−−=−=−

where
*

x
⋅ denotes the local norm determined by 1)(−xH . Since λλμμ ==)()(

*
xxg

x
 and

vxxg
x

≤=)()(* λ we have

 vxgxgxgxg
xxx

+≤+≤− λμμ

)()()()(.

Moreover, by Theorem 2.7,

κλ
λμ
−

≤−
1

)(
x

xx .

Substitution gives

κλ

λλμμ
−
+

≤−
1

)()(vxcxc TT .

Hence we may write

 67

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

+≤−+−=−
κλ

λλμμμ
1

)())((*))((* vvxxcxxcxcxc TTTT ,

proving the lemma.

2.2.4 Algorithm with full Newton steps

We assume that we know a point Dx ∈0 and 00 >μ such that
κ

τλ
μ 4

1)(0
0 =≤x . Then we

decrease 0μμ = with a factor θ−1 , where the barrier update parameter θ is a suitable

number in the interval)1,0(, and perform a full Newton step. This process is repeated until μ

is small enough, i.e. until εμ ≤v for some small number ε . The algorithm is described below.

The number of iterations is completely determined by 0,μv and θ , according to the lemma

stated after the algorithm.

Algorithm 2.3 Algorithm with full Newton steps

Input
 an accuracy parameter 0>ε ;

 a proximity parameter),0(1
κτ ∈ ;

 an update parameter 10, <<θθ ;

 Dx ∈0 and 00 >μ such that τλ
μ

≤)(0
0 x ;

begin

 00 :;: μμ == xx ;

 while εμ >v do

;:

;)1(:
xxx Δ+=

−= μθμ

 endwhile
end

Lemma 2.14
The number of iterations of the algorithm does not exceed the number

ε
μ

θ

0

log1 v
.

Proof

 68

The algorithm stops when εμ ≤v . After the k -th iteration we have 0)1(μθμ k−= , where

0μ denotes the initial value of μ . Hence the algorithm will stop if

 εμθ ≤− vk 0)1(.

Taking logarithms at both sides this gives

v

k 0log)1log(
μ
εθ ≤− .

Since θθ ≥−−)1log(, this certainly holds if

ε
μθ

0

log vk ≥ ,

which implies the lemma.

Theorem 2.8

If
κ

τ
9
1

= and
vκ

θ
369
5

+
= , then the algorithm with full Newton steps is well-defined and

requires not more than

 ⎥
⎥

⎤
⎢
⎢

⎡ +
ε
μκ 0

log
5

369 vv

iterations. The output is a point Dx∈ such that

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
++≤

v
vxcxc TT

272
911*
κ
κε ,

where *x denotes an optimal solution of)(P .

Proof
We need to find values of τ and θ that makes the algorithm well-defined. At the start of the

first iteration we have Dxx ∈= 0 and 0μμ = such that τλμ ≤)(x . When the barrier

parameter is updated to μθμ)1(−=+ , Lemma 2.9 gives

θ
θτ

θ
θλ

λ μ
μ −

+
≤

−
+

≤+ 11
)(

)(vvx
x . (2.24)

Then after the Newton step, the new iteration is xxx Δ+=+ and

 69

2

)(1

)(
)(

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
≤

+

+

+
+

x

x
x

μ

μ
μ κλ

λ
κλ . (2.25)

The algorithm is well defined if we choose τ and θ such that τλ
μ

≤+
+)(x . To get the lowest

iteration bound, we need at the same time to maximize θ . From (2.25) we deduce that

τλ
μ

≤+
+)(x certainly holds if

κ
τ

κλ

λ

μ

μ ≤
− +

+

)(1

)(

x

x
,

which is equivalent to

κτκ

τλ
μ +

≤+)(x . (2.26)

According to (2.24) –and hence τλ
μ

≤+
+)(x – this will hold if

κτκ

τ
θ
θτ

+
≤

−
+
1

v
.

This leads us to the following condition on θ :

)1(

1
κκτ

κτκττθ
vv ++

−−
≤ .

Substitution of κτ 9
1= in the right-hand side expression yields the value

vκ369
5

+
. Thus we

have justified the choice of the value of τ and θ in the theorem
Now that θ is given, the iteration bound is immediate from Lemma 2.14. The last statement in
the theorem is implied by Lemma 2.13. because at termination of the algorithm we have

1)(9 <xμκλ and εμ ≤v . Hence, denoting)(xμλλ = , Lemma 2.13 implies that

.
72

911*

)
9
8(

)
9
1(

9
1

1*

)1(
)(1*

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
++≤

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ +
++≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

++≤

v
vxc

v

v
xc

v
vvxcxc

T

T

TT

κ
κε

κκε

κλ
λλμ

This completes the proof.

 70

2.2.5 Algorithm with damped Newton steps

The method that we considered in the previous sections is in practice rather slow. This is due to
the fact that the barrier update parameter θ is rather small. For example, in the case of linear

optimization the set D is the intersection of nR and the affine space }:{ bAxx = , for some

A and b . From Corollary 2.5, we know that the logarithmic barrier function

∑=
−=

n

i ixx
1
log)(φ is a 1-self-concordant n -barrier function for nR+ . In that case we have

1=κ and n=ν , and hence the value of θ is given by
n369

5
+

=θ . Assuming 10 =μ in

Theorem 2.8, this leads to the iteration bound

 ⎟
⎠
⎞

⎜
⎝
⎛Ο=+

εε
nnnn loglog)41(2 ,

which is up till now the best know bound for linear optimization.

In practice one is tempted to accelerate the algorithm by taking larger values of θ . But this is not
justified by the theory, and in fact may cause the algorithm to fail because the full Newton step
may yield an infeasible point. However, by damping the Newton step we can keep these iterates
feasible. In this section we investigate the resulting method, which is in practice much faster than
the full-Newton step method. So we consider in this section the case where θ is some small (but

fixed) constant in the interval)1,0(, for example 5.0=θ or 99.0=θ , and where the new

iterate is obtained from

 xxx Δ+=+ α ,

where xΔ is the Newton step at x and where α is the so-called damping factor, which is

also taken from the interval)1,0(, but which has to be carefully chosen.

The algorithm is described below. We refer to the first while-loop in the algorithm as the outer
loop and to the second while-loop as the inner loop. Each execution of the outer loop is called an
outer iteration and each execution of the inner loop an inner iteration. The main task in the
analysis of the algorithm is to derive an upper bound for the number of iterations in the inner loop,
because the number of outer iterations follows from Lemma 2.14.

Algorithm 2.4 Algorithm with damped Newton steps

Input
 an accuracy parameter 0>ε ;

 a proximity parameter κτ 3
1= ;

 an update parameter 10, <<θθ ;

 71

 Dx ∈0 and 00 >μ such that τλ
μ

≤)(0
0 x

begin

 00 :;: μμ == xx ;

 while εμ >v do

 μθμ)1(: −= ;

 While τλμ >)(x do

)(1

1
xμκλ

α
+

= ;

 xxx Δ+= α ;
 endwhile
 endwhile

end

As we will see, in the analysis of the algorithm many results can be used that we already obtained
in the analysis of the algorithm for minimizing a self-concordant function with damped Newton
steps, in section 2.1.9
Due to the choice of the damping factor α in the algorithm, Theorem 2.4 implies that in each

inner iteration the decrease in the value of μφ satisfies

 2

))((
)()(

κ
κλω

αφφ μ
μμ

x
xxx ≥Δ+− .

Since during each inner iteration τλμ ≥)(x and κτ 3
1> , we obtain

2222 22
10457.0)

3
1(1)()()(

κκ
ω

κκ
κτωαφφ μμ >=>≥Δ+− xxx .

Thus we see that each inner iteration decreases the value of μφ with at least 222
1
κ

.

This implies that we can easily find an upper bound for the number of inner iterations during one

outer iteration if we know the difference between the values of μφ at the start and at the end of

one outer iteration. Since)(x+μ
φ is minimal at)(+= μxx , this difference is not larger than

))(()(+
++ − μφφ

μμ
xx ,

where x denotes the iterate at the start of an outer iteration and μθμ)1(−=+ the value of

the barrier parameter after the μ -update.
The proofs of the next two lemmas follow similar argument as used in proof of Theorem 2.2 in

 72

Hertog[7]

Lemma 2.15

Let μ<0 . Then we have

μ

μμ
μ
μ

μ
μφμ)())(()())((

2
xxgxc

d
xd TT

=−= .

Proof

Denoting the derivative of)(μx with respect to μ as)(' μx , we may write

)('))(()(')())(()())((
2 μμ

μ
μ

μ
μμφ

μ
μ

μμ
μφμ xxgxcxcxxc

d
d

d
xd T

TTT

++−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= .

The definition of)(μx , as minimizer of)(xμφ , implies

μ

μ cxg −=))((.

Hence we write

 0)('))(()('
=+ μμ

μ
μ xxgxc T

T

whence

 2
)())((

μ
μ

μ
μφμ xc

d
xd T

−= ,

which implies the lemma.

Lemma 2.16

Let κμ τλ 3
1)(, =≤∈ xDx and μθμ)1(−=+ . Then we have

θ

θ
κ

μφφ
μμ −

+≤− +
++ 113

1))(()(2
vxx .

Proof
Fixing Dx∈ , we define

))(()()(μφφμϕ μμ xx −= .

Then we need to find an upper bound for)(+μϕ . According to the Mean Value Theorem there

exists a),(μμμ +∈) such that

))(()()(μμμϕμϕμϕ −′+= ++)
. (2.27)

 73

Let us consider first)(μϕ′ . We have

μ
μφ

μμ
μφ

μ
φ

μϕ μμμ

d
xdxc

d
xd

d
xd T))(())(()(

)(2 −
−

=−=′ . (2.28)

Using Lemma 2.15 we get

μ

μμ
μ
μ

μ
μ

μ
μϕ))(())(())(()()(222

xxxgxxcxcxc TTTT −
=

−
=+

−
=′ .

Now applying Lemma 2.12 twice, with)(μxxd −= and xxd −=)(μ respectively, we

obtain

μ

μϕ v
≤′)(.

Hence, since),(μμμ +∈) , we get

 +≤′
μ

μϕ v)() .

Substitution into (2.27) yields

θ

θμϕμμ
μ

μϕμϕ
−

+=−+≤ +
+

+

1
)()()()(vv

.

In other words,

θ

θμφφμϕϕ μμμμ −
+−≤− +

++ 1
))(()())(()(vxxxx .

Since κμ τλ 3
1)(=≤x , we derive from Theorem 2.7 that

 222 13
10721318.0)

3
1(1))(()(

κκ
ω

κ
μφφ μμ <=−≤− xx .

Hence the lemma follows.

Theorem 2.9
The algorithm with damped Newton steps requires not more than

 ⎥
⎥

⎤
⎢
⎢

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−
+

ε
μ

θ
θ

κθ
κ 0

2

2

log
113

122 vv
.

iterations. The output is a point Dx∈ such that

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
++≤

v
vxcxc TT

26
311*
κ
κε ,

where *x denotes an optimal solution of)(P .

 74

Proof

Since each inner iteration decreases the value of μφ with at least 222
1
κ

, an immediate

consequence of Lemma 2.16 that the number of inner iteration between two successive
μ -updates does not exceed the number

 ⎟
⎠
⎞

⎜
⎝
⎛

−
+

θ
θ

κ
κ

113
122 2

2 v
.

Using Lemma 2.14, the iteration bound in the theorem follows.
The last statement in the theorem follows from Lemma 2.13. At termination of the algorithm we

have 1)(3 <xμκλ and εμ ≤v . Hence, denoting)(xμλλ = , Lemma 2.13 implies

.
6
311*

)
3
2(

)
3
1(

3
1

1*

)1(
)(1*

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
++≤

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ +
++≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

++≤

v
vxc

v

v
xc

v
vvxcxc

T

T

TT

κ
κε

κκε

κλ
λλμ

This completes the proof.

It is interesting to compare the iteration bounds that we obtained for full-Newton and

damped-Newton steps. When initialized with the same Dx ∈0 and 00 >μ these bounds are

given by

 ⎥
⎥

⎤
⎢
⎢

⎡ +
ε
μκ 0

log
5

369 vv

and

 ⎥
⎥

⎤
⎢
⎢

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+=⎥
⎥

⎤
⎢
⎢

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−
+

ε
μ

θ
κ

θε
μ

θ
θ

κθ
κ 020

2

2

log
1
22

13
22log

113
122 vvvv

,

respectively. Neglecting the factor
ε
μ 0

log v
, we see that the first bound is)(vκΟ . On the

other hand, when assuming)1(Θ=θ , the second bound is))((2vκΟ .

This shows that from a theoretical point of view the full-Newton step method is more efficient
than the damped-Newton step method. In practice, however, the converse holds. This phenomenon
has become known as the irony of interior-point methods (e.g. Renegar[12],page 51).

Also note that in both cases the quantity vκ is solely responsible for the iteration bound, or

 75

complexity of the algorithm. Following Glineur[6] we call this the complexity value.

2.2.6 Adding equality constraints

In many cases the vector x of variables in)(P not only has to belong to D but has also to

satisfy a system of equality constraints. The problem then becomes

 { }Dxb,Ax :cmin)(T ∈=xP .

We assume that A is a nm× matrix and mArank =)(. This problem can be solved without

much extra effort. The search direction has to be designed such that feasibility is maintained.
Given a feasible x we take as search direction xΔ the direction that minimizes the second
order Taylor polynomial at x subject to the condition 0=ΔxA . Thus we consider the problem

⎭
⎬
⎫

⎩
⎨
⎧ =ΔΔΔ+Δ+ 0:)(

2
1)()(min xAxxHxxgxx TT

μμφ .

This gives rise to the system

 0 ,)()(=Δ=+Δ xAyAxgxxH T
μ ,

whence, denoting)(xH as H ,

)()()(11111 xgHxgAHAAHAHx TT
μμ

−−−−− −=Δ

or, equivalently,

())()()(2
1

2
1

2
1

2
1

2
1

2
1 11 xgHPxgHAHAAHAHIxH

AH

TT
μμ

−−−−−−
−

−=−−=Δ ,

where
2
1−

AH
P denotes the orthogonal projection onto the null space of 2

1−AH . Note that if the

system bAx = is void, i.e. 0=A and 0=b , then xΔ is just the ‘old’ direction.

Denoting the feasible region of)(P as P and its interior as P , one easily understands that

the restriction Pφ of φ to P is a κ -self-concordant v -barrier for P . Moreover, xΔ as

above, is precisely the Newton direction for Pφ at Px∈ . Hence, essentially the same

full-Newton step method and damped-Newton step method as before can be used to solve the
above problem in polynomial time.

 76

Chpater 3 Heuristic approach to MDPs based on the IPM

3.1 Introduction

Now the model and the algorithm which can be used to solve the MDPs have already been
described. In this chapter we present how to get an optimal policy of the MDP model with the IPM.
The main idea is to use Algorithm 2.4 with xΔ described in section 2.2.6 to solve linear
programming problems under both discounted rewards and average rewards, and to get a series
stationary policies which converge to an optimal deterministic policy. Next we will consider some
tests which may accelerate this process.

In this chapter, we will use the following example for a better description.

Example 3.1

;
2
1

=α }3,2,1{=S , }3,2,1{)3()2()1(=== AAA ; 3)3(,2)2(,1)1(111 === rrr

5)3(,4)2(,6)1(222 === rrr ; 7)3(,9)2(,8)1(333 === rrr .

0)1()1(,1)1(131211 === ppp ; 0)2(,1)2(,0)2(131211 === ppp ;

1)3(,0)3()3(131211 === ppp ; 0)1()1(,1)1(232221 === ppp ;

0)2(,1)2(,0)2(232221 === ppp ; 1)3(,0)3()3(232221 === ppp ;

0)1()1(,1)1(333231 === ppp ; 0)2(,1)2(,0)2(333231 === ppp ;

1)3(,0)3()3(333231 === ppp .

3.2 Discounted rewards

In this section we consider linear programming for MDP with discounted rewards, which is
basically to compute optimal solutions *v and *x of the dual pair of linear programs:

 }),(),()}({|min{ ASaiarvapv i
j

jijij
j

jj ×∈≥−∑∑ αδβ (1.17)

and

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

×∈≥

∈=−∑
∑

ASaiax

Sjaxap
axar

i

j
ai

iijij

ai
ii

),(,0)(

 ,)()}({
)()(max),(

),(

βαδ
. (1.18)

We will use Algorithm 2.4 to get a dual optimal solution *x ; the primal solution *v is

 77

generated as by-product.

We notice from the linear constraints in (1.18) that for a fixed Sj∈

 0)()()(
),(

>+=∑ ∑a j
ai

iijj axapax βα .

We know there are only || S linear constraints in (1.18). That means in the extreme optimal

solution of (1.18), for every state Si∈ there must be one)(* iAa ∈ s.t. 0*)(>axi and all

other *\)(aiAa∈ satisfy 0)(=axi . Hence, using IPM, we will get a series of interior points

convergent to an extreme optimal solution* of (1.18) which has the form described above.

3.2.1 Initial point

In order to start the Algorithm 2.4 we need an initial interior point which satisfies τλ
μ

≤)(0
0 x ,

Dx ∈0 , 00 >μ , κτ 3
1= . The first thing we should notice is that we can use the inner loop of

Algorithm 2.4 to get an interior point which satisfies τλ
μ

≤)(0
0 x starting from any interior

feasible point. Then finding the initial interior point is reduced to finding an interior feasible point

Dx ∈0 , in which

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

×∈>

∈=−
=

∑
ASaiax

Sjaxap
xD

i

j
ai

iijij

),(,0)(

 ,)()}({
:

0
),(

0

0
βαδ

. (3.1)

In general case, this can be a complicated problem. However, in MDP with discounted rewards,
there is a property we can use to get an interior feasible point.

According to Theorem 1.12, the mapping (1.19) is a one-to-one mapping from the set of stationary
policies onto the set of feasible solution of the dual program (1.18) with (1.20) as the inverse

mapping. Hence we can get the interior feasible point 0x with (1.19) using a special policy,

which brings us the next theorem.

Theorem 3.1

Let 0>β and ∞π the stationary policy with

* Or the middle point of extreme optimal solutions, if there are several extreme optimal solutions with the same
optimal value. We will describe this later.

 78

)(
1
iAia =π ,)(iAa∈ , Si∈ . (3.2)

Then

ASaiPIax iai
T

i ×∈⋅−= −),(,})}({{)(1 ππαβπ (3.3)

is an interior feasible point in the feasible set of(1.18).
Proof
Theorem 1.12 proved

ASaiPIax iai
T

i ×∈⋅−= −),(,})}({{)(1 ππαβπ

is a feasible point of (1.18). Then we only need to prove

ASaiaxi ×∈>),(,0)(π .

In section 1.3.1, we proved

IPPI
t

tt ≥=− ∑
∞

=

−−−

1

111)()}({ παπα .

Hence

ASa)(i, ,0)(×∈>≥ ia
T

i ax πβπ ,

proving the theorem.

3.2.2 Computational performance

As we have mentioned in section 2.2.2:

∑=
−=

n

i ixx
1
log)(φ is a 1-self-concordant n -barrier function for)0:{ ≥∈=+ xRxR nn ;

Furthermore, we can also notice from Corollary 2.5 that)(xφ has neat second and third term

derivatives. So we will use ∑=
−=

n

i ixx
1
log)(φ as a barrier function in the IPM to solve the

MDP with discounted rewards.

The next result is a theorem about the complexity.

Theorem 3.2

Given ∑=
−=

n

i ixx
1
log)(φ , the algorithm with damped Newton steps requires not more than

 ⎥
⎥

⎤
⎢
⎢

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−
+

ε
μ

θ
θ

θ

0

log
113

122 nn
 (3.4)

iterations. The output is a point Dx∈ such that

 79

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
++≤

n
nxcxc TT

6
311* ε ,

where *x denotes an optimal solution of (1.18).
Proof
Directly from Theorem 2.9

Remark
1. We can minimize the iteration bound

⎥
⎥

⎤
⎢
⎢

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−
+

ε
μ

θ
θ

θ

0

log
113

122 nn

by letting

2213
28622

−
+−

=
n

nθ ,

but it’s just a theoretical minimal bound, not very useful in practice. Although the damped Newton
steps can make sure every step is feasible even if we use a very big θ , we should not let θ be

too close to 1, because the inner loop will take more iterations to get a x such that τλμ ≤)(x .

So in our code, we choose 9.0=θ .

Summing up every row of the linear constraints in (1.18), we can get:

α

β

−
=
∑

∑ =

1
)(

||

1

),(

S

j
j

ai
i ax .

As we know, ∑
=

||

1

S

j
jβ and α−1 are both fixed, so ∑

),(
)(

ai
i ax is a fixed number.

To make parameters simple, we choose

Si ,
||

1
∈=

Siβ .

After the above preparation, we can start to solve MDP with discounted rewards (the MATLAB
code is in Appendix I). We will try to solve Example 3.1.

First we calculate the initial interior point using Theorem 3.1 with Si ,
||

1
∈=

Siβ :

=0x (0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222)

 80

Starting from this point, Algorithm 2.4 brings us the following result:

k ()1(1x)2(1x)3(1x)1(2x)2(2x)3(2x)1(3x)2(3x)3(3x)

0 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222

1 0.1499 0.2067 0.2636 0.2171 0.1964 0.2532 0.2067 0.2636 0.2429

2(ε =2) 0.1333 0.1828 0.2853 0.2097 0.1778 0.2735 0.1933 0.2947 0.2495

3 0.0622 0.1227 0.3495 0.1880 0.1245 0.3409 0.1521 0.3928 0.2673

4 0.0420 0.0739 0.3675 0.1524 0.0830 0.4281 0.1058 0.5034 0.2438

5 0.0313 0.0540 0.3566 0.1118 0.0597 0.5199 0.0741 0.6024 0.1902

6 0.0254 0.0440 0.3473 0.0841 0.0471 0.5813 0.0570 0.6674 0.1464

7(ε =1) 0.0226 0.0393 0.3439 0.0727 0.0415 0.6075 0.0498 0.6958 0.1269

8 0.0134 0.0243 0.3396 0.0448 0.0251 0.6715 0.0298 0.7668 0.0847

9 0.0084 0.0153 0.3368 0.0277 0.0156 0.7116 0.0184 0.8122 0.0539

10 0.0054 0.0100 0.3354 0.0178 0.0101 0.7352 0.0118 0.8393 0.0349

11 0.0037 0.0069 0.3347 0.0122 0.0069 0.7486 0.0081 0.8549 0.0239

12 0.0028 0.0052 0.3344 0.0091 0.0052 0.7558 0.0061 0.8633 0.0180

13(ε =0.1)0.0024 0.0044 0.3342 0.0078 0.0045 0.7590 0.0052 0.8670 0.0154

We can transform these into stationary policies. Because of the one-to-one correspondence
between the set of stationary policies and the set of feasible solutions of the dual program (1.18),
we can use (1.20) to transfer this series of feasible solutions into policies:

Table 3.1

k (11π 12π 13π 21π 22π 23π 31π 32π 33π)

0 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

1 0.2417 0.3333 0.4250 0.3256 0.2946 0.3799 0.2898 0.3696 0.3406

2(ε =2) 0.2217 0.3040 0.4744 0.3172 0.2690 0.4138 0.2621 0.3996 0.3383

3 0.1165 0.2296 0.6539 0.2877 0.1906 0.5217 0.1872 0.4837 0.3291

4 0.0869 0.1529 0.7603 0.2297 0.1252 0.6452 0.1240 0.5901 0.2858

5 0.0708 0.1221 0.8071 0.1616 0.0864 0.7520 0.0855 0.6951 0.2195

6 0.0610 0.1055 0.8335 0.1181 0.0661 0.8158 0.0655 0.7664 0.1681

7(ε =1) 0.0558 0.0969 0.8473 0.1007 0.0575 0.8418 0.0570 0.7975 0.1455

8 0.0356 0.0643 0.9001 0.0604 0.0338 0.9058 0.0338 0.8701 0.0961

9 0.0232 0.0425 0.9343 0.0366 0.0207 0.9427 0.0208 0.9182 0.0610

10 0.0155 0.0284 0.9561 0.0233 0.0132 0.9635 0.0134 0.9472 0.0394

11 0.0108 0.0199 0.9693 0.0158 0.0090 0.9752 0.0091 0.9639 0.0270

12 0.0082 0.0151 0.9767 0.0119 0.0068 0.9814 0.0069 0.9728 0.0203

13(ε =0.1) 0.0070 0.0130 0.9800 0.0101 0.0058 0.9841 0.0059 0.9767 0.0174

It looks like we have a problem here. Because we only solve the dual linear program, there is no
estimate about the value vector in the primal linear program, so we cannot give a statement as in
the value iteration approach, saying “this policy is δ -optimal policy”. Of course, we have

another way to compute the value vector using)()}({)(1 ππαπα rPIv −∞ −= with the policy

 81

we get in the dual linear program. However, we will see from section 3.2.4 that we don’t really
need this value vector.

We can see from the 13th iteration 13π , 23π , 32π are so close to 1. We can even drop all other

actions and guess 2)3(,3)2(,3)1(=== fff is the optimal deterministic policy. Then,

anther question comes up: how to choose ε ? Because, in the 7th iteration, 13π , 23π , 32π are

already close to 1. it seems not necessary to go to ε =0.1. So, we need a new test to identify an
optimal deterministic policy. Fortunately, Theorem 1.13 brings us an efficient test which we will
show below in the next section.

3.2.3 Suboptimality test

The suboptimality test is described as:
If

)}(minmax)(min{min)1()(min)(1 ayayayay f
iai

f
iai

f
iai

f
i −−−> −αα , (3.5)

then action)(iAai ∈ is suboptimal, where)(ay f
i is the dual slack variable.

Given an arbitrary stationary policy, we do the suboptimality test trying to find suboptimal actions.

If only one action)(iAa∈ for each state is not suboptimal, then we can drop all other actions,

and get the optimal deterministic policy.

The following table shows the result of the Algorithm 2.4 on example 3.1 with suboptimality test.
Signal “1” means this action is suboptimal; “0” means this action is not suboptimal.

Example 3.1(continuous)

k ()1(1x)2(1x)3(1x)1(2x)2(2x)3(2x)1(3x)2(3x)3(3x)

0 1 1 0 1 1 0 1 0 0

1 1 1 0 1 1 0 1 0 0

2(ε =2) 1 1 0 1 1 0 1 0 0

3 1 1 0 1 1 0 1 0 1

We get the optimal deterministic policy after 3 iterations. If we compare this result with Table 3.1,
we get the following policy at the third iteration:

:iaπ (11π 12π 13π 21π 22π 23π 31π 32π 33π)

 0.1165 0.2296 0.6539 0.2877 0.1906 0.5217 0.1872 0.4837 0.3291

Obviously, we cannot get any conclusion about the optimal deterministic policy here without

 82

suboptimality test.

The performance of suboptimality test depends on the value of α . We can see this from the test
(3.5). A bigger α will make fewer actions to be excluded with this inequality. But, when α is
small, this test works really well.

The following is the result of the same example with 1.0=α

k (11π 12π 13π 21π 22π 23π 31π 32π 33π)

0 1 1 0 0 1 1 1 0 1

We even get the optimal deterministic policy at the initial point. It works really good in this
problem. However, if we try 9.0=α :

k (11π 12π 13π 21π 22π 23π 31π 32π 33π)

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0

9 1 0 0 0 0 0 0 0 0

10 1 0 0 0 0 0 0 0 0

11 1 0 0 0 0 0 0 0 0

12 1 1 0 1 1 0 1 0 0

13 1 1 0 1 1 0 1 0 0

14 1 1 0 1 1 0 1 0 0

15 1 1 0 1 1 0 1 0 0

16 1 1 0 1 1 0 1 0 0

17(ε =0.1) 1 1 0 1 1 0 1 0 0

The suboptimality test cannot bring us a optimal deterministic policy even when 1.0=ε . If we
look at the approximate policy we get from Algorithm 2.4:

:iaπ (11π 12π 13π 21π 22π 23π 31π 32π 33π)

0.0054 0.0106 0.9840 0.0008 0.0008 0.9984 0.0008 0.9793 0.0199

It is very likely that 2)3(,3)2(,3)1(=== fff is the optimal deterministic policy.

What’s more, there is another situation which can not be solved by suboptimality test: multiple
optimal solutions (MOS). Another way to express this is: there exist several optimal deterministic
policies with the same value vector. In this situation, suboptimality test can never end up with an

 83

optimal deterministic policy, because there are two actions)(, 21 iAaa ∈ for some Si∈ and

both generate an optimal policy.

So we need another test which works well for all α , also in the multiple optimal solutions
situation.

3.2.4 Optimality equation test

We first take a look at the behavior of Algorithm 2.4 in MDP with discounted rewards. According
to the statement at the beginning of section 3.2, IPM has different behavior in MOS case and
non-MOS cases. In non-MOS case, there is only one optimal deterministic policy. Therefore, for

every state i , we have one)(* ,* iAaia ∈π which is very close to 1 and all other

*\)(, aiAaia ∈π are close to 0. On the other hand, in MOS case, there are several optimal

deterministic policies with the same optimal value vector. In this case, there are several

)(, iAaia ∈π which are close to
in

1
, where in is the number of optimal actions in state i ,

and all other iaπ go to 0. Hence this gives us a new idea: once we get a policy from Algorithm

2.4, we make a new policy:

 Siiaaia
ia ∈

⎩
⎨
⎧ =

= ,
otherwise 0

}{max 1* ππ
π (3.6)

and check whether it is an optimal policy. We can do this by checking whether the value vector of
this policy fulfills the optimality equation:

 Sivaparv
j

jijiiAai ∈+= ∑∈)},()()({max)(*
)(

* παπ αα . (3.7)

If the answer is no, we will go several steps further in IPM, until the heuristic policy changes.
Then we do the optimality equation test again.

Remark

Of course, we can make the new policy in another way: set up a threshold)1,0(
A

d ∈ . Then, for

every state Si∈ , we let every)(,: iAadiaia ∈<ππ to be zero, and randomly pickup an

action *a from }:{ da ia ≥π . Then we choose *)(aif = in the new policy.

Here we treat the Example 3.1 with 9.0=α . It is non-MOS.

 84

k opt? (11π 12π 13π 21π 22π 23π 31π 32π 33π)

0 No 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

1 Yes 0 0 1 0 0 1 0 1 0

It’s much better than the suboptimality test in this example.
(For the initial point, the policy is not in a form of a deterministic policy, because we start from a
policy which gives every possible action equal possibilities for every state. Then they are all
maximum in the initial point. However, this situation will be changed in following iterations.)

On the other hand, in a MOS case, we cannot get every possible optimal deterministic policy, but
one optimal deterministic policy is enough in general.

We consider the next example which was obtained by modifying Example 3.1

Example 3.2

;
2
1

=α }3,2,1{=S , }3,2,1{)3()2()1(=== AAA ; 3)3(,2)2(,1)1(111 === rrr

9)3(,4)2(,6)1(222 === rrr ; 9)3(,9)2(,9)1(333 === rrr .

0)1()1(,1)1(131211 === ppp ; 0)2(,1)2(,0)2(131211 === ppp ;

1)3(,0)3()3(131211 === ppp ; 0)1()1(,1)1(232221 === ppp ;

0)2(,1)2(,0)2(232221 === ppp ; 1)3(,0)3()3(232221 === ppp ;

0)1()1(,1)1(333231 === ppp ; 0)2(,1)2(,0)2(333231 === ppp ;

0)3(,1)3(,0)3(333231 === ppp .

It is not hard to find out

2)3(,3)2(,3)1(:1 === fffπ and 3)3(,3)2(,3)1(:2 === fffπ

are both optimal policies. The following table is the result we get.

k Opt? (11π 12π 13π 21π 22π 23π 31π 32π 33π)

0 No 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

1 Yes 0 0 1 0 0 1 0 0 1

We only get one of the optimal deterministic policies.

In Appendix C, we list the performance measure for this heuristic method in bigger MDP models,
which have more than 10 states and 4 actions.

Because we start from a policy which gives every possible action equal possibility for every state,
this heuristic approach can reveal the optimal set in the first several steps. As we can see from

 85

Table 3.1, 13π , 23π , 32π start to increase in the first iteration and other iaπ start to decrease

at the same time. So, at that time we can already see the moving trend of the IPM. Hence,
Algorithm 2.4 with optimality equation test has advantage against suboptimality test when α is
close to 1, and also in the MOS case which we showed above.

3.3 Average rewards

As we can see from the section 1.4.6, the linear programming approach to MDP with average

rewards is to compute the optimal solution *)*,(uv and *)*,(yx of the dual pair of linear

programs:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

×∈≥−+

×∈≥−

∑
∑∑ ASaiuapv

ASaivap
v

j jijiji

j jijij

j
jj),(every for (a)r)}({

),(every for 0)}({
min

iδ
δ

β (1.36)

and

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

×∈≥

∈=−+

∈=−

∑∑
∑

∑
ASa)(i, 0)(),(
S)()}({)(
S 0)()}({

)()(max j),(

),(

),(ayax
jayapax
jaxap

axar

ii

ai jijija j

ai iijij

ai
ii βδ

δ
. (1.37)

The same as in section 3.2, we are going to use Algorithm 2.4 to get the dual optimal solution *x ;
the primal solution *v is generated as by-product.

However, this linear programming problem is much more complicated than the one we treated in
section 3.2. But we have a certain way to solve it, and we will describe the solution in the
following two sections.

3.3.1 Initial point

We now discuss how to start Algorithm 2.4 in linear programming approach for MDP with
average rewards. The original idea is to generate an initial point with (1.44) in the same way we
did in section 3.2.1. However it doesn’t work in general.

If there exists a state Si∈ which is transient under any policy Cf ∈∞ , then the

corresponding part of x will always be zero. That means there is no strictly feasible point in the
feasible set. Hence we cannot apply IPM in this case.

The following example shows this phenomenon:
Example 3.3

 86

}3,2,1{=S , }2,1{)3()2()1(=== AAA ; 2)2(,1)1(11 == rr ;

4)2(,6)1(22 == rr ; 9)2(,8)1(33 == rr .

0)1()1(,1)1(131211 === ppp ; 0)2(,1)2(,0)2(131211 === ppp ;

0)1()1(,1)1(232221 === ppp ; 0)2(,1)2(,0)2(232221 === ppp ;

0)1()1(,1)1(333231 === ppp ;
2
1)2(,

2
1)2(,0)2(333231 === ppp .

We can see state 3 is transient under any policy. The first part of the dual linear programming
problem is:

 0
10000
00110

010110

2
1

2
1 =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

−−
x .

Because 0≥x , any feasible solution x of the above equation must have 0)2()1(33 == xx .

So we don’t have a strictly feasible interior point here, but this problem is solvable.

The problems (1.36) and (1.37) are of the following form

 (P) }:min{ cAyybT ≥ ,

and its dual:

 (D) }0 ,:max{ ≥= xbxAxc TT .

Assuming that (P) and (D) are both feasible, the optimal sets of (P) and (D) are denoted by *P
and *D . We define the index sets B and N by

 *} ,:{: PycyAiB ii ∈>= .

*} ,0:{: DxxiN i ∈>= .

From the strong duality theorem, B and N form a partition of the full index set and the
optimal values for both of these linear problems are the same. We denote the optimal-value

function as),(cbz .

Then we start to investigate the effect of changes in b and c on the optimal value function

),(cbz . We consider one-dimensional parameter perturbations of b and c . We assume that b

and c are such that (P) and (D) are feasible. Then),(cbz is well defined and finite. It is

convenient to introduce the following notations:

),(:)(cbbzf Δ+= λλ ,),()(ccbzg Δ+= μμ .

 87

It can be proved that the domains of f and g are closed intervals on the real line.

Theorem 3.4

)(λf is continuous, concave and piecewise linear.

Proof
By definition,

 }:)min{()(Pyybbf T ∈Δ+= λλ .

For each λ the minimum value is attained at a central solution *y of (P). Now *y is

uniquely determined by the optimal partition of (P) and *)(ybb TΔ+ λ is constant for all

optimal *y . Associating one particular *y , we obtain that

 }:)min{()(Syybbf T ∈Δ+= λλ ,

where S is a finite subset of P , For each Sy∈ , we have

 ybybybb TTT Δ+=Δ+ λλ)(,

which is a linear function of λ . This makes clear that)(λf is the minimum of a finite set of

linear functions. It can be proved that the minimum of a finite set of linear functions is continuous,
concave and piecewise linear.

Therefore,)(λf is continuous, concave and piecewise linear, proving the theorem.

In the same way, we get:

Theorem 3.5

)(μg is continuous, convex and piecewise linear.

For any λ in the domain of f we denote the optimal set of)(λP by *
λP and the optimal set

of)(λD by *
λD .

Theorem 3.6

If)(λf is linear on the interval],[21 λλ , where 21 λλ < , then the primal optimal set *
λP is

constant (i.e. invariant) for),(21 λλλ ∈ .

 88

Proof

Let),(21 λλλ ∈ be arbitrary and let *
λPy∈ be arbitrary as well. Since y is optimal for

)(λP we have

 ybybybf TTT Δ+== λλλ)()(,

and, since y is feasible for allλ ,

)()(111 λλλ fybybyb TTT ≤Δ+= ,)()(222 λλλ fybybyb TTT ≤Δ+= .

Hence we find

 ybff TΔ−≥−)()()(11 λλλλ , ybff TΔ−≥−)()()(22 λλλλ .

The linearity of f on],[21 λλ implies

λλ
λλ

λλ
λλ

−
−

=
−
−

2

2

1

1)()()()(ffff
.

Now using that 02 >−λλ and 01 >−λλ we obtain

 ybffffyb TT Δ≤
−
−

=
−
−

≤Δ
1

1

2

2)()()()(
λλ
λλ

λλ
λλ

.

Hence, the last two inequalities are equalities, and the slope of f on the closed interval

],[21 λλ is just ybTΔ . This means that the derivative of f with respect to λ on the open

interval),(21 λλ satisfies

),(,)(' 21 λλλλ ∈∀Δ= ybf T ,

or equivalently,

),(,)()(21 λλλλλλ ∈∀=Δ+= ybybybf TTT .

We conclude that y is optimal for any)(λP with),(21 λλλ ∈ . Since y was arbitrary in

*
λP , it follows that

),(, 21
** λλλλλ ∈∀⊆ PP .

Since λ was arbitrary in the open interval),(21 λλ , the above argument applies to any

),(~ 21 λλλ ∈ ; so we also have

 89

),(, 21
**

~ λλλλλ ∈∀⊆ PP .

We may conclude that *
~

*
λλ PP ⊆ and **

~ λλ PP ⊆ , which gives *
~

*
λλ PP = . The theorem follows,

In the same way we can also prove the following theorem.

Theorem 3.7

If)(μg is linear on the interval],[21 μμ , where 21 μμ < , then the dual optimal set *
μD is

constant (i.e. invariant) for),(21 μμμ ∈ .

Theorem 3.6 gives us an idea to deal with the case that we don’t have strictly feasible interior
point. We start from the same policy we used in section 3.2.1, and put this policy in (1.44):

⎪⎩

⎪
⎨
⎧

⋅+=

⋅=

∑∑
∑

iaj jijj jiji

iaj jiji

PDay
Pax

ππγπβ
ππβ

π

π

})}({)}({{)(
})}({{)(

*

*

to get a feasible point of (1.37). Of course, this point may not be an interior point of the feasible
set. Then we modify the original problem by adding

xAb TΔ=Δ in which 0xx >Δ+

to b , and make sure xΔ is small enough compared to x , so that the primal optimal set will not
be changed. Hence, from the modified problem we can get an optimal policy which is also optimal
for the original problem.

Remark
1) About the choice of xΔ . If we sum every row of the linear constraints of (1.37), we can see

∑∑ =
j jai i ax β

),(
)(.

Hence, normally, we can take a xΔ related to ∑ j jβ . In our code, we just choose

⎪⎩

⎪
⎨

⎧

=
×

≠
=Δ ∑

0)(
||

0)(0
)(

3 ax
AS

ax
ax

i
j j

i

i
β . (3.8)

2) About the y part of the initial point. For i belongs to a communicating set, we can always

choose γ to make sure 0)(>ayi . On the other hand, if i belongs to a transient set,

iaj jij P ππγ ⋅∑ })}({ * is always zero. However, the corresponding part of the transient set in

)(πD is 1)(−−QI , and it is bigger than I . Hence we can conclude that the y part of the

initial point is strictly positive.

 90

3.3.2 Computational performance

Basically, we have the same approach as in section 3.2.2. We try to use Algorithm 2.4 to solve the
LP problem (1.37) and to get an optimal solution, but the problem is not that easy.

We can see from (1.37) that there is no y in the objective function ∑
),(

)()(
ai

ii axar . That means

if we have an optimal solution *)*,(yx for (1.37) and a yΔ , s.t.

0)()}({
),(

=Δ−∑ ai jijij ayapδ ,

then we can get unbounded optimal solutions in the feasible set with the form

)**,(yMyx Δ+

in which 0* , ≥Δ+∈ yMyRM .

This may not be a problem in the simplex method, because the simplex method moves from one
extreme feasible point to another, but it may cause the IPM to fail. Even if IPM can end up with an
optimal solution, it can be an interior point in the middle of the feasible set, not close to any
extreme optimal solution. Then we cannot apply Theorem 1.26 to get an optimal policy.

Fortunately, Theorem 3.7 offers us a good way to overcome this disadvantage. What we do is
adding a proper penalty on y to the objective function and transforms it to:

 ∑∑ −
),(),(

)()()(
ai

i
ai

ii ayaxar δ . (3.9)

Here the “proper” means δ is small enough to make sure the new LP problem has the same
optimal set as the original problem, but not too small that the penalty doesn’t really work. Because

if δ is almost zero, y can still be very big and the optimal solution we get is not close to the

extreme optimal solutions enough. In our code, we just let 1=δ , and it works fine.

Now, we are fully prepared, and we can start to solve MDP problem with average rewards. The
following is the result of Example 3.1 (because of the limit of space, we just list only a few
iterations here). Here we choose 1=δ .

 ()1(1x)2(1x)3(1x)1(2x)2(2x)3(2x)1(3x)2(3x)3(3x

)1(1y)2(1y)3(1y)1(2y)2(2y)3(2y)1(3y)2(3y)3(3y)

Initial (0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111
0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333)
M

iteration 14
2=ε (0.0176 0.0250 0.0778 0.0527 0.0325 0.2544 0.0500 0.2822 0.2079

0.1048 0.1446 0.2186 0.0819 0.1048 0.1401 0.0684 0.0837 0.1048)

 91

M
iteration 23

1=ε (0.0020 0.0028 0.0129 0.0079 0.0035 0.3994 0.0077 0.4046 0.1592
0.0105 0.0847 0.2418 0.0056 0.0105 0.0113 0.0053 0.0097 0.0105)
M

iteration 32
1.0=ε (0.0002 0.0003 0.0014 0.0008 0.0004 0.4172 0.0008 0.4178 0.1611

0.0011 0.0856 0.2469 0.0005 0.0011 0.0011 0.0005 0.0010 0.0011)
 M

We can see in 32nd iterations, we are very close the extreme solution:

 (0 0 0 0 0 12
5 0 12

5 6
1

 0 12
1 4

1 0 0 0 0 0 0).

From this, we can get the corresponding deterministic policy using (1.43):

3)1(=f (or 2)1(=f), 3)2(=f , 2)3(=f (or 3)3(=f).

It is obviously that every combination of the above is an optimal deterministic policy..

Also we try to solve Example 3.3 which has no strictly feasible interior point. We start from point

(0.2500 0.2500 0.2500 0.2500 0 0
0.6667 0.6667 0.6111 0.6111 0.2222 0.2222).

Then we add 0] 0 0 0 0 0 0.0046 0.0046 0 0 0 0[=Δx to it, so the initial point will be

(0.2500 0.2500 0.2500 0.2500 0.0046 0.0046
0.6667 0.6667 0.6111 0.6111 0.2222 0.2222).

The linear constraints will be

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−
−

=⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
−−

3426.0
3333.0
3333.0
0069.0
0023.0
0046.0

1000011
0011011

01011011
10000
00110

010110

2
1

2
1

2
1

2
1

y
x

.

We also put a penalty in the objective function, and it becomes

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−−−−−−

y
x

111111984621 .

Then we solve the modified linear programming problem:

 ()1(1x)2(1x)1(2x)2(2x)1(3x)2(3x

)1(1y)2(1y)1(2y)2(2y)1(3y)2(3y)

 92

Initial (0.2500 0.2500 0.2500 0.2500 0.0046 0.0046
0.6667 0.6667 0.6111 0.6111 0.2222 0.2222)
M

iteration 7
2=ε (0.0353 0.3769 0.3784 0.2078 0.0031 0.0077

0.1060 0.2133 0.0703 0.1060 0.2220 0.2197)
 M
iteration 13

1=ε (0.0041 0.4832 0.4868 0.0222 0.0010 0.0119
0.0105 0.1060 0.0055 0.0105 0.2544 0.1505)

 M
iteration 19

1.0=ε (0.0004 0.4942 0.4987 0.0021 0.0001 0.0137
0.0011 0.0973 0.0005 0.0011 0.2581 0.1415)

 M
The same as last example, in 19th iterations, we are very close to an extreme solution:

 (0 2
1 2

1 0 0 0

 0 12
1 0 0 4

1 6
1)

Then, we can get two corresponding deterministic policies using (1.43):

2)1(=f , 1)2(=f , 1)3(=f or 2)1(=f , 1)2(=f , 2)3(=f .

Both of them are optimal policies.

3.3.3 Optimality equation test

Here we follow the same idea in section 3.2.4: based on the policy we get from the IPM, we make
a new deterministic policy and check whether it is optimal. If it is not, we go several steps further
in the IPM until the heuristic policy changes. However, in MDP with average rewards, the
situation is more complicated.

There is no property like: for every Si∈ , there exists an action)(iAa∈ such that in the

extreme optimal solution 0)(>axi . Therefore we cannot use the same trick in this section. In

(1.43) we have to find the set }0)(|{ >∈= ∑a ix axSiS first, but in the IPM, we move inside

the feasible set. That means every point we get from IPM is strictly bigger than zero. Hence, the

first thing we shall do is to set up a threshold d , and set any)(axi which are lower than this

threshold to zero.

 93

ASai
dax
daxax

ax
i

ii
i ×∈

⎩
⎨
⎧

<
≥

=),(,
)(0
)()(

)(* . (3.10)

Now, it is possible for us to use (1.43) to get a policy.

Remark
About the choice of d . Because of the same reason as xΔ , normally, we can take a d related

to ∑ j jβ . We should also take xΔ into account. The amount 3|| AS
j j

×
∑ β

 should always be

smaller than d so that the optimal set of the original linear programming problem stay the same.
In our code, we just choose

 2|| AS
d j j

×
=
∑ β

. (3.11)

Then, we face another problem often: there are much more possible optimal deterministic policies
in average rewards case than in the discounted rewards case. We can see this from the stationary

matrix)(* fP of an optimal policy f . Different policies can lead to the same stationary matrix

)(* fP , so they all have the same value vector. That means they are all optimal policies. We only

consider deterministic policies here. The simplest way to get a deterministic policy is:

ASaiayayaxji

axaxaxji

iaia j

iaia j

ia ×∈
⎪
⎩

⎪
⎨

⎧

==∈

=>∈

= ∑
∑

),(,
otherwise 0

)(max)(},0)(|{ if 1

)(max)(},0)(|{ if 1 **

π . (3.12)

In this heuristic way, we need a test to check whether it is an optimal policy. The next theorem
introduces us a test.

For every Si∈ and)(DCf ∈∞ , the action set),(fiB is defined by

.
)()()()()(r and)()()(

or)()()(
)(),(00

i ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+>+=

>
∈= ∞∞∞∞

∞∞

∑∑
∑

fuffuapaffap
ffap

iAafiB
iij jijij jij

ij jij

φφφ
φφ

 (3.13)

Theorem 3.8

If ofiB /=),(for every Si∈ , then ∞f is an average optimal policy.

Proof

Since ofiB /=),(for every Si∈ , for any)(DCh ∈∞ , we have

)()()(∞∞ ≤∑ ffhp ij jij φφ

 94

and

)()()()()(r 00
i

∞∞∞ +≤+∑ fuffuapa jij jij φ if)()()(∞∞ =∑ ffhp ij jij φφ .

Let ,...),,(ffhR = . Then,)()()()(∞+= fvhPhrRv αα α and, by Theorem 1.22,

.)()()(
1

)(

)()(
1

)()}1(1{)()()(
1

)(

1
0

1
0

1
0

effuf

efuffuffv

⋅+−+
−

=

⋅++
−

−−=++
−

=

∞
∞

∞
∞∞

αεφ
α

φ

αε
α

φααεφ
α

αα α

(in this proof)(αε k satisfies 0)(lim 1 =↑ αεα k) implying

.)()()()()()(
1

)()(

})()()(
1

)(){()()(

1
0

1
0

efhPfuhPhrfhP

effufhPhrRv

⋅+−++
−

=

⋅+−+
−

+=

∞
∞

∞
∞

αεφ
α

φ

αεφ
α

φα

Since efuffv ⋅++
−

=
∞

∞)()(
1

)()(2
0 αε

α
φα , we have

.)()}()()()()()({

)}()()({
1

1)()(

3
00 efhPfuhPhrfu

fhPfRvfv

⋅++−−+

−
−

=−

∞

∞∞∞

αεφ

φφ
α

αα

Since 0)()()(≥− ∞∞ fhPf φφ and, if 0)}()()({ =− ∞∞
ifhPf φφ ,

0)}()()()()({)}()()()()()({ 0000 ≥+−−=+−− ∞∞
ii ffuhPhrfufhPfuhPhrfu φφ ,

we obtain

 eRvfv ⋅≥−∞)()()(3 αεαα for α sufficiently close to 1, i.e.

 efvhPhreRvfv ⋅++=⋅+≥ ∞∞)()()()()()()(33 αεααε ααα .

Hence,

 efvhPhrfvhPI ⋅++≥− ∞∞)()()()()()}({ 3 αεαα αα .

Therefore,

 ehvehrhPIfv ⋅
−

+=⋅+−≥ ∞−∞

α
αεαεα αα

1
)()(})()({)}({)(3

3
1 .

From the Laurent expansion follows)()(∞∞ ≥ hf φφ , i.e. ∞f is an average optimal policy.

From the above theorem, we get a way to judge whether a deterministic policy is average optimal.

 95

And we try to use this test in Algorithm 2.4 to solve Example 3.1:

k opt? (11π 12π 13π 21π 22π 23π 31π 32π 33π)

0 no (0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333)

1 yes (0 0 1 0 0 1 0 1 0)

This test turned out to be extremely good in this example. We also try Example 3.3

k opt? (11π 12π 21π 22π 31π 32π)

0 no 0.5 0.5 0.5 0.5 0.5 0.5
1 yes 0 1 1 0 0 1

It seems as the optimality equation test is unbelievably efficient, but it is reasonable. By the choice
of initial point, we get a point which fulfills

)()(21 axax ii = and)()(21 ayay ii =

for SiiAaa ∈∈∀),(, 21 . One the other hand, the optimal solution of (1.37) must have

 one 0)(>axi or 0)(>ayi for every state Si∈ .

Take into account

 ∑∑ =
j jai i ax β

),(
)(

which is a constant, we can see why the first move of the IPM can show the clue of the optimal
policy.

For performance measure of this heuristic method in big MDP models with averages rewards, we
refer to Appendix C.

3.3.4 Blackwell optimal policy

There is another algorithm for the MDP with average rewards. As we see from the section 1.4.3, if
α is close enough to 1, the optimal policy for discounted rewards is also optimal for average
rewards.

We can compare the optimal policy for MDP with discounted rewards in the case 9.0=α with
the optimal policy for MDP with average rewards, we can see they are actually the same.

Another question comes up: when is α is close enough to 1?
This is a parametric analysis problem of linear programming problem

 96

}0 ,:max{ ≥= xbxAxc TT

like we did at the beginning of section 3.3.1. Here, we don’t consider how the optimal set changes
with the change of b and c , but under the change of matrix A , which is a much harder
problem.

However, in practice, if we choose 99.0=α , we will nearly always get an optimal policy for
MDP with average rewards from solving the MDP problem with discounted rewards.

In Appendix C, we list the performance measure for this heuristic method in discounted rewards
with 99.0=α . We can compare the result with average rewards.

Conclusion

Because of the special way to choose the starting point and construct the heuristic policy, in nearly
all cases, we don’t need to go very close to the optimal solution of the linear programming
problem to get the optimal deterministic policy. As we can see from Appendix C, this heuristic
approach to MDPs based on the IPM is very efficient. Even for a Linear programming problem
with 160 variables (20 state, 8 actions), we are able to get the optimal deterministic policy for
discounted rewards case in less than 30 iterations (on average out of 1000 random MDPs). Hence,
in MDPs, this method apparently has an advantage against simplex method.

There is still something we need to do to complete our research in this method. We don’t have a
theoretical complexity bound for this method. It’s not that easy to get complexity bound. However,
simplex method doesn’t have an exact complexity bound neither, and it’s still a well accepted
method.

What’s more, we can also use this heuristic approach in value iteration. In value iteration, we need
to calculate:

 })()({max)()(1 ∑∑ +=+=+
j

n
ijiaj

n
nijni

n vaparvfpfrv αα .

We also have a guess of the policy nf for the optimal policy.

 97

Appendix A
Some technical lemmas

We start with a slightly generalized version of the well-known Cauchy-Schwarz inequality. The
classical Cauchy-Schwarz inequality follows by taking IMA == in the next lemma (where
I is the identity matrix).

Lemma A.1 (generalized Cauchy-Schwarz inequality).

If MA , are symmetric matrices with AxxMxx TT ≤|| , nRx∈∀ , then

))(()(2 AbbAaaMba TTT ≤ , nRba ∈∀ , .

Proof

Note that 0≥AxxT , nRx∈∀ , so A is positive semi-definite. Without loss of generality, we

assume that A is positive definite. Otherwise IA ε+ is positive definite for all 0>ε , and
we take the limit as 0→ε , with a and b are nonzero. It follows from

 () () () ()()baMbabaMbaMba TTT −−−++=
4
1

that

() () () ()()
() () () ()()
() () () ()()
()

() .
4
1

22
16
1

16
1

16
1

16
1)(

2

2

2

2

22

AbbAaa

AbbAaa

baAbabaAba

baMbabaMba

baMbabaMbaMba

TT

TT

TT

TT

TTT

+=

+=

−−+++≤

−−+++≤

−−−++=

Let 4:
Abb
Aaa

T

T

=μ .

When replacing a by
μ
a

 and b by bμ this implies

 () ()().1
4
1)(

2
2

2

2

2 AbbAaaAbbAaabMaMba TTTT
T

T =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≤

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= μ

μ
μ

μ
,

which was to be shown.

 98

The following lemma gives an estimate for the spectral radius of a symmetric homogeneous
trilinear form. The proof is due to Jarre [8].

Lemma A.2 (Spectral Radius for Symmetric Trilinear Forms).

Let a symmetric homogeneous trilinear form RM →×× nnn RRR : be given by its

coefficient matrix nnnR ××∈M . Let RA →× nn RR : be a symmetric bilinear form, with

matrix nnR ×∈A , and 0>μ a scalar such that

 n
A

RxxxxAxxxM ∈∀=≤ ,],[],,[632 μμ .

Then

 n
AAA

RzyxzyxzyxM ∈∀≤ ,, ,],,[μ .

Proof

Without loss of generality we assume that 1=μ . Otherwise we replace A by A3 μ . As in the

proof of Lemma A.1 we assume that A is positive definite. Then, using the substitution

],,[:],,[2
1

2
1

2
1

zAyAxAMzyxM −−−=

we can further assume that IA = is the identity matrix and we need to show that

 nRzyxzyxzyxM ∈∀≤ ,, ,],,[
222

μ .

under the hypothesis

 nRxxxxxM ∈∀≤ ,],,[3

2
μ .

For nRx∈ denote by xM the (symmetric) matrix defined by

 [] [] n
xx

T RzyzyxMzyMzMy ∈∀== , ,,,:,: .

It is sufficient to show that

 nRyxyxyyxM ∈∀≤ , ,],,[2

22
μ ,

because the remaining part follows by applying Lemma A.1, with xMM = , for fixed x .

Define

 []{ }1 : ,,max:
22
=== yxyyxMσ

and let x and y represent a solution of this maximization problem. The necessary optimality
condition for x and y imply that

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
y

x
xM
yM

y

y

2
0

0
2

2
βα ,

 99

where α and β are the Lagrange multipliers. From this we deduce that
2
σα = and σβ = ,

by multiplying from the left with ()0,Tx and ()Ty,0 , and thus we find

 xyM y σ= , yxM y σ=2 ,

which implies that yyM y
22 σ= . Since yM is symmetric, it follows that y is an eigenvector

of yM with the eigenvalue σ± , which gives that

 []yyyMyMy y
T ,,==σ .

This completes the proof.

 100

Appendix B

Code I

This code is for MDPs with discounted rewards.

%%%
%%%%%%%%%%%%%%%%%%%%%%%% main %%%%%%%%%%%%%%%%%%%%
%%%

function Damped_Newton_steps

[A, P, Q, alpha, beta, r, c, x, n, m, v, taw, epsilon, thet, mu] = initiation;
s=0;

[deltx, lambd] = calculate_lambd(A, x, c, v, mu);

[A,x,c]=analyse_x(A, P, Q, alpha, beta, r, c, x, n, m, v, taw, epsilon, thet, mu);

while (lambd > taw)
 s=s+1;
 x = x+deltx/(1+lambd);

[A,x,c]=analyse_x(A, P, Q, alpha, beta, r, c, x, n, m, v, taw, epsilon, thet, mu);
 [deltx, lambd] = calculate_lambd(A, x, c, v, mu);
end;

disp('---------------------------------');

while (v*mu > epsilon)
 mu = (1-thet)*mu;

 [deltx, lambd] = calculate_lambd(A, x, c, v, mu);

 while (lambd>taw)
 s=s+1;
 x = x+deltx/(1+lambd);

[A,x,c]=analyse_x(A, P, Q, alpha, beta, r, c, x, n, m, v, taw, epsilon, thet, mu);
 [deltx, lambd] = calculate_lambd(A, x, c, v, mu);
 end;
disp('---------------------------------');
end;

 101

disp(sprintf('total number of iterations: %.6f', s));

%%%
%%%%%%%%%%%%%%%%%%% subfunctions %%%%%%%%%%%%%%%%%%%%%
%%%

%%%%%%%%%%%%%%%%%%% initiation %%%%%%%%%%%%%%%%%%%%%%%
function [A, P, Q, alpha, beta, r, c, x, n, m, v, taw, epsilon, thet, mu] = initiation;

alpha=0.5;
r=[1; 2; 3; 6; 4; 5; 8; 9; 7];
c=(-1)*r;
n=3; % # of states %
m=3; % # of actions %
v=n*m;
beta=ones(n,1)/n;

taw=1/3;
epsilon=0.1;
thet=0.9;
mu=1;

policy=[]; % initial policy
for i=1:n
 temp=r((i-1)*m+1:i*m)>0;
 policy=[policy; temp/sum(temp)];
end;

P{1} = [1, 0, 0; 1, 0, 0; 1, 0, 0]; % Pij(a=1) %
P{2} = [0, 1, 0; 0, 1, 0; 0, 1, 0];
P{3} = [0, 0, 1; 0, 0, 1; 0, 0, 1];

for i=1:n % Pij(a=1,2,3)=>Qi=1,2,3 j(a)
 Q{i}=[];
 for j=1:m
 Q{i}=[Q{i};P{j}(i,:)];
 end;
end;

Ppolicy=[];
for i=1:n
 Ppolicy=[Ppolicy; (policy((i-1)*m+1:i*m))'*Q{i}];

 102

end;

for i=1:m % matrix A
 temp=eye(n,n)-alpha*P{i};
 for j=1:n
 A(:,i+(j-1)*m)=temp(j,:)';
 end;
end;

temp=beta'*(eye(n,n)-alpha*Ppolicy)^(-1); % initial point %
x=[];
for i=1:n
 x=[x;temp(i)*policy((i-1)*m+1:i*m)];
end;

%%%
%%%%%%%%%%%%%%%%%% calculate deltx & lambd %%%%%%%%%%%%%%%%%
function [deltx, lambd] = calculate_lambd(A, x, c, v, mu);

y = x;
B = A;
d = c;
position = (x~=0);
u = sum(position);

for i=v:-1:1
 if (position(i)~=1)
 y(i)=[];
 d(i)=[];
 B(:,i)=[];
 end;
end;

h = diag(y);
H = diag(y.*y);
delty = (H*B'*(B*H*B')^(-1)*B-eye(u)) * (H*(d/mu) - y);
hdelty = -(eye(u)-h*B'*(B*H*B')^(-1)*B*h)*(h*(d/mu) - ones(u,1));
lambd = (hdelty'*hdelty)^(0.5);

deltx=[];
for i=1:v
 if position(i)==1

 103

 deltx = [deltx; delty(1)]; delty(1)=[];
 else
 deltx = [deltx; 0];
 end;
end;

%%%
%%%%%%%%%%%%%%%%%%% analyse x %%%%%%%%%%%%%%%%%%%%%%%
function [A,x,c]=analyse_x(A, P, Q, alpha, beta, r, c, x, n, m, v, taw, epsilon, thet, mu);

%%%%%%%%%%%% suboptimal test %%%%%%%%%%%%%%
policy=[];
for i=1:n
 temp=x(1+(i-1)*m:i*m);
 policy=[policy; temp/sum(temp)];
end;

Ppolicy=[]; % P(pi)
for i=1:n
 Ppolicy=[Ppolicy; (policy((i-1)*m+1:i*m))'*Q{i}];
end;

rpolicy=[]; % r(pi)
for i=1:n
 rpolicy=[rpolicy; r((i-1)*m+1:i*m)'*policy((i-1)*m+1:i*m)];
end;

vpolicy=(eye(n)-alpha*Ppolicy)^(-1)*rpolicy; % v(pi)

spolicy=[]; % s(pi)
for i=1:m
 spolicy(i:m:v)=r(i:m:v)+alpha*P{i}*vpolicy-vpolicy;
end;
spolicy=spolicy';

Ux_x=[]; % Ux-x
for i=1:n
 Ux_x=[Ux_x; max(spolicy((i-1)*m+1:i*m))];
end;

subopt=[];
for i=1:n
 subopt=[subopt; spolicy((i-1)*m+1:i*m)<(Ux_x(i)-alpha/(1-alpha)*range(Ux_x))];

 104

end;

%%%%%%%%%%%% guess a deterministic policy %%%%%%%%%%%%%%
Dpolicy=[]; % guess the deterministic policy: the action with the maxim
probability
for i=1:n
 temp=policy((i-1)*m+1:i*m)==max(policy((i-1)*m+1:i*m));
 Dpolicy=[Dpolicy; temp/sum(temp)];
end;

PDpolicy=[];
for i=1:n
 PDpolicy=[PDpolicy; (Dpolicy((i-1)*m+1:i*m))'*Q{i}];
end;

rDpolicy=[]; % r(pi)
for i=1:n
 rDpolicy=[rDpolicy; r((i-1)*m+1:i*m)'*Dpolicy((i-1)*m+1:i*m)];
end;

vDpolicy=(eye(n)-alpha*PDpolicy)^(-1)*rDpolicy;

Dtest=[];
for i=1:n
 temp=r((i-1)*m+1:i*m)+alpha*Q{i}*vDpolicy;
 Dtest=[Dtest; max(temp)];
end;

disp(x');
disp(policy');
disp(subopt');
disp(Dpolicy');
disp(sprintf('------ %.6f', sum(vDpolicy==Dtest)==n));

 105

Code II

The code for MDPs with average rewards is:

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% main %%%%%%%%%%%%%%
%%%

function Damped_Newton_steps

[A, P, Q, beta, r, c, x, n, m, w, taw, epsilon, thet, mu] = initiation;
s=0;

[deltx, lambd] = calculate_lambd(A, x, c, w, mu);

analyse_x(A, P, Q, beta, r, c, x, n, m, w, taw, epsilon, thet, mu);

while (lambd > taw)
 s=s+1; disp(s);
 x = x+deltx/(1+lambd);

analyse_x(A, P, Q, beta, r, c, x, n, m, w, taw, epsilon, thet, mu);

 [deltx, lambd] = calculate_lambd(A, x, c, w, mu);
end;

disp('---------------------------------');

while (w*mu > epsilon)
 mu = (1-thet)*mu;

 [deltx, lambd] = calculate_lambd(A, x, c, w, mu);

 while (lambd>taw)
 s=s+1; disp(s);
 x = x+deltx/(1+lambd);

analyse_x(A, P, Q, beta, r, c, x, n, m, w, taw, epsilon, thet, mu);

 [deltx, lambd] = calculate_lambd(A, x, c, w, mu);
 end;
disp('---------------------------------');
end;

 106

disp(sprintf('total number of iterations: %.6f', s));

%%%
%%%%%%%%%%%%%%%%%%% subfunctions %%%%%%%%%%%%%%%%%%%%%
%%%

%%%%%%%%%%%%%%%%%%% initiation %%%%%%%%%%%%%%%%%%%%%%%
function [A, P, Q, beta, r, c, x, n, m, v, taw, epsilon, thet, mu] = initiation;

r1=[1;2;3;6;4;5;8;9;7];
r=[r1;-1*ones(size(r1))];
c=(-1)*r;
n=3; % # of states %
m=3; % # of actions %
v=2*n*m; % # of variables in linear programming
d=1/m;
beta=[zeros(n,1);ones(n,1)/n];

taw=1/3;
epsilon=1;
thet=0.9;
mu=1;

policy=[]; % initial policy
for i=1:n
 temp=r((i-1)*m+1:i*m)>0;
 policy=[policy; temp/sum(temp)];
end;

P{1} = [1 0 0; 1 0 0; 1 0 0]; % Pij(a=1) %
P{2} = [0 1 0; 0 1 0; 0 1 0];
P{3} = [0 0 1; 0 0 1; 0 0 1];

for i=1:n % Pij(a=1,2,3)=>Qi=1,2,3 j(a)
 Q{i}=[];
 for j=1:m
 Q{i}=[Q{i};P{j}(i,:)];
 end;
end;

Ppolicy=[]; % P(pi)
for i=1:n
 Ppolicy=[Ppolicy; (policy((i-1)*m+1:i*m))'*Q{i}];
end;

 107

for i=1:m % matrix A
 temp1=eye(n,n)-P{i};
 temp2=eye(n,n);
 for j=1:n
 tempA(:,i+(j-1)*m)=temp1(j,:)';
 tempB(:,i+(j-1)*m)=temp2(j,:)';
 end;
end;
A=[tempA, zeros(size(tempA));tempB, tempA];

sum=0; % the stationary matrix of P(pi)
for i=1:10000
 sum=sum+Ppolicy^i;
end;
Pstar=sum/10000;

Z=(eye(n,n)-Ppolicy+Pstar)^(-1); % the fundamental matrix

D=Z-Pstar; % the deviation matrix

temp=beta(n+1:2*n)'*Pstar; % initial point %
t1=[];
for i=1:n
 t1=[t1;temp(i)*policy((i-1)*m+1:i*m)];
end;
temp=beta(n+1:2*n)'*D+ones(1,n)*Pstar;
while sum(temp>0)<n
 temp=temp+ones(1,n)*Pstar;
end;
t2=[];
for i=1:n
 t2=[t2;temp(i)*policy((i-1)*m+1:i*m)];
end;
x=[t1;t2];

x=x+0.01*(x==0);
beta=A*x;

A(1:(2*n-rank(A)),:)=[]; % make sure matrix A is full rank
beta(1:(2*n-rank(A)))=[];

 108

%%%
%%%%%%%%%%%%%%%%%% calculate deltx & lambd %%%%%%%%%%%%%%%%%
function [deltx, lambd] = calculate_lambd(A, x, c, v, mu);

y = x;
B = A;
d = c;
position = (x~=0);
u = sum(position);

for i=v:-1:1
 if (position(i)~=1)
 y(i)=[];
 d(i)=[];
 B(:,i)=[];
 end;
end;

h = diag(y);
H = diag(y.*y);
delty = (H*B'*(B*H*B')^(-1)*B-eye(u)) * (H*(d/mu) - y);
hdelty = -(eye(u)-h*B'*(B*H*B')^(-1)*B*h)*(h*(d/mu) - ones(u,1));
lambd = (hdelty'*hdelty)^(0.5);

deltx=[];
for i=1:v
 if position(i)==1
 deltx = [deltx; delty(1)]; delty(1)=[];
 else
 deltx = [deltx; 0];
 end;
end;

%%%
%%%%%%%%%%%%%%%%%%% analyse x %%%%%%%%%%%%%%%%%%%%%%%
function [A,x,c]=analyse_x(A, P, Q, beta, r, c, x, n, m, v, taw, epsilon, thet, mu);

%%%%%%%%%%%% guess a deterministic policy %%%%%%%%%%%%%%
policy=[]; % guess the deterministic policy
for i=1:n
 temp1=x((i-1)*m+1:i*m)>=(sum(beta)/(m*n)/10);
 if sum(temp1)~=0

 109

 policy=[policy; x((i-1)*m+1:i*m)==max(x((i-1)*m+1:i*m))];
 else
 policy=[policy;
x((m*n+(i-1)*m+1):(m*n+i*m))==max(x((m*n+(i-1)*m+1):(m*n+i*m)))];
 end;
end;

Ppolicy=[];
for i=1:n
 Ppolicy=[Ppolicy; (policy((i-1)*m+1:i*m))'*Q{i}];
end;

rpolicy=[]; % r(pi)
for i=1:n
 rpolicy=[rpolicy; r((i-1)*m+1:i*m)'*policy((i-1)*m+1:i*m)];
end;

temp=eye(n,n); % the stationary matrix of P(pi)
for i=1:10000-1
 temp=temp+Ppolicy^i;
end;
PpolicyStar=temp/10000;

Z=(eye(n,n)-Ppolicy+PpolicyStar)^(-1); % the fundamental matrix

D=Z-PpolicyStar; % the deviation matrix

v=PpolicyStar*rpolicy;
u=D*rpolicy;

vtest=[]; utest=[];
for i=1:n
 temp1=Q{i}*v;
 vtest=[vtest; max(temp1)];
 temp2=(r((i-1)*m+1:i*m)+Q{i}*u);
 utest=[utest; max(temp2)];
end;

disp(x');
disp(policy');
disp(sprintf('------ %.6f', sum([abs(v-vtest);abs(v+u-utest)]<1/10^2)==2*n));

 110

Appendix C

In this section, we report our numerical results based on 1000 random MDPs, and list the average
performance in discounted rewards (DR) with 5.0=α and 99.0=α (mostly the Blackwell
policy), and also in average rewards (AR).

We generate MDPs in the following way:
1) Fix the size of the state space and the action space.

Let || Sn = and || Am = .

2) Let every item of reward r be a random integer from]100 ,1[.

3) For every Aa∈ , we randomly choose k percent items from every row of the transition

matrix and put a random number from]1,0[in these positions. Then normalize every row

of the transition matrix to make it a stochastic matrix.

The following table is the average number of iterations for the heuristic approach to get an optimal
policy.

20=k
n m DR with 5.0=α DR with 99.0=α AR

10 2 2.483 7.915 17.587
10 4 5.360 16.770 36.648
20 4 8.829 16.939 45.589
20 8 16.242 29.048 94.180

40=k

n m DR with 5.0=α DR with 99.0=α AR
10 2 1.944 3.565 6.894
10 4 3.894 7.370 18.446
20 4 6.017 9.660 31.294
20 8 12.340 18.245 72.021

60=k

n m DR with 5.0=α DR with 99.0=α AR
10 2 1.577 2.450 3.930
10 4 3.258 4.930 11.965
20 4 5.202 7.459 24.133
20 8 9.516 13.743 59.490

 111

As we can see, to get a Blackwell optimal policy from letting 99.0=α in the discounted
rewards case, costs much less time than to get an average optimal policy directly. In practice, if we
want to get an average optimal policy, we just let 99.0=α in the discounted rewards case.
However, there is no theory to guarantee what we get from this way is an average optimal policy.
What’s more, standard techniques of Policy iteration and Value iteration have numerical problem
for 1≈α , but this approach works very well.

 112

Bibliography

[1] Bauer, H.: Probability theory and elements of measure theory, Second English Edition,
Academic Press, London, 1981.

[2] Bierth, K-J.: An expected average reward criterion, Stochastic Processes and Applications 26

(1987) 133-140.

[3] Chung, K.L.: Markov chains with stationary transition probabilities, Springer, 1960.

[4] Doob, J.L.: Stochastic processes, Wiley, 1953.

[5] Feller, W.: An introduction to probability theory and its applications, Volume I, third edition,

Wiley, 1970.

[6] Glineur, F.: Topics in Convex Optimization: Interior-Point Methods, Conic Duality and

Approximations. PhD thesis, Faculte Polytechnique de Mons, Mons, Belgium, 2001.

[7] Hertog, D.D.: Interior Point Approach to Linear, Quadratic and Convex Programming,

Volume 277 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht,
The Netherlands, 1994.

[8] Jarre, F.: Interior-point methods via self-concordance or relative Lipschitz condition. Fakultat

fur Mathematik, Bayerischen Jelius-Maximilians-Universitat, Wurzburg, Deutschland, 1994.
Habilitationsschrift.

[9] Kallenberg L.C.M: Markov decision processes, lecture note, University of Leiden, The

Netherlands, Fall 2007.

[10] Nesterov, Y.E. and A.S. Nemirovskii. Interior Point Polynomial Methods in Convex

Programming: Theory and Algorithms. SIAM Publications. SIAM, Philadelphia, USA, 1993.

[11] Powell, R.E. and S.M. Shah: Summability theory and applications, Van Nostrand Reinhold,

London (1972).

[12] Renegar James. A mathematical view of interior-point methods in convex optimization.

MPS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2001.

[13] Stoer, J. and R. Bulirsch: Introduction to numerical analysis, Springer, 1980.

	Mastertitel.pdf
	thesis.pdf

