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Chapter 1

Introduction and definitions

1.1 Introduction

The weight enumerator of a linear code is a classifying polynomial associated
with the code. Besides its intrinsic importance as a mathematical object, it is
used in the probability theory around codes. For example, the weight enumer-
ator of a binary code is very useful if we want to study the probability that a
received message is closer to a different codeword than to the codeword sent.
(Or, rephrased: the probability that a maximum likelihood decoder makes a
decoding error.)
We will generalize the weight enumerator in two ways, which lead to polyno-
mials which are better invariants for a code. A procedure for the determina-
tion of these polynomials is given. We will show that the two generalisations
determine each other, and that they connect to the Tutte polynomial of a
matroid, thus linking coding theory and matroid theory. Most of the general-
isations and connections have been studied before, but mostly only one-way,
and a complete overview was never given.
We will use the established connections to derive MacWilliams relations for
our generalisations. Also other examples of the developed machinery will be
given, as well as a computer implementation.

1.2 Definitions

1.2.1 Linear codes

Definition 1.2.1 Let q be a prime power, and let Fq be the finite field with q
elements. A linear subspace of Fn

q of dimension k is called a linear [n, k] code
and is usually denoted by C. The elements of the code are called (code)words.

5



6 CHAPTER 1. INTRODUCTION AND DEFINITIONS

A code can be given by writing down all elements, but because the code is a
linear subspace, it has a basis.

Definition 1.2.2 The generator matrix of a linear [n, k] code C is a k × n
matrix of full rank over Fq whose rows form a basis of C.

Note that this matrix is not unique. We can rewrite the definition of a code
in terms of the generator matrix:

C = {xG : x ∈ Fk
q}.

A measurement for how much information is added by using a code, is the
information rate:

Definition 1.2.3 The information rate of a linear [n, k] code is defined by
R = k

n
.

We will assume all our codes to be non-degenerate: there are no coordinates
which are zero for al codewords, i.e. the generator matrix does not contain
any zero columns.

1.2.2 Weight distributions

For a word of a linear [n, k] code C, the (Hamming) weight is the number
of non-zero coordinates of the word. So the zero word has weight 0, and
the maximum possible weight is n, the length of the code. The (Hamming)
distance between two codewords of C is the number of coordinates where
the words differ. The minimum of all non-zero distances between codewords
is called the minimum distance. Because C is assumed to be linear, this is
equal to the minimum non-zero weight of the code.
We summarize all this in the following definition:

Definition 1.2.4 Let C be a linear [n, k] code and x,y ∈ Fn
q . Then we define

wt(x) = |{i : xi 6= 0}|,

d(x,y) = |{i : xi 6= yi}|,

d = min{d(x,y) : x,y ∈ C,x 6= y} = min{wt(x) : x ∈ C,x 6= 0}.

The number of codewords c ∈ C with wt(c) = w is denoted by Aw. Note
that A0 = 1 and that d is the smallest w > 0 for which Aw > 0. The numbers
Aw for all 0 ≤ w ≤ n form the weight distribution of the code. They also
form the coefficients of the weight enumerator :
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Definition 1.2.5 The weight enumerator of a linear [n, k] code C is the
polynomial

WC(X, Y ) =
n∑

w=0

AwX
n−wY w,

where Aw = |{c ∈ C : wt(c) = w}|.

Another way to define the weight enumerator is

WC(X, Y ) =
∑
c∈C

Xn−wt(c)Y wt(c).

We will always use this homogeneous form of the weight enumerator. There
is also the one-variable form, WC(Z), which is connected to the homogeneous
form via WC(X, Y ) = XnWC(Y X−1) and WC(Z) = WC(1, Z).

We can generalize the weight distribution in the following way. Instead of
looking at words of C, we consider all the subcodes of C of a certain dimension
r. We say that the weight of a subcode is equal to n minus the number
of coordinates which are zero for every word in the subcode. The smallest
weight for which a subcode of dimension r exists, is called the r-th generalized
Hamming weight of C. To summarize:

Definition 1.2.6 Let D be an r-dimensional subcode of the [n, k] code C.
Then we define

wt(D) = |{i ∈ [n] : ∃x ∈ D : xi 6= 0}|,

dr = min{wt(D) : D ⊆ C subcode, dimD = r}.

Note that d0 = 0 and d1 = d, the minimum distance of the code. The
number of subcodes with a given weight w and dimension r is denoted by
Ar

w. Together they form the r-th generalized weight distribution of the code.
Just as with the ordinary weight distribution, we can make a polynomial
with the distribution as coefficients: the generalized weight enumerator.

Definition 1.2.7 The generalized weight enumerator is given by

W r
C(X, Y ) =

n∑
w=0

Ar
wX

n−wY w,

where Ar
w = |{D ⊆ C : dimD = r,wt(D) = w}|.
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We can see from this definition that A0
0 = 1 and Ar

0 = 0 for all 0 < r ≤ k.
Furthermore, every 1-dimensional subspace of C contains q−1 non-zero code-
words, so (q − 1)A1

w = Aw for 0 < w ≤ n.

If confusion about the underlying code is possible, we denote the code be-
tween brackets behind the invariant: for example dr(C) or Aw(C⊥).

1.2.3 More about codes

Let < , > be the inner product on Fn
q given by the symmetric linear form

< x,y >=
∑n

i=1 xiyi. Then the dual code of a linear [n, k] code C over Fq is
the subspace of Fn

q orthogonal to C with respect to < , >.

Definition 1.2.8 Let C be a linear [n, k] code over Fq. Then the dual code
is

C⊥ = {x ∈ Fn
q : < x, c >= 0 for all c ∈ C}.

It is clear that the dual code is again a linear code of length n over Fq and
has dimension n− k. Furthermore, (C⊥)⊥ = C.

There are two important bounds on the parameters of a code which we are
going to use. For the proofs we refer to [8], [10] or any other course in basic
coding theory.

Theorem 1.2.9 (Singleton bound) Let C be a linear [n, k] code over Fq.
Then d ≤ n− k + 1. �

Definition 1.2.10 (MDS code) A linear [n, k] code C is called maximum
distance separable if it achieves the Singleton bound, so if d = n− k + 1.

Theorem 1.2.11 (Gilbert–Varshamov bound) Fix integers q, n, d. Let
k be the smallest integer satisfying

qk ≥ qn∑d−1
i=0

(
n
i

)
(q − 1)i

.

Then there exists a linear [n, k] code over Fq with minimum distance d. �

We will now define what it means for two codes to be equivalent. There are
several ways to do this. The most easy one is to call two linear [n, k] codes
over Fq equivalent if they are equal, i.e. if their row-space in Fn

q is the same.
We are giving a more general definition, in order to let equivalent codes
coincide with equivalent matroids and geometries.
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Definition 1.2.12 Two linear [n, k] codes over Fq are called equivalent if
their generator matrices are the same up to

• left multiplication with an invertible k × k matrix over Fq;

• permutation of the columns;

• multiplication of columns with an element of F∗q.

Note that two equivalent codes have the same (generalized) weight distribu-
tion.

1.2.4 Matroids

Matroid theory generalizes the notion of ‘independence’. We will use it for
matrices over finite fields, but it also has important applications in other
branches of combinatorics such as graph theory. There are many ways to
define a matroid: we will use a definition that makes it easy to see that the
generator matrix of a linear code gives rise to a matroid.

Definition 1.2.13 A matroid G is a pair (S, I) where S is a finite set and
I is a collection of subsets of S called the independent sets, satisfying the
following properties:

(i) The empty set is independent.

(ii) Every subset of an independent set is independent.

(iii) Let A and B be two independent sets with |A| > |B|, then there exists
an a ∈ A with a /∈ B and B ∪ {a} an independent set.

A subset of S which is not independent, is called dependent. An independent
subset of S for which adding an extra element of S always gives a dependent
subset, is a maximal independent set or a basis. Just as in linear algebra,
it can be showed that every basis has the same number of elements. This is
called the rank of the matroid. We define the rank of a subset of S to be the
size of the largest independent set contained in it. For notation:

Definition 1.2.14 The rank r(A) of a matroid (S, I) and its set B of bases
are defined by

r(A) = max{|A′| : A′ ⊆ A,A′ ∈ I}

B = {B ⊆ S : r(B) = |B| = r(S)}
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The rank function and the set of bases can each be used to determine a
matroid completely. Therefore we can define the dual of a matroid in the
following way:

Definition 1.2.15 Let G = (S,B) be a matroid defined by its set of bases.
Then its dual is the matroid G∗ = (S,B∗) with the same underlying set and
set of bases

B∗ = {S −B : B ∈ B}.

Note the similarity with the definition of a dual code. For a matroid we also
have (G∗)∗ = G.

1.2.5 Gaussian binomials and other products

Definition 1.2.16 We introduce the following notations:

[m, r]q =
r−1∏
i=0

(qm − qi)

〈r〉q = [r, r]q[
k

r

]
q

=
[k, r]q
〈r〉q

.

The first number is equal to the number of m× r matrices of rank r over Fq.
The second is the number of bases of Fr

q. The third number is the Gaussian
binomial, and it represents the number of r-dimensional subspaces of Fk

q . The
following useful relation can easily be verified from the definitions:

[m, r]q =
q−r(m−r)〈m〉q
〈m− r〉q

.

1.3 Notes

In the last section of a chapter, we will recall whom the material in the chapter
was due to. Blahut [1] gives more applications of the weight enumerator.
An introduction to coding theory can be found in [10] and [8]. More about
matroid theory can be found in [9]. Kløve [6] and Wei [15] were the first to
introduce the generalized Hamming weights. The notations for products and
their relation to the Gaussian binomial comes from Kløve [7].



Chapter 2

Weight enumerator

2.1 Generalized weight enumerator

We will give a way to determine the generalized weight enumerator of a linear
[n, k] code C over Fq.

Definition 2.1.1 For J ⊆ [n] and we define:

t = |J |
C(J) = {c ∈ C : cj = 0 for all j ∈ J}
l(J) = dimC(J)

We first give two lemmas about the determination of l(J), which will become
useful later.

Lemma 2.1.2 Let C be a linear code with generator matrix G. Let G′ be the
k× t submatrix of G existing of the columns of G indexed by J , and let r(J)
be the rank of G′. Then the dimension l(J) is equal to k − r(J).

Proof: Let C ′ be the code generated by G′. Consider C ′ as a subcode of C,
so a word of C ′ has zeros on the coordinates not indexed by J . Then we have
C ′ ∼= C/C(J). It follows that dimC ′ = dimC−dimC(J) so l(J) = k− r(J).
�

Lemma 2.1.3 Let d and d⊥ be the minimum distance of C and C⊥ respec-
tively, and let J ⊆ [n]. Then we have

l(J) =

{
k − t for all t < d⊥

0 for all t > n− d

11
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Proof: Let |J | = t, t > n − d and let c ∈ C(J). Then J is contained in the
complement of supp(c), so t ≤ n− wt(c). It follows that wt(c) ≤ n− t < d,
so c is the zero word and therefore l(J)=0.
Let G be a generator matrix for C, then G is also a parity check matrix for
C⊥. We saw in lemma 2.1.2 that l(J) = k−r(J), where r(J) is the rank of the
matrix formed by the columns of G indexed by J . Let t < d⊥, then every t-
tuple of columns of G is linearly independent, so r(J) = t and l(J) = k−t. �

Note that by the Singleton bound, we have d⊥ ≤ n− (n− k) + 1 = k+ 1 and
n−d ≥ k−1, so for t = k both of the above cases apply. This is no problem,
because if t = k then k − t = 0.

Definition 2.1.4 For J ⊆ [n] and r ≥ 0 an integer we define:

Br
J = |{D ⊆ C(J) : D subspace of dimension r}|

Br
t =

∑
|J |=t

Br
J

Note that Br
J =

[
l(J)
r

]
q
, the Gaussian binomial. For r = 0 this gives B0

t =
(

n
t

)
.

So we see that in general l(J) = 0 does not imply Br
J = 0, because

[
0
0

]
q

= 1.

But if r 6= 0, we do have that l(J) = 0 implies Br
J = 0 and Br

t = 0.

Proposition 2.1.5 Let dr be the r-th generalized Hamming weight of C, and
d⊥ the minimum distance of the dual code C⊥. Then we have

Br
t =

{ (n
t

) [
k−t
r

]
q

for all t < d⊥

0 for all t > n− dr

Proof: The first case is is a direct corollary of lemma 2.1.3, since there are(
n
t

)
subsets J ⊆ [n] with |J | = t. The proof of the second case goes analogous

to the proof of the same lemma: let |J | = t, t > n−dr and suppose there is a
subspace D ⊆ C(J) of dimension r. Then J is contained in the complement
of supp(D), so t ≤ n− wt(D). It follows that wt(D) ≤ n− t < dr, which is
impossible, so such a D does not exist. So Br

J = 0 for all J with |J | = t and
t > n− dr, and therefore Br

t = 0 for t > n− dr. �

We can check that the formula is well-defined: if t < d⊥ then l(J) = k − t.
If also t > n − dr, we have t > n − dr ≥ k − r by the generalized Singleton
bound. This implies r > k − t = l(J), so

[
k−t
r

]
q

= 0.

The relation between Br
t and Ar

w becomes clear in the next proposition.
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Proposition 2.1.6 The following formula holds:

Br
t =

n∑
w=0

(
n− w
t

)
Ar

w.

Proof: We will count the elements of the set

Br
t = {(D, J) : J ⊆ [n], |J | = t,D ⊆ C(J) subspace of dimension r}

in two different ways. For each J with |J | = t there are Br
J pairs (D, J) in

Br
t , so the total number of elements in this set is

∑
|J |=tB

r
J = Br

t . On the

other hand, let D be an r-dimensional subcode of C with wt(D) = w. There
are Ar

w possibilities for such a D. If we want to find a J such that D ⊆ C(J),
we have to pick t coordinates from the n−w all-zero coordinates of D. Sum-
mation over all w proves the given formula. �

Note that because Ar
w = 0 for all w < dr, we can start summation at w = dr.

We can end summation at w = n−t because for t > n−w we have
(

n−w
t

)
= 0.

So the formula can be rewritten as

Br
t =

n−t∑
w=dr

(
n− w
t

)
Ar

w.

In practice, we will often prefer the summation given in the proposition.

Theorem 2.1.7 The generalized weight enumerator is given by the following
formula:

W r
C(X, Y ) =

n∑
t=0

Br
t (X − Y )tY n−t.

Proof: By using the previous proposition, changing the order of summation
and using the binomial expansion of Xn−w = ((X − Y ) + Y )n−w we have

n∑
t=0

Br
t (X − Y )tY n−t =

n∑
t=0

n∑
w=0

(
n− w
t

)
Ar

w(X − Y )tY n−t

=
n∑

w=0

Ar
w

(
n−w∑
t=0

(
n− w
t

)
(X − Y )tY n−w−t

)
Y w

=
n∑

w=0

Ar
wX

n−wY w

= W r
C(X, Y ).
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In the second step, we can let the summation over t run to n− w instead of
n because

(
n−w

t

)
= 0 for t > n− w. �

It is possible to determine the Ar
w directly from the Br

t , by using the next
proposition.

Proposition 2.1.8 The following formula holds:

Ar
w =

n∑
t=n−w

(−1)n+w+t

(
t

n− w

)
Br

t .

There are several ways to prove this proposition. One is to reverse the argu-
ment from Theorem 2.1.7, which we will not use here. Instead, we first prove
the following general lemma:

Lemma 2.1.9 Let V be a vector space of dimension n + 1 and let a =
(a0, . . . , an) and b = (b0, . . . , bn) be vectors in V . Then the following formulas
are equivalent:

aj =
n∑

i=0

(
i

j

)
bi, bj =

n∑
i=j

(−1)i+j

(
i

j

)
ai.

Proof: We can view the relations between a and b as linear transformations,

given by the matrices
((

i
j

))
i,j=0,...,n

and
(

(−1)i+j
(

i
j

))
i,j=0,...,n

. So it is suffi-

cient to prove that this matrices are each other’s inverse. We calculate the
entry on the i-th row and j-th column. Note that we can start the summation
at l = j, because for l < j we have

(
l
j

)
= 0.

i∑
l=j

(−1)j+l

(
i

l

)(
l

j

)
=

i∑
l=j

(−1)l−j

(
i

j

)(
i− j
l − j

)

=

i−j∑
l=0

(−1)l

(
i

j

)(
i− j
l

)
=

(
i

j

)
(1− 1)i−j

= δij.

Here δij is the Kronecker-delta. So the product matrix is exactly the (n+1)×
(n+1) identity matrix, and therefore the matrices are each other’s inverse. �
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Proof of Proposition 2.1.8: The Proposition is now a direct consequence of
Proposition 2.1.6 and Lemma 2.1.9. �

As already noticed in the definitions, we can find back the original weight
enumerator by using WC(X, Y ) = W 0

C(X, Y ) + (q − 1)W 1
C(X, Y ).

2.2 Extended weight enumerator

Let C be an [n, k] code over Fq with generator matrix G. Then we can form
the [n, k] code C ⊗ Fqm over Fqm with the same generator matrix G. We call
this the extension code of C over Fqm and denote its weight distribution by
Aw(C ⊗ Fqm). (In fact, we may do this for every field, not necessarily finite.)
We can determine the weight enumerator of such an extension code by using
only the code C, which makes the determination much easier and faster.
In Lemma 2.1.2 we saw that l(J) = k − r(J), where r(J) is the rank of the
k × t matrix G′, which consists of the columns of G indexed by J . Because
r(J) is just the number of pivots in G′, it is independent of the extension field
Fqm . Hence dimFq C(J) = dimFqm (C ⊗ Fqm)(J). This motivates the usage of
T as a variable for qm in the next definition.

Definition 2.2.1 Let C be a linear code over Fq. Then we define

BJ(T ) = T l(J) − 1

Bt(T ) =
∑
|J |=t

BJ(T )

The extended weight enumerator is given by

WC(X, Y, T ) = Xn +
n∑

t=0

Bt(T )(X − Y )tY n−t.

Note that BJ(qm) is the number of nonzero codewords in (C ⊗ Fqm)(J).

Proposition 2.2.2 Let d and d⊥ be the minimum distance of C and C⊥

respectively. Then we have

Bt(T ) =

{ (
n
t

)
(T k−t − 1) for all t < d⊥

0 for all t > n− d

Proof: This is a direct consequence of Lemma 2.1.3. For t < d⊥ we have
l(J) = k− t, so BJ(T ) = T k−t − 1 and Bt(T ) =

(
n
t

)
(T k−t − 1). For t > n− d

we have l(J) = 0, so BJ(T ) = 0 and Bt(T ) = 0. �
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Theorem 2.2.3 The following holds:

WC(X, Y, T ) =
n∑

w=0

Aw(T )Xn−wY w

with Aw(T ) ∈ Z[T ] given by A0(T ) = 1 and

Aw(T ) =
n∑

t=n−w

(−1)n+w+t

(
t

n− w

)
Bt(T )

for 0 < w ≤ n.

Proof: Note that Aw(T ) = 0 for 0 < w < d because the summation is empty.
By substituting w = n− t+ j and reversing the order of summation, we have

WC(X, Y, T ) = Xn +
n∑

t=0

Bt(T )(X − Y )tY n−t

= Xn +
n∑

t=0

Bt(T )

(
t∑

j=0

(
t

j

)
(−1)jX t−jY j

)
Y n−t

= Xn +
n∑

t=0

t∑
j=0

(−1)j

(
t

j

)
Bt(T )X t−jY n−t+j

= Xn +
n∑

t=0

n∑
w=n−t

(−1)t−n+w

(
t

t− n+ w

)
Bt(T )Xn−wY w

= Xn +
n∑

w=0

n∑
t=n−w

(−1)n+w+t

(
t

n− w

)
Bt(T )Xn−wY w

Hence WC(X, Y, T ) is of the form
∑n

w=0Aw(T )Xn−wY w with Aw(T ) of the
form given in the theorem. �

Note that in the definition of Aw(T ) we can let the summation over t run to
n− d instead of n, because Bt(T ) = 0 for t > n− d.

Proposition 2.2.4 The following formula holds:

Bt(T ) =
n−t∑
w=d

(
n− w
t

)
Aw(T ).
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Proof: The statement is a direct consequence of Lemma 2.1.9 and Theorem
2.2.3. �

As we said before, the motivation for looking at the extended weight enumer-
ator comes from the extensioncodes. In the next proposition we show that
the extended weight enumerator for T = qm is indeed the weight enumerator
of the extensioncode C ⊗ Fqm .

Proposition 2.2.5 Let C be a linear [n, k] code over Fq. Then WC(X, Y, qm) =
WC⊗Fqm (X, Y ).

Proof: For w = 0 it is clear that A0(q
m) = A0(C ⊗ Fqm) = 1, so assume

w 6= 0. It is enough to show that Aw(qm) = (qm − 1)A1
w(C ⊗ Fqm). First we

have

Bt(q
m) =

∑
|J |=t

BJ(qm)

=
∑
|J |=t

|{c ∈ (C ⊗ Fqm)(J) : c 6= 0}|

= (qm − 1)
∑
|J |=t

|{D ⊆ (C ⊗ Fqm)(J) : dimD = 1}

= (qm − 1)B1
t (C ⊗ Fqm).

We also know that Aw(T ) and Bt(T ) are related the same way as A1
w and

B1
t . Combining this proves the statement. �

For further applications, the next way of writing the extended weight enu-
merator will be useful:

Proposition 2.2.6 The extended weight enumerator of a linear code C can
be written as

WC(X, Y, T ) =
n∑

t=0

∑
|J |=t

T l(J)(X − Y )tY n−t.

Proof: By rewriting and using the binomial expansion of ((X−Y ) +Y )n, we
get

n∑
t=0

∑
|J |=t

T l(J)(X − Y )tY n−t
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=
n∑

t=0

(X − Y )tY n−t
∑
|J |=t

(
(T l(J) − 1) + 1

)

=
n∑

t=0

(X − Y )tY n−t

∑
|J |=t

(T l(J) − 1) +

(
n

t

)
=

n∑
t=0

Bt(T )(X − Y )tY n−t +
n∑

t=0

(
n

t

)
(X − Y )tY n−t

=
n∑

t=0

Bt(T )(X − Y )tY n−t +Xn

= WC(X, Y, T )

�

2.3 Another algorithm

We can determine the extended weight enumerator of a [n, k] code C with
the use of a k × n generator matrix of C. This concept can be generalized
for arbitrarily matrices, not necessarily of full rank. With the help of the
following definition, we will give another way to determine the extended
weight enumerator.

Definition 2.3.1 Let G be an k × n matrix over Fq, not necessarily of full
rank and without zero columns. Then for each J ⊆ [n] we define l(J) =
k−r(J) as in Lemma 2.1.2, and the extended weight enumerator WG(X, Y, T )
as in Definition 2.2.1.

We can now make the following remarks about WG(X, Y, T ).

Proposition 2.3.2 Let G be a k × n matrix over Fq and WG(X, Y, T ) the
associated extended weight enumerator. Then the following statements hold:

(i) WG(X, Y, T ) is invariant under row-equivalence of matrices.

(ii) Let G′ be a l × n matrix with the same row-space as G, then we have
WG(X, Y, T ) = T k−lWG′(X, Y, T ). In particular, if G is a generator
matrix of a [n, k] code C, we have WG(X, Y, T ) = WC(X, Y, T ).

(iii) WG(X, Y, T ) is invariant under permutation of the columns of G.

(iv) WG(X, Y, T ) is invariant under multiplying a column of G with an el-
ement of F∗q.
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(v) If G is the direct sum of G1 and G2, i.e. of the form(
G1 0
0 G2

)
,

then WG(X, Y, T ) = WG1(X, Y, T ) ·WG2(X, Y, T ).

Proof: If we multiply G from the left with an invertible k × k matrix, the
r(J) do not change, and therefore (i) holds. For (ii), we may assume without
loss of generality that k ≥ l. Because G and G′ have the same row-space, the
r(J) are the same. Using Proposition 2.2.6 we have for G

WG(X, Y, T ) =
n∑

t=0

∑
|J |=t

T l(J)(X − Y )tY n−t

=
n∑

t=0

∑
|J |=t

T k−r(J)(X − Y )tY n−t

= T k−l

n∑
t=0

∑
|J |=t

T l−r(J)(X − Y )tY n−t

= T k−lWG′(X, Y, T ).

The last part of (ii) and (iii)–(v) follow directly from the definitions. �

With the use of the extended weight enumerator for general matrices, we can
derive a recursive algorithm to determine the extended weight enumerator
of a code. If G is a k × n matrix, we denote by G∗ a matrix which is row-
equivalent to G and has a column a of the form (1, 0, . . . , 0)T . In general, this
reduction G∗ is not unique.
The matrix G∗− a is the k× (n− 1) matrix G∗ with the column a removed,
and G∗/a is the (k − 1) × (n − 1) matrix G∗ with the column a and the
first row removed. For the extended weight enumerators of these matrices,
we have the following connection (we omit the (X, Y, T ) part for clarity):

Proposition 2.3.3 For the extended weight enumerator of a reduced matrix
G∗ holds

WG∗ = (X − Y )WG∗/a + YWG∗−a

Proof: We distinguish between two cases here. First, assume that G∗−a and
G ∗ /a have the same rank. Then we can choose a G∗ with all zeros in the
first row, except for the 1 in the column a. So G∗ is the direct sum of 1 and
G∗/a. By Proposition 2.3.2 parts (v) and (ii) we have

WG∗ = (X + (T − 1)Y )WG∗/a and WG∗−a = TWG∗/a.
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Combining the two gives

WG∗ = (X + (T − 1)Y )WG∗/a

= (X − Y )WG∗/a + Y TWG∗/a

= (X − Y )WG∗/a + YWG∗−a.

For the second case, assume that G∗ − a and G∗/a do not have the same
rank. This implies G∗ and G∗ − a do have the same rank. The vectors in
{xG∗ : x ∈ Fqm} now fall into two cases: those which have a zero on position
a, and those which do not. The first have extended weight distribution equal
to XWG∗/a(X, Y, qm). The second are the vectors in {x(G∗ − a) : x ∈ Fqm}
but not in {x(G∗/a) : x ∈ Fqm}, with a single nonzero coordinate added. So
we have

WG∗ = XWG∗/a(X, Y, qm) + Y (WG∗−a(X, Y, qm)−WG∗/a(X, Y, qm)).

Changing to T by Lagrange interpolation proves the given formula. �

Theorem 2.3.4 Let G be a k × n matrix over Fq with n > k of the form
G∗ = (Ik|P ), where P is a k× (n− k) matrix over Fq. Let A ⊆ [k] and write
PA for the matrix formed by the rows of P indexed by A. Let WA(X, Y, T ) =
WPA

(X, Y, T ). Then the following holds:

WC(X, Y, T ) =
k∑

l=0

∑
|A|=l

Y l(X − Y )k−lWA(X, Y, T ).

Proof: We use the formula of the last proposition recursively. We denote the
construction of G∗−a by G1 and the construction of G∗/a by G2. Repeating
this procedure, we get the matrices G11, G12, G21 and G22. So we get for the
weight enumerator

WG = Y 2WG11 + Y (X − Y )WG12 + Y (X − Y )WG21 + (X − Y )2WG22 .

Repeating this procedure k times, we get 2k matrices with n − k columns
and 0, . . . , k rows, which form exactly the PA. In the diagram are the sizes
of the matrices of the first two steps: note that only the k× n matrix on top
has to be of full rank. The number of matrices of size (k − i) × (n − j) are
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given by the binomial coefficient
(

j
i

)
.

k × n

uuuuuuuuu

IIIIIIIII

k × (n− 1)

uuuuuuuuu

IIIIIIIII
(k − 1)× (n− 1)

uuuuuuuuu

IIIIIIIII

k × (n− 2) (k − 1)× (n− 2) (k − 2)× (n− 2)

On the last line we have W0(X, Y, T ) = Xn−k. This proves the formula. �

We illustrate the working of the above theorem by an example. Let C be
the even weight code of length n = 6 over F2. Then a generator matrix
of C is the 5 × 6 matrix G = (I5|P ) with P = (1, 1, 1, 1, 1, 1)T . So the
matrices PA are l × 1 matrices with all ones. We have W0(X, Y ) = X and
Wl(X, Y ) = T l−1(X + (T − 1)Y ) by part (ii) of Proposition 2.3.2. Therefore
the weight enumerator of C is equal to

WC(X, Y ) = WG(X, Y )

= X(X − Y )5 +
5∑

l=1

(
5

l

)
Y l(X − Y )5−lT l−1(X + (T − 1)Y )

= X6 + 15(T − 1)X4Y 2 + 20(T 2 − 3T + 2)X3Y 3

+15(T 3 − 4T 2 + 6T − 3)X2Y 4

+6(T 4 − 5T 3 + 10T 2 − 10T + 4)XY 5

+(T 5 − 6T 4 + 15T 3 − 20T 2 + 15T − 5)Y 6.

For T = 2 we get WC(X, Y, 2) = X6 + 15X4Y 2 + 15X2Y 4 + Y 6, which we
indeed recognise as the weight enumerator of the even weight code.

2.4 Generalized extended weight enumerator

Determining the generalized extended weight enumerator W r
C(X, Y, T ) goes

analogously to the determination of the extended weight enumerator. We
will give the necessary definitions and theorems here, and leave the proofs
to the reader. This polynomial contains no extra information with respect to
W r

C(X, Y ) and WC(X, Y, T ), but is useful to determine both at once, or to
determine W r

C⊗Fqm (X, Y ).



22 CHAPTER 2. WEIGHT ENUMERATOR

Definition 2.4.1 Let C be a linear code over Fq. Then we define

Br
J(T ) =

[
l(J)

r

]
T

Br
t (T ) =

∑
|J |=t

Br
J(T )

The generalized extended weight enumerator is given by

W r
C(X, Y, T ) =

n∑
t=0

Br
t (T )(X − Y )tY n−t.

Proposition 2.4.2 Let d and d⊥ be the minimum distance of C and C⊥

respectively. Then we have

Br
t (T ) =

{ (
n
t

) [
k−t
r

]
T

for all t < d⊥

0 for all t > n− dr

Theorem 2.4.3 The following holds:

W r
C(X, Y, T ) =

n∑
w=0

Ar
w(T )Xn−wY w

with Ar
w(T ) ∈ Z[T ] given by Ar

0(T ) = δ0r and

Ar
w(T ) =

n∑
t=n−w

(−1)n+w+t

(
t

n− w

)
Br

t (T )

for 0 < w ≤ n.

Proposition 2.4.4 The following formula holds:

Br
t (T ) =

n−t∑
w=dr

(
n− w
t

)
Ar

w(T ).

Proposition 2.4.5 Let C be a linear [n, k] code over Fq. Then we have
W r

C(X, Y, qm) = W r
C⊗Fqm (X, Y ).

Proof: For w = 0 it is clear that Ar
0(q

m) = Ar
0(C ⊗ Fqm), so assume w 6= 0.

It is enough to show that Ar
w(qm) = Ar

w(C ⊗ Fqm). Let V be a linear vector
space over Fqm with dimV = l(J), then we have

Br
J(qm) = |{U ⊆ V : dimU = r}|

= |{D ⊆ (C ⊗ Fqm)(J) : dimD = r}
= Br

J(C ⊗ Fqm).

This implies that Br
t (qm) = Br

t (C ⊗ Fqm). We also know that Ar
w(T ) and

Br
t (T ) are related the same way as Ar

w and Br
t . Combining this proves the

statement. �
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2.5 Notes

The determination of the generalized and extended weight enumerator is a
generalisation of the method used by Pellikaan, Wu and Bulygin [10]. Lemma
2.1.9 and many other binomial identities can be found in Riordan [11]. Note
also the similarity with Simonis [12]: for example, Lemma 2.1.2 is similar
with proposition (i) from this article. The form

∑n
t=0Bt(X−Y )tY n−t for the

weight enumerator was first introduced in [5] and later in [13]. In the next
chapters we will see more advantages of using this description of the weight
enumerator.
The algorithm in section 2.3 is new material, and based on Tutte-Grothendieck
decomposition of matrices. Greene [4] first used this decomposition for the
determination of the weight enumerator. Proposition 2.3.3 is a generalization
of his proposition 4.3.
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Chapter 3

Connections

3.1 Extended in terms of generalized

Proposition 3.1.1 Let C be a linear [n, k] code over Fq, and let Cm be the
linear subspace consisting of the m × n matrices over Fq whose rows are in
C. Then there is an isomorphism of Fq-vector spaces between C ⊗ Fqm and
Cm.

Proof: Let α be a primitive m-th root of unity in Fqm . Then we can write
an element of Fqm in an unique way on the basis (1, α, α2, . . . , αm−1) with
coefficients in Fq. If we do this for all the coordinates of a word in C⊗Fqm , we
get an m×n matrix over Fq. The rows of this matrix are words of C, because
C and C⊗Fqm have the same generator matrix. This map is clearly injective.
There are (qm)k = qkm words in C ⊗Fqm , and the number of elements of Cm

is (qk)m = qkm, so our map is a bijection. It is given by(
m−1∑
i=0

ci1α
i,

m−1∑
i=0

ci2α
i, . . . ,

m−1∑
i=0

cinα
i

)
7→


c01 c02 c03 . . . c0n

c11 c12 c13 . . . c1n
...

...
...

. . .
...

c(m−1)1 c(m−1)2 c(m−1)3 . . . c(m−1)n

 .

We see that the map is linear, so it gives an isomorphism C ⊗Fqm → Cm. �

Note that this isomorphism is not unique, because it depends on the choice
of a primitive element α.

25
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Lemma 3.1.2 Let c ∈ C⊗Fqm and M ∈ Cm the corresponding m×n matrix
under a given isomorphism. Let D ⊆ C the subcode generated by M . Then
wt(c) = wt(D).

Proof: If the j-th coordinate cj of c is zero, then the j-th column of M consists
of only zero’s, because the representation of cj on the basis (1, α, α2, . . . , αm−1)
is unique. On the other hand, if the j-th column of M consists of all zeros,
then cj is also zero. Therefore wt(c) = wt(D). �

Proposition 3.1.3 Let C be a linear code over Fq. Then the weight numera-
tor of an extension code and the generalized weight enumerators are connected
via

Aw(qm) =
m∑

r=0

[m, r]qA
r
w.

Proof: We count the number of words in C ⊗ Fqm of weight w in two ways,
using the bijection of proposition 3.1.1. The first way is just Aw(T = qm), the
left side of the equation. For the second way, note that every M ∈ Cm gener-
ates a subcode of C whose weight is equal to the weight of the corresponding
word in C⊗Fqm . Fix this weight w and a dimension r: there are Ar

w subcodes
of C of dimension r and weight w. Every such subcode is generated by an
r × n matrix whose rows are words of C. Left multiplication by an m × r
matrix of rank r gives an element of Cm which generates the same subcode of
C, and all such elements of Cm are obtained this way. The number of m× r
matrices of rank r is [m, r]q, so summation over all dimensions r gives

Aw(qm) =
k∑

r=0

[m, r]qA
r
w.

We can let the summation run to m, because Ar
w = 0 for r > k and [m, r]q = 0

for r > m. This proves the given formula. �

In general, we have the following theorem.

Theorem 3.1.4 Let C be a linear code over Fq. Then the extended weight
numerator and the generalized weight enumerator are connected via

WC(X, Y, T ) =
k∑

r=0

(
r−1∏
j=0

(T − qj)

)
W r

C(X, Y ).



3.2. GENERALIZED IN TERMS OF EXTENDED 27

Proof: If we know Ar
w for all r, we can determine Aw(qm) for every m. If we

have k + 1 values of m for which Aw(qm) is known, we can use Lagrange
interpolation to find Aw(T ), for this is a polynomial in T of degree at most
k. In fact, we have

Aw(T ) =
k∑

r=0

(
r−1∏
j=0

(T − qj)

)
Ar

w.

This formula has the right degree and is correct for T = qm for all integer
values m ≥ 0, so we know it must be the correct polynomial. Therefore the
theorem follows. �

3.2 Generalized in terms of extended

In this section, we give the relation found in the previous section the other
way round.

Theorem 3.2.1 Let C be a linear code over Fq. Then the generalized weight
enumerator and the extended weight enumerator are connected via

W r
C(X, Y ) =

1

〈r〉q

r∑
j=0

[
r

j

]
q

(−1)r−jq(r−j)(r−j−1)/2 WC(X, Y, qj).

Proof: We consider the generalized weight enumerator in terms of Proposition
2.2.6. Then rewriting gives the following:

W r
C(X, Y ) =

n∑
t=0

Br
t (X − Y )tY n−t

=
n∑

t=0

∑
|J |=t

[
l(J)

r

]
q

(X − Y )tY n−t

=
n∑

t=0

∑
|J |=t

(
r−1∏
j=0

ql(J) − qj

qr − qj

)
(X − Y )tY n−t

=
1∏r−1

v=0(q
r − qv)

n∑
t=0

∑
|J |=t

(
r−1∏
j=0

(ql(J) − qj)

)
(X − Y )tY n−t

=
1

〈r〉q

n∑
t=0

∑
|J |=t

r∑
j=0

[
r

j

]
q

(−1)r−jq(
r−j
2 )qj·l(J)(X − Y )tY n−t
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=
1

〈r〉q

r∑
j=0

[
r

j

]
q

(−1)r−jq(
r−j
2 )

n∑
t=0

∑
|J |=t

(qj)l(J)(X − Y )tY n−t

=
1

〈r〉q

r∑
j=0

[
r

j

]
q

(−1)r−jq(r−j)(r−j−1)/2 WC(X, Y, qj)

In the fourth step, we use the following identity (see [6]), which can be proven
by induction:

r−1∏
j=0

(Z − qj) =
r∑

j=0

[
r

j

]
q

(−1)r−jq(
r−j
2 )Zj.

�

3.3 Weight enumerator and Tutte polynomial

Definition 3.3.1 For a matroid G with rank function r the Tutte polyno-
mial is defined by

tG(X, Y ) =
∑
A⊆G

(X − 1)r(G)−r(A)(Y − 1)|A|−r(A).

If we have a linear code C over Fq with generator matrix G, we can interpret
the columns of G as a matroid. Dependance is the usual linear dependance,
and the rank function is the column rank of the submatrix consisting of some
columns of G, as we described in Lemma 2.1.2. Note that equivalent codes
give the same matroid.

Proposition 3.3.2 Let C be a linear code over Fq with generator matrix G,
and consider G as a matroid. Then the Tutte polynomial associated with the
code C is

tG(X, Y ) =
n∑

t=0

∑
|J |=t

(X − 1)l(J)(Y − 1)l(J)−(k−t).

Proof: In Lemma 2.1.2 we found that r(J) = k − l(J). Inserting this in the
Tutte polynomial and splitting the summation gives the above formula. �

The way we have rewritten the Tutte polynomial associated with a linear
code C suggests a connection between the weight enumerator and the Tutte
polynomial. This connection is given in the next theorem.
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Theorem 3.3.3 Let C be a linear [n, k] code over Fq with generator matrix
G. Then the following holds for the Tutte polynomial and the extended weight
enumerator:

WC(X, Y, T ) = (X − Y )kY n−k tG

(
X + (T − 1)Y

X − Y
,
X

Y

)
.

Proof: By using the previous proposition about the Tutte polynomial, rewrit-
ing, and Proposition 2.2.6 we get

(X − Y )kY n−k tG

(
X + (T − 1)Y

X − Y
,
X

Y

)
= (X − Y )kY n−k

n∑
t=0

∑
|J |=t

(
TY

X − Y

)l(J)(
X − Y
Y

)l(J)−(k−t)

= (X − Y )kY n−k

n∑
t=0

∑
|J |=t

T l(J)Y k−t(X − Y )−(k−t)

=
n∑

t=0

∑
|J |=t

T l(J)(X − Y )tY n−t

= WC(X, Y, T ).

�

Note that we use the extended weight enumerator here. We do that because
extending a code does not change the generator matrix and therefore not the
matroid G. The converse of this theorem is also true: the Tutte polynomial
is completely defined by the extended weight enumerator. We show this in
the following theorem.

Theorem 3.3.4 Let C be a linear code over Fq with generator matrix G.
Then the following holds for the extended weight enumerator and the Tutte
polynomial:

tG(X, Y ) = Y n(Y − 1)−kWC(1, Y −1, (X − 1)(Y − 1)).

Proof: The proof of this theorem goes analogous to the proof of the previous
theorem.

Y n(Y − 1)−kWC(1, Y −1, (X − 1)(Y − 1))

= Y n(Y − 1)−k

n∑
t=0

∑
|J |=t

((X − 1)(Y − 1))l(J) (1− Y −1)tY −(n−t)
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=
n∑

t=0

∑
|J |=t

(X − 1)l(J)(Y − 1)l(J)Y −t(Y − 1)tY −(n−k)Y n(Y − 1)−k

=
n∑

t=0

∑
|J |=t

(X − 1)l(J)(Y − 1)l(J)−(k−t)

= tG(X, Y ).

�

We see that the Tutte polynomial depends on two variables, while the ex-
tended weight enumerator depends on three variables. This is no problem,
because the weight enumerator is given in its homogeneous form here: we
can view the extended weight enumerator as a polynomial in two variables
via WC(Z, T ) = WC(1, Z, T ).
We can also give expressions for the generalized weight enumerator in terms
of the Tutte polynomial, and the other way round.

Theorem 3.3.5 For the generalized weight enumerator of a linear code Cand
the associated Tutte polynomial we have

W r
C(X, Y ) =

1

〈r〉q

r∑
j=0

[
r

j

]
q

(−1)r−jq(r−j)(r−j−1)/2

×(X − Y )kY n−k tG

(
X + (qj − 1)Y

X − Y
,
X

Y

)
,

And, conversely,

tG(X, Y ) = Y n(Y − 1)−k

k∑
r=0

(
r−1∏
j=0

((X − 1)(Y − 1)− qj)

)
W r

C(1, Y −1).

Proof: For the first formula, use Theorems 3.2.1 and 3.3.3. Use Theorems
3.1.4 and 3.3.4 for the second formula. �

3.4 Overview

In the previous sections we established relations between the generalized
weight enumerators for 0 ≤ r ≤ k, the extended weight enumerator and the
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Tutte polynomial. We summarize this in the following diagram:

WC(X, Y )

WC(X, Y, T )

3.2.1
yy

3.3.4
��

mm

{W r
C(X, Y )}kr=0

3.1.4 44

3.3.5 //

\\

tG(X, Y )
3.3.5

oo

3.3.3

OO

{W r
C(X, Y, T )}kr=0

--

kk

��

dd

We see that the Tutte polynomial, the extended weight enumerator and the
collection of generalized weight enumerators all contain the same amount of
information about a code, because they completely define each other. We use
WC(X, Y ) = W 0

C(X, Y ) + (q − 1)W 1
C(X, Y ) and WC(x, Y ) = WC(X, Y, q) to

find the weight enumerator WC(X, Y ). The latter contains less information
and therefore does not determine WC(X, Y, T ) or {W r

C(X, Y )}kr=0. An exam-
ple will be given in section 5.2.
The generalized extended weight enumerator can be obtained from the ex-
tended weight enumerator in the following way. First we use qm instead of q
in Theorem 3.2.1 to obtain {W r

C⊗Fqm (X, Y )}kr=0. If we do this for k+1 values

of m, we can determine {W r
C(X, Y, T )}kr=0 by Lagrange interpolation. (See

also the remark after Theorem 3.1.4.) So the generalized extended weight
enumerator does not contain more information then the Tutte polynomial,
the extended weight enumerator and the collection of generalized weight enu-
merators

3.5 Notes

The isomorphism given in Proposition 3.1.1 was suggested by Simonis [12].
Kløve [7] already proved Theorem 3.1.4, but did not use the given isomor-
phism in his proof. The second section, is new material. The connection with
the Tutte polynomial was first given by Greene [4] in the form of Theorem
3.3.3 with T = q. His proof uses Tutte-Grothendieck invariants and a vari-
ation on the method described in section 2.3, and is much longer then our
variant. Theorems 3.3.4 and 3.3.5 are newly derived.
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Chapter 4

MacWilliams identities

4.1 Using the Tutte polynomial

In this section, we will prove the MacWilliams identities using the Tutte
polynomial. We do this because of the following very useful relation between
the Tutte polynomial of a matroid and its dual:

Theorem 4.1.1 Let tG(X, Y ) be the Tutte polynomial of a matroid G, and
let G∗ be the dual matroid. Then tG(X, Y ) = tG∗(Y,X).

Proof (sketch): To prove the theorem, we use two relations between the rank
function of a matroid G and its dual G∗ with underlying set S:

r∗(G∗) + r(G) = |S|, r∗(A) = |A|+ r(S − A)− r(G).

This relations can be proved using basic facts about matroids. Substituting
the last relation into the definition of the Tutte polynomial for the dual code,
gives

tG∗(X, Y ) =
∑

A⊆G∗

(X − 1)r∗(G∗)−r∗(A)(Y − 1)|A|−r∗(A)

=
∑
A⊆G

(X − 1)r∗(G∗)−|A|−r(S−A)+r(G)(Y − 1)r(G)−r(S−A)

=
∑
A⊆G

(X − 1)|S−A|−r(S−A)(Y − 1)r(G)−r(S−A)

= tG(Y,X)

In the last step, we use that the summation over all A ⊆ G is the same as a
summation over all S − A ⊆ G. This proves the theorem. �

33
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If we consider a code as a matroid, then the dual matroid is the dual code.
Therefore we can use the above theorem to prove the MacWilliams relations.

Theorem 4.1.2 (MacWilliams) Let C be a code and let C⊥ be its dual.
Then the extended weight enumerator of C completely determines the ex-
tended weight enumerator of C⊥ and vice versa, via the following formula:

WC⊥(X, Y, T ) = T−kWC(X + (T − 1)Y,X − Y, T ).

Proof: Using the previous theorem, and the relation between the weight enu-
merator and the Tutte polynomial, we find

T−kWC(X + (T − 1)Y,X − Y, T )

= T−k(TY )k(X − Y )n−k tG

(
X

Y
,
X + (T − 1)Y

X − Y

)
= Y k(X − Y )n−k tG

(
X + (T − 1)Y

X − Y
,
X

Y

)
= WC⊥(X, Y, T ).

Notice in the last step that dimC⊥ = n− k, and n− (n− k) = k. �

4.2 Generalized MacWilliams identities

We can use the relations in Theorems 3.1.4 and 3.2.1 to prove the MacWilliams
identities for the generalized weight enumerator.

Theorem 4.2.1 Let C be a code and let C⊥ be its dual. Then the gener-
alized weight enumerators of C completely determine the generalized weight
enumerators of C⊥ and vice versa, via the following formula:

W r
C⊥(X, Y ) =

r∑
j=0

j∑
l=0

(−1)r−j q
(r−j)(r−j−1)/2−j(r−j)−l(j−l)−jk

〈r − j〉q〈j − l〉q
W l

C(X + (qj − 1)Y,X − Y ).

Proof: We write the generalized weight enumerator in terms of the extended
weight enumerator, use the MacWilliams identities for the extended weight
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enumerator, and convert back to the generalized weight enumerator.

W r
C⊥ =

1

〈r〉q

r∑
j=0

[
r

j

]
q

(−1)r−jq(r−j)(r−j−1)/2 WC⊥(X, Y, qi)

=
r∑

j=0

(−1)r−j q
(r−j)(r−j−1)/2−j(r−j)

〈j〉q〈r − j〉q
q−jkWc(X + (qj − 1)Y,X − Y, qj)

=
r∑

j=0

(−1)r−j q
(r−j)(r−j−1)/2−j(r−j)−jk

〈j〉q〈r − j〉q

×
j∑

l=0

〈j〉q
ql(j−l)〈j − l〉q

W l
C(X + (qj − 1, X − Y )

=
r∑

j=0

j∑
l=0

(−1)r−j q
(r−j)(r−j−1)/2−j(r−j)−l(j−l)−jk

〈r − j〉q〈j − l〉q

×W l
C(X + (qj − 1, X − Y ).

�

4.3 An alternative approach

In [12] Simonis proved an alternative version of the generalized MacWilliams
identities. We will prove this theorem directly, by showing the equivalence
with Theorem 4.2.1.

Theorem 4.3.1 The generalized Hamming weights Ar
w of a linear [n, k] code

C over Fq and the generalized Hamming weights Ãr
w of the dual code C⊥ are

related via

n∑
i=0

(
n− i
n−m

)
Ãr

i =
r∑

l=0

ql(m−k+l−r)

[
m− k
r − l

]
q

n∑
v=0

(
n− v
m

)
Al

v.

Proof: We will multiply both sides of the equation by Y nUn−m and sum over
m from 0 to n. We start with the left hand side of the equation. Changing the
order of summation, using the binomial expansion of (U+1)n−i and changing
variables via X = Y (U + 1) gives

n∑
m=0

Y nUn−m

n∑
i=0

(
n− i
n−m

)
Ãr

i
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=
n∑

i=0

Ãr
iY

n

n∑
m=0

(
n− i
n−m

)
Un−m

=
n∑

i=0

Ãr
iY

n

n−i∑
m=0

(
n− i

n−m− i

)
Un−m−i

=
n∑

i=0

Ãr
iY

n(U + 1)n−i

=
n∑

i=0

Ãr
iY

iXn−i.

This is exactly the generalized weight enumerator of the dual code, and thus
equal to the left hand side of Theorem 4.2.1.
The right hand side of the equation requires some more work. First, we
rewrite the Gaussian binomial coefficient in the following way:[

m− k
r − l

]
q

=

∏r−l−1
t=0 (qm−k − qt)

〈r − l〉q

=
1

〈r − l〉q

r−l∑
t=0

[
r − l
t

]
q

(−1)r−l−tq(
r−l−t

2 )qt(m−k)

=
1

〈r − l〉q

r∑
j=l

[
r − l
j − l

]
q

(−1)r−jq(
r−j
2 )+(j−l)(m−k)

=
r∑

j=l

(−1)r−j q
(r−j

2 )+(j−l)(m−k)

〈r − l〉q
· q
−(j−l)(r−j)〈r − l〉q
〈j − l〉q〈r − j〉q

=
r∑

j=l

(−1)r−j q
(r−j)(r−j−1)/2+(j−l)((m−k)−(r−j))

〈r − j〉q〈j − l〉q
.

In the first step, we use the same identity as in the proof of Theorem 3.2.1,
and in the second step we substitute t = j−l. If we substitute this expression,
take together the powers of q and change the order of summation, we find
the right hand side of the formula to be equal to

r∑
j=0

j∑
l=0

(−1)r−j q
(r−j)(r−j−1)/2−j(r−j)−l(j−l)−jk

〈r − j〉q〈j − l〉q
· qjm

n∑
v=0

(
n− v
m

)
Al

v.

This already looks a lot like the right hand side of Theorem 4.2.1. We are
now ready to do the same procedure to the above as we did before to the
left hand side: we multiply by Y nUn−m and sum over m from 0 to n. All
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this does not depend on j nor l, so we can change the summations easily. It
remains to show that

n∑
m=0

Y nUn−mqjm

n∑
v=0

(
n− v
m

)
Al

v = W l
C(X + (qj − 1)Y,X − Y ),

where U + 1 = XY −1. Changing the order of summation, substituting u =
n −m, using the binomial expansion of (U + qj)n−v and changing variables
via X = Y (U + 1) gives indeed

n∑
m=0

Y nUn−mqjm

n∑
v=0

(
n− v
m

)
Al

v

=
n∑

v=0

Al
vY

nU v

n∑
m=0

(
n− v
m

)
Un−m−vqjm

=
n∑

v=0

Al
vY

nU v

n∑
m=v

(
n− v
n−m

)
Un−mqj(m−v)

=
n∑

v=0

Al
vY

nU v

n−v∑
u=0

(
n− v
u

)
Uuqj(n−v−u)

=
n∑

v=0

Al
vY

nU v(U + qj)n−v

=
n∑

v=0

Al
v(Y (U + 1) + (qj − 1)Y )n−v(Y (U + 1)− Y )v

=
n∑

v=0

Al
v(X + (qj − 1)Y )n−v(X − Y )v

= W l
C(X + (qj − 1)Y,X − Y ).

This proves the theorem. �

Stating the generalized MacWilliams identities in this way has the advantage
that we can now derive MacWilliams-like identities for the Br

t .

Theorem 4.3.2 Let C be a linear [n, k] code over Fq, with the associated
Br

t . Let C⊥ be its dual, with associated B̃r
t . Then the Br

t and B̃r
t completely

define each other in the following way:

B̃r
t =

r∑
l=0

ql(n−t−k+l−r)

[
n− t− k
r − l

]
q

Bl
n−t.
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Proof: The formula is a direct consequence of the previous theorem and
Proposition 2.1.6, with n−m replaced by t. �

As we see, this formula is much more pleasant then the one in Theorems
4.2.1 and 4.3.1. This motivates the use of the Br

t for the weight enumerator.

4.4 Notes

Greene [4] first used the Tutte polynomial to prove the MacWilliams identi-
ties, see also Brylawsky and Oxley [2]. Theorem 4.2.1 was proved by Kløve
in [7], although he uses only half of the relations between the generalized
weight enumerator and the extended weight enumerator. Using both makes
the proof much shorter. The formula in Theorem 4.3.1 was proved by Simonis
in [12] with use of an idea quite similar to the Br

t we use. The connection
between the two formulas is first proven here, and uses an argument similar
to Blahut’s proof [1] of the ordinary MacWilliams relations.



Chapter 5

Examples

5.1 MDS codes

We can use the theory in the second chapter to calculate the weight distri-
bution, generalized weight distribution, and extended weight distribution of
a linear [n, k] code C. This is done by determining the values l(J) for each
J ⊆ [n]. In general, we have to look at the 2n different subcodes of C to
find the l(J), but for the special case of MDS codes we can find the weight
distributions much faster.

Proposition 5.1.1 Let C be a linear [n, k] MDS code, and let J ⊆ [n]. Then
we have

l(J) =

{
0 for t > k

k − t for t ≤ k

so for a given t the value of l(J) is independent of the choice of J .

Proof: We know that the dual of a MDS code is also MDS, so d⊥ = k + 1.
Now use d = n− k + 1 in lemma 2.1.3. �

Now that we know all the l(J) for an MDS code, it is easy to find the
weight distribution. We will give the construction for the generalized ex-
tended weight enumerator here, because all other cases can be deduced from
it.

Theorem 5.1.2 Let C be a MDS code with parameters [n, k]. Then the gen-
eralized extended weight distribution is given by

Ar
w(T ) =

(
n

w

) w−d∑
j=0

(−1)j

(
w

j

)[
w − d+ 1− j

r

]
T

.

39
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Proof: We know from the proposition that for a MDS code, Br
J(T ) depends

only on the size of J , so Br
t (T ) =

(
n
t

) [
k−t
r

]
T

. Using this in the formula for
Ar

w(T ) and substituting j = t− n+ w, we have

Ar
w(T ) =

n−dr∑
t=n−w

(−1)n+w+t

(
t

n− w

)
Br

t (T )

=
n−dr∑

t=n−w

(−1)t−n+w

(
t

n− w

)(
n

t

)[
k − t
r

]
T

=
w−dr∑
j=0

(−1)j

(
n

w

)(
w

j

)[
k + w − n− j

r

]
T

=

(
n

w

) w−dr∑
j=0

(−1)j

(
w

j

)[
w − d+ 1− j

r

]
T

.

In the second step, we are using the binomial equivalence(
n

t

)(
t

n− w

)
=

(
n

n− w

)(
n− (n− w)

t− (n− w)

)
=

(
n

w

)(
w

n− t

)
.

�

So, for all MDS-codes with given parameters [n, k] the extended and general-
ized weight distributions are the same. But not all such codes are equivalent.
We can conclude from this, that the generalized extended weight enumerator
is not enough to distinguish between codes with the same parameters. We
illustrate the non-equivalence of two MDS codes by an example.

Let C be a linear [n, 3] MDS code over Fq. It is possible to write the generator
matrix G of C in the following form: 1 1 . . . 1

x1 x2 . . . xn

y1 y2 . . . yn

 .

Because C is MDS we have d = n− 2. We now view the n columns of G as
points in the projective plane PG(2, q), say P1, . . . , Pn. The MDS property
that every k columns of G are independent is now equivalent with saying
that no three points are on a line. To see that these n points do not always
determine an equivalent code, consider the following construction. Through
the n points there are

(
n
2

)
= N lines, the set N . These lines determine (the
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generator matrix of) a [N, 3] code Ĉ. The minimum distance of the code Ĉ is
equal to the total number of lines minus the maximum number of lines from
N through an arbitrarily point P ∈ PG(2, q). If P /∈ {P1, . . . , Pn} then the
maximum number of lines from N through P is at most 1

2
n, since no three

points of N lie on a line. If P = Pi for some i ∈ [n] then P lies on exactly
n − 1 lines of N , namely the lines PiPj for j 6= i. Therefore the minimum

distance of Ĉ is d = N − n+ 1.
We now have constructed a [N, 3, N − n + 1] code Ĉ from the original code
C. Notice that two codes C1 and C2 are equivalent if and only if Ĉ1 and Ĉ2

are equivalent. The (generalized extended) weight enumerators W r
C(X, Y, T )

are completely determined, but this is not generally true for W r
Ĉ

(X, Y, T ).

Take for example n = 4 and q = 4, so Ĉ is a [6, 3, 3] code. The six columns can
be viewed as six points in the projective plane. We know that every 5-tuple
of points in the projective plane determines a unique conic. If we take five of
our six points and look at the conic they are on, there are three possibilities
for the last point: it can also be on the conic, it can be the nucleus of the
conic (every tangent of the conic runs through the same point because q is
even), or it can be some other point. Every possibility can occur with d = 3
for the final code, so not all [6, 3, 3] codes are equivalent. Therefore also not
all [4, 3, 2] codes are equivalent.

5.2 Two [6, 3] codes

In this section, we will determine the generalized and extended weight dis-
tribution of two linear [6, 3] codes. Let C1 and C2 be the codes over F2

respectively determined by the following generator matrices:

 1 1 0 0 0 0
1 0 1 0 0 0
1 1 1 1 1 1

 ,

 1 1 0 0 0 0
0 0 1 1 0 0
1 1 1 1 1 1

 .

As we can see from the generator matrices, we have d = 2 for both codes,
and also d⊥ = 2. Now we determine the values of l(J) for both codes, using
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Lemma 2.1.3 and writing out the other cases.

t C1 C2

t = 0 l(J) = 3 l(J) = 3
t = 1 l(J) = 2 l(J) = 2
t = 2 3× l(J) = 2 3× l(J) = 2

12× l(J) = 1 12× l(J) = 1
t = 3 1× l(J) = 2 12× l(J) = 1

9× l(J) = 1 8× l(J) = 0
10× l(J) = 0

t = 4 3× l(J) = 1 3× l(J) = 1
12× l(J) = 0 12× l(J) = 0

t = 5 l(J) = 0 l(J) = 0
t = 6 l(J) = 0 l(J) = 0

From this table, we see that the two codes only differ at t = 3, so in the
following we will only distinguish between C1 and C2 for t = 3. For Br

t (T )
we find the following general formulas:

Br
0(T ) =

[
3

r

]
T

Br
1(T ) = 6 ·

[
2

r

]
T

Br
2(T ) = 3 ·

[
2

r

]
T

+ 12 ·
[

1

r

]
T

Br
3(T )1 =

[
2

r

]
T

+ 9 ·
[

1

r

]
T

+ 10 ·
[

0

r

]
T

Br
3(T )2 = 12 ·

[
1

r

]
T

+ 8 ·
[

0

r

]
T

Br
4(T ) = 3 ·

[
1

r

]
T

+ 12 ·
[

0

r

]
T

Br
5(T ) = 6 ·

[
0

r

]
T

Br
6(T ) =

[
0

r

]
T
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The first Br
3 is for C1 and the second is for C2. Working this out for r =

0, 1, 2, 3 we get B0
t (T ) =

(
6
t

)
for r = 0. For r = 1 we have

B1
0(T ) = T 2 + T + 1

B1
1(T ) = 6T + 6

B1
2(T ) = 3T + 15

B1
3(T )1 = T + 10

B1
3(T )2 = 12

B1
4(T ) = 3

B1
5(T ) = 0

B1
6(T ) = 0

And for r = 2 we find

B2
0(T ) = T 2 + T + 1

B2
1(T ) = 6

B2
2(T ) = 3

B2
3(T )1 = 1

B2
3(T )2 = 0

B2
4(T ) = 0

B2
5(T ) = 0

B2
6(T ) = 0

For r = 3 we have B3
t (T ) = 0, except for B3

0(T ) = 1.

We now can determine the Ar
w(T ) for r = 0, 1, 2, 3 using Theorem 2.4.3. For

both codes A0
w(T ) and A3

w(T ) are the same, because B0
t (T ) and B3

t (T ) are
the same. When r = 0 we got

A0
w =

6∑
t=6−w

(−1)6−w−t

(
t

6− w

)(
6

t

)
= δ6,6−w.

Furthermore, we have A3
w(T ) = 0 except for A3

6(T ) = 1. For C1 we have

A1
0(T ) = 0

A1
1(T ) = 0

A1
2(T ) = 3

A1
3(T ) = T − 2

A1
4(T ) = 3

A1
5(T ) = 3T − 6

A1
6(T ) = T 2 − 3T + 3
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when r = 1, and for r = 2 we have

A2
0(T ) = 0

A2
1(T ) = 0

A2
2(T ) = 0

A2
3(T ) = 1

A2
4(T ) = 0

A2
5(T ) = 3

A2
6(T ) = T 2 + T − 3

For C2 we find that
A1

0(T ) = 0
A1

1(T ) = 0
A1

2(T ) = 3
A1

3(T ) = 0
A1

4(T ) = 3T − 3
A1

5(T ) = 0
A1

6(T ) = T 2 − 2T + 1

when r = 1, and for r = 2 we find

A2
0(T ) = 0

A2
1(T ) = 0

A2
2(T ) = 0

A2
3(T ) = 0

A2
4(T ) = 3

A2
5(T ) = 0

A2
6(T ) = T 2 + T − 2

We notice that for the two codes the Ar
w(T ) look much more different than

the Br
t (T ). This is because for w > 2, we need Br

3(T ) in our calculations, and
this values differ for C1 and C2. Likewise, for w ≤ 2 the Ar

w(T ) are the same.

We are now ready to actually calculate the weight distributions of C1 and
C2. First, we give the generalized weight distributions. They are obtained by
substituting T = 2 in the above expressions.

r C1 C2

0 (1, 0, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0, 0)
1 (0, 0, 3, 0, 3, 0, 1) (0, 0, 3, 0, 3, 0, 1)
2 (0, 0, 0, 1, 0, 3, 3) (0, 0, 0, 0, 3, 0, 4)
3 (0, 0, 0, 0, 0, 0, 1) (0, 0, 0, 0, 0, 0, 1)



5.3. NOTES 45

So, the normal weight distributions of C1 and C2 are the same, but the
higher order weight distributions are not. Therefore the generalized weight
distribution is a better invariant to distinguish between codes.
The first extended weight distributions of C1 and C2 are

m C1 C2

1 (1, 0, 3, 0, 3, 0, 1) (1, 0, 3, 0, 3, 0, 1)
2 (1, 0, 9, 6, 9, 18, 21) (1, 0, 9, 0, 27, 0, 27)
3 (1, 0, 21, 42, 21, 126, 301) (1, 0, 21, 0, 147, 0, 343)
4 (1, 0, 45, 210, 45, 630, 3165) (1, 0, 45, 0, 675, 0, 3375)
5 (1, 0, 93, 930, 93, 2790, 28861) (1, 0, 93, 0, 2883, 0, 29791)
6 (1, 0, 189, 3906, 189, 11718, 246141) (1, 0, 189, 0, 11907, 0, 250047)
7 (1, 0, 381, 16002, 381, 48006, 2032381) (1, 0, 381, 0, 48387, 0, 2048383)

We used WC⊗Fqm (X, Y ) = W 0
C(X, Y, qm)+(qm−1)W 1

C(X, Y, qm) to find these
values.

5.3 Notes

The weight distribution of MDS codes has been known for long, see MacWilliams
and Sloane [8] page 330. The examples in section 5.2 are from Simonis [12].
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Chapter 6

Implementation and complexity

6.1 About the computer implementation

We use the computer algebra package Magma to implement the calculations
of the weight enumerator. This is done by the method described in the second
chapter, via calculation of l(J) and Br

t . We will give a short description of
the functions in the code, with references to the corresponding theorems.

GaussianNumber(k,r,q)

Unfortunately, the existing Magma command GaussianBinomial(n,k,v)

does not mean what we want it to mean. So a new function is written.

Brt(C,r,t)

This function calculates Br
t in the way of Definition 2.1.4. We use of the

Magma command ShortenCode(C,J), which is the same as giving C(J)
with the all-zero coordinates removed. This removing does not change the
dimension, so we can determine l(J) from it.

GeneralizedWeightDistribution(C,r)

This function determines the r-th generalized Hamming weights of a code C,
using the function Brt(C,r,t) and Proposition 2.1.8.

BtT(C,t,m)

This function calculates Bt(T ) in the way of Definition 2.2.1. As in the func-
tion Brt(C,r,t), we use of the Magma command ShortenCode(C,J).

ExtendedWeightDistribution(C,m)

This function determines the weight distribution of the m-th extension of a
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code C, using the function BtT(C,t,m) and Theorem 2.2.3.

ExtendedWeightDistribution2(C,m)

Another way to determine the extended weight distribution, now using The-
orem 3.1.4 and the function GeneralizedWeightDistribution(C,r).

GeneralizedWeightDistribution2(C,r)

Another way to determine the generalized weight enumerator, now using
Theorem 3.2.1 and the function ExtendedWeightDistribution(C,m).

6.2 The implementation

function GaussianNumber(k,r,q)

N:=1;

for i in [0..r-1] do

N *:= (q^(k-i)-1)/(q^(r-i)-1);

end for;

return N;

end function;

function Brt(C,r,t)

// C code, t in [0..n], r in [0..k]

n:=Length(C);

q:=#Field(C);

B:=0;

S:={i:i in [1..n]};

if t ne n then

// ShortenCode does not work for t=n, in that case B=0

for J in Subsets(S,t) do

l:=Dimension(ShortenCode(C,J));

B +:= GaussianNumber(l,r,q);

end for;

elif r eq 0 then

B:=1;

end if;

return B;

end function;

function GeneralizedWeightDistribution(C,r)
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// C code, r in [0..k]

n:=Length(C);

B:=[0];

for t in [0..n] do

B[t+1]:=Brt(C,r,t);

end for;

A:=[0];

for w in [0..n] do

A[w+1]:=0;

for t in [n-w..n] do

A[w+1] +:= (-1)^(n+w+t)*Binomial(t,n-w)*B[t+1];

end for;

end for;

return A;

end function;

function BtT(C,t,m)

// C code, t in [0..n]

n:=Length(C);

q:=#Field(C);

B:=0;

S:={i:i in [1..n]};

if t ne n then

// ShortenCode does not work for t=n, in that case B=0

for J in Subsets(S,t) do

l:=Dimension(ShortenCode(C,J));

B +:= q^(m*l)-1;

end for;

end if;

return B;

end function;

function ExtendedWeightDistribution(C,m)

// C code, m extension degree

n:=Length(C);

B:=[0];

for t in [0..n] do

B[t+1]:=BtT(C,t,m);

end for;

A:=[1];

for w in [1..n] do
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A[w+1]:=0;

for t in [n-w..n] do

A[w+1] +:= (-1)^(n+w+t)*Binomial(t,n-w)*B[t+1];

end for;

end for;

return A;

end function;

function ExtendedWeightDistribution2(C,m)

// C code, m extension degree

n:=Length(C);

q:=#Field(C);

A:=[0];

for w in [0..n] do

A[w+1]:=0;

end for;

A:=Vector(A);

for r in [0..m] do

mr:=1;

for i in [0..r-1] do

mr *:= (q^m-q^i);

end for;

A +:= mr*Vector(GeneralizedWeightDistribution(C,r));

end for;

A:=ElementToSequence(A);

return A;

end function;

function GeneralizedWeightDistribution2(C,r)

// C code, r in [0..k]

n:=Length(C);

q:=#Field(C);

A:=[0];

for w in [0..n] do

A[w+1]:=0;

end for;

A:=Vector(A);

for i in [0..r] do

A +:= GaussianNumber(r,i,q)*(-1)^(r-i)*q^((r-i)*(r-i-1)/2)

*Vector(ExtendedWeightDistribution(C,i));

end for;
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rr:=1;

for i in [0..r-1] do

rr *:= (q^r-q^i);

end for;

A:=ElementToSequence(A);

for w in [0..n] do

A[w+1] /:= rr;

end for;

return A;

end function;

6.3 Example: the ternary Golay code

As an example of the computer code in the previous section, we use it to
find the generalized and extended weight distributions of the ternary Golay
code and its extension. (By extension here we do not mean an enlargement
of the ground field, but the addition of a coordinate to make the sum of the
coordinates zero.) We construct the codes in a cyclic way:

K:=FiniteField(3);

L:=FiniteField(3^5);

b:=L.1^22;

Golay:=CyclicCode(11,{b},K);

ExtendedGolay:=ExtendCode(Golay);

This indeed gives the desired codes:

> Golay;

[11, 6, 5] Cyclic Linear Code over GF(3)

Generator matrix:

[1 0 0 0 0 0 2 0 1 2 1]

[0 1 0 0 0 0 1 2 2 2 1]

[0 0 1 0 0 0 1 1 1 0 1]

[0 0 0 1 0 0 1 1 0 2 2]

[0 0 0 0 1 0 2 1 2 2 0]

[0 0 0 0 0 1 0 2 1 2 2]

> ExtendedGolay;

[12, 6, 6] Linear Code over GF(3)

Generator matrix:

[1 0 0 0 0 0 2 0 1 2 1 2]
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[0 1 0 0 0 0 1 2 2 2 1 0]

[0 0 1 0 0 0 1 1 1 0 1 1]

[0 0 0 1 0 0 1 1 0 2 2 2]

[0 0 0 0 1 0 2 1 2 2 0 1]

[0 0 0 0 0 1 0 2 1 2 2 1]

First we ask for the generalized weight distributions of both codes.

> for i in [0..6] do

for> GeneralizedWeightDistribution(Golay,i);

for> end for;

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

[ 0, 0, 0, 0, 0, 66, 66, 0, 165, 55, 0, 12 ]

[ 0, 0, 0, 0, 0, 0, 0, 330, 825, 2695, 4125, 3036 ]

[ 0, 0, 0, 0, 0, 0, 0, 0, 165, 1705, 9405, 22605 ]

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 1221, 9735 ]

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 353 ]

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ]

> for i in [0..6] do

for> GeneralizedWeightDistribution(ExtendedGolay,i);

for> end for;

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

[ 0, 0, 0, 0, 0, 0, 132, 0, 0, 220, 0, 0, 12 ]

[ 0, 0, 0, 0, 0, 0, 0, 0, 495, 880, 2970, 3960, 2706 ]

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 220, 1980, 9900, 21780 ]

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 66, 1320, 9625 ]

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 352 ]

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ]

These values agree with the known weight distributions of the (extended)
ternary Golay code. (See for example [8] or [10].) Now we do the same for the
extended weight distributions. We will not take m > 3 because the numbers
will get very large.

> for m in [0..3] do

for> ExtendedWeightDistribution(Golay,m);

for> end for;

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

[ 1, 0, 0, 0, 0, 132, 132, 0, 330, 110, 0, 24 ]

[ 1, 0, 0, 0, 0, 528, 528, 15840, 40920, 129800, 198000, 145

824 ]
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[ 1, 0, 0, 0, 0, 1716, 1716, 205920, 2372370, 20833670, 1082

10

960, 255794136 ]

> for m in [0..3] do

for> ExtendedWeightDistribution(ExtendedGolay,m);

for> end for;

[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

[ 1, 0, 0, 0, 0, 0, 264, 0, 0, 440, 0, 0, 24 ]

[ 1, 0, 0, 0, 0, 0, 1056, 0, 23760, 44000, 142560, 190080, 1

29984 ]

[ 1, 0, 0, 0, 0, 0, 3432, 0, 308880, 3025880, 24092640, 1136

67840,

246321816 ]

It is also possible to do the above calculations with the alternative functions
GeneralizedWeighDistribution2(C,r) which uses the extended weight enu-
merator, and ExtendedWeightDistribution2(C,m), which use the general-
ized weight enumerator. These functions give the same values, but the second
functions are much slower.

6.4 Complexity calculations

We discussed multiple ways to determine the weight enumerator of a linear
code. In this chapter, we look at the complexity of these calculations.

Definition 6.4.1 The complexity Comp(n,R) of the calculation of the weight
enumerator of a linear [n, k] code over Fq with information rate R = k

n
is

given as a function of n and R. The exponent of this function is defined as

E(R) = lim
n→∞

logq Comp(n,R)

n
.

Remark that the complexity also depends on the used algorithm. Which al-
gorithm is used, should be clear from the context.

The most straightforward way to calculate the weight enumerator is the brute
force-method: we simply go through all words and determining their weight.
There are qk words of length n, so the complexity of this brute force-method
is nqk and therefore E(R) = R. Because of the MacWilliams relations, we
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may assume R ≤ 1
2
.

If we use the Br
t (T ) to determine the weight enumerator, we have to look at

all J ⊆ [n] and determine the dimension of C(J). Therefore the complexity
is O(2n ·n3) and E(R) = logq 2. So this method is faster than the brute force-
method if R > logq 2. We already saw we can assume R ≤ 1

2
, so it follows

that this method is faster than the brute force method for logq 2 < R < 1
2
,

in case q > 4. Unfortunately, in practice we often use binary codes, so q = 2.
On the other hand, using the Br

t (T ) gives us the generalized extended weight
enumerator, not only the ordinary weight enumerator. That means we also
determine the generalized weight enumerators {W r

C(X, Y, T )}kr=0 and the
weight enumerator WC⊗Fqm (X, Y ) of all extensioncodes over C.
Moreover, we can improve this exponent, because by Lemma 2.1.3 we know
l(J) for t < d⊥ and t > n − d. The values of d and d⊥ can be very small,
but a code in general achieves the Gilbert–Varshamov bound (see [3]). That
means we have the following values for d and d⊥:

d ∼ nH−1
q (1−R) and d⊥ ∼ nH−1

q (R)

where H(x) = −x logq x−(1−x) logq(1−x)+logq(q−1) is the q-ary entropy
function. The complexity is thus equal to

Comp(n,R) =

n−nH−1
q (1−R))∑

t=nH−1
q (R)

(
n

t

)
.

6.5 Notes

For the binary Golay code of length 23, the given implementation is much to
inefficient: Magma runs out of memory before any results are found. Unfor-
tunately, there was no time to implement the method of section 2.3.
The problem of finding the weight distribution of a code is proven to be
NP hard by Vardy [14]. More about codes achieving the Gilbert-Varshamov
bound can be found in [3].
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Conclusions

In the second chapter, we described ways to determine the generalized weight
enumerator, the extended weight enumerator and the generalized extended
weight enumerator. These methods are very similar and based on the determi-
nation of l(J) for all J ⊆ [n], where l(J) = dim{c ∈ C : cj = 0 for all j ∈ J}.
Besides this method, we discovered a way to determine the extended weight
enumerator by matrix decomposition.
It tuns out that the generalized weight enumerators, the extended weight
enumerator and the Tutte polynomial all contain the same amount of infor-
mation about a code (or matroid). This is a better invariant then the original
weight enumerator. All the in between links have been made explicit and an
overview can be found in section 3.4. Further extension or generalization does
not give more information about the code.
For the three equivalent polynomials we proved MacWilliams-like relations
between the polynomial and the polynomial of the dual object – code or ma-
troid. With use of the language described in the second chapter, we simplified
known results and proved their equivalence. Using Br

t (T ) in the definition of
the weight enumerators turns out to be quite useful. Also, we gave examples
of the theory.
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