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Chapter 0 Introduction

0.1 Standard method of MDPs

There are three main methods for MDPs: Policy iteration, Linear programming and Value iteration.
We will give a short introduction for these three methods first.

Policy iteration

In the method of policy iteration, we constructed a sequence of deterministic policies, which have
increasing value vectors. As the space of deterministic policies is finite, this method will terminate
with an optimal policy within a finite number of iterations. The optimal value vector will be
generated as by-product.

Linear programming

This method transforms the MDP models into a linear programming problem. Furthermore, there
is a correspondence between extreme feasible points of the linear programming problem and
deterministic policies of the MDP model. Hence once we get the optimal solution of the linear
programming problem, we get the optimal deterministic policy for the MDP model. In this thesis,
we will only consider linear programming method for MDPs.

Value iteration

Converse to the policy iteration, the value iteration focuses on value vectors. In this method, the

o0

value vector is successively approximated, starting with some guessvl, by a sequence {V"}_,

which converges to the optimal value vector. This method is also called successive approximation.
Finally, we will get a value vector, whose distance to the optimal value vector is smaller than a
given accuracy parameter ¢ .Aso-called & -optimal policy is constructed as a by-product.

0.2 Heuristic approach to MDPs based on the IPM

IPM is an efficient method to solve linear programming problem. The general idea about using
IPM to solve MDPs is: get an ¢ -optimal solution of the linear programming problem from IPM,
and get a corresponding & -optimal policy. However, in MDPs, nearly always we can get a better
result: an optimal deterministic policy, and also quicker.

The idea is: once we get a feasible solution in the linear programming problem with IPM, we
transform it into a stationary policy. Based on this policy, we make a new heuristic policy. Then,
we can do several tests to check whether this heuristic policy is an optimal policy. If it is not, we
just go some more steps in IPM, until the heuristic policy changes, and check again.

Because of some unique properties of MDPs, this heuristic method works very fast.



In this thesis, we start with the MDPs models and two important criteria: total expected discounted
rewards and average expected rewards. In Chapter 2, we will introduce the Interior point method
based on Self-concordant functions, which can be used for solving the Linear programming
problem in Chapter 1. Chapter 3 will deal with how to make an heuristic approach in the IPM to
solve the LP problem in Chapter 1. Appendix A contains some technical lemmas, and in Appendix
B the codes are given. Some numerical results are reported in Appendix C.



Chapter 1 Introduction to Markov decision processes

In this chapter, we introduce the model of a Markov decision process (MDP) and we present several
optimality criteria.

1.1 The MDP model

1. State space

At any time point at which a decision has to be made, the state of the system is observed by the
decision maker. The set of possible states is called the state space. Although the state space could be
finite, denumerable, compact or even more general, in this study we only consider the MDP model

with finite state space. The state space will be denoted by S ={L,2,...,N}.

2. Action sets
When the decision maker observes that the state of the system is state i, he chooses an action from
a certain action set, which may depend on the observed state: the action set in state i is denoted by

A(i) . Similarly to the state space, we assume that the action sets are finite.

3. Decision time points

The time intervals between the decision points may be constant or random. In the first case the
model is said to be a Markov decision process; when the times between consecutive decision points
are random the problem is called a semi-Markov decision problem. In this thesis, we restrict
ourselves to Markov decision processes.

4. Rewards

Given the state of the system and the chosen action, an immediate reward is earned. Such reward
only depends on the decision time point, the observed state and the chosen action and not on the
history of the process. The immediate reward at decision time point t for an action a in state |

will be denoted by ;' (a) ; if the reward is independent of the time t, we denote I,(a) instead of

r' () . In this study we consider only stationary rewards.

5. Transition probabilities

Given the state of the system and the chosen action, the state at the next decision time point is
determined by a transition law. These transitions only depend on the decision time point, the
observed state and the chosen action and not on the history of the process. This property is called the
Markov property. If the transitions depend on the decision time point, the problem is said to be

non-stationary, and by pitj (a) the probability denotes that the next state is state j, given that the
state at time t is state i and that action a is chosen. If the transitions are independent of the

time points, the problem is called stationary, and the transition probabilities are denoted by p;; (a).



In this thesis we restrict ourselves to stationary transitions.

6. Planning horizon

This process has a planning horizon. This horizon may be finite, infinite or with random length. In
this study the planning horizon will be infinite.

7. Optimality criterion

The objective is to determine a policy, i.e. a decision rule for each decision time point and each
history of the process, which optimizes the performance of the system. The performance is
measured by a utility function. This function assigns to each policy, given the starting state of the
process, a value. In this thesis, we consider criteria based on discounted and average rewards.

1.2 Policies and Optimality criteria
1.2.1 Policies

A policy R is a sequence of decision rules: R = (7z1,7z2,...,7zt,...), where 7' is the decision
rule at time point t,t =1,2,.... the decision rule 7' may depend on all information of the system
until time t, i.e. on the states at the time points 1,2,...,t and the actions at the time points
1,2,...,t —1. The formal definition of a policy is as follows.

Let SxA={(i,a)|ieS,ae A(l)} and let H, denote the set of the possible histories of the
system up to time point 1, i.e.

H, ={(.a,..i_.a i) (,,8)eSxAl<k<t-Li eS). (L)

A decision rule 7' at time point t gives the probability, as a function of the history H, tothe

action space, of choosing action a, i.e.
ha 20 forevery a e A(iy) and Y 7z, =1 forevery h eH,. (1.2)
a

Let C denote the set of all policies. A policy is said to be Markov if the decision rule 7'is

independent of (i, a,,...,i, ;,8,,) forevery te N.Hence, in a Markov policy the decision rule

at time t only depends on the state i ; therefore the notation 7;, is used. Let C(M) be the
set of Markov policies. If a policy is a Markov policy and the decision rules are independent of the
time point t, i.e. 7t =7%=..., then the policy is called stationary. Hence, a stationary policy is

determined by a nonnegative function 7 on S x A such that Zﬂia =1 forevery ieS. The
a



stationary policy R = (7,7,...) isdenoted by 7, and the set of stationary policies by C(S). If
the decision rule 7 of a stationary policy z” is nonrandomized, i.e. for every i€ S, we have
7, =1 for exactly one action @, (consequently 7, =0 for every a#a,), then the policy is
called deterministic. Therefore, a deterministic policy can be described by a function f on S,
where f (i) is the chosen action a,, 1€ S. A deterministic policy is denoted by f® and the
set of deterministic policies by C(D).

A matrix P =(p;) is a transition matrix if p; >0 for all (i, ) and Zj p; =1 forall i.

Markov policies, and consequently also stationary and deterministic policies, induce transition
matrices.

Assumption 1.1
In the following chapters, we only consider stationary policies, that means the immediate rewards

and the transition probabilities are stationary, and denoted by r,(a) and p;(a), respectively, for

all 1,] and a.

For the stationary policy R = (x,7,...) the transition matrix P(7) and the reward vector r(x)

are defined by
P(r); =D py(@)m, forevery (i,j)eSxS; (1.3)

r(z), = Z:ri(a)ﬂia forevery ieS. (1.4)
a
Let the random variables X, and Y, denote the state and action at time t, t=12,.... For any
policy R and any initial distribution /3, i.e. S, is the probability that the system starts in state
i, let P, {X,=]Y,=a} be the notation for the probability that at time t the stateis j and
the actionis a.If S =1 forsome ieS,thenwewrite B, instead of P, . The expectation

operator with respect to the probability measure P, or B is denoted by E;, or E

repectively.



1.2.2 Optimality criteria

Total expected discounted rewards over an infinite horizon

An amount I earned at time point 1 can be deposited in a bank with interest rate p . Then this
amount grows and becomes (L+ p)-r attime point 2, (1+ p)*-r attime point 3, etc. Hence,
an amount I attime point 1 is comparable with (1+ p)t*1 - attime point t, t=12,....

Let a=(1+ p)™, called the discount factor. Note that « < (0,1). Then, conversely, an amount

I received at time point t can be considered as equivalent to an amount a'™tr attime point 1.
The total expected « -discounted rewards, given initial state i and a policy R, is denoted by

vi’(R) and defined by

(R) =D E e (0= 30 TR X, = 1Y, = @),

= = i,

For a stationary policy 7, we have:

Vi (z7) = 3 ot P(z) ().

t=1

The value-vector v“ and the optimality of a policy R. are defined by

ve = SLFlepVa (R) and vi(R.) =Vv“.
In the following section, it will be shown that there exists an optimal deterministic policy f.” for

this criterion and that the value vector v is the unique solution of the so-called optimality

equation
X, = gg%{r. (a) +a; p;(@)x;} ieS.

Furthermore, it will be shown that f.” is an optimal policy if

G(£)+ad py (R 2n(@)+aY py(@)v], acAi)ies.



Average expected reward over an infinite horizon

- I . 1q . .
In the criterion of average rewards the limiting behavior of —z ry (Y;) is considered for
t=1

. 14 . . o L
T — . Since lim= E ry (Y,) may not exist and interchanging limit and expectation is not
T t
t=1

allowed, in general, there are four different evaluation measures which can be considered:
1. Lower limit of the average expected rewards:

.
¢(R) = Iign_jgf%z E r{rx (Y1)} 1€ S, with value vector ¢=SL;p¢(R).

t=1

2. Upper limit of the average expected rewards:

a(R)=|imsup%i E.{rx (Y,)} i €S, with value vector ¢ =supg(R).

Tow t=1

3. Expectation of the lower limit of the average rewards:
1 T
v, (R) = Ei’R{Iigninf ?z r, (Y)} 1€S, withvalue vector y =supy (R).
—0 Py t R
4 Expectation of the upper limit of the average rewards:

— T — —
v, (R) = Ei’R{Iigninf %z ry, (Y} €S, with value vector i =supy/(R).
—0 Py R

Lemma 1.1

w(R)<#(R) < &(R) < J(R) for every policy R.

Proof
The second inequality is obvious. The first and the last inequality follow from Fatou’s lemma (e.g.
Bauer [1], p.126):

v, (R)= Ei’R{IirTnin%i Iy, (Y)}< Iigniﬂf%i Ei’R{rXt Y)}Y=4(R)
and

AR) = limsup =3, ofr, (1)}< E, cfliminf =3 5 (1)} =9 (R).

T—ow

For these 4 criteria the value vector and the concept of an optimal policy can be defined in the usual
way. In Bierth [2] is shown that

w(r”)=¢(z”) = p(x”) =y (x™) for every deterministic policy 7~

and that for all 4 criteria there exists a deterministic optimal policy. Hence, the 4 criteria are
equivalent in the sense that an optimal deterministic policy for one criterion is also optimal for the



others.
1.3 Discounted Rewards

1.3.1 Introduction

This section deals with the total expected discounted reward over an infinite planning horizon. This
criterion is quite natural when the planning horizon is rather large and returns at the present time are
of more value than returns of the same value which are earned later in time. We recall that the total

expected o — discounted rewards, given initial state 1 and a stationary policy 7z”, is denoted by

V' (7”) and satisfies

Vi (z7) = Y ot P () () = {1 - aP ()} 1 (7).

The second equation follows from

{1 -aP(z)}{l +aP(x) +--+{aP ()} '} =1 —{aP(x)}
and

{aP(7)} -0 for t > 0.

In the next section, we first show some theorems of monotone contraction mappings in the context
of MDPs without proof. For the proof we refer to Kallenberg [9]. Then, the optimality equation,
bounds for the value vector and suboptimal actions are considered. Finally, the linear programming
method is introduced.

1.3.2 Monotone contraction mappings

Let X be a Banach space with norm ||-||, and let B: X — X . The operator B is called a
contraction mapping if for some £ € (0,1)
|Bx—By|< Bl x=y]| forall x,ye X. (1.5)

The number f is called the contraction factor of B. An element X e X is said to be a

fixed-point of B if Bx™* = X*. The next theorem shows the existence of a unique fixed-point for
a contraction mapping in a Banach space.

10



Theorem 1.1 (Fixed-point Theorem)
Let X be a Banach space and suppose B: X — X isa contraction mapping. Then,

(1) x*=lim,, B"x existsforevery xe X, ,and x* isa fixed-pointof B.

(2) x* isthe unique fixed-point of B.

The next theorem gives bounds on the distance between the fixed-point X* and iterations B"X

for n=01,2,....

Theorem 1.2
Let X be a Banach space and suppose B: X — X is a contraction mapping with contraction

factor £ and fixed-point X *. Then,
1) IIx*-B"x|< B- )" IB"x-B"*x|< £"A-£) " | Bx—x||, ¥xe X,neN;
@ IIx*=x[<@-8"IBx=x|, ¥xeX.

Remark:

The above theorem implies that the convergence rate of B"X to the fixed-point is at least linear.

(cf. Stoer and Bulirsch [13], p.251). This kind of convergence is called geometric convergence.

Let X be a partially ordered set and B: X — X . The mapping B is called monotone if

X<y implies Bx <By.

Theorem 1.3

Let X be a partially ordered Banach space. Suppose that B: X — X is a monotone
contraction mapping with fixed-point X*. Then

(1) Bx<x implies X*<Bx<X;

(2) Bx=x implies x*>Bx > X.

Lemma 1.2

(1) Let B:R" — R"™ be a monotone contraction mapping with contraction factor £, and let

d beascalar. Then X<y+d-e impliess Bx<By+ g-|d|-e.
(2 Let B:R™ —>RY be a mapping with the property that X<y+d-e implies

Bx<By+ f-|d|-e for some 0< /<1 and for all scalars d. Then B is a monotone

11



contraction, with respect to the supremum norm, with contraction factor £ .

Lemma 1.3

Let B:R" — R" be a monotone contraction mapping, with respect to the supremum norm, with

contraction factor £ and fixed-point X *. Suppose that there exist scalars @ and b such that

a-e<Bx—x<b-e forsome XeR".Then,

x—(1-p)"ale<Bx-pB01-p)"|ale<x*<Bx+pA-B)"|ble<x+A-8)"|b|e

Corollary 1.1

Let B be a monotone contraction in R™, with respect to the supermum norm ||-||.., with
contraction factor £ and fixed-point X . Then
X— (L= B) " || Bx—=x]|, €< Bx— B1- )" || Bx—x|, & < x*

<Bx+B1L-B) | Bx—x||, €< x+@A-£)"|| Bx—=x]|, €

Lemma 1.4

Let B:R" — R" be a monotone contraction in R", with respect to the supremum norm, with

contraction factor /3, fixed-point X* and with the property that B(x+cC-€)=Bx+ fc-e for

every x e R" andscalar C.

Suppose that there exist scalars a and b such that a-e<Bx—x<b-e for some X e RN,

Then,

X+(1-pB)"a-e<Bx+pB01-p)ra-e<x*<Bx+B(1-B) 'b-e<x-(1-5)"b-e.

1.3.3 The optimality equation

Suppose that at time point t =1, when the system is in state i, action a e A(i) is chosen, and

that from t =2 on an optimal policy is followed. Then, the total expected ¢ -discounted reward

isequal to r.(a)+ az p; (@)V{ . Since any optimal policy obtains at least this amount, we have
i

v 2 max, ,q{r(@)+a) p; @)V} ieS.
i

On the other hand, let &, be the action chosen by an optimal policy in state i. Then,

12



Vi =r(g) + az Pij (ai)V]'l < maXaeA(i){ri (@) + az Pj; (a)Vj'z}v ieS.

Hence, V¥ is a solution of

K =max, {6 @)+ py @)X}, ieS. 6
i

According to the contraction mapping theory in section 1.3.2, v* is a fixed-point of the mapping

U:R" - R", defined by
Ux), = maxaeA(i){ri (a)+ az Pj; (a)Xj}v ieS. 1.7)
i

Besides the mapping U , defined above, we introduce for any randomized decision rule 7 a

mapping L_:R" — R", defined by

L x=r(7)+aP(7)X . (1.8)
Let f,(i) be such that

r(f, (1) + azj: Py (£, (D)X} = max ., {r; () + azj: p;(@)x;}, ieS.

Then,

L, x=Ux=max Lx,
where the maximization is taken over all deterministic decision rules f .
Let ||P(x7)|l, be the subordinate matrix norm (cf. Stoer and Bulirsch [13], p.178), then

| P(x) ||, satisfies

IP(z) Il.=max; 3 p;(7) =1.

Theorem 1.4

The mapping L_ and U are monotone contraction mappings with contraction factor « .

Proof

Suppose that X > Y. Let 7 be any stationary decision rule. Because P(7z)>0,
Lx=r(z)+aP(z)x>r(7)+aP(7)y=L.y, (1.9)
i.e. L ismonotone. U isalso monotone, since

Ux=max; Lix=L; x=L; y=Uy.

13



Furthermore, we obtain

I Lx=Lyl.=laP(@)(x=y) [l.< a | P(z) LIl (x= ) L= e[| (x= ¥) L.,
i.e. L isa contraction mapping with contraction factor ¢« . The derivation for operatior U is

Ux-Uy=L; x-L; y<L; x-L;y=a- P(f)x-y)<ea|Ix-Yy]|,e. (1.10)
Interchanging X and Yy yields

Uy-Ux<a-||y—x]|, €. (1.11)

From (1.10) and (1.11) in follows that ||[Ux-Uy|| . <a-||x—Y]|,, i.e. U is a contraction

w0 !

mapping with contraction factor « .

The next theorem shows that for any randomized decision rule 7 , the total expected

o — discounted reward of the policy 7 is the fixed-point of the mapping L .

Theorem 1.5
v¥(7”) is the unique solution of the functional equation L X = X.
Proof
Theorem 1.1 and Theorem 1.4 imply that it is sufficient to show that L v*(z”) =v*(7").
We have
LV (z”)-v*(z”)=r(z) —{l —aP(x)v*(7")
=r(z)—{l —aP(x)H{l - aP(x)} 'r(x) = 0.

Corollary 1.2

vi(z*)=lim___L"x forany xeR".

n—owo —rx

The next theorem shows that the value vector v is the fixed-point of the mapping U .

Theorem 1.6

v? is the unique solution of the functional equation UX = X.
Proof

It is sufficient to show that Uv® =v”.Let R= (721, 7r2,...) be an arbitrary Markov policy. Then,

14



v“(R) = r(z") + ZZZ a ‘PP (x?)---P(x Hr(x")
=r(z") + aP(ﬁl)Z;as’lp(ﬂz) P(z*)---P(z*)r(z*™)
=r(z') + aP (7' )V*(R,) = L .V (Ry),

where R, = (722,7[3,...) . From the monotonicity of Lﬁ1 and the definition of U , we obtain
v¥(R)=L,v*(R,) <L ,v* <Uv*, ReC(M).

Hence, V¥ =SUPg ) V*(R) <Uv®. Take any &> 0. Since V* =supg ) V*(R), for any

jeS there exists a Markov policy R? = (7'(j),7%(j),...) suchthat v{(R{)>Vv{ —¢.

Let a e A(i) be such that ri(ai)+a2j p; (v = max {r, (a)+azj p;(@Vi} ieS.

Consider the policy R™ = (7", 7°,...) defined by

" ! t tl: .
" {0 otherwise h3y...ha |ta( 2) ( t)

ie. R is the policy that chooses &, in state 1 at time point t =1, and if the state at time
t=2 is I,, then the policy follows Ri‘j where the process is considered as originating in state
I,
Therefore,

Vi > Via(R*) =r(a)+ azj Pjj (ai)V}Z(R}S) > (a) +azj Pjj (ai)(v? - &)

= max_{r,(a) + “zj p; (Vi —ae = (Uv7), —ae, i €S.

Since & >0 isarbitrarily chosen, v >Uv”.

Because v* =Uv“ =L, v“, it follows from Theorem 1.5 that v* = V”‘(fv‘f), ie. fv‘f is an

optimal policy. If f* e C(D) satisfies
r(a)+ az p; (F)vi =max,{r,(a) + az p;(@Vvi} ieS,
i i

then f~ is called a conserving policy. Conserving polices are optimal. Therefore, the equation

Ux = X is called the optimality equation.
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Corollary 1.3
(1) There exists a deterministic « -discounted optimal policy.

) v*=Ilim__U"x forany xeR".
(3) Any conserving policy is « -discounted optimal.
As already mentioned, we derive some bounds for the value vector v“. These bounds can be

obtained from Lemma 1.4. Therefore, we note that the mappings L_ and U satisfy, for any

x e R" andscalar ¢, L,(x+c-€)=L . X+ac-e and U(X+C-e)=Ux+ac-€.

Theorem 1.7

Forany xeR", we have

1) x—(1-a) ™ ||lUx=X]||, e<Ux—al@-a) " |JUx—x]||, e<v*(f?)<v* <
Ux+al-a) ™ ||Ux=x||, e<x+Q-a) ™" |Ux=x]||, €.

@ v =x|.<@-a)" [Ux=x]|,.

@) v =vi(f) I, <2al-a)™ |[Ux-X]|,.
Proof

Take any XxeR". By Lemma 1.4, for a=—||Ux—x]||,, b=]|Ux—x], and B=L,, we
obtain (notice that BX = fo X =UX),

X—(1L-a)™" |Ux=x]|, € <Ux—a(l—a)™ |[Ux—X]|, e<ve(f”)<v”.
Next, again applying Lemma 1.4, for B =U the remaining part of (1) implies,
Ve <Ux+a(l—-a)™t ||Ux=x]||, e<x+1-a) " ||Ux=x]||, €.

The part (2) and (3) follow directly from part (1).

Theorem 1.8

Forany xeR" we have
1) x—(1-a)'min (Ux-Xx), -e <Ux—a(l—a) ' min, (Ux—x), -e <v*(f*)<v* <
Ux +a(@-a) max,(Ux —x),-e<x+(1-a) ' max, (Ux - x), -e.

@ v =v(f)|,<2a(l—a) span(Ux — x) where span(y):=max; y, —min, V..
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Proof

Notice that min, (Ux—X), -e <Ux—x <max,(Ux—x),-e. It is easy to verify that for
a=min,;(Ux—x), and b=max;(Ux—X), the proof is similar to the proof of Theorem 1.7.
Remark
Since  —min,(Ux—x), gJ|Ux—x]|, and max,Ux—-x), |Ux—x], , we have
span(Ux—x) <2||Ux—x]||,,. Consequently, the bounds of Theorem 1.8 are stronger than the
bounds of Theorem 1.7.
Next, we discuss the elimination of suboptimal actions. An action a € A(i) is called suboptimal if
there doesn’t exist an « -discounted optimal policy f* e C(D) with f(i)=a. Because f~”
is o -discounted optimal if and only if v*(f”)=v”, and because v* =Uv“, an action
a e A(i) is suboptimal if and only if

v >r(@)+a) p;avy, (1.12)

j

Suboptimal actions can be disregarded. Notice that formula (1.12) is unuseful, because v* is

unknown. However, by upper and lower bounds on V“ as given in Theorem 1.7 and 1.8,

suboptimal tests can be derived, as illustrated in the following theorem.

Theorem 1.9
Suppose that X<v“ <y . If ri(a)+az p;(@)y; <(Ux); , then action ae A() is
i

suboptimal.
Proof,

v = (Uv?), 2 (Ux), > r,(a) +az P (a)yJ' >r,(a) +az P (a)V}I .

The first inequality follows from the monotonicity of U .

Corollary 1.4

Suppose that for some scalars b and C,wehave X+b-e<v* <x+c-e.If

ri(a)+az p; (@)x; < (Ux), —a(c-b), (1.13)

then action a € A(i) is suboptimal.
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Proof

ri(a)+az p; (@)(x; +c¢) = ri(a)+az p; (@)X; +ac < (Ux); +ab={U (x+b-e)},.

Applying corollary 1.4 on the bound of Theorem 1.8, gives the following test for the elimination of

a suboptimal action a € A(i):

r(a)+ az p; (@)%; < (Ux); —a(l—a) " span(Ux—x). (1.14)

1.3.4 Linear programming

The value-vector v” is the unique solution of the optimality equation (1.6), i.e.

Via = maXaeA(i){ri (a) +0‘Z pij (a)v]."}, iesS.
i

Hence v satisfies

v zr(a)+a) p;(a)v] forall (i,a)eSxA. (1.15)
j

Intuitively it is clear that v* is the smallest vector which satisfies (1.15). This property is the key

property for the linear programming approach to compute the value-vector. It turns out that an
optimal policy can be obtained from the dual linear program. We also show a one-to-one
correspondence between the stationary policies and the feasible solutions of the dual program, such
that the extreme points correspond to the deterministic policies. Furthermore, we show that the
exclusion of suboptimal actions can be included in the linear programming method.

Avector Ve R" issaidtobe «o -superharmonic if

v, 2r(a)+a) p;(a)v; forall (i,a)eSxA. (1.16)
j

Theorem 1.10

v? is the smallest « -superharmonic vector.

Proof
Since V" =maX,,;,{r (@) +a) p;(@Vi}=r(a)+a)_ p;(@)vs forall (i,a)eSxA,
i j

v? is «a -superharmonic. Suppose that Vv € RY isalso « -superharmonic. Then

v>r(a)+aP(f)v forevery f*eC(D),
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which implies {I —aP(f)}v>r(f).Since {l —aP(f)}" = iatPt(f) >0, we obtain
t=0

va{l —aP(F)¥Ir(f)=v(f*), f* eC(D).

Hence, v =max, v*(f”)<v,ie v isthesmallest « -superharmonic vector.

Corollary 1.5

v? is the unique optimal solution of the linear programming problem

min{Zﬂjvj |Z{5ij —aop; (@), >r(a), (i,a) e Sx A}, (1.17)

where /S, is any strictly positive number for every jes.
Proof

From theorem 1.10 it follows that v“ is a feasible solution of (1.17) and that v* <v for every

feasible solution v of (1.17). Hence, v is the unique solution of (1.17).

By corollary 1.5, the value vector v* can be found as optimal solution of the linear program (1.17).

This program does not give an optimal policy. However, an optimal policy can be obtained from the
solution of the dual program

S —ap (@ (a)=f4. jeS
mad Sr@n@| S PEN@ =7, e

. (1.18)
(i.2) X;(@)>0,(i,a) e Sx A

Theorem 1.11
(1) Any feasible solution X of (1.18) satisfies Za X;(@)>0, jeS$

(2) The dual program (1.18) has a finite optimal solution, say X .

() Any f”eC(D) with x (f.(i))>0 for every ieS is an « -discounted optimal

policy.
Proof
(1) Let X be afeasible solution of (1.18). From the constraints of (1.18) it follows that

D x;@) =4 +a) p;@)x@)=p,>0, jes.

(i.2)
(2) Since the primal program (1.17) has a finite optimal solution, namely the value-vector v, it

follows from the theory of linear programming that the dual program (1.18) also has a finite optimal
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solution.

(3) Takeany f.”eC(D) with x (f.(i))>0 forevery ieS (such policy exists by part (1)).

Because X (f.(i))>0, ieS, the complementary slackness property of linear programming
implies
> 43, —apy (F)W; =r(F), ieS.
J
Hence, in vector notation,

{l —aP(f)* =r(f.) whichimplies v* ={l —aP(f.)} " r(f.)=v*(f.”),

i.e. f.” isan « -discounted optimal policy.

If the simplex method is used, then the programs (1.17) and (1.18) are solved simultaneously. Hence

by the simplex method both the value vector v* and an optimal policy are computed.

Next, we show the one-to-one correspondence between the feasible solution of (1.18) and the set

C(S) of stationary policies. For 7z~ e C(S) the vector X(z) with component
x"(a),(i,a) € Sx A, is defined by

x (@) ={B'{l —aP(7)} '}, - 7,, (i,a)eSxA. (1.19)
Define forany te N and (i,a)eSx A arandom variable n{ by

o [LIFXY) =)
@ 0 otherwise.

Then, the total discounted number of times that (X,,Y,) =(i,a) equals Z:ilat‘lng) :

Lemma 1.5

Given initial distribution g3, i.e. P{X, = j}=p; forall jeS, and a stationary policy 7",

X" (a) satisfies x7(a)=E, {> . a"'nl}, (i,a)eSxA.

a

Proof

0

since {l —aP(z)}" =Y~ a"'P"(x), we have
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(@) =20, 8@ P e = 2L T APAX =i X = 117
=> @Y BPAX =i Y =al X = =2 e E, {0}
=E, ﬂ{zt 105t 'ny.

Conversely, for a feasible solution X of (1.18), define z(X) with elements 7, by

X _ Xi (a)

TN %@

(i,a) e SxA. (1.20)

Theorem 1.12
The mapping (1.19) is a one-to-one mapping of the set of stationary policies onto the set of feasible
solution of the dual program (1.18) with (1.20) as the inverse mapping; furthermore, the set of

extreme feasible solution of (1.18) corresponds to the set C(D) of deterministic policies.
Proof

First, we show that X" is a feasible solution of (1.18).

> 00—y @I @) = Y, {6, —ap, @K {1 - aP(0)} ), 7,
=2 {1 —aP(0)Y'} - > {6, —apy ()} 7,
=2 {1 —aP()Y '} I -aP(n)};
={f' {1 —aP(m)}" {l —aP(n)}}; = ;. [ €S
since {I —aP(7)} =) {aP(7n)} 20, x7(a) =0 forevery (i,a)eSxA.
Next, we prove the one-to-one correspondence. Let X be a feasible solution of (1.18).

Then, (1.20) yields X, (a) = 7, - X,, where X; = za X;(a), i €S. Therefore, we can write

B = Z(i'a){é‘ij —ap;(@)}x (a) = Z(i,a){é‘ij —op (&)} 7 - X
= Z|{§U —ap; (7(X))}x, je€S.

Hence, in vector notation,

BT =x{l —aP(z(x))}, ie. X" = H{l —aP(z(x))} " ={x(z(x))} .
Conversely,
X7
i = # z’", (i,a)e SxA. (1.22)
PIRACY
Therefore, we have shown the one-to-one correspondence and that (1.20) is the inverse of (1.19).

Finally, we show the correspondence between the extreme points of (1.18) and the set C(D).

Let f*eC(D).Then,forevery ieS,
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¥ (@) = {{ﬂT{' ~aP(m)} a1 )
0 ,a#= f().

Suppose x" is not an extreme feasible solution. Then, there exist feasible solutions Xx* and x>
of (1.18) and a real number A e (0,1) suchthat X' = x* and x' =Ax'+(1-A)x°.

Since x'(a)=0,a= f(i), ieS,wehave x'(a)=x’*(a)=0, a= f(i), ieS.

Hence, the N -vectors X" = x'(f(i)) and x*=x’(f(i)) are solutions of the linear system

X' {l —aP(f)}=p4" . However, this linear system has a unique solution
X' =B {l —aP(f)}" . This implies x' =x*>=pg"{l —aP(f)}"* , which contradicts

x* # x2 . Hence, we have shown that X' is an extreme solution.

Conversely, let X be an extreme feasible solution of program (1.18). Since (1.18) has N
constraints, X has at most N positive components. On the other hand, Theorem 1.11, part (1),
implies that in each state there is at least one positive component. Consequently, X has in each
state | exactly one positive component, i.e. the sorresponding stationary policy is deterministic.

Algorithm 1.1 Linear programming algorithm

1. Takeanyvector B, where §;>0, jeS.

2. Use a linear programming algorithm to compute optimal solutions v* and X* of the dual
pair of linear programs:

min€y" B,v; | Y {5, —ap, ()W, > 1,(a), (i,a) €S x A}
and

5. —ap. (@)=4. jeS
xS @] O PEX@ =4 jes |
(ia) x,(a)>0,(i,a) e Sx A

3. Take f.”eC(D) suchthat X (f. (i))>0 forevery ieS.
V* isthe value-vector v® and f.” isan « -discounted optimal policy (STOP).

Next, we discuss the elimination of suboptimal actions with test (1.14).

Let y,(a) be the dual slack variable. i.e.
Yif (@)= Z{é‘u — ap; (a)}vjz (f)-ra).
i

Since
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(Ux—x), =max{r, (a) +azj p; @)V }-Vv{ =-min, y'(@),ieS
and
span(Ux— x) = min, min_ y," (@) —max, min_ y,' (a),
then the test (1.14) becomes
vy (a;) > min, y' (@) —a(@-a) {min, min_ y, (a) — max, min_ y,' (a)},

which results in the following theorem.

Theorem 1.13

Ity (a)>min,y' (a)-al-a)™{min, min, y/(a)-max, min, y; (@)} , then action

a, € A(i) is suboptimal.

1.4 Average Rewards

1.4.1 Introduction

When decisions are made frequently, so that the discount rate is very close to 1, or when
performance criterion cannot easily be described in economic terms with discount factors, the
decision maker may prefer to compare policies on the basis of their average expected rewards
instead of their expected total discounted rewards. Consequently, the average rewards criterion
occupies a cornerstone of queueing control theory especially when applied to control computer
systems and communication networks. In such systems, the controller makes frequent decisions and
usually assesses system performance on the basis of throughput rate or the average time a job
remains in the system. This optimality criterion may also be appropriate for inventory systems with
frequent restocking decisions.

In this section we start with theorems about the stationary matrix, the fundamental matrix and the
deviation matrix of a Markov chain, without proof. For the proof we refer to Kallenberg [9]. These
matrices play an important role in the average reward criterion and also in more sensitive criteria.
The most sensitive criterion is Blackwell optimality. The existence of a deterministic Blackwell
optimal policy is shown in a separate section. Laurent series expansion relates the average reward to
the total discounted reward. This is the subject of section 1.4.4. The optimality equation for average
rewards is the subject of section 1.4.5 and section 1.4.6 deals with linear programming.

1.4.2 The stationary, fundamental and deviation matrices

The stationary matrix
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Consider a policy f* e C(D). In average reward MDPs, the limiting behavior of {P(f)}" as

N tends to infinity plays an important role. In general, lim___{P(f)}" does not exist. Therefore,

nN—o0

we consider other types of convergence.

Let {b,},_, be asequence. This sequence is called Cesaro convergent with Cesaro limit b if
f 1 n-1 . .
lim,_ —Zk ,Dy existsand isequal to b.
Py

We denote this convergence by lim . b =_b or b, —_ Db. The sequence is said to be Abel

n—o =N

convergent with Abel limit b if

lim . (1- a)Z::Oa"bn exists and is equal to b .

This convergence is denoted by lim . b, =,b or b, —, b. Ordinary convergence implies

n—oo =n

both Cesaro and Abel convergence, but the converse statement is not true. The next result is well
known in the theory of the summability of series (e.g. Powell and Shah [11], p.9).

Theorem 1.14

If the sequence {b,}., is Cesaro convergentto b, then {b },, isalsoAbel convergentto b.

Remark
The converse statement of Theorem 1.14 is not true.

Theorem 1.15
Let P be any stochastic matrix, i.e. the matrix of a Markov chain. Then,

@ P*:=Iimn_m%z:th exists, ie. P" — P*.

2 P*P=PP*=P*P*=P*,
The matrix P * is called the stationary matrix of the stochastic matrix P .

Corollary 1.6
lim_, > a"(P"—P*)=0.

Let P" be any stochastic matrix with ergodic classes E,, E,,...,E_ and transient states T . By

m

renumbering of the states the matrix can be written in the following so-called standard form:
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P 0 0
0 P, O 0
0

P= 0], (1.22)
0
o - - - - 0P O
A A - o A Q]

where the matrix P, corresponds to the ergodic class E,, 1<k <m, and the matrix Q to the

transient states. It is well known (e.g. Doob[4] p. 180), that Q" — 0 for n — oo . Since

(1-Q)(+Q+---Q")=1-Q", (1.23)

the right hand side of (1.23) tends to |, i.e. 1 —Q is nonsingular and (1 —Q)™ = Z::OQ” :
From the theory of Markov chain it is also well know (e.g. Chung[3] p.33) that the stationary matrix
of an ergodic class has strictly positive, identical rows, say 7% for P, and that 7% is the

unique solution of the following system of linear equations

ZieEk (05— Py)x =0, je Ek;' (1.24)
ZieE %; :1

Since (1.24) is a system of |E, |+1 equations and | E, | variables, the first equation can be

deleted for the computation of 7~

The following results are also well known (e.g. Feller[5]).

Lemma 1.7

Let aik be the probability that, starting from state i €T, the Markov chain will be absorbed in
ergodic class E,, 1<k <m. Then aik, ieT, is the unique solution of the linear system

(I —Q)x =b",where b* = Ae.

Theorem 1.16
Let P be any stochastic matrix written in the standard form (1.22). Then,
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_Pl* 0 o
0 PO 0
0

P" = 0], (1.25)
0
o - - . .- 0P 0
A A - A O]

where Pk* has identical rows 7" , which are the unique solution of (1.24) and

A ={1-Q}y{AeH{r'}, 1<k <m.

Algorithm 1.2 Determination of the stationary matrix P”

1. Determine the ergodic classes E,,E,,...,E, and the transient states T and write P in

m

standard form (1.22).

2. Determinefor k=12,....m:

ZieEk (65— Py)% =0, j=23,..

Z:ieEk % = 1

b. the unique solution &, i T of the linear system ng (05 — Py)X; = ZIeEk P, 1€T.

a. the unique solution 7z:.‘, J € E,, of the linear system {

X icE,,jeE, k=12..,m
3. p;=9 ax; ieT jeE,k=12..,m .
0 else

The fundamental matrix and the deviation matrix

Theorem 1.17

Let P be any stochastic matrix. Then | —P+P" is nonsingular and Z:=(I —P+P")™"

satisfies Z =lim, EZ!Z::O(P — P,
n 1= =

Thematrix Z:=(1 —P+P")™ iscalled the fundamental matrix of P .

The deviation matrix D isdefinedby D:=Z —-P" =lim___ 12:,12:;10@ —PH*-P".
) Leict 2tk
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Theorem 1.18
The deviation matrix D satisfies

. 1 n i-1 *
(1) D= hmMHZMZKZO(Pk -PY).

@ P'D=DP =(1-P)D+P —1=D(I-P)+P" =1 =0.

The fundamental and the deviation matrix can be computed as follows. From (1.22) and (1.25) if
follows that

C, 0 0 ]
0 C, 0 0
0
| -P+P" = 0 |
0
o - - .- .-0¢C, 0
D, D, - - - - D, 1-Q]
where C, =1 -P +P, and D, =—A +A 1<k <m. Hence,
ct 0 0 |
0 C' o0 0
0
Z=(-P+P)*'= 0
0
0 0ocl 0
S S, So (1-Q)7

Where S, =—(1 -Q)™"D,C.", 1<k <m. Then, the deviation matrix is simply Z —P".

Theorem 1.19

W Z=lim > " a"(P-P)".

@ D=lim_ >~ a"(P"-P").

The following theorem gives the relation between average rewards, discounted rewards over

infinite horizon and total rewards over a finite horizon.

Theorem 1.20

Let f” be adeterministic policy. Then,
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@) ¢(f*)=P(f)r(f).
@ (f*)=lim . A-a)v“(f*).

@ VI(f")=Tg(f")+D(f)r(f)-PT(f)D(f)r(f).

The regular case
A Markov chain P is called a regular Markov chain if the chain is irreducible and aperodic. In that

case it can be shown that P =lim___ P". Since (P—P")"=P"—P" for n=12,... we

have (P—P")" >0 if n— oo . Therefore,
Z=(1-P+P)*=>(P-P)".
n=0
Because D=Z—-P" and Z=1+)" (P—P")"=1+>" (P"-P"),we obtain

D=3 (P"-P",

i.e. D represents the total deviation with respect to the stationary matrix. This explains the name
deviation matrix.

1.4.3 Blackwell optimality

In this section we prove the existence of a deterministic policy f,° such that v“(f,”) =v* for
all @ ela,,1) forsome 0<e, <1.Such a policy is called a Blackwell optimal policy. The next

theorem shows that the interval [0,1) can be partitioned in a finite number of subintervals such

that in each subinterval there exists a deterministic policy which is optimal over the whole
subinterval.

Theorem 1.21

There are numbers @, &, 1,...,%,, &, and deterministic policies f_~, f ..., f,” such that
1 O=¢g,<a,,<.<oy<a,=1;

2 vi(f)=v® foral aela;a;,), j=mm-1..0

Proof
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For any deterministic policy f®, v*(f™) is the unique solution of the linear system
{l —aP(f)Ix=r(f).

By Cramer’srule” v (f ™) isarational functionin « for each component i.
Suppose that a deterministic Blackwell optimal policy does not exist. For any fixed a a

deterministic ¢ -discounted optimal policy exists. This implies a series {¢,, k =12,..} and a
series {f,, k=12,...} such that

a, <a, <. with lim,_ o, =1 and v =v*(f")>Vv*(f") for a=¢,, k=23,..
Since there are only a finite number of deterministic policies, there must be a couple of policies, say

f* and Q” , such that for some nondecreasing subsequence Q n=12,.. with

lim, . o =1

nN—o0 n

{v“(f‘”)>v”‘(g°") fora=a, ... .26

vE(ET) <vi(g”) fora=q, o, ..

Let h(a)=v*(f*)—v“(g”), then h.(a) is a continuous rational function in & on [0,1)
for each i€ S . From (1.26) it follows that h (e) has an infinite number of zeros, which is in
contradiction with the rationality of h, (). Hence, there exists a deterministic Blackwell optimal
policy, i.e. apolicy f,° suchthat v“(f,")=v* forall aela,1) forsome 0<¢, <1.
With similar arguments it can be shown that for each fixed « €[0,1) there is a lower bound
L(a) <a and a deterministic policy f,, such that v*(f7,)=v" forall ae(L(a) a).
Similarly, for each fixed « €[0,1) there is an upper bound U (&) > @ and a deterministic policy
fUie suchthat v¥(fj,))=v" forall ae(a,U(a)).

The open intervals (—=1,U (0)), {(L(«),U(«))|x €(0,1)} and (L(1),2) are a covering of the
compact set [0,1]. By the Heine-Borel-Lebesque covering theorem, the interval [0,1] is covered

by a finite number of intervals, say (-1U(0)),{(L(¢;),U(«;)), j=m-1m-2,...1} and

“see e.g. J.B. Fraleigh and R.A. Beauregard: Linear Algebra, Addison Wesley, 1987, p. 214.
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(L(1),2) . We may assume that

a,=0<a, <.<q,<a,=1 L(e,,)<U(0),LQ <VU(x)
and

L(a;) <L(a;,)<U(a;)<U(a;,), j=m-1m-2..2.

Since the rational function v“(f, ,)=Vv*(fy,,))=v" for all ae(L(a;,).U(a;)) we

have
V(i ) =V (Fiy), 1=01...m.

L(aj—l)

Let fj = fu(aj), j=01,...,m. Then,
V“(fj“’):va for all ae(aj,aj_l), j=01...m.
Since v“(f”) iscontinuousin « , also

V"(fj“’):va for a=a;, j=01...,.m.

1.4.4 The Laurent series expansion

Theorem 1.20 part (2) shows a relation between discounted and average rewards when the discount

factor tends to 1. This relation is based on the Laurent expansion of v*(f™) close to =1 as

expressed in the next theorem.

Theorem 1.22
Let u*(f), k=-10,... be defined by u(f)=P (f)r(f), u’(f)=D(f)r(f) and

UH(F)=-D(f)u*(f), k=0 . Then, av*(f*)=3" o u*(f) for a,(f)<a<l,

__IIB)

04
D=1 peh

where p = !

Proof
1 ® k, Kk ¢(f°°) 1 ® k, k
Let X(f):;Zk=flp u (f)zgﬁ'gzk:op u (f) .

Since u*(f)=D(f){-D(f)}r(f) for k>0, the series Z::Opkuk(f) is well defined if
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D)
IPD(F) i<l ie a=mr o NYGIE

Since v*(f*) is the unique solution of the linear system {lI —aP(f)}x=r(f), itis sufficient

to show that {1 —aP(F)IX(F)=r(f),ie. y(f):=r(f)—{l —aP(f)Ix(f)=0.

P’ (f)r(f) . D(f)

y(f)=r(f){l —aP(f)}——F— P(f)}—Z::o{—pD(f)}kr(f)

= (1) =P"(Or(1) ~{al ~P(N) + (-2 T oD r(F)
{1 - P (1) {1 - P()ID(1)Y {-pD(D¥r(F)

DT A-pD(DFI(T)
{1 - P (1) {1 - P (DY {-pD(DFr(F)+ 3 {-pD(Fr(F)
{1 - P (M) = X A-pD(DF () + P (Dr(1) + 3 {-pD(¥Fr()

={l =P ()} (f)—r(f) =D {=pD(O)¥r(F)+P (F)r(f)+>, {-pD(F)¥r(f)
=0.

Corollary 1.7

w1y - o)

+U°(f)+e&(a), where s(a) satisfies lim , £(a)=0.

Proof

0 f " _ k
From Theorem 1.22 if follows that v (f”) = f(f) ( )+Zk—l(laki) u (f).

Since L= 1 =1+(1-a)+@1-a)®+---, we may write

a 1-(1-a)

v -4

+u’(f)+e&(a),

where lim . &(a)=0.
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1.4.5 The optimality equation

In the discounted case, the value vector is the unique solution of an optimality equation. For the
average reward criterion a similar result holds, but the equation is more complicated.

Theorem 1.23
Consider the system

{ X =MaX, Z,— P (@)x;,i€S

. 1.27
X +Y; = MaX, {6 @)+ p(@)y;}ies (20

where A(i, x) ={a e A(i) | x, :zj p;(@)x}, ieS.
This system has the following properties:

1) x=u’(f,), y= uo(fo) , where f," is a Blackwell optimal policy, satisfies (1.27).

(2) If (x,y) isasolution of (1.27), then X =g, the value vector.
Proof
Since f," is a Blackwell optimal policy, for « sufficiently close to 1, say « €[e,,1), one can

write

vi'(f07) =vi" =max,_,;{r(a) + azj p;(@)Vvi}=r(a)+ azj p; @V}, (i,a) e SxA.

Combining this result with Corollary 1.7 gives for all « €[e,,1):

¢1(f )+U (f)+8(0{)>l’ (@)+{1-(@2- a)}z pu( ){¢( )+U (f)+8(a)} (i,a)e Sx A
@4y p.,(a){“ °®)+u (1) + &, (@)} +
a- a)z pu(a){¢( 0°°)+u (f)—i—g ()}, (1,a) e Sx A,
ie.

=X, Py @ (IR -1 @2, Py @US(5) -3, by (@) (1)} + o(a) 20

1
Since this result holds for all « €[«,,1) , the term multiplied by 1o has to be nonnegative, i.e.

¢.(f) 2> py (@) (fy) forall i€S and ae A(l). (1.28)

Furthermore, when ¢ (f,") = Zj p; (@)g; (f,°) . the next term has to be nonnegative, i.e.

uio(fo) Zri (a)_zj pij (a)u?(fo)_zj pij (a)¢j(fow) = (a)_zj pij (a)u?(fo)_ﬂ(fom)'

(1.29)
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For a= f, (i), i €S, the inequalities in (1.28) and (1.29) are equalities, because:

¢i(fooo) = P*(fo )r(fo ) = P(fo )P*(fo )r(fo ) = P(fo )¢( fow)
and

u®(f,)=D(f,)r(f,)={1 —=P"(f,)+P(f,)D(f,)}r(f,)=r(f,)—as(f;)+P(f,)u’(f,).
By these results, part (1) is shown. For part (2), let (X,Yy) be a solution of (1.27). Then, for any
f”eC(D),x>P(f)x, implying that x>P"(f)x for all neN , and consequently,
x>P (f)x.

Furthermore, since 0=P"(f){x—P(f)} and all elements of P*(f) and x—P(f) and

nonnegative, p;(f){x—P(f)}; =0 for all i,jeS, implying that p;(f){x—-P(f)} =0
forall ieS.

For an ergodic state i, p;(f) >0, and consequently x, —Zj pi(@)x; =0, ie f(i)e A, x),
and therefore, by (1.27) X, +Y, =T, (f)+Z:j P (F)y; -
The columns of P*( f) corresponding to the transient states are zero, implying that

PY(F)(x+y) 2 P (f){r(f)+P(f)y}=¢(f")+P"(f)y,

p(f7)<P(f)x<x. (1.30)
On the other hand, any solution of system (1.27) gives a policy g~ which satisfies x = P(g)x
and X+Yy=r(g)+P(g)y.Hence, x=P (g)x and therefore,
#(97) =P (9)f(9) =P (gx+y—P(9)y}=x+P (9){y-P(g)y}=x. (1.31)
From (1.30) and (1.31) if follows that X, =mMaX,_aq) >, P;(@)X; =¢, i€S.

Remarks

1. Since the X-vector in (1.27) is unique, namely X =¢, the set A(i,X) is also unique for all
ieS.
2. Ifpolicy f~ satisfies ¢=P(f)p and ¢p+y=r(f)+P(f)y for some vector Yy, then
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the policy is average optimal, namely
¢=P (f)p=P (D){r(f)+P(f)y—y}r=9(f").
3. The proof suggests that a Blackwell optimal policy f,” is also average optimal, i.e.

#(f,") = #(R) forevery policy R . This result is shown below (Corollary 1.8).

4. If ¢ has identical components (e.g. if there is a unichain average optimal policy), then the first

equation of (1.27) is superfluous and (1.27) can be replaced by the single optimality equation

X+Y =max, ., {r @)+ p@y} ies. (132)

Theorem 1.24

lim_, 1-a)v¥(R) > ¢(R) forall policies R.

Proof

For f” eC(D) we have shown in Theorem 1.20 part (2) that

g(f7) =lim . (L—a)v*(f~).
For an arbitrary policy R the deviation is as follows.

Let i €S beany starting state and let X, = Z(j,a) P{X, =]Y, =a}-r;(a), t=12,..
Since the sequence {X, |t=12,..}. is bounded, we may write

L-a) v R =) e D @™ =D O xa,
(-a)? =) ta'" for ae(0]),andtherefore, ¢ (R)={D> . ta"'}-(1-a)’-4 (R)
Hence, (1—a)v®(R)—4 (R) = (l— )’ .Zj’l{%z‘sl X, —¢ (R)}-ta* .

Choose any arbitrary &> 0. Since ¢ (R) =liminf ::1 X, , there existsa T, such that

T—)oo?

0 (R)<letT1Xt +¢ forall T >T, . Thisgives

1 _ _ © . 4
(l—a)zzmg {;Zts:l X, -4 (R)fta'™ > —g(l—a)zzbn ta' 2 —s(l-a)?) ) ta' =

We also have

t

1 _ . 1 -
L-a)yy . {;Ztﬁ X —¢ (Rfta"™ > (-a) min,__ {;Zs=1 X, ~¢ (R, ta'">—¢
for a sufficiently close to 1. Hence, (1—-a)vi'(R)—¢ (R)>—-2¢ for « sufficiently close to

Lie lim . (1-a)v*(R) 2 ¢(R).
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Corollary 1.8
A Blackwell optimal policy f,” is also average optimal and consequently there exists a

deterministic optimal policy.
Proof

Let f,° bea Blackwell optimal policy and R an arbitrary policy. Then,

p(F7) =lim . (- (f2) =lim . (1—a)v® = lim_. (1-a)v*(R) > 4(R).

a™l

1.4.6 Linear programming
To apply linear programming in order to obtain the value vector and an average optimal policy we
need a property for which the value vector is an extreme element. Such property, called

superharmonicity, can be derived from the optimality equation. A vector veRY s

average-superharmonic if there exists a vector U e RN such that the pair (U,V) satisfies the

following sustem of inequalities

{ v, > Z,- p; (), forevery (i,a) e Sx A

. 1.33
vi+ui2ri(a)+zj p; (@)U, forevery (i,a) e Sx A (1.33)

Theorem 1.25
The value vector ¢ is the smallest average-superharmonic vector.
Proof

Let f,” be a Blackwell optimal policy. From Theorem 1.23 it follows that

{ ¢ = Z,— p; ()4 foreveryieS,ae Ai) w30

¢ +u’(f,)> ri(a)JrZj p; (@)uj(f,) foreveryieS,ae A(i,¢)
where A(i,¢)=(acA()|4 =3 py(@)p} icS.

Let A'(i)=(aeAGi)|4+u’(f,)<r(@)+D py@uj(f)} ieS.
Define

5 (a):¢i _zj pij(a)¢j ot (a) :¢i +ui0(f0 )_ri(a)_zj pij(a)u?(fo)! (1,a) e SxA,
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o mm§38$aeAanes} if | A () #

0 if | A'()=¢

and u=u’(f,)-M-¢.

For a< A(i,@), we have

¢ = Zj Pij (a)¢j

and

g +u =g +u(f)-M-¢ >r (a)+zj P @{UT(fo)-M-g}=r, (a)+zj p; (@)u;.
For ae A'(i), we have

4> py@),

and
¢ +u =4 +ul () -M-{s;(@)+ > p;(@)¢;}
=t (a)+r, (a)"'zj pij(a)u?(fo)_M ‘s(@)zr (a)"‘ZJ— pij(a)uj'

For ag{ac A(i,¢) U A"(i)}, we have

4> py@),

and
4 +u =4+ (1) -M-¢ 2, (@)+r @)+ py@{uj(f,)-M ¢}
=t (a)+r, (a)"'zj pij(a)uj 2L (a)+zj pij(a)uj'

Hence, the value vector ¢ is average-superharmonic.

Suppose that Yy is also average-superharmonic with corresponding vector X . Then,

y > P(f,)y, implying that
y=z P*(fo )yZ P*(fo ){r(fo )+(P(fo )_ I)X}: P*(fo )r(fo):¢(fom) =9,

i.e. @ isthe smallest average-superharmonic vector.

Corollary 1.9
From the proof of Theorem 1.25 it follows that there exists a solution of the modified optimality
equation
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{ X, = MaX,_x Zj p;(@)x;, ieS w35)

X; +Y; = max, . {r(a)+ Z,— P @)y} 1eS

with X=¢ asunique X -vector in this solution.

Corollary 1.10

The value vector ¢ is the unique V -part of an optimal solution (u,V) of the linear program

min{z,ﬁjvj

2,19 - p; (@), 20 forevery (i,a) e Sx A
v+ {6 - py(@u;2r (@  forevery(i,a)eSxA|’ (1.36)

where B, >0, j €S, is arbitrarily chosen.

The dual linear program of (1.36) is

Z(i,a){é‘ij - p;(@)kx(a)=0 jes
maxy > 1 (@)% @) 2 x; @)+ {5 - py@}y;@ =5 jeS;. (37
" X (a),y; (a) >0 (i) c Sx A

Theorem 1.26

Let (X,y) be an extreme optimal solution of (1.37). Then, any f;°eC(D) , where

X, (f(1))>0 if za X;(@)>0 and y,(f(i))>0 if Za X; (@) =0 is an average optimal

policy.
Proof

First, notice that f* is well defined, because for every jeS,

S x@+ Y, y,@=3,, p@y @+5 >0, jes,

Let S, ={ieS |Z:axi (a)>0}. Since x (f(i))>0,ieS, and y,(f(i))>0,i¢S, it
follows from the complementary slackness property of linear programming that

¢+ A8 — Py (F ) =r (F(@), ieS, (1.38)
and

Z:j{é‘ij —p;(f()}g; =0, ieS,. (1.39)
The primal program (1.36) implies Zj{ﬁij - p; (@) 20, (i,a)e SxA . Suppose that
zj{é'kj — Py (f(k))}g; >0 forsome k€S, . Since x,(f(k))>0, this implies that

> 48— pg(F (), - % (F(K) >0,
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Furthermore, zj{é'u - p; @)X - % (@) 20, (1,a) e SxA.

Hence, Z(i,a)z,-{@j - p; (@)X - % (@)>0.

On the other hand, this result is contradictory to the constraints of the dual program (1.37) from
which follows that

z(i’a)zj{é}j - pij (a)}¢1 X (a) = Z(i,a){Zj (5|J - pij (a))xi (a)}¢1 =0.

This contradiction implies that

2. {6 —py (TN}, =0, ies,. (1.40)
From (1.39) and (1.40) it follows that
2,16 = py ()¢, =0. (141)

We now show that S, is closed under P(f),ie. p;(f(i))=0,i€S,,j&S, Suppose that

Py (f(k))>0 forsome keS,, I¢S, . From the constraints of dual program (1.37) it follows
that
0= x@=2, Pi@x (@2 py(f(k)x(f(k))>0, (1.42)
implying a contradiction.

Next, we show that the states of S\S, are transient in the Markov chain induced by P(f).
Suppose that S\'S, has an ergodic state. Since S, is closed, the set S\'S, contains an ergodic

class, say J ={J;, J,s» J}- Since (X,Yy) is an extreme solution and y;(f(j))>0, jeJ,

the corresponding columns in (1.37) are linearly independent. Because these columns have zeroes in
the first N rows, the second parts of these vectors are also independent vectors. Since for

components 5jik - P, (f(},)), ke J,arealso linear independent.

However,
Db =25 6, —p, (F(G)}=1-1=0,i=12...m
which contradicts the independency of b*,b?,...,b™.
We finish the proof as follows. From (1.40) it follows that ¢ = P(f )¢, and consequently we have
¢ =P (f)¢p. Since that states of S\S_ are transient in the Markov chain induced by P(f),

the columns of P”(f) correspondingto S\'S, are zero-vectors. Hence, by (1.38),

¢(f7) =P (F)r(f)=P (f){g+{I -P(F)Ju}=P"(f)g=4,
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i.e. f” isanaverage optimal policy.
Algorithm 1.3 Linear programming algorithm
1. Takeanyvector B, where B, >0, je§S.

2. Use linear programming algorithm to compute solution (u,v) and (X, Y) of the dual pair of

linear programs:

{5; — p;(a)}v; =0 forevery(i,a)e Sx A
min Zj:ﬂjvj \%{Zj{a‘f—( p)ij};a)}uj >r (@)  for eve::/((i,ea)) eSxA
and
z(iya){é‘ij - p;(@)}x(a)=0 jes
maxy DK (a)x ()Y, x;(a) +Z(i'a){§ij - py(@)}y;(@) =5 jesS;.
e X; (2),y; >0 (i,a) e Sx A

4. Take f”eC(D) such that x, (f(i))>0 if zaxi (@)>0 and vy, (f(i))>0 if

Za X; (@) =0.Then, f* isan average optimal policy and ¢ is the value vector.

In the average reward case there is in general no one-to-one correspondence between the feasible
solution of the dual program (1.37) and the set of stationary policies. The natural formula for

mapping feasible solution (X,Y) to the set of stationary policies is:

5@ L agyies,

.X,y: zaxl (a) .
@ a)iess,

IRAC)

Conversely, for a stationary policy 7”, we define a feasible solution (X”,y”) of the dual

T (1.43)

program by

(1.44)

@) ={X, AP (D} 7,
yr (a) :{Zjﬂj{D(”)}ji +Zj7j{P*(7f)}ji}'7zia '

where y; is O onatransient class and constant on a recurrent class.

If f*eC(D), then the corresponding solution (X(f),y(f)) is an extreme solution; the

reverse statement is not true.
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Chapter 2 Interior point method

2.1 Self-concordant functions

2.1.1 Introduction

In this section, we introduce the notation of a self-concordant function and we derive some

properties of such functions. We consider a strictly convex function ¢:D — R, where the

domain D is an open convex subset of R". Our first aim is to find the minimal value ¢ on its
domain D (if it exists).

The classical convergence analysis of Newton’s method for minimizing ¢ has some major
shortcomings. The first shortcoming is that the analysis uses quantities that are not a priori known,

for example uniform lower and upper bounds for the eigenvalues of the Hessian matrix of ¢ on

D . The second shortcoming is that while Newton’s method is affine invariant, these quantities are
not affine invariant. As a result, if we change coordinates by an affine transformation (i.e. replace

X by ax+b,a = 0) this has in essence no effect on the behavior of Newton’s method but these

quantities all change, and as a result also the iteration bound changes.
A simple and elegant way to avoid these shortcomings was proposed by Nesterov and Nemirovski

[10]. They posed an affine invariant condition on the function ¢, named self-concordance. The

well known logarithmic barrier functions, that play an important role in interior-point methods for
linear and convex optimization, are self-concordant (abbreviated below as SC). The analysis of
Newton’s method for SC functions does not depend on any unknown constants. As a consequence,
the iteration bound resulting from the analysis is invariant under (affine) changes of coordinates.
The aim of this section to provide a brief introduction to the notion of self-concordance, and to
recall some results on the behavior of Newton’s method when minimizing a SC function.

Having dealt with this we will consider the problem of minimizing a linear function over the
closure of D, while assuming that a self-concordant functionon D is given.

2.1.2 Epigraphs and closed convex function

In this section and further on, ¢ always denotes a function whose domain D is an open subset
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of R".
Definition 2.1

The epigraph of ¢ istheset api¢ ={(x,t):xe D,¢(x) <t}.

Definition 2.2
A function is called closed if its epigraph is closed. If, moreover, ¢ isconvexthen ¢ iscalleda

closed convex function.

Lemma 2.1

Let ¢:D —> R be closed convex function and let X belong to the boundary of D. If a

sequence {X, }r, inthe domain convergesto X then ¢(X,) — .

Proof

Consider the sequence {@(X, )}, - Assume that it is bounded above. Then it has a limit point ¢ .

Of course, we can think that this is the unique limit point of the sequence. Therefore,
Z, = (X, (%)) > (X, 5) :
Note that z, belongs to the epigraph of ¢. Since ¢ is a closed function, then also (X, 5)

belongs to the epigraph. But this is a contradiction since X does not belong to the domain of ¢.

We conclude that if the function ¢ is closed convex, then it has the property that ¢@(X)

approaches infinity when X approaches the boundary of the domain D . This is also expressed

by saying that ¢ is a barrier functionon D.

2.1.3 Definition of the self-concordance property

We want to minimize ¢:D — R by using Newton’s method. Recall that Newton’s method is

exact if ¢ is a quadratic function. As we will see the self-concordance property guarantees good
behavior of Newton’s method.

To start with, we consider the case where ¢ is a univariate function. So we assume for the

moment that N =1, and that the domain D of the function ¢:D — R is just an open interval
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in R. The third order Taylor polynomial of ¢ around X € D is given by

P, () :¢(x)+a¢'(x)+§a2¢"(x>+%a3¢"'(x).

The self-concordance property bounds the third order term in terms of the second order term, by
requiring that

(¢"(02’)" _(8"(%)’ ‘e
(@"()a’)’  (#"(x))°

is bounded above by some uniform constant.

Definition 2.3

Let x>0. The univariate function ¢ iscalled « -self -concordant if

|¢"(x) < 2x(¢"(x))?, VX e D. 2.1)

Note that this definition assume that ¢"(X) is nonnegative, whence ¢ is convex, and moreover
that ¢ is three times differentiable.
It is easy to verify that the property (2.1) is affine invariant. Because, let ¢ be

x -self -concordant and let ¢ be defined by ¢ (y) =¢@(ay +b), where a 0. Then one
has

¢'(Y)=ag'(x), ¢"(y)=2a’¢"(x), ¢"'(y)=a’¢"(x),

3
where X=ay+b, hence if follows, due to the exponent E in the definition, that ¢ is
Kk -self - concordant as well.

Now suppose that n>1, so ¢ is a multivariate function. Then ¢ is called a

k -self -concordant function if its restriction to an arbitrary line in its domain is
x -self -concordant . In other words, we have the following definition.

Definition 2.4

Let x>0 . The function ¢ is called «-self-concordant if and only if

o(a) =¢(x+ah) is x-self -concordantat & =0 forall xe D andforall heR",

i, |0"(0) |< 2x¢"(0),¥x e D, Vh e R". 2.2)
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Here the domain of ¢(«) is defined in the natural way: given X and h it consists of all «
such that X+ cah e D. Note that since D is an open convex subset of R", the domain of

@(a) isanopenintervalin R.

2.1.4 Equivalent formulations of the self-concordance

property

We assume that ¢: D — R, where D is an open convex subset of R". To verify if ¢ is SC

we need to compute the derivatives of @(a) = @(X+ah) at o =0.We have

N 99(X)
¢'(0) = |Z=1: h, ox

oy 0°¢(x)
¢"(0) _;;hi h; %, O

PO=Y b, 0200

n
i il
i1 1k OX; OX;0X,

=}

It will be convenient to use sort-hand notations for the above right-hand side expressions. We
denote these expressions respectively as V@(X)[h], V2#(X)[h,h] and V3@(x)[h,h,h]

respectively. Thus we may write
9'(0) =Vg(x)[h] =h"Vg(x)
¢"(0) =V*¢(x)[h,h] =h"V’$(x)h
¢"(0) = V?¢(x)[h, h,h] = h"VZ4(x)[h]h.

As consequence, we have the following lemma, which is immediate from Definition 2.4.

Lemma 2.2

Let ¢ be three times continuously differentiable and x>0 . Then ¢ s
x -self - concordant if and only if

|V2g(x)[h, h, h] < 2x(V2(x)[h, h])?, ¥x e D . 2.3)

Let ¢ be any three times differentiable convex function with open domain. We will say that ¢
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is self-concordant, without specifying «, if ¢ is x -self -concordant for some x>0.

Obviously, this will be the case if and only if the quotient

(V’$(x)[h,h,h])*

g . (2.4)
(VZ¢()[h, h])

is bounded above by 4x? when X runs through the domain of ¢ and h through all vectors

in R". Note that the condition for x -self -concordance is homogeneous in h: if it holds

for some h then it holds forany Ah,with A e R.
The x -self -concordance condition bounds the third order term in terms of the second order
term in the Taylor expansion. Hence, if it is satisfied, it makes that the second order Taylor

expansion locally provides a good quadratic approximation of ¢@(X) . The latter property makes

that Newton’s method behaves well on self-concordant functions. This will be shown later on.

In the sequel we use the following notations:
g(x) =Ve(x),vxe D
and

H (x) = V?$(x),VxeD.

As we will see in the next section, under a very weak assumption the matrix H(X) is always
positive definite. As a consequence it defines a norm, according to

IvV]=+y/V H(X)v,veR".
Of course, this norm depends on X € D . We call it the local Hessian normof v at X € D, and
it will be denoted as || V||, or simply as || V||, . Using this notation, the inequality (2.3) can
be written as

| V2g()Ih, h, h]I< 2x [ hf;.

We conclude this section with the following characterization of the self-concordance property.

Lemma 2.3

A three time differentiable closed convex function ¢ with open domain D s

x -self -concordance if and only if

|V2(lh by s T 2« [Ty LI, DLy 1l

holds forany xe D andall h ,h,,h, eR".
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Proof
This statement is nothing but a general property of three-linear forms. For the proof we refer to
Lemma A.2 in the appendix.

2.1.5 Positive definiteness of the Hessian matrix

In this section we deal with an interesting, and important, consequence of Lemma 2.1. Before
dealing with it, we introduce a useful function. Let Xe D and 0#d eR" be such that
X+d e D.Fixing Vv, we definefor 0<a <1,

q(a) =V H (x+ad)v =|| V|2, . (2.5)

X+ad
The Q(«) is nonnegative and continuous differentiable. The derivative to « is given by
q'(a) =V (V’¢(x+ad)[d])v=V3s(x +ad)[d,V,V].

Using Lemma 2.3 we obtain

16'(e) H VP(x + ed)[d, v, V]IS 25 [| d [l |V [eos = 26 1A [l G(0).
If q(a) >0 thisimplies

[dloga(e)|_|a'@)|_la@) 2| d ||
da ||CI(05)| q(a)

o (2.6)

1
In the special case where v=d we have | d]||,..,=0d(e)?, and hence we then have

q'()| < 209(a)’. 2.7)

If q(e) >0 thisimplies

4 1 | _|q@|
‘daJQ(a)‘ ‘Zq(a)g

<K. (2.8)

Theorem 2.1

Let the closed convex function ¢ with open domain D be « -self -concordant. If D

does not contain a straight line then the Henssian V2¢(X) is positive definite atany xeD.
Proof

Suppose that H (X) is not positive definite for some X € D . Then there exists a nonzero vector
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d eR" such that d"H(x)d =0 or, equivalent, ||d||,=0. Let g(c):=|d ]S, just as in

(2.5) with v=d. Then q(0)=0 and g(e) is nonnegative and continuously differentiable.

Now (2.7) gives q’(a)SZKq(a)%. We claim that this implies q(«) =0 for every >0

such that X+ ad € D . This is a consequence of the following claim.

Claim

Let | =[0,a) for some a>0 and q:1 >R, . If q(0)=0 and q’(a)SZKq(a)% for

every el then g(a)=0 forevery axel.
Proof

Assume (e, )>0 forsome «, €, Let

a, =min{¢:q(a) >0, e (&, ]}
Since q is continuous and (0) =0, wehave 0< ¢, <, and q(e,)=0.Now define

1 _
h(t) = q(al—t)’tE[O’al a,).

Then, since o, —t € (a,,, ], the definition of «, implies that h(t) is well defined and

positive. Note that h(t) goesto oo if t approaches «; — ¢, . On the other hand we have

[ _ 2 _t%
h,(t)zlq(al t)gél xq(a, ) .
2 d(a, — 1) 2 d(a, —t)?

and hence h(t) <h(0)+xt forall te[0,& —a,). Since h(0)+xt remains bounded when

tapproaches «; —a, we have a contradiction. Hence the claim is proved.

Thus we have shown that q(cr) =0 forevery a >0 suchthat X+ ad € D . This implies that

¢(X+ad) islinearin «, because we have forsome B,0<f<a,

¢(x+ad) =¢(X)+Ode9(X)+%aZCI(,3) =¢(x)+ad"g(x).

Since D does not contain a straight line there exists an & such that X+ad belongs to the
boundary of D . We may assume that « >0 (else replace d by —d ). Since

lim . p(x+ad) = ¢(X)+ad g(x), which is finite, this gives conflict with the barrier
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property of ¢ on D. Thus the proof is completed.

Corollary 2.1
If ¢ is closed and self-concordant, and D does not contain a line, the @(X) has a unique
minimizer.

From now on it will be assumed that the hypothesis of Theorem 2.1 if satisfied. So the domain D
does not contain a straight line. As a consequence we have

¥xeD,VheR":||h|,=0<h=0.

2.1.6 Some basic inequalities

From now on, we assume that ¢ is strictly convex. By Theorem 2.1 this is the case if ¢ is

closed and self-concordant, and D does not contain a line. The Newton step at X is given by

Ax=-H(x)"g(x). (2.9)

Suppose that x* is a minimizer of #(X) on D. A basic equation is how we can measure the

‘distance’ from X to X*? One obvious measure for the distance in the Euclidean norm

|| Xx—x*||. But X* is unknown! So this measure cannot be computed without knowing the

minimizer. Therefore we might use the Euclidean norm of AX,i.e.|| AX ||, which vanishes only if

X = X*. However, instead of the Euclidean norm we use the local Hessian norm and measure the
‘distance’ from X to X™* by the quantity

A(X) =] AX ||, = /AXTH () AX =+/g(x) H(x) *g(x) . (2.10)

Lemma 2.4

Let xeD and ¢eR, and d €R" suchthat x+ad € D. Then

[l

ldl, .
% d < :
” ||x+ad 1—0{Kl|d ”X

1+ax|d]|,
The left inequality holds for all & such that 1+ ax||d ||,>0 and the right for all & such
that 1—ax ||d|,>0.

Proof
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Let q(a):=l|d|?, 4 justasin(2.5)with v=d.Then, from (2.8).

da(@)?| | q(@) |
| de | f2g(e)
Consequently, if X+ ad € D then

<kK.

q(0)* —ax <q(a) ? <q(0)* + ax .
since q(0)” =||d ||, and q(e)? =||d |l,,.q . this gives

1
ok < < +
d e 1Dl

Il

oK,

X

or equivalently,

l—a/(||d||X< 1 <1+051(||d||X
ldll,  ldllew I,

Hence, if 1+ax|/d|,>0 we obtain

1l

m—” ||x+ad

andif 1—ax || d|[,>0 we obtain

lId ]l
” ||x+ad_ !
1-ax||d ||

proving the lemma.

Lemma 2.5

Let X and d be such that xe D,x+deD and «| d|,<1. Then we have, for any

nonzero Ve R",
V X
@I VISV < 1)
1-x|ld]l,
Proof
Let q(a):=l|d | 4. just as in (2.5). Then q(0)=||Vv|] and q(l) =|| V], . Hence we may

write

Vi 1, 0@ _1 _ _ 11 dlogq(a)
Iogm— 2Iog ) 2(Iogq(l) log q(0)) Zjo(—da Yda .
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By (2.6) we have w <2k || d ||y, q - Also using Lemma 2.4 this implies
a
V]l x| d]l ! 1
log =t < ——da =—log(l—ax || d||,) |,_o=log( )
Ivll, “°l-ax|d]l, ’ 1-x[ld]|,

and

V]| L ok|d]l
log——+4 > — X _da =log(l-«]d]|,).
INAIN Iol—00<||0I Iy

Since the log function is monotonically increasing, we obtain from the above inequalities that

1

- d [, < e < .
Ivl, ~1-xldl,

This proves the lemma.

Lemma 2.6
1

Let xeD and deR™.If ||d|,<— then x+deD.
K

Proof

1
Since ||d||,<—, we have from Lemma 2.5 that H(x+ ad) is bounded for all 0 <o <1,
K

and thus @(X+ad) is bounded. On the other hand, ¢ takes infinite values on the boundary of

the feasible set, by Lemma 2.1. As a consequence we must have X+d € D.

2.1.7 Quadratic convergence of Newton’s method

Let X =X+ AX denote the iterate after the Newton step at X . Recall that the Newton step at
X is given by

Ax=-H(x)"g(x)
where H(X) and g(x) are the Hessian matrix and the gradient of ¢@(X) , respectively.

Recall from (2.10) that we measure the distance from X to the minimizer X* of @(x) by the

quantity

200 =l Axl, =g (T H ()9 (X
Note that if X=X* then g(x)=0 and hence A(X)=0; whereas in all other cases A(X)

will be positive.
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After the Newton step we have

A = A=A HE) g () =g (<) HX) Mg (x).

We are now ready to prove our first main result on Newton’s behavior on self-concordant
functions.

x*

Theorem 2.2
1 1

If A(X)<— then X" is feasible. Moreover, if A(X) <— then
K K

A(xT) < K{ﬂ] :
1-xA(X)

Proof

1
The feasibility of X" follows from Lemma 2.6, since || AX||,= A(X) <—.
K

To prove the second statement in the theorem we denote the Newton step at X* shortlyas V. So
vi=H(x") " g(x").
For 0<a <1 we consider the function
k() =v'g(x+aAx)—(L—a)v' g(X).
Note that k(0) =0 and
K@ =g(x") HX) g(x")=A(x")".
Taking the derivative of kK to a we get, also using H (X)Ax =—-g(X),
K'(cr) =V H (X +aAX)AX + V' g(X) = V' (H (X + aAX) — H (X)) AX..

By substituting d = @AX in (2.11) and the definition of local Hessian norm, we can derive

1
(- x|l Ax]l,)*

H (X + aAX) — H(X)j( 1JH(X).

Now applying the generalized Cauchy inequality in the Appendix (Lemma A.1) we get

1
(- ax || Ax]|,)*

VT(H(X+0!AX)—H(X))AX§( 1JIIV||XIIAXIIX-

Hence, combining the above results, and using || Ax||,= A(X), we may write

1

Kla) < ((1—axz(x))2

—1J VIl A(%) .

Therefore, since k(0)=0
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k@ <A1V, | :(m—l]da v, _fgzx) |

Since v=H(x")"g(x"), we have, by Lemma 2.5,

Ivl.< VIl a() |
1ok Ax]l,  1-xA(X)

Since k(1) = A(x")?, it follows by substitution,

AX)  xA(X)?
1—xA(X) 1— kA(X)

A(X)? =k(@) <
Dividing both sides by A(X") the lemma follows.

Corollary 2.2
If xA(X) < %(3— \5) ~0.3820 then x* isfeasibleand A(X") < A(X).

Corollary 2.3
i z(x)sgi then X" is feasible and /1(x+)s,<(§ﬂ,(x))2=(gz(x)&)2.
K

2.1.8 Algorithm with full Newton steps

1
Assuming that we have a point Xxe D with A(X) Ss— we can easily obtain a point X e D
K

such that A(X) <&, for prescribed & >0, with the algorithm 2.1. We assume that ¢ is not

linear or quadratic. Then x > 0. Actually, from the Definition 2.3, we can easily prove if A is

. . K
some positive constant then A¢ is (—j -self - concordant . So we may always assume that

A

4 . .
K2 5 . We will assume this from now on.

Algorithm 2.1 (Algorithm with full Newton steps)
Input

An accuracy parameter ¢ € (0,1);

xe D suchthat A(x)< i
3K
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while A(X)>¢& do

X=X+ AX
endwhile

The following theorem gives an upper bound for the number of iterations required by the
algorithm,

Theorem 2.3

1
Let xeD and A(Xx)< 3— . Then the algorithm with full Newton steps requires at most
K

{2 Iog((3.4761log lﬂ
&

iterations. The output is a point X € D suchthat A(X)<e¢.
Proof

1
Let X°eD be such that A(x%) SS—. Starting at X° we repeatedly apply full Newton steps
K

until the K -iterate, denoted as x*, satisfies A(X*)<e&, where &>0 is the prescribed
accuracy parameter. We can estimate the required number of Newton steps by using Corollary 2.3.
To simplify notation we define for the moment A° = A(x°) and y = gx/; Note that y >1.
It then follows that

AX) < (A S (OAK D)) <<y 2 (1)
This gives

A< 2T = RO < (P

1
Using the definition of » and A(x°) < % we obtain
K

3 —\ 1
ZZIOS ~ -
4 [2\/;} 3

Slw

| (3 o .
Hence, we certainly have A(x*) <& if (Zj < ¢ . Taking logarithm at both sides this reduces

to 2 Iog%g loges.

loge

3 lo
Dividing by Iogz, we get 2> | gf, or, equivalently, k >1log, ~ - Thus we find that

4 I 4

after no more than
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|og{'°£j =log,(-3.4761log &) = Iogz[3.4761log 3

3
log 3

iterations the process will stop and the output will be an X e D suchthe A(X)<e&.

2.1.9 Linear convergence of the damped Newton method

In this section, we consider the case where X € D lies outside the region where the Newton
. . . 1

process is quadratically convergent. More precisely, we assume that A(X) > 3— In that case we
K

perform a damped Newton step, with damping factor « , and the new iterate is given by

X" =X+ aAX.
. 1 .
In the Algorithm 6.2 below, we use @ = ———— as a default step size.
1+ xkA(X)
Algorithm 2.2
Input:

xe D suchthat A(X)> S
3K

while /”L(X)>i do
3K

g Lt
1+ xkA(X)
X" =X+ aAX

endwhile

In the next theorem we use the function
w(t) =t-log(l+t),t >-1. (2.12)
Note that this is a strictly convex nonnegative function, which is minimal at t=0, and

@(0) =0. The next theorem shows that with an appropriate choice of « we can guarantee a

fixed decrease in ¢ after the step.

Theorem 2.4

Let xeD and A=A(X).If a:= ! then
1+ x4
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H(X) = J(X+ ahX) > “)(’d) |

Proof

Define A(a) = @(X) — (X + aAX) .
Then  A'(a):=—-g(X+aAX)" AX
A"(@) = —=AX"H (X + aAX)AX = =V ?¢(X + aAX)[AX, AX]
A"(a) = -V>@(X + aAX)[AX, AX, AX] .
Now using that ¢ is « -self -concordant, we deduce from the last expression that

A"(er) 2 =2 || AX[[;

X+aAX *
Hence, also using Lemma 2.4

||Ax||i B -2k R
(-axlAx],) ~ Q-axd)®

A"(a) > -2k

This information on the third derivative of A(a) is used to prove the theorem, by integrating

three times. By integrating once we obtain

-2 -7 )
Aﬂ A" 0 — 0!7 — + A7,
(@)-80]; i /3 2,)3 V= gy = = ey
Since A"(0) = —V?@(X)[AX, AX] = —A*, we obtain
2
A"(a) > —i
(1-axt)’
By integrating once more we derive an estimate for A'(«) :
7 -2 -2 )
A'(a) - N(0) = - @« A A
(@) -8 [; (- ﬂzd)z = )~ lam) =

Since A’(0) = —g(x)" Ax = Ax' H(X)Ax = A%, we obtain

+ A%

N(a)2 2
K

K‘(l akA)

Finally, in the same way we derive an estimate for A(«) . Using that A(0) =0 we have

A@)z (K(l—z/l) %+szdﬂ=%(Iog(1—a/d)+ar</1+alc2/12).
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. Substitution of this

One may easily verify that the last expression is maximal for a = 1ol
+ K

value yields

1 KA
Alx) >—| log| 1-
(@) I(Z( g( 1+ x4

j + K/lj = iz (kA —log(l+xA)) = iza)(ld) :
K K

which is the desired inequality.

1
Since w(t) is monotonically increasing for positive t, and A > 3— the following result is an
K

immediate consequence of Theorem 2.4.

Corollary 2.4

1
If ﬂ(x)>3— then X" is feasible and
K

1 1. 0.0457 1
Aa) > — o) = .=
(@) K2 a)(3) K2 22k

The next result is an obvious consequence of this corollary.

Theorem 2.5
1

Let Xxe D such that A(X) >3—. If X* denotes the minimizer of @(X), then the algorithm
K

with damped Newton steps requires at most
22x* (¢(x") — p(x*))

1
iterations. The output is a point X € D such that A(X) < 2
K

In order to obtain a solution such that A(X) <&, after the algorithm with damped Newton steps

we can proceed with full Newton steps. Due to Theorem 2.3 and Theorem 2.4 we can obtain such
a solution after a total of at most

2252 (p(x°) - p(x*)) |+ [ 2 Iog((3.476llog lﬂ (2.13)
&

iterations. Note the drawback of the above iteration bound: usually we have no prior knowledge of

@¢(x*) and the bound cannot be calculated at the start of the algorithm. However, in many cases

we can derive a good estimate for ¢(x") —@(x*) and we obtain an upper bound for the number

of iterations before starting the optimization process.
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2.1.10 Further estimates

In the above analysis, we found an upper bound for the number of iterations that the algorithm

needs to yield a feasible point X such that A(X) <&. But we can provide more information

about @(X) —@(x*) and X—X*.

We start with the following lemma.

Lemma 2.7

Let xeD and d € R" suchthat X+d € D. Then

2

- |d
X <d d)- S_____JL__; 2.14
enfa], SOOIV o
o(xd].) o(-x|d|.)
—J ! s¢(x+d)—¢(x>—dT9(X)S#- @19

In the right-hand side inequalities it is assumed that K”d ||X <1

Proof
We have

d"(g(x+d)-g(x) = [.d"H(x+ad)d da = [ ||}, da.

X+ad

Using Lemma 2.4 we may write
Jal; [’ Jal,
L], @+ andd],)’
<]’ e, ldl
"-axfd])® 1=,

da < [Jd", de

From this the inequalities in (2.14) immediately follow. To obtain the inequalities in (2.15) we
write

p(x+d)~ 4(x)~d"g(x) = [ 4" (g(x + ad) - g(x))dar .

Now using the inequalities in (2.14) we obtain

ofdl, . _~~ldl,~loge-fdl,)

2

Jod"(0(x+ ad) - g()der < [

—ax|d], «

_otdl,)

Kg

and

56



_ ], ~tog(d-+ x{d],)

2

1 . dI?
J 8" @0+ ad) ~ g(0)de > adl,

raxd], x

2
K

This completes the proof.

As usual, for each xe D, A(x) = ||AX||X , with  AX denoting the Newton step at X. We now
prove that if A(X) << for some Xe D then ¢ must have a minimizer. Note that this

surprising result expresses that some local condition on ¢ provides us with a global property,

namely the existence of a minimizer.

Theorem 2.6
Let A(X) << forsome xe D.Then ¢ hasaunique minimizer X* in D.

Proof
The proof is based on the observation that the level set

={y e D:g(y) < 4(x)},

with X as given in the theorem, is compact. This can be seen as follows. Let y € D . Writing

y=Xx+d,with d eR", Lemma 2.7 implies the inequality

(||||)

#(y) = ¢(x) 2 d"g(x) +——

e 25
K

where we used that, by definition, the Newton step AX at X satisfies H(X)Ax =—g(X).
Since

d" H (ax <] Jax], =], 2(x).
we thus have

4y~ 900 = a0+ 2 " odl)

Nowlet y=x+d eL.Then #(y)<@(x),whence we obtain

ol 269+ 22 <o
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which implies

o(x|d],)

< kA(X) <1. (2.16)
d],

Putting & = /<||d||x one may easily verify that "’(‘% is monotonically increasing for £ >0
and goes to 1 if & — oo. Therefore, since xA(X) <1, we may conclude from (2.16) that 1c||d||X

cannot be arbitrary large. In other words, 1<||d||X is bounded above. This means that the set of
vectors d suchthat X+d e L isbounded. This implies that the level set L itself is bounded.

Since this set is also closed, the set L is compact. Hence ¢ has a minimal value in L, and this

value is attained at some Xx*e L. Since ¢ isconvex, X* isa global minimizer of ¢, and by
Corollary 2.1, this minimizer is unique.

Lemma 2.8
For s<1 onehas

w(=S) =sup{st —w(t)},

t>-1
whence
o(-S)+w(t) >st, s<1, t>-1.
Proof
Let F(s,t) = w(-S)+ o(t) —st. Hence
F(s,t)=—-s—log(l—s)+t—log(l+t)—st
=—s—logl-s)+t—log(l+t)—st
=—s+t—st—log(l—s+t—st).
Let X=—-S+1t—st,then

F(s,t) = ow(x), x>-1.

It is easy to see that w(X)>0,s0 F(s,t)>0.
Hence we get

w(-S) + o(t) > st.

Theorem 2.7

Let Xe D besuchthat A(X) << andlet Xx* denote the unique minimizer of ¢@. Then, with

A=A(X),
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a)(le) a)( Kﬂ)

<) —p(x*) < (2.17)
@ (’d) -t k- xﬂ| < A @) (2.18)
K 1+ x4 * 1-xA K

Proof

The left inequality in (2.17) follows from Theorem 2.4, because ¢ is minimal at x*.

Furthermore from (2.15) in Lemma 2.7, with d = X *—X , we get the right inequality in (2.17):

B(X*) = (x) > d " g(x) + ——Lx” o(x ” 1)

il 4 @ ||0| )
2 —|d], 2 +—5>=

=2 (- ol o+ otsd],)
(—kA)

KZ

where the second inequality holds since
47900 = |- d"H 0x < ], I, = ], 200 = ]2 219

and the fourth inequality follows from Lemma 2.8.
For the proof of (2.18) we first derive from (2.19) and the (2.14) in Lemma 2.7 that

e,

<d"(g(x*)—g(x) =—d"g(x) <[d] 2,
1+ x]d],

where we used that g (x*) = 0. Dividing by ||d ||X we get

el
L+ xd],
which gives rise to the right inequality in (2.18), since it follows now that
A @' (—xA
”d”xSl_Klz_ (K )

Note that the left inequality in (2.18) is trivial if K||d||X >1, because then ||d||x > % whereas

A 1
< —. Thus we may assume that 1— K‘”d” >0.For 0<a <1, consider
1+x1 « X

k(ar) = g(x*—ad) H(x) ™ g(x).
Onehas k(0)=0 and k(1) =A(X)* = A*. From (2.11) and the Cauchy inequality we get

], A3

k'(ar) =—d"H (x*—ad)H (x) g(x) = d H(x*—ad)AxSW.
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Hence we have

|a], £ |a], 2
O 7 i,
After dividing both sides by A this implies
A
”d”x = 1+ kA ’

Thus the proof is complete.

2.2 Minimization of a linear function over a closed

convex domain

2.2.1 Introduction

In this section, we consider the problem of minimizing a linear function over a closed convex

domain D:

(P)  min{c"x:xeD}.
We assume that we have a self-concordant function ¢:D — R, where D = intD , and also
that H (x) = V2#(x) is positive definite for every xe D .

Foreach x>0 we define

8,00 =24 ().
Y7,

and we consider the problem

(P,)  inf{g,(x):xeD}.

We denote the gradient and Hessian matrix of ¢,(x) as g,(x) and H  (X), respectively.

Then we may write
9,(X)=V4,(x) = +V§(x) = +g(x) (220
H H

and

H,(X)=V?¢,(x) = VZ(x) = H(x). (2.21)

An immediate consequence of (2.21) is V°¢, (X) = V 4(X) .
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So it becomes clear that the second and third derivative of ¢, (X) coincide with the second and
third derivatives of ¢(X) , and do not depend on g . Assuming that @(X) is
x -self - concordant , if follows that ¢,(x) is & -self -concordant as well.

The minimizer of ¢,(X), if it exists, is denoted as X(). When g runs through all positive
numbers then X(x) runs through the so-called central path of (P). We expect that X()
converges to an optimal solution of (P) when u approaches 0O, since then the linear term in
the objective function of (Pﬂ) dominates the remaining part. Therefore, our aim is to use the
central path as a guideline to the optimal solution of (P). This approach is likely to be feasible,
because since @, (x) is self-concordant its minimizer can be computed efficiently.

The Newton stepat X € D with respectto ¢, (x) isgivenby Ax=-H (X)‘lgﬂ(x).

Just as in the previous section we measure the distance of X e D to the u-center X(u) by

the local norm of AX. So for this purpose we use the quantity ﬂﬂ (X) defined by

2, (0 =l Ax[l,= Y AXH ()A% = /g, ()" H (07 g,,(x) = 9, () I+
Before presenting the algorithm we need to deal with two issues. First, when is 4 small enough?

We want to have the guarantee that the algorithm generates a feasible point whose objective value

deviates no more than & from the optimal value, where & >0 is some prescribed accuracy
parameter. Second, we need to know what the effect is of an update of & on our proximity

measure 1, (X) . We start with the second issue.

2.2.2 Effect of ,-update

Let 1:=4,(x) and u" =(1-6)u.Ouraimis to estimate /1#+(X).We have

(0=

- o ¢<>—(1 Ja HIw

:ﬁ(—+g(x) @(X)j ( (X) - @(X))

61



Hence, denoting H(X) shortlyas H , we may write

2,00 ==]g,09-600),. < = |, 09, +Olg ¥,

A () A(x)
1
=m(ﬂ#(x) +0A(X)) . (2.22)

At present we have no means to obtain an upper bound for the quantity A(X) . Therefore, we use

the following definition.

Definition 2.5

Let v>0. The self-concordant function ¢ is called a Vv -barrier if

A(x)? = ||g(x)||2H,l <v, VxeD. (2.23)

An immediate consequence of this definition and (2.22) is the following lemma, which requires no
further proof.

Lemma 2.9

If ¢ isaself-concordant Vv -barrier then

2,0+ 6V

A.(X)<L
() =y

In the sequel we shall say that ¢ is a V-barrier function if it satisfies (2.23). If ¢ is also

k -self - concordant then we say that ¢ isa (x,V) -barrier function.

Here we present an obvious fact which is important for the MDP model:

Corollary 2.5
#(X) = —ZL log x; isa 1-self-concordant n -barrier function for R} ={xe R":x>0).
Proof

With e denoting the all-one vector, for Yh e R",

Mﬂ=vﬂw=jf:
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H (x) = V2(x) = diag (%):

. —2h
VH (x) = V?¢(x)[h] = diag( - ).
Hence, we have forany Vh e R"
n_ h-3
V30)Th b, b = > —
i=1 i
and
) T e n h-2
V<g(x)[h,h]=h"diag = h=zx—'2.
i=1

Forany £eR" one has

Sl S (mj

Hence, taking & =— we get
X

i
3
2

V240, h, h]| < 2(v2¢(x)[h, h])

proving that @(X) is 1-self-concordant.
Since H(x) = V?¢(x) = diag (%) , e have
X

H(x)™" = diag(x?).
Then
g [IF2=a()" H(X)"g(x) =n.

So, we can conclude @(X) is a 1-self-concordant n-barrier for R!.

Before proceeding to the next section, we introduce the so-called Dikin-ellipsoid at X, and using

this we give a new characterization of our proximity measure A(X) .
Definition 2.6

Forany X e D the Dikin-ellipsoid at X is defined by
g ={deR":|d|, <1}.
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Lemma 2.10
Forany Xe D onehas

max{|d"g(x)|:d e &, {=2(x).

Proof
Due to Definition 2.6 the maximization problem in the lemma can be reformulated as

max{|d"g(x)|:d"H (x)d <1},
If g(x)=0 then the lemma is obviously true, because then A(X)=0. So we may assume that
g(x)=0 and A(X)#0 . In that case any optimal solution d will certainly satisfy
d"H (x)d =1. Hence, if d is optimal then

g(x)=aH(X)d, R
where a is a Lagrange multiplier. This implies ad = H(X)™"g(X) = —AX , where AX
denotes the Newton step at X with respect to ¢ . Now d'H(x)d=1 implies

AX"H(X)AX = r® . Since we also have Ax' H(X)Ax = A(X)?, it follows that & =+A(X). So

we get d= iﬂ,
A(X)

whence, using H (X)Ax =-g(x),

B ‘Q(X)T AX‘ CAXTH(X)AX - A(X)?
A A A

d7g(x) A(%)
proving the lemma.

For future use we also state the following result.

Lemma 2.11

If ¢ isaself-concordant Vv -barrier then we have

(d"g(x))f <vd"H(x)d, VdeR", ¥xeD.
Proof

The inequality in the lemma is homogeneous in d . Hence we may assume that d' H (x)d =1.

Now Lemma 2.10 implies that ‘dTg(X)‘S A(X) . Hence we obtain (dTg(x))2 < A(X)?. By
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Definition 2.5 this implies the lemma.

Assuming that (P) has X* as optimal solution, we proceed with estimating the objective

value ¢'X interms of M and ﬂﬂ(x).This is the subject in the next section.

2.2.3 Estimate of ¢"x-c"x*

For the analysis of our algorithm we will need some more lemmas.

Lemma 2.12

Let ¢ be aself-concordant V-barrier functionand xe D and X+d € D . Then

d'g(x)<v.

Proof
Consider the function

q(e)=d"g(x+ad), a<[0]1).
Observe that ¢(0)=d'g(x). So we need to show that q(0)<v. If q(0)<0 there is
nothing to prove. Therefore, assume that q(0) > 0. Since ¢(X) is a V-barrier, we have by
Lemma 2.11, forany « €[0,1),
q'(c) = d"H (x + ad)d z%(dTg(xmd))z =%(q(a))2.

Therefore, ((«) is increasing and hence positive for « € [0,1]. Therefore, we may write

lsj‘lq,(a) a=- 1 |1: 1 1 < 1 .
v o (g(a)) a@)|, a0 a@® q()

This imples ¢(0) < Vv, completing the proof of the lemma.

Before proceeding we recall the definition of a dual norm.

Definition 2.7

Given any norm |||| in R", the corresponding dual norm ||||* is defined by

||s|| = max{sTx : ||x|| < 1}.
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I Apparently, ||||: is the

Forany X e D we denote the dual norm of the local norm ||||X as |,

local norm determined by H (x)™. So,

[ =yd"H(x)™"d, deR".

Lemma 2.13
1

Let A:=4,(X)<— andlet X* be an optimal solution of (P).Then
K

xu+¢®j

C'X<C X*Hpu v+
1-xA

Proof

First we consider the case there X = X(x) . Since then gﬂ(x) =0, we derive from (2.20) that
c=—ug(x).Since xe D and Xx*e D, using Lemma 2.12with d = X*—X, we get

¢ x(u) ~ €T x* = ¢ (x(1) - x*) = g () d < .
Now let us turn to the general case. Then, using (2.20) once more and also the inequality:
a’b<[a[ o] ,abeR",
we may write
cTx=c"x(u) = ¢" (x=x(12)) = g, () = 9 (x=x(z2))
< o, () - g0 Jx=x(w),.

where ||||1 denotes the local norm determined by H(x)™. Since Hg#(X)H: =21,(X)=4 and

||9(X)||: = A(x) <~V we have

9,0 -9 <g, [ +a00f, <A+

Moreover, by Theorem 2.7,

|V—ﬂmmﬁjéa*

Substitution gives

A(A +V)

c'x—c'x(u) <
()< )

Hence we may write
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c'x—c'x*=c’ (x(u) = x*)+c’ (x—x(w)) S;{V+Mj,
1-xA

proving the lemma.

2.2.4 Algorithm with full Newton steps

1
We assume that we know a point Xx° € D and #° >0 such that Ap (x)<r= " Then we
! K

decrease u = yo with a factor 1—6, where the barrier update parameter @ is a suitable

number in the interval (0,1), and perform a full Newton step. This process is repeated until
is small enough, i.e. until Vi < & for some small number & . The algorithm is described below.
The number of iterations is completely determined by v,,u0 and @, according to the lemma
stated after the algorithm.

Algorithm 2.3 Algorithm with full Newton steps

Input
an accuracy parameter £ > 0;

a proximity parameter 7 € (0,1);
an update parameter 4,0< 68 <1;

x*eD and °>0 such that ﬂﬂo(xo) <r;
begin

xi=x%u= 0

while vu > ¢ do

u=Q1-0)u
X=X+ AX;

endwhile
end

Lemma 2.14
The number of iterations of the algorithm does not exceed the number

1, v
—lo .
0 g &

Proof
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The algorithm stops when Vu < &. After the K -th iteration we have = (1—6)"* 1°, where
,uo denotes the initial value of . Hence the algorithm will stop if

1-0)u’v<e.

Taking logarithms at both sides this gives

klog(L—6) < log——.
v

Since —log(l—#) > @, this certainly holds if

0
kezlogvi,
&

which implies the lemma.

Theorem 2.8
1 5 . . . .
If 7=— and & =———— then the algorithm with full Newton steps is well-defined and
9k 9+36x+/V

requires not more than

0
{9+36KV@iogVy 1

5 &

iterations. The output is a point X € D such that

1+9KJVJ

c'x<c'x*+el 1+ 5
T2V

where X* denotes an optimal solution of (P).

Proof
We need to find values of 7 and & that makes the algorithm well-defined. At the start of the

first iteration we have x=x"e D and ,u:,uo such that /IH(X)ST. When the barrier

parameter is updated to " = (1— ), Lemma 2.9 gives

(X)+9\/V<z'+9\/v
1-6 ~ 1-6

A, (x) < & (2.24)

Then after the Newton step, the new iterationis X" = X+ AX and
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A (x)< A, 2
ot (X )_K m . (225)

The algorithm is well defined if we choose 7 and & such that ﬂ}ﬁ (x") < 7. To get the lowest

iteration bound, we need at the same time to maximize &. From (2.25) we deduce that

A (x") <7 certainly holds if

2.0 <Vg
1—Kﬂw(@__J;'

which is equivalent to

Jr

Ay (X) S ——=r (2.26)

kT K

According to (2.24) —and hence /1#+ (x") <7 —this will hold if

T+ 0V Jr
< .
1-6 K r—i—\/;

This leads us to the following conditionon &

1—/(2'—\//(_2'
6£J;J?+v¢2a+vﬁzy

Substitution of 7 =& in the right-hand side expression yields the value . Thus we

9K

5
9+ 36KV

have justified the choice of the value of 7 and & in the theorem
Now that & is given, the iteration bound is immediate from Lemma 2.14. The last statement in
the theorem is implied by Lemma 2.13. because at termination of the algorithm we have

9x4,(x) <1 and vu <e&.Hence, denoting A =1, (X),Lemma 2.13 implies that

z(mﬁ)j

c'Xx<c Xx*+vy 1+
v(l-xA)

1,1
o (o)
1+ 9x 9«

v(g)

+1+9KJV}

<c'x*+¢

<c'x*+¢l1

72K%v

This completes the proof.
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2.2.5 Algorithm with damped Newton steps

The method that we considered in the previous sections is in practice rather slow. This is due to
the fact that the barrier update parameter @ is rather small. For example, in the case of linear

optimization the set D is the intersection of R" and the affine space {X: Ax = b}, for some
A and b . From Corollary 2.5 we know that the logarithmic barrier function

#(X) = —Zin:llog X. is a l-self-concordant n -barrier function for R . In that case we have

k=1 and v =n, and hence the value of & is given by 6 = 9+32ﬁ' Assuming £° =1 in

Theorem 2.8, this leads to the iteration bound
n n
2(1+4+/n)log— = o(\/ﬁ Iog—j,
& &
which is up till now the best know bound for linear optimization.

In practice one is tempted to accelerate the algorithm by taking larger values of €. But this is not
justified by the theory, and in fact may cause the algorithm to fail because the full Newton step
may yield an infeasible point. However, by damping the Newton step we can keep these iterates
feasible. In this section we investigate the resulting method, which is in practice much faster than
the full-Newton step method. So we consider in this section the case where & is some small (but

fixed) constant in the interval (0,1), for example d=0.5 or € =0.99, and where the new
iterate is obtained from

X" =X+ aAX,
where AX is the Newton step at X and where « is the so-called damping factor, which is

also taken from the interval (0,1) , but which has to be carefully chosen.

The algorithm is described below. We refer to the first while-loop in the algorithm as the outer
loop and to the second while-loop as the inner loop. Each execution of the outer loop is called an
outer iteration and each execution of the inner loop an inner iteration. The main task in the
analysis of the algorithm is to derive an upper bound for the number of iterations in the inner loop,
because the number of outer iterations follows from Lemma 2.14.

Algorithm 2.4 Algorithm with damped Newton steps
Input
an accuracy parameter £ > 0;

a proximity parameter 7 =-;

an update parameter 6#,0< 6 <1;
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x°eD and °>0 suchthat lﬂo(xo) <r

begin
xi=x% =4
while Vi >¢ do
u=Q1-0)u;
While 4,(x)>7 do
f— l .
1+x4,(x)
X=X+ aAX;
endwhile
endwhile
end

As we will see, in the analysis of the algorithm many results can be used that we already obtained
in the analysis of the algorithm for minimizing a self-concordant function with damped Newton
steps, in section 2.1.9

Due to the choice of the damping factor « in the algorithm, Theorem 2.4 implies that in each

inner iteration the decrease in the value of ¢, satisfies

(x4, (X))
$,(X) =@, (X + aAX) = K—‘z :
Since during each inner iteration 4,(X) 27 and 7 > -, we obtain
(kT 0. 0457 1
¢,u (X) ¢,u (X + aAX) 2 ( ) (_) - 22K2 .

Thus we see that each inner iteration decreases the value of ¢ﬂ with at least 5
K
This implies that we can easily find an upper bound for the number of inner iterations during one

outer iteration if we know the difference between the values of ¢, at the start and at the end of
one outer iteration. Since ¢5#+ (X) isminimal at X = X("), this difference is not larger than
b, (0=4,.(x(u"),

where X denotes the iterate at the start of an outer iteration and g = (1—6)u the value of

the barrier parameter after the « -update.
The proofs of the next two lemmas follow similar argument as used in proof of Theorem 2.2 in
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Hertog[7]

Lemma 2.15
Let O < g .Then we have
dg, (1)) _ cTx(u) _ g(x(u))" x(u)

2

du H %

Proof

Denoting the derivative of X(z) withrespectto z as X'(), we may write

dg, (x(u)) :i(CT X(1) +¢(X(ﬂ))j - ' x(z,u) + ¢'x (1) +g(x()" X' (u).
du du\ p H #

The definition of X(4) , as minimizer of ¢, (), implies

g(x(u) ==
Y7,

Hence we write
c'x' ,
#+ 0 (x(1))" X' (1) =0

whence

d, (x(1) " x(u)
du o

which implies the lemma.

Lemma 2.16

Let xeD,4,(X)<7=+ and " =(1—0)u.Thenwe have

3Kk

1 v
=t —.
13« 1-6

b, (0=, (x(u')) <

Proof
Fixing X € D, we define

(1) = ,(x) =4, (x(11)) .
Then we need to find an upper bound for ¢(u") . According to the Mean Value Theorem there

existsa g€ (u”, 1) such that

o) = () + o' (W) (1" — p). (2.27)
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Let us consider first ¢'(u). We have

_d4, () dg, (x(1) _—c"x _dg,(x(w)) |

du du Iz du

Using Lemma 2.15 we get

9'(1) (2.28)

()=~ X CXw) _ T (X() = %) _ g(x(u)) (x=x(u)
weoooow s p

Now applying Lemma 2.12 twice, with d = Xx—Xx(z) and d =Xx(u)— X respectively, we

obtain

P (<.
7,

Hence, since 1€ (u", 1), we get

vy~ Vv
o' ()] < —.
7]
Substitution into (2.27) yields
. v . v
o) <o) +—(u—p) = p(u) + —.
7 1-6

In other words,
0, (000, (X ) < 4,009, () + -2

Since 4,(X) <7 =3, we derive from Theorem 2.7 that

6,00~ 6, (x(u)) < o~ 1y = 20721818 _ 1
K 3 K 13«

Hence the lemma follows.

Theorem 2.9
The algorithm with damped Newton steps requires not more than

22/(2( 1 N j v’
>+ log :
0 \13x~ 1-6 &

iterations. The output is a point X € D such that

1+3xﬁj

c'x<c'x*+gl 1+ .
6KV

where X* denotes an optimal solution of (P).
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Proof

Since each inner iteration decreases the value of ¢, with at least 221K2 , an immediate

consequence of Lemma 2.16 that the number of inner iteration between two successive
M -updates does not exceed the number

s L, 0
13« 1-6

Using Lemma 2.14, the iteration bound in the theorem follows.
The last statement in the theorem follows from Lemma 2.13. At termination of the algorithm we

have 3x4,(X) <1 and vu <e&.Hence, denoting 4 =4,(X), Lemma2.13 implies

W+W)]

C'X<C X*+vul 1+
v(l-xA4)

1.1
V(g)

+1+3KJV}

6r%V

<C'X*+éel 1+

<c'x*+¢1
This completes the proof.

It is interesting to compare the iteration bounds that we obtained for full-Newton and
damped-Newton steps. When initialized with the same x’eD and ,uo >0 these bounds are

given by

5 &

0
{9+36KV@iogVy 1

and

22x% (1 v vu’ 22 22x*v v’
>+ log = + log :
0 \13x° 1-6 £ 136 1-6 £

0
. . \' . .
respectively. Neglecting the factor Iogi, we see that the first bound is O(x+/V). On the
P

other hand, when assuming & = ©(1) , the second bound is O((K\/V)z) :

This shows that from a theoretical point of view the full-Newton step method is more efficient
than the damped-Newton step method. In practice, however, the converse holds. This phenomenon
has become known as the irony of interior-point methods (e.g. Renegar[12],page 51).

Also note that in both cases the quantity K\/V is solely responsible for the iteration bound, or
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complexity of the algorithm. Following Glineur[6] we call this the complexity value.

2.2.6 Adding equality constraints

In many cases the vector X of variables in (P) not only has to belong to D but has also to
satisfy a system of equality constraints. The problem then becomes

(P) minfc"x: Ax=b,xeD}.

We assume that A isa mxn matrix and rank(A) = m. This problem can be solved without

much extra effort. The search direction has to be designed such that feasibility is maintained.
Given a feasible X we take as search direction AX the direction that minimizes the second
order Taylor polynomial at X subject to the condition AAX = 0. Thus we consider the problem

min{qﬁ#(x) +Ax"g, (x) +%AxT H (X)AX : AAX = 0} :

This gives rise to the system

H(x)Ax+g,(x)=A"y, AAX=0,
whence, denoting H(X) as H,

Ax=H7AT(AHAT) " AH g, (x) - H g, (%)
or, equivalently,

Hiax=—{I —H AT (AHAT) AR Hg, (x) =P Hg,().

A

where P, denotes the orthogonal projection onto the null space of AH 2 Note that if the
AH 2
system Ax=b isvoid,i.e. A=0 and b=0,then AX isjustthe ‘old’ direction.

Denoting the feasible region of (P) as P and its interior as P, one easily understands that
the restriction ¢, of ¢ to P is a « -self-concordant V-barrier for P . Moreover, AX as

above, is precisely the Newton direction for ¢, at Xe P . Hence, essentially the same

full-Newton step method and damped-Newton step method as before can be used to solve the
above problem in polynomial time.
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Chpater 3 Heuristic approach to MDPs based on the IPM

3.1 Introduction

Now the model and the algorithm which can be used to solve the MDPs have already been
described. In this chapter we present how to get an optimal policy of the MDP model with the IPM.
The main idea is to use Algorithm 2.4 with AX described in section 2.2.6 to solve linear
programming problems under both discounted rewards and average rewards, and to get a series
stationary policies which converge to an optimal deterministic policy. Next we will consider some
tests which may accelerate this process.

In this chapter, we will use the following example for a better description.

Example 3.1

a= %; S={123} AD=A(2)=AG) ={L23}: r,W)=1Lr, (2Q)=2r, (3 =3

r,)=6,r,(2)=4,r,(3)=5; r,()=8,r,(2)=9,r, 3) =7.
Pu@® =1 p, (@) =P =0: py(2)=0,p,(2) =1, p3(2) = 0;
P (3) = P(3) =0, pis(3) =15 Py(1) =1, pp (1) = Pz (D) =0;
P2(2) =0, (2) =1, py(2) =0; P (3) = P (3) =0, P (3) =1;
Pa(D) =1 P35 (1) = ps@) =0: P3y(2) =0, p3,(2) =1, p5(2) = 0;

P21 (3) = P (3) =0, p;;(3) =1.

3.2 Discounted rewards

In this section we consider linear programming for MDP with discounted rewards, which is
basically to compute optimal solutions v* and X™* of the dual pair of linear programs:

ming>" B,v; | 348, - apy @I, 21, (a), (i,a) €S x A} (1.17)

and

(1.18)

max{Zn(a)xi (a)

(i.2)

(i,a) .
X;(@)=0, (i,a)eSxA

We will use Algorithm 2.4 to get a dual optimal solution X*; the primal solution V* is

Z{5ij —ap; (@)} (a) = ,Bj, jes }
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generated as by-product.

We notice from the linear constraints in (1.18) that for a fixed je S

zaxj(a):az p;(@)x (a)+B;>0.

(i.2)

We know there are only | S| linear constraints in (1.18). That means in the extreme optimal
solution of (1.18), for every state i €S there must be one a*e A(i) st x;(@*)>0 and all

other ae A(i)\a* satisfy x,(a)=0.Hence, using IPM, we will get a series of interior points

convergent to an extreme optimal solution” of (1.18) which has the form described above.

3.2.1 Initial point

In order to start the Algorithm 2.4 we need an initial interior point which satisfies ﬂ#o (X°) <7,

x’eD, ,uo >0, 7=+ The first thing we should notice is that we can use the inner loop of

Algorithm 2.4 to get an interior point which satisfies ﬂyo(xo) <t starting from any interior
feasible point. Then finding the initial interior point is reduced to finding an interior feasible point

x° € D, in which
b 0 z{5ij — ap; ()} (a) = By j€S 31)
=< X (i,a) . .
x’(@)>0,(i,a) e Sx A

In general case, this can be a complicated problem. However, in MDP with discounted rewards,
there is a property we can use to get an interior feasible point.

According to Theorem 1.12, the mapping (1.19) is a one-to-one mapping from the set of stationary
policies onto the set of feasible solution of the dual program (1.18) with (1.20) as the inverse

mapping. Hence we can get the interior feasible point x® with (1.19) using a special policy,

which brings us the next theorem.

Theorem 3.1

Let >0 and 7z~ the stationary policy with

“ Or the middle point of extreme optimal solutions, if there are several extreme optimal solutions with the same
optimal value. We will describe this later.
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£, =t aecAl), ieS. (3.2)
[AG)
Then
x" (@) ={8{l —aP(z)}}, -z, (i,a) e Sx A (3.3)
is an interior feasible point in the feasible set 0f(1.18).
Proof

Theorem 1.12 proved
X' (@) ={f{l ~aP(n)} '} -7, (i,a) e SxA
is a feasible point of (1.18). Then we only need to prove
x"(a)>0, (i,a)eSxA.

In section 1.3.1, we proved
{l —aP(7)} =D aP(x) " 2 1.
t=1

Hence
x'(@)> Bz, >0, (i,a)eSxA,

proving the theorem.

3.2.2 Computational performance

As we have mentioned in section 2.2.2:

#(X) = —Zin:l log x; is a 1-self-concordant n -barrier function for R} ={x e R" :x>0);
Furthermore, we can also notice from Corollary 2.5 that ¢(X) has neat second and third term

derivatives. So we will use @(X) = —Zin:llog X; as a barrier function in the IPM to solve the

MDP with discounted rewards.
The next result is a theorem about the complexity.

Theorem 3.2

Given ¢(X) = —z:ll log . , the algorithm with damped Newton steps requires not more than

0
££i+_9n jlog N (3.4)
6\13 1-¢6 £

iterations. The output is a point X € D such that

78



chéch*+g[1+

1+3n
6n )

where X* denotes an optimal solution of (1.18).
Proof
Directly from Theorem 2.9

Remark
1. We can minimize the iteration bound

22(1 mj 1°
Iog
6\13 1-6 &

_ —22++/286n

13n-22

but it’s just a theoretical minimal bound, not very useful in practice. Although the damped Newton
steps can make sure every step is feasible even if we use a very big &, we should not let € be

by letting

too close to 1, because the inner loop will take more iterations to geta X such that 4,(x) <7.

So in our code, we choose 8 =0.9.

Summing up every row of the linear constraints in (1.18), we can get:

S|

Z
Zx(a)_ =

(i)

S|
As we know, Z,Bj and 1—a are both fixed, so Z X.(a) is a fixed number.
j=1 (i,2)

To make parameters simple, we choose

|__ ieS.
S|

After the above preparation, we can start to solve MDP with discounted rewards (the MATLAB
code is in Appendix I). We will try to solve Example 3.1.

1

, 1€S:
|S]

First we calculate the initial interior point using Theorem 3.1 with 3, =

x° = (0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222)
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Starting from this point, Algorithm 2.4 brings us the following result:

k x@ %@ x@ %O %2 %G %O %2 x%(3))
0 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222
1 0.1499 0.2067 0.2636 0.2171 0.1964 0.2532 0.2067 0.2636 0.2429
2(€£=2) 0.1333 0.1828 0.2853 0.2097 0.1778 0.2735 0.1933 0.2947 0.2495
3 0.0622 0.1227 0.3495 0.1880 0.1245 0.3409 0.1521 0.3928 0.2673
4 0.0420 0.0739 0.3675 0.1524 0.0830 0.4281 0.1058 0.5034 0.2438
5 0.0313 0.0540 0.3566 0.1118 0.0597 0.5199 0.0741 0.6024 0.1902
6 0.0254 0.0440 0.3473 0.0841 0.0471 0.5813 0.0570 0.6674 0.1464
7(€=1) 0.0226 0.0393 0.3439 0.0727 0.0415 0.6075 0.0498 0.6958 0.1269
8 0.0134 0.0243 0.3396 0.0448 0.0251 0.6715 0.0298 0.7668 0.0847
9 0.0084 0.0153 0.3368 0.0277 0.0156 0.7116 0.0184 0.8122 0.0539
10 0.0054 0.0100 0.3354 0.0178 0.0101 0.7352 0.0118 0.8393 0.0349
11 0.0037 0.0069 0.3347 0.0122 0.0069 0.7486 0.0081 0.8549 0.0239
12 0.0028 0.0052 0.3344 0.0091 0.0052 0.7558 0.0061 0.8633 0.0180

13( &€ =0.1)0.0024 0.0044 0.3342 0.0078 0.0045 0.7590 0.0052 0.8670 0.0154

We can transform these into stationary policies. Because of the one-to-one correspondence
between the set of stationary policies and the set of feasible solutions of the dual program (1.18),
we can use (1.20) to transfer this series of feasible solutions into policies:

Table 3.1

k (71 Zzp; T3 T T2 723 31 T3 T33)
0 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333
1 0.2417 0.3333 0.4250 0.3256 0.2946 0.3799 0.2898 0.3696 0.3406
2(&£=2) 0.2217 0.3040 0.4744 0.3172 0.2690 0.4138 0.2621 0.3996 0.3383
3 0.1165 0.2296 0.6539 0.2877 0.1906 0.5217 0.1872 0.4837 0.3291
4 0.0869 0.1529 0.7603 0.2297 0.1252 0.6452 0.1240 0.5901 0.2858
5 0.0708 0.1221 0.8071 0.1616 0.0864 0.7520 0.0855 0.6951 0.2195
6 0.0610 0.1055 0.8335 0.1181 0.0661 0.8158 0.0655 0.7664 0.1681
7(&=1) 0.0558 0.0969 0.8473 0.1007 0.0575 0.8418 0.0570 0.7975 0.1455
8 0.0356 0.0643 0.9001 0.0604 0.0338 0.9058 0.0338 0.8701 0.0961
9 0.0232 0.0425 0.9343 0.0366 0.0207 0.9427 0.0208 0.9182 0.0610
10 0.0155 0.0284 0.9561 0.0233 0.0132 0.9635 0.0134 0.9472 0.0394
11 0.0108 0.0199 0.9693 0.0158 0.0090 0.9752 0.0091 0.9639 0.0270
12 0.0082 0.0151 0.9767 0.0119 0.0068 0.9814 0.0069 0.9728 0.0203

13( &£ =0.1)0.0070 0.0130 0.9800 0.0101 0.0058 0.9841 0.0059 0.9767 0.0174

It looks like we have a problem here. Because we only solve the dual linear program, there is no
estimate about the value vector in the primal linear program, so we cannot give a statement as in
the value iteration approach, saying “this policy is o -optimal policy”. Of course, we have

another way to compute the value vector using v*(7™) ={l —aP(7)} 'r(x) with the policy

80



we get in the dual linear program. However, we will see from section 3.2.4 that we don’t really
need this value vector.

We can see from the 13" iteration 7,,, 7,;, 75, are so close to 1. We can even drop all other
actions and guess f(1) =3, f(2)=3, f(3)=2 is the optimal deterministic policy. Then,

anther question comes up: how to choose & ? Because, in the 7" iteration, 7,,, 7., 775, are

already close to 1. it seems not necessary to go to & =0.1. So, we need a new test to identify an
optimal deterministic policy. Fortunately, Theorem 1.13 brings us an efficient test which we will
show below in the next section.

3.2.3 Suboptimality test

The suboptimality test is described as:
If

yif (a) > min, yif (a)—a(l—a)‘l{mini min, yif (a) —max; min, yif (@} @35

then action a € A(i) is suboptimal, where y." (@) is the dual slack variable.
Given an arbitrary stationary policy, we do the suboptimality test trying to find suboptimal actions.
If only one action a e A(i) for each state is not suboptimal, then we can drop all other actions,

and get the optimal deterministic policy.

The following table shows the result of the Algorithm 2.4 on example 3.1 with suboptimality test.
Signal “1” means this action is suboptimal; “0” means this action is not suboptimal.

Example 3.1(continuous)

k (@) %@ %@ %O %@ %O x@O X2 %EQ))
0 1 1 0 1 1 0 1 0 0
1 1 1 0 1 1 0 1 0 0
20€=2) 1 1 0 1 1 0 1 0 0
3 1 1 0 1 1 0 1 0 1

We get the optimal deterministic policy after 3 iterations. If we compare this result with Table 3.1,

we get the following policy at the third iteration:
Tia (71 T2 73 Ty Ty T3 731 73 Tr33)

0.1165  0.2296  0.6539  0.2877  0.1906  0.5217  0.1872  0.4837  0.3291
Obviously, we cannot get any conclusion about the optimal deterministic policy here without
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suboptimality test.

The performance of suboptimality test depends on the value of « . We can see this from the test
(3.5). Abigger « will make fewer actions to be excluded with this inequality. But, when « is
small, this test works really well.

The following is the result of the same example with « =0.1

k (71 Zzp; 73 Ty Ty T3 73 T3 Tr33)

0 1 1 0 0 1 1 1 0 1

We even get the optimal deterministic policy at the initial point. It works really good in this
problem. However, if we try a =0.9:

k (71 Zzp; T3 T T2 723 731 T3 Tr33)
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0
9 1 0 0 0 0 0 0 0 0
10 1 0 0 0 0 0 0 0 0
11 1 0 0 0 0 0 0 0 0
12 1 1 0 1 1 0 1 0 0
13 1 1 0 1 1 0 1 0 0
14 1 1 0 1 1 0 1 0 0
15 1 1 0 1 1 0 1 0 0
16 1 1 0 1 1 0 1 0 0
17(&£ =0.1)1 1 0 1 1 0 1 0 0

The suboptimality test cannot bring us a optimal deterministic policy even when & =0.1. If we
look at the approximate policy we get from Algorithm 2.4:

Tig - (7, 1o T3 qri Ty T3 T3 T3 T33)
0.0054 0.0106 0.9840 0.0008 0.0008 0.9984 0.0008 0.9793 0.0199

Itis very likely that f (1) =3, f(2) =3, f(3) =2 is the optimal deterministic policy.

What’s more, there is another situation which can not be solved by suboptimality test: multiple
optimal solutions (MOS). Another way to express this is: there exist several optimal deterministic
policies with the same value vector. In this situation, suboptimality test can never end up with an
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optimal deterministic policy, because there are two actions a,,a, € A(i) for some i€S and

both generate an optimal policy.

So we need another test which works well for all «, also in the multiple optimal solutions
situation.

3.2.4 Optimality equation test

We first take a look at the behavior of Algorithm 2.4 in MDP with discounted rewards. According
to the statement at the beginning of section 3.2, IPM has different behavior in MOS case and
non-MOS cases. In non-MOS case, there is only one optimal deterministic policy. Therefore, for

every state i, we have one 7.,a*e A(i) which is very close to 1 and all other

ia*?

7., a€ A(i)\a* are close to 0. On the other hand, in MOS case, there are several optimal

deterministic policies with the same optimal value vector. In this case, there are several

7., &€ A(l) which are close to —, where n, is the number of optimal actions in state i,
n.

and all other 7, go to 0. Hence this gives us a new idea: once we get a policy from Algorithm

2.4, we make a new policy:

~ )1 Ty = mgx{;zfa}, cs 36)
0 otherwise

and check whether it is an optimal policy. We can do this by checking whether the value vector of
this policy fulfills the optimality equation:

Vi (") = maX {1, (8) + Y py @)V} ()}, €S 37)

If the answer is no, we will go several steps further in IPM, until the heuristic policy changes.
Then we do the optimality equation test again.

Remark
1

A

every state i €S, we let every 7, :7, <d, aeA(i) to be zero, and randomly pickup an

Of course, we can make the new policy in another way: set up a threshold d € (0,—) . Then, for

action a* from {a: 7z, >d}.Thenwe choose f(i)=a* inthe new policy.

Here we treat the Example 3.1 with « = 0.9. It is non-MOS.
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k  opt? (714 Ty T3 Ty sy, T3 7 T3 T33)

0 No 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
1 Yes 0 0 1 0 0 1 0 1 0
It’s much better than the suboptimality test in this example.

(For the initial point, the policy is not in a form of a deterministic policy, because we start from a
policy which gives every possible action equal possibilities for every state. Then they are all
maximum in the initial point. However, this situation will be changed in following iterations.)

On the other hand, in a MOS case, we cannot get every possible optimal deterministic policy, but
one optimal deterministic policy is enough in general.

We consider the next example which was obtained by modifying Example 3.1

Example 3.2

o= %; S={123}, AD=A@2)=AR)={123}; r D=1 (=21 (3=3

rL)=6,r,12)=4r,03=9; ,)=9r,2)=9r3)=9.
Pu@® =1 p, @) = pD)=0: p,(2)=0,p,(2) =1, p3(2) =0;
Pu(3) = P(3)=0,p3(3) =1; Py (1) =1 P (1) = P (1) =0;
P21(2) =0,P5(2) =1, p5(2) =0: Py (3) = P (3) =0, p,(3) =1
Pa(D) =1 P35 (1) = ps@) =0: P3y(2) =0, p5,(2) =1, p5(2) = 0;

Ps; (3) =0, P, (3) =1, % (3) =0.
It is not hard to find out
7 f@)=3f(2)=3f@) =2 and 7%: f(1)=3,f(2)=3, f(3)=3

are both optimal policies. The following table is the result we get.

k  Opt? (7}, 1o T3 qri Ty T3 T3 T 733)
0 No 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
1 Yes 0 0 1 0 0 1 0 0 1

We only get one of the optimal deterministic policies.

In Appendix C, we list the performance measure for this heuristic method in bigger MDP models,
which have more than 10 states and 4 actions.

Because we start from a policy which gives every possible action equal possibility for every state,
this heuristic approach can reveal the optimal set in the first several steps. As we can see from
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Table 3.1, 7, m,, 7y, startto increase in the first iteration and other 7, start to decrease

at the same time. So, at that time we can already see the moving trend of the IPM. Hence,
Algorithm 2.4 with optimality equation test has advantage against suboptimality test when « is
close to 1, and also in the MOS case which we showed above.

3.3 Average rewards

As we can see from the section 1.4.6, the linear programming approach to MDP with average

rewards is to compute the optimal solution (V*,u*) and (x*,y*) of the dual pair of linear

programs:
{o; —p;(@)}v; 20 forevery(i,a)e Sx A
A vz+ {Z,-{cff—( p?(a)}u,— 2@ for everyy(a,a)) esxal &
and
Z(iya){é‘ij - p; (@)} (@) =0 jes
max{ >_r;(a)x (a) Zaxj(a)+z(i]a){5ij -p;@3}y;@=p8 jeS;. (137
" X (a), ¥; (@) 20 (i,a) e Sx A

The same as in section 3.2, we are going to use Algorithm 2.4 to get the dual optimal solution X*;
the primal solution V* is generated as by-product.

However, this linear programming problem is much more complicated than the one we treated in
section 3.2. But we have a certain way to solve it, and we will describe the solution in the
following two sections.

3.3.1 Initial point

We now discuss how to start Algorithm 2.4 in linear programming approach for MDP with
average rewards. The original idea is to generate an initial point with (1.44) in the same way we
did in section 3.2.1. However it doesn’t work in general.

If there exists a state i€S which is transient under any policy f* eC , then the

corresponding part of X will always be zero. That means there is no strictly feasible point in the
feasible set. Hence we cannot apply IPM in this case.

The following example shows this phenomenon:
Example 3.3
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S={123}, AD)=A(2)=AR) ={L2}; r, 1) =1r, (2)=2;
L@)=6r(2)=4; r,(1)=8r,(2)=9.

Pu@® =1 p, @) = pD)=0: p,(2)=0,p,(2) =1, p3(2) =0;
PuD) =1 P (@) = P (D) =0 Py (2) =0,p,(2) =1, p,(2) =0:

Pu@) =1 P (1) = P (M) =0; p5(2) =0, p,(2) =%' Py (2) = %

We can see state 3 is transient under any policy. The first part of the dual linear programming
problem is:

01 -10 -1 0
0 -1 1 0 0 —1[x=0.
00 00 1 1

Because X >0, any feasible solution X of the above equation must have X,(1) = X,(2) =0.

So we don’t have a strictly feasible interior point here, but this problem is solvable.

The problems (1.36) and (1.37) are of the following form
(P) min{b"y: Ay > c},

and its dual:
(D) max{c'x: A'x=b, x> 0}.

Assuming that (P) and (D) are both feasible, the optimal sets of (P) and (D) are denoted by P *
and D™*.We define the indexsets B and N by

B={i:Ay>c, yeP*}
N={i:x >0, xe D*}.

From the strong duality theorem, B and N form a partition of the full index set and the
optimal values for both of these linear problems are the same. We denote the optimal-value

functionas z(b,C).

Then we start to investigate the effect of changes in b and c on the optimal value function

z(b, C) . We consider one-dimensional parameter perturbations of b and C.We assume that b

and C are such that (P) and (D) are feasible. Then z(b,c) is well defined and finite. It is
convenient to introduce the following notations:

f(4):=z(b+ AAb,c), 9(x) = 2(b, ¢ + pAC).
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It can be proved that the domains of f and g are closed intervals on the real line.

Theorem 3.4

f (4) is continuous, concave and piecewise linear.

Proof
By definition,

f (1) =min{(b+1Ab)" y:y e P}.
For each A the minimum value is attained at a central solution y* of (P). Now y™* is
uniquely determined by the optimal partition of (P) and (b+AAb)" y* is constant for all
optimal y™*. Associating one particular y*, we obtain that
f (1) =min{(b+ AAb)" y:y e S},
where S is a finite subset of P, Foreach y e S, we have
(b+1Ab)" y=b"y+1Ab"y,

which is a linear function of A . This makes clear that f (A1) is the minimum of a finite set of

linear functions. It can be proved that the minimum of a finite set of linear functions is continuous,
concave and piecewise linear.

Therefore, f(A) is continuous, concave and piecewise linear, proving the theorem.
In the same way, we get:

Theorem 3.5

g(u) is continuous, convex and piecewise linear.

Forany A inthe domainof f we denote the optimal setof (P,) by P, and the optimal set

of (D,) by D).

Theorem 3.6

If f(A) is linear on the interval [A;,4,], where A, < A,, then the primal optimal set P, is

constant (i.e. invariant) for 4 € (4,,4,).
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Proof

Let Ze(ﬂi,lz) be arbitrary and let Yy e P; be arbitrary as well. Since Yy is optimal for
(P;) we have
f(1)=b(1)"'y=b"y+1Ab"Y,

and, since Yy is feasible forall 1,

b(4,)' y=b"y+A4AD'Yy< f(4),  b(A,) y=b'y+AAbTy<f(4,).
Hence we find

f(h)-f(2)2 (4 -2)Aby, f(2,)-f(A)2(2,-2)Ab"y.

The linearity of f on [A;,4,] implies

fF(A)-f(4) _ f(A)-f(A)
A=A A=A

Now using that A, —4 >0 and 1 —A, >0 we obtain

ADTY < f(4,)-f(2) _ f(1)- f(ﬂq)<AbTy
I A= '

Hence, the last two inequalities are equalities, and the slope of f on the closed interval
[4,,A,] is just Ab"¥ . This means that the derivative of f with respect to A on the open
interval (A4, 4,) satisfies

f'(2)=Ab"Y, VAie(4,4,),
or equivalently,

f(A)=b"y+AAb'y=b(A)"y, VAie (4, 4,).
We conclude that y is optimal for any (P,) with A€ (4,4,). Since ¥ was arbitrary in
P, , it follows that

P, cP,, Vie(4,4,).

Since A was arbitrary in the open interval (4,,4,), the above argument applies to any

Qe (4,,4,) ; so we also have
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PZ*QP;, VAe(A,4,).

We may conclude that P, < P; and P; < P_, which gives P, = P; . The theorem follows,

In the same way we can also prove the following theorem.

Theorem 3.7

If g(u) is linear on the interval [z, 4,], where g4 < p,, then the dual optimal set D; is

constant (i.e. invariant) for € (14, 1t,) -

Theorem 3.6 gives us an idea to deal with the case that we don’t have strictly feasible interior
point. We start from the same policy we used in section 3.2.1, and put this policy in (1.44):

X (@) = B{P" (D)};} 7,
yi (@) :{zjﬂj{D(”)}ji +zj7j{P*(7[)}ji}'7[ia
to get a feasible point of (1.37). Of course, this point may not be an interior point of the feasible

set. Then we modify the original problem by adding

Ab = AT Ax in which X+ Ax >0

to b, and make sure AX is small enough compared to X, so that the primal optimal set will not
be changed. Hence, from the modified problem we can get an optimal policy which is also optimal
for the original problem.

Remark
1) About the choice of AX . If we sum every row of the linear constraints of (1.37), we can see

Z(i,a) X (a)= Zj B; -

Hence, normally, we can take a AX related to ZJ_,B]- . In our code, we just choose

0 x;(@)=0
Axi(a): Zjﬁj
|SxAJ®

2) About the y part of the initial point. For i belongs to a communicating set, we can always

‘(@) =0 (3.8)

choose » to make sure y;(a)>0. On the other hand, if i belongs to a transient set,

zj ]/J-{P*(ﬁ)}ji}-ﬁia is always zero. However, the corresponding part of the transient set in

D(x) is (1 -Q)™, and it is bigger than | . Hence we can conclude that the y part of the

initial point is strictly positive.
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3.3.2 Computational performance

Basically, we have the same approach as in section 3.2.2. We try to use Algorithm 2.4 to solve the
LP problem (1.37) and to get an optimal solution, but the problem is not that easy.

We can see from (1.37) that there isno Yy in the objective function Z r;(a)x;(a) . That means
(i,a)

if we have an optimal solution (Xx*,y*) for (1.37)anda Ay, s.t.

Z(i,a){é‘ij - p;(@)}ay;(a)=0,
then we can get unbounded optimal solutions in the feasible set with the form

(x*, y*+MAy)

inwhich M R, y*+MAy >0.

This may not be a problem in the simplex method, because the simplex method moves from one
extreme feasible point to another, but it may cause the IPM to fail. Even if IPM can end up with an
optimal solution, it can be an interior point in the middle of the feasible set, not close to any
extreme optimal solution. Then we cannot apply Theorem 1.26 to get an optimal policy.

Fortunately, Theorem 3.7 offers us a good way to overcome this disadvantage. What we do is
adding a proper penalty on Yy to the objective function and transforms it to:

Y (@)% ()-8 Y (). (3.9)

(i.a) (i,a)
Here the “proper” means O is small enough to make sure the new LP problem has the same
optimal set as the original problem, but not too small that the penalty doesn’t really work. Because

if O isalmost zero, Yy can still be very big and the optimal solution we get is not close to the

extreme optimal solutions enough. In our code, we just let & =1, and it works fine.

Now, we are fully prepared, and we can start to solve MDP problem with average rewards. The
following is the result of Example 3.1 (because of the limit of space, we just list only a few
iterations here). Here we choose o =1.

(x@® x@ x@ %O %2 %G xO x0@) x@)

0 @ v@ .0 Y@ y,0 y.0 v Y.3))

Initial  (0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111
0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333)

iteration 14
&=2 (0.0176 0.0250 0.0778 0.0527 0.0325 0.2544 0.0500 0.2822 0.2079
0.1048 0.1446 0.2186 0.0819 0.1048 0.1401 0.0684 0.0837 0.1048)
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iteration 23

£=1 (0.0020 0.0028 0.0129 0.0079 0.0035 0.3994 0.0077 0.4046 0.1592
0.0105 0.0847 0.2418 0.0056 0.0105 0.0113 0.0053 0.0097 0.0105)
iteration 32
£=0.1 (0.0002 0.0003 0.0014 0.0008 0.0004 0.4172 0.0008 0.4178 0.1611
0.0011 0.0856 0.2469 0.0005 0.0011 0.0011 0.0005 0.0010 0.0011)
We can see in 32™ iterations, we are very close the extreme solution:
(0 0 0 0 0 % 0 % %
0 % % 0 0 0 0 0 0).

From this, we can get the corresponding deterministic policy using (1.43):
f@)=3@r f)=2), f(2)=3, f@)=2(@r f(3)=3).
It is obviously that every combination of the above is an optimal deterministic policy..
Also we try to solve Example 3.3 which has no strictly feasible interior point. We start from point

(0.2500 0.2500 0.2500 0.2500 O 0
0.6667 0.6667 0.6111 0.6111 0.2222 0.2222).

Thenwe add Ax=[0 0 0 0 0.0046 0.0046 0 0 0 0 O Q] toit, so the initial point will be

(0.2500 0.2500 0.2500 0.2500 0.0046 0.0046

0.6667 0.6667 0.6111 0.6111 0.2222 0.2222).

The linear constraints will be
0 1 -1 0 -1 O i [—0.0046 |
0 -1 1 0 0 -% —-0.0023
0 0 0 0 1 ¥ x| 0.0069
11 01 -10 -1 0 M_ 0.3333

1 1 0 -1 1 0 0 -% 0.3333
i 1 1 0 0 0 0 1 %] | 0.3426 |

We also put a penalty in the objective function, and it becomes
X
26489 -1-1-1-1-1 —1)-[}
y

Then we solve the modified linear programming problem:

(@)

Y, (@)

x,(2)

¥1(2)

X, (1)

y, (@)

X, (2)

y,(2)

X3 (1)

ys(D)

X3(2)

¥5(2))



Initial ~ (0.2500
0.6667
iteration 7
g=2 (0.0353
0.1060
iteration 13
g=1 (0.0041
0.0105
iteration 19
& =0.1 (0.0004

0.0011

0.2500
0.6667

0.2500
0.6111

0.3769
0.2133

0.3784
0.0703

0.4832
0.1060

0.4868
0.0055

0.4942 0.4987
0.0973 0.0005

0.2500
0.6111

0.2078
0.1060

0.0222
0.0105

0.0021
0.0011

0.0046
0.2222

0.0031
0.2220

0.0010
0.2544

0.0001
0.2581

0.0046
0.2222)

0.0077
0.2197)

0.0119
0.1505)

0.0137
0.1415)

The same as last example, in 19" iterations, we are very close to an extreme solution:

©

0

1 1
2 2
1

12 0

0

0

0

INE

0

)

ol

Then, we can get two corresponding deterministic policies using (1.43):

f=2, f(2)=1, f@)=1or fM)=2, f(2)=1, f(3)=2.

Both of them are optimal policies.

3.3.3 Optimality equation test

Here we follow the same idea in section 3.2.4: based on the policy we get from the IPM, we make
a new deterministic policy and check whether it is optimal. If it is not, we go several steps further
in the IPM until the heuristic policy changes. However, in MDP with average rewards, the

situation is more complicated.

There is no property like: for every i€ S, there exists an action a € A(i) such that in the
extreme optimal solution X, (@) > 0. Therefore we cannot use the same trick in this section. In

(1.43) we have to findthe set S, ={ie S| za X; (@) >0} first, but in the IPM, we move inside
the feasible set. That means every point we get from IPM is strictly bigger than zero. Hence, the

first thing we shall do is to set up a threshold d, and set any X;(a) which are lower than this

threshold to zero.
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X (a) = {X‘ @ @ =d - esxA. (3.10)

0 x (a)<d’

Now, it is possible for us to use (1.43) to get a policy.

Remark
About the choice of d . Because of the same reason as AX , normally, we can take a d related

jﬂi

to z_ﬂ- . We should also take AX into account. The amount should always be
i7l A|3

X

smaller than d so that the optimal set of the original linear programming problem stay the same.
In our code, we just choose

d = Zjﬂj

= . 3.11
|Sx A G

Then, we face another problem often: there are much more possible optimal deterministic policies
in average rewards case than in the discounted rewards case. We can see this from the stationary

matrix P*( f) of an optimal policy f . Different policies can lead to the same stationary matrix

P*( f), so they all have the same value vector. That means they are all optimal policies. We only

consider deterministic policies here. The simplest way to get a deterministic policy is:

1 ifie{jl> x>0}, xi*(a):mgxxf(a)
T, =11 ifie{]j |zaxj(a):0}, Y, (a)szlxyi (a), (i,a)eSxA. (3.12)
0 otherwise

In this heuristic way, we need a test to check whether it is an optimal policy. The next theorem
introduces us a test.

Forevery ieS and f” eC(D),theactionset B(i, f) isdefined by
2. i@ (f7)>4(f7) or
2. i@ (f7)=4(f7) and @)+ py@uj(f~)>¢(f")+ul(f)|
(3.13)

B(i, f)=1ae A()

Theorem 3.8
If B(i,f)=0 forevery ieS, then f” isan average optimal policy.
Proof

Since B(i, f)=0 forevery ieS, forany h” € C(D), we have

2., P (g (F7) < (F7)
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and
@)+ X, Py @UI(F) <A HUSE) if X Py (A7) =4(F7)
Let R=(h,f, f,..). Then, v*(R)=r(h)+aP(h)v*(f”) and, by Theorem 1.22,
av' (1) = (1) 0 () + (@) = - - ) () + 2, (0) e
-
A (- gty a@) e

(inthis proof &, (ar) satisfies lim ., &, () =0) implying

v R) =1+ PO ()= g(F7) + (@) 0}

:—P(?W I rhy+ P (F) - P(h)g(17) +é&(a)-e.
—a

Since V(™) :@+u°(f)+gz(a)-e,we have
a

Ve (%) =v*(R) :ﬁ{qﬁ(fw)—P(h);b(fw)}
+{u°(f)— r(h) — P(h)uo(f)+ P(h)g(f“)}+&(a)-e.

Since ¢(f*)—P(h)g(f*)=0 and,if {4(f~)—P(h)p(f*)} =0,

{*(F)=r(h) = P(Mu°(f)+ P(h)g(f ")} ={u(f)—r(h)-P(hu’()+4(f ")} 20,
we obtain
vi(f?)—v*(R) > &,(x)-e for a sufficiently close to 1, i.e.
VI (F7) 2V (R) + &,() € = r(h) + aP (v (f*) + &,(a) €.
Hence,
{l —aP(N)I*(f7) 2 r(h)+aP(h)v*(f7) +&(a)-e.
Therefore,

ve(F?)2{l —aP(h)} {r(h) + &,(a) - e} =v* (h*) +#-e .
-«

From the Laurent expansion follows #(f ™) >¢@(h™),i.e. f” isan average optimal policy.

From the above theorem, we get a way to judge whether a deterministic policy is average optimal.
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And we try to use this test in Algorithm 2.4 to solve Example 3.1:

k opt? (7, o T3 qri Ty T3 T3 T3 T33)

0 no (0333 0333 0333 0333 0333 0333 0333 0333  0333)
1 yes (0 0 1 0 0 1 0 1 0 )

This test turned out to be extremely good in this example. We also try Example 3.3

k  opt? (7, o qri Ty T3 T3)
no 0.5 0.5 0.5 0.5 0.5 0.5
yes 0 1 1 0 0 1

It seems as the optimality equation test is unbelievably efficient, but it is reasonable. By the choice
of initial point, we get a point which fulfills

X (a) =X (a,) and y;(a)=y;(a,)
for Va,,a, € A(i), i € S. One the other hand, the optimal solution of (1.37) must have

one X;(a)>0 or y,(a)>0 foreverystate ieS.

Take into account

Z(i,a) X (a) = z;ﬂj

which is a constant, we can see why the first move of the IPM can show the clue of the optimal
policy.

For performance measure of this heuristic method in big MDP models with averages rewards, we
refer to Appendix C.

3.3.4 Blackwell optimal policy

There is another algorithm for the MDP with average rewards. As we see from the section 1.4.3, if
a is close enough to 1, the optimal policy for discounted rewards is also optimal for average
rewards.

We can compare the optimal policy for MDP with discounted rewards in the case « =0.9 with
the optimal policy for MDP with average rewards, we can see they are actually the same.

Another question comes up: when is ¢« is close enough to 1?
This is a parametric analysis problem of linear programming problem
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max{c'x: A'x=b, x>0}

like we did at the beginning of section 3.3.1. Here, we don’t consider how the optimal set changes
with the change of b and c, but under the change of matrix A, which is a much harder
problem.

However, in practice, if we choose o =0.99, we will nearly always get an optimal policy for
MDP with average rewards from solving the MDP problem with discounted rewards.

In Appendix C, we list the performance measure for this heuristic method in discounted rewards
with a =0.99. We can compare the result with average rewards.

Conclusion

Because of the special way to choose the starting point and construct the heuristic policy, in nearly
all cases, we don’t need to go very close to the optimal solution of the linear programming
problem to get the optimal deterministic policy. As we can see from Appendix C, this heuristic
approach to MDPs based on the IPM is very efficient. Even for a Linear programming problem
with 160 variables (20 state, 8 actions), we are able to get the optimal deterministic policy for
discounted rewards case in less than 30 iterations (on average out of 12000 random MDPs). Hence,
in MDPs, this method apparently has an advantage against simplex method.

There is still something we need to do to complete our research in this method. We don’t have a
theoretical complexity bound for this method. It’s not that easy to get complexity bound. However,
simplex method doesn’t have an exact complexity bound neither, and it’s still a well accepted
method.

What’s more, we can also use this heuristic approach in value iteration. In value iteration, we need
to calculate:

VI =n(f)+ aZj Py (F)v" = mfx{ri (a) + O‘Zj Py @)V}

We also have a guess of the policy f, for the optimal policy.
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Appendix A

Some technical lemmas

We start with a slightly generalized version of the well-known Cauchy-Schwarz inequality. The

classical Cauchy-Schwarz inequality follows by taking A=M =1 in the next lemma (where
| is the identity matrix).

Lemma A.1 (generalized Cauchy-Schwarz inequality).

If A, M are symmetric matrices with | X" Mx|< x' Ax, V¥xeR", then
(a"Mb)? < (a' Aa)(b" Ab), Va,beR".
Proof

Note that X' AX>0, VXxeR",so A is positive semi-definite. Without loss of generality, we

assume that A is positive definite. Otherwise A+ &l is positive definite for all £ >0, and
we take the limitas ¢ — 0, with a and b are nonzero. It follows from

aTMb:%((aer)T M(a+b)—(a—b)TM(a—b))

that

(aTMb)Z_%((aHb) M(a+b)-(a—b) M(a—b)f

S%Q(a+b)Tm(a+b)(+\(a—b)TM(a—b)1)2
%((a+b) A(a+b)+(a—b)" Ala—b)f
%(Za Aa+2b" Abf
%(a Aa+b" Abf

a' Aa
Let =4 .
#=\bT Ab

When replacing a by a and b by b thisimplies
u

(aTMb)Zz{(%j M(yb)J s%(%amau yZbTAbj — (a” Aa)b" Ab),

which was to be shown.
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The following lemma gives an estimate for the spectral radius of a symmetric homogeneous
trilinear form. The proof is due to Jarre [8].

Lemma A.2 (Spectral Radius for Symmetric Trilinear Forms).

Let a symmetric homogeneous trilinear form M :R"xR"xR" —- R be given by its
coefficient matrix M e R™™". Let A:R"xR" — R be a symmetric bilinear form, with
matrix Ae R™  and x>0 ascalar such that

M[x, X, X]* < pA[x, X]* = y||x||i vxeR".
Then
My, 21 < vl oo vxyz <R
Proof
Without loss of generality we assume that 4 =1. Otherwise we replace A by T{/ZA. As in the
proof of Lemma A.1 we assume that A is positive definite. Then, using the substitution
M[X,y,z]:=M [A‘%x, A‘%y, A‘%z]
we can further assume that A= is the identity matrix and we need to show that
My, 21 < Iyl 2 53,2 <R
under the hypothesis

IM[x,x,X] < y||x||z vxeR".
For xeR" denoteby M, the (symmetric) matrix defined by

y'M,z=M [y, z]=M[x,y,z] Vy,zeR".
It is sufficient to show that

MLx,y, vl < x|y, vxyeR",

because the remaining part follows by applying Lemma A.1, with M =M, for fixed X.
Define

o =maxiM[x.y. y]:|x], =[y], =1

and let X and Yy represent a solution of this maximization problem. The necessary optimality
condition for X and Yy imply that

EARGRY
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where o and [ are the Lagrange multipliers. From this we deduce that « =% and f=0,
by multiplying from the left with (YT ,0) and (O, y' ) and thus we find

M,y=0X, 2M =0y,
which implies that My =oy. Since M, is symmetric, it follows that ¥ is an eigenvector
of M, withthe eigenvalue * o, which gives that

o =|y"M,5|=MIy..5].

This completes the proof.
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Appendix B

Code |

This code is for MDPs with discounted rewards.

%9%0%%%%0%% %% %% % %% %% %% %% %% %% % %% %% %% %% %% % %% %% %% % % %%
%%%%%%%%%% %% %% % %% %% %% % %% main %%%%%%%%%%%%%%%%%%%%
%9%0%%%%%% %% %% % %% %% %% %% %% %% % %% %% %% %% %% % %% %% %% % % %%

function Damped_Newton_steps

[A, P, Q, alpha, beta, r, ¢, X, n, m, v, taw, epsilon, thet, mu] = initiation;
s=0;

[deltx, lambd] = calculate_lambd(A, X, c, v, mu);
[A,x,c]=analyse_x(A, P, Q, alpha, beta, r, ¢, X, n, m, v, taw, epsilon, thet, mu);

while (lambd > taw)
S=s+1;
X = x+deltx/(1+lambd);
[Ax,c]=analyse_x(A, P, Q, alpha, beta, r, ¢, X, n, m, v, taw, epsilon, thet, mu);
[deltx, lambd] = calculate_lambd(A, X, ¢, v, mu);
end;

disp(’ )

while (v*mu > epsilon)
mu = (1-thet)*mu;

[deltx, lambd] = calculate_lambd(A, X, ¢, v, mu);

while (lambd>taw)
S=s+1;
X = x+deltx/(1+lambd);
[A,x,c]=analyse_Xx(A, P, Q, alpha, beta, r, ¢, X, n, m, v, taw, epsilon, thet, mu);
[deltx, lambd] = calculate_lambd(A, X, c, v, mu);
end;
disp(’ );
end;

100



disp(sprintf(‘total number of iterations: %.6f, s));

%9%0%%%%%% % %% %% %% % %% %% % %% %% %% %% %% % %% %% %% %% % %% % % %%
9%%%%%%%%%% %% %% % %% %% subfunctions %%%%%%%%%%%%%%%%%%%%%
%9%0%%%%%% % %% %% %% %% %% %% %% %% %% %% %% % %% %% %% %% % %% % % %%

%%%%%%%%%%%%%%%%%%% initiation %%%%%%%%%%%%%%%%%%%%%%%
function [A, P, Q, alpha, beta, r, ¢, X, n, m, v, taw, epsilon, thet, mu] = initiation;

alpha=0.5;

r=[1,2;3;6;4;5;8; 9, 7];

c=(-1)*r;

n=3; % # of states %
m=3; % # of actions %
v=n*m;

beta=ones(n,1)/n;

taw=1/3;
epsilon=0.1;
thet=0.9;
mu=1;

policy=[]; % initial policy
for i=1:n

temp=r((i-1)*m+1:i*m)>0;

policy=[policy; temp/sum(temp)];
end;

P{1}=[1,0,0; 1,0, 0; 1, 0, 0]; % Pij(a=1) %
P{2}=10,1,0;0,1,0;0, 1,0];
P{3}=10,0,1;0,0,1;0,0,1];

fori=1:n % Pij(a=1,2,3)=>Qi=1,2,3 j(a)
Q{i}=[I;
for j=1:m
Q{i}=[Q{i}:PLix(i.)I;
end;
end;

Ppolicy=[];

for i=1:n
Ppolicy=[Ppolicy; (policy((i-1)*m+1:i*m))*Q{i}];
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end;

fori=1:m % matrix A
temp=eye(n,n)-alpha*P{i};
for j=1:n
AG,i+(j-1)*m)=temp(j,:)";
end;
end;

temp=beta™*(eye(n,n)-alpha*Ppolicy)"(-1); % initial point %
x=[I;
for i=1:n
x=[x;temp(i)*policy((i-1)*m+1:i*m)];
end;

%%%%%%%%%%%%% %% % %% %% %% % % %% %% %% %% % %% %% %% %% %% %% %%
%%%%%%%%%%%%%%%%%% calculate deltx & lambd %%%%%%%%%%%%%%%%%
function [deltx, lambd] = calculate_lambd(A, X, ¢, v, mu);

o <
(LT
o » X

position = (x~=0);
u = sum(position);

fori=v:-1:1
if (position(i)~=1)
y()=L1;
d(i)=[1;
BC.)=II;
end;
end;
h = diag(y);
H = diag(y.*y);

delty = (H*B™*(B*H*B)(-1)*B-eye(u)) * (H*(d/mu) - y);
hdelty = -(eye(u)-h*B™*(B*H*B')(-1)*B*h)*(h*(d/mu) - ones(u,1));
lambd = (hdelty"*hdelty)(0.5);

deltx=[];
fori=1.v
if position(i)==1
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deltx = [deltx; delty(1)]; delty(1)=[];
else
deltx = [deltx; 0];
end;
end;

%%%%%%%%%%%%% %% % %% %% %% % % %% %% %% %% % %% %% %% %% %% %% %%
%9%%%%%%%%%%%%%%%% %% analyse X %%%%%%%%%%%%%%%%%%%%%%%
function [A,x,c]=analyse_Xx(A, P, Q, alpha, beta, r, ¢, X, n, m, v, taw, epsilon, thet, mu);

%%%%%%%%%%%% suboptimal test %6%%6%%%%%%%%% %%
policy=[];
for i=1:n

temp=x(1+(i-1)*m:i*m);

policy=[policy; temp/sum(temp)];

end;
Ppolicy=[]; % P(pi)
for i=1:n
Ppolicy=[Ppolicy; (policy((i-1)*m+1:i*m))*Q{i}];
end;
rpolicy=[]; % r(pi)
for i=1:n
rpolicy=[rpolicy; r((i-1)*m+21:i*m)"*policy((i-1)*m+1:i*m)];
end;
vpolicy=(eye(n)-alpha*Ppolicy)*(-1)*rpolicy; % v(pi)
spolicy=[l; % s(pi)
for i=1:m
spolicy(i:m:v)=r(i:m:v)+alpha*P{i}*vpolicy-vpolicy;
end;

spolicy=spolicy";

Ux_x=[]; % UXx-x
for i=1:n

Ux_x=[Ux_x; max(spolicy((i-1)*m+1:i*m))];
end;
subopt=[];
for i=1:n

subopt=[subopt; spolicy((i-1)*m+1:i*m)<(Ux_x(i)-alpha/(1-alpha)*range(Ux_x))];
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end;

%%%%%%%%%%%% guess a deterministic policy %9%%%%%%%%%%%%%
Dpolicy=[]; % guess the deterministic policy: the action with the maxim
probability
for i=1:n
temp=policy((i-1)*m+1:i*m)==max(policy((i-1)*m+1:i*m));
Dpolicy=[Dpolicy; temp/sum(temp)];
end;

PDpolicy=[];
for i=1:n

PDpolicy=[PDpolicy; (Dpolicy((i-1)*m+1:i*m))*Q{i}];
end;

rDpolicy=[]; % r(pi)
for i=1:n

rDpolicy=[rDpolicy; r((i-1)*m+1:i*m)*Dpolicy((i-1)*m+1:i*m)];
end;

vDpolicy=(eye(n)-alpha*PDpolicy)*(-1)*rDpolicy;

Dtest=[];

for i=1:n
temp=r((i-1)*m+1:i*m)+alpha*Q{i}*vDpolicy;
Dtest=[Dtest; max(temp)];

end;

disp(x);

disp(policy";

disp(subopt’);

disp(Dpolicy";

disp(sprintf(’------ %.6f', sum(vDpolicy==Dtest)==n));
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Code Il

The code for MDPs with average rewards is:

%%%%%%6%%% %% % %% %% % %% %% % %% %% % %% %% % %% %% % %% %% % %% %% %
%%%%%%6%%% %% % %% %% % %% %% % %% %% %% %% main %%%%%%%%%%%%%%
%%%%%%6%%% %% % %% % %% %% %% % %% %% % %% %% % %% %% % %% %% % %% %% %

function Damped_Newton_steps

[A, P, Q, beta, r, ¢, X, n, m, w, taw, epsilon, thet, mu] = initiation;
s=0;

[deltx, lambd] = calculate_lambd(A, X, ¢, w, mu);
analyse_x(A, P, Q, beta, r, ¢, x, n, m, w, taw, epsilon, thet, mu);
while (lambd > taw)

s=s+1; disp(s);

X = x+deltx/(1+lambd);

analyse_x(A, P, Q, beta, r, ¢, X, n, m, w, taw, epsilon, thet, mu);

[deltx, lambd] = calculate_lambd(A, X, ¢, w, mu);
end;

disp(’ )

while (w*mu > epsilon)
mu = (1-thet)*mu;

[deltx, lambd] = calculate_lambd(A, X, ¢, w, mu);

while (lambd>taw)
s=s+1; disp(s);
X = x+deltx/(1+lambd);
analyse_x(A, P, Q, beta, r, ¢, x, n, m, w, taw, epsilon, thet, mu);

[deltx, lambd] = calculate_lambd(A, X, ¢, w, mu);
end;
disp(’ D
end;
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disp(sprintf(‘total number of iterations: %.6f, s));

%9%0%%%%%% % %% %% %% %% %% %% %% %% %% %% %% % %% %% %% %% % %% % % %%
9%%%%% %% % %% %% %% % %% %% subfunctions %%%%%%%%%%%%%%%%%%%%%
%9%0%%%%%% % %% %% %% % %% %% % %% %% %% %% %% % %% %% %% %% % %% % % %%

%%%%%%%%%%%%%%%%%%% initiation %%%%%%%%%%%%%%%%%%%%%%%
function [A, P, Q, beta, r, ¢, X, n, m, v, taw, epsilon, thet, mu] = initiation;

r1=[1;2;3;6;4;5;8;9;7];
r=[r1;-1*ones(size(r1))];

c=(-1)*r;

n=3; % # of states %

m=3; % # of actions %

v=2*n*m; % # of variables in linear programming
d=1/m;

beta=[zeros(n,1);ones(n,1)/n];

taw=1/3;
epsilon=1;
thet=0.9;
mu=1;

policy=[]; % initial policy
for i=1:n

temp=r((i-1)*m+1:i*m)>0;

policy=[policy; temp/sum(temp)];
end;

P{1}=[100;100;100]; % Pij(a=1) %
P{2}=[010;010;010];
P{3}=[001;001;001];

fori=1:n % Pij(a=1,2,3)=>Qi=1,2,3 j(a)
Q{i}=[I;
for j=1:m
Q{i}=[Q{i}:PLix(i.)I;
end;
end;

Ppolicy=[]; % P(pi)
for i=1:n

Ppolicy=[Ppolicy; (policy((i-1)*m+1:i*m))*Q{i}];
end;
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fori=1:m % matrix A
templ=eye(n,n)-P{i};
temp2=eye(n,n);
for j=1:n
tempA(,i+(j-1)*m)=templ(j,:)";
tempB(:,i+(j-1)*m)=temp2(j,:)";
end;
end;
A=[tempA, zeros(size(tempA));tempB, tempA];

sum=0; % the stationary matrix of P(pi)
for i=1:10000
sum=sum-+Ppolicy”i;
end;
Pstar=sum/10000;

Z=(eye(n,n)-Ppolicy+Pstar)(-1); % the fundamental matrix

D=Z-Pstar; % the deviation matrix
temp=beta(n+1:2*n)"*Pstar; % initial point %
t1=[l;
fori=1:n
t1=[t1;temp(i)*policy((i-1)*m+L1:i*m)];
end;

temp=beta(n+1:2*n)*D+ones(1,n)*Pstar;

while sum(temp>0)<n
temp=temp-+ones(1,n)*Pstar;

end;

t2=[l;

fori=1:n
t2=[t2;temp(i)*policy((i-1)*m+L1:i*m)];

end;

x=[t1;t2];

x=x+0.01*(x==0);
beta=A*x;

A(L:(2*n-rank(A)),:))=[1; % make sure matrix A is full rank
beta(1:(2*n-rank(A)))=[1;
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%%%%%%%%%%%%% %% % %% %% %% % % %% %% %% %% % % %% %% %% % %% %% %%
%%%%%%%%%%%%%%%%%% calculate deltx & lambd %%%%%%%%%%%%%%% %%
function [deltx, lambd] = calculate_lambd(A, X, ¢, v, mu);

o <
(LT
o » X

position = (x~=0);
u = sum(position);

fori=v:-1:1
if (position(i)~=1)
y()=L1;
d(i)=[1;
BC.)=II;
end;
end;
h = diag(y);
H = diag(y.*y);

delty = (H*B™*(B*H*B)(-1)*B-eye(u)) * (H*(d/mu) - y);
hdelty = -(eye(u)-h*B"*(B*H*B')(-1)*B*h)*(h*(d/mu) - ones(u,1));
lambd = (hdelty"*hdelty)(0.5);

deltx=[];
fori=1.v
if position(i)==1
deltx = [deltx; delty(1)]; delty(1)=[];
else
deltx = [deltx; 0];
end;
end;

%%%%%%%%%%%%% %% % %% %% %% % % %% %% %% %% % % %% %% %% % %% %% %%
%9%6%%%%%%%%%%%%%%% %% analyse X %%%%%%%%%%%%%%%%%%%%%%%
function [A,x,c]=analyse_x(A, P, Q, beta, r, ¢, X, n, m, v, taw, epsilon, thet, mu);

%%%%%%%%%%%% guess a deterministic policy %%%%%%%%%%%%%%
policy=[]; % guess the deterministic policy
for i=1:n

templ=x((i-1)*m+L1:i*m)>=(sum(beta)/(m*n)/10);

if sum(templ)~=0
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policy=[policy; x((i-1)*m+1:i*m)==max(x((i-1)*m+1:i*m))];
else
policy=[policy;
X((M*n+(i-1)*m+1):(m*n+i*m))==max(x((m*n+(i-1)*m+1):(m*n+i*m)))];
end;
end;

Ppolicy=[];
for i=1:n

Ppolicy=[Ppolicy; (policy((i-1)*m+1:i*m))*Q{i}];
end;

rpolicy=[]; % r(pi)
for i=1:n

rpolicy=[rpolicy; r((i-1)*m+21:i*m)*policy((i-1)*m+1:i*m)];
end;

temp=eye(n,n); % the stationary matrix of P(pi)
for i=1:10000-1
temp=temp+Ppolicy”i;
end;
PpolicyStar=temp/10000;

Z=(eye(n,n)-Ppolicy+PpolicyStar)(-1); % the fundamental matrix

D=Z-PpolicyStar; % the deviation matrix

v=PpolicyStar*rpolicy;
u=D*rpolicy;

vtest=[]; utest=[];

for i=1:n
templ=Q{i}*v;
vtest=[vtest; max(templ)];
temp2=(r((i-1)*m+21:i*m)+Q{i}*u);
utest=[utest; max(temp2)];

end;

disp(x);

disp(policy";
disp(sprintf(‘------ %.6f', sum([abs(v-vtest);abs(v+u-utest)]<1/1072)==2*n));
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Appendix C

In this section, we report our numerical results based on 1000 random MDPs, and list the average
performance in discounted rewards (DR) with @ =0.5 and a =0.99 (mostly the Blackwell
policy), and also in average rewards (AR).

We generate MDPs in the following way:

1) Fix the size of the state space and the action space.

Let n=S| and m=[A].

2) Letevery item of reward r be a random integer from [1,100].

3) Forevery ae A, we randomly choose k percent items from every row of the transition

matrix and put a random number from [0,1] in these positions. Then normalize every row

of the transition matrix to make it a stochastic matrix.

The following table is the average number of iterations for the heuristic approach to get an optimal

policy.
k=20
n m | DRwith 4=05 | DRwith 4=0.99 AR
10 2 2.483 7.915 17.587
10 4 5.360 16.770 36.648
20 4 8.829 16.939 45.589
20 8 16.242 29.048 94.180
k =40
n m | DRwith 4=05 | DR with 4=0.99 AR
10 2 1.944 3.565 6.894
10 4 3.894 7.370 18.446
20 4 6.017 9.660 31.294
20 8 12.340 18.245 72.021
k =60
n m | DRwith 4=05 | DRwith 4=0.99 AR
10 2 1.577 2.450 3.930
10 4 3.258 4.930 11.965
20 4 5.202 7.459 24.133
20 8 9.516 13.743 59.490
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As we can see, to get a Blackwell optimal policy from letting o =0.99 in the discounted
rewards case, costs much less time than to get an average optimal policy directly. In practice, if we
want to get an average optimal policy, we just let @ =0.99 in the discounted rewards case.
However, there is no theory to guarantee what we get from this way is an average optimal policy.
What’s more, standard techniques of Policy iteration and Value iteration have numerical problem
for o ~1, but this approach works very well.
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