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CHAPTER 1

Introduction

For the last 25 years modelling and forecasting asset return volatility has been
a very active area of research in finance. When referring to a return process, most
of the time volatility is defined as the standard deviation of the process. It mea-
sures the magnitude of the random component of the return. For this reason most
people interpret volatility as uncertainty, since the larger the volatility, the larger
the random, unpredictable component of the return and so the less certain one can
be about the expected return. Whereas it has turned out to be very difficult, if
not impossible, to predict future asset returns from historical returns, it has in fact
been concluded in numerous studies that there is predictability in the volatility of
asset returns. Accurately modelling and forecasting volatility is important since
volatility is an important variable in many areas of finance, like risk management,
option pricing and also asset management: the volatility linked product market
is growing rapidly. Over the last few years a large number of volatility products
has been introduced, like variance options, variance corridors and volatility and
variance swaps. The latter is the most widely traded and interest is still growing:
compared to three years ago, total traded volume increased tenfold. It is because of
this rapid growth that the Investment Strategy team of Aegon Asset Management,
for which this research has been carried out, is interested in volatility forecasting.
It is interested in particular in the predictability of ”long” horizon volatility, that
is beyond a few weeks, since its focus is on long horizon strategies.

A first question when modelling and forecasting asset return volatility, is what
exactly it is that we want to model, that is how to define volatility exactly, in
mathematical terms. Nowadays asset returns are available at a tick-by-tick basis.
However, if we want to quantify the unpredictability of a certain asset’s return over
the last month, considering these one second interval returns, will only add noise.
On the other hand, we do not want to throw away too much information either.
All of the above mentioned volatility products define the volatility over an n-days
interval as square root of the sum of the n squared daily returns in the interval.
This definition is used to determine their payoff and therefore it is this what we
will try to forecast.

In the existing literature, there are three main classes of asset return volatility
models, which are the so called stochastic volatility models, the Generalized Au-
toregressive Conditional Heteroskedasticity (GARCH) class of models and the real-
ized volatility models. However, almost all studies focuse on short horizon volatility
modelling and forecasting, that is up to one month maximum but often just one
day ahead. Therefore there is little known about the forecastability of volatility
at longer horizons, even though it is of considerable interest: financial instruments
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2 1. INTRODUCTION

may have short holding periods, but holding periods of several weeks or even months
are equally common.

This thesis investigates the predictability of the volatility of the Standard and
Poor’s (S&P) 500 stock index returns for forecasting horizons from 10 to 120 days.
The S&P 500 is a stock market index containing the stocks of 500 large, mostly
American, companies. We consider the volatility of only this stock index, since for
most of the volatility linked products this is the most common underlier. That is,
the volatility of this particular index is traded most often. First of all, we will gen-
erate volatility forecasts using two of the existing forecasting models: the GARCH
model and the HAR model, a linear regression model. Forecasting performances of
these two models are assessed using both statistical criteria and an economic cri-
terion, which focuses on how well the direction of change in volatility is predicted.
For the various forecasting horizons we compare the performance of these two fore-
casting models to a simple benchmark model. For each model we test whether
adding macroeconomic variables increases its forecasting power. In addition, we
test how changing sampling frequency influences forecasting performance. At the
end we test whether the HAR model’s forecasting results can be improved when
using two modern regression techniques to cleverly select regressors: boosting and
forward stepwise regression.

The remainder of the thesis is organised as follows. In Chapter 2 some general
concepts of volatility are discussed. We explain why in practice volatility is often
defined as square root of the sum of squared returns. In addition, the three main
types of volatility forecasting models are discussed. We motivate our choice of
models. In Chapter 3 some additional properties of the HAR and GARCH model
are discussed. Testing procedures are outlined. Chapter 4 describes our testing
data. In Chapter 5 empirical results for the two forecasting models are analyzed
using statistical criteria. Chapter 6 concentrates on the economic interpretation
of the empirical results. In chapter 7 we investigate whether the HAR model’s re-
sults presented in the chapters 5 and 6 can be improved when applying the modern
regression techniques. Chapter 8 concludes.



CHAPTER 2

Theoretical background

In this chapter, we give an overview of what has been written in the literature
on asset return volatility. We create understanding of why in practice, volatility
is often defined as square root of the sum of squared daily returns. We select two
models out of the existing volatility forecasting models.

2.1 Concepts of volatility

Consider the discretely sampled series {pt}T
t=1, where pt denotes the logarithmic

price of an asset at time t and where the unit interval corresponds to one day. We
define rt as the continuously compounded return on the asset over the interval [t−
1, t], so rt = pt − pt−1. Conditional on the information set Ft−1 = {p1, p2, ...pt−1},
we can write this one period return rt as the sum of a deterministic value µt and a
random variable εt:

(1) rt|Ft−1 = µt + εt

µt is the expected conditional mean return, i.e. the expected return conditional on
Ft−1: µt=E{rt|Ft−1}. εt is the return shock, the stochastic part of the return. It
can be expressed as a mean zero, variance one, serially uncorrelated (white noise)
process, zt, scaled by time-varying conditional standard deviation:

(2) rt|Ft−1 = µt + εt = µt + σtzt

It is this decomposition that underlies the GARCH model, which will be discussed
in the next section.

These discrete returns are often interpreted as discrete samplings from an underly-
ing, continuous time diffusion model:

(3) dp(t) = µ(t)dt + σ(t)dW (t)

where p(t) again denotes the logarithmic price process of the asset, µ(t) is called the
drift, σ(t) the instantaneous volatility and W (t) is a Wiener process. The return
over the [t− 1, t] time interval equals

(4) r(t) = p(t)− p(t− 1) =
∫ t

t−1

µ(s)ds +
∫ t

t−1

σ(s)dW (s)

Note the resemblance between this expression and the one in (2).

In this continuous time setting the variance over the interval [t− 1, t] equals

(4)
∫ t

t−1

σ2(s)ds

3



4 2. THEORETICAL BACKGROUND

This expression is often referred to as the integrated variance IV(t). It is the square
root of this IV(t) which is usually meant by the volatility over the interval [t−1, t].
The problem is that this IV is an unobserved variable, since we only observe dis-
crete samplings from the continuous proces (3). However, it can be approximated
by an observable variable called realized variance.

Assuming that in the interval [t − 1, t] we have m intraday return observations,
we define the following daily variance estimator:

(6) σ̂2
(m),t =

m∑
i=1

r2
m,t−1+ i

m

where r2
m,t−1+ i

m

is the return calculated over the interval [t− 1 + i−1
m , t− 1 + i

m ].
From the theory of quadratic variation (see Karatzas and Shreve(1988)), it follows
that the estimate in (6) converges in probability to the integrated variance over the
period [t− 1, t]:

(7) lim
m→∞

σ̂2
(m),t

p→
∫ t

t−1

σ2(s)ds

So the integrated variance is theoretically observable from the sample path of the
return process, as long as the sampling process is frequent enough. The measure
σ̂2

(m),t is indicated by the term realized variance and its square root by realized
volatility (RV).

Most studies concentrate on modelling and forecasting daily volatility and assess
the quality of their forecasts by comparing it to this sum of squared intraday re-
turns. Using square root of the sum of squared daily returns as a proxy for for
example monthly volatility, comes down to the same idea, but applied on a larger
scale.

It must be stressed that we do not claim the theory in this section to be ”true” or
”false”. We just discussed it to create understanding of where this sum of squared
daily returns comes from.

2.2 The three main types of volatility forecasting models

In the previous section we explained some basic concepts of volatility. In this
section we briefly discuss the three main types of volatility modeling and forecast-
ing models, which are the GARCH, stochastic volatility and realized volatility (RV)
based models. For now, just their basic concepts are discussed. A comparison of
their predictive power is made in the next section.

GARCH

With the introduction of the ARCH(q) model, Engle (1982) set out the idea
of modeling volatility as a time-varying function of current information. Note that
this was long before the concept of RV was introduced, which was mid 90’s. In
the pre-RV era, the volatility over the interval [t− 1, t] was proxied by the squared
return over the entire interval. That is, daily volatility was proxied by the squared
daily return, without considering any subintervals. It is clear that this is a very
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bad proxy. To give an example, if an asset behaves very wildly during one day, but
its opening price happens to equal its closing price, its volatility during the day is
estimated zero, when considering just the squared daily return instead of returns
over several subintervals.

In the ARCH(q) model, time t variance is a function of q past squared returns.
Some years later, Bollerslev (1986) introduced the Generalized ARCH (GARCH)
class of models. The GARCH(p,q) model specifies time t variance as a function
of the previous p variances and previous q squared return shocks. In practice,
GARCH(p,q) models with small values of p and q are preferred. In fact, out of
the GARCH class models the GARCH(1,1) has become the most widely used. As
mentioned in the previous section, it is the decomposition in (2), here repeated in
(8), that underlies the GARCH type models.

(8) rt = µt + σtzt, zt i.i.d, E[zt] = 0, V ar[zt] = 1

The GARCH(1,1) model for the conditional variance is then defined by the recursive
relationship

(9) σ2
t = ω + αε2t−1 + βσ2

t−1

where εt := σtzt, ω, α, β ≥ 0 and α + β < 1. The constraints ω, α, β ≥ 0 are
required to ensure that the conditional variance will never be negative. The con-
straint α+β < 1 is needed to guarantee stationarity of the process. The parameters
can be estimated by Maximum likelihood procedure. As we see, in this model a
very high or very low time t return will directly lead to high time t + 1 volatility.

Since the introduction of the GARCH model, several extensions have been pro-
posed that account for features that are typically found in daily volatility estimates.
The result is a long list of GARCH variants. For example, the Threshold GARCH
(TGARCH) of Glosten et al. (1993), the Asymmetric GARCH (AGARCH) of
Engle and Ng (1993) and the Exponential GARCH (EGARCH) model of Nelson
(1991) all capture the stylized fact that a negative return shock leads to a higher
conditional variance in the subsequent period than an equally large positive shock
would. The Fractionally Integrated GARCH (FIGARCH) (p,d,q) model of Baillie
et al. (1996) takes into account the so called long memory behavior of volatility.
The plain GARCH model implies that shocks to volatility decay at an exponential
rate (see section 3.2). However, empirical research has shown that volatility shocks
last much longer and decay hyperbolically. The FIGARCH model is designed to
capture this hyperbolical decay.

For a comprehensive overview of all GARCH variants, we refer to Hansen and
Lunde (2005).

Stochastic volatility

The defining property of a stochastic volatility (SV) model is that it allows
the volatility of the underlying asset to be partly stochastic. For example, in a
continuous time setting, a SV model might specify the logarithmic price process as

dp(t) = µ(t)dt + σ(t)dW (t)
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where the instantaneous volatility σ(t) is again some stochastic diffusion process.
For example , in the popular Heston model, the differential equation for the variance
takes the form

dσ2(t) = θ(ω − σ2(t))dt + ξσ(t)dW̃ (t)

where ω is the mean long-term volatility, θ is the rate at which the volatility reverts
toward it’s long-term mean, ξ is the volatility of the volatility process and dW̃ (t)
is again a Wiener process. The correlation between dW (t) and dW̃ (t) is constant
and equal to ρ.

The presence of a second Wiener process renders both the estimation as the fore-
casting problem far more complex for the SV models than for the GARCH models.
Instead of simple maximum likelihood procedures, simulation based procedures will
now have to be used. It is this disadvantage of the SV model that makes many
researchers prefer GARCH over SV as their forecasting model.

Realized volatility

In section 2.1 we explained that in theory, the realized variance converges to
the integrated variance, which is squared volatility, when the length of the intra-
day intervals goes to zero, see equation (7). Therefore it can be used to assess
the quality of forecasts generated by GARCH or stochastic volatility models. It is
logical however, to also model and forecast RV directly. It is understandable that,
whereas volatility has long been modeled and forecasted using mainly GARCH and
SV models, there has been a strong tendency the last years towards directly mod-
elling the RV. Compared to the GARCH and SV models, these models basicly just
skip one step, which is the parametrization of σ. We will indicate the models that
directly forecast the RV simply by ”RV-based models”.

It turns out that almost all RV series share a few fundamental statistical prop-
erties. One property is that the logarithmic RV series is much more homoskedastic
than the series itself and is approximately normal. In addition, RV seems to be a
long memory process, that is shocks decay hyperbolically. It is because of these
features that RV is typically modeled using Autoregressive Fractionally Integrated
(ARFI) models:

(10) Φ(L)(1− L)d(yt − µ) = εt

Here d denotes the long-memory parameter, yt represents the log of the RV and
µ is the unconditional mean of the yt series. Φ(L) is a polynomial lag operator
accounting for autogressive structure, that is Φ(L) = 1 − φL − φL2 − φL3 − ...,
where Lpyt = yt−p and Lpεt = εt−p.

Other RV-based models have been proposed though, like the Heterogeneous Au-
toregressive model for the Realized Volatility (HAR-RV) by Corsi (2004). This
model is a simple autoregressive model for the RV that takes into account volatil-
ities realized over several horizons. At day t, the model’s forecast of the RV over
day t + 1 is given by

(11) RV
(d)
t+1 = c + β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + wt+1
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where RV
(d)
t is the RV over day t and RV

(w)
t and RV

(m)
t are the average daily

realized volatilities over the past week and month, respectively.
Corsi (2004) shows that his model outperforms the widely used ARFI class of
models. Furthermore, the model seems to capture the main empirical features of
financial time series (leptokurtosis, long memory), while at the same time it stays
very simple and easy to work with.

2.3 Overview of empirical research

In the previous section we discussed the basics of the three main types of
volatility forecasting models. Most important however, when selecting a model
for our forecasting purposes, is of course its forecasting power. In this section we
compare the forecasting performance of each of the three types of models, on the
basis of past empirical research. Keeping in mind our final objective, the focus is
on the long horizon. We also discuss some of the variables that have been proposed
as explanatory for stock index volatility.

Forecasting performance of the different models

Volatility has long been modeled and forecasted using mainly SV and GARCH
models, with a tendency towards the last one, because of the earlier discussed com-
plexity of SV models. Poon and Granger (2002) offer a very elaborate overview of
former research on volatility forecasting. Nonetheless they report only four studies
that directly compare the performance of these two models, three of which report
superior performance of SV. But there is obviously no general conclusion to draw
with such a small sample size.

Whereas there is no clear winner between the GARCH and SV models as far as
predictive power is concerned, models that rely on RV have in fact been shown
to clearly outperform models that do not, at least on the short horizon. In other
words, on the short horizon the use of RV adds power to a forecasting model. This
is no great surprise, since as explained the RV based models directly model the
sum of squared subinterval returns and the GARCH and SV models don’t. There
is a long list of studies that have come to this conclusion. In most of these studies
a comparison of predictive performance is made between models that in some way
incorporate the concept of RV and (plain) GARCH type models.
Examples are Andersen et al. (2003), who show that ARFI models, as defined
in equation (10), produce superior short horizon forecasts compared to the daily
GARCH(1,1) model and Martens (2001), who finds that adding intraday informa-
tion leads to improved forecasts.

It has been exhaustively proved by now that for the short horizon RV based models
provide superior volatility forecasts. However, for a horizon beyond a month they
no longer are clearly superior. The question remains which models have been found
to provide good long-horizon forecasts, if any. Some studies have found volatility
forecasting at horizons beyond a few weeks to be difficult, see for example West
and Cho (1995) and Christoffersen and Diebold (2000). However, some more re-
cent studies show that reasonable longer horizon forecasts in fact can be made.
For example, Calvet and Fisher (2004) propose a discrete time, regime switching
stochastic volatility model which they show to substantially dominate some of the
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basic GARCH type models at horizons of up to 50 days. Another example is the
model by Brandt and Jones (2006), who combine various EGARCH models with
data on the daily range (highest minus lowest return during one day) and find
substantial forecastability of volatility as far as one year ahead.

Explanatory variables

Even though some proposals have been made, little attention has been paid so
far to the problem of finding a long horizon volatility forecasting model. On the
other hand, there is a long list of studies that propose single variables that could
be explanatory for long horizon volatility. We discuss a few.

It has been suggested in several studies (e.g. Franks and Schwartz (1991)) to
incorporate the slope of the yield curve as an explanatory variable to the volatility
model. This variable is usually referred to as term spread and can be proxied by
the ten years interest rate less the three months rate. When the economic outlook
is bad, the short term rate is often lowered, while usually the long-term rate is not
affected much. So the term spread is expected to increase in this case. Since bad
economic conditions in general go together with high volatility of stock returns, the
term spread is expected to be positively correlated with volatility.
Using the same arguments, some studies (e.g. Whitelaw (1994), Harvey (1991)) use
just the three months treasury bill yield as explanatory variable.

The use of the credit spread, defined as the Baa - Aaa corporate bond yield spread,
to forecast volatility is suggested by Schwertz (1989) and Whitelaw (1994), among
others. Schwertz finds that even in the presence of other variables this spread is
positively related to future stock market volatility. Whitelaw finds less strong evi-
dence of explanatory ability but does find some significance.

The commercial paper - short term treasury yield is found to be very informative in
several studies, see for example Bernanke (1990) and Whitelaw (1994). Bernanke
argues that the forecasting power arises from the spread’s ability to proxy for the
stance of monetary policy. It should be positively correlated with volatility, since
commercial paper yields will increase when economic conditions are bad and con-
sequently volatility is high. In combination with a decreasing treasury yield, this
should lead to an increase of the spread, such that high volatility goes together
with a high spread. The yields on six months commercial paper and three months
treasury bills can be taken to measure the spread.

The dividend yield is used as explanatory variable by Harvey (1991), among oth-
ers. Contrary to the other explanatory variables, this variable should be negatively
correlated with volatility: if the economic outlook is bad and so volatility is high,
companies will in general pay out low dividends.

Finally, the daily high-low range, defined as the highest minus the lowest quoted
price during the day, has been pointed out by many as very informative. We already
mentioned Brandt and Jones (2006), but also Andersen and Bollerslev (1998) and
Taylor (1987), among others, point out the power of the range when forecasting
volatility. volatility. When making a forecast for several months ahead, we could
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also consider using the weekly or even monthly high-low range as explanatory vari-
able. By construction, the range is positively correlated with volatility.

2.4 Model choice

In the previous section we concluded that not very much models have been pro-
posed in the existing literature for forecasting volatility at the long horizon, there
is definitely no clearly dominating model. There is however for the short horizon,
namely the (daily) RV based models. As our forecasting models we choose the
GARCH(1,1) model and the HAR-RV model that was briefly discussed in section
2.2. We select an RV-based model because it is most logical to directly model and
forecast the RV, without using additional, unneccessary parametrizations. Out of
of all RV-based models we choose the HAR-RV model, because even though other
RV based models, like the ARFI model in equation (10), are more widely used,
Corsi’s results seem promising. Furthermore, the simplicity of the HAR-RV is a
big advantage compared to the ARFI model, which is not as trivial to estimate.
Another positive point is that it has a clear economic interpretation, which we will
come back to in the next chapter. We test the forecasting power of the model both
with and without the additional explanatory variables which were discussed in the
previous section.

In addition to the HAR-RV model, we also test the GARCH(1,1) model. Again
we test the model both with and without the extra variables added in the variance
equation. We emphasize that although the GARCH model has its shortcomings, it
does serve as a natural benchmark for the forecast performance of the traditional,
not RV-based volatility models. Furthermore, we just forget about the SV models
for now. Their complexity makes them unsuitable for our practical purposes.

In the next chapter we elaborate the two proposed models in more detail.





CHAPTER 3

Chapter 3

In the previous chapter we decided to continue with the GARCH(1,1) and the
HAR-RV model. In this chapter some additional properties of both models will
be discussed. In the case of the GARCH(1,1) model we first derive the model’s
h-step ahead forecast of conditional volatility. Next the problem of choosing an
appropriate sampling frequency is discussed. Finally our testing procedures are
outlined. As for the HAR-RV model, first some background is provided, since in
contrast to most other models, this model has a nice economic interpretation. Next
also for this model some practical issues related to its implementation are discussed.

3.1 The GARCH(1,1) model

In this section we derive the GARCH(1,1) model’s h-step ahead forecast of
conditional volatility. We first derive an expression for the unconditional variance,
since this turns out to both simplify calculations and provide us with an interpre-
tation of the forecasts.

In section 2.2 we introduced the very basics of the GARCH(1,1) model. In partic-
ular, we gave the model’s definition of time t conditional variance σ2

t in equation
(9). Remember that σ2

t is defined conditional on the information set
Ft−1 = {p1, p2, ..., pt−1}, that is: σ2

t = E[(rt − E[rt])2|Ft−1]. The unconditional
variance σ2 is defined as the variance of the entire time series, i.e. σ2 = E[(rt −
E[rt])2]. Taking into account the independence of zt and σt and the fact that
E[zt] = 0 and V ar[zt] = 1, we find that σ2 equals:

σ2 = E[(rt − E[rt])2] = E[(σtzt)2] = E[σ2
t ]E[z2

t ] = E[σ2
t ]

= E[ω + αε2t−1 + βσ2
t−1] = E[ω + ασ2

t−1z
2
t−1 + βσ2

t−1]

= ω + (α + β)E[σ2
t−1]

= ω + (α + β)[ω + (α + β)E[σ2
t−2]]

= ω + (α + β)ω + (α + β)2ω + ... = ω
1−α−β

provided that α + β < 1. So the unconditional variance is finite and equal to
ω

1−α−β if and only if α + β < 1.

Now we derive the model’s h-step ahead forecast of conditional volatility, for any
h ≥ 1. At time t the one step ahead conditional variance σ2

t+1 is deterministic. For
h ≥ 2 the h-step ahead conditional variance is not deterministic anymore, but its

11
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expectation, i.e. a forecast is very easily derived:

E[σ2
t+h|Ft] = E[ω + αε2t+h−1 + βσ2

t+h−1|Ft]

= ω + αE[σ2
t+h−1z

2
t+h−1|Ft] + βE[σ2

t+h−1|Ft]

= ω + αE[σ2
t+h−1|Ft]E[z2

t+h−1|Ft] + βE[σ2
t+h−1|Ft]

= ω + (α + β)E[σ2
t+h−1|Ft] = σ2(1− α− β) + (α + β)E[σ2

t+h−1|Ft]

= σ2 + (α + β)[E[σ2
t+h−1|Ft]− σ2]

And iterating we find:

E[σ2
t+h|Ft] = σ2+(α+β)

[
σ2 + (α + β)[σ2 + (α + β)[E[σ2

t+h−2|Ft]− σ2]− σ2
]

= σ2 + (α + β)2[E[σ2
t+h−2|Ft]− σ2] = ...

(12) = σ2 + (α + β)h−1[σ2
t+1 − σ2]

So, as would be expected, expectations of future variance revert towards the un-
conditional variance as the forecast horizon increases. The term (α + β) is the rate
of reversion.

Furthermore, since for any i ≥ 1,

Cov[rt, rt+i] = Cov[µt + εt, µt+i + εt+i]

= Cov[εt, εt+i] = E[σtztσt+izt+i]

= E[σtztσt+i]E[zt+i] = 0,

the return process is uncorrelated and so V ar[
∑h

i=t ri] =
∑h

i=t V ar[ri].
Since the rt are logreturns, the return over the multiple period interval [t, t + h] is
the sum of the single period sums. In other words, the above equation says that the
variance of the total return over the interval [t, t + h] simply is the sum of the one
period variances. In particular, the time t forecast of the conditional variance over
the interval [t, t + h] equals the sum of the one-period variance forecasts derived in
equation (12):

V ar[rt+1 + ... + rt+h|Ft] =
∑h

j=1 V ar[rt+j ]

=
∑h

j=1

[
σ2 + (α + β)j−1(σ2

t+1 − σ2)
]

= hσ2 +
∑h

j=1(α + β)j−1(σ2
t+1 − σ2)

And since
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j=1(α + β)j−1 =

∑h−1
j=0 (α + β)j =

∑∞
j=0(α + β)j −

∑∞
j=h(α + β)j

1
1−α−β − (α + β)h

∑∞
j=h(α + β)j−h = 1

1−α−β − (α + β)h
∑∞

j=0(α + β)j

= 1−(α+β)h

1−α−β

we find

(13) V ar[rt+1 + .. + rt+h|Ft] = hσ2 + 1−(α+β)h

1−α−β (σ2
t+1 − σ2)

as our time t forecast of the variance over [t, t + h].

Testing procedure

In equation (13) we derived an expression for the GARCH forecast of the volatil-
ity over the period [t, t+h]. It is important to realize that this forecast relies on the
sampling frequency, i.e. changing the sampling frequency will change the forcast.
Assume for example that we want to make a forecast of the conditional variance
over the next two weeks. We could work with daily returns, such that this forecast
becomes a forecast of volatility over the next ten time periods. On the other hand
we could use weekly returns, constructed from the daily returns, in which case the
estimates for α and β will change. Furthermore, we are now making a forecast for
only two periods ahead. It is clear from the expression in (13) that in general this
will change the forecast.

So different frequencies give different forecasts, so it is important to choose well
our sampling frequency. However, in the existing literature not much attention has
been paid to this problem of finding the optimal sampling frequency given some
forecasting horizon and some evaluation criterion. Most of the time the choice of
frequency seems random, guided by intuition. In particular when it comes to inter-
daily horizons, which is what we are interested in, almost no past research has been
conducted on this subject. Andersen et al (1999) seem to be the only ones that
do provide an answer. It is questionable though how valuable their results are, for
our research. They compare the GARCH(1,1) forecasts of the one day, one week
and one month ahead Deutschemark-US dollar volatility (proxied by the sum of
squared returns, as in our case), for sampling frequencies ranging from five mintues
to monthly. For all three horizons, they find that the best forecasts are made when
using an hourly sampling frequency. However, they also find that with the increase
of forecasting horizon the effect of changing from a daily to an hourly sampling
frequency quickly declines. For the monthly horizon the difference is marginal. We
consider even longer horizons than Andersen et al. That is why we will test the
GARCH(1,1) model considering sampling frequencies of daily and lower only.

More precisely, we proceed as follows. We start with testing the ”bare” GARCH(1,1)
model, that is without any explanatory variables added to the variance equation.
Over our sample period we make forecasts of 10, 20, 40, 60 and 120 days ahead
S&P 500 stock index volatility, using a 1000 days rolling window. That is, at each
step the GARCH parameters α, β and ω are estimated on the last 1000 days of data
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and these values are plugged into equation (13) to generate the forecasts. Since we
do not know which sampling frequency is optimal, forecasts are made using various
sampling frequencies: daily, weekly, two-weekly and monthly. As said, our ex-post
volatility measure over a given period is the sum of squared daily returns over that
period. Various statistical criteria and an economic criterion are used to assess the
quality of the forecasts. These criteria are discussed in chapters 5 and 6.
Next we repeat this testing procedure for the GARCH(1,1) model with the explana-
tory variables described in section 2.3 added to the GARCH variance equation. To
start with, these variables are added one at a time. If it turns out that there are
several variables that improve results of the bare GARCH model, we will also add
combinations of these variables to see what their combined effect is.

3.2 The HAR-RV model

The HAR-RV model is a realized volatility model proposed by Corsi (2004). He
shows that it is able to incorporate the main stylized properties of asset volatility
series. At the same time the model stays very simple and therefore easy to imple-
ment. The model in particular is designed to reproduce the stylized fact of long
memory in the volatility of (daily) return series. Even though in general there is no
significant correlation between returns for different days, the correlations between
the magnitudes of returns on nearby days, i.e. between squared or absolute returns,
are in fact positive and significant. This positive correlation between magnitudes is
indicative of positive correlation in the volatility process: remember the definition
of volatility as a measure of the magnitude of the return shock.

The standard GARCH models imply that shocks to volatility decay at an expo-
nential rate. To give an example, remember that at time t the GARCH(1,1) model
expresses the h-step ahead forecast of volatility as in equation (12), that is:

σ2
t+h|t = σ2 + (α + β)h−1(σ2

t+1|t − σ2)

where
σ2

t+1|t := ω + αε2t + βσ2
t

Consequently, in this model the effect of the time t return shock ε2t on the h-step
ahead volatility forecast is:

∂σ2
t+h|t

∂ε2t
= α(α + β)h−1

And since α, β ≥ 0 and α + β ≤ 1, we can infact write

∂σ2
t+h|t

∂ε2t
= cxh

where 0 < x < 1, showing that the GARCH(1,1) model indeed implies exponential
decay of shocks to the volatility.
However, empirical observations provide evidence that autocorrelations of squared
and absolute returns do not decline at an exponential rate, but at a much slower
hyperbolic rate. In other words, the effect of a volatility shock lasts much longer
then implied by for example the GARCH(1,1) model.
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Several models have been proposed that do take into account this long memory be-
havior of volatility. Often just a fractional differencing operator of the form (1−L)d

is added to some existing model. Examples are the ARFI model in equation (10)
and the Fractionally Integrated GARCH (FIGARCH) (1,d,1) model proposed by
Baillie et al. (1996).
Corsi (2004) agues that even though these fractionally integrated (FI) models do
incorporate the long memory property, they have their drawbacks. First of all
he argues that fractional integration lacks an economic interpretation. Second, FI
models are often difficult to estimate and heuristic methods may lead to largely
biased parameter estimates. That is why Corsi proposes an alternative model,
which he names the Heterogenous Autoregressive model for the Realized Volatility
(HAR-RV). The HAR-RV model is just a simple AR model for realized volatility,
that takes into account volatilities realized over several horizons. Corsi focuses on
modeling the daily RV. In this case the HAR-RV model is specified by the single
equation

(11) RV
(d)
t+1 = c + β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + wt+1

where RV
(d)
t represents the volatility realized over day t and RV

(w)
t and RV

(m)
t are

the average daily realized volatilities over the past week and month, respectively:

RV
(w)
t =

1
5
(RV

(d)
t−1 + RV

(d)
t−2 + RV

(d)
t−3 + RV

(d)
t−4 + RV

(d)
t−5)

Analogously, RV
(m)
t is defined as the average of the realized volatilities over the

past 20 days.

The basic idea behind the model is that in a market not all agents are identi-
cal. In particular, agents operate on different time horizons. It is because of this
heterogeinity that different reaction times to news can be observed, which causes
different volatility components. Roughly speaking, the RV

(d)
t term in equation (11)

corresponds with the volatility caused by market participants that in their trading
activities only consider the very short, (intra)daily horizon, like market makers. On
the other hand, RV

(w)
t and RV

(m)
t reflect the decisions of agents that focus on the

weekly and monthly horizons as well.

This idea, in combination with the findings of LeBaron (2001) that the sum of
three AR(1) processes, each considering a different time horizon, can give rise to
hyperbolically decaying memory, leads to Corsi’s proposal of the HAR-RV model.

Testing procedure

Like for the GARCH(1,1) model, we can use different sampling frequencies
when testing the HAR-RV model. Corsi (2004) only considers the daily frequency,
i.e. he makes one week ahead forecasts by five times recursion of equation (11). But
we could also make a one week ahead forecast by means of the following regression:

(12) RV
(w)
t+1 = c + β(w)RV

(w)
t + β(2)RV

(2)
t + β(3)RV

(3)
t + wt+1

where RV
(w)
t again denotes the average daily RV over the past week and RV

(2)
t and

RV
(3)
t are the average daily RV’s over some time periods. We could for example

set RV
(2)
t equal to the average daily RV over the previous month and RV

(3)
t to
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the average daily RV over the previous three months. It is clear though, that for
the HAR-RV model finding the optimal sampling frequency for a given forecasting
horizon is less straightforward than for the GARCH(1,1) model, since changing the
length of the last two components changes the forecast. In other words, compared
with the GARCH(1,1) model, we are now dealing with two additional parameters.
So a first decision to make is how to choose these components. For each frequency
we have a very large number of possibilities. To start with, we just choose one ”in-
tuitively logical” realisation for each sampling frequency and in the next chapters
we first test how the model performs for this choice. For the daily frequency we
simply follow Corsi and set the components equal to the previous one day, one week
and one month average RV’s. For the weekly frequency we set them equal to the
previous one week, one month and three months average RV’s, for the twoweekly
frequency to the previous two weeks, two months and six months average RV’s and
for the monthly frequency to the previous one, three and six months average RV’s.
In chapter 7 we try to improve the forecasting results of the HAR model by choos-
ing regressors more smartly by means of two modern regression techniques called
boosting and forward stepwise regression.

The rest of the testing procedure is the same as for the GARCH model: 10, 20, 40,
60 and 120 days forecasts are made using a 1000 days rolling window, which in this
case means that the β’s and the constant c are estimated on the last 1000 days of
data. Again, tests will be performed on the bare HAR model as well as the HAR
model with the explanatory variables from section 2.3 added. Like for the GARCH
model, these are added one at a time to start with.



CHAPTER 4

Data

Our testing data consists of S&P 500 stock index returns during the period
from 6 December 1988 to 18 September 2007. The S&P 500 is a very notable stock
market index, containing the stocks of 500 (mostly American) corporations. Our
sample period covers both relatively calm as well as turbulent periods. To explain
the seemingly random starting date, we note that the full set of exogenous variables
has been available at a daily basis no earlier then 6 December 1988. In figure 1 the
annualized realized volatilities over 10, 60 and 120 days are plotted for our entire
sample period. Table 1 shows their summary statistics. As would be expected,
we find that the longer the horizon, the more the volatility spikes are smoothed
out: the standard deviation decreases, as does the maximum of the series, while
the minimum increases.

From the graphs in figure 1 we see that in the period 1996-2003 realized volatility
has been consistently high. The first five years of this period correspond with the
IT bubble, a speculative bubble during which stock markets saw their value increase
rapidly from growth in the new Internet sector and related fields. The five years of
increasing stock prices were followed by a two year bear market in which the S&P
500 lost approximately 50% of its value. Remember that the RV is calculated as the
square root of the sum of squared returns, meaning that both consistently highly
positive as consistently highly negative returns lead to high RV. This explains why
during the whole period 1996-2003 RV has been high. During the two year bear
market the most dramatic declines happened in the period July-October 2002. The
most pronounced spikes in the 60 and 120 days RV series correspond with this
period. Also in the 10 days RV series a cluster of spikes is observed for this period,
but the highest peak occurred in August 1998. On August 17 Russia defaulted on
its government debt, triggering major drops in worldwide stock markets. In one
month the S&P 500 lost 14.5 % of its value. The third high spike in the 10 days RV
series corresponds with the mini-crash of 27 October 1997. On this day worldwide
stock markets crashed, caused by an economic crisis in Asia. In one day the S&P
500 lost over 7%.

17
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Figure 1. Annualized realized volatility over 10, 60 and 120 days

for the period 6 December 1988 to 18 September 2007. The an-

nualized realized volatility over a n-day period is calculated as the

square root of the sum of squared daily returns during that period,

times a factor 252
n

.

10 days RV 60 days RV 120 days RV

mean 13.89 14.43 14.60
st.dev 7.15 5.98 5.59
min 2.95 5.91 6.64

max 54.41 37.45 32.55

Table 1. Summary statistics for the series plotted in figure 1.



CHAPTER 5

Empirical results: statistical analysis

To asses the quality of the forecasts, various criteria can be used. In this chapter
the focus will be on statistical criteria. Using several performance measures, we
discuss the statistical accuracy of our forecasts. Under these measures an upward
error and an downward error of the same magnitude are judged equally bad, without
taking into account any economic interpretation. Performances of the HAR and
GARCH forecasting models are compared to the performance of a very simple
benchmark model.

5.1 Performance measures

We use different performance measures to evaluate the quality of our forecasts.
First of all, we calculate the mean squared error (MSE) with the actual (ex-post)
RV series for each series of forecasts:

(12) MSE =
1
N

N∑
i=1

(σ̂i − σi)2

where N denotes the total number of forecasts, σ̂i the period i volatility forecast
and σi the ex-post RV over period i.

In addition we report, for each forecast series σ̂, the so called coefficient of de-
termination, R2, obtained from the regression of realized volatility on forecasted
volatility:

σ = a + bσ̂ + ε

where ε ∼ N(0, 1). R2 is the fraction of the sample variance 1
N

∑N
i=1(σi − σmean)2

that is explained by the forecasting model. It equals

R2 =
b2

∑N
i=1(σ̂i − σ̂mean)2∑N

i=1(σi − σmean)2

where σ̂mean and σmean are the means of the forecasting series and realized volatil-
ity series respectively. To understand this equation, note that σmean = a + bσ̂mean

and so σi−σmean = b(σ̂i−σ̂mean)+εi. So the difference from the mean (σi−σmean)
can be decomposed as the sum of a component corresponding to the mean of the
forecast series and an unexplained component, described by the residual εi, imply-
ing that the fraction of 1

N

∑N
i=1(σi − σmean)2 that is explained by the forecasting

model is indeed the above expression for R2.

In addition to the R2’s, we also report the coefficients a and b of the regression,
since these can provide us extra information about the quality of a series σ̂. In
particular, we are interested whether b significantly differs from 0, since this would

19
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mean that there is a certain degree of predictability in the volatility. For each
regression we test the null hypotheses H1

0 : b = 0 and H2
0 : a = 0, by means of

t-tests.

5.2 Results

In tables 3a-b MSE’s are reported for all HAR and GARCH forecasting models
(i.e all horizons, all sampling frequencies, all extra variables). In the Appendix
the R2’s and the regression coefficients a and b with corresponding p-values can be
found in tables A1, A2 and A3. These results are evaluated against the results from
a benchmark model which forecasts tomorrow’s volatility as a linear combination
of today’s volatility and a constant:

σ̂t+1 = ĉ + d̂σt

where ĉ and d̂ are least squares estimates, obtained from the regression

σ = c + dσ(−1) + ε

where the notation σ(−1) is used to indicate the one period lag with respect to σ.

So for example, at day t a forecast of the RV over the next 120 days is made
as:

̂t+120∑
t+1

r2
i = ĉ + d̂

t∑
i=t−119

r2
i

So this model could be described as a sophisticated version of ”the best prediction
of tomorrow’s volatility is today’s volatility”. Like the HAR and GARCH models,
this benchmark model uses a 1000 days rolling window, meaning that at each time
step c and d are estimated based on the last 1000 days of data. Table 2 below gives
the results for the benchmark model.

benchmark horizon

10 20 40 60 120

MSE’s 1.458 2.373 3.619 5.441 9.887

R2’s 0.393 0.436 0.504 0.470 0.357

a -0.145 -0.082 0.033 0.478 2.645

(0.479) (0.826) (0.942) (0.397) (0.001)

b 0.986 0.963 0.959 0.906 0.727

(0.000) (0.000) (0.000) (0.000) (0.000)

Table 2: MSE’s with the ex-post RV series for the forecast series generated by the

benchmark model and regression R2’s and regression coefficients of the regression

σ = a+bσ̂+ε where σ denotes the ex-post RV series and σ̂ the forecast series generated

by the benchmark model. In brackets the p-values from the t-tests for a=0 and b=0.

GARCH

Based on tables 3a and A1a our most important conclusion is that for the
GARCH model the daily frequency gives best results for all horizons. From table
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3a we clearly see that MSE’s increase as the sampling frequency gets lower. The
R2’s in table A1a show similar results: for all horizons the highest values are found
when using a daily sampling frequency.

GARCH MSE’s horizon
Bare model 10 20 40 60 120

daily 1.329 2.047 3.659 5.432 11.418

weekly 1.539 2.548 4.551 6.448 11.385
two-weekly 1.908 3.221 5.943 8.822 17.551
monthly 5.682 9.959 14.634 25.284

Added: range

daily 1.385 2.172 3.814 5.603 11.705
weekly 1.582 2.629 4.834 6.867 12.020

two-weekly 1.923 3.507 6.370 9.204 17.097
monthly 5.130 8.206 11.789 21.663

Added: credit spread

daily 1.340 2.081 3.697 5.472 11.463
weekly 1.596 2.627 4.638 6.577 11.694

two-weekly 1.830 3.149 5.901 8.736 17.588
monthly 5.013 8.945 12.279 21.270

Added: dividend yield

daily 1.326 2.036 3.652 5.412 11.409

weekly 1.574 2.615 4.637 6.570 11.656
two-weekly 1.894 3.278 6.130 9.000 17.800

monthly 5.214 9.141 13.132 22.917

Added: 3 months

treasury bill yield

daily 1.333 2.061 3.681 5.466 11.494
weekly 1.584 2.626 4.652 6.610 11.802
two-weekly 1.780 3.032 5.801 8.635 17.574

monthly 5.020 9.001 12.817 22.189

Added: term spread

daily 1.324 2.040 3.652 5.424 11.410
weekly 1.619 2.651 4.524 6.442 11.531
two-weekly 1.782 2.992 5.809 8.645 17.520
monthly 5.610 9.584 9.316 23.343

Added: 6m com.paper -
3m treasury bill yield

daily 1.329 2.053 3.661 5.430 11.496
weekly 1.561 2.569 4.662 6.635 11.762

two-weekly 1.844 3.053 5.781 8.573 17.379

monthly 5.253 8.807 12.595 21.431

Table 3a: MSE’s with the ex-post RV series for all forecast series generated by

the GARCH model.

Comparing table 3a with table 2, we find that for this daily sampling frequency, the
GARCH model at the 10 and 20 days horizon beats the benchmark model, that is
MSE’s are lower. This result holds no matter which explanatory variable is added.
At the 40 and 120 days horizon the benchmark model is never beaten, while for 60
days ahead this depends on which variable is added: the bare model and models
with dividend yield, term spread or 6 months commercial paper minus 3 months
treasury bill yield all lead to decreases in MSE with respect to the benchmark,
the others don’t. Improvements do not seem very large though. Therefore, in the
next section we test whether the decreases in MSE wrt the benchmark model are
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significant, by means of the Wilcoxon signed rank.

Comparing tables 2 and A1a (concentrating again on the daily sampling frequency),
we find that also R2’s are higher for the GARCH model than for the benchmark
model, for all horizons.

Looking at the tables A2a-g, the most striking result is that for all horizons, all sam-
pling frequencies and all explanatory variables added, the null hypothesis H1

0 : b = 0
is very clearly rejected, that is at all reasonable confidence levels. This is a nice
result, since it means that all these series are better forecasts then when taking
just a constant, indicating that there is predictability in the volatility. This does
not tell us anything about the quality of the forecasts though, that is with respect
to the benchmark model. In fact, we see from table 2 that also for the benchmark
model the null hypothesis H1

0 : b = 0 is very clearly rejected for all horizons. Sum-
marizing, we find evidence of predictability but in the next section we test whether
a very simple benchmark model can be beaten.

Finally, in the figures 2a-b the 20 and 120 days ahead forecast series generated
by the daily sampled bare GARCH model are plotted. As we see, no strange spikes
occur in the forecast series, i.e. all spikes are a result of spikes in the RV series.
So in this sense the model actually behaves ”nicely”. However, for the 120 days
horizon, forecasts tend to be too low in the first part of the sample and in the last
part they are consistently too high. This effect is less strong when extra variables
are added, see Appendix figures A1a-d for some examples.

Figures 2a-b:20 and 120 days RV and corresponding forecasts generated by the

daily sampled bare GARCH model.

HAR

A first conclusion we can make from the results in tables 3b and A1b is that
for the HAR model the weekly sampling frequency gives best results: MSE’s are
lowest and R2’s highest for this frequency.



HAR 23

HAR MSE’s horizon

Bare model 10 20 40 60 120

daily 1.552 2.448 4.601 6.966 14.502
weekly 1.405 2.236 3.952 5.758 11.718
two-weekly 1.421 2.451 4.167 6.037 12.296
monthly 2.897 4.963 7.553 15.388

Added: range

daily 1.449 2.149 3.934 5.648 10.925
weekly 1.404 2.230 3.747 5.214 9.941
two-weekly 1.487 2.460 4.307 6.217 12.129

monthly 3.060 4.561 6.770 11.724

Added: credit spread

daily 1.549 2.539 4.559 6.662 12.706

weekly 1.450 2.284 4.009 5.814 11.401

two-weekly 1.462 2.537 4.326 6.216 12.029
monthly 2.793 4.539 6.558 12.153

Added: dividend yield

daily 1.605 2.703 5.351 8.316 18.237
weekly 1.508 2.442 4.333 6.343 13.087

two-weekly 1.473 2.517 4.217 6.106 12.340
monthly 3.151 5.546 8.293 15.690

Added: 3 months
treasury bill yield

daily 1.554 2.454 4.676 7.112 14.917

weekly 1.443 2.343 4.302 6.435 13.602

two-weekly 1.459 2.556 4.486 6.690 14.197
monthly 2.993 5.234 8.003 16.486

Added: term spread

daily 1.557 2.490 4.797 7.400 16.085
weekly 1.403 2.256 4.118 6.166 13.263

two-weekly 1.437 2.525 4.479 6.688 14.240
monthly 3.073 5.428 8.333 17.020

Added: 6m com.paper -
3m treasury bill yield

daily 1.552 2.441 4.658 6.967 14.703

weekly 1.434 2.333 4.314 6.458 13.750
two-weekly 1.456 2.556 4.504 6.701 14.345
monthly 3.003 5.290 8.039 16.968

Table 3b: MSE’s with the ex-post RV series for all forecast series generated by

the HAR model.

Comparing tables 3b and 2, we find that for this weekly sampling frequency the
HAR model at the 10 and 20 days horizon beats the benchmark, except when the
dividend yield is added to the model. For all other variables added and for the
bare HAR model, MSE’s are lower, but the dividend yield for some reason makes
MSE’s increase with respect to the benchmark. Like for the GARCH model, the
benchmark model is never beaten at the 40 and 120 days horizon. At the 60 days
horizon, only the HAR model with the range added beats the benchmark. Again,
significance of the decreases in MSE’s is tested in the next section.

From tables A4a-g we see that, like for the GARCH model, the null hypothesis
H1

0 : b = 0 is, for all horizons, sampling frequencies and explanatory variables added,
rejected at all reasonable confidence levels. So again, predictability of volatility is
found, but based on these tables we cannot draw any conclusions yet about the
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quality of the forecasts.

In the figures 3a-b the 20 and 120 days ahead forecast series generated by the
weekly sampled bare HAR model are plotted. Like for the GARCH forecast series
in figures 2a-b, all spikes can be explained by spikes in the RV series. The same
holds when extra variables are added to the bare model, see Appendix figures A2a-d
for a few examples.

Figures 3a-b: 20 and 120 days RV over the period November 1992-February 2007

and corresponding forecasts generated by the weekly sampled bare HAR model.

5.3 The Wilcoxon signed rank test

To test whether one model significantly outperforms the other, we use the
Wilcoxon signed rank test.
Let {σ} denote the true, ex-post volatility series and let {σ̂(1)} and {σ̂(2)} denote
two competing forecast series of σ. The time t forecast errors from the two models
are:

ε
(1)
t = σt − σ̂

(1)
t

and
ε
(2)
t = σt − σ̂

(2)
t

The Wilcoxon signed rank test statistic is based on the differences, Dt, between
these forecasting errors:

Dt := ε
(1)
t − ε

(2)
t

The null hypothesis is that the two forecasting error series have the same distribu-
tion and so that no model significantly outperforms the other. That is, under the
null hypothesis the distribution of the Di is symmetric around 0. The test statistic
is calculated as follows. To start with, the absolute values of the Dt’s are ranked.
That is, letting N denote the total number of Dt’s, each Dt obtains a unique rank
Rt ∈ {1, .., N}, such that if Ri < Rj , then it must hold that |Di| < |Dj |. Next,
signed ranks are obtained by restoring the sign of the Dt’s to the Rt’s. Finally, the
test statistic W is defined as the sum of the ranks with positive sign. If the two
forecasting errors series follow the same distribution, we expect approximately half
of the Di to be positive and half to be negative, in which case W will not be very
large or very small. Therefore, the null hypothesis is rejected when W does in fact
take on a too extreme value.
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It can be easily shown (see Rice (1995)) that, under the null hypothesis,
E(W ) = 1

4N(N + 1) and V ar(W ) = 1
24N(N + 1)(2N + 1) and that the normalized

test statistic

Z =
W − E(W )√

V ar(W )

is asymptotically normally distributed. Since our sample period covers a period of
almost 20 years, we can in fact consider normalized test statistics. That is, we test
the null hypothesis H0 : Z ∼ N(0, 1), where

(13) Z =
W − 1

4N(N + 1)√
N(N + 1)(2N + 1)/24

We want to test whether the benchmark forecast series is beaten by any of the HAR
or GARCH models, that is whether the forecasting errors resulting from these com-
peting forecasting models are significantly lower. Therefore, we set {σ̂(1)} equal to
the forecasting error series implied by the benchmark series and {σ̂(2)} to the error
series implied by the various HAR and GARCH forecast series. In the tables A4a
and A4b, in the Appendix, the normalized test statistic Z is reported for each choice
of {σ̂(2)}. We are interested in the case Z > 1.96. In this case the forecasting errors
of the benchmark model are significantly higher, at the 2.5% confidence level, than
the errors of the competing HAR and GARCH forecast model.

In table A4a the results for the GARCH forecast series are reported. Values greater
than 1.96 are in bold. As we see, these are only found at the 20 days horizon and
when using a daily sampling frequency. This result holds, no matter which explana-
tory variable is added. Results for the HAR forecast series, which are reported in
table A4b, are even worse: There are no values greater than 1.96 at all, meaning
that the benchmark model is beaten by none of the HAR models.

Finally, it must be stressed that when testing at the 2.5% confidence level, we
accept the possibility to falsely reject the null hypothesis 2.5 out of 100 times. In
our case we accept the possibility of falsely rejecting three out of the test statistics
in tables A4a and A4b, since in each table a total of 133 test statistics is reported.
To correct for this falsely rejecting the null hypothesis, which is expected to happen
more often the larger the number of times the hypothesis is tested, several proposals
have been made. The most rigorous example is the Bonferroni correction, which
states that when testing a hypothesis n times at the α% confidence level, a p-value
threshold of α

n should be used. A less restrictive criterion is the false discovery rate,
which says that first the p-values of the n tests should be ordered in increasing or-
der. Denoting these n orderes p-values by p(1), p(2), ...p(n), the largest k should be
found such that p(k) ≤ k

nα. Then the null hypothesis should be rejected for the
first k tests. Under these criteria also for the GARCH model all test statistics, in
table A4a, drop to insignificance.

Summarizing, we find no convincing evidence that any of the HAR or GARCH
forecasting error series is significantly lower than the benchmark error series. This
is of course a disappointing result. Therefore, in chapter 7 we will try to improve
results by applying two modern regression techniques. In the next chapter we first
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test the HAR and GARCH models again, but under a very different (but equally
important) criterion.



CHAPTER 6

Empirical results: economic interpretation

In the previous chapter we discussed the quality of our forecast series using
statistical criteria, considering only the magnitude of the forecasting errors. In
practice however, the sign of the error is often also important as it can mean the
difference between a loss or a profit. In this chapter we first discuss the variance
swap, as an example of a contract of which the payoff depends not only on the
magnitude but also on the sign of the forecasting error. Next we calculate and
discuss the so called hitratios for all forecasting models and all horizons, i.e. how
often does a model predict well the direction of change in volatility. Again the
HAR and GARCH models’ performances are compared with results of our simple
benchmark model, described in the previous chapter.

6.1 Variance swap

Variance swap contracts are swap contracts that offer investors direct expo-
sure to the volatility of the underlying asset, usually a stock index. A pre-agreed
variance level will be exchanged for the actual variance realized over the contract
period. The net payoff P will be the difference between these two:

P = X(σ2 −K2)

where K is the variance swap strike price, σ2 is the realized variance of the under-
lying asset and X is the variance swap notional, the amount of money invested in
the swap.

The realized variance σ2 is calculated as the annualized sum of squared daily log
returns:

σ2 =
252
T

T∑
i=1

[ln(
Pi

Pi−1
)]2

where Pi is the (closing) stock price on day i and T is the number of days of the
contract period.

So apart from the term 252
T which annualizes the expression, this is the same defini-

tion we used when making our forecasts. So if our model predicts that the variance
level over the next T days (σ̂T ) will be higher then the variance realized over the
last T days (σ−T ), a strategy could be to take a long position in a variance swap
with strike level K equal to σ−T . It is clear that the most important thing is that
the variance realized over the next T days will in fact be higher then σ−T , since
otherwise a loss will be made. So in this example it is important to predict well
the direction of change in volatility.
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6.2 hitratios

Tables 5a and 5b report the hitratios for the various HAR and GARCH forecast
series. For a forecast series, the hitratio is calculated as the number of times that
the direction of change in realized volatility is forecasted correctly, divided by the
total number of forecasts:

1
N

N∑
t=1

(Iσ̂t>σt−1&σt>σt−1 + Iσ̂t≤σt−1&σt≤σt−1)

where N is the total number of forecasts, {σ} denotes the true, ex-post volatility
series and {σ̂} is the forecast series of {σ}. In other words: given today’s volatil-
ity, how often is forecasted correctly wether tomorrow’s volatility will be higher or
lower. To start with, the hitratios for the benchmark model, against which the
HAR and GARCH hitratios will be evaluated, are reported in table 4 below.

benchmark horizon
hitratios 10 20 40 60 120

0.624 0.626 0.618 0.650 0.651

Table 4: hitratios for the forecast series generated by the benchmark model

GARCH

In table 5a hitratios are reported for the GARCH model. Based on this ta-
ble, a first conclusion is that for all horizons hitratios are highest when using a
daily sampling frequency and decline as the frequency declines. This observation is
in agreement with the statistical results from the previous chapter, where for the
GARCH series we found full sample MSE’s to be lowest for the daily frequency as
well.

A second observation is that the GARCH model leads to highest hitratios at the
shortest horizons. From table 5a we find the hitratios to be highest for the 10 days
horizon and lowest for the 120 days horizon. This result is quite in contrast with
the results of the benchmark model, for which the highest hitratio is found for the
120 days horizon. Consequently, comparing tables 4 and 5a (concentrating on the
daily sampling frequency, which we found to give best results), we see that at the
10 and 20 days horizon the GARCH model always beats the benchmark, that is no
matter what explanatory variable added. On the other hand, at the 40, 60 and 120
days horizon, the benchmark model is never beaten.

HAR

For the HAR model, a first observation is that none of the sampling frequencies
leads to overall highest hitratios. Actually, it seems to be quite random for which
frequency hitratios are highest, for a given horizon. Remember that under statisti-
cal criteria the weekly sampling frequency did outperform the other frequencies for
all horizons.

Secondly, like for the GARCH model, the highest hitratios are reported for the
shortest horizons. Again, the model does best at the 10 days horizon and worst
at the 120 days horizon. However, in contrast to the GARCH results, the HAR
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model outperforms the benchmark model not only at the shortest howizons, but at
all except the 120 days horizon. It does though, for every horizon, really depends
on which sampling frequency is used and which explanatory variable is added to
generate a forecast series, wether or not that series beats the benchmark series.
There is only one combination of sampling frequency and explanatory variable for
which the benchmark is beaten for all four horizons, which is the combination of
credit spread and weekly sampling frequency.

GARCH horizon

Bare model 10 20 40 60 120

daily 0.669 0.665 0.612 0.644 0.580

weekly 0.649 0.620 0.596 0.571 0.523
two-weekly 0.657 0.626 0.590 0.559 0.511

monthly 0.597 0.551 0.503 0.494

Added: range

daily 0.671 0.659 0.601 0.644 0.580
weekly 0.652 0.609 0.596 0.588 0.534
two-weekly 0.663 0.603 0.601 0.537 0.517

monthly 0.581 0.545 0.492 0.5

Added: credit spread

daily 0.663 0.643 0.618 0.644 0.586

weekly 0.632 0.609 0.601 0.582 0.511
two-weekly 0.638 0.592 0.584 0.548 0.529
monthly 0.581 0.584 0.554 0.5

Added: dividend yield

daily 0.677 0.659 0.612 0.638 0.569

weekly 0.646 0.620 0.618 0.582 0.540
two-weekly 0.652 0.587 0.562 0.514 0.5

monthly 0.553 0.534 0.486 0.489

Added: 3 months

treasury bill yield

daily 0.660 0.654 0.612 0.633 0.586

weekly 0.644 0.620 0.590 0.576 0.529
two-weekly 0.644 0.637 0.584 0.537 0.506
monthly 0.575 0.562 0.497 0.494

Added: term spread

daily 0.663 0.665 0.618 0.644 0.586
weekly 0.635 0.615 0.590 0.565 0.523
two-weekly 0.646 0.620 0.573 0.508 0.494

monthly 0.575 0.534 0.475 0.529

Added: 6m com.paper -

3m treasury bill yield

daily 0.669 0.665 0.612 0.644 0.586

weekly 0.644 0.615 0.601 0.593 0.540
two-weekly 0.638 0.615 0.584 0.559 0.506

monthly 0.592 0.545 0.508 0.517

Table 5a: hitratios for all forecast series generated by the GARCH model

Finally, when comparing the HAR and GARCH results for the 10 and 20 days
horizon (for which both models outperform the benchmark model), we see that for
these horizons the overall highest values are reported for the GARCH model. So
based on the information in tables 4, 5a and 5b, our conclusion is that at the 10 and
20 days horizon best results are found for the GARCH model, at the 40 and 60 days
horizon for the HAR model and at the 120 days horizon for the benchmark model.
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HAR horizon

Bare model 10 20 40 60 120

daily 0.639 0.626 0.596 0.610 0.489
weekly 0.644 0.637 0.573 0.621 0.506
two-weekly 0.649 0.620 0.573 0.616 0.511
monthly 0.620 0.596 0.588 0.552

Added: range

daily 0.65 0.654 0.685 0.633 0.569
weekly 0.627 0.615 0.579 0.633 0.632
two-weekly 0.657 0.609 0.573 0.638 0.557

monthly 0.615 0.590 0.610 0.661

Added: credit spread

daily 0.667 0.637 0.601 0.655 0.563

weekly 0.660 0.659 0.622 0.672 0.580

two-weekly 0.683 0.631 0.607 0.661 0.575
monthly 0.637 0.579 0.599 0.580

Added: dividend yield

daily 0.633 0.615 0.579 0.605 0.546
weekly 0.641 0.615 0.601 0.621 0.540

two-weekly 0.641 0.609 0.590 0.616 0.563
monthly 0.654 0.629 0.621 0.592

Added: 3 months
treasury bill yield

daily 0.642 0.643 0.607 0.599 0.483

weekly 0.630 0.631 0.601 0.593 0.477

two-weekly 0.652 0.626 0.618 0.610 0.494
monthly 0.620 0.567 0.588 0.477

Added: term spread

daily 0.639 0.598 0.601 0.593 0.471
weekly 0.657 0.603 0.596 0.605 0.477

two-weekly 0.666 0.620 0.624 0.576 0.460
monthly 0.615 0.545 0.565 0.511

Added: 6m com.paper -
3m treasury bill yield

daily 0.642 0.615 0.596 0.582 0.580

weekly 0.644 0.637 0.601 0.582 0.563
two-weekly 0.657 0.620 0.579 0.576 0.563
monthly 0.615 0.596 0.588 0.546

Table 5b: hitratios for all forecast series generated by the HAR model



CHAPTER 7

Modern regression techniques

So far we tested the HAR model choosing the regressors more or less randomly,
in a statistical sense: for each sampling frequency we tested the model for just one
combination of three RV’s over different past periods, which seemed ”intuitively
logical” from an economical point of view. We just followed Corsi (2004) at this
point, who’s choice of regressors is also just economically motivated. This procedure
is of course not very acceptable from a statistical point of view. Also, we tested
whether the macroecomic variables add predictive power by simply adding them
to the model one at a time and then running the model with one variable added
over the whole sample period. Again, it is clear that this is not the best way of
testing. In this chapter we test the HAR model again, but this time select the
regressors by means of two more advanced regression techniques: forward stepwise
regression and boosting. Both techniques select a set of regressors at each time
step, so this set will possible change over time. Remember that in chapter 5, using
statistical criteria, we did not find evidence that the HAR model led to significant
improvement of the benchmark model. It is interesting to find out whether these
two modern regression techniques can improve the accuracy of the forecasts such
that the benchmark is in fact beaten, which is our ultimate goal. Since in chapter
5 we found the weekly sampling frequency to be optimal under statistical criteria,
this is the only frequency we consider in this chapter. That is, we try to improve
the accuracy of the weekly sampled HAR model only.

7.1 Forward stepwise regression

Say we want to predict a certain value Y by means of a linear regression model
and say that we have a set of k possible regressors: {Xj}k

j=1. Given the histories of
Y and the Xj , we could just decide to use all k regressors and estimate the linear
regression model

Y = β0 +
k∑

j=1

Xjβj

by means of the least squares method. One thing we know is that the sum of
squared errors , which for a given set of m regressors is defined as

SSE(β) =
m∑

j=1

(yi − β0 −
m∑

j=1

Xijβj)2

will get lower when more regressors are added. Consequently it will be lowest when
all regressors are added. However, in general the variance of the estimates will get
larger when adding more regressors. When a lot of regressors are added, prediction
accuracy may be very low. Furthermore, with a large number of regressors it is
probable that a smaller subset exhibits the strongest effects.

31
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These two considerations are the basic ideas behind forward stepwise regression.
Instead of using all regressors we use only a few. We start with an intercept and
then step by step out of the remaining regressors, the regressor which most improves
the fit is added, until none of the remaining regressors significantly improves the
model anymore. This improvement in fit is often based on the F-statistic:

F =
SSE(β̂)− SSE(β̃)

SSE(β̃)/(N −m− 2)

where the current model of m regressors corresponds with parameter estimates β̂
and the model with one of the remaining predictors added to this current model
with parameter estimates β̃. N is the sample size. It must be stressed that the
total set of parameters is estimated again each time an extra regressor is added. In
other words, the values of β̃ are not just equal to β̂ with the exception of the one
extra element, but it is a whole different set of values.

In our case, our set of regressors consists of the six macroeconomic variables de-
fined earlier and a set of average RV’s over various past periods. Remember that
in the previous chapters we used the average RV’s over the past week, month and
three months as regressors for the weekly sampled HAR model (see section 3.2).
However, in principle RV’s over all past periods could be chosen as regressors, that
is there is an infinite number of potential regressors. To avoid ending up with too
large sets of possible regressors and to avoid any problems with data availability,
we choose only 26 regressors out of this infinite set. These 26 regressors are the
average RV’s over the past week, past two weeks, past three weeks etc, with the
last regressor being the average RV over the last half year. These 26 regressors
bring the total number of possible regressors to 32. To make the comparison with
the simple HAR model we tested in the previous chapters as fair as possible, we
again use a 1000 days rolling window. That is, at each time step we select a subset
out of these 32 regressors to make a forecast and determine parameters, based on
the last 1000 days of data. Our strategy is to sequentially add the regressor which
produces the largest value of the F-statistic and stop when no predictor leads to a
value for F greater than the 95th percentile of the F1,N−m−2 distribution.

Table 6 below presents the results for the HAR model when regressors are se-
lected by means of forward stepwise regression. Reported are again the MSE’s as
defined in equation (12), the R2 from the regression of realized volatility σ on our
forecasts σ̂:

σ = a + bσ̂ + ε

and the a and b from this regression together with the p-values from the t-tests
of H1

0 : b = 0 and H2
0 : a = 0. Also the Wilcoxon signed rank test statistics

with corresponding p-values are reported, to test for significant improvement of the
benchmark model. Using the notation of section 5.3, we test MSE’s of the bench-
mark forecast series, {σ̂(1)}, against the MSE’s of the forecast series generated by
the foreward stepwise regression, {σ̂(2)}.
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Forward stepwise horizon

regression 10 20 40 60 120

MSE’s 1.187 2.150 2.816 4.816 9.376

W. signed rank test-statistics 2.211 2.019 1.789 1.003 0.537

R2’s 0.560 0.578 0.676 0.528 0.508

a 0.473 0.943 1.194 2.517 4.354

(0.000) (0.000) (0.000) (0.000) (0.000)

b 0.775 0.722 0.768 0.625 0.562

(0.000) (0.000) (0.000) (0.000) (0.000)

Table 6: results for the forward stepwise regression: MSE’s with the ex-post RV se-

ries, Wilcoxon signed rank test statistics with {σ̂(1)} equal to the benchmark forecast

series and {σ̂(2)} to the forecast series resulting from the forward stepwise regression,

regression R2’s and regression coefficients of the regression σ = a + bσ̂ + ε where σ

denotes the ex-post RV series and σ̂ the forecast series generated by the forward

stepwise regression. In brackets the p-values from the t-tests for a=0 and b=0.

Comparing tables 1, 3b and 6, a first observation is that for the stepwise regression
R2’s are very high for all horizons, higher than both the benchmark R2’s and the
simple HAR R2’s. Remember from section 5.1 that this means that the forward
stepwise regression model explains a larger part of the variance of the actual volatil-
ity than the benchmark model and the simple HAR model. Like for the benchmark
model, also for the stepwise regression model the highest R2 is reported for the 40
days horizon and the lowest R2 for the 120 days horizon. However this minimum
is still as high as 0.508.

In addition, we see that for all horizons the MSE’s implied by the forward stepwise
regression are (much) lower than those implied by both the simple HAR model from
the previous chapters and the benchmark model. However, at the 2.5% confidence
level, the Wilcoxon signed rank test statistic is greater then 1.96 only at the 10
and 20 days horizons, meaning that only at these horizons the forecasting errors
implied by the forward stepwise regression model are significantly lower than the
errors implied by the benchmark model. However, under the false discovery rate,
described in section 5.3, also at the 20 days horizons the test statistic becomes
insignificant. At the 10 days horizon the test statistic remains significant. So all
together, results indicate that the forward stepwise regression model does better
than the simple HAR model but the model does not outperform the benchmark
model convincingly beyond the 10 days horizon.

7.2 Boosting

Boosting is a general method of producing an accurate prediction by combining
a large set of rough, inaccurate predictions. It was originally designed for classifi-
cation problems, but it can be extended to regression problems as well.

Let us again assume we want to predict a variable Y and have a vector X of k
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predictor variables. In general terms, a boosting algorithm produces a basis func-
tions expansion of the form

f(x) =
M∑

m=1

βmb(x, γm)

where the βm are the expansion coefficients and the b(x, γm) the basis functions:
simple functions of the predictor variables and a set of parameters γ. The expan-
sion resulting from the boosting algorithm, fopt(x), typically minimizes some loss
function over the training data:

fopt(x) = min
{βm,γm}M

1

N∑
i=1

L(yi,
M∑

m=1

βmb(xi, γm))

where N is the size of the training sample. For many loss functions, finding fopt is
computationally very intensive. Therefore often fopt is just approximated.

We now explain how to apply the concept of boosting to our forecasting problem.
In our case, we are dealing with squared error loss, so the loss function is:

L(y, f(x)) = (y − f(x))2

Our set of predictor variables is the same as in the previous chapter, that is the
six macroeconomic variables and the 26 RV’s over past periods. We use the 32
(32×1)-vectors with 31 elements equal to 0 and one element equal to one as the
basis functions, γ is empty. So actually the basis functions are simply the regres-
sors. To approximate the solution which minimizes the loss function, we will use
an approximation algorithm called forward stagewise (FS) additive modelling. The
basic idea is similar to the forward stepwise regression discussed in the previous
section: also FS additive modelling sequentially adds new regressors (basis func-
tions) to the expansion, but without adjusting the parameters and coefficients of
those that are already added. Remember that the regression model described in
the previous section estimates the coefficients again at each time step. Also, while
the model from the previous chapter does not add any regressor more than once
to the expansion, the FS additive modelling can add the same regressor multiple
times. In fact, the number of iterations M may be (and often will be) larger than
the number of predictor variables, implying that at least one of the regressors has
to be added more than once. Note that adding the same regressors more than once
only makes sense due to the fact that coefficients of all previous added regressors do
not change. At each iteration m, the FS additive modelling solves for the optimal
basis function and corresponding coefficients βm to add to the current expansion
fm−1(x). Adding this optimal term to the current expansion produces fm(x) and
the procedure is repeated.



7.2 BOOSTING 35

Boosting horizon

10 20 40 60 120

MSE’s 0.741 1.723 2.341 4.067 7.935

W. signed rank test statistics 4.231 2.339 2.410 1.829 1.526

R2’s 0.721 0.673 0.578 0.535 0.510

a 0.500 1.193 1.610 1.749 4.532

(0.000) (0.000) (0.000) (0.000) (0.000)

b 0.908 0.792 0.741 0.717 0.662

(0.000) (0.000) (0.000) (0.000) (0.000)

Table 7: results for the boosting model: MSE’s with the ex-post RV series, Wilcoxon

signed rank test statistics with {σ̂(1)} equal to the benchmark forecast series and {σ̂(2)}
to the forecast series resulting from the boosting model, regression R2’s and regres-

sion coefficients of the regression σ = a+ bσ̂ + ε where σ denotes the ex-post RV series

and σ̂ the forecast series generated by the boosting model. In brackets the p-values

from the t-tests for a=0 and b=0.

Table 7 presents results for the forecast series generated by the boosting model
when using FS additive modelling to approximate the optimal solution. We set the
number of iterations M equal to 50. We find that for all horizons the MSE’s im-
plied by the boosting model are much lower than the benchmark and HAR MSE’s
in tables 1 and 3b respectively. They are also lower than the MSE’s implied by
the forward stepwise regression model in table 6. The Wilcoxon signed rank test
statistic is greater than 1.96 for the 10,20 and 40 days horizon and is significant at
these horizons even under the false discovery rate criterion!

In addition, the boosting R2’s are for all horizons higher than the R2’s for the
other three models. The boosting R2’s differ from the benchmark and forward
stepwise regression R2’s in the sense that they decrease monotonically with the
increase of horizon, while for the other models the maximum is reported at the 40
days horizon. For the 10 days horizon the boosting R2 equals 0.721, which is an
extremely high value in the context of volatility forecasting. In the existing litera-
ture values higher than 0.55 are rarely reported.

Summarizing, there is very strong evidence that the boosting model outperforms
the benchmark model at the 10, 20 and 40 days horizon. Taking also in considera-
tion the very R2’s for the boosting model we may conclude the boosting model is
preferred over the benchmark model.





CHAPTER 8

Conclusion

We studied the predictability of S&P 500 stock index volatility for forecasting
horizons from 10 to 120 days. Forecasts were made with the GARCH and HAR
model and using daily, weekly, two-weekly and monthly sampling frequencies. The
added value of several explanatory variables was tested as well. Results of the two
forecasting models were compared to the outcomes of a very simple benchmark
model.

Under both statistical criteria (MSE’s, R2’s) and the economic criterion (hitratios),
we find the GARCH model to work best when using the daily sampling frequency.
Best results are reported for the shortest horizons (10 and 20 days). Under the
Bonferroni and false discovery rate criteria, we found the GARCH MSE’s to be
never significantly lower than the benchmark MSE’s, for none of the forecasting
horizons and none of the extra variables added. Under the economic criterion, the
GARCH model beats the benchmark at the 10 and 20 days horizon.

Under statistical criteria, the HAR model gives best results when using the weekly
sampling frequency. The model has highest predictive power for the 60 days hori-
zon. However, we also found the HAR MSE’s to be never significantly lower than
the benchmark MSE’s. Based on the hitratios there is no superior sampling fre-
quency for the HAR model. Best results are found for the shortest horizons. For
all horizons except the 120 days horizon, the HAR model leads to higher hitratios
than the benchmark model, when certain macroeconomic variables are added to
the model. The overall highest hitratios are found when the credit spread is added.

We tried to improve the HAR model’s results by smartly choosing the regressors by
means of forward stepwise regression and boosting. Both of these regression tech-
niques lead to a considerable increase in R2’s and decrease in MSE with respect to
both the simple HAR model and the benchmark model, for all forecasting horizons.
Wilcoxon signed rank test statistics are significant at the lowest horizons. At the
10 days horizon, the forward stepwise regression model’s MSE is significantly lower
than the corresponding benchmark MSE even under the false discovery rate crite-
rion. For the boosting model this is the case for the 10, 20 and 40 days horizons,
providing very strong evidence that the boosting model outperforms the benchmark
at the lowest horizons. However, also at the longest horizons the boosting model
does better than the benchmark model. Our final recommandation is to use the
boosting model for further volatility forecasting purposes.
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Table A1a

GARCH R2’s horizon
Bare model 10 20 40 60 120

daily 0.458 0.512 0.507 0.486 0.420

weekly 0.344 0.381 0.374 0.371 0.376

two-weekly 0.262 0.299 0.288 0.266 0.227
monthly 0.063 0.091 0.079 0.105

Added: range

daily 0.437 0.485 0.489 0.472 0.407
weekly 0.326 0.362 0.338 0.333 0.342

two-weekly 0.261 0.260 0.266 0.260 0.253
monthly 0.109 0.167 0.161 0.153

Added: credit spread

daily 0.454 0.505 0.503 0.483 0.419
weekly 0.320 0.363 0.364 0.362 0.367
two-weekly 0.293 0.324 0.304 0.285 0.242

monthly 0.086 0.106 0.113 0.129

Added: dividend yield

daily 0.459 0.514 0.508 0.487 0.419

weekly 0.329 0.365 0.361 0.357 0.358
two-weekly 0.269 0.293 0.275 0.259 0.221
monthly 0.115 0.145 0.138 0.149

Added: 3 months

treasury bill yield

daily 0.456 0.509 0.505 0.483 0.417
weekly 0.325 0.362 0.358 0.353 0.351

two-weekly 0.310 0.345 0.313 0.290 0.239
monthly 0.130 0.138 0.138 0.165

Added: term spread

daily 0.460 0.514 0.509 0.487 0.421
weekly 0.311 0.358 0.375 0.368 0.365
two-weekly 0.316 0.359 0.320 0.297 0.249

monthly 0.081 0.118 0.131 0.148

Added: 6m com.paper -

3m treasury bill yield

daily 0.458 0.510 0.507 0.486 0.420

weekly 0.335 0.376 0.361 0.356 0.360
two-weekly 0.289 0.337 0.310 0.289 0.239

monthly 0.102 0.155 0.154 0.190
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Table A1b

HAR R2’s horizon
Bare model 10 20 40 60 120

daily 0.365 0.413 0.371 0.328 0.239

weekly 0.419 0.462 0.459 0.441 0.372
two-weekly 0.412 0.418 0.437 0.422 0.357

monthly 0.332 0.349 0.311 0.254

Added: range

daily 0.412 0.486 0.468 0.459 0.423

weekly 0.427 0.473 0.503 0.516 0.507

two-weekly 0.393 0.429 0.440 0.433 0.409
monthly 0.310 0.400 0.379 0.404

Added: credit spread

daily 0.396 0.435 0.451 0.451 0.455
weekly 0.418 0.472 0.490 0.488 0.472

two-weekly 0.416 0.434 0.468 0.469 0.459
monthly 0.373 0.419 0.413 0.408

Added: dividend yield

daily 0.414 0.443 0.422 0.397 0.335
weekly 0.428 0.473 0.491 0.487 0.448

two-weekly 0.436 0.456 0.498 0.496 0.463
monthly 0.349 0.371 0.355 0.347

Added: 3 months
treasury bill yield

daily 0.371 0.413 0.373 0.335 0.260
weekly 0.408 0.442 0.423 0.395 0.319

two-weekly 0.401 0.401 0.407 0.381 0.307
monthly 0.323 0.332 0.296 0.243

Added: term spread

daily 0.362 0.399 0.347 0.297 0.196
weekly 0.414 0.453 0.435 0.405 0.313
two-weekly 0.402 0.400 0.400 0.372 0.291

monthly 0.306 0.313 0.276 0.224

Added: 6m com.paper -
3m treasury bill yield

daily 0.381 0.421 0.388 0.351 0.278
weekly 0.405 0.439 0.418 0.391 0.313
two-weekly 0.399 0.398 0.404 0.381 0.306
monthly 0.319 0.324 0.290 0.228

Tables A1a-b: Regression R2’s obtained from the regressions of the ex-post RV se-
ries on the forecast series generated by the GARCH (A1a) and HAR (A1b) models:
σ = a + bσ̂ + ε where σ denotes the RV series and σ̂ the forecast series.
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Table A2a

GARCH horizon
Bare model 10 20 40 60 120

daily a 0.283 0.259 0.647 1.071 2.602

(0.074) (0.387) (0.116) (0.035) (0.000)

b 0.852 0.904 0.864 0.828 0.725

(0.000) (0.000) (0.000) (0.000) (0.000)

weekly a 0.010 0.103 0.562 0.933 1.903
(0.963) (0.795) (0.297) (0.148) (0.027)

b 1.007 0.998 0.935 0.903 0.850
(0.000) (0.000) (0.000) (0.000) (0.000)

twoweekly a 0.903 1.220 2.142 3.003 5.248
(0.000) (0.001) (0.000) (0.000) (0.000)

b 0.780 0.804 0.724 0.662 0.553

(0.000) (0.000) (0.000) (0.000) (0.000)

monthly a 2.987 4.068 5.213 7.096
(0.000) (0.000) (0.000) (0.000)

b 0.350 0.400 0.364 0.405
(0.001) (0.000) (0.000) (0.000)

Table A2b

GARCH horizon
Range 10 20 40 60 120

daily a 0.362 0.407 0.801 1.221 2.766
(0.024) (0.181) (0.054) (0.017) (0.000)

b 0.829 0.873 0.843 0.812 0.713
(0.000) (0.000) (0.000) (0.000) (0.000)

weekly a 0.039 0.079 0.675 1.053 1.899
(0.861) (0.850) (0.236) (0.125) (0.039)

b 1.004 1.010 0.922 0.892 0.856
(0.000) (0.000) (0.000) (0.000) (0.000)

twoweekly a 0.854 1.458 2.320 3.034 4.762

(0.000) (0.000) (0.000) (0.000) (0.000)

b 0.812 0.753 0.710 0.682 0.635
(0.000) (0.000) (0.000) (0.000) (0.000)

monthly a 2.570 3.214 4.070 6.088
(0.000) (0.000) (0.000) (0.000)

b 0.473 0.573 0.551 0.514

(0.000) (0.000) (0.000) (0.000)
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Table A2c

GARCH horizon
Credit spread 10 20 40 60 120

daily a 0.303 0.306 0.699 1.125 2.653

(0.057) (0.308) (0.089) (0.026) (0.000)

b 0.846 0.894 0.857 0.822 0.721

(0.000) (0.000) (0.000) (0.000) (0.000)

weekly a 0.104 0.234 0.683 1.088 2.190
(0.637) (0.560) (0.204) (0.090) (0.010)

b 0.997 0.970 0.918 0.886 0.827
(0.000) (0.000) (0.000) (0.000) (0.000)

twoweekly a 0.816 1.184 2.139 2.978 5.249
(0.000) (0.001) (0.000) (0.000) (0.000)

b 0.819 0.823 0.732 0.674 0.560

(0.000) (0.000) (0.000) (0.000) (0.000)

monthly a 2.715 3.722 4.425 6.104
(0.000) (0.000) (0.000) (0.000)

b 0.421 0.458 0.482 0.502
(0.000) (0.000) (0.000) (0.000)

Table A2d

GARCH horizon

Dividend yield 10 20 40 60 120

daily a 0.284 0.243 0.631 1.045 2.575
(0.073) (0.416) (0.126) (0.040) (0.001)

b 0.852 0.908 0.867 0.831 0.727
(0.000) (0.000) (0.000) (0.000) (0.000)

weekly a 0.042 0.166 0.527 0.893 1.867
(0.850) (0.683) (0.344) (0.180) (0.037)

b 0.997 0.985 0.939 0.906 0.849

(0.000) (0.000) (0.000) (0.000) (0.000)

twoweekly a 0.841 1.257 2.249 3.074 5.302
(0.000) (0.001) (0.000) (0.000) (0.000)

b 0.813 0.800 0.708 0.657 0.552

(0.000) (0.000) (0.000) (0.000) (0.000)

monthly a 2.673 3.680 4.605 6.419

(0.000) (0.000) (0.000) (0.000)

b 0.444 0.481 0.467 0.481
(0.000) (0.000) (0.000) (0.000)
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Table A2e

GARCH horizon
3 months
treasury bill yield 10 20 40 60 120

daily a 0.291 0.273 0.662 1.091 2.632
(0.067) (0.363) (0.108) (0.032) (0.000)

b 0.850 0.901 0.862 0.825 0.722
(0.000) (0.000) (0.000) (0.000) (0.000)

weekly a 0.066 0.168 0.540 0.927 1.970

(0.766) (0.681) (0.333) (0.166) (0.028)

b 0.988 0.982 0.934 0.899 0.837

(0.000) (0.000) (0.000) (0.000) (0.000)

twoweekly a 0.805 1.118 2.107 2.948 5.245

(0.000) (0.001) (0.000) (0.000) (0.000)

b 0.819 0.836 0.735 0.676 0.560
(0.000) (0.000) (0.000) (0.000) (0.000)

monthly a 2.529 3.598 4.459 6.114
(0.000) (0.000) (0.000) (0.000)

b 0.494 0.500 0.494 0.521
(0.000) (0.000) (0.000) (0.000)

Table A2f

GARCH horizon
Term spread 10 20 40 60 120

daily a 0.289 0.272 0.667 1.094 2.625

(0.067) (0.360) (0.103) (0.030) (0.000)

b 0.851 0.902 0.862 0.825 0.723

(0.000) (0.000) (0.000) (0.000) (0.000)

weekly a 0.169 0.261 0.476 0.856 1.895
(0.443) (0.517) (0.383) (0.191) (0.031)

b 0.958 0.967 0.943 0.906 0.841
(0.000) (0.000) (0.000) (0.000) (0.000)

twoweekly a 0.779 1.115 2.127 2.959 5.220

(0.000) (0.001) (0.000) (0.000) (0.000)

b 0.840 0.842 0.736 0.679 0.566

(0.000) (0.000) (0.000) (0.000) (0.000)

monthly a 2.897 3.861 3.768 6.501

(0.000) (0.000) (0.000) (0.000)

b 0.380 0.446 0.464 0.475
(0.000) (0.000) (0.000) (0.000)
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Table A2g

GARCH horizon
6 months commercial paper
-3m treasury bill yield 10 20 40 60 120

daily a 0.291 0.270 0.652 1.074 2.596
(0.066) (0.368) (0.113) (0.034) (0.000)

b 0.851 0.903 0.865 0.829 0.726
(0.000) (0.000) (0.000) (0.000) (0.000)

weekly a 0.003 0.066 0.675 1.091 2.125

(0.990) (0.871) (0.213) (0.093) (0.014)

b 1.010 1.010 0.920 0.885 0.831

(0.000) (0.000) (0.000) (0.000) (0.000)

twoweekly a 0.827 1.089 2.038 2.866 5.161

(0.000) (0.002) (0.000) (0.000) (0.000)

b 0.817 0.844 0.748 0.689 0.568
(0.000) (0.000) (0.000) (0.000) (0.000)

monthly a 2.665 3.432 4.290 5.754
(0.000) (0.000) (0.000) (0.000)

b 0.456 0.543 0.529 0.569
(0.000) (0.000) (0.000) (0.000)

Tables A2a-g: Regression coefficients of the regression σ = a + bσ̂ + ε where σ de-
notes the ex-post RV series and σ̂ the forecast series generated by the GARCH

model. In brackets the p-values from the t-test for a=0 and t-test for b=0. In the

upper left corner is reported which explanatory variable is added.
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Table A3a

HAR horizon
Bare model 10 20 40 60 120

daily a 0.229 -0.181 0.200 0.798 2.987

(0.235) (0.650) (0.728) (0.267) (0.004)

b 0.858 0.996 0.926 0.853 0.684

(0.000) (0.000) (0.000) (0.000) (0.000)

weekly a 0.161 0.084 0.420 0.776 2.227
(0.364) (0.806) (0.369) (0.177) (0.008)

b 0.891 0.944 0.904 0.872 0.769
(0.000) (0.000) (0.000) (0.000) (0.000)

twoweekly a 0.193 0.404 0.701 1.086 2.645
(0.279) (0.243) (0.132) (0.057) (0.001)

b 0.882 0.868 0.855 0.829 0.727

(0.000) (0.000) (0.000) (0.000) (0.000)

monthly a 0.875 1.298 2.074 4.057
(0.017) (0.009) (0.001) (0.000)

b 0.759 0.758 0.697 0.591
(0.000) (0.000) (0.000) (0.000)

Table A3b

HAR horizon
Range 10 20 40 60 120

daily a 0.297 0.096 0.529 0.890 2.193
(0.084) (0.768) (0.242) (0.104) (0.004)

b 0.840 0.935 0.878 0.849 0.769
(0.000) (0.000) (0.000) (0.000) (0.000)

weekly a 0.390 0.563 1.055 1.511 2.921
(0.016) (0.061) (0.007) (0.001) (0.000)

b 0.822 0.814 0.778 0.750 0.674
(0.000) (0.000) (0.000) (0.000) (0.000)

twoweekly a 0.388 0.622 1.175 1.692 3.289

(0.025) (0.053) (0.006) (0.001) (0.000)

b 0.822 0.814 0.778 0.750 0.674
(0.000) (0.000) (0.000) (0.000) (0.000)

monthly a 1.206 1.358 1.992 3.125
(0.001) (0.002) (0.000) (0.000)

b 0.701 0.772 0.735 0.713

(0.000) (0.000) (0.000) (0.000)



46 APPENDIX

Table A3c

HAR horizon
Credit spread 10 20 40 60 120

daily a 0.799 1.140 1.884 2.540 4.161

(0.000) (0.000) (0.000) (0.000) (0.000)

b 0.727 0.757 0.728 0.703 0.659

(0.000) (0.000) (0.000) (0.000) (0.000)

weekly a 0.621 0.844 1.480 2.050 3.644
(0.000) (0.003) (0.000) (0.000) (0.000)

b 0.772 0.804 0.769 0.744 0.684
(0.000) (0.000) (0.000) (0.000) (0.000)

twoweekly a 0.640 1.087 1.714 2.286 3.888
(0.000) (0.000) (0.000) (0.000) (0.000)

b 0.766 0.743 0.727 0.708 0.657

(0.000) (0.000) (0.000) (0.000) (0.000)

monthly a 1.118 1.536 2.108 3.502
(0.000) (0.000) (0.000) (0.000)

b 0.724 0.742 0.719 0.676
(0.000) (0.000) (0.000) (0.000)

Table A3d

HAR horizon
Dividend yield 10 20 40 60 120

daily a 0.442 0.652 1.375 2.053 4.049
(0.007) (0.036) (0.001) (0.000) (0.000)

b 0.751 0.753 0.681 0.633 0.535
(0.000) (0.000) (0.000) (0.000) (0.000)

weekly a 0.411 0.592 1.111 1.582 3.061
(0.011) (0.048) (0.005) (0.001) (0.000)

b 0.776 0.784 0.745 0.717 0.644
(0.000) (0.000) (0.000) (0.000) (0.000)

twoweekly a 0.341 0.636 0.999 1.435 2.811

(0.035) (0.037) (0.012) (0.003) (0.000)

b 0.797 0.775 0.763 0.737 0.668
(0.000) (0.000) (0.000) (0.000) (0.000)

monthly a 1.091 1.700 2.392 3.732
(0.001) (0.000) (0.000) (0.000)

b 0.671 0.652 0.615 0.582

(0.000) (0.000) (0.000) (0.000)
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Table A3e

HAR horizon
3 months
treasury bill yield 10 20 40 60 120

daily a 0.380 0.220 0.891 1.624 3.839
(0.036) (0.545) (0.081) (0.010) (0.000)

b 0.813 0.907 0.820 0.752 0.615
(0.000) (0.000) (0.000) (0.000) (0.000)

weekly a 0.233 0.245 0.787 1.353 3.292

(0.188) (0.475) (0.095) (0.020) (0.000)

b 0.863 0.900 0.837 0.788 0.661

(0.000) (0.000) (0.000) (0.000) (0.000)

twoweekly a 0.285 0.571 1.044 1.631 3.648

(0.106) (0.097) (0.025) (0.004) (0.000)

b 0.851 0.827 0.797 0.753 0.629
(0.000) (0.000) (0.000) (0.000) (0.000)

monthly a 0.998 1.546 2.376 4.484
(0.006) (0.002) (0.000) (0.000)

b 0.725 0.711 0.651 0.546
(0.000) (0.000) (0.000) (0.000)

Table A3f

HAR horizon
Term spread 10 20 40 60 120

daily a 0.317 0.069 0.719 1.539 4.226

(0.092) (0.858) (0.194) (0.026) (0.000)

b 0.838 0.949 0.853 0.766 0.578

(0.000) (0.000) (0.000) (0.000) (0.000)

weekly a 0.221 0.192 0.677 1.218 3.249
(0.209) (0.572) (0.149) (0.036) (0.000)

b 0.886 0.936 0.880 0.830 0.687
(0.000) (0.000) (0.000) (0.000) (0.000)

twoweekly a 0.283 0.573 1.083 1.684 3.782

(0.108) (0.096) (0.021) (0.004) (0.000)

b 0.866 0.842 0.808 0.764 0.633

(0.000) (0.000) (0.000) (0.000) (0.000)

monthly a 1.190 1.865 2.770 4.958

(0.001) (0.000) (0.000) (0.000)

b 0.702 0.682 0.621 0.522
(0.000) (0.000) (0.000) (0.000)
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Table A3g

HAR horizon
6 months commercial paper
-3m treasury bill yield 10 20 40 60 120

daily a 0.427 0.338 1.014 1.755 3.944
(0.015) (0.332) (0.037) (0.003) (0.000)

b 0.808 0.892 0.812 0.746 0.613
(0.000) (0.000) (0.000) (0.000) (0.000)

weekly a 0.318 0.397 1.005 1.612 3.658

(0.066) (0.233) (0.029) (0.004) (0.000)

b 0.856 0.889 0.826 0.777 0.648

(0.000) (0.000) (0.000) (0.000) (0.000)

twoweekly a 0.352 0.678 1.214 1.828 3.938

(0.042) (0.044) (0.008) (0.001) (0.000)

b 0.842 0.817 0.785 0.742 0.616
(0.000) (0.000) (0.000) (0.000) (0.000)

monthly a 1.059 1.643 2.458 4.749
(0.003) (0.001) (0.000) (0.000)

b 0.720 0.704 0.647 0.526
(0.000) (0.000) (0.000) (0.000)

Tables A3a-g: Regression coefficients of the regression σ = a + bσ̂ + ε where σ de-
notes the ex-post RV series and σ̂ the forecast series generated by the GARCH

model. In brackets the p-values from the t-test for a=0 and t-test for b=0. In the

upper left corner is reported which explanatory variable is added.
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benchmark vs GARCH

test statistics horizon
Bare model 10 20 40 60 120

daily 1.792 2.587 -0.209 0.019 -1.834
weekly -1.027 -1.139 -3.017 -2.411 -1.597
two-weekly -2.752 -2.251 -4.491 -4.736 -6.713
monthly -3.629 -4.953 -4.917 -5.204

Added: range

daily 1.459 2.256 -0.841 -0.453 -2.246
weekly -1.621 -1.306 -3.173 -3.328 -2.421

two-weekly -3.329 -3.241 -4.465 -4.641 -5.009
monthly -3.863 -5.393 -6.102 -6.311

Added: credit spread

daily 1.701 2.450 -0.199 -0.191 -1.853

weekly -1.640 -1.450 -2.986 -2.645 -1.913
two-weekly -3.226 -3.112 -4.954 -5.586 -6.569

monthly -3.511 -4.123 -5.107 -6.200

Added: dividend yield

daily 1.926 2.503 -0.113 0.068 -1.789

weekly -1.293 -1.494 -3.088 -2.653 -1.845
two-weekly -3.197 -3.246 -5.105 -6.234 -6.338

monthly -3.851 -4.523 -4.513 -6.230

Added: 3 months

treasury bill yield

daily 1.615 2.598 -0.214 -0.009 -1.879

weekly -1.780 -1.657 -3.001 -2.969 -2.002
two-weekly -3.003 -2.966 -5.180 -5.799 -6.755

monthly -4.523 -5.382 -5.734 -6.498

Added: term spread

daily 1.745 2.704 -0.231 0.008 -1.837

weekly -2.091 -1.474 -3.210 -2.742 -1.695
two-weekly -2.996 -2.891 -5.009 -5.569 -6.752
monthly -3.698 -5.192 -2.641 -6.015

Added: 6m com.paper -
3m treasury bill yield

daily 1.874 2.390 -0.344 0.126 -1.713
weekly -1.358 -1.262 -3.125 -2.729 -1.853
two-weekly -3.416 -3.000 -5.029 -5.697 -6.435

monthly -4.537 -5.173 -5.915 -6.532

Table A4a: Wilcoxon signed rank test statistics, as calculated in eq.(13), to test the

null hypothesis of equal distributions of the benchmark model’s forecasting errors
and the GARCH models’ forecasting errors. Values greater than 1.96 are in bold.
In this case GARCH forecasting errors are significantly lower than the benchmark

errors, at the 2.5% confidence level.
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benchmark vs HAR

test statistics horizon
Bare model 10 20 40 60 120

daily -0.829 -1.007 -9.302 -3.901 -5.045
weekly 1.257 1.884 -2.049 -1.006 -2.547
two-weekly 0.679 -0.526 -2.621 -1.802 -2.190
monthly -1.999 -3.683 -3.930 -4.911

Added: range

daily 0.922 1.892 -0.830 -0.315 -0.932
weekly 0.847 1.500 -0.592 0.521 0.492

two-weekly -0.348 -0.963 -2.443 -1.503 -1.527
monthly -2.410 -2.831 -2.490 -1.257

Added: credit spread

daily -0.927 -0.638 -2.101 -2.141 -1.983

weekly 0.492 1.557 -1.920 -0.630 -1.283
two-weekly -0.129 -0.462 -1.897 -1.702 -1.572

monthly -1.627 -2.436 -2.092 -1.622

Added: dividend yield

daily -1.682 -2.071 -4.445 -4.345 -5.782

weekly -0.839 -0.445 -2.323 -1.467 -3.172
two-weekly -0.308 -1.001 -2.238 -1.131 -2.136

monthly -2.913 -3.087 -2.901 -4.437

Added: 3 months

treasury bill yield

daily -0.829 -0.854 -4.137 -3.746 -4.833

weekly 0.453 0.293 -2.635 -2.822 -3.625
two-weekly -0.003 -1.245 -3.036 -2.753 -3.716

monthly -2.635 -4.018 -4.826 -5.164

Added: term spread

daily -0.860 -0.837 -3.726 -3.262 -4.081

weekly 1.113 1.403 -2.173 -1.943 -2.487
two-weekly 0.735 -0.836 -2.028 -2.732 -3.254
monthly -2.376 -4.726 -4.761 -4.992

Added: 6m com.paper -
3m treasury bill yield

daily -0.891 -0.816 -3.514 -3.243 -4.816
weekly 0.614 0.562 -2.382 -2.018 -3.128
two-weekly 0.104 -1.023 -2.941 -2.339 -3.182

monthly -2.235 -4.032 -3.728 -5.112

Table A4b: Wilcoxon signed rank test statistics, as calculated in eq.(13), to test

the null hypothesis of equal distributions of the benchmark model’s forecasting er-

rors and the HAR models’ forecasting errors. Values greater than 1.96 are in bold. In

this case HAR forecasting errors are significantly lower than the benchmark errors,

at the 2.5% confidence level.
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Figures A1a-d: 20 and 120 days RV over the period November 1992 - February

2007 and corresponding forecasts, generated by the daily sampled GARCH model

with range (figures A1a-b) and credit spread (figures A1c-d) added.
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Figures A2a-d: 20 and 120 days RV over the period November 1992 - February

2007 and corresponding forecasts, generated by the weekly sampled HAR model with

range (figures A2a-b) and credit spread (figures A2c-d) added.
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