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Conventions

Unless otherwise explicitly stated to the contrary, the following notations and con-
ventions will be in force.

1. The symbol ⊆ denotes inclusion of sets, while ⊂ denotes a strict inclusion,
and similarly for ⊇ and ⊃.

2. All rings and algebras are assumed to be commutative with 1 and homomor-
phisms between them always send 1 to 1. For any ring A, A∗ denotes its group of
units. If p is a prime ideal of a ring A, we write ht p for the height of p.

3. If C is a category, Cop denotes its opposite category. For objects X, Y ∈ C,
MorC(X, Y ) will denote the set of all morphisms from X to Y . When C is additive,
we will often write Hom instead of Mor. Notations for some categories are the
following:

Set: the category of sets;
Group: the category of groups;
Top: the category of topological spaces;
Alg/k: the category of algebras over a field k;
Field/k: the category of field extensions of a field k.
The symbols

∏
and

∐
are standard notations respectively for direct product

and coproduct in categories. For example, in Set or Top,
∐

means disjoint union.
In additive categories,

⊕
will be used in place of

∐
.

4. A diagram of morphisms in a category of the following form

X ′ f ′−−−−→ Y ′

g′
y

yg

X
f−−−−→ Y

is called a fibre square if (X ′, g′ , f ′) is a fibre product of X
f−→ Y and Y ′ g−→ Y .

5. Except in the Appendix, by a scheme we will always mean an algebraic
scheme over a field, that is, a scheme of finite type over a field. A morphism of
schemes over a field k always means a k-morphism. If X and Y are k-schemes,
Mork(X, Y ) denotes the set of k-morphisms from X to Y .

6. A variety over a field k is a separated (algebraic) scheme over k. A curve
is a variety of dimension 1. A surface is a variety of dimension 2. An

k and Pn
k

denote respectively the n-dimensional affine space and projective space over k. The
subscript k is often omitted when it is clear from the context.

7. Subschemes or subvarieties are always assumed to be closed. As a sub-
scheme, an irreducible component of a scheme will be given the reduced sub-
scheme structure.

8. If X is an integral k-scheme, the field of rational functions on X will be
denoted by k(X).

9. If X is a scheme and x ∈ X, the residue field of x will be denoted κ(x). If V
is an irreducible subscheme of X, we write OX, V for the local ring of X at V , that
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is, OX, V = OX, ξ, where ξ is the generic point of V . The maximal ideal of OX, V

will be written mX, V .
10. If A is an algebra over a field k and X is a k-scheme, we write X ×k A, or

simply XA, for the fibre product X ×Spec k Spec A. k̄ usually denotes a separable
algebraic closure of k, and we will write X := X ×k k̄.

11. If X, Y are schemes over a field k, the fibre product X ×k Y will be often
denoted simply by X × Y when the ground field is clear from the context.

12. A scheme X is called normal (resp. regular) if all its local rings OX, x,
x ∈ X are integrally closed domains (resp. regular). A scheme X over a field k
is called smooth if X ×k kac is regular, where kac is an algebraic closure of k. A
morphism f : X → Y is said to be smooth at x ∈ X, if f is flat at x and if the
scheme-theoretic fibre Xy, where y = f(x), is smooth over the residue field κ(y). f
is said to be smooth if it is smooth at every x ∈ X.
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Introduction

Let X be an algebraic variety over a field k. For each integer p ≥ 0, the group
Zp(X) of cycles of dimension p on X is the free abelian group with basis the
set of all integral subvarieties of dimension p. For any (p + 1)-dimensional integral
subvariety W of X, there is a well-defined group homomorphism k(W )∗ −→ Zp(X),
written as f 7→ [div(f)]. The Chow group CHp(X) is by definition the quotient of
Zp(X) divided by the subgroup generated by all the images of such homomorphisms.
Two cycles α, β ∈ Zp(X) are called rationally equivalent if their images in CHp(X)
coincide. If X is purely of dimension d, we will write CHd−p(X) = CHp(X) when
the grading by codimension is more convenient. Note that the group CH0(X) is
nothing but the free abelian group based on closed points modulo the rational
equivalence.

Suppose X has rational points. We say two points x, y ∈ X(k) are directly
R-equivalent if there is a k-rational map f : P1 99K X such that f(0) = x and
f(∞) = y. The R-equivalence on X(k) is the equivalence relation generated by
direct R-equivalence. The set of R-equivalence classes on X(k) will be written as
X(k)/R. For points in X(k), R-equivalence is stronger than rational equivalence.

Assume further that the variety X is proper. Then there is a degree homomor-
phism: deg : CH0(X) → Z which maps the class [x] of a closed point x to the
degree of the field extension κ(x)/k. Denote by A0(X) the kernel of the degree
homomorphism. When a point x0 ∈ X(k) is fixed, there exists a well-defined map
X(k)/R −→ A0(X) ; x 7→ [x] − [x0]. Things become even more interesting if X is
a smooth compactification of an algebraic torus T (namely, X is smooth projective
and contains T as a dense open subset). In this case, the inclusion T → X induces
a natural map T (k)/R → X(k)/R. Let 1 denote the identity element of the group
T (k). We have a well-defined map

ϕ : T (k)/R −→ A0(X) ; t 7→ [t]− [1] .

The set T (k)/R inherits naturally a group structure. So we are interested in the
following questions: is ϕ a group homomorphism, and is it an isomorphism?

The main result to be discussed in this thesis is the following theorem, recently
proved by Merkurjev.

Main Theorem. Let T be an algebraic torus over a field k and let X be a smooth
compactification of T . If dimT ≤ 3, the map

ϕ : T (k)/R −→ A0(X) ; t 7→ [t]− [1]

is an isomorphism of groups.

In addition to the fundamental work by Colliot-Thélène and Sansuc [7] on the
R-equivalence on tori, results from the K-theory of toric models, worked out by
Merkurjev and Panin [24], have turned out to be probably the most important
ingredients in the proof of the main theorem. A little bit of the theory of Chow
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motives is also needed in at least the following contexts: morphisms of Chow mo-
tives induce natural isomorphisms CH0(X) ∼= CH0(X ′) and A0(X) ∼= A0(X ′) for
birationally equivalent smooth projective varieties X and X ′, this allows us to take
X any toric model of the torus T so that K-theory of toric models may be ap-
plied to derive useful information, and the point which makes it possible to prove
good results in this direction is that when X is a toric model the Chow motive of
X = X ×k k̄ splits, where k̄ is a separable closure of k.

According to a theorem by Colliot-Thélène and Sansuc, the group T (k)/R is
trivial whenever T is rational over k, and in that case A0(X) also vanishes because
it is birationally invariant for smooth projective varieties. It is known that tori of
dimension at most 2 are all rational. So the nontrivial case for the main theorem is
the 3-dimensional case.

Here we explain in a very rough idea how the K-theory, which seems to stand
far away from behind the statement of main theorem, has found an important role
to play in the proof. The starting point is the BGQ-spectral sequence

Epq
2 = Hp(X, K−q) =⇒ K−p−q(X)

which gives natural isomorphisms CHp(X) ∼= Ep,−p
2 , natural maps

K1(X)(1) −→ H1(X, K2) −→ CH3(X) , (1)

where Kp(X)(i) denotes the i-th term in the topological filtration of Kp(X), as well
as the edge homomorphism

g : CHd(X) −→ K0(X)

where d = dim X. The map g factors as

CHd(X)
η−→ K0(X)(d) −→ K0(X) (2)

where the map η takes the class of a closed point x to the class of the sheaf Ox in
K0(X). There is an isomorphism K0(X)(d) ∼= Z and the composition

CH0(X) = CHd(X)
η−→ K0(X)(d) ∼= Z

coincides with the degree map CH0(X) → Z. This is how the K-groups relate to
CH0(X) and A0(X).

We may also consider the BGQ-spectral sequence for X. Various objects at-
tached to X have natural action by the Galois group g = Gal(k̄/k). The g-modules
such as K0( X ), K1( X )(1) and H1( X , K2) are already well studied in [24]. In-
teresting things may happen in the 3-dimensional case because then the maps in
(1) and (2) can be joined together. The BGQ-spectral sequence for X yields an
isomorphism of g-modules

K0( X )(1/2) = K0( X )(1)/K0( X )(2) ∼= CH1( X ) .

Colliot-Thélène and Sansuc proved that the torus T has a flasque resolution

1 −→ S −→ P −→ T −→ 1

with Ŝ = CH1( X ), and there is a natural isomorphism of groups T (k)/R ∼=
H1(k, S). This finally provides opportunities for the K-groups to interact with
the group T (k)/R. Details of the above discussion and the proof of main theorem
occupy the major part of Chapter 4.

The organization of the thesis is as follows. The first two chapters introduce
the notions of rational equivalence and Chow groups. Chapter 1 focuses on basic
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constructions and prove some most important and useful results. In Chapter 2,
Chern classes are defined and used to give a nice description of rational equivalence
on vector bundles and projective bundles. Chapter 3 is aimed at a quick introduction
to Chow motives. Deep results will not be given proofs, but expositions on the
basic concepts are expected to be clear enough. As mentioned before, Chapter 4
deals with things we are mainly concerned with. We begin with reviews of basics
on algebraic tori and then introduce R-equivalence and flasque resolutions of tori.
After that we will be concentrated on things that are related to the main theorem
and fill in the details of the proof. Finally, as an application of main theorem, we
obtain a theorem that gives a way to compute the Chow group CH0(T ) for lower
dimensional tori, provided that the group T (k)/R is known. We will carry out
some calculations for concrete examples in the end of §4.8. As the attempt to give
a comprehensive exposition of higher algebraic K-theory is not necessary for us
and will get us totally lost, we will only give a brief survey on this subject in the
Appendix.

The central part of the thesis is motivated by Merkurjev’s recent paper [23].
For Chow groups and rational equivalence we follow Fulton’s book [11], and for
R-equivalence on tori we have referred to [7]. Quillen’s lecture [27] is the basic
reference for higher algebraic K-theory of schemes and Manin’s paper [21] is a main
source of our knowledge about motives.

3



CONTENTS

4



Chapter 1

Rational Equivalence and
Chow Groups

In this chapter we introduce basic constructions about the rational equivalence and
Chow groups. Almost all material in this chapter has its origin in Chapter 1 of
Fulton’s book [11], except for the last section; there we state a classical result on
zero-cycles and follow the proof given in [4].

1.1 Cycles and Rational Equivalence

1.1.1 The Order Function

Lemma 1.1.1. Let A be a 1-dimensional Noetherian domain, a ∈ A a nonzero
element with a /∈ A∗. Then A/(a) is an Artinian ring. In particular,

`A

(
A/(a)

)
= `A/(a)

(
A/(a)

)
< ∞ ,

where `A denotes the length of the A-module in parentheses.

Proof. We need to show for any prime ideal p of A/(a), ht p = 0. Let p be the prime
ideal of A corresponding to p. If ht p > 0, then there is a prime ideal q of A such
that p ⊃ q ⊇ (a) 6= 0. Since A is a domain, 0 is a prime ideal of A. Then the chain
p ⊃ q ⊃ 0 contradicts the hypothesis dimA = 1.

Let X be an integral scheme over a field k and V an integral subscheme of X
of codimension 1. The local ring A = OX, V is a 1-dimensional Noetherian domain.
The order of vanishing along V is the unique group homomorphism

ordV : k(X)∗ −→ Z

such that for all a ∈ A, a 6= 0,

ordV (a) = `A(A/(a)) .

Lemma 1.1.1 shows that ordV (a) is finite indeed. That this determines a well-
defined homomorphism is proved in [11, §§A.2–3]. For a fixed r ∈ k(X)∗, there
are only finitely many codimension 1 integral subschemes V with ordV (r) 6= 0 ([11,
B.4.3]).

If X is regular along V (for example this happens when X is normal), then
A = OX, V is a discrete valuation ring. Then any r ∈ k(X)∗ has the form r = utm

where u ∈ A∗, t is a generator of the maximal ideal of A, and m ∈ Z. In this case,
we have ordV (r) = m ([11, Example A.3.2]).
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CHAPTER 1. RATIONAL EQUIVALENCE AND CHOW GROUPS

Let X̃ → X be the normalization of X in its function field. Then for any
r ∈ k(X)∗ = k(X̃)∗, one has

ordV (r) =
∑

eV
ordeV (r)[k(Ṽ ) : k(V )]

where the sum is over all integral subschemes Ṽ of X̃ which map onto V ([11,
Example A.3.1]). The order function on normal integral schemes thus determines
the order function on arbitrary integral schemes.

For r ∈ A = OX, V , one has

ordV (r) ≥ min{n ∈ Z | r ∈ mn
X, V } .

The inequality is an equality if X is regular along V , but is strict if r ∈ mX, V and
X is singular along V ([11, Example 1.2.4]).

1.1.2 Rational Equivalence of Cycles

Let X be a scheme, d an integer ≥ 0. A d-cycle on X is a finite formal sum
∑

ni[Vi]
where the Vi are d-dimensional integral subschemes of X and ni ∈ Z. The group
of d-cycles, denoted Zd(X), is the free abelian group with basis the d-dimensional
integral subschemes of X.

For any (d + 1)-dimensional integral subschemes W of X, and any r ∈ k(W )∗,
define a d-cycle [div(r)] on X by

[div(r)] :=
∑

V

ordV (r)[V ] ,

the sum being over all codimension 1 integral subschemes V of W , here ordV is the
order function on k(W )∗ defined by the local ring OW, V .

A d-cycle α is called rationally equivalent to zero, written α
rat∼ 0, if there

are a finite number of (d + 1)-dimensional integral subschemes Wi of X and ri ∈
k(Wi)∗ such that α =

∑
[div(ri)]. Since [div(r−1)] = −[div(r)], the cycles rationally

equivalent to zero form a subgroup of Zd(X), which we denote by Ratd(X). The
Chow group CHd(X) of dimension d of X is defined to be the quotient group

CHd(X) := Zd(X)/Ratd(X) .

If X is purely dimensional, we put

Zd(X) := Zdim X−d(X) , and CHd(X) := CHdim X−d(X) .

Define
Z•(X) :=

⊕

d≥0

Zd(X) , and CH•(X) :=
⊕

d≥0

CHd(X) ,

and similarly if X is purely dimensional,

Z•(X) :=
⊕

d≥0

Zd(X) , and CH•(X) :=
⊕

d≥0

CHd(X) .

When we don’t care the gradings, we also write Z(X) (resp. CH(X)) for Z•(X) or
Z•(X) (resp. CH•(X) or CH•(X)). An element of Z(X) (resp. CH(X)) is called
a cycle (resp. cycle class) on X. A more classical definition of CH(X) will be
given in §1.2.3. A cycle is called positive if it is not zero and each of its coefficients
is nonnegative. A cycle class is positive if it can be represented by a positive cycle.

6



1.2. PROPER PUSH-FORWARD

A scheme X and its underlying reduced scheme Xred have the same integral
subschemes. So Zd(X) = Zd(Xred) and CHd(X) = CHd(Xred) for all d ≥ 0.

Let X1 and X2 be closed subschemes of X. Then for each d we have an exact
sequence

0 −→ Zd(X1 ∩X2)
ϕ−→ Zd(X1)⊕ Zd(X2)

ψ−→ Zd(X1 ∪X2) −→ 0

where the map ϕ is defined by α 7→ (α , α) and ψ is defined by ψ(α , β) = α−β. The
restriction of ψ gives a homomorphism ψ̃ : Ratd(X1)⊕Ratd(X2) −→ Ratd(X1∪X2)
which is again surjective. Moreover, as subgroups of Zd(X1)⊕ Zd(X2),

Ratd(X1 ∪X2) ⊆ Ker ψ̃ ⊆ Ker ψ = Zd(X1 ∩X2) .

Thus we have the following commutative diagram

0 // Ker ψ̃

²²

// Ratd(X1)⊕ Ratd(X2)

²²

eψ // Ratd(X1 ∪X2)

²²

// 0

0 // Zd(X1 ∩X2) // Zd(X1)⊕ Zd(X2)
ψ // Zd(X1 ∪X2) // 0

with exact rows. This yields by snake lemma an exact sequence

0 −→ Zd(X1 ∩X2)/Ker ψ̃ −→ CHd(X1)⊕ CHd(X2) −→ CHd(X1 ∪X2) −→ 0 .

Since Ratd(X1 ∩X2) ⊆ Ker ϕ̃, there is a natural surjection

CHd(X1 ∩X2) → Zd(X1 ∩X2)/Ker ψ̃

whence an exact sequence

CHd(X1 ∩X2) −→ CHd(X1)⊕ CHd(X2) −→ CHd(X1 ∪X2) −→ 0 .

If X is a disjoint union of subschemes X1 , . . . , Xm, then for any d ≥ 0, one has

Zd(X) =
m⊕

i=1

Zd(Xi) , Ratd(X) =
m⊕

i=1

Ratd(Xi)

and hence CHd(X) = ⊕m
i=1CHd(Xi).

Suppose the scheme X has dimension n. Then Zn(X) = CHn(X) is the free
abelian group on the n-dimensional irreducible components of X. So if V is an
n-dimensional irreducible component, then the coefficient at [V ] of any cycle on
X only depends on the cycle class. This holds more generally for any irreducible
component V of X, in other words, for any two cycles α and β on X, if α

rat∼ β,
then α and β have the same coefficient at [V ]. Indeed, an irreducible component of
X cannot be contained in any higher dimensional integral subscheme. So a cycle of
the form [div(r)], with r ∈ k(W )∗ for some integral subscheme W , cannot include
[V ]. Thus, for any cycle class α ∈ CH(X) and any irreducible component V of X,
we can define the coefficient of V in α to be the coefficient of [V ] in any cycle
representing α.

1.2 Proper Push-forward

1.2.1 Push-forward of Cycles

Let f : X → Y be a proper morphism of schemes. For any integral subscheme V of
X, the reduced subscheme on the image W = f(V ) is then an integral subscheme

7



CHAPTER 1. RATIONAL EQUIVALENCE AND CHOW GROUPS

of Y . There is an induced embedding of function fields k(W ) → k(V ), which is a
finite extension if W has the same dimension as V . Set

deg(V/W ) =

{
[k(V ) : k(W )] if dimV = dim W

0 if dimW < dimV .

Define f∗[V ] = deg(V/W )[W ], and extend it by linearity to a push-forward ho-
momorphism f∗ : Zd(X) → Zd(Y ). If g : Y → Z is another proper morphism, then
(g ◦ f)∗ = g∗ ◦ f∗.

Theorem 1.2.1. Let f : X → Y be a proper morphism and α a d-cycle on X. If
α

rat∼ 0 on X, then f∗α
rat∼ 0 on Y . Therefore, there is an induced homomorphism

f∗ : CHd(X) → CHd(Y ).

Proof. We may assume α = [div(r)], where r is a rational function on an integral
subscheme W of X. Replacing X by W and Y by f(W ), we may assume X and Y
are integral and f is surjective. Then the result follows from the next more explicit
proposition.

Proposition 1.2.2. Let f : X → Y be a proper surjective morphism of integral
schemes. Then for any r ∈ k(X)∗, one has

f∗[div(r)] =

{
0 if dimY < dimX

[div(Nk(X)/k(Y )(r))] if dimY = dim X

here when dimY = dim X, Nk(X)/k(Y ) denotes the norm map corresponding to the
field extension k(X)/k(Y ).

Proof. See [11, Prop. 1.4].

Let Y1 , . . . , Yn be closed subschemes of a scheme X. Given αi ∈ CH(Yi), i =
1 , . . . , n and β ∈ CH(X), we will usually write “β =

∑n
i=1 αi in CH(X)” in place of

the precise equation β =
∑n

i=1 ϕi∗(αi) where ϕi : Yi → X is the natural inclusion.

Definition 1.2.3. Let X be a proper scheme over a field k. The degree of a 0-cycle
α =

∑
P nP [P ] on X, denoted deg(α) or

∫
X

α, is defined by

deg(α) =
∫

X

α =
∑

P

nP [κ(P ) : k]

where κ(P ) is the residue field of P .

In the above definition, if p : X → S := Spec k is the structure morphism and if
we identify Z0[S] = Z · [S] with Z, then deg(α) = p∗(α) is in fact the push-forward
of α by p. On S a cycle is rationally equivalent to 0 if and only if it is equal to 0.
By Thm 1.2.1, there is an induced homomorphism

deg =
∫

X

: CH0(X) −→ Z = CH0(S) .

The kernel of the degree map deg : CH0(X) −→ Z will be denoted A0(X).
We can extend the degree homomorphism to the whole of CH•(X), by putting∫

X
α = 0 if α ∈ CHd(X) , d > 0. If f : X → Y is a morphism between proper

schemes, then for any α ∈ CH•(X), we have
∫

X
α =

∫
Y

f∗(α) since pX = pY ◦ f .
We often write simply

∫
in place of

∫
X

when no confusion seems likely to result.
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1.2. PROPER PUSH-FORWARD

Examples 1.2.4. (1) Let X be an integral variety which is regular in codimension
1 (this means OX, V is regular for every integral subscheme V of codimension 1). Let
n = dim X. Then CHn−1(X) is isomorphic to the group of isomorphism classes of
invertible sheaves on X. For affine and projective spaces, we have CHn−1(An) = 0
and CHn−1(Pn) = Z ([16, §II.6]).

(2) Let X be a connected smooth projective curve of genus g over an algebraically
closed field k. Then A0(X) can be made into an abelian variety of dimension g.
For example, when g = 1, X is a so-called elliptic curve and if O is a fixed rational
point of X, we have an isomorphism X(k) → A0(X); P 7→ [P ]− [O].

1.2.2 Cycles of Subschemes

Let X be a scheme and let X1 , . . . , Xt be the irreducible components of X. The
local rings OX, Xi

are all Artinian rings. The number mi := `OX, Xi
(OX, Xi

) is called
the geometric multiplicity of Xi in X. The (fundamental) cycle [X] of X is
defined to be the cycle

[X] :=
t∑

i=1

mi[Xi] .

This is regarded as an element in Z(X), but by abuse of notation, we also write
[X] for its image in CH(X). If X is purely d-dimensional, i.e., dimXi = d for all i,
then [X] ∈ Zd(X). In this case, Zd(X) = CHd(X) is the free abelian group on the
basis [X1] , . . . , [Xt].

If X is a subscheme of a scheme Y , then Z(X) ⊆ Z(Y ), and we write [X] also
for the image of [X] in Z(Y ) and for its image in CH(Y ).

Example 1.2.5. Let V be an integral scheme of dimension d+1, and let f : V → P1

be a dominant morphism. Let 0 = (1 : 0), ∞ = (0 : 1) be respectively the zero
and infinite points of P1. Assume they are both in the image of f . The inverse
image schemes f−1(0) and f−1(∞) are purely d-dimensional subschemes of V , and
[f−1(0)] − [f−1(∞)] is equal to the cycle [div(f)] defined in §1.1.1, where f also
denotes the rational function in k(V ) determined by the morphism f .

Here and hereafter, when we write f−1(P ) for a dominant morphism f : V → P1

and a point P ∈ P1, we will always assume this fibre is nonempty.

1.2.3 Alternative Definition of Rational Equivalence

Let X be a scheme and let p : X×P1 → X be the first projection. Let V be a (d+1)-
dimensional integral subscheme of X × P1 such that the second projection induces
a dominant morphism f from V to P1. For any rational point P of P1, the scheme-
theoretic fibre f−1(P ) is a subscheme of X × {P }, which p maps isomorphically
onto a subscheme of X; we denote this subscheme by V (P ). Note in particular that

p∗[f−1(P )] = [V (P )] in Zd(X) .

The morphism f : V → P1 determines a rational function f ∈ k(V )∗. We have
already seen that

[f−1(0)]− [f−1(∞)] = [div(f)] ,

where 0 = (1 : 0) and ∞ = (0 : 1) are the zero and infinite points of P1. Therefore,

p∗[div(f)] = [V (0)]− [V (∞)] ,

which is rationally equivalent to 0 on X by Thm. 1.2.1.

9
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Proposition 1.2.6. Let X be a scheme, α ∈ Zd(X). The following conditions are
equivalent:

(i) α
rat∼ 0 ;

(ii) there are (d + 1)-dimensional integral subschemes V1 , . . . , Vt of X ×P1 such
that the projections from Vi to P1 are dominant, with α =

∑t
i=1([Vi(0)]− [Vi(∞)])

in Zd(X) ;
(iii) there are finitely many normal integral schemes Vi with rational functions fi

on Vi determined by some dominant morphisms fi : Vi → P1, and proper morphisms
pi : Vi → X such that α =

∑
pi∗[div(fi)].

Proof. (iii)⇒(i). This follows from Thm. 1.2.1.
(ii)⇒(iii). Let πi : Ṽi → Vi be the normalization of Vi. It gives by composite

with the projection Vi → P1 the morphism fi : Vi → P1; and by composite with the
projection Vi → X the morphism pi : Ṽi → X. Then we have α =

∑
pi∗[div(fi)].

(i)⇒(ii) We may assume α = [div(r)], where r is a rational function on a (d+1)-
dimensional integral subscheme W of X. Then r defines a rational map W 99K P1.
Let V be the graph of this rational map. It is an integral subscheme of X×P1 which
the projection p : X×P1 → X maps birationally and properly onto W . Let f be the
induced morphism from V to P1. Then by Prop. 1.2.2, we get [div(r)] = p∗[div(f)].
The latter is equal to [V (0)]− [V (∞)] as was seen in the preceding argument.

We say a cycle Z =
∑

ni[Vi] on X × P1 projects dominantly to P1 if each
Vi which appears with nonzero coefficient in Z projects dominantly to P1. In this
case, we set

Z(0) :=
∑

ni[Vi(0)] , Z(∞) :=
∑

ni[Vi(∞)] .

Proposition 1.2.7. Two d-cycles α , α′ on a scheme X are rationally equivalent if
and only if there is a positive (d + 1)-cycle Z on X × P1 projecting dominantly to
P1, and a positive d-cycle β on X such that

Z(0) = α + β and Z(∞) = α′ + β .

Proof. The “if” part is obvious from Prop. 1.2.6. For the “only if” part, using
Prop. 1.2.6, we can find some positive (d + 1)-cycle Z ′ on X × P1 projecting domi-
nantly to P1 such that α−α′ = Z ′(0)−Z ′(∞). Choose a positive d-cycle β so that
γ := α− Z ′(0) + β is positive. Write γ =

∑
ni[Vi] and set Z = Z ′ +

∑
ni[Vi × P1].

Then we have

Z(0) = Z ′(0) + γ = α + β and Z(∞) = Z ′(∞) + γ = α′ + β .

This finishes the proof.

1.3 Flat Pull-back

1.3.1 Pull-back of Cycles

We say a morphism f : X → Y has relative dimension n if for all integral
subschemes V of Y , the inverse image scheme f−1(V ) = X ×Y V is purely of
dimension dimV + n.

Proposition 1.3.1. Let f : X → Y be a flat morphism of algebraic schemes with
Y irreducible and X purely of dimension dimY +n. Then f has relative dimension
n, and all base extensions X ×Y Y ′ → Y ′ have relative dimension n.

Proof. See [16, Coro. III.9.6] or [14, IV.14.2].
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1.3. FLAT PULL-BACK

In what follows, a flat morphism is always assumed to have some relative di-
mension.

The following are important examples of flat morphisms having relative dimen-
sion:

(1) An open immersion is flat of relative dimension n = 0.
(2) Let E be an affine bundle (cf. §1.4) of rank n, or a projective bundle (cf.

§2.1) of rank n + 1 over a scheme X. Then the natural projection p : E → X is flat
of relative dimension n.

(3) If Z is a purely n-dimensional scheme, then for any scheme Y , the first
projection Y × Z → Y is flat of relative dimension n.

(4) Any dominant morphism from an (n + 1)-dimensional integral scheme to a
smooth 1-dimensional connected scheme is flat of relative dimension n.

(5) If f : X → Y and g : Y → Z are flat morphisms of relative dimensions m
and n, then g ◦ f : X → Z is flat of relative dimension m + n.

Now let f : X → Y be a flat morphism of relative dimension n. For any integral
subscheme V of Y , set

f∗[V ] = [f−1(V )] .

Here f−1(V ) is the inverse image scheme, a subscheme of X, of pure dimension
dimV + n, and [f−1(V )] is its cycle as defined in §1.2.2. This extends by linearity
to pull-back homomorphisms

f∗ : Zd(Y ) −→ Zd+n(X) .

Lemma 1.3.2. Let f : X → Y be a flat morphism of some relative dimension, then
for any closed subscheme Z of Y ,

f∗[Z] = [f−1(Z)] .

Proof. See [11, p.18, Lemma 1.7.1].

It follows from the above lemma that if f : X → Y and g : Y → Z are flat
morphisms (having relative dimensions), then (g ◦ f)∗ = f∗ ◦ g∗. For if V is an
integral subscheme of Z, then

(g ◦ f)∗[V ] = [f−1(g−1(V ))] = f∗[g−1(V )] = f∗g∗[V ] .

Proposition 1.3.3. Let

X ′ f ′−−−−→ Y ′

g′
y

yg

X
f−−−−→ Y

be a fibre square with f flat of relative dimension n and g proper. Then f ′ is flat
of relative dimension n, g′ is proper, and for all α ∈ Z(Y ′), one has

g′∗f
′∗α = f∗g∗α in Z(X) .

Proof. See [11, p.18, Prop. 1.7].

Theorem 1.3.4. Let f : X → Y be a flat morphism of relative dimension n, and
α ∈ Zd(Y ). If α

rat∼ 0 on Y , then f∗α rat∼ 0 on X. There are therefore induced
homomorphisms for all d ≥ 0,

f∗ : CHd(Y ) −→ CHd+n(X) .

11
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Proof. By Prop. 1.2.6, we may assume α = [V (0)]− [V (∞)], where V is a (d + 1)-
dimensional integral subscheme of Y × P1 for which the projection g : V → P1

is dominant, hence flat of relative dimension d. Let W = (f × Id)−1(V ), a closed
subscheme of X×P1, and let h : W → P1 be the morphism induced by the projection
to P1. Let p : X × P1 → X and q : Y × P1 → Y be the projections. Then we have

α = [V (0)]− [V (∞)] = q∗[div(g)]

and by Prop. 1.3.3,

f∗α = f∗q∗
(
[g−1(0)]− [g−1(∞)]

)
= p∗(f × Id)∗

(
[g−1(0)]− [g−1(∞)]

)
.

The last term equals p∗([h−1(0)]−[h−1(∞)]) by Lemma 1.3.2, in view of h = g◦(f×
Id). Note that f × Id is flat, so it is also an open map, then we have h is dominant
since g is. Let W1 , . . . , Wt be the irreducible components of W , hi the restriction
of h to Wi. Then every hi is dominant. (It is a general fact that if f : X → Y
is a flat morphism of algebraic schemes with Y irreducible, then every irreducible
component of X dominates Y .) We then get [h−1

i (0)]− [h−1
i (∞)] = [div(hi)]. Write

[W ] =
∑

mi[Wi]. Since p∗ preserves rational equivalence, it suffices to verify that
[h−1(P )] =

∑
mi[h−1

i (P )] for P = 0 and P = ∞. This is a special case of the
following general lemma.

Lemma 1.3.5. Let X be a purely n-dimensional scheme, with irreducible compo-
nents X1 , . . . , Xr, and geometric multiplicities m1 , . . . , mr. Let D be an effective
Cartier divisor (cf.§2.2.1 ) on X, i.e., a closed subscheme of X whose ideal sheaf is
locally generated by one non-zero-divisor. Let Di = D ∩Xi be the restriction of D
to Xi, then

[D] =
r∑

i=1

mi[Di] in Zn−1(X) .

Proof. See [11, p.19, Lemma 1.7.2].

1.3.2 An Exact Sequence

Proposition 1.3.6. Let Y be a closed subscheme of a scheme X, and let U = X\Y .
Let i : Y → X , j : U → X be the natural inclusions. Then the sequence

CHd(Y ) i∗−→ CHd(X)
j∗−→ CHd(U) −→ 0

is exact for all d.

Proof. Since any integral subscheme V of U extends to an integral subscheme V of
X, the sequence

0 −→ Zd(Y ) i∗−→ Zd(X)
j∗−→ Zd(U) −→ 0

is exact. If W is an integral subscheme of U of dimension d+1 and r ∈ k(W )∗, then
r also gives a rational function r on W since k(W ) = k(W ). We have j∗[div(r)] =
[div(r)] in Zd(U). Therefore, the restriction of j∗ gives a surjective homomorphism
j̃∗ : Ratd(X) → Ratd(U). Then we obtain the following commutative diagram with
exact rows:

0 // Ker j̃∗

²²

// Ratd(X)

²²

ej∗ // Ratd(U)

²²

// 0

0 // Zd(Y ) // Zd(X)
j∗ // Zd(U) // 0
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which yields an exact sequence

0 −→ Zd(Y )/Ker j̃∗ −→ CHd(X) −→ CHd(U) −→ 0 .

Clearly, Ratd(Y ) ⊆ Ker j̃∗, so we have a natural surjection CHd(Y ) → Zd(Y )/Ker j̃∗

whence the exact sequence

CHd(Y ) i∗−→ CHd(X)
j∗−→ CHd(U) −→ 0 .

This completes the proof.

1.4 Affine Bundles

A scheme E together with a morphism p : E → X is called an affine bundle
of rank n over X if X has an open covering {Uλ } together with isomorphisms
p−1(Uλ) ∼= Uλ×An such that p restricted to p−1(Uλ) corresponds to the projection
from Uλ × An to Uλ.

Proposition 1.4.1. Let p : E → X be an affine bundle of rank n over a scheme
X. Then the flat pull-back p∗ : CHd(X) → CHd+n(E) is surjective for all d.

Proof. Choose a closed subscheme Y of X such that U := X\Y is an affine open set
over which E is trivial (i.e. p−1(U) ∼= U × An). There is a commutative diagram

CHd(Y )

p∗

²²

// CHd(X)

p∗

²²

// CHd(U)

p∗

²²

// 0

CHd(p−1(Y )) // CHd(E) // CHd(p−1(U)) // 0

where the vertical maps are flat pull-backs and the rows are exact by Prop. 1.3.6.
By a diagram chase, it suffices to prove the assertion for the restriction of E to U
and to Y . By virtue of Noetherian induction, it suffices to prove it for X = U .
Thus we may assume X is affine and E = X × An. The projection factors as

X × An −→ X × An−1 −→ X ,

so we may assume n = 1.
We want to show that [V ] is in p∗CHd(X) for any (d + 1)-dimensional integral

subscheme V of E. We may replace X by the closure p(V ), and E by p−1( p(V ) ).
So we may assume X is integral and p maps V dominantly to X. Let A be the
coordinate ring of X, then the function field K := k(X) is the field of fractions
of A. Let q be the prime ideal in A[t] that defines V in E = Spec A[t]. Note
that dimX ≤ dimV ≤ dimE = dimX + 1. Hence dim X = dimV = d + 1 or
dimX = dimV − 1 = d. If dim X = d, then dimV = dimE, so V = E and
[V ] = p∗[X]. So we need only consider the case dim X = d + 1.

Since V → X is dominant, the ring homomorphism A → A[t]/q is injective.
This means S := A \ { 0 } has no intersection with q. Thus S−1q = qK[t] is a
prime ideal of S−1A[t] = K[t]. Now V 6= E implies q 6= 0. So qK[t] has a nonzero
generator r and we may assume r ∈ A[t].

Now we claim that
[V ]− [div(r)] =

∑
ni[Vi]

for some (d + 1)-dimensional integral subschemes Vi of E whose projections to X
are not dominant.

Indeed, [div(r)] is a Z-linear combination of [Vi] for some (d + 1)-dimensional
integral subschemes Vi of E. These integral subschemes are defined by some pi ∈

13
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Spec A[t] with ht pi = 1. The coefficient of [Vi] in [div(r)] is `A[t]pi
(A[t]pi

/(r)).
Since rK[t] = qK[t], we get

r ∈ (rK[t]) ∩A[t] = (qK[t]) ∩A[t] = q

and thus rA[t]q ⊆ qA[t]q. For any q
f ∈ qA[t]q, q ∈ q, f ∈ A[t] \ q, we can write

q = r · g
α with g ∈ A[t] , α ∈ S = A \ { 0 }. Since q∩ S = ∅, we have αf /∈ q showing

q
f = rg

αf ∈ rA[t]q. So we see rA[t]q = qA[t]q is the maximal ideal of A[t]q. This
implies

`A[t]q (A[t]q/(r)) = 1 .

In other words, the coefficient of [V ] in [div(r)] is equal to 1. Write [V ]− [div(r)] =∑
ni[Vi] with Vi integral subschemes of dimension d+1 and ni 6= 0. We need prove

p : Vi → X is not dominant. This is equivalent to saying that pi ∩ A 6= 0, where
pi ∈ Spec A[t] is the prime ideal defining Vi in E. The coefficient ni 6= 0 means
r ∈ pi, hence

qK[t] = rK[t] ⊆ piK[t] .

If pi∩A = 0, we would get (piK[t])∩A[t] = pi which implies q = (qK[t])∩A[t] ⊆ pi.
But this is absurd for pi 6= q since ht pi = ht q = 1. This proves our claim.

The subscheme Wi := p(Vi) is defined by the ideal Pi := pi ∩ A ∈ Spec A, and
p−1(Wi) is defined by the ideal PiA[t]. Since A[t]/PiA[t] ∼= (A/Pi)[t] is an integral
domain, PiA[t] is a prime ideal of A[t]. Now 0 6= PiA[t] ⊆ pi. It follows from the
fact ht pi = 1 that PiA[t] = pi. Hence Vi = p−1(Wi) so that

[V ] = [div(r)] +
∑

nip
∗[Wi]

as desired. The proposition is thus proved.

Remark 1.4.2. In the above proof, we can even prove p(Vi) is closed itself. Indeed,
if P ′ is a prime ideal of A containing Pi = pi∩A, then P ′A[t] is a prime ideal of A[t]
such that P ′A[t] ∩ A = P ′. We have seen that PiA[t] = pi. So P ′A[t] ⊇ pi. This
means P ′A[t] is an element of Vi which projects to P ′ ∈ X. So we get p(Vi) = p(Vi).

Remark 1.4.3. We will see that if E is a vector bundle over X, p∗ is in fact an
isomorphism (cf. Thm. 2.4.5).

Corollary 1.4.4. We have CHn(An) = Z and CHd(An) = 0 for 0 ≤ d < n.

Proof. The first assertion is clear. For the second, we may use Prop. 1.4.1 to reduce
to the case d = 0. So we need only to show CH0(An) = 0 for n ≥ 1. For n = 1, we
know that CH0(A1) = 0. Assume n ≥ 2. Given any closed point P ∈ An, we can
find in An a line L ∼= A1 passing through P . Using CH0(L) = CH0(A1) = 0, we
can find a function f ∈ k(L) such that [div(f)] = [P ]. This means every point on
An is rationally equivalent to 0, whence CH0(An) = 0.

Example 1.4.5. Let X be a scheme with a “cellular decomposition”, i.e., X admits
a filtration X = Xn ⊇ Xn−1 ⊇ · · · ⊇ X0 ⊇ X−1 = ∅ by closed subschemes with
each Xi \ Xi−1 a finite disjoint union of schemes Uij isomorphic to affine spaces
Anij . Then CH•(X) is finitely generated by { [Vij ] }, where Vij is the closure of Uij

in X.
This can be seen from the exact sequences

CH•(Xi−1) −→ CH•(Xi) −→ CH•
(∐

Uij

)
=

⊕
Z·[Uij ] −→ 0 , for i = 1 , . . . , n

and by induction on i.
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Example 1.4.6. Let Ld be a d-dimensional linear subspace of Pn, d = 0 , 1 . . . , n.
Then CHd(Pn) = Z · [Ld] = Z.

Indeed, applying Prop. 1.3.6 with X = Pn, Y = Ln−1 , U = An, we have exact
sequences

CHd(Y ) −→ CHd(X) −→ CHd(An) −→ 0 , for d = n , n− 1 , . . . , 0 .

By induction on d and using Coro. 1.4.4, we see that CHd(Pn) is generated by [Ld].
For d = n, we have CHn(Pn) = Z · [Pn]. For d = n − 1, we already know

CHn−1(Pn) = Z · [Ln−1] ([16, Prop. II.6.4]). Now assume d < n − 1. Suppose
there is an m ≥ 0 such that m[Ld] =

∑
ni[div(ri)], ri ∈ k(Vi)∗ for some (d + 1)-

dimensional integral subschemes Vi. Let Z be the union of all the Vi, we can find a
(n−d−2)-dimensional linear subspace H which is disjoint with Z. Let f : Z → Pd+1

be the projection from H. Apply Thm. 1.2.1 to f and use CHd(Pd+1) = Z[Ld]),
then we see m = 0. This shows CHd(Pn) = Z[Ld] in general.

Example 1.4.7. Let H be a hypersurface of degree m in Pn. Then [H] = m[L]
with L a hyperplane. So it follows from Prop. 1.3.6 that CHn−1(Pn \H) = Z/mZ.

1.5 A Useful Result on Zero-Cycles

Included here is a classical result on zero-cycles, which has been used in several
articles and will also be useful later in this thesis. The proof of this result, however,
seems rarely given explicitly in the literature except for [4]. Our proof below follows
the one given in the last paragraph of [4, §3], with only a few minor modifications.

Proposition 1.5.1. Let V be an integral regular k-variety and let U be a nonempty
open subset of V . Suppose one of the following two conditions is verified:

(i) the field k is perfect;
or
(ii) V is quasi-projective.
Then every zero-cycle on V is rationally equivalent to a zero-cycle with support

in U .

Proof. Let Z = V \ U . It suffices to prove the result for a closed point x ∈ Z.
Let d = dim V . In the regular local ring OV, x, there exists an element g 6= 0
which defines locally a closed subset containing Z. We can find a chain of regular
parameters f1, . . . , fd−1, i.e., a subset of a system of generators of the maximal ideal
mx of OV, x, such that the image of g in the regular local ring OV, x/(f1, . . . , fd−1)
is nonzero. Writing out the equations locally defining the point x and taking the
scheme-theoretic closure in V , we obtain a regular integral curve C which is closed
in V , such that C is regular at x and Z does not contain C. Let D → C be the
normalization of C. There is a point y on D on a neighborhood of y the natural
morphism D → C is an isomorphism sending y to x. Let π : D → V be the
composition D → C → V and let Z1 = π−1(Z). This is a proper closed subset of
D. So Z1 consists of finitely many closed points.

In case (i), D is smooth and is an open subset of a smooth complete integral
curve D. Then D is quasi-projective since D is projective. In case (ii), the curve
C is quasi-projective and hence D also. So in both cases, D is a quasi-projective
integral curve. Thus, there is an affine open subset of D containing Z1. Let A be
the semi-local ring at the points in Z1 of such an affine open set. It is a semi-local
Dedekind domain, hence is a PID. It then follows easily that there is a function
f ∈ A that has a simple zero at y ∈ Z1 and takes a nonzero value at any other
point in Z1 different from y. Hence y is rationally equivalent to a zero-cycle on D
that has support in D \ Z1. The natural map π∗ : Z0(D) → Z0(V ) induced by the

15



CHAPTER 1. RATIONAL EQUIVALENCE AND CHOW GROUPS

proper morphism π : D → V respects rational equivalence. Hence, x = π∗(y) is
rationally equivalent to a zero-cycle whose support is contained in U .
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Chapter 2

Chern Classes of Vector
Bundles

The most typical examples for which the rational equivalence may be nicely de-
scribed are the cases of vector bundles and projective bundles. This description is
only one of the numerous applications of Chern classes.

Material in this chapter is mostly extracted from Chapters 2 and 3 of [11].

2.1 Vector Bundles and Projective Bundles

A vector bundle E of rank r on a scheme X is a scheme E equipped with a
morphism π : E → X together with an open covering {Ui } of X and isomorphisms
ϕi : π−1(Ui)

∼−→ Ui×Ar over Ui, satisfying the following property: on each nonempty
intersection Ui ∩ Uj the morphism

ϕi ◦ ϕ−1
j : (Ui ∩ Uj)× Ar −→ (Ui ∩ Uj)× Ar

is given by (x, y) 7→ (x, gij(x)y), where gij is a morphism from Ui ∩ Uj to the
general linear group (cf. §4.1.2) GLr (over the same base as X). We call the gij

transition functions of the vector bundle E. These transition functions satisfy
gii = Id, gji = g−1

ij and gijgjl = gij for all indices i, j, l. An isomorphism
f : (E, π, {Ui }, {ϕi }) → (E′, π′, {U ′

j }, {ϕ′j }) of vector bundles of the same
rank is an isomorphism f : E → E′ of schemes such that π = π′ ◦ f , and such that
(E, π, {Ui, U ′

j }, {ϕi, ϕ′j ◦ f }) is also a vector bundle. An open covering together
with a collection of transition functions determines a vector bundle, unique up to
unique isomorphism.

Let E be a vector bundle on X. A section of E is a morphism s : X → E
such that π ◦ s = Id. If E is determined by transition functions gij , a section of E
is determined by a collection of morphisms si : Ui → Ar such that si = gijsj on
Ui ∩Uj for all i, j. The zero scheme of a section s of E, denoted Z(s), is defined
as follows. On each Ui, let si : Ui → Ar be given by si = (si1 , . . . , sir) with each
sim ∈ Γ(Ui , OX); then Z(s) is defined in Ui by the ideal generated by si1 , . . . , sir.
For x ∈ X, we say the section s vanishes at x if x ∈ Z(s).

Let Γ(E/X) be the set of sections of E over X. For each open set U of X, the
restriction of E to U is the vector bundle π−1(U) → U over U . The assignment
U 7→ Γ(π−1(U)/U) defines a sheaf E of sets on X, called the sheaf of sections
of E. It turns out that E has a structure of OX -module and is locally free of rank
r. Conversely, a locally free sheaf E (of finite constant rank) comes from a vector
bundle E, which is unique up to isomorphism. This may be seen by using transition
functions. For any affine open set U of X with coordinate ring A, π−1(U) is an
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affine open set of E, whose coordinate ring is the symmetric algebra SymAΓ(U, E ∨),
where E ∨ := H om(E , OX) is the dual sheaf of E .

Some basic operations are defined for vector bundles compatibly with the corre-
sponding notion for sheaves. For example, if E and F are two vector bundles on X
with sheaves of sections E ,F respectively, then the direct sum E⊕F , the tensor
product E ⊗ F and the dual bundle E∨ are respectively the vector bundles with
sheaves of sections E ⊕F , E ⊗F and E ∨. The trivial vector bundle of rank r
is just X × Ar, whose sheaf of sections is O⊕r

X . A line bundle a vector bundle of
rank 1. The trivial line bundle on X is often denoted simply by 1.

Let E and F be vector bundles over X, with sheaves of sections E and F
respectively. A morphism E → F as schemes over X corresponds to a morphism of
OX -modules E → F . A sequence of morphisms of schemes over X

· · · −→ Ei+1 −→ Ei −→ · · ·

with each Ei a vector bundle on X with sheaf of sections Ei, is called exact if the
corresponding sequence of sheaves

· · · −→ Ei+1 −→ Ei −→ · · ·

is exact.
Let B be a quasi-coherent OX -algebra. Then there is a scheme Y over X, unique

up to a unique isomorphism over X, such that π∗OY = B, where π : Y → X is
the structural morphism. This scheme is often denoted by SpecB, motivated by
the following property: for each affine open subset U of X, there is an isomorphism
ϕU : π−1(U) ∼−→ Spec Γ(U, B) over U such that if V ⊆ U is another affine open
set, the following diagram with natural morphisms

π−1(V )
ϕV−−−−→ Spec Γ(V, B)y

y
π−1(U)

ϕU−−−−→ Spec Γ(U, B)

commutes (cf. [14, II.1.3.1]). The structural morphism π : SpecB → X is clearly
an affine morphism.

Let S =
⊕

n≥0 Sn be a quasi-coherent graded OX -algebra, such that S0 = OX

and S is locally generated by S1 as an OX -algebra. On the one hand, we have
the notion of the spectrum of S over X, i.e. the scheme C := SpecS , which is
called the cone of the graded OX -algebra S . On the other hand, there is a scheme
ProjS over X, unique up to a unique isomorphism over X, called the projective
cone of S , with the following property: for each affine open subset U of X, there
is an isomorphism ηU : p−1(U) ∼−→ Proj Γ(U, S ) over U such that if V ⊆ U is
another affine open subset, the following diagram with natural morphisms

p−1(V )
ηV−−−−→ Proj Γ(V, S )y

y
p−1(U)

ηU−−−−→ Proj Γ(U, S )

commutes (cf. [14, II.3.1.2]). This ProjS is also called the projective cone
of C = SpecS , and denoted P(C) := ProjS . The structural morphism p :
P(C) → X is proper. On P(C) there is a canonical line bundle often denoted
OC(1). If X = Spec A is affine, then S is determined by a graded A-algebra S
which is generated by S1. If S1 is generated by a finite number of elements, then
S ∼= A[x0 , . . . , xn]/I for some homogeneous ideal I of a polynomial ring over A. In
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this case, P(C) is the closed subscheme of X × Pn defined by I, and OC(1) is the
pull-back of the standard line bundle on Pn by the natural projection.

If S → S ′ is a surjective graded homomorphism of graded OX -algebras with
the above properties, and if C = SpecS , C ′ = SpecS ′, then there are closed
immersion C ′ → C and P(C ′) → P(C) such that OC(1) restricts to OC′(1). In
particular, the natural map S → OX , which vanishes on Sn for all n > 0 and is
the identity of OX on S0, determines a closed immersion X → C which is also a
section of the structural morphism π : C → X, called the zero section of C.

A vector bundle E on X is the cone associated to the symmetric algebra SymE ∨,
where E is the sheaf of sections of E. The projective bundle of E is defined to be
the projective cone P(E) = Proj(SymE ∨) of E. The direct sum E ⊕ 1 of E with
a trivial line bundle has sheaf of sections E ⊕ OX . We have

Sym(E ∨ ⊕ OX) = Sym(E ∨)⊗OX
SymOX = Sym(E ∨)⊗OX

OX [T ]

as graded OX -algebras, where T is an indeterminate, and the degree n component
of (SymE ∨)⊗OX

OX [T ] is

(
Sym(E ∨)⊗OX

OX [T ]
)
n

=
n⊕

i=0

Symi(E ∨)⊗ Tn−i .

The natural projection E ∨ ⊕ OX → E ∨ induces a surjection Sym(E ∨ ⊕ OX) →
Sym(E ∨) and hence determines a closed immersion i : P(E) → P(E⊕1). With this
embedding, P(E) is called the hyperplane at infinity in P(E ⊕ 1). Furthermore,
there is a canonical open immersion j : E → P(E⊕1) which induces an isomorphism
from E to the complement of P(E) in P(E⊕ 1). We say P(E⊕1) is the projective
completion of E.

2.2 Divisors and Pseudo-divisors

2.2.1 Cartier Divisors and Weil Divisors

Let X be a scheme. For each open set U of X, let S(U) denote the set of elements
of Γ(U, OX) which are not zero divisors in each local ring OX, x for x ∈ U . Then
the rings S(U)−1Γ(U, OX) form a presheaf, whose associated sheaf of rings KX we
call the sheaf of total quotient rings of OX . We denote by K ∗

X the sheaf (of
multiplicative groups) of invertible elements in KX , and O∗

X the sheaf of invertible
elements in OX .

A Cartier divisor D on X is a global section of the sheaf K ∗
X/O∗

X , it is
determined by a collection of affine open sets Ui, which cover X, and elements
fi ∈ Γ(Ui, K ∗

X) such that fi/fj ∈ Γ(Ui ∩ Uj , O∗
X) for all i, j. These fi are called

local equations for D. We will write the group of Cartier divisors on X as

Div(X) := Γ(X, K ∗
X/O∗

X)

and write its group law additively.
A Cartier divisor is said to be principal if it is in the image of the natural map

Γ(X, K ∗
X) −→ Γ(X, K ∗

X/O∗
X) = Div(X) .

Two Cartier divisors D1 and D2 are said to be linearly equivalent if D1 −D2 is
principal. The support of a Cartier divisor D, denoted Supp (D) or |D|†, is the
union of all integral subschemes Z of X such that a local equation for D is not in

†This shorthand for Supp (D) should not be confused with a notation for complete linear
systems, which does not occur in this thesis.
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O∗
X, Z . This is a closed subset of X, which will be given the reduced subscheme

structure when necessary.
There is a line bundle on X associated to a given Cartier divisor D, denoted

OX(D). The sheaf of sections of the line bundle OX(D) may be defined to be
the OX -submodule of KX which is generated on each Ui by f−1

i . Equivalently,
transition functions for OX(D) with respect to the covering {Ui } are gij = fi/fj .
Let U denote the complement of Supp (D) in X. Then the local equations fi are
regular functions on U ∩ Ui, which clearly satisfy fi = gijfj on U ∩ Ui ∩ Uj . So
they determine a canonical section sD of the line bundle OX(D) over U . This
canonical section is nowhere vanishing on U .

A Cartier divisor D is called effecitive if all the local equations fi are in
Γ(Ui, OX). In this case, the collection of functions fi defines a canonical sec-
tion of OX(D) over X, which we also denote by sD. This sD vanishes only on the
support of D.

Now let X be an integral scheme. The sheaf of total quotient rings KX is
then the constant sheaf associated to the function field K = k(X) of X. For any
f ∈ k(X)∗, we write div(f) for the corresponding principal Cartier divisor. Let
n = dimX. A Weil divisor on X is an element of Zn−1(X). If D is a Cartier
divisor on X and V is an integral subscheme of codimension 1, we write

ordV (D) := ordV (fα)

where fα is a local equation for D on any affine open set Uα with Uα ∩ V 6= ∅, and
ordV is the order function on k(X) defined by V . This number is well-defined since
fα is determined up to units. The associated Weil divisor [D] of D is defined
by

[D] :=
∑

V

ordV (D)[V ] ,

the sum being over all codimension 1 integral subschemes V of X; as usual, there are
only finitely many V with ordV (D) 6= 0. By the additivity of the order functions,
we see that D 7→ [D] defines a group homomorphism

Div(X) −→ Zn−1(X) .

Note that the Weil divisor associated to a principal divisor div(f) coincides with the
cycle [div(f)] defined earlier. From the definition of rational equivalence, it follows
that Weil divisors associated to linearly equivalent Cartier divisors are rationally
equivalent. So if Pic(X) denotes the group of linear equivalence classes of Cartier
divisors, there is an induced homomorphism

Pic(X) −→ CHn−1(X) .

Remark 2.2.1. It is also standard to denote by Pic(X) the group of isomorphism
classes of invertible sheaves on X. Since X is integral in our case, this group is
isomorphic to the group of Cartier divisors modulo linear equivalence ([16, Chapt.2,
§6], see also Lemma 2.2.3).

2.2.2 Pseudo-divisors

For our use, Cartier divisors have a drawback that the pull-back f∗D of a Cartier
divisor D on X by a morphism f : X ′ → X is defined only under certain assump-
tions, for example in the case f is flat ([14, IV.21.4]). The notion of pseudo-divisor
is a simple generalization of Cartier divisor, which will not have this defect, but will
still carry enough information to determine intersections for cycle classes.
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Definition 2.2.2. A pseudo-divisor on a scheme X is a triple (L, Z, s), con-
sisting of a line bundle L on X, a closed subset Z of X, and a nowhere vanishing
section of L over X \ Z. We call L the line bundle , Z the support , and s the
section of the pseudo-divisor. Data (L′, Z ′, s′) define the same pseudo-divisor if
Z = Z ′ and there is an isomorphism σ of L with L′ such that the restriction of σ
to X \ Z takes s to s′.

Note that a pseudo-divisor with support X is simply an isomorphism class of
line bundles on X.

Any Cartier divisor D on a scheme X determines a pseudo-divisor (OX(D), |D|, sD),
where OX(D) is the line bundle of D, |D| is the support of D, and sD is the canon-
ical section of OX(D). We say that a pseudo-divisor (L, Z, s) is represented by
a Cartier divisor D if |D| ⊆ Z, and if there is an isomorphism from OX(D) to L,
which off Z, takes sD to s. Note that we allow Z to be larger than |D|; for example
if Z = X, all linearly equivalent Cartier divisors represent the same pseudo-divisor.

A general pseudo-divisor will often be denoted by a single letter D, and we
write OX(D) for its line bundle, |D| for its support, and sD for its section. This
agrees with the notation for Cartier divisors, except that a Cartier divisor may have
smaller support than a pseudo-divisor it represents.

If D = (L, Z, s) and D′ = (Z ′, L′, s′) are pseudo-divisors on a scheme X, their
sum D + D′ is defined to be the pseudo-divisor

D + D′ := (L⊗ L′, Z ∪ Z ′ , s⊗ s′)

and the pseudo-divisor −D is defined to be

−D := (L−1, Z, s−1) .

For a fixed closed subset Z of X, the pseudo-divisors with support Z form a group,
denoted DivZ(X).

If f : X ′ → X is a morphism of schemes, then the pull-back f∗D of a pseudo-
divisor D = (L, Z, s) on X is the pseudo-divisor (f∗L, f−1(Z), f∗s) on X ′. This
pull-back induces a group homomorphism f∗ : DivZ(X) → DivZ′(X ′) with Z ′ =
f−1(Z ′). Moreover, if g : X → Y is another morphism, one has (g ◦ f)∗ = f∗ ◦ g∗.

Lemma 2.2.3. Let X be an integral scheme. Then every pseudo-divisor (L, Z, s)
on X is represented by some Cartier divisor D. Moreover,

(i) if Z 6= X, D is uniquely determined;
(ii) if Z = X, D is determined up to linear equivalence.

Proof. Let gαβ be transition functions for the line bundle L, with respect to some
affine open covering {Uα } of X. Fix one index α0 and set fα = gαα0 . Then
fα/fβ = gαβ , so the data (Uα, fα) define a Cartier divisor D with OX(D) ∼= L.
In case Z = X, this gives the existence of a Cartier divisor representing the given
pseudo-divisor.

If Z 6= X, U := X \ Z is a nonempty open set of X. The section s is given
by a collection of regular functions sα on U ∩ Uα such that sα = gαβsβ for all
α, β. Since sα/fα = sβ/fβ for all α, β, there is a rational function r ∈ k(X)∗ with
r = sα/fα for all α. Set D′ = D + div(r). The local equations for D′ are given by
f ′α = fα · r = sα. Now we have OX(D′) ∼= L and the canonical section sD′ of D′ is
given by the functions f ′α so that it corresponds to s. This proves the existence of
the desired Cartier divisor in case Z 6= X.

For the uniqueness, if D and D′, with local equations fα and f ′α, both represent
(L, Z, s), then f ′α/f ′β = gαβ = fα/fβ for all α, β. So there is a rational function
f ∈ k(X)∗ = k(Uα)∗ such that f ′α = fαf for all α. If U = ∅, this means exactly D′

is linearly equivalent to D. If U 6= ∅, f ′α and fα must agree on U ∩Uα for all α since
sD′ = s = sD. Hence f = 1 on U , i.e. f = 1 in k(X), which shows D = D′.
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Definition 2.2.4. Let D be a pseudo-divisor on an n-dimensional integral scheme
X, and let |D| be its support. Define the Weil divisor class [D] ∈ CHn−1(|D|)
of D as follows. Take a Cartier divisor which represents D, and let [D] be the class
in CHn−1(|D|) of the associated Weil divisor. In case |D| = X, the Caritier divisor
is determined up to linear equivalence, but the class of its associated Weil divisor
in CHn−1(|D|) = CHn−1(X) is always well-defined. In case |D| 6= X, this Cartier
divisor is unique and its associated Weil divisor [D] is in fact a cycle on |D|. Now
dim |D| < n = dim X, hence Zn−1(|D|) = CHn−1(|D|). So the Weil divisor class
[D] ∈ CHn−1(|D|) is again well-defined.

The mapping D 7→ [D] clearly defines a group homomorphism DivZ(X) →
CHn−1(Z).

2.3 Intersection with Divisors

2.3.1 Intersection Classes

Definition 2.3.1. Let D be a pseudo-divisor on a scheme X, and let V be d-
dimensional integral subscheme of X. We define the intersection class D · [V ] in
CHd−1(|D|∩V ) as follows. Let j : V → X be the natural inclusion. The restriction
j∗D is a pseudo-divisor on V , with support |D| ∩ V , so we can define D · [V ] to be
the Weil divisor class of j∗D:

D · [V ] := [j∗D] ∈ CHd−1(|D| ∩ V ) .

When D is a Cartier divisor, this may be rephrased as follows: if V * |D|, D
restricts to a Cartier divisor j∗D on V , and D · [V ] is its associated Weil divisor
regarded as an element in CHd−1(|D| ∩ V ) = Zd−1(|D| ∩ V ); if V ⊆ |D|, D · [V ] is
the class in CHd−1(V ) = CHd−1(|D| ∩ V ) of the associated Weil divisor [C] of any
Cartier divisor C on V whose line bundle OV (C) is isomorphic to j∗OX(D).

In line with our earlier convention, we will write D · [V ] also for the image of the
above class in CHd−1(Y ), for any subscheme Y of X which contains |D| ∩ V .

Let α =
∑

nV [V ] be a d-cycle on X. The support of α, written |α|, is the
union of the integral subschemes V appearing with nonzero coefficients in α. For a
pseudo-divisor D on X, each D · [V ] is a class in CHd−1(|D| ∩ |α|). Thus we can
define the intersection class D · α in CHd−1(|D| ∩ |α|) by setting

D · α :=
∑

nV (D · [V ]) .

As above, we also regard D · α as an element of CHd−1(Y ) for any subscheme Y
containing |D| ∩ |α|.
Proposition 2.3.2. Let D and D′ be pseudo-divisors on a scheme X.

(i) For any two d-cycles α, α′ on X,

D · (α + α′) = D · α + D · α′

in CHd−1(|D| ∩ (|α| ∪ |α′|)).
(ii) For any d-cycle α on X,

(D + D′) · α = D · α + D · α′

in CHd−1((|D| ∪ |D′|) ∩ |α|).
(iii) (Projection formula) If f : X ′ → X is a proper morphism and α′ is a d-cycle

on X ′, then
f∗(f∗D · α′) = D · f∗(α′)
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in CHd−1(|D| ∩ f(|α′|)), where by abuse of notation, the induced morphism from
f−1(|D|) ∩ |α′| to |D| ∩ f(|α′|) is also denoted by f .

(iv) If f : X ′ → X is a flat morphism of relative dimension n and α is a d-cycle
on X, then

f∗D · f∗α = f∗(D · α)

in CHd+n−1(f−1(|D|∩|α|)), where by abuse of notation, the induced morphism from
f−1(|D| ∩ |α|) to |D| ∩ |α| is also denoted by f .

(v) If the line bundle OX(D) is trivial and α is a d-cycle on X, then

D · α = 0

in CHd−1(|α|).
Proof. (i) follows directly from the definition. In proving the other assertions, we
may therefore assume α = [V ], with V an integral subscheme. Then (ii) follows from
the fact that restricting to V and forming associated Weil divisor classes preserve
sums.

For (iii), by functoriality of pull-back and pull-forward, we may assume α′ = [V ],
V = X ′ and f(V ) = X. The pseudo-divisor D is then represented by a Cartier
divisor, which we also denote by D. What we need prove becomes the identity of
cycles on X:

f∗[f∗D] = deg(X ′/X)[D] .

This identity is local on X, so we may assume D = div(r) for some r ∈ k(X)∗.
Then Prop. 1.2.2 shows that

f∗[f∗div(r)] = f∗[div(f∗r)] = [div(Nk(X′)/k(X)(f∗r))] = [div(rd)] = d[div(r)]

where d = deg(X ′/X), f∗ also denotes the field embedding f∗ : k(X) → k(X ′) and
Nk(X′)/k(X) denotes the norm related to this field extension. This gives the desired
result.

For (iv), we may also assume V = X so that D is represented by a Cartier
divisor. The identity to prove is now

[f∗D] = f∗[D]

as cycles on X ′. Again as a local assertion on X, we may assume D is principal
and hence the difference of two effective divisors. Since both sides are additive, it
suffices to prove the identity for D effective. By the definition of associated Weil
divisor, [D] coincides in this case with cycle of the closed subscheme associated to
the divisor D. Thus the result is seen from Lemma 1.3.2.

Finally, for (v), we may assume V = X so that D is represented by a Cartier
divisor on X. The assertion is then that [D] = 0 in CHd−1(X) when D is principal,
which we have already seen earlier.

Theorem 2.3.3. Let D and D′ be Cartier divisors on an n-dimensional integral
scheme X. Then

D · [D′] = D′ · [D]

in CHn−2(|D| ∩ |D′|).
Proof. See [11, p.35, Thm. 2.4].

Corollary 2.3.4. Let D be a pseudo-divisor on a scheme X, and α a d-cycle on
X which is rationally equivalent to 0. Then

D · α = 0

in CHd−1(|D|).
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Proof. Suppose α = [div(r)], r ∈ k(V )∗, with V an integral subscheme of X. We
may replace X by V and then D by a representing Caritier divisor. Then

D · [div(r)] = div(r) · [D] = 0

in CHd−1(|D|), by Thm. 2.3.3 and Prop. 2.3.2 (v).

By Coro. 2.3.4, if D is a pseudo-divisor on a scheme X and Y is a subscheme of
X, the group homomorphism

Zd(Y ) −→ CHd−1(|D| ∩ Y ) ; α 7→ D · α
induces a homomorphism

CHd(Y ) −→ CHd−1(|D| ∩ Y )

which is also denoted α 7→ D · α.

Corollary 2.3.5. Let D and D′ be pseudo-divisors on a scheme X. Then for any
d-cycle α on X,

D · (D′ · α) = D′ · (D · α)

in CHd−2(|D| ∩ |D′| ∩ |α|).
Proof. Taking α = [V ] and restricting D and D′ to V , one is reduced to Thm. 2.3.3.

Definition 2.3.6. Let D1 , . . . , Dr be pseudo-divisors on a scheme X. For any
α ∈ Zd(X), define the intersection class D1 · · ·Dr · α in CHd−r(∩r

i=1|Di| ∩ |α|)
by induction:

D1 · · ·Dr · α := D1 · (D2 · · ·Dr · α) .

By Coro. 2.3.5, this is independent of the ordering of the Di, and by Prop. 2.3.2,
it is linear in each variable Di and α. More generally, for any homogeneous poly-
nomial P (T1 , . . . , Tr) of degree m with coefficients in Z and any subscheme Z of X
containing (∪r

i=1|Di|) ∩ |α|, the class

P (D1 , . . . , Dr) · α ∈ CHd−m(Z)

can be defined in an obvious way.
If r = d and Y := ∩r

i=1|Di| ∩ |α| is a proper scheme, we define the intersection
number (D1 · · ·Dr · α)X by

(D1 · · ·Dr · α)X =
∫

Y

D1 · · ·Dr · α .

Similarly, if Z := (∪r
i=1|Di|) ∩ |α| is a proper scheme and P is a homogeneous

polynomial of degree m = d, we define

(P (D1 , . . . , Dr) · α)X :=
∫

Z

P (D1 , . . . , Dr) · α .

2.3.2 Chern Class of a Line Bundle

Definition 2.3.7. Let L be a line bundle on a scheme X. For any d-dimensional
integral subscheme V of X, we define an element c1(L)∩[V ] in CHd−1(X) as follows.
The restriction L|V of L to V is isomorphic to OV (C) for some Cartier divisor C on
V , determined up to linear equivalence. The associated Weil divisor [C] determines
an element in CHd−1(X), which we take as our c1(L) ∩ [V ]. Namely,

c1(L) ∩ [V ] := [C] in CHd−1(X) .

This is extended by linearity to define a homomorphism α 7→ c1(L)∩α from Zd(X)
to CHd−1(X).
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Note that if L = OX(D) for a pseudo-divisor D on X, it follows from the
definition of the intersection class that

c1(OX(D)) ∩ α = D · α in CHd−1(X) .

Proposition 2.3.8. Let L, L′ be line bundles on a scheme X, and α ∈ Zd(X).
(i) If α

rat∼ 0, then c1(L) ∩ α = 0. There is therefore an induced homomorphism

c1(L) ∩ − : CHd(X) −→ CHd−1(X) .

(ii) (Commutativity) c1(L) ∩ (c1(L′) ∩ α) = c1(L′) ∩ (c1(L) ∩ α) in CHd−2(X).
(iii) (Projection formula) If f : X ′ → X is a proper morphism and α′ ∈ Zd(X ′),

then
f∗(c1(f∗L) ∩ α′) = c1(L) ∩ f∗(α′)

in CHd−1(X).
(iv) If f : X ′ → X is a flat morphism of relative dimension n, then

c1(f∗L) ∩ f∗α = f∗(c1(L) ∩ α)

in CHd+n−1(X ′).
(v) One has

c1(L⊗ L′) ∩ α = c1(L) ∩ α + c1(L′) ∩ α

and
c1(L∨) ∩ α = −c1(L) ∩ α

in CHd−1(X).

Proof. Since a line bundle on X determines a pseudo-divisor on X with support
X, the assertions follow from the corresponding facts for intersection classes with
pseudo-divisors.

If L1 , . . . , Lr are line bundles on X, α ∈ CHd(X), and P (T1 , . . . , Tr) is a homo-
geneous polynomial of degree m with integer coefficients , then

P (c1(L1) , . . . , c1(Lr)) ∩ α

can be defined in CHd−m(X). In particular, for a line bundle L on X and α ∈
CHd(X), the element c1(L)r∩α in CHd−r(X) is defined inductively by c1(L)r∩α =
c1(L) ∩ (c1(L)r−1 ∩ α).

2.3.3 Gysin Map for Divisors

Definition 2.3.9. Let D be an effective Cartier divisor on a scheme X. Its asso-
ciated closed subscheme will be also denoted D. Let i : D → X be the inclusion.
The Gysin homomorphisms i∗ : Zd(X) → CHd−1(D) are defined by

i∗(α) := D · α .

Proposition 2.3.10. Let D be an effective Cartier divisor on a scheme X and let
i be the Gysin homomorphism.

(i) If α ∈ Zd(X) is rationally equivalent to 0, then i∗(α) = 0. Therefore, there
are induced homomorphisms

i∗ : CHd(X) −→ CHd−1(D) .

(ii) For α ∈ Zd(X), one has

i∗i∗(α) = c1(OX(D)) ∩ α in CHd−1(X) .
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(iii) If α is a d-cycle on D, then

i∗i∗(α) = c1(i∗OX(D)) ∩ α in CHd−1(D) .

(iv) If X is purely n-dimensional, then

i∗[X] = [D] in CHn−1(D).

(v) If L is a line bundle on X and α ∈ Zd(X), then

i∗(c1(L) ∩ α) = c1(i∗L) ∩ i∗(α)

in CHd−2(D).

Proof. (i) and (v) are special cases of Coros. 2.3.4 and 2.3.5 respectively. (ii) and
(iii) follow from the definitions; in both cases, both sides are represented by the
intersection class D · α. (iv) says that [D] = D · [X], which is a restatement of
Lemma 1.3.5.

Example 2.3.11. Let L be a line bundle on a scheme X, p : L → X the projection,
and i : X → L the embedding of X into L by the zero section. Then i∗p∗α = α
for all α ∈ CHd(X). Indeed, we may assume α = [V ] and V = X. Then p−1(V ) is
purely dimensional, hence by Prop. 2.3.10 (iv),

i∗p∗[V ] = i∗[p−1(V )] = [X] = [V ] .

Combining this with Prop. 1.4.1, one concludes that the flat pull-back

p∗ : CHd(X) −→ CHd−1(L)

is an isomorphism. One will see a generalization in Thm. 2.4.5.

2.4 Chern Classes

2.4.1 Segre Classes of Vector Bundles

Definition 2.4.1. Let E be a vector bundle of rank r = e + 1 on a scheme X. Let
P = P(E) be the projective bundle of E, p = pE : P(E) → X the projection, and
OE(1) the canonical line bundle on P . For any integer i, define homomorphisms
α 7→ si(E) ∩ α from CHd(X) to CHd−i(X) by the formula

si(E) ∩ α := p∗(c1(OE(1))e+i ∩ p∗α) .

Note that the morphism p is proper, as well as flat of relative dimension e. So
the flat pull-back p∗ : CHd(X) → CHd+e(P ) and the proper push-forward p∗ :
CHd−i(P ) → CHd−i(X) make sense.

Proposition 2.4.2. Let E, F be vector bundles on a scheme X, of rank e+1, l+1
respectively, and let α ∈ CH•(X).

(i) One has

si(E) ∩ α = 0 for all i < 0 and s0(E) ∩ α = α .

(ii) For all i, j,

si(E) ∩ (sj(F ) ∩ α) = sj(F ) ∩ (si(E) ∩ α) .

(iii) If f : X ′ → X is a proper morphism, α ′ ∈ CH•(X ′), then for all i,

f∗(si(f∗E) ∩ α ′) = si(E) ∩ f∗(α ′) .
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(iv) If f : X ′ → X is a flat morphism of some relative dimension, then for all i,

si(f∗E) ∩ f∗α = f∗(si(E) ∩ α) .

(v) If E is a line bundle, then

s1(E) ∩ α = −c1(E) ∩ α .

Proof. We first prove (iii) and (iv). Given a morphism f : X ′ → X and a vector
bundle E on X, there is a fibre square

P(f∗E)
f ′−−−−→ P(E)

p′
y

yp

X ′ f−−−−→ X

such that f ′∗OE(1) = Of∗E(1).
If f is proper, we have

f∗(si(f∗E) ∩ α ′) = f∗p′∗
(
c1(Of∗E(1))e+i ∩ p′∗α ′)

= p∗f ′∗
(
c1(f ′∗OE(1)e+i) ∩ p′∗α ′)

= p∗(c1(OE(1))e+i ∩ f ′∗p
′∗α ′) (Prop. 2.3.8 (iii))

= p∗
(
c1(OE(1))e+i ∩ p∗f∗α ′) (Prop. 1.3.3)

= si(E) ∩ f∗α ′ .

This proves (iii).
If f is flat of some relative dimension, we have

si(f∗E) ∩ f∗α = p′∗
(
c1(Of∗E(1))e+i ∩ p′∗f∗α

)

= p′∗
(
c1(f ′∗OE(1)e+i) ∩ f ′∗p∗α

)

= p′∗f
′∗(c1(OE(1))e+i ∩ p∗α

)
(Prop. 2.3.8 (iv))

= f∗p∗
(
c1(OE(1))e+i ∩ p∗α

)
(Prop. 1.3.3)

= f∗(si(E) ∩ α) .

This proves (iv).
To prove (i), we may assume α = [V ], with V a d-dimensional integral subscheme

of X. By (iii), we may assume X = V . Then CHd−i(X) = 0 for i < 0, which proves
the first assertion. Moreover, since CHd(X) = Z · [X], s0(E) ∩ α = m[X] for some
m ∈ Z. To show m = 1, by (iv) we may restrict to an open set of X, so we may
assume E is trivial. Then P(E) = X × Pe, and OE(1) is isomorphism to the line
bundle of the Cartier divisor X × Pe−1 of P(E). Hence

c1(OE(1)) ∩ [X × Pe] = [X × Pe−1]

by definition of the Chern class of a line bundle. By induction it follows that

m[X] = s0(E) ∩ α = p∗
(
c1(OE(1))e ∩ [P(E)]

)
= p∗([X × P0]) = [X] ,

hence, m = 1. The assertion (i) is thus proved.
For (ii), consider the fibre square

Q
p′−−−−→ P(F )

q′
y

yq

P(E)
p−−−−→ X
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with natural morphisms. Then we have

si(E) ∩ (sj(F ) ∩ α)

=p∗
(
c1(OE(1))e+i ∩ p∗q∗

(
(c1(OF (1)))l+j ∩ q∗α

))

=p∗
(
c1(OE(1))e+i ∩ q′∗p

′∗(c1(OF (1))l+j ∩ q∗α
))

(Prop. 1.3.3)

=p∗q′∗
(
c1(q′∗OE(1))e+i ∩ p′∗

(
c1(OF (1))l+j ∩ q∗α

))
(Prop. 2.3.8 (iii))

=p∗q′∗
(
c1(q′∗OE(1))e+i ∩ (

c1(p′∗OF (1))l+j ∩ p′∗q∗α
))

(Prop. 2.3.8 (iv))

and similarly,

sj(F ) ∩ (si(E) ∩ α) = q∗p′∗
(
c1(p′∗OF (1))l+j ∩ (

c1(q′∗OE(1))e+1 ∩ q′∗p∗α
))

.

Then the result follows from Prop. 2.3.8 (ii) and the facts that q∗p′∗ = p∗q′∗ and
p′∗q∗ = q′∗p∗.

Finally, to prove (v), we may assume E is trivial by (iv). Note that P(E) = X
and OE(1) = E∨ in this case. So we have

s1(E) ∩ α = c1(OE(1)) ∩ α = c1(E∨) ∩ α = −c1(E) ∩ α

by Prop. 2.3.8 (v).

Corollary 2.4.3. With notation as above, the flat pull-back

p∗ : CHd(X) −→ CHd+e(P(E))

is a split injection.

Proof. By Prop. 2.4.2 (i), the homomorphism β 7→ p∗(c1(OE(1))e ∩ β) is a left
inverse of p∗.

2.4.2 Chern Classes of Vector Bundles

Let E be a vector bundle on a scheme X. Consider the formal power series

st(E) :=
∞∑

i=0

si(E)ti = 1 + s1(E)t + s2(E)t2 + · · · .

The si(E) can be regarded as endomorphisms of the group CH•(X), so multipli-
cation can be defined as composition of endomorphisms. Thanks to Prop. 2.4.2
(ii), the si(E) generate a commutative Z-algebra R := Z[si(E)] and st(E) can be
regarded as an element in the ring R[[t]] of formal power series over R. There is an
inverse power series of st(E) in R[[t]], which we denote by

ct(E) :=
∞∑

i=0

ct(E)ti = 1 + c1(E)t + c2(E)t2 + · · · .

Explicitly, one finds that

c0(E) = 1 , c1(E) = −s1(E) ,

c2(E) = −c1(E)s1(E)− s2(E) ,

cn(E) = −
n∑

i=0

si(E)cn−i(E)

= −s1(E)cn−1(E)− s2(E)cn−2(E)− · · · − sn(E) .

28



2.4. CHERN CLASSES

We will see that ct(E) is in fact a polynomial (Thm. 2.4.4 (i)). We call it the Chern
polynomial of the vector bundle E. For α ∈ CHd(X), we write ci(E) ∩ α for the
element in CHd−i(X) obtained by applying the endomorphism ci(E) to α.

In view of Prop. 2.4.2 (v), for a line bundle E, the first Chern class defined
here agrees with the definition given earlier. So if X is an integral scheme and
E ∼= OX(D) for some Cartier divisor D on X, then c1(E) ∩ [X] = [D].

Theorem 2.4.4. Let E and F be vector bundles on a scheme X, and let α be any
cycle on X.

(i) (Vanishing) For all i > rank(E), ci(E) = 0 .
(ii) (Commutativity) For all i, j, one has

ci(E) ∩ (cj(F ) ∩ α) = cj(F ) ∩ (ci(E) ∩ α) .

(iii) (Projection formula) If f : X ′ → X is a proper morphism, then for all
cycles α ′ on X ′, one has

f∗(ci(f∗E) ∩ α ′) = ci(E) ∩ f∗(α ′) .

(iv) If f : X ′ → X is a flat morphism of some relative dimension, then

ci(f∗E) ∩ f∗α = f∗(ci(E) ∩ α) .

(v) (Whitney sum) For any exact sequence

0 −→ E′ −→ E −→ E′′ −→ 0

of vector bundles on X, one has

ct(E) = ct(E′)ct(E′′) ,

in other words,
cl(E) =

∑

i+j=l

ci(E′)cj(E′′) , ∀ l ≥ 0 .

Proof. Properties (ii), (iii) and (iv) follow easily from corresponding facts for Segre
classes. For (i) and (v), see [11, p.50, Thm. 3.2].

2.4.3 Application: Rational Equivalence on Bundles

Theorem 2.4.5. Let E be a vector bundle of rank r = e + 1 on a scheme X, with
projection π : E → X. Let P(E) be the associated projective bundle, p : P(E) → X
the projection, and OE(1) the canonical line bundle on P(E).

(i) The flat pull-back

π∗ : CHd−r(X) −→ CHd(E)

is an isomorphism for every d.
(ii) Each element β in CHd(P(E)) can be expressed uniquely in the form

β =
e∑

i=0

c1(OE(1))i ∩ p∗αi

with αi ∈ CHd−e+i(X). Thus there are canonical isomorphisms

e⊕

i=0

CHd−e+i(X) ∼= CHd(P(E)) .
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Proof. The surjectivity of π∗ was proved in Prop. 1.4.1. Let θE be the homomor-
phism

e⊕

i=0

CH•(X) −→ CH•(P(E)) ; θE(⊕αi) :=
e∑

i=0

c1(OE(1))i ∩ p∗αi .

To show the surjectivity of θE , the same Noetherian induction argument used in
the proof of Prop. 1.4.1 reduces it to the case when E is trivial. By induction on
the rank, it suffices to prove that θF is surjective when θE is known to be surjective,
where F = E ⊕ 1 is the direct sum of E and a trivial line bundle.

Let P = P(E) , Q = P(F ) = P(E ⊕ 1), q : Q → X the projection. We have a
commutative diagram

P

p
ÂÂ@

@@
@@

@@
@

ι // Q

q

²²

E
joo

π
ÄÄ~~

~~
~~

~~

X

identifying Q as the projective completion of E, P as the hyperplane at infinity. By
Prop. 1.3.6, the row in the following commutative diagram is exact

CHd(P )
ι∗ // CHd(Q)

j∗ // CHd(E) // 0

CHd−r(X)

q∗

OO

π∗

88qqqqqqqqqq

As for the link between p∗ and q∗, we have the following formula:

c1(OF (1)) ∩ q∗α = ι∗p∗α , ∀ α ∈ CH•(X) . (2.1)

Indeed, it suffices to check this for α = [V ], with V an integral subscheme of X.
Since OF (1) has a section vanishing precisely on P , it is isomorphic to the line
bundle of the Cartier divisor P = P(E) on Q = P(F ). It follows from the definition
of the first Chern class of line bundles that

c1(OF (1)) ∩ q∗[V ] = P(E) · [q−1(V )] = [p−1(V )] = ι∗p∗[V ]

as required.
Now let β ∈ CH•(Q) and write j∗β = π∗α for some α ∈ CH•(X). Then β− q∗α

lies in the kernel of j∗. Since Ker (j∗) = Im (ι∗), and by induction hypothesis we
have the surjectivity of θE , we obtain

β − q∗α = ι∗

(
e∑

i=0

c1(OE(1))i ∩ p∗αi

)

for some αi ∈ CH•(X). Since ι∗OF (1) = OE(1), the projection formula rewrites
the right side as

e∑

i=0

c1(OF (1))i ∩ ι∗p∗αi

=
e∑

i=0

c1(OF (1))i ∩ (c1(OF (1)) ∩ q∗αi) (by (2.1))

=
e+1∑

i=1

c1(OF (1))i ∩ q∗α̃i
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where α̃i = αi−1. Hence, putting α̃0 = α, we get

β = q∗α +
e+1∑

i=1

c1(OF (1))i ∩ q∗α̃i =
e+1∑

i=0

c1(OF (1))i ∩ q∗α̃i

showing that θF is surjective.
Let us now prove the uniqueness of the expression in (ii). Suppose there is a

nontrivial relation

β =
e∑

i=0

c1(OE(1))i ∩ p∗αi = 0 .

Let l be the largest integer with αl 6= 0 in CH•(X). Then we find

0 = p∗(c1(OE(1))e−l ∩ β) = αl

using Prop. 2.4.2, whence a contradiction.
Finally, to see that π∗ is injective, let F = E⊕1, Q = P(F ) with other notation

as before. If π∗α = 0 for some α 6= 0 in CH•(X), then j∗q∗α = 0, so

q∗α = ι∗

(
e∑

i=0

c1(OE(1))i ∩ p∗αi

)

=
e∑

i=0

c1(OF (1))i ∩ ι∗p∗αi (Projection formula)

=
e∑

i=0

c1(OF (1))i ∩ (
c1(OF (1)) ∩ q∗αi

)

=
e+1∑

i=1

c1(OF (1))i ∩ q∗α̃i .

But this contradicts the uniqueness part of (ii) for the bundle F = E ⊕ 1.

31



CHAPTER 2. CHERN CLASSES OF VECTOR BUNDLES

32



Chapter 3

Introduction to Chow
Motives

3.1 Category of Correspondences

Let k be a field. Let Vk denote the category of smooth projective varieties over k.

Definition 3.1.1. Let X and Y be objects in Vk. A (Chow) correspondence
between X and Y is an element of the group

⊕

i

CHdim Xi
(Xi × Y ) ,

where X =
∐

i Xi is the decomposition of X into irreducible components. We will
write Cor(X, Y ) for the group of correspondences between the varieties X and Y .

Let Z be a third object in Vk. Let α ∈ Cor(X, Y ) and β ∈ Cor(Y, Z) be
correspondences. The composition β ◦ α is the correspondence defined as

β ◦ α := π13∗(π∗12(α) · π∗23(β)) ∈ Cor(X, Z) .

Here and in what follows notation of the type π13 : X ×Y ×Z → X ×Z means the
projection onto the product of the first and third factors. The product π∗12(α)·π∗23(β)
is the intersection product in the graded ring CH•(X×Y ×Z) (cf. [11, Chapt. 8]).

For X ∈ Vk, let δX : X → X×X be the diagonal morphism and let ∆X ⊆ X×X
be its image. It defines a correspondence [∆X ] ∈ Cor(X, X).

Lemma 3.1.2. With notation as above,
(i) for any correspondences α ∈ Cor(X, Y ), β ∈ Cor(Y, X), one has

α ◦ [∆X ] = α , [∆X ] ◦ β = β .

(ii) composition of correspondences is associative.

Proof. See [21, p.446, Lemma].

This lemma permits us to make the following definition.

Definition 3.1.3. The category of Chow correspondences over k, denoted
CVk, is defined by the following data.

(i) The objects of CVk are the objects of Vk. A variety X as an object of CVk

will be denoted by the symbol X.
(ii) For any two objects X, Y in CVk,

Hom(X , Y ) := Cor(X, Y ) .

(iii) Composition of morphisms in CVk is composition of correspondences.
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There is a natural functor: Vk −→ CVk sending an object X ∈ Vk to X ∈ CVk

and a morphism f : X → Y to [Γf ] ∈ Cor(X, Y ), where Γf is the graph of the
morphism f , i.e., the image of the composite morphism

X
δX−→ X ×X

Id×f−→ X × Y .

The category CVk is an additive category in which the direct sum of two objects
X and Y is

X ⊕ Y = X q Y .

Furthermore, CVk possesses a tensor product : for objects X , Y , one defines

X ⊗ Y := X × Y

and for morphisms α ∈ Hom(X , Y ) , β ∈ Hom(X ′ , Y ′ ),

α⊗ β := π∗(α) ·$∗(β) ∈ Hom(X ⊗X ′ , Y ⊗ Y ′ ) ,

where π : X ×X ′ × Y × Y ′ → X × Y and $ : X ×X ′ × Y × Y ′ → X ′ × Y ′ are the
canonical projections.

3.2 Category of Chow Motives

Recall that a projector p in a category C is an element of HomC(X, X) for some
object X of C such that p2 = p.

Definition 3.2.1. An additive category C is called pseudo-abelian if for every
object X ∈ C and every projector p ∈ HomC(X, X), the kernel Ker (p) exists and
the natural morphism

Ker (p)⊕Ker (Id−p) −→ X

is an isomorphism.

Proposition 3.2.2. Let C be any additive category. There exists a pseudo-abelian
category Cps together with a fully faithful additive functor η : C −→ Cps satisfying
the following property:

if F : C → D is an additive functor into a pseudo-abelian category D, then
there is an additive functor Fps : Cps → D, unique up to isomorphism, such that
Fps ◦ η ∼= F .

The category Cps is unique up to equivalence, and is called the pseudo-abelian
envelop of C.
Proof. We construct the category Cps as follows. Take as objects pairs (X, p), where
X ∈ C and p ∈ HomC(X, X) is a projector. For two objects (X, p) and (Y, q), define

HomCps

(
(X, p) , (Y, q)

)
:= q HomC(X, Y )p ⊆ HomC(X, Y ) .

The composition of morphisms in Cps is induced by composition in C. The identity
in HomCps

((X, p) , (X, p)) is the morphism p = p ◦ Id ◦p.
Let’s prove that Cps is pseudo-abelian.
Let q : (X, p) → (X, p) be a projector. Since q is of the form q = pfp with

f ∈ HomC(X, X), we have qp = pq = q = q2. It follows that p − q : X → X is
a projector in C. The kernel of q in Cps is the object (X, p − q) together with the
natural morphism

r1 := p ◦ IdX ◦(p− q) = p− q : (X, p− q) −→ (X, p) .
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It is readily seen that qr1 = 0. Further, if u : (Y, s) → (X, p) is a morphism such
that qu = 0, we have (p− q)u = pu = u ∈ HomC(Y, X). Thus, the morphism

w := (p− q) ◦ u ◦ s = u : (Y, s) −→ (X, p− q)

satisfies u = rw. If w′ : (Y, s) −→ (X, p − q) is another morphism such that
u = r1w

′, then we have

w = u = r1w
′ = (p− q)w′ = w′

since w′ is of the form w′ = (p− q)vs for some v ∈ HomC(Y, X). This proves

Ker (q) =
(
(X, p− q) , r1

)

in Cps. Likewise, we find that (X, q) together with the morphism

r2 := p ◦ IdX ◦q : (X, q) −→ (X, p)

is the kernel of the morphism

Id(X, q)−q : (X, p) −→ (X, p) .

Now let’s prove that the natural morphism

ϕ = (r1 , r2) : (X, p− q)⊕ (X, q) −→ (X, p)

is an isomorphism. We need find the inverse ψ of ϕ. Note that we have natural
morphisms

r′1 := (p− 1) ◦ IdX ◦p = p− q : (X, p) −→ (X, p− q)

and
r′2 := q ◦ IdX ◦p = q : (X, p) −→ (X, q)

which induce a morphism

φ : (X, p) −→ (X, p− q)
∏

(X, q) ,

which satisfies π1φ = r′1 and π2φ = r′2, where π1 , π2 are projections from the
product (X, p− q)

∏
(X, q) onto its factors.

Let ι1 : (X, p− q) −→ (X, p− q)⊕ (X, q) and ι2 : (X, q) −→ (X, p− q)⊕ (X, q)
be the natural morphisms. Then there is a canonical isomorphism

ι1π1 + ι2π2 : (X, p− q)
∏

(X, q) −→ (X, p− q)⊕ (X, q) .

The composition φ yields a morphism

ψ : (X, p) −→ (X, p− q)⊕ (X, q) .

Now

ψ ◦ ϕ ◦ ι1 = ψ ◦ r1 = (ι1π1 + ι2π2) ◦ φ ◦ r1

= ι1 ◦ (π1φ) ◦ r1 + ι2 ◦ (π2φ) ◦ r2

= ι1 ◦ (r′1 ◦ r1) + ι2 ◦ (r′2 ◦ r1) .

But r′1 ◦ r1 = (p− q) ◦ (p− q) = Id(X, p−q) and r′2 ◦ r1 = q(p− q) = 0. So we get

ψ ◦ ϕ ◦ ι1 = ι1 ◦ (r′1 ◦ r1) + ι2 ◦ (r′2 ◦ r1) = ι1 ◦ Id(X, p−q) = ι1 .
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Similarly, we have ψ ◦ ϕ ◦ ι2 = ι2, hence ψ ◦ ϕ = Id. On the other hand,

ϕ ◦ ψ = ϕ ◦ (ι1π + ι2π2) ◦ φ = (ϕι1) ◦ (π1φ) + (ϕι2) ◦ (π2φ)
= r1 ◦ r′1 + r2 ◦ r′2 = p− q + q = p = Id(X, p) .

So ϕ is indeed an isomorphism.
Finally, the assignment X 7→ (X , IdX) defines obviously an additive fully faithful

functor η : C → Cps and the universal property can be easily checked for the pair
(Cps, η). The proof is thus completed.

Definition 3.2.3. The category of effective Chow motives over k, denoted
CM+

k , is defined to be the pseudo-abelian envelop of the category CVk.

The composite functor Vk → CVk → CM+
k will be denoted by h:

h(X) = (X, IdX) ∈ CM+
k , for X ∈ Vk .

The category CM+
k inherits from CVk a tensor product which is defined as

(X , p)⊗ (Y , q) := (X ⊗ Y , p⊗ q) .

Clearly, one has

h(X q Y ) = h(X)⊕ h(Y ) , h(X × Y ) = h(X)⊗ h(Y )

for all X, Y ∈ Vk. We denote by 1 := h(Spec k) the neutral object for the tensor
product.

Example 3.2.4. Let X = P1 be the projective line over k. Let p = [P1 × { pt }]
and q = [{pt }×P1] be the elements in CH1(P1×P1) corresponding to the 1-cycles
P1 × { pt } and {pt } × P1, where “pt” designates a rational point of P1. Then p , q
define two morphisms P1 → P1 in CVk. We claim that they are projectors in CVk

and p + q = IdP1 . In fact,

p2 = π13∗
(
[P1 × {pt } × P1] · [P1 × P1 × {pt }]) = [P1 × {pt }] = p .

Similarly, one proves q2 = q. Note that

IdP1 = [∆P1 ] ∈ Hom(P1 , P1 ) .

We have

IdP1 −(p + q) = [∆P1 ]− ([P1 × {pt }] + [{pt } × P1]) = [div(φ)]

where φ is the rational function on P1 × P1 given by

([x1 : x2] , [y1 : y2]) 7→ x1y2 − x2y1

x1y1
.

Hence, IdP1 = p + q in Hom(P1 , P1).
The motive (P1 , q) is called the Tate motive and will be often denoted by L .

Proposition 3.2.5. With notation as in Example 3.2.4, we have canonical isomor-
phisms

(P1 , p) ∼= 1 ; h(P1) ∼= 1⊕ L .
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Proof. (P1 , p) is the kernel of the projector

q : (P1 , IdP1) −→ (P1 , IdP1) .

Hence, in the pseudo-abelian category CM+
k , one has

h(P1) = (P1 , IdP1) ∼= (P1 , p)⊕ (P1 , q) .

It remains to show 1 = h(Spec k) ∼= (P1 , p). Indeed, the correspondence [{pt } ×
{pt }] ∈ Cor(Spec k, P1) gives a morphism

ρ := p ◦ [{pt } × {pt }] ◦ [{pt } × { pt }] = [{pt } × { pt }]
from 1 = (Spec k , [{pt } × {pt }]) to (P1 , p). On the other hand, the correspon-
dence [P1 × {pt }] ∈ Cor(P1, Spec k) provides a morphism

τ := [{pt } × { pt }] ◦ [P1 × {pt }] ◦ p = [P1 × {pt }]
from (P1 , p) to 1. Now

τ ◦ ρ = [{pt } × { pt }] = Id : 1 −→ 1

and
ρ ◦ τ = p = p ◦ IdP1 ◦p = Id(P1, p) : (P1 , p) −→ (P1 , p) .

This proves the proposition.

Clearly, if X, Y ∈ Vk with X irreducible, then

HomCM+
k
(h(X) , h(Y )) = CHdim X(X × Y ) .

In particular,

HomCM+
k
(1 , h(Y )) = HomCM+

k
(h(Spec k) , h(Y )) = CH0(Y ) ,

and
HomCM+

k
(h(P1) , h(Y )) = CH1(P1 × Y ) .

Prop. 3.2.5 also implies that

HomCM+
k
(h(P1)) , h(Y )) = HomCM+

k
(1 , h(Y ))⊕HomCM+

k
(L , h(Y ))

and we know from Thm. 2.4.5 that

CH1(P1 × Y ) = CH0(Y )⊕ CH1(Y ) .

From this, we are reasonably convinced that

HomCM+
k
(L , h(Y )) = CH1(Y ) .

For higher dimensional projective spaces, one has (cf. [21, §6, Formula (8)]):

h(Pm) = 1⊕ L⊕ · · · ⊕ L⊗m , ∀ m ≥ 1 .

So it is not a surprising fact that

HomCM+
k
(L⊗m , h(Y )) = CHm(Y ) , ∀ m ≥ 1 .

In like manner, we obtain

HomCM+
k
(h(X) , 1) = CHdim X(X) = CH0(X) ,
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and
HomCM+

k
(h(X) , L⊗m) = CHm(X) , ∀ m ≥ 1 .

Since
HomCM+

k
(L⊗m , 1) = CHm(Spec k) = 0 , ∀ m ≥ 1 ,

we have for m ≥ 1,

HomCM+
k
(L⊗m , L) = HomCM+

k
(L⊗m , h(P1))

= CHm(P1) =

{
Z if m = 1
0 if m > 1

As a matter of fact, we have in general

HomCM+
k
(L⊗m , L⊗n) =

{
Z if m = n

0 if m 6= n
, ∀ m, n ≥ 0 .

Definition 3.2.6. The category of Chow motives over k, denoted CMk, is con-
structed as follows:

(i) the objects of CMk are couples (M, m) where M is an object of CM+
k and

m ∈ Z;
(ii) the set of morphisms between two objects (M, m) and (N, n) is defined as

HomCMk
((M, m) , (N, n)) := lim−→

i≥max(−m,−n)

HomCM+
k
(M⊗L⊗(i+m), N⊗L⊗(i+n)) ,

where the transition maps for the inductive system on the right are naturally ob-
tained by applying the functor −⊗ L.

We will often write M(m) for the object (M, m).

Morphisms between motives that come from varieties have explicit descriptions.
For X, Y ∈ Vk, one has

HomCMk
(h(X)(r) , h(Y )(s)) =

n⊕

i=1

CHdim Xi+r−s(Xi × Y ) , ∀ r , s ∈ Z

where X1 , . . . , Xn are all the irreducible components of X.
The category CMk is again additive. A motive M ∈ CMk is called split if it is

isomorphic to a motive of the form ⊕r
i=r(1 , di) , di ∈ Z.

The next two results indicates somewhat links between Chow motives and Chow
groups, that will be later useful for us. (See Appendix A for basic information about
K-theory.)

Lemma 3.2.7 ([23, Lemma 1.4]). Let X ∈ Vk and suppose the Chow motive h(X)
is split. Then the product map

CHp(X)⊗Kq(k) −→ Hp(X, Kp+q)

is an isomorphism for any p, q.

Here for X ∈ Vk, the structure morphism X → Spec k induces natural maps
Kq(k) → Kq(X). We then have natural maps (cf. Remark A.3.4)

Kp(X)⊗Kq(k) −→ Kp(X)⊗Kq(X) −→ Kp+q(X) ,

which induce product maps on the K-cohomology groups

Hi(X, Kp)⊗Kq(k) −→ Hi(X, Kp+q) .

The product map in Lemma 3.2.7 is obtained by identifying CHp(X) with Hp(X, Kp).
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Proposition 3.2.8 ([23, Prop. 1.5]). Let X be an irreducible variety in Vk. Then
the Chow motive h(X) is split if and only if the following two conditions are satisfied:

(i) the Chow group CH(X) is free of finite rank over Z and the natural map
CH(X) → CH(XL) is an isomorphism for every field extension L/k;

(ii) the intersection pairing

CHp(X)⊗ CHp(X) −→ Z ; α⊗ β 7→ deg(α · β)

is a perfect duality for every p.
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Chapter 4

R-Equivalence and
Zero-cycles on Tori

4.1 Some Reviews

The study of algebraic groups over not necessarily algebraically closed fields usually
involves theories of group schemes or Galois descent. According to what is most
convenient, we may employ both tools to a certain extent to make the exposition
as clear and elementary as possible. The present section is thus aimed at a brief
sketch of some basics in these spirits that may be helpful for our later discussions.
For systematic exposition and detailed proofs, one may refer to monographs such
as [14], [9] and [10].

4.1.1 Field of Definition and Galois Descent

In arithmetic geometry, one often hopes that a variety, probably also with various
objects attached to it, defined over a larger field can be defined over a smaller field,
and wants at the same time if possible that nice properties are preserved by this
kind of descent. In this subsection, we give statements of useful facts in this respect.
Basic references are [14, IV.4.8–4.9] and the very nice exposition of Galois descent
in [18, §2].

Let k be a field, X, Y (algebraic) k-schemes, F , G quasi-coherent OX -modules,
and K/k a field extension. Let S(X) be the set of all subschemes of X, and let
Φ(F ) be the set of all quasi-coherent submodules of F .

For any subextension k′/k of K/k, we have canonical maps:

Φ(F ⊗k k′) −→ Φ(F ⊗k K) ; H 7→ π∗H ,

Hom(F ⊗k k′, G ⊗k k′) −→ Hom(F ⊗k K, G ⊗k K) ; u 7→ π∗(u) ,

S(Xk′) −→ S(XK) ; Z 7→ π−1(Z) = Z ×k K ,

Mork′(Xk′ , Yk′) −→ MorK(XK , YK) ; f 7→ f × Id ,

(4.1)

where π : XK → Xk′ denotes the natural projection, F ⊗k k′ denotes the pull-back
of F by the natural morphism Xk′ → X and similarly for F ⊗k K and so on. All
the above maps are injective.

We say an object in Φ(F ⊗k K), resp. Hom(F ⊗k K, G ⊗k K), resp. S(XK),
resp. MorK(XK , YK), is defined over k′, or k′ is a field of definition of the
corresponding object if it is in the image of the corresponding map in (4.1). If
{Xλ } is an open covering of X, such an object is defined over k′ if and only if its
restriction to each Xλ is defined over k′. Moreover, such an object always has a
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smallest field of definition in K/k. If Z̃ is a closed subscheme of XK , the smallest
field of definition of Z̃ is finitely generated over k. The same statement holds for
any f̃ ∈ MorK(XK , YK). If F and G are coherent, the smallest field of definition
of an object in Φ(F ⊗k K), or in Hom(F ⊗k K, G ⊗k K), is finitely generated over
k.

If a closed subscheme Z̃ of XK is defined over a subfield k′, the open subset
Ũ := XK \ Z̃ is also defined over k′. When K/k is an algebraic extension, the
smallest field of definition of any closed subscheme Z̃ of XK is a finite separable
extension of k. So any quasi-projective K-scheme X̃ can be defined over a subfield
k′ which is finitely generated over k, and if moreover K/k is an algebraic extension,
X̃ can be defined over a finite separable extension of k.

Let L/k be a Galois extension and g = Gal(L/k) the Galois group. For any σ ∈
g, denote by S(σ) the k-isomorphism Spec L → Spec L given by the isomorphism
σ−1 : L → L. Let xσ = Id×S(σ) : XL → XL denote the natural morphism
determined by the fibre square

XL
xσ−−−−→ XLy

y

Spec L
S(σ)−−−−→ Spec L

This xσ is a k-automorphism on XL. So g operates as k-automorphisms of XL

and many objects attached to XL thus admit a natural g-action. For example,
the Chow groups CHp(XL) have a natural g-action, and since a closed subscheme
can be defined over a finite subextension of L/k, this action is continuous for the
discrete topology on CHp(XL) and the natural profinite topology on g.

If Y is another k-scheme, the set MorL(XL, YL) has a g-action given by

σ · f := yσ ◦ f ◦ x−1
σ ; ∀ f ∈ MorL(XL, YL) , σ ∈ g .

Since any f ∈ MorL(XL, YL) can be defined over a finite subextension of L/k, this
g-action is also continuous. Furthermore, f ∈ MorL(XL, YL) is defined over k if
and only if σ · f = f for all σ ∈ g. In particular, for any k-algebra A, one has
X(A) = X(A⊗k L)g.

Here is a good place to introduce the following definitions.

Definition 4.1.1. Let Γ be a profinite group. By a Γ-set we mean a set S
equipped with a left Γ-action that is continuous for the discrete topology on S
and the profinite topology on Γ. A Γ-group is a discrete group equipped with a
continuous left action of Γ which is compatible with the group structure of A, i.e.
γ(ab) = γ(a)γ(b) for all γ ∈ Γ , a , b ∈ A. A Γ-module is a commutative Γ-group.

So in the case discussed above, the Chow groups CHp(XL) are g-modules and
MorL(XL, YL) and X(A⊗k L), A ∈ Alg/k are Γ-sets.

Let M be a quasi-coherent (resp. coherent, resp. locally free of rank r) sheaf
on XL. Suppose M is defined over a finite subextension of L/k so that we may
assume L/k itself is finite. The so-called “Galois descent” for sheaves answers the
question when M can be defined by a quasi-coherent (resp. coherent, resp. locally
free of rank r) sheaf over k. A sufficient and necessary condition is that there exists
a system (ισ)σ∈g of isomorphisms ισ : x∗σM → M satisfying ιτ ◦ x∗τ (ισ) = ιστ for
all σ, τ ∈ g.

Now suppose given a quasi-projective scheme X̃ over L. As it can be defined
over a finite subextension of L/k, we may assume L/k is already finite. The Galois
descent for schemes asserts that X̃ can be defined over k if and only if there is a
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system (Tσ)σ∈g of k-isomorphisms X̃ → X̃ such that for every σ ∈ g the following
diagram commutes:

X̃
Tσ−−−−→ X̃y

y

Spec L
S(σ)−−−−→ Spec L

Basically, as the question is local, descent for sheaves or schemes reduces to
descent of purely algebraic structures. To be precise, suppose L/k is finite and Ã
is a vector space (resp. an algebra) over L. Then there is a vector space (resp.
an algebra) A over k such that Ã ∼= A ⊗k L if and only if Ã is equipped with a
semi-linear g-action, i.e., Ã admits a g-action such that for each σ ∈ g, the map
Ã → Ã given by a 7→ σ(a) satisfies

σ(αa) = σ(α)σ(a) , ∀ α ∈ L, a ∈ Ã .

4.1.2 Algebraic Groups

Let k be a field. For our use, an algebraic k-group (or simply a k-group) is
an algebraic k-group scheme, where by a k-group scheme we mean a k-scheme
X for which the functor of points X(−) := Mork(−, X) : Alg/k → Set is given a
factorization through the category Group of groups.

Let G , H be algebraic k-groups. A homomorphism of algebraic groups from
H to G is a morphism ϕ : H → G of k-schemes such that for each A ∈ Alg/k, the
natural map ϕA : H(A) → G(A) is actually a group homomorphism. In contrast to
the set Mork(H, G) of morphisms of schemes, the set of homomorphisms of algebraic
groups from H to G will be denoted by Homk(H, G).

Let G be an algebraic k-group. An algebraic subgroup of G is a homomor-
phism ϕ : H → G such that ϕA : H(A) → G(A) is an injective group homomor-
phism for every A ∈ Alg/k. If ϕ is moreover a closed immersion, we say H is a
closed subgroup of G.

In what follows, algebraic subgroups are tacitly assumed to be closed subgroups
unless otherwise stated.

Any group scheme over a field is separated, so algebraic k-groups are k-varieties.
Group-theoretic and algebraic-geometric notions may be spoken of for algebraic
groups. For example, a k-group G is called commutative if for every A ∈ Alg/k,
G(A) is a commutative abstract group, an algebraic subgroup H is called normal
in G if for every A ∈ Alg/k, H(A) is normal in G(A) as abstract subgroups, and G
is called smooth if it is smooth as a k-variety.

Examples 4.1.2. Let k be a field.
(1) Spec k is an algebraic k-group which takes any A ∈ Alg/k to the trivial

group. We will usually denote this k-group by 1. Note that for any k-group G,
there are two natural homomorphisms G → 1 and 1 → G; the first one is given by
the structural morphism G → Spec k and the second one is given by the identity
element of the group G(k).

(2) Spec k[t] is an algebraic k-group whose functor of points is given by A ∈
Alg/k 7→ (A, +) ∈ Group, where (A , +) means the underly additive group of A.
The standard notation for this k-group is Ga, k, or simply Ga when the ground field
is clear from the context, and it is called the additive group over k.

(3) Spec k[t, t−1] is an algebraic k-group with functor of points given by A 7→ A∗.
This k-group is called the multiplicative group over k, and the standard notation
is Gm ,k, or simply Gm.
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(4) The n-th general linear group over k is the algebraic k-group GLn de-
termined by the k-scheme Spec (k[t, xij ]1≤i, j≤n/(t det(xij)− 1)). It represents the
functor

A 7→ GLn(A) = { g ∈ Mn(A) | det(g) ∈ A∗ } .

Note that GL1 = Gm.
(5) Assume here char k = 0. For any n ≥ 1, Spec (k[t]/(tn − 1)) is a k-group,

usually denoted µn, such that

µn(A) = { a ∈ A | an = 1 } , ∀ A ∈ Alg/k .

We call µn the group of n-th roots of unity . Since k is assumed to have char-
acteristic 0, µn is smooth.

(6) Let G be a finite abstract group. Define G :=
∐

g∈G Sg where Sg = Spec k
for all g ∈ G. Then for each A ∈ Alg/k, G(A) is the set of locally constant functions
from Spec A to G. So G becomes an algebraic k-group and G(K) = G for any field
extension K/k. We call this G the constant group associated to G. The constant
groups associated to the groups Z/nZ will be simply written Z/nZ.

If G and G′ are algebraic k-groups, then G×k G′ also has a natural structure of
algebraic k-groups, and for any A ∈ Alg/k,

(G×k G′)(A) = G(A)×G′(A) .

More generally, given homomorphisms of algebraic groups ϕ : G → H and ψ : G′ →
H, the fibre product G×H G′ is an algebraic group and for A ∈ Alg/k,

(G×H G′)(A) = G(A)×H(A) G′(A) = { (a, b) ∈ G(A)×G′(A) |ϕ(a) = ψ(b) } .

For a homomorphism of k-groups ϕ : G → H, the kernel of ϕ exists as an
algebraic group. In fact, this kernel is represented by the fibre product G′ = G×H 1
of ϕ : G → H and e : 1 → H, where e is the natural homomorphism defined by
the identity element of H(k). The natural projection α : G′ → G identifies for
each A ∈ Alg/k the group G′(A) with the kernel of the group homomorphism
ϕA : G(A) → H(A). This kernel is a closed subgroup of G, and is smooth if ϕ is
smooth.

Definition 4.1.3. A sequence of homomorphisms of algebraic k-groups

1 −→ G′ α−→ G
β−→ G′′ −→ 1

is said to be exact if α is a closed immersion identifying G′ with the kernel of β
and β is a faithfully flat morphism. (This implies that for an algebraic closure kac

of k, the corresponding sequence

1 −→ G′(kac) −→ G(kac) −→ G′′(kac) −→ 1

is an exact sequence of abstract groups. When k has characteristic 0, this condition
is also sufficient for the exactness of the above sequence of algebraic groups.) The
group G′′ is called the quotient of G by G′.

Although much more subtle, the existence of quotients by normal subgroups in
the category of k-groups can be proved. In other words, if α : N → G is a closed
normal subgroup of G, there is a homomorphism β : G → H such that the sequence

1 −→ N
α−→ G

β−→ H −→ 1

is exact.
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A k-group G is called a linear algebraic group over k if it is a smooth closed
subgroup of some GLn. This is equivalent to saying that G is a smooth affine
k-group. All the k-groups given in Examples 4.1.2 are linear. The additive group
Ga can be embedded into GL2 via the matrix representation:

a 7→
(

1 a
0 1

)
.

A algebraic k-torus (or simply a k-torus) is a k-group T such that T ∼= Gn
m, k̄

as k̄-groups. In particular, a torus is a linear algebraic group.

4.1.3 Torsors and Cohomology

The objective of this section is to review basic notions and facts on torsors. For a
friendly introduction to this subject, we refer to [15].

Let k be a field, k̄ a fixed separable closure of k and g = Gal(k̄/k) the Galois
group. Let X be a k-variety and G a smooth algebraic k-group. A torsor under
G over X (or a G-torsor over X) is a k-variety Y , equipped with a surjective flat
k-morphism f : Y → X and a right action (defined over k) of G on it: (y, g) 7→ y · g
such that the morphism

Y ×k G −→ Y ×X Y , (y, g) 7→ (y, y · g)

is an isomorphism of k-varieties. This means that the action of G on Y preserves
the fibres of f , and the action on each geometric fibre is faithful and transitive: for
any y1, y2 ∈ Y (k̄) with f(y1) = f(y2), there exists a unique g ∈ G(k̄) such that
y1 · g = y2. A torsor over Spec k will be called simply a torsor over k.

Two G-torsors f : Y → X and f ′ : Y ′ → X are said to be isomorphic if there
is an isomorphism of k-varieties ϕ : Y → Y ′ such that f ′ ◦ϕ = f and ϕ(yg) = ϕ(y)g
for all y ∈ Y (k̄) , g ∈ G(k̄).

Examples 4.1.4. (1) Let X be a k-variety and G a smooth k-group. Y = X ×k G
together with the natural projection Y → X is a G-torsor over X. The G-action is
given by (x, g) · g′ := (x, gg′). A torsor isomorphic to X ×k G is called trivial . A
trivial G-torsor over k is isomorphic to G.

(2) Assume char k 6= 2. Let X = A1 \ { 0 }, and let Y ⊆ A2 be the subvariety
defined by y2 = x , x 6= 0. The projection (x, y) 7→ x makes Y into a torsor over X
under the finite constant group G = Z/2Z. The action of the nontrivial element of
G is given by (x, y) 7→ (x, −y).

(3) Let X = Spec k. A torsor Y over k is simply a k-variety, equipped with
a faithful and transitive action of G(k̄) on Y (k̄) which is compatible with the left
action of g = Gal(k̄/k), namely, γ(yg) = γ(y)γ(g) for all y ∈ Y (k̄), g ∈ G(k̄) and
γ ∈ g. (The last condition means that the action of G is defined over k, as may be
seen by using Galois descent.)

If G is finite (meaning that G(k̄) is finite), then Y is a finite k-variety since
there is a faithful and transitive action of G(k̄) on Y (k̄). So Y ∼= Spec A for some
finite-dimensional k-algebra A. The set Y (k̄) is just the set HomAlg/k

(A, k̄). Thus
Y = Spec A is equipped with a G-torsor structure as soon as HomAlg/k

(A, k) is
given a faithful and transitive action of G(k̄) which is compatible with the left action
of g.

For a specific example, consider a finite Galois extension L/k. Let G be the
finite constant k-group associated to Gal(L/k), i.e., G(k̄) = Gal(L/k) and the
g-action on G(k̄) is trivial. Then Y = Spec L is a G-torsor over k. Indeed,
Y (k̄) = HomAlg/k

(L, k̄) = Gal(L/k) and we can define the action of G(k̄) on
Y (k̄) = HomAlg/k

(L, k̄) by the product in the group Gal(L/k). For any γ ∈ g and
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y ∈ Y (k̄) = HomAlg/k
(L, k̄), γ(y) = γ̃y, where γ̃ is the image of γ in Gal(L/k).

Thus

γ(y · g) = γ̃yg = γ(y)g = γ(y)γ(g) , ∀ y ∈ Y (k̄), g ∈ G(k̄), γ ∈ g

where the last equality holds because g acts trivially on G(k̄).
(4) Take k = Q and L = Q( 3

√
2). Fix a primitive cubic root of unity ξ in

Q. Then HomAlg/Q(L, Q) = {σ0, σ1 , σ2 } where σi sends 3
√

2 to ξi 3
√

2. The cyclic
group C3 of order 3 acts faithfully and transitively on HomAlg/Q(L, Q). But to
obtain a Galois-compatible action, C3 must be equipped with the nontrivial action
of Gal(Q(ξ)/Q). So Spec L is a torsor over Q under the finite nonconstant group
µ3, but it is not a torsor under the constant group Z/3Z.

A G-torsor Y over k is trivial if and only if Y (k) 6= ∅. Indeed, if Y (k) 6= ∅, we
can pick a point y0 ∈ Y (k). Then G is isomorphic to Y via the morphism g 7→ y0g.
So any torsor over an algebraically closed field is trivial.

More generally, a G-torsor Y over a variety X is trivial if and only if the struc-
tural morphism f : Y → X has a section over k. Indeed, if s is a section of f , then
the trivial torsor X ×k G is isomorphic to Y via the morphism (x, g) 7→ s(x)g.

We want to relate torsors to cohomology sets. For this purpose, let’s first review
some basics on non-abelian group cohomology. For more details, see for example
[29].

Let Γ be a profinite group and let A be a Γ-group. We will often denote by γa
the element γ(a) for γ ∈ Γ , a ∈ A. Define the set

H0(Γ, A) := AΓ = { a ∈ A | γa = a ,∀ γ ∈ Γ } .

A cocycle is a continuous map c : Γ → A, γ 7→ cγ such that cγ1γ2 = cγ1
γ1cγ2 for all

γ1, γ2 ∈ Γ. Let Z1(Γ, A) denote the set of cocyles. For a given element a ∈ A, the
map γ 7→ cγ := a−1γa defines a cocycle. Such a cocycle is said to be trivial . We
define an equivalence relation on Z1(Γ, A) by setting

c ∼ c′ ⇐⇒ there exists a ∈ A such that c′γ = a−1cγ
γa , ∀ γ ∈ Γ .

The first cohomology set H1(Γ, A) is by definition the quotient of Z1(Γ , A)
divided by this equivalence relation. The class of trivial cocycles forms a distin-
guished element of H1(Γ, A). When A is abelian, namely a Γ-module, the sets
Hi(Γ, A) , i = 0, 1 have naturally an abelian group structure.

Now we take Γ = g = Gal(k̄/k) and A = G(k̄), where as before G is a smooth
k-group and k̄ is a fixed separable closure of k. We write Hi(k, G) (resp. Z1(k, G))
in place of Hi(g, G(k̄)) for i = 0, 1 (resp. Z1(g, G(k̄))) .

The cohomology set H1(k, G) has the following functorial behaviours:
(1) A field extension k1 ⊆ k2 induces a continuous map Gal( k2/k2) → Gal( k1/k2).

Since G( k1) ⊆ G( k2), we obtain a map Z1(k1, G) −→ Z1(k2, G), which is compat-
ible with the equivalence relation defining H1. Hence the field extension k1 ⊆ k2

induces a map of pointed sets H1(k1, G) → H1(k2, G).
(2) If G → G′ is a homomorphism of k-groups, then an element of Z1(k, G) can

be pushed to Z1(k, G′). So there is an induced map H1(k, G) → H1(k, G′).
For torsors there are similar functorial behaviours.
(1) Let k ⊆ k′ be a field extension and let Y be a G-torsor over k. Then

Y ′ := Y ×k k′ is a torsor under G′ := G×k k′ over k′.
(2) Let G → G′ be a homomorphism of k-groups. Although more subtle, there

is a natural way to associate to each G-torsor Y over k a G′-torsor Y ′ over k. When
G′ = G/H is the quotient of G by a normal subgroup H, then Y ′ is just the quotient
of Y by the action of H.
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Now we are ready to relate torsors over k to cohomology sets. Let T G
k be the set

of isomorphism classes of G-torsors over k. The trivial torsors define a distinguished
element of T G

k . Given a G-torsor Y over k, and fix an element y0 ∈ Y (k̄). For any
γ ∈ g = Gal(k̄/k), there exists a unique cγ ∈ G(k̄) such that γ(y0) = y0cγ . It’s easy
to check that c is a cocycle and that if one replaces y0 by y′0 = y0g with g ∈ G(k̄),
then cγ is replaced by g−1cγ

γg. Thus, the class [c] of c in H1(k, G) does not depend
on y0. If ϕ : Y → Y ′ is an isomorphism of torsors, then the equality γ(y0) = y0cγ

implies γ(ϕ(y0)) = ϕ(y0)cγ , so the class [c] ∈ H1(k, G) does not change when Y is
replaced by any other isomorphic torsor. We obtain in this way a well-defined map
λ : T G

k −→ H1(k, G).

Theorem 4.1.5. With notation as above, the map λ : T G
k → H1(k, G) is an

isomorphism of pointed sets that is functorial in k and G.

For torsors over a general variety X, there is an analogous result in which the
étale cohomology set H1

ét(X, G) has to be introduced as a generalization of H1(k, G)
and some additional assumptions (which are satisfied if G is a linear algebraic group)
are needed.

Theorem 4.1.6. Let G be a linear k-group and let T G
X be the set of isomorphism

classes of G-torsors over a k-variety X. Then there is an isomorphism of pointed
sets T G

X
∼= H1

ét(X, G) that is functorial in X and G.

For a proof of Thms. 4.1.5 and 4.1.6, see for example [25, p.123, Prop. 4.6].
Standard facts on cohomology sets include the following.

Theorem 4.1.7. Let 1 → G′ → G → G′′ → 1 be an exact sequence of smooth
k-groups. Then there is an exact sequence of pointed sets:

1 → G′(k) → G(k) → G′′(k) → H1(k, G′) → H1(k, G) → H1(k, G′′) .

If G′, G ,G′′ are commutative, the above sequence is an exact sequence of abelian
groups. Similar results hold for the étale cohomology.

Proof. See [25, p.122, Prop. 4.5].

Theorem 4.1.8 (Hilbert’s Theorem 90). For any field k, one has

H1(k, Gm) = 0 .

More generally, H1
ét(A, Gm) = 0 for any local ring A.

Proof. See [25, p.124, Lemma 4.10].

4.1.4 The Weil Restriction

Let F/k be a field extension. The usual base change procedure enables us to extend
a k-scheme to an F -scheme. The so-called “restriction of scalars”, introduced
by Weil in [35], is a kind of operation in the opposite direction. For simplicity, we
restricted here to the case where F/k is a finite separable extension.

Let X be an (algebraic) F -scheme. It gives a functor X(−) : Alg/F −→ Set. By
composing it with the tensor product functor −⊗k F : Alg/k −→ Alg/F , we obtain
a functor

RF/kX : Alg/k −→ Set ; A 7→ X(A⊗k F ) .

It often happens that this functor is representable by a k-scheme, namely, there is
a k-scheme X ′ such that RF/kX ∼= X ′(−) as functors from Alg/k to Set. In that
case, the k-scheme which represents this functor is also denoted by RF/kX and is
called the Weil restriction , or the restriction of scalars, of X from F to k. It
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turns out that the scheme RF/kX always exists for any quasi-projective F -scheme
X. Here let us work in a bit more details only in the affine case.

Suppose

X = Spec B , with B = F [x1, . . . , xn]/(f1 , . . . , fm) , fi ∈ F [x1, . . . , xn] .

For any A ∈ Alg/k,

(RF/kX)(A) = { (α1, . . . , αn) ∈ (A⊗k F )n | fi(α1, . . . , αn) = 0 , ∀ i } .

Fix a basis v1, . . . , vr for F as a k-module, and write

αl =
r∑

j=1

βljvj , βlj ∈ A .

Then fi(α1, . . . , αn) can be developed into the following form:

fi(α1, . . . , αn) =
r∑

j=1

φij(βlj)vj

where φij are polynomials with coefficients in k in the variables βlj . Hence, the
functor RF/kX may be represented by the k-scheme Spec (k[βlj ]/(φij)).

In what follows, when we write down RF/kX we will always assume that it can
be represented by a scheme.

Some more properties of the Weil restriction are listed below.
Let X be an F -scheme and F/k a finite separable field extension.
(1) There is an isomorphism

Mork(− , RF/kX) ∼= MorF ((−)×k F , X)

of functors from k-schemes to sets.
(2) For any quasi-projective F -varieties X1, X2,

RF/k(X1 ×F X2) = (RF/kX1)×k (RF/kX2) .

(3) For a morphism u : X → Y of F -schemes, there is a natural k-morphism
RF/k(u) : RF/kX −→ RF/kY .

(4) If X is affine, so is RF/kX; if X is smooth, so is RF/kX. RF/kAm
F = Amn

k

with n = [F : k]. dimRF/kX = [F : k] dim X.
(5) If U is an open subset of X, then RF/kU is an open subset of RF/kX.
(6) For any field extension L/k, writing L⊗k F =

∏s
i=1 Mi as a product of fields,

there is a canonical isomorphism of L-schemes:

(RF/kX)×k L ∼=
s∏

i=1

RMi/L(X ×F Mi) .

(7) If G is an F -group, then RF/kG is a k-group; G is connected if and only if
RF/kG is connected; if G is commutative, then so is RF/kG.

(8) If T is a F -torus, then RF/kT is k-tours and (RF/kT )×k k̄ ∼= T1×k · · ·×k Tn

with n = [F : k].
(9) If 1 −→ G′ −→ G −→ G′′ −→ 1 is an exact sequence of F -groups, then the

corresponding sequence of k-groups

1 −→ RF/kG′ −→ RF/kG −→ RF/kG′′ −→ 1

is also exact.
(10) (Shapiro’s Lemma.) For any F -group G, one has H1(k, RF/kG) = H1(F, G).
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4.1.5 Tori and Lattices

As before, let k be a field and k̄ a fixed separable closure of k and g = Gal(k̄/k)
the Galois group. For a k-torus T , define its group of characters to be T̂ :=
Homk̄(T , Gm, k̄). The Galois group g = Gal(k̄/k) acts continuously on T̂ and thus
makes it into a g-module. As an abelian group, we have

T̂ = Homk̄(T , Gm ,k̄) = Homk̄(Gn
m, k̄, Gm ,k̄) ∼= Zn .

So T̂ is free of finite rank as a Z-module. We call such a g-module a g-lattice . The
precise definition is as follows.

Definition 4.1.9. Let Γ be a profinite group. By a Γ-lattice we mean a Γ-module
M that is free of finite rank as a Z-module. The dual of a Γ-lattice M is the lattice
M0 := HomZ(M , Z) with the Γ-action given by

(γ · f)(m) := f(γ−1m) , ∀ γ ∈ Γ, f ∈ M0 , m ∈ M .

A remarkable fact is that the functor T 7→ T̂ from the category of k-tori to the
category of g-lattices is an anti-equivalence. So up to isomorphism there is a unique
k-torus T ◦, called the dual torus of T , whose character group is the dual of T̂ .

Now let F/k be a finite separable extension contained in k̄/k. Consider the k-
tours T = RF/kGm. The g-module T̂ is isomorphic to Z[g/h], where h = Gal(k̄/F ).
There is an surjective homomorphism of g-modules, called the augmentation
map, given by

ε = εg/h : Z[g/h] −→ Z ; ε
(∑

niei

)
=

∑
ni .

where (ei) is a fixed set of representatives for g/h and Z is regarded as a trivial
g-lattice. Let Ig/h = Ker (εg/h). One has the exact sequence of g-lattices

0 −→ Ig/h −→ Z[g/h] ε−→ Z −→ 0 . (4.2)

Passing to dual lattices, we get an exact sequence

0 −→ Z ε0

−→ Z[g/h] −→ Jg/h −→ 0

where Jg/h = I0
g/h and ε0(1) = e1 + · · · + en with n = [F : k]. These two exact

sequences induce exact sequences of k-tori

1 −→ Gm, k −→ T = RF/kGm −→ T1 −→ 1

and
1 −→ T2 −→ T = RF/kGm

N−→ Gm, k −→ 1 .

The torus T = RF/kGm is an open subset of RF/kA1 = An
k and thus T1 can be

embedded as an open subset of the projective space Pn−1
k . Hence T1 is rational

over k. From this point of view, the torus T2 is much more interesting. For each
k-algebra A, the natural map

N : RF/kGm(A) = (A⊗k F )∗ −→ Gm(A) = A∗

is the usual norm map, and T2(A) is equal to the kernel of this map. Fix a k-basis
v1, . . . , vn for F/k, there is a universal polynomial N(x1, . . . , xn) ∈ k[x1, . . . , xn],
which is homogeneous of degree n, such that

N

(
n∑

i=1

ai ⊗ vi

)
= N(a1, . . . , an) .
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As a variety, T2 may be represented as a hypersurface in An
k defined by the norm

equation:
N(x1, . . . , xn) = 1

where x1 , . . . , xn denote the coordinates of an element of F with respect to some
k-basis of F . We use the standard notation R1

F/kGm for the torus T2, and often
call it the norm one torus for F/k. It is Chevalley who first discovered that the
torus R1

F/kGm may be not k-rational for some F/k.

4.2 R-Equivalence on Tori

Let k be a field and let X be an algebraic k-scheme. Two rational points x, y ∈ X(k)
are said to be directly R-equivalent , written x

R∼
d

y, if there is a k-rational map

f : P1 99K X and two points a, b ∈ P1(k) such that f(a) = x and f(b) = y. We
may always choose the points a, b to be 0, ∞.

Let Ok denote the ring of all rational functions h(t) = f(t)/g(t) over k with
g(0)g(1) 6= 0. This is the ring of rational functions on A1

k that are regular at two
given rational points 0 and 1. The evaluation maps Ok → k , h(t) 7→ h(i) for
i = 0, 1 give two homomorphisms of k-algebras. The direct R-equivalence between
x, y ∈ X(k) amounts the same as to saying that there is a point α(t) ∈ X(Ok) such
that α(0) = x and α(1) = y.

The R-equivalence on X(k) is the equivalence relation generated by direct
R-equivalence. Namely, two points x, y ∈ X(k) are R-equivalent, written x

R∼ y, if
and only if there are points x0, x1 , . . . , xn ∈ X(k) such that

x = x0
R∼
d

x1
R∼
d

x2
R∼
d
· · · R∼

d
xn = y .

The set of R-equivalence classes will be denoted by X(k)/R. When it is a singleton,
we write it as X(k)/R = 0. For a field extension L/k, we will simply write X(L)/R
for the set XL(L)/R of R-equivalence classes of the L-scheme XL. The following
facts immediately follow from the definition.

Proposition 4.2.1. Let X, Y be two k-schemes and let K/k be a finite separable
extension.

(i) All rational points on an affine space An are directly R-equivalent to one fixed
point x0 ∈ An(k). The same is true for any open subset of An.

(ii) X(k)/R = 0 for X = An or Pn.
(iii) Any k-morphism f : X → Y induces a map of sets fR : X(k)/R → Y (k)/R.
(iv) The natural map (X ×k Y )(k)/R −→ X(k)/R× Y (k)/R is a bijection.
(v) If X ′ is a K-scheme and X = RK/kX ′ is the Weil’s restriction of scalars to

k, one has a bijection X(k)/R
∼−→ X ′(K)/R.

Proof. (i) If X is an open subset of An and x0, x1 ∈ X(k), we can find a line ` ∼= A1

in An connecting x0 , x1. Viewing X∩` as an open subset of A1, there is a k-rational
map f : P1 99K X which restricts to the identity map on X ∩ `.

(ii) This follows immediately from (i).
(iii) Clearly, two directly R-equivalent points in X(k) are mapped to directly

R-equivalent points in Y (k). Hence the natural map X(k) → Y (k) respects R-
equivalence.

(iv) Identify (X×k Y )(k) with X(k)×Y (k). Let z0 = (x0, y0) and z1 = (x1, y1)
be two points in (X ×k Y )(k). One sees easily from the definition that z0

R∼
d

z1 if

and only if x0
R∼
d

x1 and y0
R∼
d

y1.
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(v) We have an isomorphism of functors Mork(− , X) ∼= MorK((−) ×k K, X ′).
So there is a bijection ϕ : X ′(K) ∼−→ X(k). Let x′, y′ ∈ X ′(K) and let x =
ϕ(x′), y = ϕ(y′) ∈ X(k). Suppose x

R∼
d

y. There is an open subset of V of P1
k and

a k-morphism f : V → X such that f(0) = x and f(∞) = y. Then we have the
following commutative diagram

MorK(VK , X ′) −−−−→ Mork(V, X)y
y

MorK(K, X ′)
ϕ−−−−→ Mork(k, X)

where the vertical maps can be the evaluation at 0 or ∞. If follows that x′ R∼
d

y′.

Hence the natural map X ′(K) ∼−→ X(k) → X(k)/R induces a bijection X ′(K)/R
∼−→

X(k)/R.

Proposition 4.2.2. Let X be any (algebraic) k-scheme. Let x, y ∈ X(k) be rational
points of X. We can also regard them as elements in Z0(X). Then

x
R∼ y in X(k) =⇒ x

rat∼ y in Z0(X) .

Proof. We may assume x and y are directly R-equivalent. There is a k-rational map
f : P1 99K X such that f(0) = x and f(∞) = y. Let U be the domain of definition
of f . Let V = Γf ⊆ P1 ×X be its graph. The first projection induces a birational
morphism p : V → U . We have

x− y = [V (0)]− [V (∞)]

where, as in Prop. 1.2.6, V (Q) is the image of p−1(Q) under the second projection
q : P1 ×X → X for Q = 0 or ∞. So Prop. 1.2.6 implies that x

rat∼ y in Z0(X).

According to the above proposition, there is a well-defined map X(k)/R →
CH0(X). Let A0(X) denote the subgroup of CH0(X) consisting of classes of degree
0 and fix a point x0 ∈ X(k). There is a well-defind map X(k)/R → A0(X) sending
a point x to [x]− [x0].

As to the birational invariance of the set X(k)/R, one has the following result
due to Colliot-Thélène and Sansuc.

Proposition 4.2.3 ([7, p.195, Prop. 10]). Let X, Y be smooth, projective, irre-
ducible k-varieties. Any k-rational map f : X 99K Y defines a map fR : X(k)/R →
Y (k)/R which coincides with the natural one everywhere f is defined. If f : X → Y
is a birational map, then fR : X(k)/R → Y (k)/R is a bijection. So X(k)/R is a
birational invariant in the category of smooth projective irreducible k-varieties, and
if such a variety X is k-rational, one has X(k)/R = 0.

Definition 4.2.4. Let X be a smooth irreducible k-variety. A smooth compact-
ification of X, if it exists, is an open immersion i : X → X ′ from X into a smooth
projective irreducible variety X ′.

By Hironaka’s theorem (cf. [17]), a smooth compactification exists when char k =
0.

Corollary 4.2.5. Let X be a smooth irreducible k-variety. Supppose X has a
smooth compactification i : X → X ′. Then the property that the map iR : X(k)/R →
X ′(k)/R is bijective (resp. injective, resp. surjective) does not depend on the choice
of smooth compactifications.
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Proof. If i : X → X ′ and j : X → X ′′ are two smooth compactifications of X, there
is a birational map f : X ′ 99K X ′′ such that f ◦ i = j as birational maps. The result
then follows from Prop. 4.2.3.

Let G be an algebraic k-group. There is a well-defined map

G(k)/R×G(k)/R = (G×G)(k)/R −→ G(k)/R

induced by the group multiplication. So the set G(k)/R can be equipped naturally
with a group structure. Let R(k, G) be the R-equivalence class of the identity
element 1 ∈ G(k). This is a normal subgroup of G(k) and G(k)/R is isomorphic to
G(k)/R(k, G).

Proposition 4.2.6. Let G be an algebraic k-group. Any two R-equivalent points
in G(k) are directly R-equivalent.

Proof. Let g, g′ ∈ G(k) and g
R∼ g′. There is a chain of elements g0, g1 , . . . , gn of

G(k) such that g0 = g, gn = g′ and gi
R∼
d

gi+1 for all i = 0, 1 , . . . , n−1. By induction,

we may assume n = 2 and g0 = 1. There exist points f0(t), f1(t) ∈ G(Ok) such
that f0(0) = 1 , f0(1) = g1, f1(0) = g1, f1(1) = g2. Let h(t) = f1(t)f0(1 − t)−1.
Then h(0) = 1 = g0 and h(1) = g2. This proves the proposition.

The set G(k)/R for algebraic groups is birationally invariant in a somewhat
weaker sense. This is the content of the following proposition.

Proposition 4.2.7 ([7, p.197, Prop. 11]). Let k be an infinite field. Let G and G′

be connected linear k-groups that are k-unirational. If G and G′ are k-birationally
equivalent, then there is a bijection of sets G(k)/R

∼−→ G′(k)/R.

Here, an integral k-variety X is said to be k-unirational if there is a dominant
k-rational map Pn 99K X. Using Chevalley’s theorem on fibre dimensions, one can
choose such a rational map with n = dim X (cf. [22, p.51, Def. 12.8]). A connected
linear k-group G is k-unirational if G is reductive (meaning that G(k̄) 6= 1 and the
maximal connected normal unipotent subgroup of G(k̄) is trivial) or if k is perfect
(cf. [33, §4.1]). In particular, any k-torus is unirational.

Remark 4.2.8. After making translations, we may suppose the bijection G(k)/R
∼−→

G′(k)/R respects the identity elements of groups. But it’s not evident a priori that
the map is a group isomorphism.

Proposition 4.2.9 ([7, p.203, Prop. 13]). Let T be a k-torus.
(i) The rational equivalence on T (k) coincides with the R-equivalence.
(ii) If T → X is a smooth compactification of T , then the natural map T (k)/R →

X(k)/R is bijective. So if T is rational, T (k)/R = 0.

4.3 Flasque Resolution of Tori

Let Γ be a profinite group. Recall that a Γ-lattice is a Γ-module M that is free of
finite rank as a Z-module. The Γ-action on the dual lattice M0 = Hom(M, Z) is
given by

(γ · f)(m) := f(γ−1m) , ∀ γ ∈ Γ, f ∈ M0 , m ∈ M .

Definition 4.3.1. A Γ-lattice M is said to be
(1) a permutation lattice if it admits a Z-basis X = { e1, . . . , en } that is

stable under Γ-action (this implies that for any γ ∈ Γ, the map X → X ; x 7→ γx
is bijective. Indeed, if γe1 = γe2, then we get a contradiction: e1 − e2 = γ−1γ(e1 −
e2) = 0);

52



4.3. FLASQUE RESOLUTION OF TORI

(2) invertible if there is another Γ-lattice N such that M ⊕N is a permutation
Γ-lattice;

(3) coflasque if H1(Γ′, M) = 0 for all open subgroup Γ′ of Γ;
(4) flasque if its dual lattice M0 is coflasque.

Proposition 4.3.2.
(i) A permutation lattice is isomorphic to its dual.
(ii) An invertibel lattice is both flasque and coflasque.

Proof. (i) Let M be a permutation lattice with a Z-basis X = { e1 , . . . , en } stable
under Γ. M0 has a Z-basis Y = { f1, . . . , fn } dual to X, that is, fi(ej) = δij .
Since the Γ-action is given by (γ · f)(m) = f(γ−1m), Y is stable under Γ. In fact,
if γei = ej then γfi = fj . The map M −→ M0 sending ei to fj is therefore an
isomorphism of Γ-lattices.

(ii) It is enough to prove the result for permutation lattices. In view of (i), we
need only prove a permutation lattice M is coflasque. We want to show that for
any open subgroup Γ′ = Γ of Γ, H1(Γ′ ,M) = 0. Without loss of generality, we may
assume Γ′ = Γ since M is also a permutation Γ′-lattice. Let X = { e1, . . . , en } be
a Γ-stable Z-basis for M , and let X = X1 tX2 t · · · tXr be the decomposition of
X into disjoint Γ-orbits. Then we have M = M1 ⊕M2 ⊕ · · · ⊕Mr, where Mi is the
permutation Γ-lattice with Z-basis Xi. It suffices to prove H1(Γ, Mi) = 0 for each
i. So we may assume Γ acts transitively on X. Now let Γ′ := { γ ∈ Γ | γe1 = e1 } be
the stablizer of e1. This is an open subgroup of Γ. We have M = Ze1⊕· · ·⊕Zen

∼=
Z[Γ/Γ′] since Γ-acts transitively on X = { e1, . . . , en }. It follows that M ∼= Z[Γ/Γ′]
is isomorphic to the induced module

IndΓ′
Γ (Z) := { continuous map f : Γ → Z | f(γ′s) = f(s) , ∀ γ′ ∈ Γ′ , s ∈ Γ }

where Z is given the trivial Γ′-action. By Shapiro’s lemma, we obtain

H1(Γ, M) ∼= H1(Γ′ , Z) = Homcont(Γ, Z) .

The last group vanishes because Γ′ is profinite and

Homcont(Γ′, Z) = lim←−Hom(Γ′/Γ′α , Z) = 0 ,

where the limit is taken over all the open subgroups Γ′α of Γ′. This completes the
proof.

Let M be a Γ-lattice. A flasque resolution of M is a short exact sequence of
Γ-lattices

0 −→ M −→ P −→ F −→ 0

in which P is a permuation lattice and F is a flasque lattice; a coflasque resolution
of M is a short exact sequence of Γ-lattices

0 −→ Q −→ R −→ M −→ 0

in which R is a permuation lattice and Q is a coflasque lattice.
The following lemma, of primary importance, was already used by Lenstra in

[20] (in the proof of Prop. 1.2).

Lemma 4.3.3. Every Γ-lattice has a flasque resolution and a coflasque resolution.

Proof. By duality, we need only consider the existence of a coflasque resolution. We
may assume Γ is finite. For a surjective homomorphism of Γ-lattices R → M with
R a permutation lattice, its kernel Q is coflasque if and only if for any subgroup Γ′
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of Γ, the induced RΓ′ −→ MΓ′ is again surjective. For each subgroup Γ′, let Γ act
on Z[Γ/Γ′]⊗Z MΓ′ by

σ · (γ ⊗m) := σγ ⊗m ∀ σ ∈ Γ, γ ∈ Γ/Γ′, m ∈ MΓ′ .

We have a natural map Z[Γ/Γ′] ⊗Z MΓ′ −→ M ; γ ⊗ m 7→ γ · m. To obtain a
coflasque resolution of M , it is therefore sufficient to take R → M to be the direct
sum, over all subgroups Γ′ of Γ, of the maps Z[Γ/Γ′]⊗Z MΓ′ → M .

We say two Γ-lattices M and N are equivalent if there are permutation Γ-
lattices P and Q such that M ⊕ P ∼= N ⊕ Q. The flasque resolution of a given
lattice M is unique in the following sense ([7, p.181, Lemme 5]): for any flasque
resolution

0 −→ M −→ P −→ F −→ 0

the equivalence class of F depends only on M , which we will denote by ρ(M).
Now we take Γ = g = Gal(k̄/k). Let T be an algebraic k-torus. We denote by

T̂ its group of characters, i.e. T̂ := Hom(T , Gm, k̄). The functor T 7→ T̂ establishes
an anti-equivalence between the category of algebraic k-tori with the category of
g-lattices.

Definition 4.3.4. Let T be an algebraic k-torus. We say T is
(1) trivial , or split (“déployé” in French) over k, if T̂ is a trivial g-lattice (this

is equivalent to saying that T is k-isomorphic to a product Gm, k × · · · ×Gm, k;
(2) quasi-trivial , or quasi-split , if T̂ is a permutation g-lattice;
(3) flasque (resp. coflasque) if T̂ is a flasque (resp. coflasque) g-lattice.

Note that a quasi-trivial k-torus T is an open subset of an affine space An
k , hence

is k-rational. Indeed, the decomposition of a permutation basis of T̂ gives rise to a
decomposition T = T1×· · ·×Tr in which each T̂i

∼= Z[g/hi] for some open subgroup
hi of g. If Ki := k

hi is the subfield of k̄ consisting of invariants under hi, we have
Ti
∼= RKi/kGm , Ki

, where RKi/k denotes the Weil restriction of scalars. So a quasi-
trivial torus T is isomorphic to a finite product of tori of the form RK/kGm, K , where
K/k is a finite separable extension K/k. As a variety, RK/kGm, K is an open subset
of RK/kA1

K
∼= Ad

k with d = [K : k]. Hence, a quasi-trivial torus T is k-isomorphic
to an open subset of some An

k .
A flasque resolution of a k-torus T is a short exact sequence of k-tori

1 −→ S −→ P −→ T −→ 1

with P quasi-trivial and S flasque. The anti-equivalence between the k-tori and
g-lattices establishes a bijective correspondence between flasque resolutions of T
and those of the g-lattice T̂ . Lemma 4.3.3 tells us that every k-torus has a flasque
resolution. The equivalence class ρ(T̂ ) will be also denoted by ρ(T ).

Lemma 4.3.5. Let P be a k-torus. If there is a torus P ′ such that P × P ′ is
quasi-trivial, then H1(k, P ) = 0.

Proof. We may assume P is quasi-trivial and is of the form RK/kGm. Then

H1(k, P ) = H1(k, RK/kGm) ∼= H1(K, Gm) = 0

by Shapiro’s lemma and Hilbert’s theorem 90.

If 1 → S → P → T → 1 and 1 → S′ → P ′ → T are two flasque resolutions of T ,
then there exist quasi-trivial tori Q, Q′ such that S × Q ∼= S′ × Q′. Lemma 4.3.5
implies that, for any flasque resolution

1 −→ S −→ P −→ T −→ 1 ,
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the group H1(k, S) depends only on ρ(T ).
The class ρ(T ) characterizes an important invariant of the torus T . Here we

need the notion of stably rationality . Two integral k-varieties X and Y are said
to be stably k-rationally equivalent if X ×k An

k
∼= Y ×k Am

k for some n , m ≥ 1. An
integral k-variety X is said to be stably rational if it is stably rationally equivalent
to some affine space An

k .
Note that for any k-variety X, the absolute Galois group g = Gal(k̄/k) acts on

X, hence also on various objects attached to X, e.g. the Chow groups and so on.

Theorem 4.3.6.
(i) Let T1, T2 be k-tori. Then ρ(T1) = ρ(T2) if and only if T1 and T2 are stably

k-rationally equivalent.
(ii) Suppose X is a smooth compactification of a k-torus T . There is a flasque

resolution of T
1 −→ S −→ P −→ T −→ 1 (4.3)

in which Ŝ = CH1(X) and P̂ is the permutation g-lattice with Z-basis the set of all
irreducible components of X \ T .

Proof. See [7, pp.189–190] or [3, pp.19–21].

Let X be a functor from the category Alg/k of k-algebras to the category Set of
sets, for example X = H1

ét(−, G) where G is an algebraic group. For a field extension
L/k, we can define the R-equivalence on X(L) as follows. Let OL be the semi-
local ring of rational functions h(t) = f(t)/g(t) ∈ L(t) such that g(0)g(1) 6= 0.
For i = 0 or 1, there is a natural map OL → L sending h(t) to h(i). We say two
points x, y ∈ X(L) are directly R-equivalent if there is an α(t) ∈ X(OL) such that
α(0) = x and α(1) = y. The R-equivalence on X(L) is defined to be the equivalence
relation generated by the direct R-equivalence. If X is the functor of points X(−)
defined by a k-scheme X, this definition of R-equivalence coincides with the old
one.

Let 1 → S → P → T be an exact sequence of tori flasque with P quasi-trivial.
There is an étale k-algebra E such that P ∼= RE/kGm. For any semi-local ring A
in Alg/k, one has

H1
ét(A, P ) ∼= H1

ét(A⊗k E, Gm) = 0

by Shapiro’s lemma and Hilbert’s theorem 90. So for any field extension L/k we
have the following commutative diagram with exact rows

P (OL) −−−−→ T (OL) −−−−→ H1
ét(OL, S) −−−−→ 0y

y
y

P (L) −−−−→ T (L) −−−−→ H1(L, S) −−−−→ 0

where the vertical maps can be the evaluation at 0 or 1. It follows that there is an
induced exact sequence

P (L)/R −→ T (L)/R −→ H1(L, S)/R −→ 0 .

Since the quasi-trivial torus P is rational, we have P (L)/R = 0. Hence T (L)/R ∼=
H1(L, S)/R.

The following result, due to Colliot-Thélène and Sansuc and fundamental for
our later use, reveals an important link between flasque resolutions and the R-
equivalence for tori.

Theorem 4.3.7 ([7, p.199, Thm. 2]). Let T be a k-tori. Any flasque resolution
1 → S → P → T → 1 of T induces an isomorphism of groups

T (k)/R ∼= H1(k, S) .
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Corollary 4.3.8. For algebraic tori the group T (k)/R is birationally invariant.

Proof. The group H1(k, S) depends only on ρ(T ). The result follows immediately
from Thm. 4.3.6 and Thm. 4.3.7. The group T (k)/R is even invariant under stably
rational equivalence.

4.4 Functors related to R-Equivalence and Zero-
Cycles

In this section, let T be an algebraic k-torus and let X be a smooth compactification
of T .

For each field extension L/k, there is a well-defined map

ϕL : T (L)/R −→ A0(XL) ; [t] 7→ [t]− [1] . (4.4)

Proposition 4.4.1. With notation as above, the property that ϕL is bijective (or
injective, or surjective) does not depend on the choice of the smooth compactification
X.

Proof. We may assume L = k. Let T → X and T → X ′ be two smooth compacti-
fications. There are mutually inverse birational maps X 99K X ′ and X ′ 99K X that
are identical on T . Their graphs define two correspondences α ∈ Cor(X, X ′) =
CHn(X ×X ′) and β ∈ Cor(X ′, X) = CHn(X ′×X). There are induced homomor-
phisms α∗ : CH0(X) → CH0(X ′) and β∗ : CH0(X ′) → CH0(X), mutually inverse,
that are compatible with the map ϕ (cf. [11, §16.1]).

Questions we are interested are: is ϕ a group homomorphism and is it an isomor-
phism? The two questions are easily solved for the cases dim T = 1 or 2, because all
tori of dimension ≤ 2 are rational ([33, §4.9]), and the group A0(X) is birationally
invariant for smooth projective varieties ([11, Example 16.1.11], there the hypothe-
sis that the ground field is algebraically closed is useless). So if dimT ≤ 2, we have
T (k)/R = 0 and A0(X) ∼= A0(Pn) = 0 where n = 1 or 2.

The main result discussed in this thesis is that in the 3-dimensional case it can
also be proved that ϕ is a group isomorphism (cf. Thm. 4.6.4).

Let Field/k be the category of field extensions of k and let Set be the category
of sets. We may regard L 7→ T (L)/R and L 7→ A0(XL) as functors from Field/k to
Set. Then ϕL : T (L)/R → A0(XL) can be viewed as a morphism of functors.

Consider the flasque resolution in (4.3):

1 −→ S −→ P −→ T −→ 1 .

The SL-torsor PL over TL can be extended to an SL-torsor q : U → XL over XL

by [7, p.194, Prop. 9]. For a closed point xL of XL, the fiber UxL
of q over xL is a

torsor under Sκ(xL) over κ(xL). Denote by [UxL
] its class in H1(κ(xL), S). By [7,

p.198, Prop. 12], the map

ψL : CH0(XL) −→ H1(L, S) = T (L)/R ; xL 7→ Nκ(xL)/L([UxL
]) , (4.5)

where the norm map Nκ(xL)/L is the usual one in Galois cohomology (it is called
the “corestriction” in [29]), extends to a well-defined group homomorphism. Let
ψ̃L = ψL|A0(XL) be its restriction to A0(XL). It is obvious that ψ̃L ◦ ϕL = Id. It
follows that the map ϕL is injective, and when ϕL is bijective, it is an isomorphism
of groups since ψ̃L is a group homomorphism.

We may regard the assignments L 7→ CH0(XL), L 7→ H1(L, S) as functors from
Field/k to Set, and ψL as a morphism of functors. We now start the study of ϕL

and ψL as morphisms of functors.
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Definition 4.4.2. Let A : Field/k −→ Set be a functor. We say
(1) A is a functor with norms, if for any finite extension E/F with E, F ∈

Field/k, there is a given norm map NE/F : A(E) −→ A(F ) such that (i) NE/E = Id
and (ii) if L/E is another finite extension, one has NL/F = NE/F ◦NL/E ;

(2) A is a functor with specializations, if for any DVR over k of geometric
type (i.e., a DVR that is a localization of a finitely generated k-algebra) O, with
quotient field L and residue field K, there is a given map sA, O : A(L) −→ A(K)
called a specialization map.

Definition 4.4.3. Let A, B : Field/k → Set be two functors and let α : A → B be
a morphism.

(1) Assume that A and B have norms. We say α commutes with norms if for
any finite extension E/F in Field/k, the following diagram

A(E) αE−−−−→ B(E)

NE/F

y
yNE/F

A(F ) αF−−−−→ B(F )

is commutative.
(2) Assume that A and B have specializations. We say α commutes with

specializations if for any DVR O of geometric type with quotient field L and
residue field K, the following diagram

A(L) αL−−−−→ B(L)

sA, O

y
ysB, O

A(K) αK−−−−→ B(K)

is commutative.

Examples 4.4.4. (1) The usual norm (or corestriction) map in Galois cohomology
endows the functor H1(L, S) with norms.

(2) Let E/F be a finite extension in Field/k. We have

T (E) = T (E ⊗k k̄)g = HomAlg/k
(A, E ⊗k k̄)g

= HomAlg/k̄
(A⊗k k̄, E ⊗k k̄)g = HomAlg/k̄

(k̄〈T̂ 〉, E ⊗k k̄)g

= HomZ(T̂ , E
∗
)g = (T̂ 0 ⊗Z E

∗
)g

where A is the coordinate ring of the torus T , E = E ⊗k k̄ and k̄〈T̂ 〉 is the group
algebra based on T̂ . There is a natural norm map

NE/F : T (E) = (T̂ 0 ⊗ E
∗
)g −→ T (F ) = (T̂ 0 ⊗ F

∗
)g

induced by the usual norm for the field extension E/F . Thus the functor L 7→ T (L)
is equipped with norms. The functor L 7→ T (L)/R therefore inherits norms from
L 7→ T (L).

The isomorphism of functors T (L)/R
∼−→ H1(L, S) induced by the natural maps

T (L) → H1(L, S) clearly commutes with norms.
(3) For a finite extension E/F in Field/k, the natural morphism π : XE → XF

is proper. We take the norm map NE/F : CH0(XE) → CH0(XF ) to be the proper
push-forward π∗. In this way the functor L 7→ CH0(XL) is endowed with norms.
There is a natural way to equip the functor L 7→ A0(XL) with norms such that the
inclusion A0(XL) ↪→ CH0(XL) commutes with norms.
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(4) Let 1 → S → P → T → 1 be any flasque resolution of the torus T . Let α
be an endomorphism of the torus S. It induces an endomorphism of functors

T (L)/R = H1(L, S) −→ T (L)/R = H1(L, S) ; t 7→ α(t)

that commutes with norms.

Example 4.4.5. † Let O be a DVR of geometric type over k with quotient field L
and residue field K. The specialization map s : CH0(XL) → CH0(XK) is defined
as follows (cf. [11, §20.3]). There is an exact sequence (a variant of Prop. 1.3.6 in
the relative case)

CH1(XK) i∗−→ CH1(XO)
j∗−→ CH0(XL) −→ 0

where i∗ and j∗ denote the push-forward and pull-back induced by the natural
morphisms XK → XO and XL → XO. For an element α ∈ CH0(XL), we pick α′ ∈
CH1(XO) such that j∗(α′) = α. Then define s(α) = i!(α′), where i! : CH1(XO) →
CH0(XK) is the Gysin homomorphism (cf. [11, §6.2]). The map s is well-defined
since i! ◦ i∗ = 0 ([11, Thm. 6.3]). Thus, the functor F 7→ CH0(XF ) can be equipped
with specializations. The subfunctor F 7→ A0(XF ) inherits specializations such that
the inclusion A0(XF ) ↪→ CH0(XF ) commutes with specializations.

Example 4.4.6. Let O be a DVR of geometric type over k with quotient field L
and residue field K. Let 1 → S → P → T → 1 be any flasque resolution of the
torus T . By [8, Coro. 4.2], the natural homomorphism H1

ét(O, S) → H1(L, S) is
an isomorphism since S is flasque. The compostion

s : T (L)/R ∼= H1(L, S) ∼= H1
ét(O, S) −→ H1(K, S) ∼= T (K)/R

gives a specialization map. The group H1(L, S) is uniquely determined by the class
ρ(T ) (Lemma 4.3.5), so the specialization map s is independent of the choice of a
flasque resolution. Further, the natural map T (O) → H1

ét(O, S) is surjective since
H1

ét(O, P ) ∼= H1(L, P ) = 0. We have thus the following commutative diagram

T (L)/R

o
²²

T (L)oooo T (O)oo

²²²²

// T (K) // // T (K)/R

o
²²

H1(L, S) H1
ét(O, S)∼oo // H1(K, S)

which implies in particular that the composition T (O) → T (L) → T (L)/R is surjec-
tive. Let p ∈ T (L)/R and let q ∈ T (O) be a lift of p. It follows easily from the defi-
nition that s(p) is the image of q under the composition T (O) → T (K) → T (K)/R.

Lemma 4.4.7. Let T be an algebraic k-torus. Let t, t′ ∈ T be two elements such
that t′ specializes to t (i.e. t ∈ { t′ } ). Suppose that the local ring O = Ot′, t is a
DVR. Let s = sO : T (κ(t′))/R → T (κ(t))/R be the specialization map with respect
to O. Then s(t′) = t.

Proof. Let A = k[T ] be the coordinate ring of T and let p and p′ be prime ideals of
A corresponding to t and t′ respectively. Then O = Ap/p′Ap,

κ(t) = Ap/pAp = Frac(A/p) and κ(t′) = Frac(Ap/p′Ap) = Frac(A/p′) .

Let t̃ ∈ T (O) = HomAlg/k
(A, O) be the point given by the natural homomorphism

A → O. The images of t̃ under the maps T (O) → T (κ(t)) and T (O) → T (κ(t′))
coincide with t and t′ respectively. The result then follows from Example 4.4.6.

†This example involves intersection theory about general schemes rather than algebraic
schemes over a field. For details, see [11, Chapt.20]. Also, be careful that our notations here
use absolute dimensions.
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Now look at the morphisms of functors ϕ : T (−)/R → A0(X(−)) and ψ :
CH0(X(−)) → H1(−, S).

Proposition 4.4.8. Let T be a k-torus and X a smooth compactifiaction of T .
Then the morphism ψ in (4.5) commutes with norms.

Proof. Let E/F be a finite extension in Field/k, xE a closed point of XE and xF

the projection of xE to XF . We have

NE/F ([xE ]) = m[xF ] in CH0(XF ) with m = [κ(xE) : κ(xF )] .

The torsor UxE
over κ(xE) in the definition of ψ can be obtained by the base

extension of the torsor UxF
over κ(xF ) to κ(xE). The class [UxE

] is the image of
[UxF

] under the restriction map H1(κ(xF ), S) −→ H1(κ(xE), S) of cohomology
groups. By [29, p.119, Prop. 6], we have

Nκ(xE)/κ(xF )([UxE
]) = m[UxF

] .

Hence,

NE/F (ψE [xE ]) = NE/F Nκ(xE)/E([UxE
]) = Nκ(xE)/F ([UxE

])
= Nκ(xF )/F Nκ(xE)/κ(xF )([UxE

]) = Nκ(xF )/F (m[UxF
])

= ψF (m[UxF
]) = ψF (NE/F ([xE ])) .

This finishes the proof.

Proposition 4.4.9. Let T be a k-torus and X a smooth compactification of T .
Then the functor ϕ in (4.4) commutes with specializations.

Proof. Let O be a DVR of geometric type over k with quotient field L and residue
field K. For a point p ∈ T (O), let [p] denote the element in CH1(XO) determined
by the graph of the morphism p : Spec O → T → X. We need prove that the
following diagram is commutative

T (L) ←−−−− T (O) −−−−→ T (K)

ϕL

y ϕO

y ϕK

y

CH0(XL)
j∗←−−−− CH1(XO) i!−−−−→ CH0(XK)

(4.6)

where the map ϕO is defined by ϕO(p) := [p] − [1], and the maps i! , j∗ on the
bottom are as in Example 4.4.5.

Let E be either L or K. Let p be a point in T (O) and let q ∈ T (E) be its image.
We also regard p and q as morphisms p : Spec O → XO and q : Spec E → XE . By
(a generalization of) [11, Thm. 6.2], the following diagram is commutative

CH1(Spec O)
f−−−−→ CH0(Spec E)

p∗

y
yq∗

CH1(XO)
g−−−−→ CH0(XE)

where f is the map induced by the natural morphism Spec E → Spec O and g = j∗

if E = L or g = i! if E = K. It follows that

[q] = q∗(1E) = q∗f(1O) = gp∗(1O) = g([p])

proving the commutativity of the diagram (4.6).
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Lemma 4.4.10. Let A be a Noetherian regular ring. Let p be a prime ideal with
height ht p ≥ 1. Then there exists a prime ideal p′ ⊆ p such that Ap/p′Ap is a
1-dimensional regular local ring (or equivalently, a DVR).

Proof. The ring Ap is a regular local ring of dimension n = ht p ≥ 1. Choose el-
ements x1 , . . . , xn−1 from the maxmial ideal m := pAp such that their images in
m/m2 is linearly independent over the residue field Ap/pAp. Then Ap/(x1, . . . , xn−1)
is a regular local ring of dimension 1 ([30, p.79, Prop. 22]). There exists a corre-
sponding prime ideal p′ of A satisfying the required properties.

Proposition 4.4.11. Let T be a k-torus, B : Field/k → Set a functor with spe-
cializations, and θ, θ′ : T (−)/R → B two morphisms of functors commuting with
specializations. If the two maps θk(T ) and θ′k(T ) coincide at the generic point of T ,
then θ = θ′.

Proof. Let L/k be a field extension and p ∈ T (L). We want to show θL(p) = θ′L(p).
Let t ∈ T the the element that lies in the image of the morphism p : Spec L → T .
We view t as an element of T (κ(t)). Then the natural map T (κ(t)) → T (L) sends
t ∈ T (κ(t)) to p ∈ T (L). It suffices to show that θκ(t)(t) = θ′κ(t)(t).

We use induction on the codimension of t in T . By assumption, the result holds
if t the generic point of T . Now suppose codimtT > 0. By Lemma 4.4.10, there
exists a t′ ∈ T which specializes to t such that the local ring Ot′, t is a DVR. Since θ
and θ′ commute with specializations, it follows from Lemma 4.4.7 and the induction
hypothesis that

θκ(t)(t) = θκ(t)(s(t′)) = sB(θκ(t′)(t′)) = sB(θ′κ(t′)(t
′)) = θ′κ(t)(s(t

′)) = θ′κ(t)(t) .

The proposition is thus proved.

4.5 K-Theory of Toric Models

Let k be a field and k̄ a fixed separable closure of k.

Definition 4.5.1. Let T be an algebraic k-torus. A smooth projective toric
model of T is a smooth compactification T → X such that the translation action
of T on itself extends to an action on X.

It is known that any torus admits a smooth projective toric model in arbitrary
characteristic (cf. [6]).

Let T be a k-torus and X a smooth projective toric model of T . We are going
to use K-theory of schemes. A survey of main results on this topic is given in
Appendix A. Recall that the K-groups and K ′-groups make no distinction for X
since it is smooth.

For each K-group Kn(X), the i-th term of the topological filtration on Kn(X)
will be denoted by Kn(X)(i). The quotient Kn(X)(i)/Kn(X)(i+1) will be denoted by
Kn(X)(i/i+1) or gri Kn(X). The absolute Galois group g = Gal(k̄/k) acts naturally
on the K-groups Kn( X ) and the subgroups Kn(X)(i) are stable under g-action.
We have the BGQ-spectral sequence

Epq
1 (X) =⇒ K−p−q(X)

which converges to the K-groups of X with the topological filtration. The E2-terms
Epq

2 are canonically isomorphic to the K-cohomology groups Hp(X, K−q), which
may be computed via the Gersten resolution. Further, we have

Epq
2 = 0 , if p < 0, or p + q > 0 , or p > dimX
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and Ep,−p
2 = Hp(X, Kp) = CHp(X). So the E2-terms are as follows:

CH0(X) 0 0 0 · · ·

H0(X, K1)

**VVVVVVVVVVVVVVVVVVVVVVV CH1(X) 0 0 . . .

H0(X, K2) H1(X, K2)

**VVVVVVVVVVVVVVVVVVVVVV CH2(X) 0 . . .

H0(X, K3) H1(X, K3) H2(X, K3) CH3(X) . . .

Useful information we can draw from the above spectral sequence includes the
following.

Firstly, by Thm. A.3.12, the differential map

d1 : E0,−1
1 =

⊕

x∈X(0)

K1(κ(x)) = k(X)∗ −→ E1,−1
1 =

⊕

x∈X(1)

K0(κ(x)) = Z1(X)

is given by f ∈ k(X)∗ 7→ [div(f)] ∈ Z1(X). It follows that

H0(X, K1) = E0,−1
2 = Ker

(
k(X)∗ d1−→ Z1(X)

)
= k∗ .

Secondly, we have

CH1(X) = E1,−1
2

∼= E1,−1
∞ = K0(X)(1/2) . (4.7)

Further, we have on the one hand a pull-back homomorphism α : k∗ = K1(k) →
K1(X) induced by the structural morphism X → Spec k, and on the other hand
an edge homomorphism β : K1(X) → H0(X, K1) = k∗. As a matter of fact, the
composition β ◦α is the identity on k∗. Since the edge homomorphism β factors as

K1(X) = K1(X)(0) ³ E0,−1
∞ = K1(X)(0/1) ½ E0,−1

2

which is a surjection followed by an injection, it follows that the map E0,−1
∞ ½

E0,−1
2 is also surjective, hence bijective. This implies that all the differentials start-

ing at E0,−1
r , r ≥ 2 are zero maps. From this we see immediately that

CH2(X) = E2,−2
2

∼= E2,−2
∞ = K0(X)(2/3) . (4.8)

Proposition 4.5.2. Let X be a smooth projective toric model of a k-torus T . Then
the Chow motive X ∈ CMk̄ is split.

Proof. By [19, Prop. 3, Coro. 2], X satisfies the conditions (i) and (ii) of Prop. 3.2.8.
The result then follows.

By Lemma 3.2.7, we get the following corollary.

Corollary 4.5.3. Let X be a smooth projective toric model of a k-torus T . Then
the product map

CHp( X )⊗Kq(k̄) −→ Hp( X, Kp+q)

is an isomorphism for all p, q.
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In the following theorem, we collect main results on K-theory of toric models
that are useful for later discussion.

Theorem 4.5.4 ([24] and [23, §2.1]). Let X be a smooth projective toric model of
a k-torus. Let d = dim X.

(i) K0( X ) and K0( X )(1) are invertible g-lattices.
(ii) K0( X )(d) is isomorphic to the trivial g-lattice Z, with a generator [Ox] where

x is a rational point of X. The natural inclusion K0( X )(d) → K0( X ) is a split
homomorphism of g-lattices.

(iii) The natural maps

Ki(X) −→ Ki(X )g and Ki(X)(1) −→
(
Ki( X )(1)

)g

are isomorphisms for i ≤ 1.
(iv) The product maps

K0( X )⊗K1(k̄) −→ K1( X ) and K0(X )(1) ⊗K1(k̄) −→ K1( X )(1)

are isomorphisms.
(v) The natural map H1(X, K2) → H1(X, K2)g is an isomorphism.

4.6 Zero-Cycles on 3-dimensional Toric Models

In this section, let T be a 3-dimensional k-torus and X a smooth projective toric
model of T .

The Epq
2 being 0 for all p > 3, the BGQ-spectral sequence

Epq
2 (X) = Hp(X, K−q) =⇒ K−p−q(X)

yields an exact sequence (cf. [2, p.328, Thm. 5.11])

K1(X)(1) −→ H1(X, K2) −→ CH3(X)
g−→ K0(X) (4.9)

where g is the edge homomorphism.
Consider the flasque resolution of T in (4.3)

1 −→ S −→ P −→ T −→ 1

where P̂ is the permutation g-lattice with Z-basis the set of irreducible components
of X \ T and Ŝ = CH1( X ). The pairing

CH1( X )⊗ CH2( X ) −→ Z ; α⊗ β 7→ deg(α · β)

induces a perfect duality of g-lattices (Prop. 4.5.2 and Prop. 3.2.8). Hence, Ŝ0 ∼=
CH2( X ). Applying (4.7) and (4.8) to X, we get isomorphisms

K0( X )(1/2) ∼= CH1( X ) = Ŝ, K0( X )(2/3) ∼= CH2( X ) .

Thus, the exact sequence

0 −→ K0(X )(2) −→ K0( X )(1) −→ K0(X )(1/2) −→ 0

gives rise to an exact sequence of tori

1 −→ S1 −→ Q −→ S◦ −→ 1 (4.10)
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where S◦ is the dual torus of S, Ŝ0
1 = K0( X )(2) and Q̂0 = K0( X )(1). By

Thm. 4.5.4 (ii), we have isomorphisms

Ŝ0
1 = K0( X )(2) ∼= K0( X )(2/3) ⊕ Z ∼= CH2( X )⊕ Z ∼= Ŝ0 ⊕ Z .

Hence S1
∼= S×Gm. By Thm. 4.5.4 (i), Q̂0 is an invertible g-lattice, so there exists

a k-torus Q̃ such that Q × Q̃ is a quasi-trivial torus. As a product of flasque tori,
S1 × Q̃ is also flasque. The exact sequence

1 −→ S1 × Q̃ −→ Q× Q̃ −→ S◦ −→ 1

is thus a flasque resolution of S◦. By Thm. 4.3.7 and Lemma 4.3.5, we have

S◦(L)/R ∼= H1(L, S1 × Q̃) ∼= H1(L, S1) ∼= H1(L, S) ∼= T (L)/R (4.11)

for any field extension L/k. It follows from the exact sequence (4.10) that

Coker (Q(k) → S◦(k)) = S◦(k)/R . (4.12)

Remark 4.6.1. We have the following interpretation of R-equivalence on a 3-
dimensional torus T : there is a natural isomorphism

T (k)/R ∼= H1(k, T ◦)/R

where T ◦ is the dual torus of T . Indeed, the dual of the flasque resolution (4.3)
gives an isomorphism S◦(k)/R ∼= H1(k, T ◦)/R (cf. §4.3, p.55). Using (4.11), we
get

T (k)/R ∼= S◦(k)/R ∼= H1(k, T ◦)/R .

The edge homomorphism g : CH3(X) → K0(X) factors as

CH3(X)
η−→ E3,−3

∞ = K0(X)(3) ↪→ K0(X)

where η sends the class of a closed point x to the class [Ox], and the composition

CH3(X) −→ CH3( X )
η−→ K0(X )(3) ∼= Z

is the degree map (cf. [24, §5]). Since the map K0(X)(3) → K0(X )(3) is injective
by Thm. 4.5.4, taking into account the following commutative diagram

CH3(X)
η−−−−→ K0(X)(3)

y
y

CH3( X )
η−−−−→ K0( X )(3)

we conclude that
Ker (g) = A0(X) . (4.13)

Using Thm. 4.5.4 (iii)–(v) and Coro. 4.5.3, we obtain isomorphisms

K1(X)(1) ∼=
(
K1( X )(1)

)g ∼=
(
K0( X )(1) ⊗K1(k̄)

)g

= (Q̂0 ⊗ k̄∗)g = Q(k) (4.14)

and

H1(X, K2) ∼= H1( X, K2)g ∼=
(
CH1( X )⊗K1(k̄)

)g

= (Ŝ ⊗ k̄∗)g = S◦(k) . (4.15)
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It follows from the fact that the BGQ-spectral sequence is compatible with
products (cf. [12, §7]) that, the map K1(X)(1) → H1(X, K2) in (4.9) coincides
with the map Q(k) → S◦(k) given by (4.10) under the identifications (4.14) and
(4.15). Hence, by (4.9), (4.12) and (4.13), we have

S◦(k)/R = Coker (Q(k) → S◦(k))

= Coker (K1(X)(1) → H1(X, K2)) ∼= Ker (g) = A0(X) .
(4.16)

Combined with (4.11), this yields

T (k)/R ∼= S◦(k)/R ∼= A0(X) . (4.17)

We have thus proved the following result.

Proposition 4.6.2. Let T be a 3-dimensional k-torus and X a smooth projective
toric model. Then there is an isomorphism of functors from Field/k to Set

ρ : T (−)/R
∼−→ A0(X(−)) (4.18)

For each L ∈ Field/k, ρL : T (L)/R
∼−→ A0(XL) is in fact a group isomorphism.

Remark 4.6.3. When the field k is finitely generated over its prime field, or over
C, or is a p-adic field, the group T (k)/R is known to be finite (cf. [7] and [5]). In
all these cases, the isomorphism (4.17) implies finiteness of the group A0(X).

Theorem 4.6.4 (Main Theorem). Let T be a k-torus of dimension ≤ 3 and X
a smooth compactification of T . Then the map

ϕ : T (k)/R −→ A0(X) ; t 7→ [t]− [1]

is an isomorphism of groups.

First proof of main theorem. As mentioned earlier, we need only prove the the-
orem for 3-dimensional tori.

The field k is the union of all the subfields k′ that are finitely generated over its
prime field. There exists a subfield k0 that is finitely generated over the prime field
such that T and X are defined over k0. If k′/k0 and k′′/k0 are two subextensions of
k/k0 such that k′, k′′ are finitely generated over the prime field and k′ ⊆ k′′, then
the natural maps T (k′)/R → T (k′′)/R and A0(Xk′) → A0(Xk′′) are compatible
with ϕ. If ϕk′ : T (k′)/R → A0(Xk′) is an isomorphism for every k′, then so is the
map ϕk : T (k)/R → A0(Xk). So we may assume that the field k itself is finitely
generated over the prime field.

By [7, p.192, Thm. 1], T (k)/R is finite. Then (4.18) shows that A0(X) is a finite
group of the same cardinality. Since ϕ : T (k)/R → A0(X) is injective, it is also
bijective. It has an inverse ψ̃ which is known to be a group homomorphism. So ϕ
is an isomorphism of groups.

The above proof is straightforward and does not use the machinery of norms
and specializations of functors. But it is based on deep, albeit classical, arithmetic-
geometric result. We are going to give an alternative proof of our main theorem in
the next section.

4.7 Second Proof of Main Theorem

Proposition 4.7.1. Let T be a k-torus of dimension 3 and X a smooth projective
toric model of T . Then the isomorphism of functors ρ in (4.18) commutes with
norms.
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Proof. In view of Examples 4.4.4 (2), one finds easily that the isomorphism T (L)/R ∼=
S◦(L)/R in (4.11) commutes norms. It is therefore sufficient to prove the isomor-
phism S◦(L)/R

∼−→ A0(XL) given by (4.16) commutes with norms.
Let E/F be a finite extension in Field/k. We need only prove that the following

diagram is commutative

S◦(E) ∼−−−−→ H1(XE , K2) −−−−→ CH3(XE) = CH0(XE)

NE/F

y NE/F

y NE/F

y
S◦(F ) ∼−−−−→ H1(XF , K2) −−−−→ CH3(XF ) = CH0(XF )

(4.19)

The functor f∗ : M(XE) → M(XF ) induced by the natural projection f :
XE → XF takes Mp(XE) into Mp(XF ). So f∗ induces a morphism of the BGQ-
spectral sequences for XE and XF . Thus the commutativity of the right square in
(4.19) follows from the functoriality of the BGQ-spectral sequences.

By Thm. 4.5.4 (v), the left square in (4.19) injects into the following diagram

S◦( E ) −−−−→ H1(XE , K2)

NE/F

y
yNE/F

S◦( F ) −−−−→ H1(XF , K2)

Hence, to prove the left square is commutative, we may assume the torus S◦ splits.
Then the square becomes

Ŝ ⊗ E∗ −−−−→ H1(XE , K2)

NE/F

y
yNE/F

Ŝ ⊗ F ∗ −−−−→ H1(XF , K2)

where the horizontal maps are product maps under the identification Ŝ = CH1(X).
The commutativity then follows from the projection formula in K-cohomology (cf.
[28, §14.5]).

Proposition 4.7.2. Let T be a 3-dimensional k-torus and X a smooth projective
toric model of T . Then the isomorphism of functors ρ in (4.18) commutes with
specializations.

Proof. Note that the isomorphism in (4.11) commutes with specializations. We
need only prove that the isomorphism S◦(L)/R

∼−→ A0(XL) in (4.16) commutes
with specializations.

Let O be a DVR of geometric type over k with quotient field L and residue field
K. We first consider the diagram

H1(XK , K2) ←−−−− H1(XO, K2) −−−−→ H1(XL, K2)y
y

y
CH3(XK) ←−−−− CH3(XO) −−−−→ CH3(XL)

(4.20)

where the vertical maps are the differentials in the corresponding BGQ-spectral
sequences. The right square is commutative because the natural morphism g :
XL → XO is flat, it induces an exact functor M(XO) → M(XL) that respects
the topological filtration, hence a pull-back homomorphisms of the BGQ-spectral
sequences.

Note that XO is projective over O. XO admits an ample invertible sheaf. So
the natural morphism f : XK → XO induces an exact functor f∗ : M(XO, f) →
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M(XK) that respects the topological filtration (cf. §A.3.1, p.76). It follows that
f induces a pull-back homomorphism of the BGQ-spectral sequences for XO and
XK , whence the commutativity of the left square in (4.20).

It remains to show the following diagram is commutative

S◦(K) ←−−−− S◦(O) −−−−→ S◦(L)
y

y
y

H1(XK , K2) ←−−−− H1(XO, K2) −−−−→ H1(XL, K2)

As in the proof of Prop. 4.7.1, we may assume the torus S◦ splits. Then the
vertical maps in the above diagram are the product maps under the identifications
S◦(A) = Ŝ ⊗A∗ = CH1(X)⊗A∗ for A = K, O or L. The commutativity is then a
consequence of the projection formula in K-cohomology (cf. [28, §14.5]).

Let T be a k-torus and let 1 → S → P → T be a flasque resolution of T .
Let Endk(S) be the group of endomorphism of the k-torus S. An element α ∈
Endk(S) determines an endomorphism of the functor T (−)/R = H1(−, S), and this
morphism of functors commutes with norms and specializations (cf. Examples 4.4.4
(4) and Example 4.4.5).

Proposition 4.7.3. Let T be a k-torus, 1 → S → P → T → 1 a flasque resolution
and ξ the generic point of T . Then every element of the group T (k(T ))/R is of the
form t · α(ξ), where t ∈ T (k)/R and α ∈ Endk(S).

Proof. Consider the exact sequence

0 −→ k̄[T ]∗ −→ k̄
(
T

)∗ −→ Div( T ) −→ 0 .

The group of units k̄[T ]∗ of the ring of regular functions k̄[T ] on T is the direct
product of k̄∗ with T̂ (see, e.g., [3, p.6, Prop. 4.1]). Tensoring with Ŝ0 yields an
exact sequence

0 −→ (Ŝ0 ⊗ k̄∗)× (Ŝ0 ⊗ T̂ ) −→ Ŝ0 ⊗ k̄
(
T

)∗ −→ Div( T ) −→ 0 .

Taking Galois cohomology gives an exact sequence

H1(k, S)×H1(k, Ŝ0 ⊗ T̂ ) −→ H1(k(T ), S) −→ H1(k, Ŝ0 ⊗Div( T )) .

Note that Ŝ0 is a coflasque lattice and Div(T ) is a (usually infinite) direct sum
of permutation lattices. So we have H1(k, Ŝ0 ⊗ Div( T )) = 0 ([7, p.179, Lemme 1
(vi)]), whence a surjection

H1(k, S)×H1(k, Ŝ0 ⊗ T̂ ) −→ H1(k(T ), S) . (4.21)

Similarly, by tensoring the exact sequence

0 −→ T̂ −→ P̂ −→ Ŝ −→ 0

with Ŝ0 and taking Galois cohomomogy, we get a surjection

Endk(S) = H0(k, Ŝ0 ⊗ Ŝ) −→ H1(k, Ŝ0 ⊗ T̂ ) (4.22)

since H1(k, Ŝ0 ⊗ P̂ ) = 0. Combining the two surjective homomorphisms in (4.21)
and (4.22), we obtain a surjective homomorphism

(
T (k)/R

)× Endk(S) −→ T (k(T ))/R .

After a careful inspection on the construction of this map, we see that the image of
an element (1, α) ∈ (

T (k)/R
)×Endk(S) in T (k(T ))/R is equal to α(ξ). The result

then follows.
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Corollary 4.7.4. Let T be a 3-dimensional k-torus, 1 → S → P → T → 1 the
flasque resolution in (4.3) and X a smooth projective toric model of T . There is an
α ∈ Endk(S) such that ρ−1 ◦ ϕ = α as endomorphisms of the functor T (−)/R.

Proof. By Prop. 4.7.3, there is an α ∈ Endk(S) and a t0 ∈ T (k)/R such that
ρ−1 ◦ ϕ(ξ) = t0 · α(ξ), where ξ is the generic point of T . By Props. 4.4.9 and 4.7.2,
the morphism ρ−1 ◦ ϕ commutes with specializations. So Prop. 4.4.11 implies that
ρ−1 ◦ ϕ = t0 · α as morphism of functors. Since ρ−1 ◦ ϕ(1) = 1 = α(1), we get
t0 = 1.

Proposition 4.7.5. Let T be a 3-dimensional k-torus and X a smooth compacti-
fication of T . Then the morphism of functors ϕ in (4.4) is an isomorphism if and
only if it commutes with norms.

Proof. If ϕ is an isomorphism, then it commutes with norms because its inverse ψ̃
does by Prop. 4.4.8.

Conversely, suppose ϕ commutes with norms. We may assume X is a toric
model. Then Coro. 4.7.4 implies that ϕF : T (F )/R → A0(XF ) is a group homo-
morphism for each F ∈ Field/k. We already know that ϕF is injective. It remains
to show ϕF is surjective. By Prop. 1.5.1, every closed point of X is rationally
equivalent to a zero-cycle with support in T . Since ϕF is a group homomorphism,
it suffices to show that for any closed point x in T , with deg [x] = n, the element
[x]− n[1] ∈ A0(XF ) is in the image of ϕF . Let E = κ(x) and let x′ ∈ T (E) be the
natural point over x. By the commutativity of ϕ with norms, we get

[x]− n[1] = NE/F ([x′]− [1]) = NE/F (ϕE(x′)) = ϕF (NE/F (x′)) .

Hence, ϕF is surjective.

Second proof of main theorem. We may assume X is a smooth projective toric
model. By Coro. 4.7.4 and Prop. 4.7.1, the morphism of functors ϕ commutes with
norms. It follows from Prop. 4.7.5 that ϕ is an isomorphism.

4.8 Chow Groups of Lower Dimensional Tori

We are interested in the Chow group CH0(T ) of zero-cycles of a torus T over a field
k.

Consider first the easiest case: dim T = 1. If T = Gm, we have CH0(T ) = 0
since CH0(A1) = 0 and as an open subset of A1 there is a surjection CH0(A1) →
CH0(Gm). Now suppose T = R1

K/kGm for a quadratic extension K/k. For sim-
plicity, assume char k 6= 2. Then K = k(

√
a) for some a ∈ k∗ \ k∗2. Using the

k-basis { 1,
√

a } of K, one finds easily that T ∼= Spec
(
k[x, y]/(x2 − ay2 − 1)

)
as

k-varieties. Then the conic X defined by x2 − ay2 = z2 in P2
k is a smooth com-

pactification of T . Since X has a rational point (1 : 0 : 1), we have X ∼= P1
k so

that CH0(X) = Z · [1], where 1 denotes the neutral element of the group T (k).
The complement Z := X \ T is isomorphic to Proj

(
k[x, y, z]/(x2 − ay2, z)

) ∼=
Proj

(
k[x, y]/(x2 − ay2)

)
. So Z consists of a single point P = (

√
a : 1 : 0) with

residue field κ(P ) = K. The natural map CH0(Z) −→ CH0(X) = Z · [1] sends P to
(degP ) · [1] = 2 · [1]. Hence, from the exact sequence

CH0(Z) −→ CH0(X) = Z −→ CH0(T ) −→ 0

it follows that CH0(T ) = Z/2Z.
So CH0(T ) can be easily computed if dimT = 1. However, it seems that the

question is so easy only for 1-dimensional tori. A recent theorem (Thm. 4.8.6), due
to Merkurjev, provides a method for computing CH0(T ) for tori T with dimT ≤ 3.
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Definition 4.8.1. Let T be a k-torus. We say T is anisotropic over k if T̂ g = 0,
where g = Gal(k̄/k) is the absolute Galois group of k and T̂ is the group of characters
of T . If T is not anisotropic, we also say it is isotropic.

Lemma 4.8.2. Let T be an isotropic k-torus. Then
(i) T contains a (closed) subgroup isomorphic to Gm ;
(ii) T is stably birational to an anisotropic torus T1 with dimT1 < dimT .

Proof. Let K/k be a finite Galois extension such that T splits over K. Let G =
Gal(K/k) and we may regard T̂ as a G-lattice. Define N =

∑
s∈G s. The image of

multiplication by N on T̂ is a G-sublattice of T̂ with trivial G-action. Its kernel is
a lattice L such that LG = 0. So T can be put into an exact sequence of tori

1 −→ T0 −→ T −→ T1 −→ 1

where T0 is split and T1 is anisotropic. By Hilbert’s theorem 90, any torsor under
Gm is locally trivial for the Zariski topology. So there is a k-birational equivalence
between T and T0 ×k T1. T0 is isomorphic to a product of copies of Gm and T1 is
anisotropic of dimension less than dimT . This finishes the proof.

Lemma 4.8.3. Let T be a k-torus, X a smooth compactification of T and Z = X\T .
Then T is isotropic over k if and only if Z(k) 6= ∅.
Proof. The sufficiency part is a restatement of [7, p.203, Lemme 12] or [33, Prop. 17.3].

Now suppose T is isotropic. By Lemma 4.8.2, T contains a subgroup isomorphic
to Gm. The embedding of Gm into T extends to a morphism f : P1 → X. Since f
is nonconstant, f(P1) * T . Thus f(0) or f(∞) is a rational point of Z.

Let X be a smooth compactification of a torus T and Z = X \ T . Define

iT := gcd{ [L : k] |L/k a finite extension such that T is isotropic over L } ,

and
nZ := gcd{ [L : k] |L/k a finite extension such that Z(L) 6= ∅ } .

Corollary 4.8.4. With notation as above, the number iT coincides with nZ . There-
fore, the integer nZ does not depend on the choice of the smooth compactification.

Proof. This is immediate from Lemma 4.8.3.

Proposition 4.8.5. Let T be a k-torus. The class [1] of 1 ∈ T (k) is an element of
order iT in the group CH0(T ).

Proof. If T is isotropic, there is a closed subgroup T0 of T isomorphic to Gm. As
CH0(Gm) = 0, we have [1] = 0 in CH0(T0) and hence also in CH0(T ).

In the general case, let L/k be any finite field extension such that T is isotropic
over L. Then we have [1] = 0 in CH0(TL), and hence applying the norm map NL/k

yields [L : k] · [1] = 0 in CH0(T ). So iT · [1] = 0 and [1] ∈ CH0(T ) is an element of
finite order. Let m be its order in CH0(T ). Then the cycle m · [1] ∈ CH0(X) lies in
the image of the natural push-forward map CH0(Z) → CH0(X). In particular, there
is a zero-cycle on Z that has degree m. This implies that there exist integers mi ∈ Z
and finite extensions Li/k such that Z(Li) 6= ∅ for every i and m =

∑
i mi[Li : k].

It follows that nZ = iT divides m. Hence iT = m as required.

Theorem 4.8.6 (Merkurjev). Let T be a k-torus of dimension at most 3. Then
the map

µT :
(
T (k)/R

)⊕ (Z/iTZ) −→ CH0(T ) ; (t, l) 7→ [t]− [1] + l · [1]

is an isomorphism.
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Proof. The map µT is well-defined according to Prop. 4.8.5.
Since X has a rational point, we have a natural exact sequence

0 −→ A0(X) −→ CH0(X)
deg−→ Z −→ 0

which yields CH0(X) = A0(X)⊕Z·[1]. Let z ∈ Z be a closed point and let F = κ(z)
be its residue field. By Lemma 4.8.3, TF is isotropic. Lemma 4.8.2 shows that TF

is stably birational to a torus of dimension ≤ 2. So TF is stably rational and thus
T (F )/R = 0 (Coro. 4.3.8). Using (4.18), we get A0(XF ) = 0. Consider now the
following commutative diagram

CH0(ZF ) −−−−→ CH0(XF )

NF/k

y
yNF/k

CH0(Z) −−−−→ CH0(X)

where the horizontal maps are the natural push-forward maps. Let z′ ∈ ZF be
the canonical rational point lying over z ∈ Z. The image of z′ in CH0(XF ) =
A0(XF ) ⊕ Z · [1] is equal to ([z′] − [1], [1]) = (0, [1]). The diagram shows that the
image of z in CH0(X) = A0(X)⊕ Z · [1] is equal to (0, [F : k] · [1]). It follows that
the image of CH0(Z) in CH0(X) = A0(X)⊕ Z · [1] is equal to 0⊕ nZZ = 0⊕ iTZ.
Thus, the natural exact sequence

CH0(Z) −→ CH0(X) −→ CH0(T ) −→ 0

together with Thm. 4.6.4 gives the desired result.

Now let us compute the group CH0(T ) for some examples of lower dimensional
tori, using Merkurjev’s theorem.

Examples 4.8.7.
(1) Let K/k be a quadratic extension and T = R1

K/kGm. We have seen that
if char k 6= 2, T is isomorphic to a plane curve given by an equation of the form
x2−ay2− 1 = 0, where a ∈ k∗ \ k∗2. The conic X defined by x2−ay2 = z2 in P2

k is
a smooth compactification of T and Z = X \T may be defined by x2−ay2 = 0 = z.
Clearly, nZ 6= 1 and nZ | 2. So nZ = 2. Moreover, T is a rational curve, hence
T (k)/R = 0. So Merkurjev’s theorem gives the same result as it should be.

It is also easy to compute directly the number iT . In this way, we can even
work in arbitrary characteristic. Indeed, let G = Gal(K/k). T̂ can be regarded as
a G-module and it may be put into an exact sequence

0 −→ Z −→ Z[G] −→ T̂ −→ 0 .

Clearly, T̂G = 0 so that T is isotropic over K but not over k. Hence iT = 2.
(2) Let K/k be a cyclic Galois extension of degree 3 and let T = RK/kGm. As

an open subset of A3
k, we have CH0(T ) = 0. Now look at what Merkurjev’s theorem

gives us. We have T (k)/R = 0 since T is rational. The character group is T̂ = Z[G]
where G = Gal(K/k) = {σ0, σ1 σ2 } ∼= Z/3Z. Since T̂G = Z(σ0 + σ1 + σ2) 6= 0,
T is isotropic over k and hence iT = 1. So Merkurjev’s theorem gives indeed the
expected result: CH0(T ) = 0.

(3) Assume char k = 0. Let a ∈ k∗ \ k∗3, K = k( 3
√

a) and T = R1
K/kGm. Then

dimT = 2 and T is rational. Using the k-basis { 1 , 3
√

a,
3
√

a2 } of K, one finds that

T ∼= Spec
(
k[x1, x2, x3]/(x3

1 + ax3
2 + a2x3

3 − 3ax1x2x3 − 1)
)

.

Let
X ′ := Proj

(
k[x1, x2, x3, y]/(x3

1 + ax3
2 + a2x3

3 − 3ax1x2x3 − y3)
)
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and Z ′ := X ′ \ T . Then Z ′(k) = ∅, because if there was (α1 : α2 : α3 : 0) ∈ Z ′(k),
one would get a nonzero element α = α1 + α2

3
√

a + α3
3
√

a2 in K which satisfies
NK/k(α) = 0, but this is absurd since K is a field.

Let X be a desingularization of X ′ that respects the open set T and let Z = X\T .
Then Z(k) = ∅. Moreover, Z(K) 6= ∅ since there exists a point P = ( 3

√
a : −1 :

0 : 0) ∈ Z ′(K) which is nonsingular in X ′. It follows that nZ 6= 1 and nZ | 3, i.e.
nZ = 3. So by Merkurjev’s theorem, CH0(T ) ∼= Z/3Z, generated by [1] ∈ CH0(T ).

(4) Let K/k be a cyclic Galois extension of degree 3 and let T = R1
K/kGm. Then

dimT = 2, T is rational and therefore T (k)/R = 0. The exact sequence

0 −→ Z ε0

−→ Z[G] −→ T̂ −→ 0

yields an exact sequence

0 −→ Z ε0

−→ Z[G]G −→ T̂G −→ 0

since H1(G, Z) = 0. We know that Z[G]G = ε0(Z), so T̂G = 0. Hence iT = 3 and
CH0(T ) ∼= Z/3Z.

(5) Suppose K = k(
√

a ,
√

b ) is a Galois extension of k with group G =
Gal(K/k) ∼= (Z/2Z)2. Let T = R1

K/kGm. Write G = { eij | 0 ≤ i, j ≤ 1 } in such a
way that eij 7→ (i, j) ∈ (Z/2Z)2 is an isomorphism. Considering the exact sequence

0 −→ Z ε0

−→ Z[G] −→ T̂ −→ 0

we see that Z[G]G = ε0(Z) which implies T̂G = 0, and that Z[G]e01 = Z(e00 +
e01) + Z(e10 + e11) 6= ε0(Z) which implies T̂ e01 6= 0. So we get iT = 2 and thus
CH0(T ) ∼=

(
T (k)/R

)⊕Z/2Z. In this case, to know CH0(T ) is to know T (k)/R. By
using an exact sequence which involves the “Shafarevich groups”, one may prove
that if k is a number field, then T (k)/R ∼= (Z/2Z)s−1 for some s ≥ 1.

As a specific example, if K/k = Q(
√−1 ,

√
2)/Q, one has T (Q)/R = 0 (cf. [33,

p.183, Example 1]). So in that case, we have CH0(T ) = Z/2Z.
(6) Let K/k be a cyclic Galois extension of degree 4 and let T = R1

K/kGm.
We have T (k)/R = 0 by [33, p.182, Prop. 2 or Thm. 1]. Write G = Gal(K/k) =
{σ0, σ1 , σ2 , σ3 }. Considering the exact sequence

0 −→ Z ε0

−→ Z[G] −→ T̂ −→ 0

we find that Z[G]G = ε0(Z) which implies T̂G = 0, and that Z[G]σ2 = Z(σ0 +
σ2) + Z(σ1 + σ3) 6= ε0(Z) which implies T̂ σ2 6= 0. Therefore, iT = 2 and we get
CH0(T ) = Z/2Z by Merkurjev’s theorem.
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Appendix A

Survey on Higher Algebraic
K-Theory

In this appendix, we collect basic facts and results on Quillen’s higher algebraic
K-theory. Things of greatest interest for us will be the insights to the Chow groups
this theory has led to. The basic reference is Quillen’s paper [27].

A.1 Classifying Space of a Category

A.1.1 Simplicial Sets

For each nonnegative integer n, let

n := { 0 < 1 < · · · < n }

be the ordered set consisting of 0, 1, . . . , n. Form a category4 by taking the ordered
sets n as objects and taking as morphisms the maps f : m → n with the property
that f(i) ≤ f(j) for all i < j.

For each positive integer n, we have n + 1 morphisms in 4:

∂n
i : n− 1 −→ n , i = 0 , . . . , n

given by

∂n
i (j) =

{
j if j < i

j + 1 if j ≥ i

We call these ∂n
i the face maps. On the other hand, we have n maps

sn−1
i : n −→ n− 1 , i = 0 , . . . , n− 1

given by

sn−1
i (j) =

{
j if j ≤ i

j − 1 if j > i

These are called degeneracy maps.

Definition A.1.1. A simplicial object in a category C is a (covariant) functor
from 4op to C. A morphism of simpicial objects in C is a natural transformation
of functors. A simplicial set (resp. simplicial space) is a simplicial object in
Set (resp. Top).
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Let F : 4op → Set be a simplicial set. Then for each nonnegative integer n, the
set F (n) is called the set of n-simplices of F . The maps ∂n

i give rise to (n + 1)
maps of sets F (∂n

i ) : F (n) → F (n− 1), called the face maps, which associate to
each n-simplex in F (n) a collection of (n− 1)-simplices in F (n− 1). Similarly, the
n maps sn−1

i give maps F (sn−1
i ) : F (n− 1) → F (n), associating to each (n − 1)-

simplex a collection of “degenerate” n-simplices; these maps F (sn−1
i ) are called

degeneracies.
For δ ∈ F (n), we call F (∂n

i )(δ) ∈ F (n− 1) the i-th face of δ, and F (sn
i )(δ) ∈

F (n + 1) the i-th degenerate simplex of δ.

A.1.2 Geometric Realization

To each simplicial set F : 4op → Set, one can associate a topological space |F |,
called the geometric realization of F . It is defined as the quotient space of∐

n≥0 F (n)×∆n modulo a suitable equivalence relation (cf. [31, §3]), where F (n)
is given the discrete topology and ∆n is the standard n-simplex in Rn+1, i.e.

∆n := { (t0 , . . . , tn) ∈ Rn+1 | ti ≥ 0 and
∑

ti = 1 } .

This construction of geometric realization is functorial in the sense that if F → G
is a morphism of simplicial sets, there is a corresponding continuous map |F | → |G|
of topological spaces. If F × G denotes the simplicial set whose n-simplices are
F (n) × G(n), with obvious maps, then the natural map |F × G| → |F | × |G| is
a continuous bijection. When |F | or |G| is compact, it induces a homeomorphism
from |F ×G| to |F | × |G|.

A.1.3 Classifying Space

Let C be a small category. The nerve of C, denoted NC, is the simplicial set defined
as follows: an n-simplex of NC is a diagram

A0
f1−→ A1

f2−→ A2
f3−→ · · · fn−→ An (A.1)

with Ai ∈ C, fi ∈ MorC(Ai−1, Ai); given a morphism f : m → n in 4, the
corresponding morphism NC(n) −→ NC(m) maps the above n-simplex to the m-
simplex

B0
g1−→ B1

g2−→ B2
g3−→ · · · gm−→ Bm

where Bj = Af(j) and gj+1 : Bj → Bj+1 is the composite map Af(j) → · · · →
Af(j+1) where if f(j) = f(j + 1), let Af(j) → Af(j+1) be the identity map. In
particular, the i-th face of the n-simplex in (A.1) is the (n− 1)-simplex

A0
f1−→ A1

f2−→ · · · −→ Ai−1

fi+1◦fi // Ai+1 −→ · · · fn−→ An

and the i-th degenerate simplex of (A.1) is the (n + 1)-simplex

A0
f1−→ A1

f2−→ · · · −→ Ai
Id−→ Ai

fi+1−→ Ai+1 −→ · · · fn−→ An .

The classifying space of C is defined to be the geometric realization of NC and is
denoted by BC, i.e. BC := |NC|.

If F : C → D is a functor between small categories, then there is an induced map
of simpicial sets NC → ND, and hence an induced continuous map BF : BC −→ BD.

Lemma A.1.2 ([27, p.92, Prop. 2]). Let F , G : C → D be functors between
small categories such that there is a natural transformation F → G, then the maps
BF , BG : BC → BD are homotopic.
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Corollary A.1.3. Let F : C → D be a functor between small categories. Suppose F
has a left adjoint or a right adjoint. Then BF is a homotopy equivalence of BC and
BD. In particular, if C is a small category with an initial object or a final object,
then BC is contractible.

Proof. If F has a left adjoint G, then there are natural transformations GF → Id
and Id → FG. The first assertion follows from Lemma A.1.2. If C has an initial
object α, let D be the small category with only one object α. Then the constant
functor F : C → D has a left adjoint, which is the inclusion D → C. Thus the
second assertion follows from the first one.

We say a small category is contractible if its classifying space is; and a functor
F is a homotopy equivalence if BF is one.

A.2 Exact Categories and Quillen’s Q-Construction

For our purposes, an exact category is an additive category C embedded as a full
subcategory of an abelian category A, which is closed under extension in the sense
that if

0 −→ M ′ −→ M −→ M ′′ −→ 0 (A.2)

is an exact sequence in A with M ′ ,M ′′ ∈ C, then M is isomorphic to an object
in C. An exact sequence in C is then defined to be a sequence of the form (A.2)
which is exact in A such that all the terms lie in C. An exact functor F : C → D
between exact categories is an additive functor such that if

0 −→ M ′ −→ M −→ M ′′ −→ 0

is an exact sequence in C, then

0 −→ F (M ′) −→ F (M) −→ F (M ′′) −→ 0

is an exact sequence in D.
Let C be an exact category. Define a new category QC as follows: let the objects

of QC be the objects of C, but a morphism X → Y in QC is an isomorphism class
of diagrams of the form

X
q
´ Z

i½ Y (A.3)

where i is an admissible monomorphism and q is an admissible epimorphism ;
by definition, this means that there are exact sequences

0 −→ Z
i−→ Y −→ Y ′ −→ 0

and
0 −→ X ′ −→ Z

q−→ X −→ 0

in C; and we say another diagram

X
q′

´ Z ′
i′½ Y

is isomorphic to the diagram (A.3) if there is an isomorphism Z
∼−→ Z ′ in C making

the diagram

X Z

o
²²

qoooo // i // Y

X Z ′
q′oooo // i′ // Y
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commute. Composition of morphisms in QC is defined as follows. Given morphisms
X ´ Z½Y and Y ´V ½T , form the following diagram in the ambient abelian
category A

X

Z

OOOO

// // Y

Z ×Y V

OOOO

// // V

OOOO

// // T

Since C is closed under extension, and

Ker (Z ×Y V → Z) ∼= Ker (V → Y ) ,

we have Z ×Y V ∈ C, and Z ×Y V ³ X, Z ×Y V ½ T are respectively admissible
epimorphism and monomorphism. Hence the diagram X ´ Z ×Y V ½ T defines
a morphism in QC from X to T . One checks that the isomorphism class of this
diagram depends only on the isomorphism classes of X´Z½Y and Y ´V ½T , so
that we have a well-defined composition rule for morphisms. Next, one verifies that
the composition is associative. Thus, when the isomorphism classes of diagrams of
the form (A.3) always form a set (e.g. if for every object of C, its subobjects form
a set), then QC is a well-defined category. In particular, for a small exact category
C, the category QC is defined and is small.

Recall that for an essentially small category C, its Grothendieck group K0(C)
is defined as the quotient of the free abelian group on isomorphism classes of objects
of C, divided by the subgroup generated by elements of the form [M ]− [M ′]− [M ′′]
for each exact sequence

0 −→ M ′ −→ M −→ M ′′ −→ 0

in C.

Theorem A.2.1 ([27, p.102, Thm. 1]). Let C be a small exact category. Let 0 be a
zero object of C. Then the fundamental group π1(BQC , 0) is canonically isomorphic
to the Grothendieck group K0(C).

This motivates the following definition of K-groups.

Definition A.2.2. For a small exact category C, the K-groups are defined as
Ki(C) := πi+1(BQC , 0) , ∀ i ≥ 0.

This definition for K-groups is in fact independent of the choice of the zero object
in C. Furthermore, note that the preceding definition extends to essentially small
categories: if C is an essentially small category, there exists a small subcategory C′
equivalent to C, so we can find define Ki(C) to be Ki(C′), the choice of C′ being
irrelevant by Lemma A.1.2. Note that higher homotopy groups of any topological
space are all abelian groups (see e.g. [13, p.30, Coro. 7.7]), so the K-groups are all
abelian.

From now on, exact categories will always be assumed to be essentially small,
except when mentioned otherwise.

If f : C → D is an exact functor between exact categories, there is an induced
functor from QC to QD, and hence a homomorphism of K-groups for each i, which
will be denoted

f∗ : Ki(C) −→ Ki(D) .
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Proposition A.2.3 ([27, p.106, Coro. 1]). Let 0 −→ F ′ → F → F ′′ → 0 be an
exact sequence of exact functors C → D between exact categories (meaning that
there are natural exact sequences 0 → F ′(M) → F (M) → F ′′(M) → 0 in D for all
M ∈ C ). Then

F∗ = F ′∗ + F ′′∗ : Ki(C) −→ Ki(D) , ∀ i ≥ 0 .

Theorem A.2.4 ([27, p.108, Thm. 3], Resolution Theorem). Let P be a full
additive subcategory of an exact category M which is closed under extension in M.
Then P is an exact category in a natural way such that the inclusion P ↪→ M is
an exact functor.

Assume further that
(i) if 0 → M ′ → M → M ′′ → 0 is an exact sequence in M and M, M ′′ ∈ P,

then M ′ ∈ P ;
(ii) for each object M ∈M, there is a finite resolution

0 → Pn → Pn−1 → · · · → P0 → M → 0

with Pi ∈ P.
Then BQP → BQM is a homotopy equivalence, and hence Ki(P) ∼= Ki(M) for

all i ≥ 0.

A.3 K-Theory of Rings and Schemes

A.3.1 Basic Constructions

Let A be a Noetherian ring. Let M(A) denote the category of finitely generated
A-modules. It is essentially small and can be regarded as a full subcategory of
the abelian category of all A-modules which is closed under extension since A is
Noetherian. So the notion Ki(M(A)) makes sense. Let P(A) denote the category
of finitely generated projective A-modules, so that P(A) is an exact category where
all exact sequences split. We define K ′

i(A) := Ki(M(A)) and Ki(A) := Ki(P(A)).
The inclusion P(A) ↪→M(A) induces natural homomorphisms Ki(A) → K ′

i(A).
Recall that a Noetherian ring A is called regular if every finitely generated

A-module has a finite resolution by finitely generated projective A-modules. This
definition coincides with the usual one for Noetherian local rings (cf. [30, p.76,
Thm. 9]).

Thus, the resolution theorem shows that if A is a regular Noetherian ring,
Ki(A) ∼= K ′

i(A) for all i.

Theorem A.3.1 ([27, p.122, Thm. 8]). Let A be a Noetherian ring. Then there
are natural isomorphisms for all i ≥ 0,

K ′
i(A) ∼= K ′

i(A[t]) and K ′
i(A[t, t−1]) ∼= K ′

i(A)⊕K ′
i−1(A) ,

where for i = 0, we set K ′
−1(A) = 0.

Corollary A.3.2. If A is a regular Noetherian ring, then for all i ≥ 0,

Ki(A) ∼= Ki(A[t]) and Ki(A[t, t−1]) ∼= Ki(A)⊕Ki−1(A) ,

where K−1(A) is defined to be 0.

Remark A.3.3. An important fact we shall use is that our definition of K1(A)
coincides with the one in Milnor’s book [26]. In particular, K1(A) = A∗ for any
local ring A.
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Now turn to K-theory of schemes.
For the rest of this appendix, we will assume all schemes to be Noetherian and

separated, unless explicitly mentioned otherwise.
Let X be a (Noetherian separated) scheme. Let P(X) be the category of locally

free sheaves of finite rank on X, and let M(X) be the category of coherent sheaves
on X. They are essentially small exact categories in the natural way, embedded as
full subcategories of the category of quasi-coherent sheaves of OX -modules. Define
Ki(X) := Ki(P(X)) and K ′

i(X) := Ki(M(X)). If X is regular, then since X is
quasi-compact, every coherent sheaf on X is a quotient of a locally free sheaf of finite
rank, and hence has a finite resolution by locally free sheaves of finite rank. So we
have in this case Ki(X) ∼= K ′

i(X) by the resolution theorem. If X = Spec A is affine,
then we have natural equivalence of categories P(X) ' P(A) and M(X) 'M(A).
Hence Ki(X) ∼= Ki(A) and K ′

i(X) ∼= K ′
i(A).

Given E in P(X), we have an exact functor E ⊗ − : P(X) → P(X) which
induces a homomorphism of K-groups (E ⊗ −)∗ : Ki(X) → Ki(X). If 0 → E ′ →
E → E ′′ → 0 is an exact sequence in P(X), then Prop. A.2.3 implies

(E ⊗−)∗ = (E ′ ⊗−)∗ + (E ′′ ⊗−)∗ .

Thus we obtain multiplication maps

K0(X)⊗Z Ki(X) −→ Ki(X) , [E ]⊗ η 7→ (E ⊗−)∗η .

Since K0(X) is a ring with the multiplication induced by tensor products of sheaves,
these maps make Ki(X) into modules over the ring K0(X). Similarly, we can make
K ′

i(X) into modules over K0(X).

Remark A.3.4. One can define product maps Ki(X) ⊗Z Kj(X) −→ Ki+j(X) for
all i, j, but this requires more machinery (cf. [31, p.58, Remark 5.7]).

Let f : X → Y be a morphism of schemes, then the inverse image functor
f∗ : P(Y ) → P(X) is exact, hence it induces homomorphisms of K-groups f∗ :
Ki(Y ) → Ki(X). Thus each Ki becomes a contravariant functor from (Noetherian
separated) schemes to abelian groups.

If f : X → Y is flat, then the functor f∗ : M(Y ) →M(X) is exact, so there are
induced homomorphisms: K ′

i(Y ) → K ′
i(X). Thus, K ′

i is a contravariant functor on
the subcategory of schemes and flat morphisms.

Let f : X → Y be a morphism of schemes. We say f is of finite Tor-dimension
if there is an integer N > 0 such that T orOY

i (OX , F ) = 0 for all i ≥ N and all
F ∈ M(Y ). Let M(Y, f) ⊆ M(Y ) be the full subcategory consisting of sheaves
F satisfying T orOY

i (OX , F ) = 0 for all i > 0. Then we have P(Y ) ⊆ M(Y, f).
Assuming that every F ∈ M(Y ) is a quotient of a member in M(Y, f), the reso-
lution theorem implies that the inclusion M(Y, f) ↪→M(Y ) induces isomorphisms
Ki(M(Y, f)) ∼= K ′

i(Y ). Combining this isomorphism with the homomorphism in-
duced by the exact functor f∗ : M(Y, f) → M(X), we obtain a homomorphism
f∗ : K ′

i(Y ) → K ′
i(X). The condition that every coherent sheaf on Y is a quotient

of an object of M(Y, f) holds if
(i) f is flat (whence M(Y, f) = M(Y ));
or
(ii) every coherent sheaf on Y is a quotient of an object of P(Y ) (e.g. if Y has

an ample invertible sheaf).
Let f : X → Y be a proper morphism now. The higher direct image functors

Rif∗ carry coherent sheaves on X to coherent sheaves on Y . Let F(X, f) denote the
full subcategory of M(X) consisting of F such that Rif∗F = 0 for all i > 0. As-
sume that every coherent sheaf on X is a subsheaf of a sheaf in F(X, f). Then there
will be an isomorphism Ki(F(X, f)) ∼= K ′

i(X) for every i (this is a consequence
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of the resolution theorem and the fact that there is an isomorphism QC ∼= QCop,
[31, p.104, Coro. 6.3]). Composing this isomorphism with the homomorphism in-
duced by the exact functor f∗ : F(X, f) → M(Y ), we obtain a homomorphism
f∗ : K ′

i(X) → K ′
i(Y ). The assumption that every coherent sheaf on X can be

embedded into an object of F(X, f) holds if
(i) f is finite (whence F(X, f) = M(X));
or
(ii) X has an ample invertible sheaf.

Proposition A.3.5 ([31, p.64, Prop. 5.12], Projection formula). Suppose f :
X → Y is a proper morphism which is of finite Tor-dimension. Assume X and Y
have ample invertible sheaves so that the maps

f∗ : K ′
i(Y ) −→ K ′

i(X) , and f∗ : K ′
i(X) −→ K ′

i(Y )

are defined. Then
(i) there is a well-defined homomorphism f∗ : Ki(X) −→ Ki(Y ) giving a com-

mutative diagram
Ki(X) −−−−→ K ′

i(X)

f∗

y
yf∗

Ki(Y ) −−−−→ K ′
i(Y )

(ii) for any x ∈ K0(X) , y ∈ K ′
i(Y ), we have

f∗(x) · y = f∗(x · f∗(y)) .

(iii) for any y ∈ K0(Y ), , x ∈ K ′
i(X), we have

f∗(f∗(y) · x) = y · f∗(x) .

Proposition A.3.6 ([27, p.127, Prop. 3.2]). Let Z be a closed subscheme of X, let
ι : Z ↪→ X be the inclusion, and let I be the ideal of OX defining Z.

(i) If I is nilpotent, then ι∗ : K ′
i(Z) → K ′

i(X) is an isomorphism for every i.
In particular, K ′

i(Xred) ∼= K ′
i(X).

(ii) Let U be the complement of Z in X, and let j : U → X be the inclusion.
Then there is a long exact sequence

· · · −→ K ′
i+1 −→ K ′

i(Z) ι∗−→ K ′
i(X)

j∗−→ K ′
i(U) −→ · · ·

The next two results reveal connections of the K ′-groups of a scheme and those
of affine or projective bundles (cf. §1.4 and §2.1) on it.

Proposition A.3.7 ([27, p.128, Prop. 4.1]). Let f : P → X be a flat morphism
whose fibres are affine spaces. Then f∗ : K ′

i(X) → K ′
i(P ) is an isomorphism for

every i ≥ 0.

Proposition A.3.8 ([27, p.129, Prop. 4.3]). Let E be a vector bundle of rank
r = e + 1 on a scheme X. Let P(E) be the associated projective bundle and let
f : P(E) → X be the projection. Then for each i ≥ 0, we have a K0(P(E))-module
isomorphism

K0(P(E))⊗K0(X) K ′
i(X) ∼−→ K ′

i(P(E))

given by
y ⊗ x 7→ y · f∗(x) .

Equivalently, if z ∈ K0(P(E)) is the class of the sheaf OE(−1) on P(E), then we
have an isomorphism

K ′
i(X)⊕r ∼−→ K ′

i(P(E)) , (xj)0≤j≤e 7→
e∑

j=0

zj · f∗(xj) .
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Concerned with the K-groups of projective bundles, we have the following the-
orem, as opposed to Prop. A.3.8.

Theorem A.3.9 ([27, p.142, Thm. 2.1]). Let E be a vector bundle of rank r = e+1
on a scheme X and let P(E) be the associated projective bundle, and f : P(E) → X
the natural projection. Then there are isomorphisms of K0(P(E))-modules for all
i ≥ 0,

K0(P(E))⊗K0(X) Ki(X) ∼= Ki(P(E)) , y ⊗ x 7→ y · f∗(x) .

Equivalently, there are isomorphisms

Ki(X)⊕r ∼= Ki(P(E)) , (αj)0≤j≤e 7→
e∑

j=0

zj · f∗(αj) ,

where z ∈ K0(X) is the class of OE(−1).

A.3.2 BGQ-Spectral Sequence and Chow Groups

Let X be a (Noetherian separated) scheme. Let Mp(X) ⊆ M(X) be the Serre
subcategory (meaning a subcategory which is closed under subobjects, quotients and
extensions) consisting of those coherent sheaves F whose support has codimension
≥ p in X. Define a decreasing filtration on K ′

i(X) = Ki(M(X)) by

F pK ′
i(X) := image of (Ki(Mp(X)) −→ K ′

i(X)) .

This is called the filtration by codimension of support or the topological
filtration . This filtration is finite provided that dimX is finite.

There is a spectral sequence, called the Brown–Gersten–Quillen (BGQ) spectral
sequence, relating the K-groups of points on X with the K ′-groups of the scheme
X.

Theorem A.3.10 ([27, p.131, Thm. 5.4], BGQ-Spectral Sequence). Let X
be a Noetherian separated scheme. Let X(p) denote the set of x ∈ X such that
codim({x }, X) = p. Then there is a spectral sequence

Epq
1 = Epq

1 (X) =
⊕

x∈X(p)

K−p−q(κ(x)) =⇒ K ′
−p−q(X)

which is convergent when X has finite dimension. Here we set Kn = K ′
n = 0 for

n < 0.

The E2-terms of the BGQ-spectral sequence is computable thanks to Gersten’s
resolution, which is stated in the following proposition.

Proposition A.3.11 ([27, pp.132–133, Props. 5.6, 5.8 and Coro. 5.10]). Let X be
a regular separated scheme of finite type over a field.

(i) For every p ≥ 0, there is an exact sequence

0 −→ Kp(X) ε−→ E0,−p
1 (X) d−→ · · · −→ Ep−1,−p

1 (X) d−→ Ep,−p
1 (X) −→ 0

where the map

ε : Kp(X) −→ E0,−p
1 (X) =

⊕

x∈X(0)

Kp(κ(x))

is induced by the pull-backs by the canonical morphisms ιx : Spec κ(x) → X, and
the maps d are differential maps of the BGQ-spectral sequence.
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(ii) Let Kp denote the sheaf associated to the presheaf U 7→ Kp(U), and let

E pq
1 :=

⊕

x∈X(p)

ιx∗
(
K−p−q(κ(x))

)

where K−p−q(κ(x)) is regarded as the constant sheaf on Spec κ(x) associated to the
group K−p−q(κ(x)). Then for every p there is a flasque resolution of Kp:

0 −→ Kp
ε−→ E 0,−p

1
d−→ · · · −→ E p−1,−p

1
d−→ E p,−p

1 −→ 0 .

(iii) There is a canonical isomorphism

Epq
2 (X) ∼= Hp(X, K−q) .

for every p, q.

Note that for any x ∈ X(p−1), K1(κ(x)) = κ(x)∗ (cf. Remark A.3.3) may be
identified with k(W )∗, where k(W ) is the function field of W := {x }. Also, for any
x ∈ X(p), K0(κ(x)) can be identified with Z · [V ] with V = {x }, so Ep,−p

1 (X) can
be identified with the group Zp(X) of cycles of codimension p (cf. Chapt. 1).

Theorem A.3.12 ([27, p.137, Thm. 5.19]). For a regular separated scheme X of
finite type over a field k, the differential map

d : Ep−1,−p
1 (X) −→ Ep ,−p

1 (X)

in the BGQ-spectral sequence coincides with the map
⊕

codim W=p−1

k(W )∗ −→ Zp(X) ; ⊕fi 7→
∑

[div(fi)] .

Consequently, there are canonical isomorphisms

Ep ,−p
2 (X) ∼= CHp(X) , ∀ p ≥ 0 .
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